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ABSTRACT 

 

EVIDENCE FOR THE GENETIC BASIS AND INHERITANCE OF OCEAN AND 

RIVER-MATURING ECOTYPES OF PACIFIC LAMPREY (ENTOSPHENUS 

TRIDENTATUS) IN THE KLAMATH RIVER, CALIFORNIA 

 

 

Keith A. Parker 

 

 

Surveys of genetic variation have improved our understanding of the relationship 

between fitness-related phenotypes and their underlying genetic basis.  However, how 

this information can be used to inform conservation has been unclear in many cases.  The 

objective of this study was to combine next-generation genetic sequencing with 

traditional ecological knowledge to evaluate imperiled anadromous Pacific lamprey 

(Entosphenus tridentatus) and apply the findings to conservation in the context of 

resolving Native American traditional food security issues.  In the Klamath River of 

California, a previously identified Pacific lamprey ocean-maturing ecotype was 

distinguished by a relatively advanced maturity of female fish (e.g., large egg mass) upon 

freshwater entry compared to a relatively immature river-maturing ecotype.  However, 

relative run-timing and the genetic basis of this ecotypic differentiation was not known.  I 

collected 219 returning adult Pacific lamprey at-entry to the Klamath River over a 12-

month period, genotyped them at 308 neutral and adaptive single nucleotide 

polymorphism (SNP) loci, and recorded morphological traits, including egg mass as an 

indicator of female sexual maturity.  The onset for freshwater migration for the ocean-
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maturing ecotype was predominantly the winter whereas the river-maturing ecotype 

entered during all seasons and a genetic basis of the ecotype diversity was revealed.  

Genotype-phenotype association mapping identified sixteen SNPs significantly 

associated to egg mass forming two groups of linked loci and ten other SNPs 

significantly associated to total length.  A duplicate dominant epistasis inheritance model 

best supported the ocean- and river-maturing ecotypes, accurately predicting ecotype in 

83% of the samples.  The adaptive genetic variation revealed is useful for conservation 

planning as it indicates that the river-maturing ecotype carries standing genetic variation 

capable of producing both ecotypes (e.g., both heterozygous and homozygous 

individuals), while the ocean-maturing ecotype is almost exclusively homozygous.  An 

ecological application of these molecular findings is that when assessing stream 

restoration projects, the river-maturing ecotypes could perhaps be prioritized as they 

contain the genetic diversity capable of producing both ecotypes (i.e., heterozygosity), 

whereas the ocean-maturing ecotypes do not.  I recommend distinguishing the river-

maturing and ocean-maturing ecotypes of Pacific lamprey by adopting the names 

ke’ween (lamprey “eel”) and tewol (ocean), respectively, using terms from the Yurok 

language, in recognition of the importance of Pacific lamprey to Pacific Northwest 

fishing tribes.  
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INTRODUCTION 

The ability to survey full genomic variation in natural populations of organisms 

has paved the way for identification of genomic variation that is associated with fitness-

related traits (Narum et al. 2013).  This new information offers the potential to focus 

conservation efforts on the genomic regions that are associated with traits that are likely 

influenced by selection (Allendorf et al. 2010).  While the importance of ecological 

variation is generally considered in defining conservation units (Waples 2006), how to 

incorporate the novel insights generated by genotype-phenotype studies into conservation 

planning is unclear and currently under debate (McMahon et al. 2014; Shafer et al. 2015; 

Abadia-Cardoso 2016).  Herein, I investigate the association of genetic variation with 

ecotypic differentiation in Pacific lamprey (Entosphenus tridentatus) and show how this 

information could be used to inform conservation efforts.  I discuss the results in the 

context of the ongoing debate regarding the application of adaptive genomic variation in 

conservation. 

The Pacific lamprey is an anadromous species inhabiting coastal rivers and 

nearshore marine areas from Hokkaido Island, Japan, to California, USA.  Range-wide 

evaluations of neutral genetic structuring using mitochondrial DNA, microsatellites and 

genome-wide surveys of SNPs indicate Pacific lamprey are nearly panmictic but that 

limited dispersal at sea precludes full panmixia, resulting in weak but significant isolation 

by distance over wide-ranging geographic zones (Goodman 2008; Spice et al. 2012; Hess 

et al. 2012).  A single study contrasts with these patterns, where evidence of moderate 
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temporal genetic differentiation (Fst = 0.16 - 0.24 for all pairwise comparisons) was 

resolved in the Willamette River, Oregon (Clemens et al. 2017).  Genome-wide scans 

have identified 162 SNP loci that are likely associated with adaptive variation in Pacific 

lamprey (Hess et al. 2013).  Linkage analysis shows that these 162 loci are distributed 

across four linkage groups, termed linkage groups A, B, C, and D (Hess et al. 2013).  

Loci on linkage group A and B exhibit a strong association with total length and 

migration distance, but phenotypic associations of the adaptive loci on linkage groups C 

and D has yet to be elucidated (Hess et al. 2013; Hess et al. 2014). 

Beamish et al. (1980) described Pacific lamprey as river-maturing and 

hypothesized that they spend one-year in freshwater prior to spawning.  However, several 

more recent studies have suggested the existence of multiple ecotypes in Pacific lamprey 

as indicated by body size and coloration differences, including normal and dwarf 

(Kostow 2002; Hess et al. 2013), day eels and night eels (Close et al. 2004), normal and 

praecox (i.e., non-parasitic) (Docker 2009), and river- and ocean maturing (Clemens et al. 

2013).  However, these studies were conducted in different geographic locations, 

intercepted individuals at different stages of their river migration (e.g., upstream versus 

downstream), and used different traits to define the ecotypes (e.g., body size, migration 

time, maturity, etc.).  Thus, it is not clear if these studies are actually using different 

terminology to refer to the same ecotypes, or if there are unique ecotypes restricted to 

isolated areas. 

In this study, I investigated ocean- and river-maturing ecotypes of Pacific lamprey 

returning to the Klamath River, California.  The primary difference between the ecotypes 
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was found to be maturity at the onset of freshwater migration, with the female 

gonadosomatic index of the river-maturing ecotype less than half of the ocean-maturing 

ecotype (1.2 – 2.8% versus 5.5%) (Clemens et al. 2013).  Owing to differences in 

maturity at entry, it is hypothesized that the ocean-maturing would likely spawn shortly 

after entering fresh water whereas the river-maturing would spend one year in fresh water 

prior to spawning (Clemens et al. 2013).  However, the study was based upon 

examination of relatively few females (n=18) and sampling was restricted to collections 

from April and June (Clemens et al. 2013).  Therefore, relative run-timing differentiation 

between the ecotypes was not identified.  Because Klamath River Pacific lamprey have 

been observed to initiate their anadromous migrations from November to April (Larson 

and Belchik 1998; Murphey 1959; Petersen 2006; Petersen-Lewis 2009), it is unknown 

whether the ocean- and river-maturing ecotypes exhibit differences in the season they 

initiate freshwater migration. 

Study Objectives 

 For this study, adult Pacific lamprey were collected as they initiated their 

anadromous migration by intercepting individuals as they entered the Klamath River 

utilizing Native American traditional methods of catch (e.g., eel hook, dip net).  

Specimens were collected within 0.5 km of the mouth of the Klamath River and 

collection effort was distributed across a 12-month period, representing the full temporal 

range of potential river entry times.  Fish were genotyped at a panel of 308 SNP loci that 

were representative of neutral (i.e., not subject to evolution through natural selection) and 
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adaptive loci in Pacific lamprey (Hess et al. 2013; Hess et al. 2014; Smith et al. 2018).  

Each individual was also measured for a set of morphological traits, including egg mass 

for females.  These data were used to evaluate the following questions:   

(1) Do ocean- and river-maturing ecotypes exhibit differences in the season they initiate 

freshwater migration? 

(2) Is there evidence of temporal genetic population structure between ocean- and river-

maturing ecotypes at neutral loci? 

(3) Is there evidence for associations between river- and ocean-maturing ecotypes and 

adaptive genetic loci? 

Study Site 

The Klamath River Basin originates in Klamath Falls, Oregon and flows 

southwest before entering the Pacific Ocean at Requa, California, covering an area of 

40,720 km2.  The Klamath River Basin supports the highest diversity of lamprey species 

(n=5) of any single watershed in the world (Thorsteinson et al. 2011; Moyle 2002), with 

the anadromous Pacific lamprey suggested to have been the river’s biomass-dominant 

fish species historically (Petersen-Lewis 2009).  Ecologically, Pacific lamprey are 

important contributors of marine-derived nutrients and organic matter to the food web of 

oligotrophic streams (Beamish 1980; Petersen-Lewis 2009) which are far inland from the 

Pacific Ocean, a primary food source for pinnipeds (Roffe and Mate 1984; Close et al. 
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1995), and likely a trophic level buffer to some species of migrating salmon as pinnipeds 

preferentially consume Pacific lamprey (Murphey 1959; Close et al. 2002). 

Habitat conditions 

Pacific lamprey populations are at risk of extinction due to passage barriers, 

habitat disturbance and loss (ODFW 2006), and are considered intermediate to intolerant 

of pollution (Barbour et al. 1999).  The lowermost of four dams, Iron Gate, became the 

terminus for Klamath River migrating fish in 1964, blocking off hundreds of miles of 

spawning and rearing habitat (Hamilton et al. 2005).  In the late summer and fall, the 

Klamath River is impacted by planktonic bloom forming cyanobacteria resulting in 

seasonal unsafe levels of microcystins (Gillett et al. 2015).  Consequently, high levels of 

domoic acid (319 ppb) has been detected in Pacific lamprey tissue, along with highly-

carcinogenic Polycyclic Aromatic Hydrocarbons (3.3 ppb), above the human health 

threshold of 2 ppb (Yurok Tribe Environmental Program Final Report to the EPA 2012).  

Little is known about whether the fish depurate the contaminants once exposure ceases.  

Without dam removal, deleterious habitat conditions for Pacific lamprey will persist, with 

only subtle changes due to foreseeable hydrological changes (Close et al. 2010).  The 

four dams are scheduled to undergo a removal project beginning in year 2020 (amended 

Klamath Hydroelectric Settlement Agreement 2016). 

Cultural Significance and Traditional Ecological Knowledge 

Culturally, Pacific lamprey are a tribal trust fish species protected under tribal 

treaty and other rights.  The fish continue to provide direct subsistence when other high 
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lipid foods (e.g., salmon) are unavailable to the Yurok, Hupa, Karuk, and other Native 

American Tribes of the Klamath River basin (Murphey 1959; Petersen-Lewis 2009).  The 

Klamath River Tribes possess traditional ecological knowledge (TEK) (i.e., evolving 

knowledge acquired by indigenous peoples over hundreds or thousands of years in direct 

contact with the environment, specific to a location, and handed down through 

generations by cultural transmission and spiritual relationships (Barnhardt and Kawagley 

2005)) of Pacific lamprey.  Tribal harvest methods include the eel hook, eel basket, dip 

net, trigger net, and hand catch, methods which have been used for hundreds or thousands 

of years (Petersen-Lewis 2009).  Pacific lamprey provide high caloric values (Close et al. 

1995) for indigenous people coinciding with the coldest season of the year, ranging 5.92 

to 6.34 kcal/g wet mass (Whyte et al. 1993), compared to salmonids with 1.26 to 2.87 

kcal/g (Stewart et al. 1983).  Over the past fifty years, harvest of Pacific lamprey in the 

Klamath River has been reduced by several orders of magnitude due to declines in 

abundance (Petersen-Lewis 2009), impacting Klamath River tribes with adverse health, 

social, economic, and spiritual effects (Norgaard 2005).   

Historically, Pacific lamprey also provided indirect subsistence for Yurok people 

by facilitating the hunting of pinnipeds (e.g., sea lions) in the Klamath River estuary. 

(Spott and Kroeber 1942; Warburton and Endert 1966).  Until approximately 1890, 

Yurok tribal people living in the Rekwoi (Requa) village at the mouth of the Klamath 

River consumed pinnipeds.  Pinnipeds followed the freshwater migration of tens of 

thousands of adult Pacific lamprey (“eel”) in late February, March, and early April.  
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Pacific lamprey would fatigue in fast water during migration and stay close to shore, 

utilizing eddies to rest, which were created by willows, rocks, or anchored eel baskets.  

Pinnipeds entering the estuary from the ocean would go directly to the eddies along the 

bank to consume Pacific lamprey.  During Pacific lamprey migration, Yurok men 

anchored a large ocean-going dugout boat in the willows with a seven-man crew.  From 

shore, a spearman would throw a 15-foot barbed spear made of cedar, blackened with 

fire, and attached to a long rope into the shoulder area of a pinniped.  Once hit, the men 

would board the dugout, give chase, and attempt to harvest the pinniped for subsistence 

(Warburton and Endert 1966).   
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MATERIALS AND METHODS 

Pacific Lamprey Collection and Trait Analysis 

The methods used this study were reviewed and approved by the Humboldt State 

University Institutional Animal Care and Use Committee (No. 15/16.F.105-A, May 11, 

2016).  I collected adult Pacific lamprey at-entry to the Klamath River from the Pacific 

Ocean (Figure 1.A) (coordinates 41.544, -124.079).  Collections were conducted over a 

12-month period (June 2016 to May 2017), with efforts to collect during each month, 

weather dependent.  Specimens were obtained via creel survey of the Yurok Tribe 

subsistence fishery (Figure 1.B), or capture by the author using a traditional Native 

American eel hook (2-4 ft pole with a 1-2 ft attached wire terminating in a hook) (Figure 

1.C) or a long-handled dip net (5-6 ft long handle with a 20-inch bow of fine mesh).  All 

non-creel individuals were euthanized by severing the notochord just posterior, and 

dorsal, of the eyes, followed by pithing with a metal rod through the brain.  A fin clip (2 

cm2) was collected from the dorsal fin of each lamprey and preserved in 95% ethanol 

until DNA extraction.  The following metrics were recorded for each adult Pacific 

lamprey: day of year, total length (1 mm), body mass (0.1 g), girth just posterior of the 

rearmost breathing hole (1 mm), interdorsal distance (1 mm) defined as the distance 

between the posterior most ray insertion of the first dorsal to the insertion of the anterior-

most ray on the second dorsal, sex, and egg mass (0.1 g) for females consisting of the 

total weight of all eggs without the skein.  Condition factor (Kn) was calculated as the 
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ratio between actual body mass and the predicted body mass derived from a length-

weight model created from log-transformed lengths and body masses.  Gonadosomatic 

index (GSI) was calculated as the ratio between egg mass and somatic mass.  Somatic 

mass is body mass minus gonad mass. 
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A.

B. C.

D.

E.
 

Figure 1. (A) Aerial view of the collection site at the mouth of the Klamath River, Del 

Norte County, California, USA.  Site was photographed in 2016.  (B) Adult 

Pacific lamprey collected at-entry to the Klamath River during their anadromous 

migration.  (C) Yurok Native American eel hook used for collection of Pacific 

lamprey.  (D) Variation in Pacific lamprey egg mass for individuals collected on 

same day, 14 April 2017.  Egg mass ranged from the smallest of the study at 1.6 g 

(third from left) to 22.7 g (second from right) (E) Female Pacific lamprey gut 

cavity prior to egg excision.  The individual pictured represents the largest egg 

mass of the study (25.5 g). 
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 Ecotype designations were based upon identification of 16 SNP loci exhibiting 

significant association to egg mass in Pacific lamprey with a substantial change in allele 

frequency corresponding to an egg mass of 12.5 g (ocean-maturing individuals ≥12.5 g 

egg mass and river-maturing individuals <12.5 g egg mass) (further details in Results).  

To test for significant differences in run-timing (day-at-entry) between ocean- and river-

maturing ecotypes, a Welch two-sample t-test was conducted.  The median day-at-entry 

for both Pacific lamprey ecotypes was identified instead of the mean day-at-entry.  The 

median day-at-entry was less influenced by the four ocean-maturing egg mass outliers in 

the data. 

 The coefficient of variation (CV, standard deviation/mean) was calculated for egg 

mass by month and season to provide a measure of relative variability in a standardized 

format and compared to other anadromous fish egg mass variability.  To test for 

significant differences in Pacific lamprey egg mass across months, a one-way analysis of 

variance (ANOVA) was conducted.  If significant ANOVA results were observed, post-

hoc comparisons using the Tukey’s HSD test were used to evaluate pairwise differences.   

Multiple linear regression analyses were used to model egg mass as a function of 

the explanatory variables including day (day 1 = January 1st), total length (TL), 

interdorsal space (idspace), and ecotype (0 = ocean-maturing, 1 = river-maturing).  

Weight and girth were eliminated because of strong Pearson correlations with total 

length, weight (0.82) and girth (0.66).  I explored the data graphically and with statistical 

significance tests for evidence of an interaction between ecotype and day (i.e., strong 
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differences in regression slopes).  Criterion-based model selection (e.g., AIC and BIC 

comparisons) was conducted with an exhaustive search of all possible variable 

combinations.  Because the distribution of egg mass was log normal, the data were 

natural log transformed prior to t-tests, ANOVA, and regression.  The software package 

R was used for model fits, statistical analysis, and figure creation (R Core Development 

Team 2015).  

To characterize the relative abundance of adult Pacific lamprey entering the 

Klamath River during the 12-month study period, the mean catch-per-unit-effort (CPUE) 

was calculated for each month.  Catch-per-unit effort was calculated as the total number 

of Pacific lamprey captured, using an eel-hook or dipnet, per hour of active fishing.  

Samples obtained from creel surveys were excluded from the CPUE calculations.  During 

each field collection the same active sampling devices were used consistently (traditional 

hook or dip net), sampling occurred at the same narrow river passage each trip, and all 

sampling occurred during daylight hours.   

DNA Extraction, PCR, and Genotyping 

Tissue samples were transported by the author to the Columbia River Inter-Tribal 

Fisheries Commission (CRITFC)/University of Idaho/USDA laboratory in Hagerman, 

Idaho for genetic analysis (ID: Proj184-Etr GT Seq Keith Parker qPCR L-0769).  DNA 

extraction was accomplished using the Chelex 100 method (denaturing 

protocol).  Individual Pacific lamprey tissues were placed in separate wells of a standard 
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sized PCR plate (n=5) and incubated at room temperature for 30 minutes to evaporate 

residual ethanol.  A total of 5μL ProK was added to each well.  A 10% Chelex solution 

was prepared (2.5g Chelex (Sigman Aldrich C7901) to 25 ml Nuclease-Free H2O) and 

homogenized. A total of 50μL of the Chelex solution was aliquoted into each 

well.  Pacific lamprey tissue samples were incubated overnight at 55° C in a thermal 

cycler.  The next day each PCR plate was vortexed, centrifuged, and stored at -20° C.   

 Single nucleotide polymorphism genotypes were generated using the Genotyping-

in-Thousands by sequencing (GT-seq) custom amplicon method described in Campbell et 

al. (2015).  The five main steps are: (i) multiplex PCR - forward and reverse primer pairs 

are tagged with Illumina sequencing primer sites (Read 1 and Read 2) and all targets are 

amplified in a single multiplex PCR reaction, (ii) index tagging (barcode) - a second PCR 

step adds a sample specific index sequence (n=96) and a plate specific index sequence 

(n=96) to each sample allowing up to 9,216 samples to be pooled in a single sequencing 

lane while maintaining amplicon specificity, (iii) quantification and normalization - the 

concentrations of tagged amplicons for each sample are measured by qPCR and 

normalized, (iv) sequencing - SR150 with 2x6 dual index cycles on Illumina NextSeq, 

and (v) genotype scores identified with a Perl script which takes a list of locus names, 

allele names, and probe sequences as input (Campbell et al. 2015).  The script counts 

occurrences of each allele, generates a ratio of allele 1 to allele 2, and uses the ratio to 

generate genotypes for each locus. 
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 All samples were quality control filtered and only those samples that were 

genotyped at ≥90% of loci were retained, while samples genotyped at <90% loci were 

discarded.  Based upon this filtering, 97.19% of the samples were retained and 2.81% 

were discarded.   

 The discovery, selection, and development of a sufficient number of SNP markers 

to characterize Pacific lamprey population variability was the result of Hess et al. (2013) 

and Hess et al. (2015).  The SNP panel of 308 GT-seq loci were selected to be 

representative of neutral and adaptive loci across the geographic range of Pacific 

lamprey, representing a subset of markers developed from the paired end consensus reads 

from the Hess et al. (2013) RAD-seq dataset.  The selection of loci and steps in 

development began with a group of 457 total SNP loci considered in round 1, which 

included 120 that had been already designed for TaqMan assays (Hess et al. 2015).  A 

total of 337 SNPs were chosen that had not been designed previously and ensured that all 

SNP sites were located at base pair position 30 or higher to accommodate the assay 

primer site in flanking DNA.  The following set of guidelines for choosing SNPs for the 

GT-seq panel were established: (i) pass population genetic quality control filters for a 

rangewide dataset (Hess et al. 2013), (ii) no duplicate loci, (iii) potential for positioning 

on a linkage map (i.e., SNPs were polymorphic within the linkage mapping family) 

(Smith et al. 2018), (iv) high confidence in alignment to the sea lamprey genome, (v) 

previously designed for TaqMan assays (Hess et al. 2015), (vi) spaced 5cM or greater 

apart on a linkage group, (vii) putatively neutral and high minor allele frequency (MAF) 
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for power to perform parentage analyses, and (viii) adaptive SNPs chosen to be equally 

representative across four groups of statistically linked loci.  Loci that appeared to have 

too many heterozygotes and were likely duplicated regions were removed.  There were 

401 loci that passed this filter.  Although 120 primers were designed from previous work, 

a consensus sequence was constructed for the rest using paired-end sequence data from 

Hess et al. (2013) and was successful in developing 266 primer pairs for the loci.  A 

script was used to identify 28 primer interactions which were resolved by dropping 26 

primer pairs.  This filter resulted in a remaining set of 360 loci (240 new + 120 original 

primer pairs).  Final optimization left 308 markers that worked best in GT-seq 

genotyping.  There are 230 neutral SNPs, 41 adaptive SNPs, and a set of 31 

“intermediate” SNPs that did not fit definitions of either putative neutral and putatively 

adaptive (Hess et al. 2013).  Finally, four loci are species diagnostic (Hess et al. 2015), 

and 2 loci are duplicated.  Therefore, there were 302 unique markers available for these 

association analyses out of the total 308 that were genotyped. These markers include 38 

SNPs that were mostly adaptive loci that were categorized into the following four groups 

of linked loci: A (N=10), B (N=13), C (N=7), and D (N=8, Hess et al. 2013). 

Temporal Genetic Structure 

The panel of 308 SNPs was filtered as follows to generate a genotype data set 

suitable for evaluation of temporal genetic structure in Klamath River Pacific 

lamprey.  First, the four species identification loci and all loci missing >=5% of their 

genotypes were removed.  Next, those loci identified as non-neutral using the software 
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LOSITAN in Hess et al. (2013) were removed.  Lastly, linked loci were identified using 

the software TASSEL (Bradbury et al. 2007), and one locus from each linked pair 

identified at a significance level of <0.01 was eliminated from the data set.  Filtering 

resulted in a data set consisting of 148 SNP loci that were used to evaluate neutral 

patterns of genetic structure.  Tests for conformance to Hardy–Weinberg proportions and 

estimates of observed and expected heterozygosity were calculated using the software 

GENODIVE 2.0b27 (Meirmans and Van Tienderen 2004). 

The at-entry collections of the Klamath River Pacific lamprey included samples 

collected from 2016 and 2017 and samples collected across multiple months in each year 

allowing the assessment of inter- and intra-annual temporal genetic structure.  To 

evaluate whether Klamath River Pacific lamprey exhibited temporal genetic structure and 

determine if the ocean- and river-ecotypes were genetically differentiated at neutral loci I 

analyzed the data using two approaches: (i) Bayesian cluster analysis (Pritchard et al. 

2000), and (ii) K-means clustering (Meirmans 2012).  Both approaches do not require 

population hierarchy to be defined a priori and allow assessment as to whether any 

significant genetic structure is present.  However, the two approaches employ different 

statistical frameworks thereby allowing assessment of consistency across analytical 

approaches. 

The Bayesian clustering algorithm implemented in the software STRUCTURE v 

2.3.4 (Pritchard et al. 2000) was used to estimate the number of discrete genetic clusters 

(K) of individuals in the data and the probability of assignment (q) of each individual to 
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each cluster.  Analyses were run for 200,000 steps (with 100,000 discarded as burn-in) 

and 20 independent runs were conducted for each value of K.  Analyses were run 

assuming the data consisted of K = 1 … 5 clusters.  Summaries of replicate runs were 

calculated using the software STRUCTURE HARVESTER (Earl and vonHoldt 2012), 

and the K with highest probability was used as an indicator of the number of genetically 

distinct groups in the data.  

The K-means cluster method implemented in the software GENODIVE was used 

to sort individuals into an arrangement that maximized variance among groups but 

minimized within-group diversity.  The Sums of Squares from an AMOVA was used to 

calculate distance matrix between individuals (Meirmans 2012) and simulated annealing 

from 50,000 steps (repeated 20 times) was used to perform K-means 

clustering.  Analyses were run assuming the data consisted of K=1…5 clusters and 

selection of optimal K was based on Bayesian Information Criterion (BIC). 

Genotype-Phenotype Association Tests 

Genotype-phenotype associations were tested using a general linearized model 

(GLM) and a mixed linearized model (MLM) using the software TASSEL (Trait 

Analysis by aSSociation, Evolution and Linkage) v. 5.0.8 (Bradbury et al. 2007).  GLM 

reduces the risk of false positives due to population structure by including population 

membership estimates as covariates in the model.  Population structure was estimated 

based upon principal components analysis (first three PC axes) of 76 neutral SNPs (as 
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defined in Hess et al. 2014) using the software TASSEL.  These 76 neutral SNPs are a 

subset of the 85 neutral SNPs that were characterized in detail by Hess et al. (2014, 2015) 

for rangewide collections and were successfully integrated into the GT-seq assay panel.  

Therefore, these 76 SNPs were expected to be informative to estimate neutral population 

structure in rangewide populations of Pacific lamprey, including fish from the Klamath 

River.  Genotype-phenotype associations were also investigating using MLM, an 

approach that controls for false positives that may arise from both population and family 

structure and is therefore a more stringent association analysis than GLM.  The MLM 

analysis used the population structure as estimated by the principal component analysis 

(see above) and a kinship matrix (‘scaled IBS’ method; Endelman and Jannink 2012) 

which was calculated using TASSEL.  Permutation tests (1000) were used to calculate p-

values for identification of significant associations of SNPs with traits.  

The data set used for association testing consisted of all 308 SNPs genotyped in 

92 female adult Pacific lamprey collected at-entry to the Klamath River.  Eight traits 

were used for genotype-phenotype association testing including egg mass, GSI, total 

length (TL), body mass, girth, interdorsal distance, river entry date (day of year), and 

condition factor (Kn).  Pearson’s correlation coefficient and tests of significance were 

used to examine inter-correlations among the eight traits used in the phenotype-genotype 

association tests.  Tests were conducted using R package Hmisc (R Core Team 2013). 

The large number of tests for phenotype-genotype associations (8 traits x 308 loci 

= 2464 tests) increased the possibility of detecting a significant association by 
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chance.  To account for multiple tests, only those associations with p-values less than the 

critical value as determined using the false discovery rate procedure described by 

Benjamini and Yekutieli (2001) were considered significant (critical value = 0.006).  The 

Benjamini and Yekutieli (2001) false discovery rate (FDR) approach has more power to 

detect significant differences than sequential Bonferroni correction (Rice 1989; Narum 

2006). 

Inheritance Models for Ocean- and River-Maturing Ecotypes 

To test for conformance to an additive genetic variation model, I assessed the 

relationship between egg mass and the number of river alleles (i.e., OD, OB) at the 17 loci 

exhibiting significant associations to egg mass (see Results).  The allele with the highest 

frequency among the ocean-maturing individuals was used as a reference for designation 

of the ocean- versus river-maturing alleles.  Goodness of fit was evaluated using least-

squares linear regression. 

Two-by-two contingency tables were constructed to test each of three additional 

inheritance models.  First, individuals were phenotypically classified based upon egg 

mass, ocean-maturing with egg mass ≥12.5 g and river-maturing with egg mass <12.5 g.  

Next, individuals were genotypically categorized according to three inheritance models: 

(i) classical Mendelian inheritance at linkage group D (represented by locus Etr_2878) 

with river-maturing allele as dominant to ocean-maturing, (ii) classical Mendelian 

inheritance at linkage group B (represented by locus Etr_2791) with the river-maturing 
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allele as dominant to ocean-maturing, and (iii) a duplicate dominant epistasis model 

where ocean-maturing was considered recessive and only produced when genes in 

linkage groups B (Etr_2791) and D (Etr_2878) were homozygous recessive.  Presence of 

a dominant allele from either linkage group was considered to produce the river-maturing 

ecotypes.  Epistasis refers to genetic interactions in which one gene locus or linkage 

group masks or modifies the phenotypic effects of another gene locus or linkage group.  I 

compared the assignment accuracy these alternative inheritance models, defined as the 

number of individuals classified as ocean- and river-maturing by both phenotype and 

genotype categorizations divided by the total number of individuals examined.    
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RESULTS 

Pacific Lamprey Collection and Trait Analysis 

Pacific lamprey were collected monthly, and sometimes weekly, over a one-year 

period from June 2016 through May 2017.  Adult Pacific lamprey returns were collected 

during every month except for September and December.  A total of 219 adult Pacific 

lamprey were collected at entry to the Klamath River, including 126 males and 93 

females (Table 1; Table S 2).  The number of individuals collected per month ranged 

from 0 to 60.  
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Table 1. The monthly sample size, total length, body mass, girth, interdorsal distance, and egg mass (females only) for the 

219 adult Pacific lamprey collected at-entry to the Klamath River. 

Month 

Sample Size  Total Length (mm)  Body Mass (g)  Girth (mm) 

Total Males Females  Mean SD Range  Mean SD Range  Mean SD Range 

Jun-16 21 11 10 

 

625 29 576-679 

 

413.3 56.1 296-498 

 

123 8 

107-

133 

Jul-16 6 4 2 

 

609 29 564-646 

 

340.6 57.4 277-432 

 

115 6 

109-

122 

Aug-16 6 4 2 

 

612 35 562-655 

 

424.4 51.3 349-481 

 

119 6 

111-

126 

Sep-16 0               

Oct-16 1 1 0 

 

601  601-601 

 

327.5  328-328 

 

104  

104-

104 

Nov-16 1 1 0 

 

588  588-588 

 

440  440-440 

 

126  

126-

126 

Dec-16 0               

Jan-17 5 2 3 

 

629 37 566-659 

 

446 79.1 318-528 

 

123 8 

111-

132 

Feb-17 38 19 19 

 

636 36 565-726 

 

447.3 73.9 313-600 

 

121 8 

103-

138 

Mar-17 60 32 28  618 38 531-697  412.4 92.8 195-636  116 11 82-141 

Apr-17 50 35 15 

 

612 40 544-710 

 

399.8 76.4 277-631 

 

116 9 

102-

139 

May-17 31 17 14  616 33 555-673  371.5 71 231-497  111 9 91-128 

Total 219 126 93  620 35 531-710  408.7 69.8 195-636  117 8 82-141 
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Month 

Interdorsal Distance 

(mm) 

 

Egg Mass (g) 

Mea

n 

S

D Range 

 Mea

n SD Range 

Jun-16 31 7 10-40 

 

5.9 2.2 3.6-10.4 

Jul-16 36 6 30-40 
 

4.8 0.3 4.6-5.0 

Aug-16 30 6 20-37 

 

12.2 2.5 

10.4-

13.9 

Sep-16        
Oct-16 47  47-47     
Nov-16 25  25-25     
Dec-16        

Jan-17 28 2 26-30 
 

12.3 5.8 7.2-18.6 

Feb-17 29 7 15-45  14.8 3.7 7.8-20.6 

Mar-17 31 6 18-45  12.4 5.7 5.7-25.5 

Apr-17 29 6 18-40 

 

8.4 5.2 1.6-22.7 

May-17 30 7 18-41  6.9 4.9 2.9-22.6 

Total 30 6 10-47.0  10.5 3.8 1.6-25.5 
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Significant differences in run-timing (day-at-entry) were found between ocean- 

and river-maturing ecotypes [t(83.77) = 4.85, p < 0.001]. The median day of entry was 

ordinal day 61.5 for ocean-maturing ecotypes and ordinal day 110 for river-maturing 

ecotypes. 

Female Pacific lamprey exhibited substantial variation in egg mass (Figure 1.D) 

among individuals collected on the same day and in the same month: March (5.7 - 25.5 

g), April (1.6 - 22.7 g), and May (2.9 - 22.6 g).  Egg mass ranges for January (7.2 - 18.6 

g) and February (7.8 - 20.6 g) were less.  The CV for April and May had the highest egg 

mass dispersal with CV’s of 0.62 and 0.71, respectively, as compared to January and 

February CV’s of 0.47 and 0.25, respectively.  By season, egg mass CV was much higher 

in the spring as compared to winter and summer, evidenced by winter, spring, and 

summer CV’s of 0.36, 0.60, and 0.21, respectively.  No CV was estimated for fall as only 

one sample was collected per month in the fall. 

 Egg masses were natural log transformed to meet the assumptions of normality 

and homogeneity of variance prior to ANOVA analyses.  There was a significant effect 

of month on ln(egg mass) (alpha = 0.05 level), [F(7, 85) = 8.63, p < 0.001], indicating log 

of egg mass across months was much larger than the variation of egg mass means within 

each month and at least one of the group means was significantly different from the 

others.  Post-hoc comparisons using the Tukey’s HSD test indicated significant pairwise 

differences (adjusted p < 0.05) with two distinct groups of months: (i) January, February, 
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and March (significantly higher egg mass means), and (ii) April, May, June, July, and 

August (significantly lower egg mass means).  

 Pacific lamprey females were partitioned into two groups based on ecotype 

categorized by egg mass phenotype-genotype associations (see Results).  A multiple 

linear regression was used to model egg mass as a function of the explanatory variables.  

Preliminary analyses were performed to check for multicollinearity (weight and girth 

removed), violations of the assumption of normality, and homogeneity of variance.  

Evidence of interaction between ecotype and day was not significant (p = 0.07). 

Therefore, pairwise interactions were excluded from the model selection procedure.  The 

best model for egg mass included ordinal day and ecotype as the only predictors (Table 

2).  A multiple linear regression was calculated to predict Pacific lamprey egg mass based 

upon ordinal day at-entry and ecotype.  Using criterion-based model selection with the 

lowest AIC and BIC (Table 3), the best model was: ln(egg mass) = 3.026 – 0.003(day) – 

0.819(ecotype), [F(2, 90) = 96.47, p < 0.001, r2 = 0.682], where ecotype was coded as 0 = 

ocean-maturing and 1 = river-maturing (Figure 2). Based on back-transformed model 

predictions of egg mass (in grams), Pacific lamprey egg mass declines by 0.3% each day 

(26% decline in 100 days).  River-maturing fish (ecotype=1) have a 56% lower mean egg 

mass as compared to ocean-maturing Pacific lamprey after controlling for day of year. 

Table 2. Explanatory parameter estimates of the final multiple linear regression model. 

Parameter Estimate SE t value Pr(>|t|) 

intercept 3.026 0.079 38.291 < 0.001 
day -0.003 0.001 -3.681 < 0.001 
ecotype -0.819 0.077 -10.660 < 0.001 
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Table 3. Criterion based model selection for predicting ln(egg mass) using Akaike’s 

Information Criteria (AIC), Bayesian Information Criteria (BIC), and parameter 

information for the top model (1), a competing model (2), and the full model (3). 

Model Rank Model Variables R2 Adjusted R2 BIC AIC ∆AIC 

1 day+ecotype 0.682 0.675 -93 -209 0 
2 day+ecotype+TL 0.682 0.671 -88 -207 2 
3 day+ecotype+TL+interdorsal 0.682 0.667 -84 -205 4 

 

 

 

Figure 2. Multiple linear regression fits for the best model (i.e., lowest AIC and BIC) that 

predicts ln(egg mass) for Pacific lamprey, based on at-entry day and ecotype.  

River-maturing ecotypes represented with dark circles, and ocean-maturing 

ecotypes with open triangles.  Dashed line represents 12.5 g egg mass break point 

between ocean- and river-maturing ecotypes.  Lamprey egg mass declines by 

0.3% each day (26% decline in 100 days). 
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For estimation of CPUE, a total of 173 Pacific lamprey were captured by dipnet 

or eel-hook during 142.13 hours of active fishing time (45 trips), resulting in a mean 

CPUE of 1.2 fish/hour for the study.  Fishing effort was applied during all months, and 

the mean fishing time per month was 11.8 hours (range 3.4 in April to 28.58 in 

September).  The mean CPUE varied throughout the year, with highest catches occurring 

from February to June (range 1.8 to 7.4 fish per hour) and lower catches from July to 

January (range 0 to 0.5 fish per hour) (Figure 3). 

 

Figure 3. The mean catch-per-unit-effort of Pacific lamprey at-entry to the Klamath River 

from June 2016 to May 2017. Catch-per-unit effort was calculated as the total 
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number of Pacific lamprey captured, using an eel-hook or dipnet, per hour of 

active fishing. 

 

 Ln(total length) did not significantly correlate with ln(egg mass) (r2 = 0.026, p = 

0.384) in the ocean-maturing ecotypes, mature fish hypothesized to be within weeks or 

months of spawning.  For example, one of the smallest fish (EtrKLA17-0061 at 565 mm) 

had a relatively large egg mass (18 g), and the largest egg mass of the study (EtrKLA17-

0136 at 25.5 g) (Figure 1.E) came from a fish with an intermediate body size (615 mm).  

The largest fish of the study (EtrKLA17-0146 at 710 mm) possessed the smallest egg 

mass of the study (1.6 g) (Figure 1.D).  The total length-egg mass relationship of river-

maturing ecotypes was not evaluated as they represented an immature egg maturation 

stage, hypothesized not to spawn until the following year.  

Temporal Genetic Structure 

 Among the 148 SNPs identified as neutral and therefore suitable for assessment 

inter- and intra-annual temporal genetic structure, 11 had an expected heterozygosity 

<0.15, 32 between 0.15 and 0.30, and 105 > 0.35.  Tests for conformance to Hardy-

Weinberg (Table S 1) expectations revealed significant departures at 39 loci at a p<0.05, 

and nine departures using a Bonferroni corrected p-value for multiple tests of 0.0003 

(0.05/148 tests). 

The at-entry collections of the Klamath River Pacific lamprey included samples 

collected from 2016 and 2017 and samples collected across multiple months in each year 
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allowing the assessment of inter- and intra-annual temporal genetic structure.  Also, 

collections included both ocean- and river-maturing individuals allowing assessment of 

genetic differentiation between the ecotypes.  In the Bayesian cluster analysis using the 

software STRUCTURE the highest log probability of the data was at K=1 and visual 

inspection of K>1 revealed that assignments were generally symmetric to all populations, 

indicative of the absence of ecotypic differentiation and inter- or intra-annual population 

genetic structure (Table 4).  Similarly, K-means clustering using the software 

GENODIVE indicated the best clustering occurred at K = 1 according to BIC, suggesting 

there was no significant genetic structure in the data (Table 4). 

Table 4. Assessment of neutral genetic structure using Bayesian cluster analysis (number 

of replicate runs (Reps), mean log probability of the data (Mean LnP(K)), and 

standard deviation of the log probability of the data (Stdev lnP(K)) and K-means 

clustering (Bayesian Information Criterion (BIC)) using 148 SNP loci in Klamath 

River Pacific lamprey.  K is the assumed number of clusters. 

  Bayesian Cluster     K-means 

K Reps Mean LnP(K) Stdev lnP(K)   BIC 

1 30 -35047.79 0.3689   2042.18 

2 21 -35329.881 181.6567   2043.73 

3 20 -35540.04 224.6154   2045.96 

4 20 -35669.405 439.0342   2048.52 

5 20 -35589.34 410.8487   2051.28 

 

Removal of the 39 loci that significantly departed from Hardy Weinberg 

expectations, and Bayesian cluster analysis of a data set consisting of 109 SNP loci 

resolved patterns that were identical to the 148 SNP data set indicative of the absence of 
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genetic differentiation between ocean- and river-maturing ecotypes and the absence of 

temporal genetic structure. 

Genotype-Phenotype Association Tests 

The GLM analyses conducted using TASSEL identified 74 total significant 

genotype-phenotype associations involving 35 loci and eight traits: egg mass, GSI, TL, 

weight, girth, interdorsal distance, day, condition factor (Table 5).  The results of the 

genotype-phenotype association tests using MLM were similar but more conservative, 

identifying 66 total significant genotype-phenotype associations involving 32 loci and 

seven traits: egg mass, GSI, TL, weight, girth, interdorsal distance, condition factor 

(Table 5).  A total of 61 significant associations were found in common across both GLM 

and MLM involving 28 loci and seven traits: egg mass, GSI, TL, weight, girth, 

interdorsal and Kn. 
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Table 5. P-values for loci exhibiting significant genotype-phenotype associations in the 92 female adult Pacific lamprey 

collected at-entry to the Klamath River.  The data set consisted of 308 SNPs and eight traits (egg mass, 

gonadosomatic index (GSI), total length (TL), weight, girth, interdorsal distance, river entry date (day), and relative 

condition factor (Kn)).  Significant associations identified only by GLM in red, only in MLM in blue, and both GLM 

and MLM are bolded in black.  Only those associations identified as significant as determined using the false 

discovery rate procedure described by Benjamini and Yekutieli (2001) are reported (critical value = 0.006).  The 

linkage group identifications follow Smith et al. (2018). 

Loci Egg Mass GSI TL Weight Girth Interdorsal Distance Day Kn Linkage group 

Etr_1257 1.92E-03  0.005875883      B 

Etr_5465 1.13E-03        B 

Etr_1509 7.05E-05 2.09E-03 1.35E-03 4.48E-03     B 

Etr_1613 2.74E-05 3.51E-04       B 

Etr_2151 6.16E-05 9.26E-04     4.79E-03  B 

Etr_2730 2.74E-05 3.51E-04       B 

Etr_2791 1.39E-05 2.93E-04       B 

Etr_4455 1.39E-05 2.93E-04       B 

Etr_1378 2.45E-04 4.83E-04       D 

Etr_1944 2.18E-04 4.13E-04       D 

Etr_2097 7.30E-04 1.47E-03       D 

Etr_211B 1.12E-04 2.22E-04       D 

Etr_2878 1.12E-04 2.22E-04       D 

Etr_4156 1.12E-04 2.22E-04       D 

Etr_464 2.54E-05 4.20E-05       D 

Etr_8649 2.18E-04 4.13E-04       D 
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Loci Egg Mass GSI TL Weight Girth Interdorsal Distance Day Kn Linkage group 

Etr_3383 5.25E-05 3.37E-05       NA 

Etr_2603   1.95E-06 1.94E-05 2.22E-04 3.48E-04   A 

Etr_2287   1.92E-09 1.05E-05 1.33E-04    A 

Etr_5317   1.15E-08 1.58E-06 5.04E-05    A 

Etr_6363   9.28E-09 2.13E-06 5.52E-05    A 

Etr_3069   9.28E-09 2.13E-06 5.52E-05    A 

Etr_3638   4.04E-08 2.21E-05 4.35E-04    A 

Etr_3885   3.69E-07 1.05E-05 2.91E-05    A 

Etr_4889   6.51E-09 1.27E-06 3.09E-05    A 

Etr_4093   2.46E-03       

Etr_1773   3.04E-03       

Etr_668   1.65E-03 0.005203083     NA 

Etr_2776   4.54E-03      C 

Etr_5654   1.77E-03      NA 

Etr_3837  4.30E-03 1.29E-03 7.42E-04     NA 

Etr_4414     3.28E-03    NA 

Etr_5780        2.30E-03 NA 

Etr_8681      7.77E-05   NA 

Etr_2451      3.88E-04   NA 

Etr_2823      2.50E-03   NA 

Etr_4750      3.76E-03   NA 
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Egg mass at-entry exhibited significant associations with 17 loci in the GLM 

analysis (Figure 4; Table 5).  The mean p-value for the loci showing significant 

associations in the GLM was 3.00E-04 (range 1.39E-05 to 1.92E-03).  The 17 loci found 

to exhibit significant associations with egg mass were distributed across two linkage 

groups identified by Smith et al. (2018), including eight loci on linkage group D, eight 

loci on linkage B (Table 5).  One locus, Etr_3383, was of unknown linkage relationship 

(Table 5).  The MLM analysis produced similar results, except that significant 

associations were detected in 16 loci instead of 17 loci.  The mean p-value for the loci 

showing significant associations in the MLM was 1.33E-03 (range 3.25E-04 to 3.70E-

03).   Egg mass exhibited a strong correlation with GSI (0.95; Table 5) and therefore GSI 

exhibited significant associations with 15 of the same loci identified as having significant 

associations with egg mass (Table 5). 
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Figure 4. General Linearized Model p-values for associations between egg mass and each 

of the 308 SNP loci genotyped in 92 adult Pacific lamprey collected at entry to 

the Klamath River, California.  Analyses were conducted using the software 

TASSEL.  P-values are ordered from smallest to largest.  The horizontal dotted 

line indicates the critical value as determined using the false discovery rate 

procedure described by Benjamini and Yekutieli (2001) (critical value = 0.006). 

 

To visualize the strength of the association between the loci in the B and D 

linkage groups and eggs mass, a heatmap of each individuals’ multilocus genotype was 

constructed (Figure 5).  For standardization, genotypes of each individual were coded as 

homozygous for small egg mass/river-maturing, homozygous for large egg mass/ocean-

maturing, or heterozygous.  The allele with the highest frequency among the large egg 
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mass/ocean-maturing individuals was used as a reference for designation of the ocean-

maturing ecotype allele.  A distinction occurs in genotypes at both linkage groups A and 

B at approximately 12.5 g egg mass.  The large egg mass individuals (≥ 12.5 g) or ocean-

maturing individuals exhibit a higher frequency of the large egg mass allele and are 

almost exclusively homozygous for the large egg mass allele at both linkage group B and 

D.  In contrast, the small egg mass (< 12.5 g) or river maturing individuals exhibit a 

higher frequency of the small egg mass allele, but also exhibit high genotypic diversity 

encompassing both heterozygous and homozygous genotypes at both linkage group B 

and D. 
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Figure 5. Genotype heatmap for the 16 SNP loci exhibiting significant association to egg 

mass in 92 adult Pacific lamprey collected at entry to the Klamath River, 

California.  A change in allele frequency was observed corresponding to an egg 

mass of 12.5 g.  Each row indicates an individual multilocus genotype, coded 

homozygous for small egg/river-maturing (red), homozygous for large egg/ocean-

maturing (yellow), and heterozygous (orange).  Missing data are coded white. 

Individuals are ordered top to bottom from small to large egg mass, as indicated 

by the heat-bar at the left.  Loci are grouped by linkage group as indicated by the 

bar at the top.  At right, categorization of individuals into river- or ocean-maturing 

according to the duplicate dominant epistasis model.  Under this model, ocean-

maturing is considered recessive and only develops when genes in linkage group 
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B and D are homozygous recessive.  Assignments are based upon one locus from 

linkage group D (Etr_2878) and one locus from linkage group B (Etr_2791).  

Shown are the 16 loci that exhibited significant associations in both the GLM and 

MLM. 

 

Total length exhibited significant associations with 16 loci in the GLM 

analysis.  The mean p-value for the loci showing significant associations in the GLM was 

1.05E-03 (range 1.92E-09 to 5.88E-03).  The 16 loci found to exhibit significant 

associations with TL were distributed across three linkage groups identified by Smith et 

al. (2018), including eight loci on linkage group A, one locus on linkage B, one locus on 

linkage group C.  The remaining six loci were of unknown linkage relationship.  The 

MLM analysis produced similar results, except that significant associations with 13 loci 

instead of 16 loci were detected.  The mean p-value for the loci showing significant 

associations in the MLM was 1.02E-03 (range 1.03E-06 to 5.88E-03).  Total length 

exhibited a moderate correlation with weight (0.82), and girth (0.66) (Table 6) and 

therefore these traits generally exhibited significant associations with the same loci as 

TL, including the eight loci occurring on linkage group A (Table 5)
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Table 6. Pearson correlation coefficients (below diagonal) and significance tests (above diagonal) for the eight traits used for 

genotype-phenotype association testing in the 92 female adult Pacific lamprey collected at-entry to the Klamath 

River. 

 Day 

Total 

Length 

Body 

Mass Girth 

Interdorsal 

Distance 

Egg 

Mass 

Gonadosomatic 

Index 

Condition 

Factor 

Day - 0.8512 0.2549 0.6461 0.2551 0 0 0.0397 

Total Length 0.02 - 0 0 0.0015 0.1823 0.341 0.9073 

Body Mass -0.12 0.82 - 0 0.0002 0.1434 0.2239 0 

Girth 0.05 0.66 0.87 - 0.0187 0.8869 0.0297 0 

Interdorsal Distance -0.12 0.33 0.38 0.24 - 0.9915 0.3583 0.0789 

Egg Mass -0.49 0.14 0.15 0.02 0 - 0 0.3066 

Gonadosomatic Index -0.47 -0.1 -0.13 -0.23 -0.1 0.95 - 0.716 

Condition Factor -0.21 -0.01 0.55 0.57 0.18 0.11 -0.04 - 
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To visualize the strength of the association between the loci in the A linkage 

group and total length, a heatmap of each individuals’ multilocus genotype was 

constructed (Figure 6).  An initial visual inspection indicated a change in allele frequency 

at a total length of 625 mm.  Based upon this, genotypes of each individual were coded as 

homozygous for large size, homozygous for small size, or heterozygous.  The allele with 

the highest frequency among the large individuals (≥625 mm total length) was used as a 

reference for designation of the “large” allele. 
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Figure 6. Genotype heatmap for the 10 SNP loci exhibiting significant association to total 

length in Klamath River Pacific lamprey collected at-entry.  A change in allele 

frequency was observed at a length of 625 mm.  Each row indicates an individual 

multilocus genotype, coded homozygous for shorter length (red), homozygous for 

larger length (yellow), and heterozygous for shorter length (orange).  Missing data 

are coded white.  Individuals are ordered top to bottom from small to large total 

length, as indicated by the heat-bar at the left.  Eight of the ten loci are associated 

with linkage group A, as indicated by the bar at the top, and two loci are 

unassigned. 
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The GLM analysis detected significant relationships between interdorsal distance 

and four loci, day and one locus, and Kn and one locus (Table 5).  The MLM detected 

significant associations between interdorsal distance and three, and kn and one locus, but 

failed to produce any associations with day. 

Inheritance Model for Ocean- and River-Maturing Ecotypes 

The relationship between egg mass and the number of river alleles at the 17 loci 

associated to egg mass was significant (p<0.05), but egg mass associated loci only 

explained about 39 percent of the variation in egg mass indicating limited support for a 

model of additive genetic variation. The model assuming classical Mendelian inheritance 

at linkage group D (Etr_2878) with river-maturing allele as dominant to ocean-maturing 

resulted in an assignment accuracy of 0.65 (Table 7).  Similarly, the model assuming 

classical Mendelian inheritance at linkage group B (Etr_2791), with river-maturing allele 

as dominant to ocean-maturing resulted in an assignment accuracy of 0.65 (Table 8).  

However, when individuals were categorized using a duplicate dominant epistasis model, 

where ocean-maturing was considered recessive and only produced when genes in 

linkage groups B (Etr_2791) and D (Etr_2878) were homozygous recessive, resulted in 

an assignment accuracy of 0.83 (Table 9).  Individuals genotypically categorized 

according to the duplicate dominant epistasis model exhibited significant differences in 

egg mass [t(65.64) = 6.90, p < 0.001], providing further support for the inheritance 

model.  The mean egg mass was 14.7 g for ocean-maturing ecotypes and 7.7 g for river-

maturing ecotypes categorized using the duplicate dominant epistasis model (Figure 7). 
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Table 7. Contingency table for 92 adult female Pacific Lamprey collected at-entry to the 

Klamath River.  Classical Mendelian inheritance model with river-maturing allele 

as dominant (OD) to ocean-maturing (oD) at linkage group D (as represented by 

Etr_2878). 

(i) Mendelian Inheritance (Etr_2878, Linkage Group D) 

Phenotype oDoD ODoD or ODOD 

Ocean-maturing 27 4 

River-maturing 28 33 

Proportion correctly classified:  0.65 
 

 
Table 8. Contingency table for 92 adult female Pacific Lamprey collected at-entry to the 

Klamath River.  Classical Mendelian inheritance model with the river-maturing 

allele as dominant (OB) to ocean-maturing (oB) at linkage group B (as represented 

by Etr_2791). 

(ii) Mendelian Inheritance (Etr_2791, Linkage Group B)  

Phenotype oBoB OBoB or OBOB 

Ocean-maturing 30 1 
River-maturing 31 30 

Proportion correctly classified:  0.65 
 

 
Table 9. Contingency table for 92 adult female Pacific Lamprey collected at-entry to the 

Klamath River.  A duplicate dominant epistasis model with ocean-maturing 

considered recessive and only produced when genes at linkage groups B 

(represented by Etr_2791) and D (represented by Etr_2878) are both homozygous 

recessive (oBoBoDoD).   

(iii) Duplicate Dominant Epistasis (Etr_2791, Linkage Group B and Etr_2878, 
Linkage Group D) 

Phenotype oBoBoDoD 
One river allele 

(OB or OD) 

Ocean-maturing 26 5 
River-maturing 11 50 

Proportion correctly classified:  0.83 
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Figure 7. Ocean- and river-maturing Pacific lamprey ecotypes genotypically categorized 

according to the duplicate dominant epistasis model exhibiting significant 

differences in egg mass.  Presence of a dominant allele (OB, OD) from either 

linkage group was considered to produce the river-maturing ecotypes. 
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DISCUSSION 

Run-timing 

I tested the hypothesis that ocean- and river-maturing Pacific lamprey ecotypes do 

not display differences in run-timing when they initiate freshwater migration.  Significant 

run-timing differences (t-test; p<0.001) were observed between ocean- and river-

maturing ecotypes.  The onset for freshwater migration for the ocean-maturing ecotype 

was predominantly the winter whereas the river-maturing ecotype entered during all 

seasons.  Egg mass means for February to April were as much as twice the means for 

May to August.  ANOVA and post-hoc tests showed that log of egg mass varied across 

months with two significantly differing monthly groups: (i) January to March (females 

with higher egg mass), and (ii) April to August (females with lower egg mass).  The 

group differentiation resulted from both ecotypes being collected concurrently during the 

group (i) period, exhibiting a large range of egg masses.  Whereas other than four ocean-

maturing outliers, only the river-maturing ecotype (i.e., small egg mass) was collected 

during the group (ii) period, extending five months past when the majority of ocean-

maturing fish stopped being available for collection.  Therefore, significant ecotype run-

timing differences between ocean- and river-maturing fish were identified.  However, 

unlike similar ecotypes characterized in a different anadromous species (e.g., premature 

and mature steelhead (Hess et al. 2016)), the two Pacific lamprey ecotypes do not exhibit 

the same level of temporal isolation in entry time but instead display overlapping entry 
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timing.  Therefore, freshwater entry date alone does not serve as a good phenotypic proxy 

of ecotype, as used in spring-run versus fall-run salmon or winter-run versus summer-run 

steelhead.  

Freshwater Migration Strategies 

Adult Klamath River Pacific lamprey appear to display at least two spawning 

migration strategies.  Ocean-maturing Pacific lamprey enter freshwater in a sexually 

mature state during the late-winter and appear to migrate directly to spawning habitat, 

spawning within weeks or months post river entry.  Whereas river-maturing fish appear 

to migrate either directly to or near spawning locations and hold in-river until the 

following spring while eggs undergo maturation.  With the onset of vitellogenesis, river-

maturing holdover fish from the previous year may potentially interbreed with ocean-

maturing fish from the current year migration and other river-maturing fish (Figure 8).  

The diversity in migration behavior of ocean- and river-maturing ecotypes contributes to 

increased polymorphism, creating a portfolio that may potentially buffer Pacific lamprey 

against environmental factors that may lead to their decline (Schindler et al. 2010). 

 

Figure 8. Hypothesized Klamath River Pacific lamprey ocean- and river-maturing 

freshwater migration strategies. 
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Trait Analysis 

It has been suggested that Pacific lamprey parallel Pacific salmon reproductive 

strategies (Clemens et al. 2013).  Typically, anadromous fish (e.g., salmonids) exhibit a 

positive body size to egg mass relationship (McGurk 2000; Hendry et al. 2001).  In 

contrast, I observed no significant correlation between body size (total length) and egg 

mass in ocean-maturing Pacific lamprey, excluding evaluation of the river-maturing 

ecotype body size-egg mass relationship due to a lack of maturation.  The lack of a body 

size-egg mass correlation is exemplified by one of the smallest fish (565 mm) with a 

relatively large egg mass (18 g), and the largest egg mass of the study (25.5 g) with an 

average body size (615 mm).  Pacific lamprey body size-egg mass disassociation appears 

unique as compared to Klamath River Chinook Salmon.  Analysis of Fall season 

“maturing-mature” chinook salmon egg masses collected at-entry to the Klamath River 

showed a significant body size-egg mass relationship, August to October 2009 (n=142) 

(r2 = 0.286, p < 0.001) and from August to October 2010 (n=104) (r2 = 0.236, p < 0.001) 

(Hearsey and Kinziger 2015), but “maturing-mature” Pacific lamprey (r2 = 0.026, p = 

0.384) in this study did not have a significant relationship (Figure 9).  Pacific lamprey 

appear to be unique from most fish with regards to the body size-egg mass relationship. 
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Figure 9. Total length and egg mass relationships for at-entry collections of fall-run 

Klamath River Chinook Salmon, August to October 2009 (open triangles, solid 

regression line) showed a significant relationship (r2 = 0.286, p < 0.001), as did 

August to October 2010 salmon (solid circles, dot-dash regression line) (r2 = 

0.236, p < 0.001), as compared to at-entry Klamath River ocean-maturing Pacific 

lamprey (open diamonds, dashed regression line) (r2 = 0.026, p = 0.384) 

displaying no significant correlation between total length and egg mass. 

 

The Pacific lamprey body size-egg mass disassociation observed may impact run-

timing.  Quinn et al. (2015) proposed a system of trade-offs to balance the risks and 

benefits of migration timing in salmonids.  Cumulative mortality risk in the ocean 

increases the longer a fish remains.  However, the longer time in the river prior to 

spawning increases the energetic demands of fasting and so the cumulative mortality risk 

in the river is lower the shorter the river holding time.  Quinn et al. (2015) found that by 
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leaving the ocean early, salmonids lose growth opportunities and associated reproductive 

benefits.  Specifically, for female salmonids, the reproductive benefits of a later ocean 

exit is increased total egg mass, positively related to body size.  This hypothesis does not 

appear applicable to Pacific lamprey however.  As discussed, if Pacific lamprey stay in 

the ocean and feed longer, thereby gaining a larger body size, they are not necessarily 

associated with reproductive benefits such as increased egg mass, like salmonids.  

Therefore, when Pacific lamprey weigh the benefits and costs of variable freshwater 

entry timing, the benefit of mortality avoidance in the river likely outweighs the cost of 

potential egg mass gains from a longer ocean residence time.  Pacific lamprey also 

possess significantly higher lipid reserves than salmonids (Whyte et al. 1993; Stewart et 

al. 1983), allowing for extended non-feeding time periods in freshwater without 

interfering with egg maturation.  Gonadal growth is based on mobilization of lipid and 

protein, which has been found in other lamprey species (e.g., anadromous Lampetra 

fluviatilis) to operate in parallel, both being slow before and rapid during sexual 

maturation (Larsen 1980). 

 Substantial egg mass variation is observed in female steelhead (winter-run versus 

summer-run) and salmonids (spring-run versus fall-run chinook), both species exhibiting 

substantial temporal differences in egg mass segregated by seasonal run times.  Initially, 

Pacific lamprey egg mass variability appeared high for both day and month, but this was 

later revealed to be caused by the concurrent migration and collection of both ecotypes 

with distinguishing large and small egg masses.  However, statistical analysis showed 
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Pacific lamprey egg mass variability to be relatively low as compared to Klamath River 

Chinook Salmon.  Analyzing raw data from Hearsey and Kinziger (2015), mean CV for 

at-entry Chinook Salmon during May to October, 2009 and 2010, were 0.64 and 0.66, 

respectively, as compared to 0.39 mean CV for lamprey during the 12-month study 

period.  By season, salmon also displayed higher egg mass variability as compared to 

lamprey with summer differences the most striking (CV=0.70 versus 0.21, respectively). 

Annual Variation in Abundance 

 Estimates of CPUE are important for future management decisions and to assess a 

fishery condition by comparison.  However, CPUE estimates for Pacific lamprey are very 

limited because large scale harvest typically only occurs in Native American subsistence 

fisheries, Pacific lamprey are not a priority for fisheries management, and no commercial 

fishery exists.  No CPUE estimates for Klamath River Pacific lamprey were found in the 

literature.  I determined a baseline CPUE estimate for my study period (1.2 fish/hour) 

with Spring (March to May) having the highest Pacific lamprey mean CPUE estimate 

(5.4 fish/hour).  Eighty-two miles south, the Wiyot Tribe conducts a subsistence fishery 

for Pacific lamprey on the Eel River.  A 2014 creel survey (Stillwater Sciences & 

USFWS 2016) of at-entry Eel River Pacific lamprey had similar findings to this study: (i) 

CPUE estimate for January to March 2014 was 0.60 fish/hour, (ii) the beginning of adult 

Pacific lamprey freshwater migration in both the Klamath River and Eel River is the 

month of February, and (iii) the mean at-entry total length was nearly identical for Pacific 

lamprey in both rivers, Eel River (619.4 mm) compared to the Klamath River (619.6 
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mm).  The Eel River may offer an opportunity for a future study to evaluate if the two 

Pacific lamprey ecotypes I revealed are present there. 

Maturity and Interdorsal Distance 

 Studies have identified a significant correlation between Pacific lamprey 

interdorsal distance and sexual maturation at collection points far upriver (>100 miles) 

(Clemens et al. 2009; Hardisty and Potter 1971).  The interdorsal space reduces as the 

fish shrinks during freshwater migration to the point that the two dorsal fins may touch 

(Clemens et al. 2009).  I found no correlation between interdorsal distance and egg mass 

measurements (r2=0.00003, p=0.957).  It is possible that collection at-entry to the river 

preempted interdorsal space shrinkage and any corresponding relationship to maturation.  

When comparing the results from Pacific lamprey studies, it is important to control for 

the within river collection location (e.g., mouth or upstream), because the freshwater 

migration distance at collection could affect body size, season of collection, and the 

likelihood of observing an overwintered or a current year spawner.  For example, no 

evidence for the ocean-maturing ecotype has been found outside the Klamath River 

(Clemens et al. 2013; Clemens et al. 2016).  However, ocean-maturing ecotypes may 

occur in other rivers besides the Klamath River, but they have not been found at typical 

collection points far inland (e.g., Willamette Falls (128 RM); Bonneville Dam (145 RM)) 

possibly due to the onset of vitellogenesis, resulting in spawning prior to potential 

collection and genotyping.  Also, my analysis indicates that ocean-maturing individuals 
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are more common during the winter, thus winter collection increases the chances of 

detecting this ecotype. 

Neutral Genetic Structure 

A goal of this study was to analyze Pacific lamprey SNP loci for evidence of 

neutral patterns of genetic differentiation between ocean- and river-maturing ecotypes 

and temporal genetic differentiation (e.g., between months or years).  Both Bayesian 

cluster analysis and K-means clustering analysis failed to resolve evidence for any 

genetic groups in the data that may have resulted from inter- and intra-annual differences 

in run-timing or differences between the ocean- and river-maturing ecotypes.  The degree 

that neutral genetic variation can become decoupled with adaptive genetic variation is 

highly influenced by the level of gene flow maintained across a species range.  The gene 

flow maintained across the Pacific lamprey range is likely quite high as compared to 

anadromous salmonids (Spice et al. 2012).  It is rather surprising that in general, most 

genetic studies have estimated high levels of neutral gene flow in Pacific lamprey 

(Goodman et al. 2008; Spice et al. 2012; Hess et al. 2013) despite evidence of strong 

selective mechanisms acting on adaptive genetic variation (Hess et al. 2013).  However, 

Clemens et al. (2017) suggests that putatively neutral variation based on microsatellite 

markers, can be divergent within the same river (e.g., Willamette River, Oregon) between 

years and even between groups of small and large body sizes within the same year.  The 

ways in which neutral and adaptive variation correlate with traits and behaviors of Pacific 
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lamprey appear to be complex and require further study of a range of temporal and 

geographical samples to fully understand (Hess et al. 2016). 

Genotype-Phenotype Associations 

Another goal of this study was to test if phenotype-genotype associations exist 

between ocean- and river-maturing Pacific lamprey ecotypes and adaptive genetic loci.  

Both GLM and MLM analysis identified adaptive SNP loci at linkage groups B and D 

with significant associations to egg mass.  Individuals that were homozygous for the 

ocean-maturing allele at both linkage groups almost always had an egg mass greater than 

12.5 g at the onset of their freshwater migration.  In contrast individuals that had at least 

one river-maturing allele in linkage group B or D predominately had an egg mass less 

than 12.5 g upon river entry (Figure 5).  The strong inflection point at 12.5 g egg mass 

was therefore identified as a reasonable separation point for designating ocean- and river-

maturing ecotypes.  Also, examination of genotypes at the B and D linkage groups shows 

strong distinction in the degree of genetic diversity in the ocean- and river-maturing 

genotypes.  The ocean-maturing individuals are almost exclusively homozygous at both 

linkage groups, but river-maturing individuals exhibit a high degree of polymorphism in 

their genotypes. 

The duplicate dominant epistasis model provided the best fit for explaining the 

inheritance of the ocean- and river-maturing ecotypes, with an assignment accuracy of 

83% (Table 9).  Under this model the two linkage groups control the trait and only one 
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dominant allele in either the B (OB )or D linkage group (OD) is necessary to express the 

river-maturing ecotype, whereas the ocean-maturing ecotype was expressed when genes 

at both linkage groups were homozygous recessive (oBoBoDoD).  The model hypothesizes 

that: (i) a cross between true breeding ocean-maturing (new migrants; oBoBoDoD) and 

river-maturing (OBOBODOD) individuals would produce river-maturing genotypes only in 

generation F1, and (ii) intermating of F1 lamprey produces river- and ocean-maturing 

fish in a 15:1 ratio (assuming 100% penetrance).   

Individuals assigned inaccurately with the duplicate dominant inheritance model 

(16/92) likely resulted from using continuous variation in egg mass (1.6 – 25.5 g) to 

make a binary diagnosis into ocean- and river-maturing ecotypes.  The majority (11/16) 

of the mis-assigned fish had an ocean-maturing genotype but with a river-maturing 

phenotype (egg mass < 12.5 g).  Most of these individuals had intermediate egg masses 

ranging from 8.5 – 12.5 g.  These individuals may potentially express their ocean-

maturing genotype by continuing egg maturation during migration and spawn in their 

current migratory year.  Thus, my field collections may have intercepted individuals too 

early in gonadal development to allow for perfect diagnosis of the ecotypes.  Evidence 

for the duplicate dominant inheritance model may be improved if individuals could be 

captured at the defining stage for each ecotype utilizing radiotelemetry tracking. 

This study contributes to growing field illustrating the ubiquitous nature of gene 

interactions in natural systems and the importance of considering epistatic effects when 

researching the genetic basis of complex traits (Phillips 2008).  Epistasis may hinder 
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efforts to identify the genetic basis of traits owing to the large number of interactions that 

must be tested and the potential for a genes effects to be obscured by interactions with 

other loci (Phillips 2008; Yang 2009).  Genetic markers may show little effect when 

considered individually but strong effect when considered in combination with other loci 

(Cordell 2002).  Interestingly, the duplicate dominant epistasis model that I hypothesized 

to explain inheritance of ocean- and river-maturing ecotypes is a well-known example of 

epistasis (Miko 2008). 

Geography, run-timing, adult body size, and now female maturation (this study) 

were found to be correlated with adaptive genetic variation in Pacific lamprey (Hess et al. 

2013, 2014, 2015).  The GT-seq SNP panel used in this analysis was designed to over-

represent four groups of linked adaptive loci (Groups A, B, C, and D) which were 

discovered by Hess et al. (2013).  The locus groups B and D, which this study found 

significantly associated with ocean- and river-maturity traits in females, have not been 

possible to test in a similar way in other studies.  However, association testing conducted 

with adult females in the Willamette River have at least corroborated a correlation of loci 

on group D with female Pacific lamprey maturation (Hess et al., unpublished).  Further, 

linkage group A, the only group that was identified as significantly associated with body 

size (TL) in this study, has also been corroborated in other association studies that have 

shown a strong association of group A loci with body size traits (Hess et al. 2014, 2015).  

Aside from maturity and body size, these four adaptive groups of linked loci appear to be 

associated with other traits and the strength of these associations may be variable across 
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the species range.  Future studies should test whether ocean- and river-maturing Pacific 

lamprey migration is associated with the same groups of linked loci identified here across 

multiple populations.  It may also be important to integrate genomics, phenomics, and 

epigenomics, among other tools to evaluate the role of selection as a contributing cause 

of Pacific lamprey phenotypic diversification. 



56 

 

  

CONCLUSIONS 

 The spawning migration differences between ecotypes identified herein has 

implications for conservation and management.  Other studies have found that Pacific 

lamprey do not exhibit strong natal homing (e.g., local adaptation), nor are they truly 

panmictic, which has caused difficulty in defining suitable management units (Spice et al. 

2012).  The river-maturing ecotype identified in this study carries standing genetic 

variation capable of producing both ecotypes (e.g., both dominant and recessive alleles), 

while the ocean-maturing ecotype carries a single allele (e.g., recessive only).  An 

ecological application of these molecular findings is that when assessing stream 

restoration projects for lamprey, the river-maturing ecotypes could perhaps be prioritized 

as they contain the genetic diversity capable of producing both ecotypes (i.e., 

heterozygosity), whereas the ocean-maturing ecotypes do not. 

Clemens et al. (2016) concluded the relationship between life-history diversity 

and genetic stock structure of Klamath River Pacific lamprey is not known, and only the 

Klamath River has shown evidence of an ocean-maturing Pacific lamprey phenotype 

collected in late vitellogenic stages at-entry (Clemens et al. 2013).  Hess et al. (2013) was 

unable to conclude that Pacific lamprey display multiple run-timing life history strategies 

in stream habitats, due to a lack of phenotypic information.  In this study, I have 

identified and revealed the genetic basis of ocean- and river-maturing ecotypes.  I 

recommend distinguishing the river-maturing and ocean-maturing ecotypes of Pacific 

lamprey by adopting the names ke’ween (lamprey “eel”) and tewol (ocean), respectively, 
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using terms from the Yurok language, in recognition of the importance of Pacific lamprey 

to Pacific Northwest fishing tribes. 
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APPENDIX 

Table S 1. Locus, test for conformance to Hardy-Weinberg proportions (HWE p-value), 

observed heterozygosity (Ho), expected heterozygosity (He), and inbreeding 

coefficient (Gis) at 148 SNP loci used to examine temporal population structure in 

216 adult Pacific lamprey collected at-entry to the Klamath River. 

Locus HWE p-value Ho Hs Gis 

Etr_1104 0.0072 0.4612 0.4987 0.0752 

Etr_1321 0.7921 0.4563 0.4293 -0.0629 

Etr_140 0.0199 0.4466 0.4615 0.0323 

Etr_2499 0.0018 0.3981 0.4401 0.0955 

Etr_3189 0.0003 0.301 0.3255 0.0753 

Etr_2226 0.0003 0.3961 0.4519 0.1235 

Etr_3601 0.8002 0.4638 0.4455 -0.0411 

Etr_4853 0.0011 0.3575 0.3866 0.0754 

Etr_172 0.0151 0.4567 0.4902 0.0682 

Etr_346 0.0005 0.2788 0.2994 0.0687 

Etr_4596 0.0406 0.476 0.4971 0.0425 

Etr_518 0.0694 0.4231 0.4233 0.0005 

Etr_1569 0.3884 0.5095 0.4738 -0.0754 

Etr_1894 0.0001 0.0571 0.0646 0.1157 

Etr_231 0.1297 0.4905 0.4979 0.015 

Etr_4215 0.1566 0.4667 0.4681 0.003 

Etr_4670 0.6403 0.4048 0.3806 -0.0636 

Etr_905 0.4513 0.5143 0.4847 -0.061 

Etr_1060 0.0039 0.3365 0.3795 0.1134 

Etr_1359 0.7975 0.4123 0.41 -0.0057 

Etr_1696 0.0001 0.2891 0.4182 0.3088 

Etr_2517 0.5877 0.5166 0.5007 -0.0316 

Etr_3960 0.0002 0.2844 0.3365 0.1549 

Etr_1068 0.0094 0.434 0.4926 0.119 

Etr_1667 0.0311 0.3349 0.3588 0.0667 

Etr_1762 0.4363 0.5189 0.4967 -0.0447 

Etr_190 0.583 0.4292 0.4128 -0.0398 

Etr_234 0.1419 0.4292 0.4385 0.0211 



67 

 

  

Locus HWE p-value Ho Hs Gis 

Etr_4037 0.5928 0.3066 0.2857 -0.0732 

Etr_4544 0.711 0.467 0.4624 -0.01 

Etr_5654 0.0001 0.3491 0.4837 0.2783 

Etr_64 0.5072 0.5047 0.489 -0.0321 

Etr_668 0.0574 0.3726 0.3919 0.0492 

Etr_1163 0.0471 0.385 0.4176 0.0782 

Etr_1238 0.1093 0.4648 0.4926 0.0564 

Etr_1341 0.2515 0.3803 0.3817 0.0037 

Etr_1349 0.3059 0.4883 0.4906 0.0047 

Etr_1556 0.0097 0.2347 0.256 0.083 

Etr_1561 0.0281 0.3521 0.3863 0.0886 

Etr_1848 0.0001 0.2629 0.3653 0.2803 

Etr_225 0.1342 0.3944 0.4097 0.0375 

Etr_2272 0.1672 0.3568 0.3651 0.0227 

Etr_3292 0.0037 0.2629 0.2999 0.1234 

Etr_3330 0.0187 0.4319 0.4862 0.1116 

Etr_3885 0.6193 0.3709 0.3626 -0.0229 

Etr_5043 0.3306 0.3662 0.3394 -0.079 

Etr_810 0.4411 0.4977 0.4788 -0.0395 

Etr_1004 0.0001 0.2196 0.3078 0.2865 

Etr_181 0.034 0.3972 0.4397 0.0967 

Etr_1834 0.0001 0.0047 0.0047 0 

Etr_223 0.2744 0.3925 0.3961 0.009 

Etr_2409 0.0086 0.2617 0.2988 0.1244 

Etr_2642 0.3601 0.5047 0.4853 -0.0399 

Etr_2765 0.5242 0.3318 0.319 -0.04 

Etr_292 0.6219 0.472 0.4704 -0.0033 

Etr_3502 0.445 0.4953 0.478 -0.0363 

Etr_4000 0.3672 0.5093 0.4906 -0.0382 

Etr_4414 0.5021 0.4065 0.3939 -0.0321 

Etr_6076 0.0352 0.4486 0.4985 0.1001 

Etr_7142 0.0931 0.4439 0.475 0.0654 

Etr_7382 0.2229 0.4112 0.4203 0.0215 

Etr_7974 0.0008 0.0561 0.0634 0.1162 

Etr_814 0.5087 0.3692 0.3564 -0.0358 
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Locus HWE p-value Ho Hs Gis 

Etr_824 0.5224 0.4252 0.4145 -0.026 

Etr_8281 0.0289 0.3785 0.4222 0.1035 

Etr_84 0.0458 0.5654 0.5007 -0.1292 

Etr_8960 0.003 0.3925 0.4694 0.1638 

Etr_906 0.272 0.4112 0.4164 0.0125 

Etr_1007 0.2468 0.4186 0.3948 -0.0602 

Etr_1551 0.1221 0.3953 0.4247 0.0692 

Etr_1773 0.182 0.2233 0.206 -0.084 

Etr_1843 0.0431 0.3814 0.4266 0.1059 

Etr_2066 0.2039 0.3302 0.3451 0.043 

Etr_2099 0.2052 0.4372 0.4582 0.0458 

Etr_212 0.0164 0.4233 0.4888 0.1341 

Etr_2414 0.1663 0.4047 0.3746 -0.0801 

Etr_2451 0.2269 0.3116 0.3236 0.0369 

Etr_2971 0.2342 0.4 0.4153 0.0369 

Etr_3038 0.4976 0.4791 0.474 -0.0106 

Etr_3128 0.4101 0.4744 0.4772 0.0059 

Etr_3234 0.5528 0.2698 0.2669 -0.0108 

Etr_3253 0.3004 0.3256 0.3093 -0.0525 

Etr_3350 0.0156 0.3256 0.3772 0.1367 

Etr_3939 0.037 0.3349 0.3771 0.112 

Etr_4093 0.985 0.0186 0.0185 -0.0071 

Etr_4173 0.3028 0.3674 0.3502 -0.0493 

Etr_4390 0.2055 0.4 0.4191 0.0457 

Etr_4716 0.3943 0.3581 0.3603 0.0059 

Etr_4750 0.532 0.4512 0.448 -0.007 

Etr_4965 0.0787 0.2651 0.2887 0.0818 

Etr_5020 0.126 0.4326 0.397 -0.0897 

Etr_5193 0.4313 0.4419 0.4318 -0.0234 

Etr_5197 0.3946 0.507 0.4938 -0.0267 

Etr_5581 0.1248 0.3442 0.315 -0.0925 

Etr_5993 0.0515 0.4093 0.4555 0.1014 

Etr_766 0.4295 0.5116 0.501 -0.0211 

Etr_7918 0.4248 0.4744 0.4634 -0.0238 

Etr_9189 0.4751 0.2605 0.2539 -0.0257 
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Locus HWE p-value Ho Hs Gis 

Etr_963 0.2246 0.3349 0.3477 0.0368 

Etr_1187 0.2189 0.4306 0.4042 -0.0653 

Etr_1548 0.4743 0.4722 0.4784 0.013 

Etr_1589 0.1559 0.3981 0.4325 0.0794 

Etr_1684 0.0446 0.2778 0.3197 0.1312 

Etr_2016 0.9358 0.037 0.0364 -0.0165 

Etr_2068 0.3666 0.2778 0.2658 -0.0449 

Etr_2193 0.5235 0.3704 0.3664 -0.0108 

Etr_2304 0.3466 0.3843 0.3688 -0.042 

Etr_2334 0.3861 0.3009 0.3112 0.0329 

Etr_2512 0.5312 0.4722 0.4743 0.0044 

Etr_2858 0.1645 0.2315 0.253 0.0852 

Etr_3007 0.5765 0.2454 0.2431 -0.0094 

Etr_3037 0.5326 0.1065 0.101 -0.0539 

Etr_3107 0.2881 0.4074 0.429 0.0503 

Etr_3145 0.5491 0.25 0.2464 -0.0146 

Etr_3169 0.2966 0.4769 0.4557 -0.0464 

Etr_3403 0.5556 0.2315 0.233 0.0066 

Etr_4194 0.1602 0.3889 0.4218 0.078 

Etr_4288 0.2693 0.3704 0.3516 -0.0535 

Etr_4504 0.3634 0.2824 0.2936 0.0383 

Etr_4694 0.4642 0.4398 0.447 0.0161 

Etr_480 0.9631 0.0278 0.0275 -0.0118 

Etr_4845 0.1541 0.1898 0.2088 0.0908 

Etr_4859 0.5203 0.5 0.4969 -0.0063 

Etr_49 0.2411 0.4213 0.4471 0.0577 

Etr_5112 0.224 0.4398 0.4687 0.0617 

Etr_5540 0.028 0.2454 0.2157 -0.1376 

Etr_5626 0.2101 0.5278 0.4959 -0.0643 

Etr_5711 0.8327 0.0602 0.0585 -0.0287 

Etr_5762 0.5105 0.4537 0.4572 0.0076 

Etr_6179 0.4373 0.3472 0.3386 -0.0254 

Etr_6229 0.072 0.5139 0.4637 -0.1084 

Etr_6318 0.9983 0.0093 0.0092 -0.0023 

Etr_6436 0.0062 0.3565 0.3053 -0.1677 
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Locus HWE p-value Ho Hs Gis 

Etr_6440 0.5591 0.287 0.2846 -0.0087 

Etr_687 0.5736 0.3981 0.398 -0.0004 

Etr_705 0.4187 0.3796 0.3894 0.0252 

Etr_7262 0.9352 0.037 0.0364 -0.0165 

Etr_7358 0.0368 0.4213 0.485 0.1313 

Etr_752 0.516 0.412 0.4082 -0.0093 

Etr_785 0.1169 0.4583 0.4198 -0.0919 

Etr_7872 0.1642 0.5 0.4649 -0.0754 

Etr_8196 0.5236 0.3889 0.385 -0.0102 

Etr_832 0.5413 0.4028 0.4042 0.0036 

Etr_833 0.2296 0.5 0.4721 -0.0592 

Etr_8780 0.4645 0.4306 0.4375 0.0158 

Etr_899 0.4225 0.4861 0.4973 0.0225 

Etr_930 0.8312 0.0602 0.0585 -0.0287 

Etr_972 0.5604 0.3657 0.364 -0.0048 
 

 

Table S 2. The following metrics were recorded for each adult Pacific lamprey: entry date 

(month/year), sex, body mass (0.1 g), total length (TL) (1 mm), girth just posterior 

of the rearmost breathing hole (1 mm), interdorsal distance (ID Space) (1 mm) 

defined as the distance between the posterior most ray insertion of the first dorsal 

to the insertion of the anterior-most ray on the second dorsal, egg mass (0.1 g) for 

females consisting of the total weight of all eggs without the skein, and 

gonadosomatic index (GSI) defined as the ratio between egg mass and somatic 

mass, with somatic mass calculated as body mass minus gonad mass. 

Entry Date Sex Body Mass TL Girth ID Space Egg Mass GSI 

6/16 M 387.7 612 121 31   

6/16 M 451.8 641 122 26   

6/16 F 458.9 658 125 39 6.9 1.5 

6/16 M 449.4 637 127 37   

6/16 M 400.8 626 121 40   

6/16 M 321.7 578 107 36   

6/16 M 295.6 580 110 27   

6/16 F 362.9 627 110 33 4.4 1.2 

6/16 M 340.2 576 113 10   



71 

 

  

Entry Date Sex Body Mass TL Girth ID Space Egg Mass GSI 

6/16 F 486.6 620 130 25 4.8 1 

6/16 F 339.3 578 115 30 4.3 1.3 

6/16 F 413.2 622 130 25 4.7 1.2 

6/16 F 452.4 679 127 33 8.6 1.9 

6/16 M 447.3 626 128 33   

6/16 F 466.5 660 132 35 5.4 1.2 

6/16 M 466.3 655 130 40   

6/16 M 397.9 625 125 32   

6/16 F 497.9 640 133 33 10.4 2.1 

6/16 F 416 634 124 25 3.6 0.9 

6/16 M 398.1 600 127 26   

6/16 F 429 645 128 27 5.7 1.4 

7/16 F 385.4 620 122  4.6 1.2 

7/16 M 330 615 116    

7/16 F 312.9 621 113  5 1.6 

7/16 M 305.4 590 110 40   

7/16 M 432.2 646 122 39   

7/16 M 277.8 564 109 30   

8/16 F 468.1 642 121 37 10.4 2.3 

8/16 F 452.9 589 123 35 13.9 3.2 

8/16 M 395.6 600 114 31   

8/16 M 349.1 562 111 20   

8/16 M 481.6 655 126 31   

8/16 M 399 624 121 28   

10/16 M 327.5 601 104 47   

11/16 M 440 588 126 25   

1/17 M 483.2 654 125 28   

1/17 F 527.9 659 132 29 11.1 2.2 

1/17 M 464.8 636 125 26   

1/17 F 317.5 566 111 30 7.2 2.3 

1/17 F 436.4 632 124 29 18.6 4.5 

2/17 M 519.9 672 128 35   

2/17 F 522 687 123 37 20.6 4.1 

2/17 F 402 609 118 21 19.2 5 

2/17 M 313.4 595 103 27   

2/17 F 365.5 596 113 22 17.2 4.9 

2/17 F 420 653 110 42 13.8 3.4 
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Entry Date Sex Body Mass TL Girth ID Space Egg Mass GSI 

2/17 M 414 625 120 29   

2/17 F 461.6 655 122 28 13.6 3 

2/17 F 394.4 608 122 36 7.8 2 

2/17 F 400.9 580 108 28 17.7 4.6 

2/17 M 506.3 664 133 36   

2/17 F 533.9 669 127 27 18.5 3.6 

2/17 M 599.6 726 138 36   

2/17 M 495.4 645 133 22   

2/17 F 508.6 647 127 20 15.6 3.2 

2/17 M 477.6 677 122 36   

2/17 F 525.3 648 130 45 8.5 1.6 

2/17 M 504.1 646 131 37   

2/17 F 400.7 610 122 30 11.4 2.9 

2/17 M 540.3 649 133 30   

2/17 F 335.9 565 111 26 18 5.7 

2/17 F 403.2 623 116 18 12.8 3.3 

2/17 F 330.3 589 105 22 9.8 3.1 

2/17 F 546 691 126 36 17.4 3.3 

2/17 M 443.4 627 122 30   

2/17 M 429.9 640 120 24   

2/17 M 350.3 577 117 23   

2/17 F 521.7 653 129 26 13.5 2.7 

2/17 M 397.3 651 115 33   

2/17 M 390.1 616 114 30   

2/17 F 372 597 114 18 15 4.2 

2/17 F 442.8 647 119 30 17.5 4.1 

2/17 M 467.5 674 122 25   

2/17 M 443.1 613 122 24   

2/17 M 427.9 618 121 15   

2/17 F 584.4 681 131 39 13.3 2.3 

2/17 M 339.3 594 113 28   

2/17 M 468.6 637 131 26   

3/17 M 380.3 610 116 30   

3/17 F 447.6 636 120 20 12.3 2.8 

3/17 M 517 652 124 31   

3/17 F 568.9 686 132 41 7.4 1.3 

3/17 M 437.8 614 125 18   
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Entry Date Sex Body Mass TL Girth ID Space Egg Mass GSI 

3/17 M 368.5 584 112 32   

3/17 F 542.4 672 134 32 9 1.7 

3/17 F 523.1 642 128 31 12.9 2.5 

3/17 F 425.2 613 120 25 13.9 3.4 

3/17 M 441 604 122 34   

3/17 M 532.8 650 129 45   

3/17 F 409.2 622 117 36 5.7 1.4 

3/17 F 635.6 665 141 34 9.5 1.5 

3/17 F 466.1 643 121 37 15.5 3.4 

3/17 M 617.7 672 141 35   

3/17 M 462 630 120 43   

3/17 F 286.1 553 100 26 5.7 2 

3/17 M 428.1 648 125 45   

3/17 F 336.5 566 107 28 7.7 2.3 

3/17 M 261.2 542 97 31   

3/17 M 195.3 531 82 26   

3/17 M 333.2 630 111 36   

3/17 M 465.5 606 125 35   

3/17 F 460.7 629 117 25 11.1 2.5 

3/17 M 411.6 616 112 23   

3/17 M 285.6 566 105 24   

3/17 M 289.7 592 99 31   

3/17 F 364.7 573 117 28 9.4 2.7 

3/17 M 321.2 588 111 30   

3/17 F 293.8 572 105 23 8.2 2.9 

3/17 F 401.1 686 115 34 22.8 6 

3/17 M 299.6 599 104 32   

3/17 M 475.2 655 126 32   

3/17 F 549.7 671 124 25 18.1 3.4 

3/17 F 371.5 592 115 34 7.6 2.1 

3/17 F 356 612 109 33 12 3.5 

3/17 M 313.5 590 103 22   

3/17 F 507.8 626 134 28 14.1 2.9 

3/17 M 268.2 553 105 23   

3/17 M 458.4 644 118 37   

3/17 F 453.4 635 122 29 23 5.3 

3/17 M 452 643 124 30   
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Entry Date Sex Body Mass TL Girth ID Space Egg Mass GSI 

3/17 F 394.7 595 117 34 7.2 1.9 

3/17 M 323.8 589 103 40   

3/17 M 431.8 644 118 38   

3/17 M 265.3 564 98 35   

3/17 M 389.2 627 110 31   

3/17 F 468.6 662 117 28 5.8 1.3 

3/17 F 557.4 697 132 38 10.5 1.9 

3/17 F 478.8 654 123 35 16.8 3.6 

3/17 F 468.5 655 124 38 16.7 3.7 

3/17 F 445.1 614 117 28 8.4 1.9 

3/17 M 404.6 610 116 33   

3/17 M 327.7 565 105 35   

3/17 M 415.5 629 122 31   

3/17 M 344 580 109 22   

3/17 F 452 621 115 22 21.1 4.9 

3/17 F 415.9 615 123 35 25.5 6.5 

3/17 M 351.3 616 111 27   

3/17 F 394.9 616 112 30 9 2.3 

4/17 M 414.9 607 118 22   

4/17 F 467.4 617 130 30 4.5 1 

4/17 M 505.1 664 131 20   

4/17 M 382.1 615 116 24   

4/17 M 504.5 672 131 35   

4/17 F 495.4 646 132 36 13.8 2.9 

4/17 M 346.6 584 110 34   

4/17 F 631.3 710 139 39 1.6 0.3 

4/17 M 377.2 623 114 35   

4/17 F 366.9 600 112 32 8.3 2.3 

4/17 M 462.3 640 122 38   

4/17 F 509.4 695 123 39 8.6 1.7 

4/17 M 405.2 606 117 34   

4/17 M 463.3 636 114 28   

4/17 M 413.1 639 117 35   

4/17 M 380.6 611 113 30   

4/17 M 400.3 587 117 38   

4/17 F 435.8 622 120 37 4.3 1 

4/17 F 366.1 609 104 30 13.7 3.9 
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Entry Date Sex Body Mass TL Girth ID Space Egg Mass GSI 

4/17 M 391.2 603 111 36   

4/17 F 426.5 657 110 29 22.7 5.6 

4/17 M 289 549 108 18   

4/17 M 386.6 610 115 27   

4/17 M 323.4 571 111 34   

4/17 M 277.1 544 106 28   

4/17 M 416.3 605 119 24   

4/17 F 318.8 553 110 19 9.5 3.1 

4/17 M 316 567 105 31   

4/17 M 402.3 646 111 36   

4/17 M 337.6 559 116 22   

4/17 M 302.5 560 104 25   

4/17 M 330.9 574 117 40   

4/17 M 446.3 643 118 25   

4/17 M 474.5 629 128 20   

4/17 M 311.3 558 102 19   

4/17 M 420.9 614 122 20   

4/17 M 340.9 592 107 23   

4/17 M 378.4 601 116 37   

4/17 F 370.9 602 117 24 4.6 1.3 

4/17 F 569.1 671 133 35 6.6 1.2 

4/17 F 375 602 115 30 10.4 2.9 

4/17 M 407.4 650 116 36   

4/17 M 278 563 102 24   

4/17 M 484 655 126 35   

4/17 M 323.9 568 107 23   

4/17 F 346.5 576 113 26 5.9 1.7 

4/17 F 406.9 623 112 24 7.4 1.9 

4/17 M 281.7 560 102 31   

4/17 M 468 649 127 22   

4/17 F 460.9 658 122 25 4.5 1 

5/17 F 492.4 640 128 35 5.7 1.2 

5/17 F 340.1 586 110 30 2.9 0.9 

5/17 M 400 579 118 35   

5/17 F 481.9 653 128 36 5.5 1.2 

5/17 F 351.9 602 112 29 7.3 2.1 

5/17 F 437.6 630 121 33 4.2 1 
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Entry Date Sex Body Mass TL Girth ID Space Egg Mass GSI 

5/17 F 398.3 645 113 28 3.9 1 

5/17 M 405.6 626 114 28   

5/17 M 353.8 644 110 34   

5/17 F 445 650 124 18 22.6 5.4 

5/17 M 327.9 589 104 35   

5/17 M 264.1 571 94 20   

5/17 F 254.2 560 91 39 5.3 2.1 

5/17 M 364.6 614 109 36   

5/17 M 295.4 566 110 29   

5/17 F 496.5 653 122 30 4.6 0.9 

5/17 M 317.6 590 105 32   

5/17 M 330.6 594 108 35   

5/17 M 313.4 603 104 25   

5/17 F 335 618 111 20 8.1 2.5 

5/17 M 368.5 623 108 27   

5/17 M 262.1 571 109 24   

5/17 F 378.9 642 114 20 4.6 1.2 

5/17 F 397.4 645 109 22 7.6 2 

5/17 M 366 599 113 35   

5/17 F 453.9 645 121 26 4.7 1.1 

5/17 M 446.7 656 115 41   

5/17 F 447.4 673 114 41 10 2.3 

5/17 M 353.3 628 109 34   

5/17 M 404.4 641 114 36   

5/17 M 230.6 555 93 18   

 


