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Restrictions on the flows of functional differential
equations in neighborhoods of singularities !

Luis T. Magalhaes

Abstract: The paper is a report on the work of Faria
and Magalhaes regarding possible restrictions on the flows
defined by scalar retarded Functional Differential Equations
(FDEs), locally around certain simple singularities, when com-
pared with the possible flows of Ordinary Differential Equa-
tions (ODEs) with the same singularities. For the Hopf and
the Bogdanov-Takens singularities there are no restrictions on
the local flows defined by scalar FDEs, even when the non-
linearities involve just one delay. On the other hand, for the
singularity associated with a zero and a conjugated pair of
pure imaginary numbers as simple eigenvalues, there occur
restrictions on the flows defined by scalar FDEs with nonlin-
earities involving just one delay, as well as two delays satisfying
a certain resonance condition. These restrictions are of geo-
metric significance, since they amount to the impossibility of
observing the homoclinic orbits that occur in arbitrarily small
neighborhoods of the singularity for ODEs. Versal unfoldings
for the considered singularities by FDEs and the possible re-
strictions on the associated flows are also studied.

Key words: Functional differential equations, singulari-
ties, versal unfoldings, normal forms, locally invariant mani-

folds.

1. Introduction

When considering the dynamics of a class of infinite dimensional systems, it
is natural to enquire about the restrictions on the flows that can be observed on
finite dimensional invariant manifolds, relative to flows defined by finite dimen-
sional Ordinary Differential Equations (ODEs). In particular, it is interesting to
look for situations where the extension from a finite dimensional phase space to an
infinite dimensional one is not associated with an extension of the possible dynam-
ical behavior that can be observed in the considered class of infinite dimensional
systems.

We will be concerned with the study of possible restrictions on the local flows
of scalar retarded FDEs around equilibrium points, reporting on the work of Faria
and Magalhaes in [10].

Let us consider 7 > 0 and denote by C = C([—r, 0]; R) the Banach space of the
continuous functions from [—r, 0] toR, taken with the uniform norm. We consider
scalar retarded Functional Differential Equations (FDEs) in C, of the form

(1) (1) = L(z) + f(z)
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where z; € C satisfies z;(0) = z(t + 0), and L is a bounded linear operator from
C toR and f —R is a C* function, for an appropriate k > 1, satisfying f(0) = 0
and Df(0) = 0. The solutions of the considered FDE define a C° semigroup on
C which has an equilibrium at the origin, where the linearization of the FDE is

{2) é(i) = L(Z[) 3

The center-unstable manifold theorem assures that the local flow defined by the
FDE around equilibria is finite dimensional, in the sense that there exists a finite
dimensional differential manifold invariant under the flow which attracts exponen-
tially nearby orbits and where the flow can be given by a finite dimensional ODE.
It is therefore natural to ask how do local flows of FDEs in finite dimensional
manifolds compare with flows of finite dimensional Ordinary Differential Equa-
tions (ODEs), and if there are reasonably large classes of FDEs whose flows are
restricted when compared to the possible flows of ODEs. Such situations would
be particularly interesting, since they would be cases of restricted dynamic behav-
ior, in spite of a drastic enlargement of degrees of freedom, with the phase space
passing from finite to infinite dimensional.

The following result of Tlale establishes that there occur no restrictions on
flows determined by finite jets of vector fields in R™, provided the linear part
does not itself involve restrictions and the nonlinearities are allowed to depend on
a sufficiently large number of delayed values of the solutions which, in any case,
does not need to be taken larger than m. '

Theorem [14,15]: Any finite jet of vector fields in R™ at an equilibrium can
be realized by a scalar FDE in an appropriate m-dimensional locally invariant
manifold if and only if the linear part can be realized.

Such a realizalion can be accomplished with nonlinearities in the FDE of the
form

(3) F(z0) = F(3(t = 10), -+, 5t = rmeg))

where gEIN and 0 < rg<---< vy <1 depend only on the linear term in the jet.
Adequate values for rg, - -, rym—y can be explicitely computed from the linear term.

This result was extended to systems of FDEs in [9], a paper that also contains
the following result regarding the realization of linear ODEs.

Theorem [9): A linear ODE &= Ba in IR™ is realizable by a scalar FDE if and
only if the Jordan canonical forms of B have only one Jordan block for each eigen-
value.

Remark: Analogous questions for scalar semilinear parabolic PDEs were consid-
ered in [11,19,20].
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Having on mind the information provided by the two preceding theorems, when
looking for restrictions in the flows generated by FDEs it is natural to consider
the following program:

1. consider simple nondegenerate linear singularities with one Jordan block for
each eigenvalue and finitely determined flows, i.e., flows determined by finite
jets,

2. restrict the number of delays in the FDE to be less than the number obtained
in Hale’s result for realizability cited above,

3. compute Poincaré-Birkhoff normal forms up to the desired order with the
coefficients explicitely given in terms of the considered FDE.

In order to accomplish this program we need a theory extending to FDEs the
Poincaré-Birkhoff normal forms available for finite dimensional ODEs. Such a
normal form theory for FDEs was developed in [7,8].

Let us now be explicit about what we understand by simple nondegenerate
singularities. By order of increasing complexity these, the associated eigenvalues
and Jordan canonical forms are:

1. Hopf singularity

eigenvalues: (iw, —iw), with w # 0

Jordan form: [ 0 w]
—w 0

2. Bogdanov-Takens singularity

eigenvalues: (0,0)

0 1
Jordan form: { 0 0 ]

3. singularity with eigenvalues: (iw, —iw,0), with w # 0

0 w 0
Jordan form: —w 0 0
0 0 0

4. singularity with eigenvalues: (iw;, —iwy, iwa, —iws, ), with wy,ws # 0

[ 0 w1 O 0
—w; 0 0 0
0 0 0 ws

0 0

0 —Wwa

Jordan form:
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2. The Hopf singularity

The Hopf singularity is characterized by the infinitesimal generator Ag for the
semigroup defined by the linear equation 2(t) = L(z;) having as simple eigenvalues
+iw, with w # 0, and no other eigenvalues in the imaginary axis. We denote by
P the invariant space for Ap associated with the set of eigenvalues A = {iw, —iw}.
In this case, the function f defining the nonlinearities in the FDE is required to
be of class C3.

The result of Hale recalled in the preceding section assures the realizability of
any finite jet of vector fields in IR* by FDEs with nonlinearities depending on two
delays, provided the delays are appropriately chosen in [0, r]. Since we are looking
for situations with restrictions on the flows observed on a center manifold at zero,
we consider FDEs with just one delay in the nonlinearities, as follows.

(4) z(t) = L(z:) + F(z(t — 7)) ,
with
(5) F(u) = %u% A—;u3+0(|u|“)

As the singularity involves a pair of conjugate pure imaginary eigenvalues, to
compute a normal form relative to P for this FDE with the help of the theory
developed in [7] it is convenient to consider the FDE in C([—r, 0]; @), still denoted
here by C, extending L and F' to complex functions in the natural way. We then
obtain on center manifolds at the origin, in polar coordinates, the normal form

= Kp®+0(p*)

6
@ ~w +0(p)

where

. —iwrp —3iwrg
(1) K= Re(eron a3 (- BT D [ O
with ¥;(0) = [1 — L(e™?)]~1.

It is known (cf. [1,5,16,17]) that generically the flows for ODEs with this
singularity are determined at third order, with a normal form given in polar
coordinates (p,€) as in (6).

Changing A3 generates arbitrary changes in K as given in (7). Conscquently,
there are no restrictions on the possible phase portraits on center manifolds at
the origin, in comparison to what can be generically observed for ODEs with this
singularity, even if the nonlinearities of the FDE involve just one delay.

We conclude that there are no restrictions imposed on the possible phase por-
traits on center manifolds at the origin that result from considering FDEs (4) with
nonlinearities involving just one delay.
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It is of interest to consider also versal unfoldings of the singularity by families
of FDEs. For this, we study a linear perturbation of (4) in the form

i(t) = va(t —ro) + L(z) + F(z(t — 7)) ,

with ¥ € IR. Since we are interested in discussing the Hopf bifurcation, it is
necessary to impose the Hopf condition, namely that the infinitesimal generator
of £(t) = vz(t — ro) + L(z) has a pair of conjugate simple eigenvalues, y(v) +
io(v), crossing transversally the imaginary axis at v = 0, with v(0) = 0, o(0) =
w, ¥'(0) # 0. In this case, the Hopf condition amounts to Re 1;(0)e~i“m # 0.
Under this condition, we obtain from the results established in [8] that the flows
on center manifolds at z = 0, » = 0 are given in polar coordinates (p, &) by

p = vRe (Y1(0)e™*™) p+ K p* + O(v?p + |(p, v)|*)
E=-w+0(l(pv)) ,

where I is given by (7). Therefore, under the generic conditions on the linear

operator L ‘
e~ iwro
re (r=Tagamy) #°

the one-parameter family of FDEs
£(t) = vzt = ro) + L(z) + (2(t = r0))’

is a versal unfolding of the Hopf singularity for the flows on center manifolds at the
origin. Again, there are no restrictions imposed on the possible phase portraits
on center manifolds at the origin that result from considering scalar FDEs that
provide a versal unfolding of the Hopf singularity with nonlinearities depending
on just one delayed value of the solutions.

3. The Bogdanov-Takens singularity

The Bogdanov-Takens singularity is characterized by the infinitesimal genera-
tor Ag having 0 as a double eigenvalue and no other eigenvalues in the imaginary
axis, but such that the restriction of Ag to its invariant space P associated with
the set of eigenvalues A = {0} is not zero. In this case, the function f defining
the nonlinearities in the FDE is required to be of class C°.

As before for the Hopf singularity, the result of Hale recalled in the introduction
assures the realizability of any finite jet of vector fields in R> by FDEs with
nonlinearities depending on two delays, provided the delays are appropriately
chosen in [0, 7]. So, we consider FDEs with just one delay in the nonlinearities, as
follows.

(8) z2(t) = L(zt) + F(z(t — m0))
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where
Aa
(9) F(u) = T +O([uf’)

with A» €1R.
From the results on normal forms for FDEs established in [7], we know that a
normal form relative to P is of the form

Iy = Io + O(ll‘la)

(10) " ) 3
p=azi+bzizs + O(2]°) |

where

a= —Ay L(#?)?

(11) 2 2y—2 3 2y-1
b= '?: As L(67)™° L(6°) + 2rq A2 L(67) b

It is known [2,3,21] that, provided ab # 0, the flow of (10) in a neighborhood of the
origin is completely determined by the terms up to second order. From (11) it is
clear that changing A» and ry allows arbitrary changes in a, b. Consequently, there
are no restrictions imposed on the possible phase portraits on center manifolds at
the origin that result from considering FDEs of this type.

In [7], versal unfoldings for this singularity by families of FDEs were obtained
by two-parameter families of the form

(12) (1) = niz(t) + vez(t —ro) + L(z() + F(2(1 = 70))
A corresponding normal form relative to P is

Ty = xo + O((lul + |z Dx]?)

(13) ; o n
To = pyxy + poxa + azi+ briza  + O((|u| + |2])|z]?) |

with a,b given as in (11) and g = (1, y2) € IR? satislving

p1 = =2(vy + va) L(07)"!

(14) , Y ;
g é(w + un) T(0%)"2 L(0%) + 2waro L(0%)~"

It is known [2,3,21] that the terms up to second order in (13) define a versal
unfolding for the Bogdanov-Takens singularity in IR?, under the generic condition
ab # 0, so that (12) is a versal unfolding under the generic condition abry # 0,
where a, b are given by (11). In particular a generic versal unfolding is

(15) 2(t) = viz(t) 4 woz(t —ro) + L(z) + %(:{t —19))?
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provided rg, A # 0. Again, in the considered conditions, we observe that there
are no restrictions imposed on the possible phase portraits on center manifolds at
the origin for a versal unfolding of the Bogdanov-Takens singularity that result
from scalar FDEs with nonlinearities involving just one delay.

4. The singularity with a pure imaginary pair and a zero as simple
eigenvalues

We consider now the case where Ay has 0 and +iw, with w # 0, as simple
eigenvalues and no other eigenvalues in the imaginary axis, and f : C — R is a
C? function. We denote by P the invariant space for Ay associated with the set
of eigenvalues A = {iw, —iw,0}.

This singularity, referred to below as the singularity (+iw,0), is studied along
the lines followed above for the Hopf and the Bogdanov-Takens singularities.

From the results of Hale recalled in the Introduction, we know that there
are no restrictions on the possible finite jets that can be observed in the ODEs
associated with the flows on center manifolds that result from considering FDEs
whose nonlinearities involve three appropriately chosen delays. So, we consider
FDEs with nonlinearities involving just two or one delays.

Let us first consider FDEs in C of the form

(16) 2(t) = L(z) + F(z(t — ro),2(t —m1))
where
1 o 9
(17) F(vy,vm) = §(Aaavf + Anvivs + Agav3) + O(|(v, v2) %)

with Asg, A1y, Ags € IR. As for the case of Hopf bifurcation above, due to the
presence of the pair of conjugated eigenvalues +iw, it is convenient to complexify
the equation before computing a normal form. A normal form relative to P can
be obtained by applying the theory in [7], leading to

z = Bx + %gé{x, 0) + O(|z]?)
where
' B = diag (iw, —iw,0)
and

93(x,0) =
S (Tf)1{0)[2/lgue_iwr"‘ + A“(e—iwru + E_i”r‘) + 2;4[]29_iwrl]311‘3)

¥3(0) {2[A20 + Ay Re(e™™m0="1)) + Aga]ai2a + [A2o + Ar1 + Ag2]23} ‘
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with & being an operator acting on the space of second order homogeneous poly-
nomials in R? such that S(h + k) = S(h) + S(k) and

(o ol

42 .0

Tz’ 23 =P

S(c i 2P 2$) =
z3

l ) CGG;(?I-Q?:%)EN%: ](Q1‘92~‘J’3)|=j-

This normal form can now be written in real coordinates w, through the change
of variables z; = wy — iwq, 2 = w) +iwy, z3 = w3, and changing to cylindrical
coordinates according to wy = pcos€, wa = psin€, wz = (, we obtain

p = aip¢ +O(pl(p, O)|)
(18) ¢ = bip? + 5262 + O(I(p, O)PP)
§=-w+0((pO ,

with

a; = Re{vf)l[O}[A-_:ge"“‘”'" i % {e-—twrn +e—=wr;] +A,ggf_‘_'wr']}

(19) by = ¥3(0)[Az0 + A1y Re(e™(m=70)) + Ago)

by = -"—b—:‘ém[fign + A+ Anﬂ )

where ¥;(0) = (1 — L(0 ¢“?))~! and ¢3(0) = (1 — L(0))~".

Writing equation (18) up to second order terms and eliminating the equation
in &, since the right hand side of (18) is independent of this variable, we get the
equation in the plane (p,¢)

p=aypg

(20) .
C=bh P2 + b ¢?
As it is shown in [21], the singularity considered is determined to second order,
provided ay, by, b2 # 0 and a; # ba.

By changing Aag, A1, Ap 2, the values of ay, by, ba can he made to assume
arbitrary values, provided:

i) tanw(rg + r1) # L(O0sinwf)/[1 — L(0 cosw0)] |
(21)
and i) wlrg—r) # 2kw. with ke Z

So, under these generic conditions and considering situations for which ay, by, ba #
0, we do not observe restrictions on the possible flows of (16), locally on center
manifolds at the origin, in comparison to ODEs with the same singularity.
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Whenever the second condition in (21) fails, so that w(rqg —r)) = 2km, k€ Z,
the equations (19) lead to the constraints in the coefficients of the normal form

by = 2bs

(22)

I

2[1 — L(0)) Re (ﬁ%—ﬂ) ba

Before considering the implications of these restrictions for the flows that can
be observed, we consider the case of FDEs with just one delay in the nonlinearities,
in the form

a

(23) Z(t) = L(z) + F(z(t — m0))

where ]
Fu) = 5 A, u® + O(|ul?)

Since this is a particular case of the situation considered above for nonlineari-
ties with two delays, we obtain the same normal form, but now the formulas (19)
for the coefficients become (it is enough to make in (19) Asg = Aa, A1} = Ag2 = 0)

ay = Aa Re (¢1(0)e="r0)
(24) by = A2 ¥3(0)
by = %z'ﬁ‘a(o)

Now we have always the conditions in (22) satisfied, while ba can assume arbitrary
values by changing As. Thus, for nonlinearities involving only one delay we observe
- always the restrictions in the possible phase portraits around the singularity that
occur for nonlinearities depending on two values of the solution in the case of
resonant delays satisfying w(ro — 1) = 2kw, with k € Z,

The restrictions mentioned impose drastic limitations on the flows that can
be observed. In fact, the possible topological types of the phase portraits around
the origin for equation (20) with b, > 0 are sketched in [21] as appears in Figure
1, and for b; < 0 can be obtained by just reversing the arrows. It follows from
(22) that the cases corresponding to bjbs < 0 cannot occur for FDEs whose
nonlinearities involve just one delay, as well as two delays rp,r; in resonance,
t.e., w(rg —ry) = 2km with & € Z. So, of the five phase portraits sketched in
Figure 1, only the first two can occur for FDEs whose nonlinearities have just one
delay or two delays in resonance. In particular, for ODEs with the singularity
considered we can observe homoclinic orbits in arbitrary small neighborhoods of
the origin, while homoclinics to the origin in arbitrarily small neighborhoods of
this equilibrium are ruled out for FDEs with the preceding properties. In fact,
these do not have global orbits in sufficiently small neighborhoods of the origin
except the origin itself.
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Figure 1: a) biby > 0,b1(bs —a1) >0 ,b) bibs> 0,b1(bz —a1) < 0,b1a1 >0,
c) bibs < 0,61(52 - al) < 0,bja; >0 , d) biby < U,bl(bz — al) < 0,bya; <0
e) blba<0,b1(bg—d1)>0 :

For studying the possibility of obtaining versal unfoldings for the singularity
(%iw, 0) by families of FDEs with nonlinearities involving one delay , we need to
study versal unfoldings for equation (20), with by = 2ba, b # 0,a; # 0, by families
of ODEs in the plane (p, () which are invariant under the transformation p — —p.

As in [12,13], we consider unfoldings for equation (20), with by = 2bs, in the
form

p pp +aypC
(25) ; ,
¢ = pa+ba(2p°+¢%)

with gy, e € IR. In order to analyze equation (25), we consider separately the
cases a1bs > 0 and a;b2 < 0. Since changing the sign of bs amounts to changing
the signs of jis, ¢ and a;, we take ba > 0.

Let us first consider the case a;by > 0. The possible topological types of the
phase portraits in a neighborhood of the origin and the corresponding parameter
regions are given in [12,13] as sketched in Figure 2. From the Poincaré-Bendixson
theory we know that there are no periodic orbits in sufficiently small neighbor-
hoods of the origin which are compatible with the sketched flows. On the other
hand, the equilibrium points are all hyperbolic except at the curves separating
the four regions indicated. As the picture in Figure 2 is persistent under small
perturbations, we conclude that (25) is a versal unfolding for equation (20), with
ﬂ]b:g > 0.

For the case a;bs < 0, the bhifurcation analysis of equilibrium points is similar
to that of the case ajbs > 0 and appears in [12,13] as well, leading to the dia-
grams sketched in Figure 3. In contrast with the previous case, at this stage the
phase portraits in a neighborhood of the origin cannot be considered complete
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i

=
N

»

saddle-node

‘5‘ 2
§ “11‘-2"‘323"%1

Figure 2: Phase portraits for (25) with a; > 0,62 > 0.

and require further study, due to the following facts:

e along the line g3 = 0, u2 < 0 the Hopf condition is satisfied at the equilib-
rium with p # 0, with a conjugated pair of eigenvalues of the linearization
at this equilibrium crossing the imaginary axis from negative to positive real
parts as the separating line is crossed from C to D,

e over the line yu; = 0,0 < 0 the equation admits a first integral and the
flow for these values of the parameters can be shown to have a heteroclinic
loop through the equilibrium points in the {—axis encircling the equilibrium
point outside this axis, with all the other orbits in the region bounded by
the heteroclinic loop being periodic.

saddle-nods

Figure 3: Phase portraits for (25) with a; < 0,54 > 0.

To pursue the analysis in search of a versal unfolding, in the case a;bs < 0, we
must add higher order terms to the right hand side of the equation (25). Motivated
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by the computation of normal forms for the singularity (+iw, 0) inIR3, we consider,
as in [12,13], the cubic equation

p = mp+a1pl + azp® + azp(?

¢ = p2+ba(20" +C?) +b3p’C + bal®
For this equation there occurs Hopf bifurcation at a curve

as ai(2as + b3
By = 2—52—%@—) pa+ O(p3)
as po — 0. In order to complete the phase portraits in a neighborhood of the
origin, we now need to know the number of periodic orbits that may occur an to
study the occurrence of heteroclinic loops and their bifurcations.

The equation (26) is considered in [6] where it is shown that when periodic
orbits exist in a neighborhood of the origin they are unique, using a technique
based on the study of certain Abelian integrals obtained from a first integral
associated with the equation after appropriate changes of variables.

Similar methods can be applied to obtain a curve of heteroclinic bifurcation

1 [2(52—61}203 (ba—ay)aybs
11 = ke -
M= /20262 — 3a1)

It follows that the possible topological types of the phase portraits in a neigh-
borhood of the origin and the corresponding parameter regions are, in the present
case, as sketched in Figure 4. In particular, the line where a heteroclinic loop oc-
curs and the Hopf condition is satisfied for the quadratic normal form is widened
to a sector where one periodic orbit occurs for the cubic normal form. Of course,
the relative position of the curves of Hopf bifurcation and of heteroclinic loop may
need to be interchanged in particular cases, with the stability of the associated
periodic orbit and focus changed accordingly.

(26)

3a?b 9
2a1a3 + —22 | urtO(u3'?).
bg b2 52

Now, we can try to obtain versal unfoldings for the considered singularity by
families of FDEs. Ilere, we only refer to the case where the nonlinearity involves
just one delay, in the form

(27) :(t) = L(z) + F(z(t — ro))
We attempt unfoldings of the form
(28) )=y v 2(t —re) + L(z) + F(z(t — 7))

where v, s € IR. Computing a normal form relative to P in cylindrical coordi-
nates, we get

p = Re(y1(0)e™ ™ )vap + arpC + ...

(29) = —3(0) 1 + ¥3(0)wal + by p* + b2C? + ...
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Figure 4: Phase portraits for (26) with a; < 0,52 > 0.

where ay, by, b2 are as in (24), and the dots stand for higher order terms.

This normal form differs from the second order normal form previously con-
sidered because it includes a term in v2( in the second equation. In order to
eliminate this term, we consider instead the family of FDEs

(30) #(t) = v+ welz(t —ro) — 2(t — r1)] + L(zt) + F(2(t = m0)) ,

with 71 € [0,7] \ {ro}. This involves two delays in the terms with the unfolding
parameters (anyway, L must involve more than one delay for 0, +iw, with w # 0,
to be eigenvalues of Ag).

Computing a normal form relative to P for the last equation in cylindrical
coordinates, we get

p =14+ aym]pp+ (a1 + eapi]pC + a2p® + azpl? + ...
(31) ¢ = pa + [b1 4 Bun]p? + [b2 + Bopn]C? + b3p?C + baC® + ...
é =—Ww++... ,

where ay, by, bs are given by (24), as, az, bz, by can be expressed explicitely in terms
of the linear part of the equation and the coefficients in the Taylor expansion for
F, a1, a9, B, B2 are real numbers that depend on L, F, ry, r;,w and

py = Re[l’{,l(o)(e—iuro _ e—iwn)]V2
p2 = —¢3(0)1y

The parameters g, g2 can be varied independently by varying vy, va, provided
the following nonresonance condition between the delays rq,r; and the angle w is
satisfied

(32) Re[1(0)(e™™ ™ — e~ 1)] £ 0
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We conclude that the two-parameter family of FDEs (30) provides indeed an
unfolding of the singularity (%iw,0) in the class of scalar FDEs with nonlinear-
ities having just one delay which in the p(-plane is a versal unfolding for the
corresponding singularity, as established in the preceding section, provided the
nonresonance condition between the delays just mentioned holds. For the case
a;b; < 0 this is not a versal unfolding, since the occurrence of periodic orbits
and heteroclinic loops in the plane results in the structural instability of the two-
parameter family (31) in IR3. However, for the case, a;b; > 0, the considered
family does indeed provide a structurally stable two—parameter family of ODEs
inIR3, as well as does the family obtained by cutting off the cubic terms in (31).
Consequently, the two—parameter family of scalar FDEs (30) provides a versal un-
folding for the singularity (Fiw,0) in the class of scalar FDEs with nonlinearities
having just one delay and satisfying a;b; > 0, where a; and b; are related to
each other by the formulas in (22). It can be readily observed that the condition
a1b; > 0 only restricts the linear part of the FDEs (27) that can be considered.
The fact that a,, by, b2 in (24) have all the same sign, as happens in this situation,
implies severe restrictions on the possible phase portraits in a neighborhood of
the origin, in comparison with the situation for ODEs. In particular, the flow
of saddle loops sketched in Figure 5 and described in [12,13] does not occur in
this case, as well as the more complex behavior associated with the occurrence of
infinitely many Smale horseshoes which is described for ODEs in IR? by Broer and
Vegter in [4].

Figure 5: Saddle loops.

As an illustration of the results obtained, we consider an example.

Example:

Since, in the class of scalar linear differential-delay equations 2(¢) = L(z), the
singularity (Ziw, 0) can only be realized by equations with at least two delays, the
simplest situations to be considered are for

L(p) = Aop(—10) + A1p(—11)
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For +iw,0, with w # 0, to be characteristic values of the equation z(t) = L(z)
we must have

Al = —Ao
- w
Ao = 2sin wro

w(ro+m) =2km k€N
wro # jm,j €N
The nonresonance condition is then automatically satisfied since

w
Ao(1 - L(BeP))

wl{o)-(e—iwru _ e—iwr;) e

and, consequently, the nonresonance condition is equivalent to L(fsinw@) # 0,
which is verified because L(fsinwf@) = (ro + ry)sinwrg # 0. On the other hand,
from (22) we have

1= o)

sgn a1by = sgn Re( 1= L(0c°]

sgn ([sin 2wro — wro + (2k7 — wro) cos 2wro)

[2sinwrg — 2wrg + 2k7])

Analyzing the right hand side as a function of wry, it is then easy to conclude that
a1 by alternates signs as wry grows from 0 to +oo, but that it is always positive
for wrg € (0, w/4]. '

In particular, we conclude that, if the equation z(t) = az(t — ro) + bz(t — 1),
with a,b €R, rg,r; > 0, realizes the singularity (+iw,0) and wre € (0, 7/4], then
the two-parameter family of FDEs

1) = v+ (a4 v2)2(t — ro) + (a —v2)(t — ) + [zt — )2,

with vy, v, € R close to zero, is a versal unfolding of the singularity (+iw,0) in
the class of scalar differential-delay equations of the form

i(t) = C+ Az(t —ro) + Bz(t — m1) + F(z(t — ro)) ,

where A, B,C € R and F:IR =R is a C? function with F(0)=F’(0)=0, F"(0)#0.
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