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On A Curious Linear Relationship
Between Rainfall Averages !

B. Kedem and D. A. Short

Abstract: Empirical evidence points to the fact that the
arca average rain rate and the fraction of the area where rain
rate exceeds a given threshold tend to be highly correlated,
provided the area is large enough and the threshold is cho-

important application in rainfall estimation from space using
satellite borne instruments. A statistical explanation is pro-
vided for the observed lincarity, and a method for optimal
thresholds is discussed.
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1 Introduction

Meteorologists have been reporting high positive correlations between precipita-
tion amounts and various area statistics for many years. One particular case
which came to light only a few ycars ago in connection with a space mission is
the subject of the present paper. Qur goal is to describe and explain an observed
curious linear relationship between the instantaneous area average rain rate (in
mm/hr) and the fraction of the area where rain rate exceeds a given threshold.
Experimental evidence, obtained from quite a few data sets, shows that when the
threshold is chosen optimally, the sample correlation between the area average
and the fractional area can be as high as 99%. This experimental fact can be
explained in more than one way.

The starting point of our solution is the answer to the following question:
*What i1s the most characteristic thing about rain 7" *Wel” is not the answer,
but mtermultency is. That is, sinee 1t does not rain between rain events, the
distribution of rain rate has an atom at U, and this simple lact together with some
assumptions lead to a plausible explanation to the observed linearity. This clearly
is not the end of the story, lor other approaches, rooted in the theory of random
fields, are possible and any such explanation to the intriguing linear relationship
by the statistical community is certainly welcome.

To proceed intelligently we must first introduce briefly some scientific facts
and terms associated with the TRMM maission.

!'Work supported by NASA S-97607-E, ONR NOUO014-92-C-0019 and NSF CDR-88-03012.
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1.1 The TRMM Mission: Measurement of Rainfall From
Space

A series of “Earth Probe” missions is planned for the 1990’s by the National
Aeronautics and Space Administration (NASA) to advance our understanding of
global climate change. Among these is the Tropical Rainfall Measuring Mission
(TRMM)-a U.S-Japan joint space project-whose primary goal is the measurement
of the annual total volume of tropical rainfall and its variation. The reason is that
through tropical rainfall-it accounts for over 2/3 of worldwide precipitation-it is
possible to estimate the amount of atmospheric latent heat release and assess its
role in driving the circulation of the atmosphere. The projected byproducts are
long range weather and climate forecasts connected with the global hydrological
cycle. Another important byproduct is an assessment of the relationship between
tropical rainfall and the El nifio phenomenon. For many more details see Simpson
(1988) and Simpson et al. (1988).

So much for science. Now the actual implementation. Putting buckets throu-
ghout the tropics is out of the question, for the tropics are covered by massive
oceans and jungles and thus to a great extent are practically inaccessible. Adding
to the predicament is the fact that our present day existing technology has not
been able to provide reliable rain gauges which can be installed over the oceans and
sustain heavy storms and very strong waves in the open seas. The NASA solution
then is to let a satellite-the TRMM satellite-do the job. MHowever, the satel-
lite instruments—microwave, visible, and infrared radiometers, and a precipitation
radar-do not measure rainfall but other variables, such as microwave temperature
and radar reflectivity, whose relationship to rainfall (really rain rate) is nonlinear
and not entirely clear at that. Putting it differently, from a given microwave tem-
perature we may not be able to tell apart light from heavy rain. Another potential
problem is that even if all goes well and we use the “correct” Z — R relationship
between reflectivity (Z) and rain rate (R), the satellite borne radar has a dynamic
range of approximately 80 mm/hr. However, it is well known that rain rate in the
range of hundreds of mm/hr is a pretty normal event in the tropics, and this is
beyond the radar capability. So what do we do ?

1.2 The Threshold Method

There are various ways to overcome the measurement problem, including the afore-
mentioned observed linear relationship between the area average and the fractional
area. The latter only requires the classification of instantaneous rain rate mea-
surements as being above or below an optimal threshold-to obtain an estimate of
the fractional area-but not the actual measurements themselves, a much simpli-
fied problem compared to the requirement of precise point measurements. Infer-
ring the area average rain rate from the fractional area where rain rate exceeds
a threshold is called the threshold method (Kedem et al. (1990a), Kedem and
Pavlopoulos (1991), Braud ct al. (1993), Short et al. (1993b)). Krajewski et
al. (1992) use area-threshold method, and another name-for a slightly modified
technique-suggested by Rosenfeld et al. (1990) is height-area rainfall threshold
(HART). '
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Interestingly, the method can be used in reverse as well using the 0 threshold
to estimate the storm area from the area average or alternatively the voluimne of
rainfall (Eltahir and Bras (1993)).

Regarding the optimal threshold, it is obtained under some assumptions on
the continuous part of the distribution of rain rate. Suppose it is lognorinal
Ay, a). 'Then the optimal threshold is obtained by maximizing with respect to r
the quantity, Sy(u), defined for u = (log7 — p)/o and 0 = (p, o) as

b
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If one stretches one’s imagination it is not difficult to see that Sp(u(7)) is essen-
tially a periodogram-like quantity where the threshold T plays the role of frequency.

1.3 The GATE Data Set

We shall make reference to the GARP Atlantic Tropical Experiment (GATE) data
set comprised of instantaneous rain rate snapshots-taken mostly every 15 minutes-
obtained by radar over the eastern Atlantic Ocean in the summer ol 1974, some
hundreds of kilometers off the coast of west Africa (Hudlow and Patterson (1979).
Simpson (1988) p. 37). The size of the arca in question is that ol a circle 400 ki
in diameter, and the data are considered close to being “ground truth™. There
are several phases of GA'TE of which phases 1 and Il consist ol 1716 (18 days) and
1512 (15 days) snapshots, respectively, obtained from radar reflectivity binned
into 4 x 4 km* pixels. Relative to the size of the area, it is convenient to think of
cach 1 x 4 km? pixel as a point in space. The GATE data have been the source
for munerous studies.

2 Empirical Linear Relationships

The meteorological literature offers numerous examples ol interesting empirical
linear relationships between rainfall and area statistics. Following is a very brief
account of several such examples.

A simple example of lincar relationship is the empirical fact that the total
precipitation is positively correlated with the number of rainy days over a given
arca. The total volume is obtained by multiplying the average amount of rainfall
per day (can be obtained for example jfrom the climatology of the region) times
the number of rainy days. This method was used by Supan as early as 1898 to
estimate annual rainfall over the Atlantic and Indian Oceans, as a [unction of
latitude, by collecting data from ships at sea. See also Mintz (1981) for related
subsequent work.

Another example relates rainfall volume V' 1o area A as follows. Note that

V= / / R(a, t)dadt = R / / dadt
TJA TJA
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where R(a,t) is the instantaneous rain rate at time ! and point a in space, 1" is
the period of observation, and R is the space time average rain rate. The area-
time integral (AT1) refers to | [ dadt, but it is more convenient to define it as the
approximating sum (Doneaud et al. (1984)),

ATI =) Al
v

where A; is the area where rain is detected and At; is the time interval between
observations. Doneaud et al. (1984) report high correlations between an estimate
of V (obtained ;from the Z — R relationship Z = 155R" ) and the AT'I when the
A; are estimated from radar echos (measured in dBZ) in excess of certain thresh-
olds. For a 25 dZB threshold the correlation is 98%. Here the high correlation is
quite subtle since most likely R varies from one rain event to the next. Clearly, if
R were a constant, the high correlation would not come down as a big surprise,
its source being two estimates—differing essentially by a constant multiple-of the
same quantity, the true rainfall volume. Apparently R did not vary much across
rain storms during the summers of 1980 and 1981 in western North Dakota, the
periods and area over which the data were collected.

Another subtle example of linear relationship is the high correlation between
the area covered with radar reflectivity above a threshold and the rainfall amount
over that area reported by Hudlow and Scherer (1975), Lovejoy and Austin (1979),
as well as by others. Hudlow and Scherer (1975) give an example using a 20 dBZ
threshold where the correlation is 95%.

Arkin (1979) found a correlation over 80% and as high as 89% between 6 hr.
rainfall accurnulations and the corresponding 6 hr. averages of fractional coverage
of cloud higher than 10 km using GATE data. Similar results were obtained
by Richards and Arkin (1981) and Arkin and Meisner (1987) when the coverage
area is defined by clouds colder than certain temperature thresholds. The latter
reference also discusses spatial and temporal scale considerations.

Perhaps the most intriguing of all these examples, and the starting point of
several exciting investigations by NASA scientists, is the experiment conducted
by Chiu (1988) using the entire Phase | and Phase Il of the GATE data. Obscrve
that each snapshot from GATE gives rise to an instantaneous area average rain
rate and to a percent of the area where the instantaneous rain rate exceeds a
given threshold. Thus we have several sets—corresponding to the fixed thresholds-
of 1716 pairs from Phase I, and likewise several sets of 1512 pairs from Phase
II. For each fixed threshold, Chiu computed the sample correlation between the
area average and the fractional area. The results, given in Table 1, reveal the
important fact that the correlation is a function of the threshold, and that for a
threshold of 5 mm/hr the correlation can reach 99%.

Triggered by the work of Chiu (1988), Atlas et al. (1990) and Rosenfeld et
al. (1990) repeated the same experiment using data ;from GATE 11l (over 1600
scans) as well as data from other locations—central South Africa (over 2450 scans),
Texas (over 1300 scans), and Darwin (Australia, 48 scans). They report similar
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high correlations, shown in Table 2, well above 90% for thresholds 7 = 2,4,6,8
mm/hr. The authors also show that a slight improvement in correlation may be
achieved if the snapshots are classified according to storm height.

Krajewski et al. (1992) used the Bell model (Bell (1987)) to simulate artificial
space-time rain rate fields. For thresholds 7 = 0,5, 10,20 mm/hr they obtained
correlations 0.9359,0.9879,0.9964,0.9673, respectively.

[n what follows we provide an explanation for the high correlation obscrved
between the area average rain rate (from now on “arca average”) and the fractional
arca where rain rate exceeds a given threshold (from now on “fractional area)
by arguing that under some conditions these quantities are essentially lincarly
related. We also suggest a method for deriving optimal thresholds by assuming
a parametric model for the distribution of rain rate. By assuming lognormal
rain rate, conditional on rain, our method yields for GATE-like rain an optimal
thresholds which essentially matches that of Chiu (1988).

Table 1. Sample correlation r belween the area average rain rate and the [rac-
tion of the area above threshold v = 0,1,5,10,20 mn/hr for GATL I, 11. Source:
Chiu (1988).

Threshold GATEI GATE I

T ™ T

0 0.883 0.843

1 0.943 0.922
0.990 0.985
10 0.975 0.980
20 0.922 0.933

[

[

Table 2. Sample correlation r between the area average rain rate and the fraction of
the arca above threshold T = 2,4,6,8 mm/hr for GATE III, central South Africa,
Tezas, and Daruin (Australia) Source: Rosenfeld el al. (1990).

Threshold GATEITII S. Africa Texas Darwin

T T 1 r T
2 0.942 0.914 0.972 =
4 0.965 0.964 0.986 —
6 0.981 0.965 0.990 0.965
8 0.984 0.963 0.991 a——

3 Lognormality of Rain Rate

The distribution of rain rate, conditional on rain, plays a fundamental role in rain-
fall estimation. Empirical evidence shows that the distribution is highly skewed
and resembles that of lognormal or gamma, but no acceptable theorctical justi-
fication for any distribution exists at present. Nevertheless, there are arguments
predicated on time series of rain rate which lend some credibility to the lognormal
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hypothesis. Kedem and Chiu (1987), modeling rain rate time series by a stochastic
regression, provided some necessary conditions for lognormality. The conditions
were found to hold to a surprising degree by time series from GATE. More re-
cently, Pavlopoulos and Kedem (1992) modeled rain rate in time as a diffusion
process with certain intuitive drift and diffusion coefficients and obtained a new
parametric family containing the lognormal distribution. Kedem et al. (1990Dh)
found that rain rate jfrom GATE I and II greater than 1 mm/hr (truncated at
1 mm/hr to overcome noisy data close to 0) gave excellent lognormal fits but
relatively mediocre gamma fits. ‘This is in line with an earlier work ol Houze
and Cheng (1977) who found by experimental means that the echo size of GATE
tended to be lognormal. On the other hand, Meneghini and Jones (1993), using
different rain rate data, had more success with the gamma distribution (compare
with LeCam (1961)). Lovejoy and Schertzer (1985) and others argue that the
distribution must have a heavy tail altogether. Models for the distribution of
space-time rainfall assuming sell similarity and random cascading of of rain fields
are discussed in detail in Gupta and Waymire (1993).

As far as the present work is concerned, following Kedem et al. (1990h) we
shall assume that positive GA'TE rain rate has a lognormal distribution with both
parameters approximately equal to 1.

4 A Space-Time Box

Since what we have is a space-time measurement, namely rain rate, it is convenient
to adopt a mathematical model based on a space-time box for reference. Thus we
can speak of points in the box and of, say, horizontal slices of the box.

Following Kedem and Pavlopoulos (1991), we think of time as varying on a
vertical axis, and of space being horizontal. Suppose rain rate is observed over
a given region A and throughout a specific period [0,7], and consider the box
2 = Ax[0,7T]. With each each w € 2 we associate a rain rate value, and let .\ (w)
be the random variable which gives the instantaneous value of rain rate associated
with w. Then, X has a mized distribution because it admits the value 0 (no rain)
with positive probability, say, 1 —p. That is, P(X = 0) = 1 —p. Denote the mixed
distribution by the pair (p, f), where f is the probability density with respect to
Lebesgue measure of the continuous component of the distribution.

First we refer to the box. If ¢(X) is an arbitrary integrable function of X,
then its expected value is

E(X) = Bo{E[p(X)] - ¢(0)} (1)
where
E[X|X > 0]
Elp(X)|X > 0] = ¢(0)

depends only on f but not on p. lHere are two examples of ( 1) and { 2) from

(Kedem and Short (1989)).

B, = (2)
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Example 4.1. Let ¢(X) = X*. Then ¢(0) = 0 and

E(X) = B4E[X*]

where
E[X|X > 0]
B8 = remr——t
E[X*|X > 0]
depends on f only. (m}

Example 4.2. The widely used Z — R relationship (Battan (1973). |, 89)
Z=cX" (3)

where e,b > 0, relates space time point measurements of rain rate X' to radar
reflectivity Z. This is a nonlinear equation between X and Z, however, the rela-
tionship between the expected values can be linearized as follows. Define ¢(X) by
the conditional expectation,

#(X) = E(Z|X)

This can be done because our space-time box clearly accommodates the joint
distribution of (X, Z). We have,

#(0) = E(Z|X=0)=0
E(¢(X)) = E[E(Z|X)] = E(Z)
E[(X)|X >0] = E[E(Z|X)|X >0]= E(Z|X > 0)

and so by substitution in ( 1) and ( 2) we obtain a precise equation,
E(X) = p[sE(Z) (4)

where

_ E(X|X >0) _
s = E(Z|X > 0) (5)

Next we refer to a horizontal slice from the box. So, fix t and let X;(a) be the
random variable which gives the value of rain rate at the point a in space, at time
t. As with X, the distribution of X; is mixed with components (p;, fi), and from
( 2) we get the slope

) E[X| X > 0]
Be(t) = E[p(X()| Xt > 0] — ¢(0) =

which depends on f; only but not. on p,.
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With reference to the GATE data, there is empirical evidence which suggests
that, conditional on rain, the behavior of tropical rain rate is reasonably homoge-
neous in time and space throughout a short period. For a discussion of this see
Kedem and Pavlopoulos (1991) and to some extent the above discussion regard-
ing the ATI. Thus, emboldened by intuition derived from some empirical work we
make the following simplifying assumption.

Homogeneity .\ssumption. The continuous part of the distribution of X is ho-
mogeneous in time and space: f; = f, for all t € [0, T].

It follows that g, (t) = B, does not depend on .

Observe that no such assumption is made about p;. Now, the homogeneity of
ft and the variability of p; give us what we want.

Consider a slice from the box at time ¢, draw a random sample of rain rate
values over the slice, and let < X; > and < ¢(X;) > be the sample averages of
X and p(X,) respectively. Clearly, < X; > and < ¢(X) > are area averages.
We define < Xy > as the area average of rain rate. By the law of large numbers
then, as the sample size increases, < X; >— E(X;) and < p(X,) >— E[p(X,)]
with probability one. Therefore from ( 1) and the homogeneity assumption, for a
sufficiently large sample we have the approximation for each fixed f,

< Xy >~ constant + f, < p(X;) > (7)

This is a linear relationship between two area averages. Thus, when the homo-
genetly assumption is salisficd, there 1s a high correlation between the area average
rain rale and the area average of any function thereof.

Example 4.3 As an example of ( 7), we considered < X > vs < X? > using
snapshots from GATE of size 280 x 280 km?. Linear regression gives correlation

92% for GATE 1 and 90% for GATE II. o

We can now specialize ( 7) to explain the high correlation between the area
average and the fractional area illustrated in Tables 1 and 2. To do that fix a
threshold 7 and define the indicator function,

I ifx
wo={} 8127 ®

Since ¢(0) = 0, and
< (X)) >~ Elp(Xy)] = P(Xy > 1) =< I[X > 7] >
the general approximation ( 7) entails, substituting 3(r) for 3,(7),

<Xi>xp(r)<I[Xe>1]> (9)
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where under homogeneity

E[X|X > 0]
3(r) =
AT =Px > 71X > 0)

is a constant. which depends on f and 7 but not on t. Since < I[N, > 7] >~
PNy > 1), and P(N; > 7) is the true fractional area, it seemns appropriate to
define < I[.Xy > 7] > as the (observed) fractional area. And so, ( 9) provides
an explanation to the observed high correlation between the area average and the
fractional area for a fixed threshold.

As was emphasized earlier, ours is a particular approach and there must be
other explanations. In particular, Braud el al. (1993), using certain approxima-
tions, maintain that the high correlation is mostly due to the respective coeflicients
of variation of both the fractional area and the mean intensity within the delin-
cated area where rain rate exceeds the threshold. Both approaches however are
static in the sense that no underlying dynamical structure is assumed.

We close this section with a curious note. According to our formulation, it is
the variability as a function of time of the discrete probability of rain p, which
gives rise to the linear relationship ( 9). If on the other hand the homogeneity
assumption also holds for p,. instead of a scattergram of points aligned along a
straight line, we would get a scattergram around a single point.

4.1 A Cautionary Note

Although the regression equation ( 9) looks very promising, we must take it with
a grain of salt since our derivation is based on the homogeneity assumption. Since
the behavior of rain is notoriously erratic, it is very possible that in certain situa-
tions f; can change in time due to changes in parameters or a shift to a different
distribution altogether. However, if the changes are reasonably small the method
is still viable. A limited sensitivity analysis conducted in Kedem et al. (1990a)
indicates that the slope is quite insensitive to small changes in the parameters or
even a distributional shift, provided the mean rain rate is sufficiently high, as is
the case in the tropics. The slope however is very sensitive for low mean rain rate
and the method then may not be reliable.

On the positive side, clearly, the threshold method may still work, that is
the high correlation may still persist, even if the homogeneity assumption breaks
down. for the assumption is only a mathematical convenience.,

Furthermore, as indicated in 'Table 1, the correlation between the area average
and the fractional area may not be sufficiently high for poorly chosen thresholds.
For the method to be of use, the threshold must be chosen as to maximize the
correlation. A method for choosing optimal thresholds is discussed in the next
section.
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5 Optimal Thresholds

5.1 Optimality Criteria

There are several criteria for optimal thresholds needed for the regression ( 9). Ke-
dem et al. (1990a) suggest a certain distance, d(7), between slopes J(r)-obtained
from several different distribution models f-to be minimized as a function of 7, the
idea being to render 3(7) resistant to distributional changes as much as possible.
Ideally, a choice of T which equalizes the different 3(7) is clearly optimal as far
as shifts between the chosen distributions are concerned. The same idea has been
expressed in Short et al. (1993b) using empirically derived distributions. Krajew-
ski et al. (1992) suggest that the use of low thresholds for noisy rain fields. Our
approach on the other hand calls for the maximization of the correlation between
the area average and the fractional area as a function of . A very similar idea is
to minimize the residuals sum of squares in the regression of the area average on
the fractional area as is done in Short et al. (1993a).

Ideally, the optimal threshold 7 gives maximum correlation. However we only
follow this route in spirit and use instead a certain approximation suggested in
Kedem and Pavlopoulos (1991) and Short et al. (1993a).

5.2 Maximum Likelihood Considerations
5.2.1 An Optimality Criterion

To formulate an optimality criterion, we turn to the estimation of #(7) in ( 9)
assuming that f is modeled by a parametric density [, and consider the corre-
lation between < X; >, and B;(1) < I[X¢ > 7] >. It can be shown under some
assumptions (Kedem and Pavlopoulos (1991)) that

Carr2[< Xe >, B5(r) < I[X¢ > 7] >] < W -
— 4
By (7)
It follows that
VarlBy(r)]
B (7)

should be minimized with respect to 7.

Let 0 be the maximum likelihood estimator of . Then under some regularity
conditions (see for example Lehmann (1983), p. 429, Billingsley (1986), p. 402),
the asymptotic distribution of 3;(7) is given by

Vn(B3(1) = Bo (7)) —* N(0,ve(7)), n — o0

In the spirit of the preceding paragraph, our optimal threshold is the one which
minimizes,

ve(7)

Bi(r)

wg(7) =
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5.2.2 The Lognormal Case

Assume now that fy is a lognormal density with parameter 8 = (p, o). This is a
specific parametric family for which the slope is automatically parametrized by @,

exp(p + 0 /2)

1
A7) = Po(T) = {1 —®((logT — p)/a)}

II'd = (p, o) is the maximum likelihood estimator of #, then

Vi(35(1) = Ba(7)) =X N(0, v4(7)), n — 0

where,
ap
. ag ai - (}}t a3 2, (h
wlr)= (()p dn') ) ans [(t’)t (}n)] (L1)
do

and I7'(#) is the inverse of the information matrix corresponding to the lognormal
density fy with parameters g and o,

= 2 f 10
Ilfﬁ)zﬂ'(u 1/2)

Put u = (log T — p) /e, and define

S1(0) = T {[1 = () = o] + 5lo(1 = 8(u)) — Zg(uf)

Under lognormality the quantity to be minimized is

ve(T)

(T

Se(u(t)) = wy(r) = (12)

—

Tl

The minimum exists and is unique (Kedem and Pavlopoulos (1991)). To find the
optimal threshold under lognormal rain rate, all we have to do is to obiain g and
. substitute in ( 12), and minimize with respect to 7.

Example 5.1. Recall that the lognormal distribution with parameter 0 = (1,1)
was [ound quite adequate for the GATE data. Plugging g =1,6 = 11in ( 12) and
minimizing gives

Toptimal = 9.1 mm/hr

This is in good agreement with the experimental results presented in Table 1,

where 5 mm/hr is optimal.

Table 3 provides optimal thresholds for any given (p,e) pair. ;I'rom the table
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we can see that, except for relatively high mean rain rate, the optimal threshold
is not far removed from the mean rain rate conditional on rain. It is interesting
to note that the optimal threshold entries in Table 3 can be approximated by the

expression
Toptimat = exp{—0.322 — 0.0140 + 0.9730” + yi}

Thus for (p,0) = (0.8,1.3), Toptimar = 8.2, and for (g, ) = (1.2,1.3), Toptimat =
12.24, etc.

Table 5.1. Optimal threshold level as a function of 0 = (p, o). In each pair, the
first number is the optimal level Toptimat. The second is the mean of the lognormal
distribution A(p, o). Source: Kedem and Pavlopoulos (1991).

x| 07 08 09 1 11 12 13

0.7 [ 233 269 3.17 3.80 4.66 582 7.42
257 277 301 332 368 413 4.68
08 | 257 297 350 4.20 5.15 643 8.20
2.84 3.06 3.33 366 407 457 5.8
09| 284 328 387 464 569 7.1 9.07
314 3.38 3.68 4.05 450 509 572
1.0 [ 3.14 363 427 513 628 7.86 10.02
347 3.74 4.07 448 497 558  6.32
1.1 | 347 401 472 567 695 868 11.07
3.83 4.13 450 4.95 550 6.17  6.99
1.2 | 384 443 521 627 7.68 959 12.2
424 457 497 547 6.07 6.82 7.72
13424 490 577 692 848 1060 13.52
468 5.05 550 6.04 671 7.53 8.54

6 Extensions

The threshold method can be easily extended to the estimation of any area mo-
ment. In fact, Short et al. (1993a) point out that the same argument which leads
to ( 9) also gives for a parametric fy,

< XF > Bo(k,7) < I[X > 7] > (13)

where under homogeneity

E[X*|X > 0]
Fylk,T) = >
BTV = B R D)

is a constant which depends on fy and = but not on {. When 0 is the maximum
likelihood estimator of # and

V(B;(k,7) — Ba(k. 7)) —“ N(0,v(k, 7)), n — 0
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the optimal threshold is the one which minimizes,

vk 0(7)
welk,7)= -
o(k,7) B2k, 7)
In the lognormal case
L2 2

exp(kp + . ; )

Pe(k,T) = Ioe = it
a

and
ve(k,7) _ 7

1 y
’,}E(k’ T) T [1 . (I)(u]]g {[k{]‘ . ¢(h‘.)) - ;‘f’(u)]‘!

L2 : 1 o2
+5 ka1 = ®(u)) — ~us(u)]?)

where ¢(u) and ®(u) are the density and distribution function of the standard
normal distribution, respectively, and u = {log(t) — u)/o}.

As an example, for GATE-like rain with ¢ = | and ¢ = 1 the optimal threshold
for k = 2 is 16.3 mm/hr. Actually, Kedem et al. (1990b) estimate g and o as
slightly greater than |. Thus, for example, with g = 1.1 and ¢ = 1.05 the
optimal thresholds for the first and second area moments are about 6 and 22
mm/hr, respectively. By another account (Short et al. (1993a)) the parameters
are 1 = 0.685 and o = 1.184, yielding as optimal thresholds for the first and second
moments the values 5.5 and 26.3 mm/hr, respectively. As far as the optimal
threshold for the first area moment, these figures agree with the experimental
result of Chiu (1988).

Using the same ideas, optimal thresholds can be obtained for any rain rate
distribution. The gamma and inverse Gaussian cases are discussed in Short et
al. (1993a). It is shown there that the optimal threshold does vary with the
distribution, but apparently not drastically for practical purposes. The case of
mixtures of lognormal has been studied recently in Kayano and Shimizu (1993),
and a quadratic relationship between the area variance and the fractional area is
discussed in Shimizu et al. (1993). Finally, sampling considerations regarding the
optimal threshold are discussed in Pavlopoulos (1991) and in Ha (1992).
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