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Restrictions on the flows of functional differential 
equations in neighborhoods of singularities 1 

Luis T. Magalhaes 

Abstract: The paper is a report on the work of Faria 
and Magalhaes regarding possible rest.rictions on the flows 
defined by scalar ret.arded Functional Differential Equations 
(FOEs), locally around certain simple singularities, when com­
pared with t.he possible flows of Ordinary Different.ial Equa­
tions (ODEs) with the same singularit.ies. For the Hopf and 
the Bogdanov-Takens singularities there are no rest.rictions on 
the local flows defined by scalar FOEs, even when the non­
linearities involve just one delay. On the other hand, for the 
singularity associated with a zero and a conjugated pair of 
pure imaginary numbers as simple eigenvalues, t.here occur 
restrictions on t.he flows defined by scalar FOEs with nonlin­
earities involving just. one delay, as well as two delays satisfying 
a cert.ain resonance condit.ion. These restrictions are of geo­
metric significance, since they amount. to the impossibility of 
observing the homoclinic orbit.s that occur in arbitrarily small 
neighborhoods of the singularity for ODEs. Versal unfoldings 
for the considered singularities by FOEs and the possible re­
strictions on the associated, flows are also studied. 

Key words: Funct.ional different.ial equations, singulari­
ties, versal unfoldings, normal forms, locally invariant mani­
folds . 

1.. Introduction 

When considering the dynamics of a class of infinite dimensional systems, it 
is natural to enquire about the restrictions on t.he flows that can be observed on 
finite dimensional invariant manifolds, relative to flows defined by finite dimen­
sional Ordinary Differential Equations (ODEs). In part.icular, it. is interesting to 
look for situations where the extension from a finit.e dimensional phase space to an 
infinite dimensional one is not associated with an extension of the possible dynam­
ical behavior that can be observed in the considered class of infinite dimensional 
systems. 

We will be concerned with the study of possible restrictions on the local flows 
of scalar retarded FDEs around equilibrium points, report.ing on the work of Faria 
and Magalhaes in [10] . 

Let us consider r > 0 and denote by C = C([-7', 0]; lR) the Banach space of the 
continuous functions from [-7',0] tolR, taken with the uniform norm. We consider 
scalar retarded Functional Differential Equations (FDEs) in C, of the form 

(1) i (t) = L( zt) + f( zt) 

1 Part.ially supported by FAPESP's Projeto Tematico " Transi<;ao de Fase Dinamica e Sistemas 
Evolutivos" and JNICT-Port.ugal (STRDA/C/CEN/528/92). 
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where Zt E C satisfies Zt(f}) = z(t + 8), and L is a bounded linear operator from 
C to]R and 1 -+]R is a C k funct.ion, for an appropriate k ~ I, satisfying 1(0) = 0 
and D 1(0) = O. The solutions of the considered FDE define a CO semigroup on 
C which has an equilibrium at the origin, where the linearization of the FDE is 

(2) i(t) == L(zt) 

The center-unstable manifold theorem ailsures that the local flow defined by the 
FDE around equilibria is finite 'dimensional, in the sense that there exists a finite 
dimensional differential manifold invariant under the flow which at,tracts exponen­
tially nearby orbits and where the flow can be given by a finit.e dimensional ODE. 
It is t.herefore natural to ask how do local flows of FDEs in finite dimensional 
manifolds compare with flows of finite dimensional Ordinary Differential Equa­
tions (ODEs), and if there are reasonably large classes of FDEs whose flows are 
restricted when compared to the possible flows of ODEs. Such situations would 
be particularly interesting, since t.hey would be cases of restrict.ed dynamic behav­
ior, in spite of a drastic enlargement of degrees of freedom, with the phase space 
passing from finite to infinite dimensional. 

The following resuit, of Hale est.ablishes that there OCCIIT no restri ct ions on 
flows determined by finit.e jets of vector fields i,n ]Rm, provided the linear part 
does not itself involve restrictions and the nonlinearit.ies are allowed to depend on 
a sufficiently large number of delayed values of t.he solut.ions which, III any case, 
does not need to be taken larger than m" 

Theorem [14,15]: Any finite jet of vector fields in IRnl at an equilibrium can 
be realized by a scalar FDE in an appropriate m-dimellsional loca lly invariant 
manifold if and only if the linear part can be realized. 

Such a realization can be accomplished wilh nonlinearitie.s in the FDE of the 
form 

(3) f(zd = F(z(f -1'0)," ' , z(t - 1'111-q» 

where q ElN and 0 ::; 1'0 <: ' .. < l'lll-q ::; I' depend only on the linear term in the jet . 
Adequat'e values for 1'0,' , " 1''''_q can be e3:plicitcly computed from the lil/ear term. 

This result was extended to systems of FDEs in [9], a paper that also contains 
the follo,:ing result regarding the realization of linear ODEs, 

Theorem [9]: A linear ODE j: = Bx in IRIll is realizable by a scalar FDE if and 
only if the Jordan canonical forms of B have only one Jordan block for each eigen­
value. 

RClnark: Analogous questions fo), scala)' scmilinea)' parabolic PDEs were consid­
ered in [11,19,20] . 
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Having on mind the informat.ion provided by the two preceding theorems, when 
looking for restrictions in t.he flows generated by FDEs it is natural to consider 
the following program: 

1. consider simple non degenerate linear singularities with one Jordan block for 
each eigenvalue and finitely determined flows, i.e., flows determined by finite 
jets, 

2. restrict the number of ,delays in the FDE to be less than the number obtained 
in Hale's result for realizability cited above, 

3. compute Poincare-l3irkhoff normal fOrlns up to the desired order with the 
coefficients explicitely given in terms of the considered FDE'. ' 

In order to accomplish this program we need a theory extending to FDEs the 
Poincare-Birkhoff normal forms available for finite dimensional ODEs. Such a 
normal form theory for FDEs was developed in [7 ,8]. 

Let us now be explicit about what we understand ,by simple nondegenerate 
singularities. By order of increasing complexity these, the associated eigenvalues 
and Jordan canonical forms are: 

1. Hopf singularity 

eigerivalues : (iw, -'-'iw) , with w f. 0 

Jordan form: [_Ow ~] 

2. Bogdanov-Takens singularit.y 

eigenvalues: (0,0) 

Jordan form: [~ ~] 

3. singularity with eigenvalues: (iw , -iw, 0), wit.h w f. 0 

Jo<dan [oem [ + ~ ~ 1 
4. singularity with eigenvalues: (iWI' -iWI., iW2, -iW2,), wit.h WI , W2 f. 0 

WI 

o 
o 
o 

o 
o 
o 
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2. The Hopf singularity 

The Hopf singularity is characterized by the infinitesimal generator Ao for the 
semigroupdefined by the linear equation i(t) = L(zt) having as simple eigenvalues 
±iw, with w i 0, and no other eigenvalues in the imaginary axis . We denote by 
P the invariant space forAo associated with the set of eigenvalues A = {iw, -iw}. 
In this case, the function f defining the nonlinearities in the FDE is required to 
be of class C3 . 

The result of Hale recalled in the preceding section assures the realizability of 
any finite jet of vector fields in IR? by FDEs with nonlinearities depending on two 
delays, provided the delays are appropriately chosen in [0, r]. Since we are looking 
for situations with restrictions on the flows observed on a center manifold at zero, 
we consider FDEs with just one delay in the nonlinearities, as follows. 

(4) i(t) = L(zt) + F(z(t - ro)) 

with 

(5) 
A? 2 A3 3 4 

F(u) = -='u + -u + O(lul ) 
2 3 

As the singularity involves a pair of conjugate pure imaginary eigenvalues, to 
compute a normal form relative to P for this FDE with the help of the theory 
developed in [7] it is convenient to conside~' the FDE in C([-1', 0]; <t), still denoted 
here by C, extending Land F to complex functions in the natural way. We then 
obtain on center manifolds at the origin, in polar coordinates, the normal form 

(6) 

where 

K p3 + O(p4) 

-w + O(p) 

(7) /{= A3 R ( -iwro." (0»+A2{- Re(e-iw"Oth(O» +~R [ e-3iw"o ',pl(0) ]} 
2 e e vl 2 L(1) 2 e 2iw _ L(e2,w9) 

with th(O) = [1- L(8eiw9 )]-l. 
It is known (cf. [1,5,16,17]) that generically the flows for ODEs with this 

'lingularity are determined at third order, with a normal form given in polar 
coordinates (p,{) as in (6) . 

Changing A3 generat.es arbitrary changes in I{ as given in (7) . Consequently, 
there are no restrictions on the possible phase portraits on center manifolds at 
the origin , in comparison to what can be generically observed for ODEs with this 
singularity, even if the nonJinearities of the FDE involve just one delay. 

We conclude that there are no restrictions imposed on the possible phase por­
traits on center manifolds at the origin that result from considering FDEs (4) with 
nonlinearities involving just one delay. 
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It is of interest. to consider also versal unfoldings of t.he singularit.y by families 
of FDEs . For this, we study a linear perturbation of (4) in the form 

i(t) = II Z(t - 1'0) + L(zd + F(z(t - 1'0) , 

with II E JR. Since we are int.erested in discussing the Hopf bifurcation, it is 
necessary to impose the Hopf condition, namely t.hat. the infinitesimal generator 
of z(t) = II Z(t - 1'0) + L(zt) has a pair of conjugate simple eigenvalues, ,(II) ± 
iu(II), crossing transversally the imaginary axis at II = 0, with ,(0) = 0, 0'(0) = 
w, ,'(0) :j:. O. In t.his case, t.he Hopf condition amount.s t.o Re llh(O)e- iwro :j:. O. 
Under t.his condition, we obtain from t.he results est.ablished in [8] that t.he flows 
on center manifolds at z = 0, II = 0 are given in polar coordinates (p,.o by 

p = //Re (lh(O)e- iwro ) p + J{ p3 + O(1I2p + I(p, 11)14) 

~ = -w + O(I(p, 11)1) , 

where J{ is given by (7) . Therefore, under the generic condit.ions on t.he linear 
operat.or L 

He (1 _e~~:~:W9») :j:. 0 
t.he one-parameter family of FDEs 

i(t) = IIZ(t - 1'0) + L(zd + (z(t - 1'0»3 

is a versal unfolding of t.he Hopf singularity for the flows on cent.er manifolds at. the 
origin. Again, t.here are no rest.rictions imposed on the possible phase port.raits 
on center manifolds at. the origin t.hat result from considering scalar FDEs t.hat 
provide a versal unfolding of the Hopf singularity with nonlinearities depending 
on just one delayed value of the solut.ions. 

3. The Bogdanov-Takens singularity 

The Bogdanov-Takens singularit.y is characterized by t.he infinitesimal genera­
t.or Ao havillg 0 as a double eigenvalue and no ot.her eigenvalues in the imaginary 
axis, but such that. t. he rest.rict.ion of Ao to its invariant space P associated with 
t.he set of eigenvalues A = {OJ is not zero. In this case, t.he function f defining 
the nonlinearit.ies in t.he FDE is required to be of class C'2. 

As before for the Hopf singularit.y, the result of Hale recalled in the introduction 
assures the realizability of any finite jet of vector fi elds in IR? by FDEs with 
nonlinearities depending on two delays, provided the delays are appropriately 
chosen in [0 ,1']. So , we consider FDEs wit.h just. one delay in the nOl1lil1earit.ies, as 
follows . 

(8) i(t ) = L(zt) + F(z(t - 1'0» 
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where 

(9) 

with A2 EJR. 
From the results on normal forms for FDEs established in [7], we know that a 

normal form relative to P is of the form 

(10) 
Xl = X2 + 0(lxI3 ) 

X2 = a xi + b X1X2 + 0(lxI3 ) , 

where 

a = -A2 L((}2)-1 

( 11) 
b = ~ A2 L((}2)-2 L((}3) + 2roA2L((}2)-1 

It. is known [2 ,3,2 1] that, provided ab -# 0, the flow of (10) in a neighborhood of the 
origin is completely determined by the terms up to second order. From (11) it. is 
clear that changing A2 and 1'0 allows arbitrary changes in a, b. Consequently, there 
are no restrictions imposed on the possible phase portraits on center manifolds at 
t.he origin that resu lt from consider ing FDEs of this type. 

In [7], versal unfoldings for this singularity by families of FDEs were obtained 
by two-paramet.er families of t.he form 

(12) i(t) = //I=( i) + //2Z(t - 1'0) + L(ztl + F(=(t - 1'0)) 

A correspond ing normal form relative to P is 

(13) 
Xl = J:2 + 0((1/11 + Ixl)lxl 2 ) 

X2 = P1 Xl + P2X2 + ax? + bX1X2 + 0((1111 + Ixl)lxl2 ) , 

with a, b given as in (11) and I' = (/11,/12) E IR? sat.isfying 

(14) 

PI = -2(//1 + //2) [,(0 2)-1 

2 
P2 = 3(//1 + //2) [ ,( 02)-2 L(03) + 2//21'0 [(02r- 1 

It is known [2,3,21] t.hat. t.llP terms lip t.o second order in (13) define a versal 
IInfolding for the nogdanov-Takens singularit.y in IR2 , under t.he generic condit.ion 
ab -# 0, so tJHlt (12) is a versa I unfolding under t.he generic condition ab1'o -# 0, 
where a, b are given by (11). Tn particular a generic versal unfolding is 
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provided 1'0, A2 # O. Again, in the considered conditions, we observe that. there 
are no restrictions imposed on the possible pha')e portrait.s on cent.er manifolds at 
t.he origin for a versal unfolding of the Bogdanov-Takens singularity t.hat result. 
from scalar FDEs wit.h nonlinearit.ies involving just. one delay. 

4. The singularity with a pure Imagmary pair and a zero as simple 
eigenvalues 

We consider now the case where Ao has 0 and ±iw, wit.h w # 0, a') simple 
eigenvalues and no other eigenvalues in the imaginary axis, and f : C -+ JR is a 
C 2 fun ction. We denote by P the invariant. space for Ao associated with t.he set 
of eigenvalues A, = {iw, -iw, O}. 

This singularity, referred to below as the singularity (±iw, 0), is studied along 
the lines followed above for the Hopf and the Bogdanov-Takens singularities. 

From t.he result.s of Hale recalled in the Introduct.ion, we know that there 
are no restrictions on t.he possible finite jets t.hat. can be ohserved in t.he ODEs 
a')sociated with the flows on cent.er manifolds t.hat result from considering FDEs 
whose nonlinearities involve t.hree appropriately chosen delays. So, we consider 
FDEs with nonlinearities involving just. two or one delays. 

Let us first consider FDEs in C of the form 

( 16) i(t) = L(zd + F(z(t - 1'0), z(t - rt)) 

where 

(17) 

with A 20 , All, A02 E JR. As for the ca')e of Hopf bifurcat.ion above, due to the 
presence of the pair of conjugated eigenvalues ±iw, it is convenient to complexify 
t.he equation before computing a normal form. A normal form relative to P can 
be obtained hy applying the t.heory in [7] , leading t.o 

where 
B = diag (iw, -iw, 0) 

and 

g~(x, 0) = 

[ 
S (1P1(O)[2A2oe-iwro + Al1(e-iwro + e- iWr1 ) + 2A02e-iw"1]XJX3) 1 ' 

1f>3(0) {2[A20 + AIlRe(e-iw(ro-r>l) + AO:?]xJx2 + [A20 + All + A02 ]xn 
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with S being an operator acting on the space of second order homogeneous poly­
nomials in rn? such that S(h + k) = S(h) + S(k) and 

This normal form can now be written in real coordinates tv, through the change 
of variables Xl = tvi - iW2, X2 = tvi + itv2, X3 = tv3, and changing to cylindrical 
coordinates according to tvi = pcos~, tv2 = psin~, tv3 = (, we obtain 

(18) 

with 

p = aIP( + O(pl(p, (W) 

( = bl p2 + b2(2 + O(I(p, (1 3 ) 

~ = -W + O(I(p, on 

al = Re {'Ij;dO)[A:lOe-iW7'O + A~I (e- iwro + e- iW7' 1 ) + AJl2e-iWrl]} 

(19) bi = 'lj;3(0)[A::w + All Re(eiw(r l -7'o)) + Ad 

b 'lj;3(0)[1 4 'A] 
2 = -:r-- "" 20 + " 11 + 02 

where 'lj;dO) = (1- L(O eiw8 ))-I and 'lj;3(0) = (1- L(O))-I. 
Writing equation (18) up t.o second order terms and eliminat.ing t.he equat.ion 

in ~ , since the right. hand side of (18) is independent of t.his variable, we get. t.he 
equation in the plane (p, () 

(20) 
p = al P ( 

( = bi p2 + b2 (2 

As it is shown in [21], t.he singularit.y considered is det.ermined t.o second order, 
provided aI, bI , b2 i= 0 and (/1 i= "2. 

By changing A20,All,Ao.2, t.he values of aI,b j ,b2 can he made t.o assume 
arbitrary values, provided : 

i) t.anw(l·o + I' r) i= L(OsinwO)/[1 - L(OcoswO)] , 
(21) 

and ii) w(I'n - 1'1) i= 2br. wit.h I.~ E Z 

So, under these generic condit.iolls and considering sit.uations for which (/1 , b l , /)2 i= 
0, we do not observe rest.rict.ions on t.he possible flows of (16) , locally on cent.er 
manifolds at t.he origin, in comparison to ODEs wit.h the same singularity. 
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Whenever the second condition in (21) fails, so t.hat w(ro - 1'1) = 2k7r, k E Z, 
t.he equations (19) lead t.o the const.raints in the coefficient.s of t.he normal form 

(22) 

Before considering the implicat.ions of these rest.rictions for the flows that can 
be observed, we consider t..he case ofFDEs with just one delay in t.he nonlinearities, 
in t.he form 

(23) i(t) = L(zt) + F( z(t - 1'0» 

where 
1 

F(u) = 2 A2 u 2 + O(luI3 ) 

Since this is a particular case of the situation considered above for norilineari­
ties wit.h two delays, we obtain the same normal form, but now t.he formulas (19) 
for the coefficients become (it. is enough to make in (19) A 20 = A 2 , All = A02 = 0) 

(/1 = A2 Re (1h(0)e- iwrO ) 

(24) bl = A2 1/>3(0) 

h = 9 ·1/'3(0) 

Now we have always thf condit.ions in (22) sat.isfied, while b2 can assume arbit.rary 
values by changing A 2 . Thus, for nonlinearit.ies involving only one delay we observe 

. a lways the restrictions in the possible phase port.rait.s around t.he singularity that 
occur for nonlinearities depending on two values of t.he solut.ion in the case of 
resonant. delays satisfying w(ro - I'd = 2k7r, with k E Z . 

The restrictions mentioned impose drastic limit.ations on t.he flows that can 
be observed. In fact , the possible topological t.ypes of t.he pha.'le portrait.s around 
the origin for equat.ion (20) with bl > 0 are sketched in [21] as appears in figure 
1, and for b1 < 0 can be obtained by just reversing the arrows. It follows from 
(22) that the cases corresponding to bl b2 < 0 cannot. occur for FDEs whose 
nonlinearities involve just one delay, as well as two delays 7'0,7'1 in resonance, 
i.e., W(7'0 - 7'I) = 2k7r with k E Z . So, of the five pha.'le portraits sket.ched in 
Figure 1, only the first two can occur for FDEs whose nonlinearities have just one 
delay or two delays in resonance. In particular, for ODEs with the singularit.y 
considered we can observe homoclin ic orbits in arbitrary small neighborhoods of 
t he origin, while homocl inics to t.he origin in arbitrarily small neighborhoods of 
this equi librium are ruled out for FDEs with the preced ing properties. In fact, 
these do not have global orbits in sufficiently small neighborhoods of the origin 
except the origin itself. 
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a) 

Figure 1: a) b1b2 > 0,b 1(b 2 -ad> 0 , b) 
c) b1b2 < 0, b1(b 2 - ad < 0, b1al > 0 , d) 
e) b1b2 < 0,b 1(b2 - ad> 0 . 

b1b2 > 0, b1(b 2 - ad < 0, blal > 0 , 
b1b2 < 0, bl (b 2 - ad < 0, b1al < 0 , 

For studying the possibility of obtail1ing versal unfoldings for the singularity 
(±iw,O) by families of FDEs wit.h nonlinearities involving one delay, we need t.o 
study versal unfoldings for equation (20), with bl = 2b2 , b2 :f 0, al :f 0, by families 
of ODEs in the plane (p, () which are invariant under the t.ransformation p 1-+ -po 

As in [12,13]' we consider unfoldings for equation (20), wit.h bl = 2b2 , in the 
form 

(25) 
( 

wit.h {l1, Jl2 E JR. In order t.o analyze .equation (25), we consider separat.ely the 
cases alb2 > 0 and (tlb 2 < O. Since changing t.he sign of b2 amount.s t.o changing 
t.he signs of P2,( and ai , we take b2 > O. 

Let us first consider t.he case (/lb2 > O. The possible t.opological t.ypes of the 
phase port.raits in a neighborhood of t.he origin and the corresponding parameter 
regions are given in [12,13] as sket.ched in Figure 2. From t.he Poincare-Bendixson 
t.heory we know t.hat. t.here are no periodic orbit.s in sufficient.ly small neighbor­
hoods of t.he origin which are compat.ible wit.h t.he sket.ched nows. On t.he ot.her 
hand, t.he equilibrium point.s are all hyperbolic except. at. the curves separat.ing 
t.he four regions indicat.ed. As t.he picture in Figure 2 is persist.ent under small 
perturbations, we conclude t.hat. (25) is a versal unfolding for equation (20), wit.h 
a l b2 > O. 

For t.he case (/.1 /)2 < 0, t.hl' hifmcat.ion analysis of equilihrium point.s is similar 
t.o t.hat. of the case a l b2 > 0 and appears in [12,13] as well, leading t.o t.he dia­
grams sketched in Pigme 3. In cont.rast with t.he previolls case, at this st.age the 
phase port.rait.s in a neighborhood of t.he origin cannot. he considered complet.e 
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f( 
saddle-node ~1 

c 

Figure 2: Phase portraits for (25) with a1 > 0, b2 > o. 

and require further study, due to the following fact.s: 

• along the line J..l1 = 0, J..l2 < 0 the Hopf condition is sat.isfied at the equilib­
rium with p f 0, with a conjugated pair of eigenvalues of the linearization 
at this equilibrium crossing the imaginary axis from negative to positive real 
parts as the separating line is crossed from C to D, 

• over the line J..l1 = 0, J..l2 < 0 the equation admits a first integral and the 
flow for these values of t.he parameters can be shown to have a heteroclinic 
loop through the equilibrium points in the (-axis encircling the equilibrium 
point outside this axis, with all the other orbits in the region bounded by 
the heteroclinic loop being periodic . 

Figure 3: Phase. portraits for (25) with a1 < 0, b2 > o. 

To pursue the analysis in search of a versal unfolding , in the case a1bZ < 0, we 
must. add higher order terms to t.he right hand side of t.he equation (25) . Motivated 
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by the computation of normal forms for the singularity (±iw, 0) in rn.3 , we consider, 
as in [12,13]' the cubic equation . 

P 111P + a1P( + a2p3 + a3P(2 
(26) 

( 

For this equation there occurs H~pf bifurcation itt a curve 

_ [~ _ a1(2a2 + b3)] O( 2) 
1-'1 - 2b2 4b~ 112 + Ih 

as 112 --> O. In order to complete the phase portraits in a neighborhood of the 
origin, we now need to know the number of periodic orbits that may occur an to 
study the occurrence of heteroclinic loops and their bifurcations. 

The equation (26) is considered in [6) where it is shown that when periodic 
orbits exist in a neighborhood of the origin they ' are ·unique, using a technique 
bas~d on the study of certain Abelian integrals obtained from a first integral 
associated with the equation after appropriate changes of variables'. 

Similar methods can be applied to obtain a curve of heteroclinic bifurcation 

t - 1 [2(b 2 - ,ar)2 a2 _ (b 2 - a1)a1 b3 _ 2a a 3aib4 ] nO( 3/2) 
1 1- .j2b;(2b2-3ad b2 b2 13 + b2 11_ 112 . 

.It follows that the possible topological types of the phase port'raits in a neigh­
borhood of the origin and the ,correspondi'ng parameter regions are, in the present 
case, as sketcheq in Figure 4. Tn particular, the .line where a hetel:oclinic loop oc­
curs and the Hopf condition is sat.isfied for the quadrat.ic normal form is widened 
to a sector where one periodic orbit occurs for the cubic normal form. Of course, 
the relative position of the cllrves of Hopf bifurcat.ion and of heteroclinic loop may 
need to be int.erchanged in part.iClllar cases, wit.h t.he st.ahilit.y of the associated 
periodic orbit and focus changed accordingly. 

Now, we can try to obtain versal unfoldings for the considered singularity by 
families of FDEs. Here, we only refer to the case where t.he nonlinearity involves 
just one delay, in t.he forl11 

(27) i(t) = L(zd + F(z(t - ro)) 

We attempt unfoldings of t.he f01'111 

(28) i(t.) = 1.1] + 1.12 z(t - l'cd + L(ztl + F(=(t - 1'0)) 

where vI, 1/2 E JR. Computing a normal form relat.ive t.o P in cylindrical coordi­
nates, we get 

(29) 

p = RC(~'dO)e-iw,'o )V2P + (t]p( + ... 
( = - V!3 (0)/.I] + V>3 (0)//2( + b]p2 + b',!(2 + ... 

~ = -w + ... 
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f< 

Figure 4: Phase portraits for (26) with al < 0, b2 > O. 

where aI, bl , b2 are as in (24), and the dots stand for higher order terms. 
This normal form differs from the second order normal form previously con­

sidered because it includes a term in 112( in the second equation. In order to 
eliminate this term, we consider instead the family of FDEs 

(30) i(t) = III + 112[Z(t - ro) - z(t - 1'1)] + L(zt) + F(z(t - ro)) 

with r1 E [0, r] \ {ro}. This involves two delays in the terms with the unfolding 
parameters (anyway, L must involve more than one delay for 0, ±iw, with w i:- 0, 
to be eigenvalues of Ao) . 

Computing a normal form relative to P for the last equation in cylindrical 
coordinates, we get 

p = [1 + O'IJ-LdJ-LIP + [al + 0'2J-LI]p( + a2p3 + a3P(2 + ... 

(31) ( = J-L2 + [b l + ,61J-Ldp2 + [b2 + ,62J-Lt1(2 + b3P2( + b4(3 + ... 

~ = -w + ... 

where 0.1, b1, b2 are given by (24), 0.2,0.3, b3, b4 can be expressed explicitely in terms 
of the linear part of the equation and the coefficients in the Taylor expansion for 
F, 0'1,0'2,,61,,62 are real numbers that depend on L,F,ro,rl,w and 

J-LI = Re[1/;1 (0)( e-iw,'o - e- iwr1 )]112 

J-L2 = -1/;3(0)111 

The parameters J-L1, J-L2 can be varied independently by varying 111,112, provided 
the following nonresonance condition between the delays ro, rl and the angle w is 
satisfied 

(32) 
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We conclude that the two-parameter family of FDEs (30) provides indeed an 
unfolding of the singularity (±iw,O) in the class of scalar FDEs with nonlinear­
ities having just one delay which in _ the p( -plane is a versal unfolding for the 
corresponding singularity, as established il1 the preceding section, provided the 
nonresonance condition between the delays just mentioned holds. For the case 
al bl < 0 this is not a versal unfolding, since the occurrence of periodic orbits 
and heteroclinic loops in the plane results in ~he structural instability of the two­
parameter family (31) in 1R3 . . Howev~r, for the case, alb l > 0, the considered 
family does indeed provide a structurally stable two-parameter family of ODEs 
in 1R3 , as well as does the family obtained by cutting off the cubic terms in (31). 
Consequently, the two-parameter family of scalar FDEs (30) provides a versal un­
folding for the singularity (±iw, 0) in the class of scalar FDEs with nonlinearities 
having just one delay and satisfying al bl > 0, where al and bl are related to 
each other by the formulas in (22). Itcan be readily observed that the condition 
al b l > 0 only restricts the linear part of the FDEs (27) that can be considered . 
The fact that aI, bl , b2 in (24) have all the same sign, as happens in this situation, 
implies severe restrictions on the possible phase portraits in a neighborhood of 
the origin, in comparison with the situation for ODEs. In particular, the flow 
of saddle loops sketched in Figure 5 and described in [12,13] does not occur in 
this case, as well as the more complex behavior associated with the occurrence of 
infinitely many Smale horseshoes which is described for ODEs in 1R3 by Broer and 
Vegter in [4]. 

_ c=- ± __ -=_-
-- -- - : ----:..:.::.:> --

/ ~---------------------1 =----_______ --- ....... " 
. ------~------/\I ---~---. 

\ . 
~--------------------i--------------. *> 

Figure 5: Saddle loops. 

As an illustration of the results obtained, we consider an example. 

Example: 
Since, in the class of scalar linear differential-delay equations i(t) = L( zd, the 

singularity (±iw, 0) can only be realized by equations with at least two delays, the 
simplest situations to be considered are for 
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For ±iw,O, with w :j: 0, to be characteristic values of the equation i(t) = L(zl) 
we must. have 

Al = -Ao 

Ao = - 2s,::'wro 
w(ro + rd = 2k1r, kEN 

wro :j: j7r,j ENo 

The nonresonance condition is then automatically satisfied since 

.. zw 
'If; (O){e-·wro _ e-·wr ,) = . 

I Ao(1 _ L«(Je.w6)) 

and, consequently, the nonresonance condition is equivalent to L( (J sin w(J) :j: 0, 
which is verified because L( (J sin w(J) = (ro + rd sin wro :j: O. On the other hand, 
from (22) we have 

( [1 - L( (J)]e- iwro ) 
sgn Re [1 _ L«(Jeiw6 ] 

sgn ([sin 2wro - wro + (2k7r - wro) cos 2wr0 

[2sinwro - 2wro + 2h]) 

Analyzing the right hand side as a function of wro, it is then easy to conclude that 
al bl alternates signs as wro grows from 0 to +00, but that it is always positive 
for wro E (0, 7r/4]. . 

In particular, we conclude that, if the equation i(t) = az(t - ro) + bz(t - rd, 
with a, bE IR, ro, rl > 0, realizes the singularity (±iw, 0) and W1'O E (0, 7r /4], then 
the two-parameter family of FDEs 

i(t) = VI + (a + V2)Z(t - ro) + (a - V2)Z(t - rd + [z(t - ro)F 

with VI, V2 E IR close to zero, is a versal unfolding of the singularity (±iw, 0) in 
the class of scalar differential-delay equations of the form 

i(t) = C + Az(t - ro) + Bz(t - rd + F(z(t - ro)) 

where A, B , C E IR and F:IR -+R is a C 3 function with F(O) = F'(O) = 0, F"(O):j: O. 
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