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On A CuriollS Linear Relationship 
Between Rainfall A varages I 

13. I\:edem and D. A. Short 

Abstract: Empirical evidence points to the fact that the 
,a.rea il.vcr.agc rain ,-,aLc allJ the fraction of the area. where rai .. 

nite exceeds a gi ven t.hresl10ld tend to be highly con'elated, 
provided the area is large eno ugh and the threshold is cho­
sen optilllally as to increase the cOl'rciclt,iuJl. l'his fact hilS an 

important application in rainfall estimation from space using 
satellite borne instruillents. A statistical explanation is pro­
vided for the observed line,.rity, and a IIlct.hod fo r optimal 
thresholds is discussed. 

Key wOl'ds: Fl.ain rate , area average, THMM satellite , 
Inixc d distribution, lognonllal, space tilne. 

1 Introduction 

Meteorologists have been reporting high positiv~ conelations between precipita­
tion amounts and various area statistics for many years. One particular case 
which carne to light only a few years ago ill conllection with a space Illission is 
the subject of the present paper. Our goal is to describe and explain an observed 
curious linear relationship between the instantaneous al'W avel'age rain rate (in 
mm/lu') and the fraclion of the area where rain rate exceeds a given threshold . 
Experimental evidence, obtained from quite a few data sets, shows that when the 
threshold is chosen optimally, the sample correlation between the area average 
and the fractional area can be as high a.s V9%. This experimental fact can be 
explained in more than one way. 

The starting point of OUI' solution is the answer to the following quest.ion: 
"What is the 1110SI. characteristi c thing about. rain ? " "Wet" is not the answer , 
but mtennittency is. That. is, sill ce It. does 1I0t. rain be tween raill events , t.he 
distribution of rain rate has all alalll at. U, alld this simple fact together with SOIII C 
assumptions lead to a plausible explallation to the observed linearity. This clearly 
is not the elld of the story , for otlier approaches , rooted in the theory of random 
fields , are possible and any SLlch explanation to the intriguing linear relationship 
by the statistical communi ty is certainly welcome. 

To proceed intelligently we must first introduce briefly some scientific facts 
and terms associated with the TRMM miss.ion , 
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1.1 The TRMM Mission: Measurement of Rainfall From 
Space 

A series of "Earth Probe" mISSIOns is planned for the 1990's by the Nat.ional 
Aeronautics and Space Administration (NASA) to advance our understanding of 
global climate change. Among these is the Tropical Rainfall Measuring Mission 
(TRMM)-a U.S-Japan joint space project-whose primary goal is the measurement. 
of the annual total volume of tropical rainfall and its variation. The reason is that 
through tropical rainfall-it accounts for over 2/3 of worldwide precipitation-it is 
possible to estimate the amount of atmospheric lat.ent heat release arid assess it.s 
role in driving the circulation of the atmosphere . The projected byprod ucts are 
long range weather an9 climaLe forecas Ls connected with the global hydrologi cal 
cycle. Another important byproduct is an assess ment of the relationship between 
tropical rainfall and the El niiio phenomenon . For many more details see Simpson 
(1988) and Simpson et al. (1988). 

So much for science. Now the actual implementation . Putting buckets throu­
ghout the tropics is out of the question, for the tropics are covered by massive 
oceans and jungles and thus to a great ex tent are practically inaccessible. Adding 
to the predicament is the fact that our present day existing technology has not 
been able to provide reliable ra in gauges which can be installed over the oceans and 
sustain heavy storms and very s t.rong waves in the open seas . The NASA solution 
then is to let a satellite- the TRMM sat.elli te- do the job . However, the satel­
lite instruments-microwave, visibl e, and infrared radiomet.ers, and a prec ipit.at.i on 
radar-do not measure rainfall but. o t.h er variables, Slich as microwave t.em perature 
and radar reflect ivity , wh ose rclat.ionship t.o rainfall (really rain rat.e ) is nonlincar 
and not entirely clear at th at. Putting it different.ly, from a given microwave tem­
perature we may not be able to tell apart light from heavy rain. Another potenti a l 
problem is that even if all goes well a nd we use the "correct" Z - R relationship 
between reflectivity (Z) and rain rate (R), the satellite borne radar has a dynami c 
range of approximately 80 mm/hr. However, it is well known that rain rate in t he 
range of hundreds of mm/hr is a pretty normal event in the tropics, and this is 
beyond the radar capability. So what do we do ? 

1.2 The Threshold Method 

There are various ways to overcome t.he measurement problem, incllldi ng the afore­
mentioned observed linear relationship between t.he area average and the fraction a l 
area. The latter only requires the classification of instantaneous rain rate mea­
surements as being above or below an optimal threshold-to obtain an estimate of 
the fractional area-but not the actual measurements themselves, a much simpli­
fied problem compared to the requirement of precise point measurements. Infer­
ring the area average rain rate from the fractional area where rain rate exceeds 
a threshold is called the th7'eslwld method (Kedem et al. (1990a), Kedem and 
Pavlopoulos (1991), Braud et. al. (1993) , Short. et al. (1993b)) . Krajewski et. 
al. (1992) use area-threshold method, a.nd another name-for a slightly modified 
technique-suggested by Rosenfeld e t. al. (1990) is height-area rainfall threshold 
(HART) . 
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Interesting ly, the met ho d call he used ill reve rse as well using the U tlIn'slJOld 
La est imat.e t Il<' StOrIll area from tIle area average 01' alterllatively Lhe VOIUlIll' of 
rainfall (Eltahir and Bras (1993)) . 

H.cgard ing the opLinli1l thres hold, it is obtained limier some asSlllllpLiollS 0 11 

th e c011tin-uo u:i par t of til(' dist.ribution of raill raLe. Suppose it is lognorlllid 
A(", IT). Theil t.he optimal threshold is obtaillcd by IIlitxillli7.ing with J'('SI)('ct t.o T 
t.he quantity, S'8(1I.), defined for l! = (logT - Il)/IT and 0 = (p , 6") C1.'> 

S'H(U) == [1 _ ~2((llF {[I -<ll(u) - ~¢(U)]:! + ~ [IT(1 - <1>(u)) - ~~)(1I)1:!} 
If olle strdches one's imagillat.ion it is not difTicult to see that 5e(1l(T)) is essc lI ­
t,ially a pcriodo.llram-likc !Juan/ity where the IhresllOld T plays the mit of frc!J 'llcllcy. 

1.3 The GATE Data Set 

We shall make reference to the GARP Atlantic Tropical Experiment (GATL~) data 
set comprised of instantaneous rain rate snapshots·-taken mostly every 15 lIIiIlUt.eS­
obtained by radar over the ea."tern Atlantic Ocean ill the summer of 1 974, sonw 
hundreds of kilometers off t.he coast of west Africa (H udlow and Patt.ersoll (1979). 
Simpson (1988) p. :17). The sille 0(' the area in quest.ioll is that of a circle ·1()() kill 

in diameter, and the data are considered close to being "ground truth". '1'11<'1'< ' 
are several phases o f GATE of which pha.<;cs I alld II consist of 1716 (18 days) and 
151:2 (15 days) sllapshots, respectively, obtained from radar reflectivit.y hinlled 
int.o <1 x <1 bn2 pixels. Rt'lativ(' to the sil\(' 0(' t.h e area, it. is convenient. to thillk of 
each ·1 x 4 k11l 2 pixel itS it point. ill space. The GATE dat.a have bee ll the sourct' 
for 1IIIIrwrOllS studies. 

2 Empirical Linear Relationships 

The meteorologica.l literat.ure offers numerous exarnplt~s of in terestillg <'lIlpirieai 
Ii Il eal' relationships between rainfall and area statistics. Following is a very l)I'i "f' 
accoullt o f several such examples. 

A simple example of linear re lationship is the empirical fact that the t.otal 
precipitation is posit.ively correlat.ed with the number of ra iny days over a givell 
area. The total vollllne is obtained by multiplying the average amount bf raillfall 
per day (can be obtained for example L,from the clirnatology of the region) t.imes 
the number of rainy days. This method was used by Supan a." early as 18U8 t.o 
estimate anllual rainfall over the Atlantic and Indian Oceans, as a functioll 0(' 

lati tude, by collecting data from ships at sea. Sec also Mint.7. (IUSl) for rd ated 
subsequent work. 

Another examp le relates rainfall volume \/ to area A as follows . No(.e that. 

v = l J R(a, t)dadt = Ii. r j' dadl h· A h· A 
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where R(a, t) is the instantaneous rain ratc at time I and point a in space , l' is 
the period of observation, and R is the space time average rain rate . The area­
time integral (AT1) refers to J J dadl, but it is 1l10re convenient. to define it ,LS t.he 
approximating sum (Doneaud et al. (1984)), 

where Ai is the area where rain is detected and flti is the time interval between 
observations. Doneaud et al. (1984) report high correlations between an est.illla\.c 
of V (obtained l,from the Z - R relationship Z = 155R188) and the AT 1 when the 
Ai are estimated from radar echos (measured in dBZ) in excess of certaill thresh­
olds. For a 25 dZ B threshold the correlation is 98%. Here the high correlation is 
quite subtle since most likely R varies from one rain event to the next. Clearly, if 
R were a constant, the high correlation would not come down ~ a big surprise, 
its source being two estimates-differing essentially by a constant multiple- of the 
same quantity, the true rainfall volume. Apparently Ii did not vary much across 
rain storms during the summers of 1980 and 1981 in western North Dakota, the 
periods and area over which the data were collected. 

Another subtle example of linear relationship is the high correlation betwecn 
the area covered with radar reflectivity above a threshold and the rainfall alllount. 
over that area reported by Hudlow and Scherer (1975), Lovejoy and Austin (1979), 
as well as by others. Hudlow and Scherer (1975) give an example using a 20 dlJ/j 
threshold where the correlation is 95%. 

Arkin (1979) found a correlation over 80% and as high as 89% between 6 hr. 
rainfall accumulations and the corresponding 6 hr. averages of fractional coverage 
of cloud higher than 10 km using GATE data. Similar results were obtained 
by Richards and Arkin (1981) and Arkin and Meisner (1987) when the coverage 
area is defined by clouds colder than certain temperature thresholds. The la.tLcr 
reference also discusses spatial and tem'p<'>ral scale considerat'ions. 

Perhaps the most intriguing of all these examples, and the starting point of 
several exciting investigations by NASA scientists, is the experiment concillc\.('d 
by Chiu (1988) using the entire Phase 1 and Phase II of the GATE data. Ob,.;erve 
that each snapshot from GATE gives rise to an instantaneous area average rain 
rate and to a percent of the area where the instantaneous rain rate exceeds a 
given threshold. Thus we have several sets-corresponding to the fixed thresholds-­
of 1716 pairs from Phase I, and likewise several sets of 1512 pairs from Phase 
II. For each fixed threshold, Chiu computed the sample correlation between the 
area average and the fractional area. The results, given in Table 1, reveal the 
important fact that the correlation is a function of the threshold, and that for a 
threshold of 5 mm/ hr the correlation can reach 99%. 

Triggered by the work of Chiu (1988), Atlas et al. (1990) and Rosenfeld et 
al. (1990) repeated the same experiment using data l,from GATE III (over lGOO 
scans) as well as data from other locations- central South Africa (over 21\50 scalls) , 
Texas (over 1300 scans), and Darwin (Australia, 48 scans). They report similar 
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high correlations, shown in Table 2, well above 90% for thresholds T = 2,4,6 , 8 
mm/ h,'. The authors also show that a slight improvement in correlation may be 
achieved if the snapshots are classified according to storm height. 

Krajewski et al. (1992) used the Bell model (Bell (1987)) to simulate artificial 
space-time rain rate fields. For thresholds T = 0,5,10,20 mm/h7' they obt.ained 
correlations 0.9359,0.9879 ,0.9964,0.9673, respectively. 

In what follows we provide an explanation for the high correlation observed 
between the area average rain rate (fl"Oll1now on "area average") and the fract.ional 
a rea where ra.in rat.e exceeds a given t.hreshold (frolll now on "fract.ional art'a") 
by argu ing that. under sOllie condit.ions these quantities are essent. ia lly lincarly 
related. We also suggest a method for deriving optimal thresholds by a:-;su llling 
a parametric model for the distribution of rain rat.e . By assuming logllorlllal 
rain rate , couditional on rain, our method yields for GATE-like rain an opti lrr al 
thresho lds which essentially matches that of Chi u (1988). 

Table 1. Samp le correlation r between the area averaqe min mte and tht frac­
tion of the area above threshold T = 0,1,5, 10,20 mm/ h7' for GATE 1, 11. ."·oun:c: 
Chiu (1988). 

Threshold GATE I GATE II 
T 7' r 

° 0.883 0.843 
1 0.943 0.922 
5 0.990 0.985 

10 0.975 0.980 
20 0.922 0.933 

Table 2 . Sample correlation l' between the area avemge min mte and tlte fmctwn of 
the area above thr-es/told T = 2,4,6,8 mm/h7" for GATE III, central Soutlt Africa, 
Texas, and Darwin (A 'llslmlia) SOU1'CC: Rosenfeld el a/. (1990). 

Threshold GATE III S . Africa Texas Darwin 
T l' 7' 7' I' 

2 0.9-12 0.914 0.972 
4 0.965 0.964 0.986 
6 0.981 0.965 o .g90 0.965 
8 0.984 0.96:3 0.99\ 

3 Lognormality of Rain Rate 

The distribution of rain rate , conditional on rain , plays a fundamental role in rain­
fall estimation . Empirical evidence shows that the distribution is highly ske wed 
and resemb les that of lognormal or gamma, but no acceptable theoretica l .i lIst.i ­
fi cat io ll for any distri bu tioll exists at present.. Nevertheless, ther(~ a. 1"< ' arglill Wilts 
predicated on time series of rain rate which lend some credibility to the lognormal 
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hypothesis . Kedem and Chiu (1987), modeling rain rat~ time series by a stochastic 
regression, provided some necessary conditions for lognormality. The conditions 
were found to hold to a surprising degree by time series from GATE. More re­
cently, Pavlopoulos and Kedern (1992) modeled rain rate in titTle a~ a J ifhtsion 
process with certain intuitive drift and diffusion coefficients and obtained a new 
parametric family containing the lognormal distribut.ion. Kedem ct al. (I 9DOb) 
found that rain rate i.from GATE 1 and II greater than 1 mm/h7' (truncakd a.t 
1 mm/hr to overcome noisy data close to 0) gave excellent lognormal fil.s but 
relatively mediocre gamma fits. This is in line with a.n earlier work of lI ouze 
and Cheng (1977) who found by experimental means that the echo size of GATE 
tended to be lognormal. On the other hand, Meneghini and Jones (199:\) , using 
different rain rate data, had more success with the gamma distribution (compare 
with LeCam (1961» . Lovejoy and Schertzer (1985) alld others argue that the 
distribution must have a heavy tail altogether. Models for t.he distribut.ioll of 
space-tirne rainfall assuming self sirnil a rity and random cascading of of rain fi elds 
are discussed in detail ill Gupta and Waymire (HH.l:l) . 

As far as the present work is conccrned , followi ng l\('dem d. al. (l\J9lJh ) we 
sha ll aSSUlll C that posit.ive cxn: rain rate ha.-; a lognofl\l(d distribut.ion \\'it.h IJO t.h 
pararneters approximately equal to 1. 

4 A Space-Time Box 

Since what we have is a space-time measurement, namely rain ra te, it is convenient 
to adopt a mathematical model based on a space-timc box for reference. Thu s we 
can speak of points in the box and of, say, horizontal sli ces of the box. 

Following Kedem and Pavlopoulos (1991), we think of time as varyillg 0 11 it 

vertical axis , and of space being horizontal. Suppose rain rate is observed over 
a given region A and throughout a specifi c period [0 , TJ, and consider t he box 
n == A x [0, T] . With each each wEn we associate a rain rate value, alld let X(w) 
be the random variable which gives the instantaneous value of rain rate associa ted 
with w . Then , X has a mixed distribution because it admits the value 0 (no rain) 
with positive probability, say, 1- p . That is, P(X = 0) = 1- p. Denote the mixed 
distribution by the .pair (p, I), where f is the probability density with Tespect to 
Lebesgue measure of the continuous component of the distribution . 

First we refer to the box. If 'P(X) is an arbitrary integrable fun ct.i on of X , 
then its expected value is 

E(X) PIP {E['P( X)] - 'P( O)} ( I ) 

where 

E[XIX > 0] 
(L) 

E['P(XlIX > 0]- ',0(0) 

depends only on J but not 0 11 p . Ikre ar(' two e ~alllpl ('s of ( I ) and ( L ) !'r()111 
(Kedem and Short (1989». 
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Example 4.1. Let ¢(X) = Xk. Then ¢(O) = 0 and 

where 

depends on f only. 

. E[XIX > 0] 
P.p = E[XklX > 0] 

Example 4.2 . The widely used Z - R relationship (Battan (l97:q. I' K~J) 

o 

(3) 

where c, b > 0, relates space time point measurements of raill rai., ' S to radar 
refl ectivity Z. This is a nonlinear equation between X and Z , how(,ver , the rela­
tionship between the expected values can be linearized as follows. Defille ¢(X) by 
I.he conditional expectation, 

¢>(X) == E(ZIX) 

This can be dOlle because ollr space~time box dearly accommodates the joint 
distribution of (X, Z). We have, 

¢(O) 

E(¢(X)) 

E[¢(X)IX > 0] 

E(ZIX = 0) = 0 

E[E(ZIX)] = E(Z) 

E[E(ZIX)IX > 0] = E(ZIX > 0) 

and so by substit.ution in ( 1) and ( 2) we obtain a precise equation, 

where 

E(X) = (3.pE(Z) 

E(XIX > 0) 

E(ZIX > 0) 

(4) 

(5) 

o 
Next we refer t.o a horizontal slice from t.he box . So, fix t and let Xt(a) be the 

random variable which gives the value of rain rate at the point a in space, at time 
t. As with X, the distribution of X t is mixed with components (Pt,ft), and from 
( 2) we get the slope 

(6) 

which depends on It only but not. on PI . 
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With reference to the GATE data, there is empirical evidence which suggest.s 
that., conditional on rain, the behavior of tropical rain rate is reasonably homoge­
neous in time and space throughout a sh0rt period. For a discussion of this see 
Kedem and Pavlopoulos (1991) and to some extent the above discussion regard­
ing the ATI. Thus, emboldened by intuition derived from some empirical work we 
make the following simplifying assumption. 

Homogeneity .\;;sumption. The continuous part of the dist.ribution of X is ho­
mogeneous in time and space: It == I, for all t E [0, T] . 

It. follows that. (Jep (t) = (Jep does not depend on t. 
Observe that no such assumption is made about. Pt. Now, the homogpneit.y of 

It and the variability of Pt give us what we want. 
Consider a slice from the box at time t, draw a random sample of rain rate 

values over the slice, and let < X t > and < <p(Xt) > be the sample averages of 
X t and <p(Xd respectively. Clearly, < X t > and < <p(Xt) > are area averages. 
We define < X t > as the area average of rain rate. By the law of large numbers 
then, as the sample size increases, < X t >--+ E(Xd and < <p(Xt} >--+ E[<p(Xd] 
with probability one. Therefore from ( 1) and the homogeneity assumption, for a 
sufficiently large sample we have the approximat.ion for each fixed t, 

< X t >~ constant + {Jep < <p(Xd > (7) 

This is a linear relationship between two area averages. Thus, when the hom.o­
geneity assum.ption is satisfied, there is a high correlation between the area average 
rain rate and the area average of any function thereof. 

Example 4.3 As an example of ( 7), we considered < X > vs < X 2 > usmg 
snapshots from GATE of size 280 x 280 km2 . Linear regression gives correlation 
92% for GATE I and 90% for GATE II. 0 

We can now specialize ( 7) to explain the high correlation between t.he area 
average and the fractional area illustrated in Tables 1 and 2. To do t.hat fix a 
threshold r and define the indicator function, 

Since <p(0) = 0, and 

if x> r 
if x:$ r 

the general approximation ( 7) entails, substituting (J(r) for (Jep(r), 

< X t >~ f3(r) < I[Xt > r] > 

(8) 

(9) 
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p (r) = E[X IX > 0] 
P(X> rlX > 0) 
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is a const,ant which d~'pend s on f and r but not. on t. Sin ce < I[X t > r] >::::: 
P(X t > r) , a nd P(X t > r) is the t rue fr actional area, it seems a pprop ri at.e to 
define < 1[.\t > r] > as t.h e (observed) fra ctiona.l area. And so, ( £1) provides 
a.n expla.nation t.o the observed high corre lat. ion between the a rea ave rage a nd the 
fract io nal area for a fixed th res hold . 

As was pmphas ized ear li pr . ours is a par t icu lar app roach a lld t.he re' must. he 
ot her explan a tions . In part.i cular, Braud el a l. (1993) , using certai II a pproxi Illa­
t.ions, maintain t hat. [,hi' hig h co rrelat.ion is mostly due to t he respcct ivp codTicients 
of variation of bot.h the fractional area and the mean intensity within th e del in­
eat,ed area where ra in ra t,t' exceeds t he t.hreshold. Bot.h a pproaches however a re 
stat,ic in t.he sensi' that no underlying dynami cal stru cture is assum ed . 

We close t.hi s sect ion with a curioLis not.e. According to o ur formulation, it is 
t.lw vari ab ili ty as a flln ct ion o f t ime of the discrete probabili ty of rain Pt whi ch 
gives rise to t. he linear relat io nship ( 9). If on the other ha nd t it f' honlogencit.y 
a.sslJmpt. io ll a lso ho lds for PI , instead of a scatt.ergral1l of points a ligned a long a 
st raight. line, we would get a scat.t.e rgram around a single [.lo int.. 

4.1 A Cautionary Note 

Alt.hough t.he regression equ at.ion ( D) looks very promising, we mus t. take it. with 
a grain of sal t. s i nee o u r deri valiol1 is based O il the homogeneity asS Ul11 pt.i on . Si nce 
the behavio r of rain is notor io Lisl y erratic, it is very possible that. in ce rt.a in s it. ua­
t.ions ft can change in time due t.o cha nges ill pa ra meters or a shift, t.o a differcnt 
dist.ribution altoget.her . However, if the changes are reasonably small t.h e met.hod 
is sti ll viable. A limit.ed sensitivit.y a nalys is conduct.ed in Kcdem et a l. (H)DOa) 
indicates that t.he s lope is quit.e insensitive to small changes in t.he paramet.ers o r 
even a dist.r ibu tional shin., providpd the m ean ra in rate is sllffic iently high , as is 
t. he ca.se in t.he tro pics. Th e slope how(-~ve r is very sensit.ive for low mean rain rate 
and t.h e met hod then may not be reliable. 

On t he posit.ive side, clearly, the threshold m et.hod may st.ill work , that is 
t,he high correlat.ion may st ill [.lersist , even if th e homogeneit.y assurnpl.ion breaks 
down. for t.he assumption is only it mathemat. ical cOll venience. 

Furt,lwrrnol'e, as indicated in Ta.ble 1, t.he corrf'lat.io ll bet.ween the area average 
and t.he fract.iona l area may not be sufficielltly high for poorly chosen thresholds . 
For the metho d t.o be of use, the t.hres llOld must be chosen as t.o maximize t.he 
corre lat.ion . A method for choosing opt.imal thresholds is disclIssed in t.h e next. 
sect.ion. 



226 B. Kedern allo D. A. Shurt 

5 Optimal Thresholds 

5.1 Optimality Criteria 

There are several criteria for optimal thresholds needed for the regression ( 9). Ke­
dem et al. (1990a) suggest a certain distance, d(T), between slopes /1( T)- obtained 
from several different distribution models f - to be minimized as a function of T , the 
idea being to render /1( T) resistant to distributional changes as much as possible. 
Ideally, a choice of T which equalizes the different /1( T) is clearly optimal as far 
as shifts between the chosen distributions are concerned. The same idea has been 
expressed in Short et al. (1993b) using empirically derived distributions. Kraj ew­
ski et al. (1992) suggest that the use of low thresholds for noisy rain fi elds. Our 
approach on the other hand calls for the maximization of t.he correlation between 
the area average and the fractional area as a function of T. A very similar idea is 
to minimize the residuals sum of squares in the regression of the area average on 
the fractional area as is done in Short et al. (199;~a). 

Ideally, the optimal threshold T gives maxilllum correlation . However we only 
follow this route in spirit and use instead a certain approximation suggested 111 

Kedem and Pavlopoulos (1991) and Short et al. (1993a). 

5.2 Maximum Likelihood Considerations 

5.2.1 An Optimality Criterion 

To formulate an optimality criterion, we turn to the estimation of ;3( T) in ( 9) 
assuming that f is modeled by a parametric density fo , and consider the corre­
lation between < X t >, and /1e(T) < I[Xt > T] >. It can be shown under some 
assumptions (Kedem and Pavlopoulos (1991» that 

I t follows that 
v ar[,Be( T )] 

/1~ (T) 
should be minimized with respect to T . 

(10) 

Let iJ be the maximum likelihood estimator of e. Then under some regularity 
conditions (see for example Lehmann (1983), p. 429, Billingsley (1986), p.402), 
the asymptotic distri bution of ,Be ( T) is given by 

vn(,Be(T) - ,Bo(r») _t:. N(O,vo(r» , n - ex) 

In the spirit of the preceding paragraph , our optimal threshold is the one which 
minimizes, 

_ vo(r) 
WO(T) =~) po eT 
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5.2.2 The Lognormal Case 

ASSlIllW now that. 10 is a lognorm a l densit.y with paramet.er fJ = (j./. , 0-). ' ntis is it 

specifi c paramf' tric farnily for which tlw s lop<, is aut.o lll at.icaily parametrized by 0, 

li( T) == (30 ( T) = cxp( j./. + 0"" /2) 
{I - <P((log T - II)/O")} 

If (J = (p, 0") is tilt' lI1aximulll likelihood estimator of 0, t. he ll 

vn( iJIi(T) - 13e(T)) ~L N(O , Ve(T)), n ~ 00 

wh e re , 

(lJ ) 

a nd I -I (fJ) is t.he inVf~ rse o f the information llI atr ix co rres pond ing to the logno rmal 

d(,llsity Ie wit.h paralliete rs 11 and 0" , 

Put'll = ( logT - 11)/0", and de fine 

0" "2 [ 1 j ~ 1[ ·It ' j"} ,S'O(II) == [ r { 1- <P(It) - -¢J(u) - +;- 0"(1 - <P(lt)) - - ¢J(ll)· 
1- <P(n) - 0" 2 0" 

Lillder log nol'1nali ty t.iH-' quantity t.o he minimized is 

, ( Ve(T) 
.)H neT)) = We(T) = -3') 

i ,jeT) 
(12) 

The III in i IIIU 1T1 ex ist.s and is unique (Kedem an d Pavlopoulos (1991)), To find t.h e 
optimal threshold undf'r logno rma l ra.in rate , all we have (,0 do is to obt.ain p. and 
0" , s uhst i t ll te in ( 12) , and ll1ini .mize with respect \,0 T. 

Exaillpl f' :'i. I. Rpcall t. hat the lognorrnal dist.rihut.ion with param('t0r 0 = (1 , 1) 

wa...'i fou lld qui(.e ad(~qllat,e for t. he GATE data, Plugging 11= 1, 0" = I in ( 12) and 
nlll1l111IZllIg g ives 

Toplima/ = 5.1 nun/ hl' 

This is in good agree m e llt with the experime nt.al resu lt.s presented ill Table I , 
wlu'j'(" [) '/II.m/ hI' is opt. iltl a l. 

Table :J provides opt.imal thresholds for any given (p,O") pair, ,,From t.he t.able 
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we can see that , except for relatively high mean rain rate, the optimal threshold 
is not far removed from the mean rain rate conditional on rain. it is interesting 
to note that the optimal threshold entries in Table 3 can be approximated by the 
expressIOn 

Toptima / = exp{ -0.322 - 0.0141T + O.9731T2 + Jt} 

Thus for (It , IT) = (0.8,1.3), Toptima/ = 8.2, and for (p, IT) = (l.:? , 1.3) , Toptima / = 
12.24, etc. 

Table 5.1. Optimal threshold level as a function of () = (p , IT). In each pair, til ( 
first number is the optimal level Toptima / . The second is the mean of the lognormal 
distribution A(p, IT) . Source : K edem and Pavlopoulos (1991) . 

p 0.7 0.8 0.9 1 1.1 1.2 1.3 
0.7 2.33 2.69 3.17 3.80 4.66 5.82 7.42 

2.57 2.77 3.01 3.32 3.68 4.l3 4.68 
0.8 2.57 2.97 3.50 4.20 5.15 6.43 8.20 

2.84 3.06 3.33 3.66 4.07 4.57 5.18 
0.9 2.84 3.28 3.87 4.64 5.69 7.11 9.07 

3.14 3.38 3.68 4.05 4.50 5.09 5.72 
1.0 3.14 3.63 4.27 5.13 6.28 7.86 10 .02 

3.47 3.74 4.07 4.48 4.97 5.58 (U2 
1.1 3.47 4.01 4.72 5.67 6.95 8.68 11 .07 

3.83 4.13 4.50 4.95 5.50 6.17 (UJ!) 
1.2 3.84 4.43 5.21 6.27 7.68 9.59 12.2t1 

4.24 4.57 4.97 5.47 6.07 6.82 7.7'2 
1.3 4.24 4.90 5.77 6.92 8.48 10.60 13 .52 

4.68 5.05 5.50 6.04 6.71 7.53 8.54 

6 Extensions 

The threshold method can be easily extended to the estimation of any a rea mo­
ment. In fact, Short et al. (1993a) point out that the same argument which leads 
to ( 9) also gives for a parametric fo , 

< xt >c::: f3e(k , T) < I[Xt > T] > (1;~) 

where under homogeneit.y 

is a constant which dt'fw lld,. 011 IH and T but. not on t. When iJ is the maximulll 
likelihood estimator of (} and 

..[ii(f3u(k, T) - f3e(k , Tl) _L N(O , ve(k , T)) , n ~ 00 
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the optimal threshold is the one which minimizes, 

In the lognormal case 

and 

vn(k, T) 

!3~(k, T) 

k 2 (j2 
exp(kJi + -2-) 

/~e(k, T) = . 
1 _ <I>( log T - 11' ) 

(j , 

(j2 1 2 

[l _ <I>(ul]2 ([k(l- <I>(u» - ~¢(u)l 

1 'J , 1 OJ 

+-[k~(j(1 - <I>(u.) - -u¢(u)l~} 
2 (j 

22fl 

where ¢(1I,) and <I>(u) are the density and distribution function of the standard 
normal distribution, respectively, and 'l/. = {log(T) - Ji)/(j}. 

As an example, for GATE-like rain with Ji = 1 and (j = 1 the optimal t.hreshold 
for k = 2 is 16.3 mm/hr. Actually, Kedem et al. (1990b) estimate Ji and (j as 
slightly greater than 1. Thus, for example, with Ji = 1.1 and (j = 1.05 the 
optimal thresholds for the first and second area moments are about 6 and 22 
mm/hr, respectively. By another account (Short et al. (1993a» the parameters 
are /1, = 0.685 and (j = 1.184, yielding as optimal thresholds for the first and second 
moments the values 5.5 and 26.3 mm/hr, respectively. As far as the optimal 
threshold for the first area moment, these figures agree with the experimental 
result of Chiu (1988) . 

Using the same ideas, optimal thresholds can be obtained for any rain rat.e 
distribution. The gamma and inverse Gaussian cases are discussed in Short et. 
a!. (1993a). It is shown there that the optimal threshold does vary with t.he 
distribution, but apparently not drastically for practical purposes. The case of 
mixtures of lognormal has been studied recently in Kayano and Shimizu (1993) , 
and a quadratic relationship between the area variance and the fractional area is 
discussed in Shimizu et al. (1993). Finally, sampling considerations regarding the 
optimal threshold are discussed in Pavlopoulos (1991) and in Ha (1992). 
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