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ABSTRACT 

 LATE CLASSIC AGRONOMY ON A VARIABLE LANDSCAPE: EXPLORING 

ANCIENT MAYA FARMING THROUGH THE DESIGN OF GEOTECHNICAL 

FEATURES AND THE DISTRIBUTION OF EDAPHIC VARIABLES 

 

Byron Smith 

 

It has been well documented that the Classic Maya (250 CE to 900 CE) utilized a 

variety of agricultural techniques to stimulate their subsistence economy. As a result of 

the variable topography of the region and soil erosion caused by deforestation, the Classic 

Maya’s primary method of agricultural expansion consisted of landscape modifications 

through soil distribution (Turner and Harrison 1983; Beach et al.2006). The terracing of 

hill slopes is one such modification that would have allowed the ability to maximize 

agricultural production and limit soil erosion through the creation of farming platforms 

on hillside slopes. Past research near the ceremonial center of Dos Hombres in 

northwestern Belize has pointed to similarities in the design of terrace support structures 

and suggest ranges of influence within the region (Beach et al. 2006). The research 

presented here is designed to expand on those tests between household groups at varied 

spatial and economic ranges to Dos Hombres by analyzing patterns within the design of 

terrace walls. Additionally, maintaining soil quality and quantity would have required an 

extensive labor commitment in order to preserve the viability of the land. By analyzing 

the effects of land use and management in addition to ranges of influence, this research 
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expects to draw distinctions between household groups while indicating correlations 

between economy and commitment. The manner in which this will be done includes: (1) 

excavation to identify patterns in design and chronology, and; (2) soil analysis to measure 

the soils mineral content and use. By measuring ranges of human influence on the 

environment this research seeks to inform conversations involving site planning and 

corridors of power.  

  



 
 

iv 

 

ACKNOWLEDGEMENTS 

It is impossible to express gratitude to all who have aided me throughout this 

process. So, to those whom I fail to mention, please forgive me for this necessity.  

To start, I would like to express a great deal of appreciation to the members of my 

thesis committee. Their wisdoms, support, and guidance provided me the motivation to 

complete this journey, especially at times when the end was less than visible to me. Dr. 

Marisol Cortes-Rincon served as the chair of my committee, and throughout my graduate 

experience has provided a wealth of opportunities that have allowed me to grow as a 

student and archaeologist. I do not feel that I can say enough about her willingness to 

help others grow and achieve their goals, so to that, I will just say thank you. I am also 

grateful to Dr. Justine Shaw and her willingness to accept the role as a member of my 

committee. Her expertise and words of encouragement meant a great deal to me during 

several of the more difficult periods of planning and writing. Last, but not least I would 

like to extend my gratitude to Dr. David S. Baston, who welcomed me into the Core 

Research Facility of the College of Natural Resources and Sciences at Humboldt State 

University and allowed me conduct testing that was fundamental to this project. 

I would also like to acknowledge Dr. Fred Valdez Jr. for his knowledge, 

assistance and acceptance into the Programme for Belize Archaeology Project’s field 

camp (the R.E.W. Adams Research Facility) which provides a wonderful environment for 

students, researchers, and volunteers to conduct original research in the region. One way 

that the positive environment is maintained within the field camp is through the 



 
 

v 

 

accommodating support of the camp’s researchers and staff members who were always 

willing to hear my ideas and provide guidance. To that note I am grateful for the 

experience of learning under Dr. Richard Terry within the field camp’s laboratory during 

the summer of 2016. 

The Programme for Belize should also be noted due to their efforts in the 

preservation and conservation of the Rio Bravo Conservation and Management Area. 

That includes those who are charged with managing and staffing the area and who are 

responsible for making the jungles of northwestern Belize a hospitable place. I would be 

remiss if I did not also thank those members of the local community who offered their 

time and energy to aid in the progression of this project.  

During the field season of 2016, the staff, students, and volunteers of the Dos 

Hombres to Gran Cacao Archaeology Project committed a great deal of energy, blood, 

sweat (and certainly some tears) to helping me collect the necessary data for this project, 

and to them I am thankful. That includes: Walter Tovar Saldana, Tyler Padian, Francisco 

Lopez, Anne Blackmon, and Isadora Sharon. That gratitude is also extended to those who 

aided in the testing of soils for this project within the Archaeology Research Laboratory, 

the Biological Anthropology Research Center, and the Core Research Facility of 

Humboldt State University. That includes: Aleck Tan, Saige Heuer, Alexander New, 

Andres Alcocer, Julia Malinowski, and Kelly Hollreiser.  

Finally, I would like to show appreciation to my family, who have stood behind 

me every step of the way. Their support was often a pleasant surprise, starting early on 

when I informed them of my desires to relocate far from home and pursue my goals, as 



 
 

vi 

 

well as throughout the process. Their support has always been a significant motivation to 

me.  

And to my wife, my constant companion, who has stood by my side as I 

navigated through the difficulties of academia, as well as the jungles of Belize. There is 

nothing that I can say that expresses my appreciation. I can only hope that my gratitude is 

expressed through my actions, and witnessed through the smile that lightens your face. 

This thesis is dedicated to: 

My mother Mary,  

Who has been my inspiration for as long as I can remember. 

And to Isabella, 

Who has been a wonderful friend and companion. 

  



 
 

vii 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... ii 

ACKNOWLEDGEMENTS ........................................................................................................ iv 

LIST OF TABLES ........................................................................................................................ix 

LIST OF FIGURES ...................................................................................................................... x 

INTRODUCTION......................................................................................................................... 1 

THE PHYSICAL ENVIRONMENT OF THE THREE RIVES REGION ........................... 9 

Geology of the Maya Area .............................................................................................12 

The formation of the Yucatan Platform ......................................................................12 

Tectonic activity in the region ....................................................................................15 

Moisture transport in the region .................................................................................18 

Pedogenesis in the Three Rivers Region ........................................................................20 

Vegetation in the Three Rivers Region ..........................................................................24 

THE ANCIENT MAYA: CULTURAL LANDSCAPE ........................................................ 31 

Chronology .....................................................................................................................33 

The Preclassic period (2,000 BCE– 250 CE) .............................................................37 

The Classic period (250 – 900 CE) ............................................................................41 

FARMING AS A SOURCE OF POLITICAL ECONOMY ................................................. 49 

Factors in Agricultural Production in the Central Lowlands .........................................57 

Consumption and Cultivation .....................................................................................58 

Late Classic Geotechnical Construction in the Three Rivers Region ........................62 

RESEARCH METHODOLOGY .............................................................................................. 72 

Field Methods .................................................................................................................77 

Survey .........................................................................................................................78 

Excavation ..................................................................................................................79 

Soil sampling ..............................................................................................................79 

Laboratory Methods .......................................................................................................81 

NDVI ..........................................................................................................................81 

Soil testing methodology ............................................................................................81 



 
 

viii 

 

Sample preparation .....................................................................................................85 

Sample extraction .......................................................................................................85 

Preparation of reagents ...............................................................................................85 

Extract analysis ...........................................................................................................86 

FIELD AND LABORATORY RESULTS .............................................................................. 87 

Survey and Excavation Results ......................................................................................87 

Sub-Operation D .........................................................................................................93 

Sub-Operation E .........................................................................................................94 

Sub-Operation F .........................................................................................................98 

Sub-Operations G and H.............................................................................................99 

Sub-Operation I ........................................................................................................100 

Sub-Operation J ........................................................................................................101 

Sub -operation K .......................................................................................................103 

Soil Phosphorus Test Results .......................................................................................103 

DISCUSSION / CONCLUSION ............................................................................................ 111 

Terrace Function and Scope at N350 / W125 ..............................................................114 

Implications of Stratification Among Households .......................................................121 

Geotechnical Stability and Correlations in the Region ................................................125 

Utilizing Available Phosphorus to Identify Abandoned Agricultural Zones ...............128 

Conclusion ....................................................................................................................130 

APPENDICES ........................................................................................................................... 133 

REFERENCES .......................................................................................................................... 144 

  



 
 

ix 

 

LIST OF TABLES 

Table 1: Radiocarbon dating of Samples from buried context near terraced and bajos in 

the Three Rivers Region. Courtesy of Beach et al. 2002. ..................................................64 

  

file:///C:/Users/Smith/Desktop/5_LATE%20CLASSSIC%20AGRONOMY%20ON%20A%20VARIABLE%20LANDSCAPE.docx%23_Toc500677822
file:///C:/Users/Smith/Desktop/5_LATE%20CLASSSIC%20AGRONOMY%20ON%20A%20VARIABLE%20LANDSCAPE.docx%23_Toc500677822


 
 

x 

 

LIST OF FIGURES 

Figure 1: The Rio Bravo Conservation and Management Area is located in northwestern 

Belize, bordering Guatemala to the west. Vaughn and Crawford 2009: 545, Figure 2. ......6 

Figure 2: The Three Rivers Region derives its name from the rivers that drain 

southeastern Mexico, northeastern Guatemala, and northwestern Belize. Zaro and Houck, 

2012......................................................................................................................................7 

Figure 3: The Yucatan Peninsula as compared to the Yucatan Platform. Courtesy of 

Peterson 1983. ....................................................................................................................14 

Figure 4: Westward moving North American plate and eastward moving Caribbean plate 

produce shearing along the edges of the plateau. Top image from García-Casco et al. 

2006:65, Figure 1A. ...........................................................................................................16 

Figure 5: The Rio Hondo shear zone progresses at an angle of 35 degrees east. James 

1989:9, Figure: 111.5 .........................................................................................................17 

Figure 6: A schematic map of the Intertropical convergence zone, composed by the 

University of New Mexico. ................................................................................................19 

Figure 7: Profile of an upland forest, rendered by Brokaw and Mallory 1993 ..................26 

Figure 8: Depiction of a cohune palm riparian 

forest……………………………………………………..27 

Figure 9: Vegetation map of the western half of the Rio Bravo Conservation and 

Management Area…..29 

Figure 10: Chronology of the Three Rivers Region. Courtesy of Sullivan and Hughbanks 

2003..………35 

Figure 11: Reconstruction of sea level and water level rise based on proxies from 

Chetumal Bay as well as on the flood plain. After Pohl, et al. 1996. ................................51 

Figure 12: Images show structural orientation with agricultural areas. Top left: 

Illustration of the landscape in the upper Belize River valley, by Fedick 1994: 121, figure 

10. Right: Agricultural zone 1 in the Far west Bajo of La Milpa, after Kunen 2001:336, 

figure 5. Bottom left: Mapped settlements near the site of Dos Chombitos, by Neff 

2010:254, figure 11.2. ........................................................................................................55 

Figure 13: Image displays pollen and charcoal samples retrieved from Cobwebb Swamp 

in Belize. Courtesy of Pohl, et al (1996:362, figure 4). .....................................................60 

Figure 14: Pollen samples from Laguna Juan Pioja core near Dos Hombres, after 

Dunning, et al. (2003:22, figure 2.8). ................................................................................61 

Figure 15: Illustration of a hillside modified from a slope to a terraced formation. Note 

the decline in gradient would lessen the flow of water and run-off, Healy 1983. .............63 

file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212446
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212446
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212447
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212447
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212447
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212448
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212448
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212449
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212449
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212449
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212449
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212449
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212451
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212451
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212452
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212453
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212453
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212453
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212453
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212453
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212453
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212454
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212454
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212455
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212455
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212455
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212455
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212455
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212456
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212456
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212457
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212457
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212458
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212458


 
 

xi 

 

Figure 16: Coulomb’s active earth pressure, with BC depicting the failure plane, W the 

weight of the failure plane from points A, B, C, N equals the shear force on plane BC, 

and F equaling the force of both S and N. After Das 2010:2-12, Figure 2.6 .....................66 

Figure 17: Illustration of four types of retaining walls identified in the Three Rivers 

Region…………...64 

Figure 18: Method of terrace construction as noted by Treacy 1989, Figure 

41…………………………66 

Figure 19: Phosphorus consumption during the life of 

maize……………………………………………71 

Figure 20: Results of test measuring changes in volume of extract and mass of soil 

sample……………79 

Figure 21: Large limestone boulders protruding from the surface of the soil, suggesting 

geotechnical construction. Photo credit, Byron Smith.......................................................89 

Figure 22: Irrigation channel that directed water to the south of the house group at N350/ 

W125. Top image is the overhead view. Photo credit Byron Smith..................................91 

Figure 23: Section of irrigation extending from the southern edge of the house group. 

Photo credit Byron Smith...................................................................................................92 

Figure 24: Image of outlined water bowl rim in  

situ……………………………………………………..91 

Figure 25: Profile of retained soils on the north slope of the household group located at 

N350 / W125. ...................................................................................................................104 

Figure 26: Representation of phosphorus 

speciation……………………………………………………………………………. 98 

Figure 27: Line chart of pH values at N350/W125. .........................................................106 

Figure 28: Line chart of pH values at n750 / 

W0…………………………………………………………………………………….99 

Figure 29: Scatter plot of available P at N350 / 

W125………………………………………………………………………….100 

Figure 30: Scatter plot of availavble P at N350 / 

W125………………………………………………………………………..101 

Figure 31: Scatter plot of available P at N350/W125. .....................................................108 

Figure 32: Scatter plot of available P from N350/W125. ................................................109 

Figure 33:  Scatter plot of available P at N350/W125. ....................................................109 

Figure 34: Scatter plot of available P from N750/W0. ....................................................110 

Figure 35: Schematic of selected regions near Dos Hombres. Boudreaux 2013: 113,  

Figure 36: NDVI results related to household structures and retaining wall features .....116 

Figure 37: Reconstructions of residential structures supported by terraced features, top 

image is from Chawak But'o'ob, and produced by Hanna et al. 2008. Bottom image is 

from Dos Hombres, produced by Trachman 2007: .........................................................119 

file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212459
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212459
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212459
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212460
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212461
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212461
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212462
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212462
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212463
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212463
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212463
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212463
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212464
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212465
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212466
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212467
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212468
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212469
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212470
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212471
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212471
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212471


 
 

xii 

 

Figure 38: Terraced landscape surrounding the sites of N350 / W125, and N250 / W75.

..........................................................................................................................................120 

Figure 39: Map of structures at N350 / 

W125………………………………………………………………………………………..

15   

Figure 40: The linear distribution of limestone boulders helped to identify areas of 

retaining wall features. This area is located to the north of the household group at N350 / 

W125. ...............................................................................................................................126 

Figure 41: Digital elevation rendering of the areas surrounding N350 /W125. N250 / W75 

is in the southwest. Sub-Operation J is highlighted to the west.......................................127 

  

file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212472
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212472
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212473
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212473
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212473
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212474
file:///C:/Users/Smith/Desktop/Final_Smith_Byron_Fall2017%20(1).docx%23_Toc501212474


1 

 

 

INTRODUCTION 

The complexity of Late Classic agriculture in the Central Maya Lowlands was 

encouraged by an irregular landscape that would have stimulated soil loss after the 

occurrence of deforestation (for evidence of deforestation in lake sediments see: 

Anselmetti et al. 2007; for cave sediments see: Polk, Beynen and Reeder 2007). The 

implementation of geotechnical structures would have provided significant relief in 

efforts to mitigate soil loss on hillsides while also providing platforms for cultivation 

through the natural leveling of the gradient (Beach et al. 2002:372-373). One such 

geotechnical structure that has been observed in past research is the terrace retaining wall 

which worked to limit and divert run-off at varying degrees of inclination (Healy 1983). 

Past research has shown that within the Classic Maya Lowlands a gravity enforced 

retaining wall was utilized which consisted of unshaped limestone boulders (Kunen 

2001:326-327) that were positioned to resist lateral earth pressures. Retaining wall 

designs throughout the Central Lowlands have come to be classified based on the context 

of their positioning as well as on their design (additionally, terraces have been classified 

based on their cohesion with other geotechnical structures on site, i.e. extensive terracing, 

which suggests centralized control and planning as opposed to a seemingly erratic layout 

which may suggest a more individual effort. See: Healy et al. 1983). Those arrangements 

include box terraces which are found on well-drained upland slopes (Fedick and Ford 

1990: 26-27), dry slope terraces (there are two known types of dry-slope terraces; those 

that follow the contour of a hillside and those that are oriented vertically to the contour), 
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which follow the curvature of the hillside (Wyatt 2006), foot slope terraces located at the 

base of hillsides, and check dams used to divert run-off (Dunning and Beach 1994: 57).  

While the viability of agricultural retaining walls rests in their ability to withstand 

active earth pressures, their effectiveness relies on the proficiency of planning as well as 

continued labor inputs to ensure a sustained agricultural production (Healy 1983; Treacy 

1989). In light of the effects of intensive agriculture on a soil’s nutrients (Reeves 1997; 

Vitousek et al. 2010), an adequate nutrient management scheme would have been a 

required task to ensure prolonged productivity. Those efforts would have come in the 

form of soil fertilization through the application of nutrient-rich materials. Labor cost 

would have also included the maintenance of retaining walls as they deteriorated, 

however those repairs and the rate at which they would have been required are not as 

easy to identify. 

Consequently, the organization of labor necessary for geotechnical construction 

and agricultural production require varying degrees of input based on plans of 

implementation for features, agricultural cycles, and general maintenance of retaining 

features. Evidence in the hinterlands of the Three Rivers Region supports notions of 

localized management through the presence of features that resemble discreet responses 

to environmental challenges, as well as the lack of administrative structures. Thus, the 

reliance on heterarchical dynamics allows for perceptions into horizontal stratification of 

household groups engaged in resource production through site and resource distribution. 

Through the decentralization of management strategies, the commoner’s influence within 
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the political economy of the region suggests a responsive network capable of maintaining 

sufficiency in lieu of varied outputs on a regional scale.  

This project sought to evaluate the functional design of soil retention features, as 

well as levels of maintenance and organization present at a hinterland household located 

350 meters northeast of the site of Dos Hombres. In order to achieve that goal, this 

research evaluated two retaining wall features surrounding an informal household group 

within the Rio Bravo Conservation and Management Area (RBCMA) of northwestern 

Belize. The purpose was to positively identify the existence of geotechnical structures in 

the vicinity of the site located at N350 / W125, as well as to identify their intention and 

examples of past maintenance. Perceptions of retaining wall stability were realized 

though the features’ design, as well as their responses to lateral earth movements that 

have occurred over more than a millennium. For this project, soil fertilization served as a 

proxy representing commitments to a continual harvest. Additionally, the expanse of 

terraces across the local landscape may suggest levels of horizontal social stratification 

through the distribution of household within the circumference of geotechnical 

constructions. Working off of those parameters, this thesis project was organized around 

indications of commoner commitments and designed to answer the questions of:  

1. Did terracing at N350 / W125 take place for residential or agricultural 

purposes? 

a. Does the extent of terracing present imply stratified associations 

between those household groups encompassed by the feature?  
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2. Have geotechnical structures provided tolerable compensation against lateral 

earth pressures and erosion?  

a. Are similarities in the design and purpose of retaining walls at N350 / 

W125 comparable to previously identified retaining wall features in the 

region? 

3. Can evidence of past fertilization strategies in continuously cultivated areas be 

distinguished from the surrounding landscape through soil phosphorus 

availability? 

a. Does the quantity of available phosphorus in the soil suggest an 

exhaustive cultivation strategy, or does it signify adequate fertilization? 

The methods that were employed to achieve those objectives included: pedestrian 

survey, excavation, and soil sampling along the landscape. Analytical approaches utilized 

a variety of methods that included the application of geographical information systems 

(GIS), which were used to understand the distribution of local households and features, as 

well as the chemical analysis of soils that were retrieved during the field season of 2016.  

The area of interest for this project is within the Rio Bravo Conservation and 

Management Area (RBCMA) of northwestern Belize. The RBCMA is operated by the 

Programme for Belize (PfB, a Belizean non-profit interested in the conservation of 

Belize’s ecological and cultural heritage), the RBCMA encompasses 105,218 hectares of 

woodland landscape within the Orange Walk District that consist of upland forest, low-

lying wetlands, and pine savannahs (Figure 1). Previous research in this area indicates the 

presence of dense pre-Columbian occupations (Houck 1996) as well as the erection of 
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several ceremonial centers ranging in size from small to large. The Programme for Belize 

Archaeology Project (PfBAP), led by Dr. Fred Valdez Jr. of the University of Austin at 

Texas, has conducted research within the RBCMA since 1992, focusing on ancient Maya 

occupations within elite and non-elite context. This project operated under the guidance 

of the Dos Hombres to Gran Cacao Archaeology Project (DH2GC), directed by Dr. 

Marisol Cortes-Rincon of Humboldt State University, which functions under the auspices 

of the PfBAP. The importance of this region lies in its proximity to water sources, which 

were of importance to the ancient Maya due to the lack of seasonal moisture during the 

dry season that lasts for a significant portion of the year. The Three Rivers Region get its 

name from the confluence of three rivers (the Rio Hondo, Rio Bravo, and Booth’s River) 

that run through southeastern Mexico, northeastern Guatemala, and northwestern Belize 

(Figure 2). The Belizean portion of the Three Rivers Regions occupies the western half of 

the Rio Bravo Conservation and Management Area (RBCMA). 
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Figure 1: The Rio Bravo Conservation and Management Area is located in northwestern Belize, bordering 

Guatemala to the west. Vaughn and Crawford 2009: 545, Figure 2. 
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As of 2009, the Dos Hombres to Gran Cacao Archaeology Project has worked to 

study hinterland communities within the western reaches of the RBCMA. Its purpose is 

to explore the political and economic organization of the hinterland communities that lie 

within a 12-kilometer expanse between the ceremonial centers of Dos Hombres and Gran 

Cacao (Cortes-Rincon 2015), and has identified several communities along that stretch 

that have signatures of varied socio-economic distinctions.  

The household group at N350 / W125 is a Late Classic occupation that reflects an 

informal style arrangement of structures. Evidence resulting from the 2011 and 2012 field 

seasons have indicated an estimated eight structures atop a broad, terraced expanse. 

Additionally, a complex water management system, and possible agricultural terracing 

Figure 2: The Three Rivers Region derives its name from the rivers that drain southeastern 

Mexico, northeastern Guatemala, and northwestern Belize. Zaro and Houck, 2012 
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were associated with this site (Bryant 2015). Analysis of ceramic artifacts place its 

occupations during the Early Classic to Late Classic period (250 to 850 CE) with possible 

origins during the Preclassic (Boudreaux and Sullivan 2015). Excavations on site 

revealed the presence of jute shells (Pachychilus genus), and a granite metate sourced to 

the Maya Mountains in southern Belize. These artifacts suggest possible trade networks 

due their exotic natures (Cortes-Rincon 2016, personal communication). Early 

indications of landscape management at N350 / W125 came from the identification of 

three water catchment features (known as an aguadas) as well as evidence of an irrigation 

strategy which were identified by the presence of cut stones (Bryant 2015). Also evident 

were channels that appeared to connect the three aguadas and possibly worked to 

redistribute water from over-flowing basins (Chenault and Boudreaux 2015). A large part 

of the impetus for this project was derived from past observations at N350 / W125. The 

suggestions of a terraced landscapes as well as an apparent moisture retention and 

redirection strategy provided insight into possible agricultural strategies as well as 

landscape modifications.  
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THE PHYSICAL ENVIRONMENT OF THE THREE RIVES REGION 

The region that is known to have been inhabited by the ancient Maya is a large 

and diverse geographical area that encompasses roughly 324,000 square kilometers of 

northern Central America. The “Maya area” (Sharer 1994) extends in its northwestern 

most reaches from the Mexican states of Chiapas (Wasserstrom 1978; Lee 1980) and 

Tabasco (Ensor 2003; Ensor and Ayora 2011), east of the Isthmus of Tehuantepec, and 

concludes near the northwestern borders of El Salvador (Zier 1980; Bruhns and 

Bertolucci 2009) and Honduras (Webster and Freter 1990; Schwerin 2010) in the south. 

Its borders to the sea include the Pacific Ocean which buffers its southwestern coast, the 

Caribbean Sea along the east, and the Gulf of Mexico in the northwestern reaches of the 

Yucatan Peninsula. In all, the landscape of the ancient Maya is characterized by a variety 

of landforms and relative climatic patterns that likely influenced local subsistence, trade, 

and political authority. While some areas along the Maya landscape have received less 

scrutiny than others (especially those in the mountainous and sub-tropical forested 

regions; see Scarborough and Valdez 2003), what is exceedingly ambiguous was the 

gravitational network that united communities through interdependency in the midst of 

the many fractured political units that occupied the social landscape.  

Much of what is known about the ancient Maya (characterized by early presence 

of sedentary villages along the northwestern edge of the southern Yucatan around 1200 

BCE, lasting through the eventual colonization by the Spanish around roughly 1520 CE) 

comes in the form of historical accounts, geographical recordings, ethnographic studies, 
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and the growing body of archaeological research that has been focused in the region. 

Prior to the twentieth century, much of that work was aimed at understanding who the 

Maya were through investigations focused on elevated social outlooks (Wallace 1950; 

Higbee 1948; Longworth 1933; Haynes 1900:17-39; Maudslay 1897; Saville 1894). 

Although many of those preliminary accounts were seminal in their portrayal, the wider 

Maya population was ignored, leading to binary views of Maya social structure. It was 

not until the mid-20th century that Wiley’s (1953) investigation into residential clusters 

within Peru’s Viru Valley widened interest in understanding settlement patterns and the 

social and economic implications they harbored.  

Since Wiley’s (1953) report, the field of Maya archaeology has witnessed 

increased interest in subjects focusing on the forgotten Maya, and the effects of social 

hierarchy on lifestyles (Webster 1980; Puleston 1983; Pyburn 1987; Danforth 1994). As 

levels of significance surrounding the perceived social ordering of Maya elite and non-

elite classes began to be revaluated, few studies journeyed further than the immediate 

periphery of the centers that offered an interesting range of social complexity and 

highlighted the existence of the middle class (Chase, A. 1992). Johnston’s (2003) 

investigations in the early 21st century helped to expand inquiries into the particulars of 

non-elite life through his identification of residential structures in the Southern Maya 

Lowlands of the Petén. While significant questions remained (particularly those questions 

involving population densities, settlement selection, and land choice), his interpretation 
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predicated studies focused on the political and economic influence associated with 

artifact assemblages, craft specialization, and land choice. 

That scrutiny on non-elite social organization that was witnessed in the southern 

Petén was also mirrored in the Three Rivers Region of northern Belize where researchers 

analyzed site choice and land-use patterns along landscapes to answer questions 

pertaining to socioeconomic heterarchies (King and Shaw 2003; Scarborough and Valdez 

2003; Tourtellot, et al. 2003; Hageman 2004; Lohse 2004; Trachman 2007). While some 

debate remains, it appears evident that notions involving site choice and land use were 

analogous to economic prosperity. This was likely due to limited access to viable 

landscapes (Dunning et al. 2003), as well as to variations in ecosystems resulting from 

local environmental factors (Brokaw and Mallory 1993). Furthermore, local topography, 

inundation, and soil quality forced residents to adapt their food production strategies to 

ensure an adequate response (Beach and Dunning 1995; Turner and Harrison 1983). The 

dissemination of current understandings involving those environmental and social 

influences (as briefly mentioned above) will aid in apperceptions of the rural agricultural 

development during the Late Classic period (600 – 850 CE). The following sections have 

been selected to aid in that development and will begin with depictions of the physical 

landscape and atmospheric conditions. The sections detailing the environmental setting 

will be followed by segments apprising the chronological framework of the Maya, as well 

as social organization and the ways that structure is reflected in agricultural production. 
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Geology of the Maya Area 

Much of what is known about the geology of the Yucatan Peninsula comes from 

oil and gas surveys that occurred in the region during mid- to late 20th century (Peterson 

1983). Those explorations resulted in the identification of tectonic plate activity that 

worked to shape the region as well as the sedimentary deposition of calcium carbonate 

material that formed its platform. Ensuing investigations have explored the pedogenesis 

of the region that resulted from its carbonate platform as well as distributions of 

metamorphic and diagenetic sedimentary accumulations within its onshore region. More 

recently, moisture transport across Central America has been studied in attempts to 

recreate the sub-tropical paleoenvironment that extends well into Maya occupations of 

the region. Those findings were witnessed through the distribution of stable oxygen 

isotopes found within lake cores and stalagmite samples, and correlated with sea surface 

temperature (SST) proxies from the Caribbean Sea and Pacific Ocean. Those oil and gas 

surveys form the basis for the dissemination of the sub-tropical paleoenvironment for this 

project, while also identifying those settings in which the ancient Maya would have 

interacted in order to ensure a sustained agricultural production (Lachniet et al. 2009). 

The formation of the Yucatan Platform 

The understory of the Yucatan Peninsula is defined by the results of sedimentation and 

tectonic activity that exposed a portion of the larger Yucatan Platform (Figure 3) between 

the Cretaceous Period and the Pleistocene Epoch (Peterson 1983; Mazzullo 2006). While 

research in this area has been limited (most research has confined explorations to the 

carbonate foundation of the Cretaceous Period), Peterson’s oil and gas survey (1983:8) 
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suggested Upper Jurassic beds of carbonate facies extending at least 1,000 meters beyond 

Cretaceous formations, making those Jurassic formations a part of the Great Carbonate 

Bank of the Yucatan (Viniegra 1981). Despite distinctions regarding understandings of 

the structural complexity of the Yucatan platform, general notions support the 

aggregation of marine carbonate material on the warm, shallow formations near the Gulf 

of Mexico (Peterson 1983). The causatum that results from the lithification of those 

carbonate deposits is identified by the thick limestone platform that spans a depth of at 

least 2,300 meters, or more if factoring Upper Jurassic accumulations. Mesozoic 

formations were overlain during the early Tertiary with coarser grained marine sandstone, 

conglomerate, and shale (Peterson 1983:9). Those accumulations form the plateau that 

support the wider Petén, as well as portions of northwestern Belize. 
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Tectonic activity in the region 

While seismic activity along the peninsula is considered a product of drifting and rifting 

(the formation of fissures through large scale faulting) between the North American and 

Caribbean plates (James 2007; Pindell and Kennan 2009), the effects of those processes 

as they relate to Belize (and to a large degree, northwestern Belize) are more pertinent to 

the purposes of this investigation and will only be covered here. Belize is situated on the 

southern reaches of the North American Plate along the passive-margin (Figure 4 and 

Rao and Ramanathan 1988; Purdy 2003) created by the subsequent sedimentation 

occurring over the early rift between the North American and Caribbean plates (Mazzullo 

2007). Although research focused on the Belizean geologic response to the slip-strike 

fault of the Caribbean and North American plates (the Caribbean plate trends to the east, 

while the North American plate trends to the southwest See: James 2007:19-20) is limited 

due to access, the Maya Mountains which are located in the southern region of Belize, 

correspond with the east to northeast boundary of the slip-strike fault line (see: Figure 5). 

That activity is also recognized through the protrusion of late Paleozoic volcanic and 

sedimentary deposits overlain with mid-Paleozoic granite throughout the Maya 

Mountains (Andreani and Gloaguen 2016:76-77). Seismic activity in the northern regions 

of Belize are underrepresented as compared to the southern periphery. The most 

prominent features in the north are identified by the linear progression of the central and 

northern drainage systems of the region. The New River and the Rio Hondo extend from 

Chetumal Bay in the northeast and reach as far as central Belize, forming the major 

drainage for the northern sector of the country. Those northeast trending drainages 
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parallel the Rio Hondo fault zone (Figure 5) corresponding to Belize’s passive margin in 

the south (Andreani and Gloaguen 2016:82). The New River and the Rio Hondo 

discharge fresh water from mainland Belize through the convergence of several 

tributaries that emanate from the western segments of the landscape. The research area 

for this project is directly affected by the confluence of those watersheds which support 

aquatic ecosystems within the Rio Bravo Conservation and Management Area 

(RBCMA).  

 Figure 4: Westward moving North American plate and eastward 

moving Caribbean plate produce shearing along the edges of the 

plateau. Top image from García-Casco et al. 2006:65, Figure 

1A. 
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Figure 5: Top: The Rio Hondo shear zone progresses at an angle of 35 degrees east. James 

1989:9, Figure: 111.5 
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Moisture transport in the region 

Moisture transport across northwestern Belize is affected by the migration of the 

intertropical convergence zone (ITCZ) which also effects hydrologic patterns across 

northern Central America. Lachniet, et al. (2009) explored rainfall variability in their 

study of the hydrologic cycle along the Costa Rican Pacific Coast. Their investigation 

centered on exposing the repercussions of the ITCZ’s migration (figure 6) and testing the 

hypothesis that moisture transport across Central America is greatest when the ITCZ is 

positioned in a more northerly orientation. This hypothesis is based on evidence obtained 

from the Cariaco Basin which suggest a southerly positioned ITCZ incorporates dry 

conditions with larger upwells along northern Venezuela, and conversely a northern most 

ITCZ exports large amounts of moisture across the region. The hypothesis of Lachniet, et 

al. (2009) was based upon the principle that while more abundant, 16O contains two 

neutrons less than that of 18O and thus has a lower atomic weight. The relative weight of 

stable oxygen isotopes leads to their preferential influence during evaporation and 

precipitation, with lighter isotopes being more susceptible to the effects of heating and as 

a result evaporation. Alternatively, during condensation the heavier 18O has a higher 

propensity of condensing into a liquid state and being discharged through precipitation, 

creating a record of moisture transport across warm and cold regions.  
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Building upon Peterson and Haug (2006), Lachniet et al. (2009) proposed that 

fresh water export across the Isthmus of Panama was greatest during wet periods and 

compared terrestrial proxies with records from the Caribbean and Pacific. To test their 

hypothesis, Lachniet et al. (2009) tested stalagmite samples using a phosphorus reacting 

agent and a ThermoElectron mass spectrometer to measure the release of CO2 gases. 

Sample chronology was determined using Thorium (229Th), Uranium (233U and 236U) 

testing methods. Their results indicated that the periods of May through October were 

recognized as the wet season along the Costa Rican Pacific Coast and δ18O ratios seemed 

to vary during the early and late rainy season. While δ18O ratios are reported to inversely 

correlate with rain fall totals in lower latitudes, greater distinctions were recognized 

during the May and June rainfall averages. Contradicting δ18O ratios with monthly 

rainfall averages was suspected of being the result of the amount effect in which 18O 

Figure 6: A schematic map of the Intertropical convergence zone, composed by the University of New 

Mexico. 
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ratios are adversely affected by the increasing convergence of water vapors as well as 

decrease in rain evaporation. Conclusions from their study appeared to indicate that 

comparison of δ18O proxies obtained from stalagmite samples were associated with sea 

surface temperature (SST) records from the Caribbean and Pacific. Those correlations 

seemed to indicate strong inverse associations when SSTs were affected by the Caribbean 

to cold-tongue gradient in which areas of cooler surface ocean waters interact with the 

warmer Caribbean waters. Additionally, the authors validated their results by calculating 

the salinity gradient across the Caribbean Sea and the Pacific Ocean and identified 

significant similarities. The period that witnessed the lowest δ18O ratio (62 kya) coincided 

with a large increase of salinity in the eastern Pacific Ocean, and alternatively increased 

δ18O ratios during periods of decreased salinity.  

Pedogenesis in the Three Rivers Region 

It is generally understood that soils play a vital role in the development and 

durability of human civilization. All materials that are depended upon for subsistence 

originate from the soil and, as Kellogg (1938) notes, soil and the biological life that 

occurs within and above it are intricately linked and necessary for survival. For that 

reason, and for the nature of this investigation, a brief review of soils in and around the 

Three Rivers Region is pertinent. The genesis of soil is typically dependent on five 

conditions, both active and passive that include: parent material, weather, and topography 

as the passive agents; and biota and time as the active agents (Bockheim et al. 2013; 

Jenny 1994). While conditions may vary depending on location, these factors control the 
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sedimentation and subsequent transformations that have the ability to develop into a wide 

number of soil types within a localized region.  

The soil’s parent material provides the initial foundations for soil development 

through the weathering process. Bockheim et al. (2014) advocates for the underlying 

geological material as being the second most vital factor in identifying soil taxa and in 

Belizean soils the limestone parent material contributes significantly to the considerable 

volumes of calcium carbonate (CaCO3) within the soils (King et al. 1992; Coultas et al. 

1994; Beach et al. 2002). The processes affecting the weathering of parent materials 

include precipitation and temperature. Rainfall intensity (or the lack thereof) can expedite 

the weathering of parent material resulting in new soil formation and distribution. It 

should also be noted that the ensuing effects of precipitation have direct correlations with 

local topography and organic material across a landscape (Bockheim 2014; Jenny 

1994:77). In addition to contributing to weathering, variation in temperatures has 

considerable impacts on a soil’s chemical composition through the processes of 

hydrolysis, hydration, dissolution, and redox (Prothero and Schwab 2014). In addition to 

weatherization, the contour of the landscape directs the distribution of soils and accounts 

for levels of accumulations. While organisms are often overlooked, they serve an 

important function in soil creation through the deposition and decomposition of organic 

matter. Within the Three Rivers Region, all of these factors contributed to the 

arrangement of soils and their possible preferential treatment by the Late Classic Maya.  
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It is generally understood that the ancient Maya had a direct impact on the soils 

they interacted with. While the extents to which may continue to be less understood, 

episodes of alteration across the landscape through deforestation and soil redistribution 

have produced an artifact of land use that bears many insights. King et al. (1992 generally 

classified the soils of the RBCMA as belonging to the Yaxa suite which resulted from 

influence of the nearby Ram Goat and Irish Creek subsuites. The consolidation of those 

subsuites yielded the dark clays of the Yalbac and Jolia subsuites which have been 

classified as Rendolls, Leptosols, Cambisols, Alfisols, Inceptisols, Histosols, and 

Vertisols (King et al. 1992; Beach et al. 2006). Dunning et al. (2004) coined the term 

“Ekluum” (or “Eklu’um” as prescribed by Beach et al. 2006, meaning “black earth”) for 

those early soils the Maya would have come into contact and that formed on above the 

limestone plateau. Evidence for that interaction between the Maya and the early dark 

paleosols of the Three Rivers Region come from artifact distributions that are typically 

constrained to those horizons above the paleosol (artifacts have also been uncovered from 

the surface layers of the dark paleosol), and from evidence of major erosion events that 

occurred after deforestation occurred on the landscape (Beach et al. 2006).   

A great deal of research has explored the possibility and consequences of 

deforestation by the ancient Maya (Jones 1991; Shaw 2003; Anselmetti et al. 2007; Polk 

2007; McNeil 2012). Outside of the Three Rivers Region, several studies have shown an 

increase in erosion rates during the Late Preclassic, with reduced rates extending through 

the Late Classic when erosion episodes appear to have dramatically slowed (Dunning et 
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al. 1994, Beach et al. 2006, Neff et al. 2006; Wahl et al. 2007; Luzzadder-Beach et al. 

2012). Data revealed through lake coring indicated depositional sequences of Maya clays 

which eroded into waterways as a result of deforestation (Pohl et al. 1990; Dunning et al. 

1994). That chronology coincides with evidence of early Maya colonization, as well as 

with periods of increased population densities. This correlation is often attributed to the 

need for fuel and cultivatable land as populations increased. While periods of increased 

erosion are attributed to population demands, reductions in soil loss seems to be 

supported by recent evidence from within the Three Rivers Region as well as throughout 

the wider Maya region, of terraces which are known to be effective in slowing soil loss 

(Chun et al. 2004; Czapar 2006; Widomski 2009). Additionally, Fisher et al. (2003) 

identified two erosion events in the Lake Pátzcuaro Basin of the Mexico, the first of 

which occurring during the Late Classic, and a second during the Post Classic which they 

attributed to Maya hindrances in maintaining methods of soil conservation (namely the 

Spanish).  

The results of that erosion varied accordingly based on topographical deviations 

and is witnessed through shallow soil accumulations on backslopes and increased 

evidence of transported soils along the foot and toe of slopes (Dunning et al. 2003). 

Similarly, Beach et al. (2006:168) suggested the possibility of erosion events removing 

“whole soil profiles…” from backslope faces. Soil analysis in the Vaca Plateau have 

identified very dark and shallow backslope soils that resembled vertisols, but failed to 

crack when dried (Coultas et al. 1994). Those soils, Coultas et al. (1992) explains, are 



24 

 

 

underlain by soils that have successively developed lighter hues at greater depths. In 

areas where check dams were installed by the Late Classic Maya, Beach et al. (2002) 

found young and fertile Rendolls in the surface horizons that appear to have been retained 

by geotechnical construction. Subsequent analysis of the soil’s nutrient content has 

revealed phosphatic accretions along backslope and upslope regions which supports 

suggestions of intensified cultivation occurring on those surfaces coupled with increased 

fertilization to meet the nutrient demand of the plant life being harvested (Coultas et al. 

1992; Beach et al. 2002).  

Vegetation in the Three Rivers Region 

Vegetation in Belize varies greatly depending on regional conditions. For that 

reason, this section will focus expressly on plant life within the southwestern section of 

the RBCMA (While the primary site for this project occurred within a transitional forest, 

descriptions of the surrounding forested area will provide a more regional perspective). 

The RBCMA is located between the 17° and 18° latitudinal parallels, and as such, falls 

within the sub-tropical moist life zone as defined by the Holdridge Life Zone System 

(Brokaw and Mallory 1993:5, for the Holdridge Life Zone System, see: Holdridge 1966). 

While certain areas within the RBCMA were previously considered an important source 

for the timber industry (since the late 18th century when the area was owned by a British 

timber company), the area within the RBCMA maintains a protected status through the 

Programme for Belize’s (PfB) mission of protecting the country’s national forest 

(Programme for Belize 2014). The forest that has regenerated since Maya abandonment 
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(and subsequent logging activities following the 9th century) represent an accumulation 

of semi-deciduous, successional and old growth tree species (Brokaw and Mallory 

1993:32-33; Ferguson et al. 2003). As mentioned above, distinctions in pedogenesis in 

the region are a product of the contour of the landscape and variations in soil saturation 

(Dunning et al. 2003). The amalgamation of local topography, soil type, and hydrology 

give rise to a relative series of species development within the region. Therefore, plant 

types are typically distinguished by structure, related to local physiography, and are 

typologically classified by Brokaw and Mallory (1993) as: upland forest, transition forest, 

bajo swamp forest, cohune palm forest, riparian forest, mash, mangrove, palmetto 

savannahs, and Milpa (including: forest/milpa mixture) vegetation types. Of those, the 

primary vegetation types found within the ecozones between the Rio Bravo embayment 

and the La Lucha Uplands include:  upland, cohune, cohune palm riparian, transition, and 

bajo swamp forests.  

Upland forests within the south-central region of the western half of the RBCMA 

occur on the sloped (most examples in this region are sloped, but some are leveled) 

escarpments of the Rio Bravo and La Lucha Uplands. Soils in these areas are typically 

shallow, well-drained, gravelly and composed of calcareous soil types (Wright et al. 

1954). pH values are characteristically neutral or slightly acidic. Brokaw and Mallory 

(1993) also found that Upland canopies extend as high as 30m (although most range from 

15-20m. See: figure 7) with five species representing 50% of the timber. Those species 

that occurred at higher frequencies were: Pouteria reticulate (21.7%), Manilkara 
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 zapota (8.4%), Pseudolmedia sp. (8.3%), Drypetes brownie (6%), and Hirtella 

Americana (5%).  

 Within the western half of the RBCMA, cohune forests occur on well-drained 

upland soils of the Terrace Upland and Terrace Lowlands (Brokaw and Mallory 1993). 

Those areas are typically lower in elevation than the La Lucha Uplands and are 

represented in patches within riparian forests at the base of hillsides (Dunning et al. 

2003). Abundant organic material within the fallen tree throws of cohune palms are 

thought to be ideal for agricultural production (Brokaw and Mallory 1993), and indicative 

of successional adaptation in some areas (Dunning et al. 2003). Just as with upland 

forests, Brokaw and Mallory (1993) found that five species dominate vegetation types 

(both juvenile and mature), with the most abundant being: Attalea cohune (19.3%), 

Figure 7: Profile of an upland forest, rendered by Brokaw and Mallory 1993 
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Drypetes brownie (12.8%), Pouteria reticulate (6.7%), Alseis yucatanensis (5.9%), and 

Trichilia minutiflora (5.4%).  

 Cohune palm riparian forest types are predominately found along flood plains that 

are perennially inundated. Soils in this type of region are categorized as deep, alluvial 

soils that inhibit some species from adequate root development. As a result, during 

Brokaw and Mallory’s (1993) survey of the area, they found a large quantity of tilted 

trees, as well as a dwarfed canopy with a significant amount of open areas. Of the several 

species found within the cohune palm riparian forest of the RBCMA, Bactris spp., and 

Pithecellobium belizense flourish in patchy distributions (Figure 8).  

  

Figure 8: Depiction of a cohune palm riparian forest along Brokaw and Mallory's (1993). 
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Those areas located within the wetland-upland ecotones are estimated to occupy a 

significant portion of the RBCMA. For this reason, Brokaw and Mallory (1993:19) 

suggest it receive “formal recognition” in their representation (Figure 9). While 

transitional forest represents a continuum of both upland and swamp forest, their soils 

have a tendency to be poorly drained (see: Brokaw and Mallory 1993), and located on 

gently sloping or virtually level landscapes (Dunning et al. 2003). The Rio Bravo 

Embayment, and Terrace Uplands, as well as the La Lucha Uplands consist or substantial 

stretches of transition forests. Dunning and others (2003) found the species within these 

regions to resemble those of upland forest, while Brokaw and Mallory (1993) 

recommended that those upland variants were shorter in transitional ecozones. This is 

likely due to the assortment of species and the topographic and hydrologic gradients 

(Brokaw and Mallory 1993 suggest slight changes in the landscape). Common species in 

transitional ecozones include Gymnanthes lucida, Manilkara zapota, and Matayba 

oppositifolia. 

Bajo swamp forest types are accentuated by an abundance of clay soil in 

depressed areas that become inundated during months of high precipitation. Poor 

drainage during the wet season in these areas lead to poor root development through 

inhibited respiration, and the lack of precipitation during the dry season limits 

transpiration (Brokaw and Mallory 1993:16–17) and nutrient uptake (Sonko et al. 

2016:47-48, Camberato and Joern 2012). Many species have developed, as a response, 

small-compound leaf structures or large coriaceous leaves. Additionally, in these areas 

plant stalks are modest and often contain scaly bark. Plant structure within bajo swamp 
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regions is dwarfed with an understory of Carex (or sedge grass). Although several small 

species are more common in areas where inundation is more prevalent, Brokaw and 

Mallory (1993) suggest some larger species often associated with other forest types are 

present in bajo regions (while present, their structures are dwarfed).  
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THE ANCIENT MAYA: CULTURAL LANDSCAPE 

A large part of what is known about the ancient Maya comes in the form of 

historical records, ethnographic accounts, and a growing body of archaeological research 

that is focused on the area. The first known observations by the Spanish were 

documented in the early 16th century off the northern coast of Honduras and illustrated a 

sea-faring civilization with an apparent system of exchange which marketed such items 

as: blankets, copper axes, pottery and cacao (Perramon 1986). Further Spanish 

explorations into the region during the 16th century met with ill fate and diminution as 

the Spanish suffered capture and defeat by the Maya, and the Maya fell ill to European 

disease (the Mayacimil or “easy death” is likely attributed to the variola virus that was 

introduced by either European explorers or traders from the north (for Spanish defeat at 

the hands of the Maya, see: Clendinnen 2003; and Sharer and Traxler 2006. For the 

introduction of European disease, see: Coe 1999; Smith 2003). The second reported 

expedition noted the presence of a sizable township (likely the site of Tulum on the 

northwestern coast of Quintana Roo) that featured multiple towers of grand size and a 

large population that was noticeable from the shore (Clendinnen 2003). That expedition 

along the eastern seaboard of the Yucatan also suffered severe casualties and was forced 

to return to its home port with news of defeat as well as the prospect of resources that 

were considered valuable to the Spanish. The third armada to visit the Yucatan was 

propelled with the hopes of securing precious metals (namely gold) that had been 

observed on a previous expedition (Sharer 1994:733-735). With the Spanish’s third 
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expedition into the region, Hernan Cortez began the work of displacing Maya traditions 

and erecting European monuments on the Isla de Cozumel and the Isla de Flores as he 

sought to take advantage of the resources of the region (Sharer 1994; Clendinnen 2003). 

Those early observations of the Maya, as well as many that followed, perceived 

the civilization through the lens of a campaign of colonization. As was often reported 

during the early attempts and eventual conquest of the ancient Maya (1517 – 1540 CE), 

notice was made in regards to the Maya’s methods of warfare, to which they were adept. 

Inclusive of those observations were the armaments and accoutrements that the Maya 

possessed (Sharer 1994:742). Following the Spanish’s conquest (1540 – 1546 CE), 

Bishop Diego de Landa was sent to the region (1549 CE) to oversee the spiritual 

conversion of the Maya. Under this charge, Landa was responsible for the destruction of 

Maya rituals and belief system (Sharer 1994:599) and consequently the ruin of many of 

the Maya codices (manuscripts that were held in high regard by the Maya, of which only 

three survived). In addition to contributing to the destructive nature of Spanish 

colonization, Landa fortunately documented his observations which included Maya: 

architecture, subsistence, and social structure (Tozzer 1938). While the civilization that 

Landa came into contact with during the mid-16th century (a period of time that 

correlates with what is considered the Colonial period, 1500 – 1800 CE) was a shadow of 

the civilization during its height (the Classic period is often considered the pinnacle of 

Maya civilization, 250 – 900 CE), his observations have proven valuable to subsequent 

Maya studies. Two relevant examples of Landa’s (1936) influence were his focus on 

social structure along the Yucatan and his less detailed documentation on agricultural 
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practices in the region. The following sections will detail a brief description of Maya 

chronology in and around the Three Rivers Region, and carry over into conventional 

characterizations of complex society during the Classic period. This section will conclude 

with a more comprehensive discussion on agronomy which encompasses areas of 

intersection between technique and status. 

Chronology 

Ancient Maya occupations are suspected of representing a span of more than two 

millennia which incorporates evidence of early settlements during the Formative years 

(Also known as the Preclassic, 2,000 BCE – 250 CE) and extends past Spanish 

colonization in the 16th century. Although much debate has been had regarding temporal 

terminologies and classifications of Maya occupations (Willey et al. 1967; Culbert 1977; 

Ashmore 1981; Sabloff 1994; Sharer 1994), the division of periods into a pentamerous 

chronological framework based on temporal and developmental stages has become 

widely accepted. Those periods are considered the Lithic period: which documents 

migrations into the Americas as well as the use of stone tools and the dependence on 

seasonal growth cycles of vegetation. This period is thought to have begun no less than 

14,000 years before present and to have extended through the 6th millennium BCE (Coe 

2011). The Archaic period: is often characterized by the development of settled 

communities along the Pacific and Caribbean Sea. The presence of sedentary occupations 

is thought to have accompanied a new reliance on plant foods and ultimately the 

domestication of plant species such as: maize, squash, beans, and manioc. The Archaic is 
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thought to have extended up until the 2nd century BCE. The remaining three periods of 

Maya development that are relevant to this study are classified as the Preclassic, the 

Classic, and the Post Classic and will be discussed below in more detail (Sharer 1994:44-

45).  

While the previously discussed chronological framework has been adopted by 

many, those classifications have been considered to display an inherent bias towards the 

Classic period by suggesting it as the apex of Maya development (Sharer 1994:48-49; 

Hammond and Ashmore 1981:29), and alternatively classifying those eras surrounding 

the Classic period as subordinate. Additionally, terminological classifications have 

negated contemporary occupations of the Maya who continue to exist in the region 

(current populations are estimated between six and seven million) and exhibit lifeways 

that are reminiscent of their heritage (Castañeda 1996). Sabloff’s (1994) study introduced 

a chronological framework that attempted to redefine depictions of Maya occupations by 

placing greater emphasis on developmental stages as opposed to those that were 

calendrically based. In his model, Sabloff (1994) classified the stages of development 

through recognized advancements in society which detailed early evidence of cultural 

complexity in the region, the presence of state-level authority, and the dissolution of 

state-level authority. Sabloff (1994) also considered the use of terminology and proposed 

a general characterization of pre-Hispanic periods that was void of the previously 

accepted biases.  

While Sabloff’s (1994) model presented a compelling view of progression, 

traditional versions remain prevalent and these are the models that this research uses to 
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classify occupations. Important distinctions have been made between contemporary Maya 

and their pre-Hispanic ancestors. One of which is the suspected migration of populations 

from the north into areas previously inhabited by the Maya following the decline in 

populations that succeeded the Classic period. Additionally, the influence of the Spanish 

during and after colonization likely worked to significantly alter Maya lifestyles, which 

was typical of colonial efforts (Sharer 1994). As a result, investigations of pre-Hispanic 

occupations have traditionally adopted a ternary based classification system which 

separates temporal and developmental periods into Preclassic, Classic, and Post Classic 

delineations. Those divisions are respectively further sub-divided into phases of early, 

middle, and late stages that represent significant change in society (figure 10).   
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Figure 10: Chronology of the Three Rivers Region. Courtesy of Sullivan and Hughbanks 2003 
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Radiocarbon assays have contributed a great deal to correlations of traditional 

chronologies based off of ceramic and architectural data for dating Preclassic sites 

(Hammond and Ashmore 1981). Using the Classic period (250 – 900 CE) as an anchor, 

current chronological typologies utilize epigraphic data rendered on stelae and 

monuments to denote the extents of the Classic. This period was originally determined to 

represent the period of time between 300 and 900 CE, but was recalculated through the 

use of stylistic cross-dating and adjusted to encompass the years between 250 and 900 CE 

(Hammond 1981). In addition to the hieroglyphic data that is used to associate 

archaeological data with time periods, ceramics, architecture, radiocarbon dating, and 

ethnohistoric accounts have been used as supplementary evidence to account for 

transitional periods. For Post Classic associations, ethnohistoric accounts have 

complimented architectural evidence when periods of transition appeared ambiguous 

(Bullard 1973). 

The Preclassic period (2,000 BCE– 250 CE) 

The societal changes that are often attributed to the onset of the Preclassic are associated 

with the adoption of sedentary lifestyles. Although those developments were not 

concurrent across the Maya Area, evidence of nucleated permanent settlements and 

agriculture primarily along the coastal plain of Chiapas have been considered traits of the 

Early Preclassic. Although the origins of the early Preclassic are often debated, it is 

generally considered to have concluded prior to 2,000 BCE (Coe 2011:48) characterized 

those early structures produced by the Maya as thatched-roofed dwellings that resembled 
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the constructions of contemporary Maya. Excavations within the region of Soconusco 

also uncovered Early Preclassic ceramics consisting of monochrome, bichrome, and 

trichrome wares that were molded in the shape of deep bowls (Wauchope 1938; Coe 

2011). Although indications of settlement activity within the Lowlands has been exiguous 

at best during the early Preclassic, analysis by Pohl et al. (1996) within northern Belize 

suggests the presence of agriculture and deforestation as far back as the third millennium 

BCE (Lohse et al. 2006).  

Evidence of migrations into the Petén coupled with population increases worked 

to transform the ancient Maya landscape during the Middle Preclassic (1000 – 400 BCE). 

The overwhelming attributes that separate the Early Preclassic Maya from those of the 

Middle Preclassic are the continuation of settlement expansion as well as indications of 

northern influence in architecture and ceramic manufacture (Sharer 1994; Coe 2011). 

Outgrowth of Early Preclassic settlement expansions resulted in a preponderance of 

occupations along waterways within the interior of the Yucatan Peninsula. Facilitated by 

access to water and ease in communication, sites along the Usumacinta drainage, as well 

as within northern Belize appear to have witnessed prosperity through the institution of 

ceramic complexes and the adoption of agricultural undertakings.  

 The reproduction of two ceramic complexes are traditionally considered to 

represent the passage of cultural attributes from the periphery to the interior of the 

landscape. The Xe ceramic tradition that spread across the western edge of the Southern 

Lowlands during the early Middle Preclassic is considered to represent a Mixe-Zoquean 

influence that coalesced into a well-designed product with possible agricultural 
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applications (Sharer 1970:452; Stross 1982). Whereas the Xe ceramic complex has been 

observed to have been limited to the southwestern lowlands, the Swasey tradition has 

been associated with assemblages ranging from the highlands in Southern Belize through 

the lowlands in the north (Sharer 1994:80-81). Increased expansion across the Lowlands 

after the early Middle Preclassic was accompanied by the development of the Mamom 

ceramic tradition which Sharer (1994:81) inferred was due to the results of integration, 

and Coe (2011:57) described as an antecedent of the Cunil horizon. Although Sullivan 

and Sagebiel (2003) point to the scarcity of evidence within the Three Rivers Region 

during the Middle Preclassic, both Swasey and Mamom types were heavily represented at 

the northwestern Belizean site of Dos Hombres. It is during the Middle Preclassic period 

that rapid growth at regional centers of both the highlands and the lowlands is thought to 

have been initiated (Sharer 1994). Possibly lured by fertile soils (Fedick et al. 1990), 

Maya agronomy seems to have spread away from waterways into the lush landscapes of 

the Central Lowland regions during this time. Fedick et al. (1990:25) suggested 

population increases within the eastern Pasión Zone as high as 23% during the Middle 

Preclassic. Within the Central Petén, the growth of settlements in proximity to Tikal were 

also recognized as shifting away from waterways and into the uplands as agricultural 

landscapes became more plentiful and resource rich areas accrued more attention (Fedick 

et al. 1990:27).  

 The Late Preclassic (400 BCE – 100 CE) is often considered a defining point in 

the Maya’s development through the implementation of hieroglyphic writing, which 

included a calendrical system in the Southern Maya area (Sharer 1994:84-86) and 
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advanced growth in settlements and social complexity in the lowlands (Coe 2011:61-66). 

Although Sharer (1994) points out the possibility that respective regions may have been 

subjected to varies influences in the implementation of writing, the Olmecs to the north 

share a geographical and chronological propinquity with Maya writing systems that likely 

resulted in stark comparisons in style and form. Records often documented aspects of 

elite lifestyles, agricultural data, and the alignment of celestial bodies through the 

designation of glyphs and bar and dot arrangement to denote calendrical associations 

(Sharer 1994; Coe 2011). Those waterways that were previously utilized for cultural 

transmission appear to have become major arteries of exchange as many of those regional 

centers that were erected during the Middle Preclassic began to grow in size and power. 

In the Central Lowlands, sites such as Tikal, El Mirador, Nakbe, and Calakmul began to 

erect large platforms flanked by plaster covered architectural embellishments that 

emulated spiritual convictions (Sharer 1994:110-117; Coe 1994:80-82). In northern 

Guatemala, causeway construction connected the site of El Mirador to other nearby 

centers and extended into the hinterland regions suggesting a flow of interaction with its 

surrounding periphery (Sharer 1994). At the site of Uaxactun, positioned roughly 19 

kilometers north of Tikal, structural constructions dated to the Late Preclassic were 

erected to align with celestial markers that noted the solstice and equinox (Aveni 2003).  

 Within the RBCMA, archaeological evidence suggests population increases that 

mirror in scale the growth witnessed at other sites in the Petén. Sullivan and Sagebiel 

(2003) point to the abundance of Chicanel type ceramics found within the region and 

their similarity to others identified at sites such as: Uaxactun, Colha, and Barton Ramie as 
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evidence of trade between the Three Rivers Region and those areas in the exterior. 

Although most evidence in the hinterlands of Dos Hombres points to an Early Classic 

Period emergence, scattered evidence along the transect between Dos Hombres and Gran 

Cacao (a medium sized center located northeast of Dos Hombres) offers some possibility 

of Late Preclassic occupation through the inclusion of Chicanel Sphere complexes 

(Boudreaux and Sullivan 2015).  

 Although many similarities existed between Late Preclassic progressions and 

those experienced during the Classic, a century and a half of halted development in the 

highlands to the south is conventionally seen as a stage of transition between periods. 

This period of time, often referred to as the Protoclassic or hiatus (100 – 250 CE), was a 

time that saw an abrupt stoppage in the construction of stelae and monuments, as well as 

the hieroglyphic images that were displayed on them (Sharer 1994). Much of the debate 

that is focused on this anomaly in Preclassic development centers on the eruption of the 

Ilopango volcano located in central El Salvador (Dull 2001). The subsequent pyroclastic 

flow and ash fallout that resulted from the collapse of the caldera is thought to have 

reached as far as an estimated 100 square kilometers and hindered agricultural 

production, as well as the economic independence that accompanied it (Sharer 1994). The 

natural catastrophe that was the eruption of Ilopango thrust vital importance on the Maya 

lowlands as trade routes in the south dwindled.  

The Classic period (250 – 900 CE) 

The maturation of political expression and growth in population during the Classic period 

left a recognizable impression on the landscape of the Maya Lowlands. While population 
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growth has been measured in both urban and rural settings through the erection of 

structures, the distribution of ceramic wares, and land modifications relating the 

agricultural development, the political winds within the Petén were assiduously 

documented through the inscription of stelae and monuments that chronicled sovereign 

ascension and decline. Although classifications of Classic periods maintain a similar 

ternary structure to those of its antecedents, the discernible contrasts lie in the disparity in 

construction and artifactual evidence between 600 and 700 CE, and again during the 

Terminal Classic between: 800 and 900 CE. Additionally, the apogee of population 

growth was witnessed during the Late Classic period as population densities increased 

and the demand for cultivatable landscapes compelled many Late Classic Maya to modify 

sloped and low-lying environments. Those discrepancies inspired typological 

classifications of the Classic period into distinctions of Early, Late, and Terminal periods, 

with the initial period of time bereft of occupational evidence falling between the Early 

and Late Classic. (The period of time between ca. 600 and 700 CE within the Three 

Rivers Region is often referred to as “the hiatus”.) Within the Three Rivers Region, 

political and demographic growth and decline appear analogous with evidence in the 

Central Petén, albeit at a varied pace in some respects (Ashmore 1981, 2007; Culbert and 

Rice 1990).  

The Early Classic period (250 – 600 CE) in the Central Lowlands represented an 

extension of political expression by the ruling class that was documented through the 

erection of tributes inscribed with the institution of political figure heads as well as their 

successes and defeat. As a result, the copiousness of stelae and monuments erected 
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during the Early Classic at Tikal have allowed for an apperception of enterprise by the 

ruling class that has been utilized to determine the political tone of the Central Lowlands. 

In many respects, the dominance of Tikal’s prosperity overshadowed the greater Petén 

through its growth and political affiliations with Teotihuacán in Central Mexico (Sharer 

1994; Braswell 2003; Coe 2011). Evidence of this affiliation has been documented 

through the inclusion of Central-Mexican implements of war, and regalia inscribed on 

stelae in direct bi-lateral association with respective rulers of Tikal and Uaxactun (Sharer 

1994:187-190). Despite evidence of affluence, the catalyst for Tikal’s ascension is less 

well known, but assumed to be related to the abatement of El Mirador in the northern 

Petén as well as its proximity to lithic resources and major trade routes in the region 

(Woodfill and Andrieu 2012; Lentz et al. 2014). 

Correlations with Tikal’s success during the Early Classic are discernable in the 

Three Rivers Region, and specifically within the boundaries of the PfBAP. While general 

populations appeared to stagnate at Dos Hombres, temple erection and upper class 

residential construction imply the occurrence of elite activity (Houck 1996; Durst 1998). 

Consequently, the presence of elite mortuary remains along with an accompaniment of 

polychrome wares similar to types uncovered at the site of Uaxactun suggests elite 

affiliations between Dos Hombres and the northern Petén (Sagebiel 2011). At La Milpa 

investigations identified multiple stelae, as well as elite burials dated to the Early Classic 

(Hammond and Tourtellot 1993). While at the site of Gran Cacao, Sagebiel (2011) 

advocated for robust elite activity through the installation of structures related to feasting 

rituals and pottery. In comparison to indications of elite occupations, few utilitarian wares 
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and structures have been dated to the Early Classic in northwestern Belize. This lack of 

ceramic and structural evidence suggests the possibility of narrow population influxes 

among the non-elite (Sullivan and Sagebiel 2003). Analysis of ceramics within the 

hinterlands of the Dos Hombres to Gran Cacao Archaeology Project appear to support 

Sullivan and Sagebiel’s (2011) presumption that non-elite activity within the area was 

limited. That suggestion is reinforced by Boudreaux and Sullivan (2015) whose analysis 

included ceramics from several household groups along the Dos Hombres to Gran Cacao 

Archaeology Project, of which less than nine percent represented Early Classic traditions. 

It should be noted, however, that non-elite, Early Classic occupations have been 

traditionally underscored due to the apparent proclivity of Preclassic ceramic use 

occurring during the Early Classic (Sullivan and Sagebiel 2003; Sagebiel 2011). 

The deterioration of Tikal’s dominance towards the end of the Early Classic 

marked a critical point in the upward trend of growth and development in the Petén. 

Tikal’s downfall has been attributed to its defeat by Calakmul and Caracol (Sharer 

1994:210-217), and likely ushered in a period of decline across northwestern Belize 

which is often referred to as the Early Classic Hiatus (600 to 700 CE). As Tikal’s 

prominence waned, competition between Calakmul, Caracol, Palenque, Yaxchilan, and 

Naranjo worked to fragment the political power of the region in attempts to fill the void, 

thus thrusting prosperity onto those sites (Sharer 1994; Sagebiel 2011). Within 

northwestern Belize, the installation of stelae also diminished during this period, and 

construction appears to have come to a halt (Inomata and Webb 2003).  
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Following Tikal’s overshadowing by Caracol, the diversion of prosperity in the 

lowlands appeared to have followed the successes of war to Caracol and Calakmul, and 

by extension to several other smaller centers during Tikal’s period of Hiatus (Sharer 

1994; Martin and Grube 1995). While the decentralization of power in the lowlands 

seemed to have widely benefited a number of regions, it also highlighted the concerns of 

researchers who argued against the standardization of political power in the region 

(Chase and Chase 1996). Tikal’s quiescence, and the subsequent revitalization of centers 

across the Maya lowlands for a period of roughly 150 years (considered the length at 

which Tikal’s political voice was muted and construction severely limited) left a dynamic 

distribution of heterarchy consisting of a number of regional centers (Sharer 1994:215-

264). Furthermore, as prosperity increased, so too did populations in those surrounding 

regional centers. At Caracol, Chase and Chase (1994 and 2008) estimated populations 

well in excess of 100,000 when estimates were inclusive of the polity’s footprint in the 

region. Calakmul’s estimated population by Braswell, et al. (2005) may have reached as 

high as 50,000 individuals within a 122-square kilometer span. The resulting population 

density at Calakmul, which is suggested to have swollen to as much as 1,000 individuals 

per square kilometer within urban areas, eludes to what the authors suggested as an 

indicator of social complexity that rivaled many of the larger sites in the Maya Lowlands.  

Tikal’s resurgence into the political sphere began with the commencement of the 

26th successor of Tikal, Ah Cacau during the Late Classic (600-800 CE. Adams 2004). 

Deviating from prior conduct, Ah Cacau recommissioned ceremonial traditions and the 

construction of several structures that honored past rulers, including his own father and 
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grand-father (Sharer 1994:264-266). Additionally, the 26th ruler of Tikal sought 

retribution of its previous defeats, by centering its attention on Calakmul which was seen 

as a robust ally to Caracol. With Calakmul’s defeat, Ah Cacau returned power and 

prosperity to the Central Lowlands which has been expressed through the continuation of 

construction and expressions of prestige (Coe 2011). As with previously noted surges in 

population, political gain ensued along with the advantages of success. As a result, many 

populations surrounding regional centers experienced their apex during the Late Classic.  

As highlighted above, evidence of drastic population swings by non-elite Maya 

have been documented through the construction of residential structures, ceramic 

deposits, and landscape modifications (especially those relating to agricultural 

production). While evidence for their occupations is firm, their origin is less well 

understood. Inomata’s (2004) examination of non-elite mobility in Aguateca mitigated 

for a better understanding of motivations for abandonment. Under the assumption that 

non-elites expressed autonomy through mobility, Inomata speculated the importance of 

social, economic, and cultural motivations existing within (or the absence of) a particular 

political sphere (180-181). While suggestions of mobility were not only extended to non-

elite, but also to some elite members of society, Inomata (2004:181-182) suggested 

farmers may have shared limitations to relocating based on the negative economic 

impacts associated with labor inputs. Nonetheless, the Late Classic was a period that 

witnessed increased migrations with nucleated populations around ceremonial centers 

and resources (Sullivan and Sagebiel 2003). Landscape modifications became more 

prevalent on sloped and depressed environments as either population pressures forced 
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inhabitants into less desirable landscapes, or the pressures of production required 

additional inputs (Turner and Harrison 1983:251-264).  

In contrast to the Early Classic in northwestern Belize, general populations 

reached their peak during the Late Classic (Sullivan and Sagebiel 2003). As seen in 

Turner and Harrison’s (1983) study in northern Belize, settlements within the Three 

Rivers Region rapidly expanded across the mollisol-rich uplands that were well suited for 

cultivation (Sullivan and Sagebiel 2003). As settlements continued to expand along the 

sloped environments of transitional forests, terracing systems were likely developed to 

ease soil erosion and supplement cultivatable landscapes (Beach et al. 2002; Scarborough 

and Valdez 2003:12). Along the Dos Hombres to Gran Cacao Archaeology Project, the 

Late Classic site located at N350 / W125 was suspected of possessing terraces which 

provided a significant motivation for this thesis project. The material culture excavated 

within the Three Rivers Region during the Late Classic also contrasted excavated 

materials from the Early Classic. The presence of utilitarian Tepeu 2-3 wares 

outnumbered the more elite forms suggesting increased activity by the general population 

during the Late Classic (Sullivan and Sagebiel 2003:35).  

While the Late Classic has become to be synonymous with the height of lowland 

Maya society, the Terminal Classic (800 – 900 CE) is that period that is often erroneously 

associated with the collapse of the civilization. Although portrayals of collapse seem to 

ignore the same cultural trends that likely motivated inhabitants to mobilize when 

conditions required, there appears to have been a severe downturn in the development of 

the Central lowland Maya during the Terminal Classic. Sharer (1994:338-339) notes the 
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cessation of dynastic inscriptions, luxury goods, and even the long count date that 

chronicled progression, and likewise, no temples were constructed across the lowlands 

after the Late Classic. While populations in the Central Lowlands were experiencing 

decline, several sites in the Northern Lowlands appeared to thrive off of salt production 

and aquatic resources (Aimers 2007; Shaw 2015). The lowland Maya landscape during 

the Post Classic Period (900 – 1500 CE) is seen as a continuation of the decline seen 

during the Terminal Classic (Sharer 1994).  However, although populations declined in 

the central lowlands, sites such as Chichén Itzá and Mayapan appeared to have thrived 

well into the Postclassic (Masson 2006; Sabloff 2007).  
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FARMING AS A SOURCE OF POLITICAL ECONOMY 

Late Classic agronomy within the hinterlands of the Three Rivers Region 

provides a compelling indication of political integration through economic variables 

(Atran et al. 1993). In consideration to prevalent themes surrounding the influence of 

hinterland farmers, variegated landscapes as well as the decentralized nature of labor 

organization in the region suggests the unification of households in resource production. 

While levels of independence are witnessed on a communal scale, interdependence to the 

wider social unit is evident through shared cultural systems (namely: religious, political, 

and economic systems). Suggestions of communal autonomy in light of existing 

hierarchical frameworks implies the presence of inverse causality within elite and non-

elite associations. The following section will briefly discuss conventional concepts of 

social organization as perceived through the lens of a suburban agricultural strategies. 

That discussion will include: the synthesis and development of populations in the region 

during the Late Classic, expressions of economic autonomy through resource 

specialization, and the heterarchical organization of specialized communities. 

As mentioned above, population increases after the Late Preclassic and again 

following the Early Classic played a substantial role in social organization within the 

hinterlands of the Three Rivers Region. Houk (2003:60-61) suggests the possibility of 

population increases of 70% between the Early and Late Classic in northwestern Belize. 

While indications of population dynamics are hindered by difficulties in artifact 

classification (specifically, the relative dating of ceramic wares that were reused over 
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multiple periods), an increased presence in monument construction, rural occupations, 

and alterations to the landscape during the Late Classic poses an interesting insight into 

the development of the populace in the region (Sullivan and Valdez 2004:190; Healy et 

al. 2007). The two models that have been utilized to illustrate that development are based 

on prosperity and land availability. Those motivations based on prosperity center on 

political tensions that were both distant (predominately resulting from pressures between 

Tikal, Caracol, and Calakmul. Sharer 1994:210-217), and local (such as: Rio Azul, La 

Milpa, and Dos Hombres. Houk 2003:60-61). Pohl et al. (1996:366-367) postulate more 

distant environmental causes that reflect a continual rise in sea-level, and consequently 

inland freshwater sources (see: Figure 11 for core tests suggesting rises in sea and inland 

water). Following Pohl et al. (1996), the resultant decrease in available land in coastal 

regions may have encouraged populations to migrate further inland in search of a more 

productive landscape.  
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Traditional paradigms of Maya social organization have often focused on 

hierarchical relationships between elites and commoners to illustrate social constructions 

(Chase and Chase 2003; Neff 2010; Coe 2011). While valuable in many respects, those 

portrayals overshadow the fundamental synergy of commoner interactions. Scarborough, 

Valdez, and Dunning (2003) followed Crumley’s (1995) proposal for mitigating that 

deportment by applying the concept of heterarchy to hinterland communities. The goal 

was to better comprehend those dynamic factors of the economy that were affected by 

non-elites and the environment. Crumley (1987) defines heterarchical systems through 

the presence of unranked elements that are relative to each other, or by those that 

maintain the ability to be ranked under a variety of other factors. By exploring the ways 

Figure 11: Reconstruction of sea level and water level rise based on proxies from Chetumal Bay as 

well as on the flood plain. After Pohl, et al. 1996. 
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in which the commoner contributed to the political economy through a heterarchical 

perspective, one may be better equipped to develop a more authentic image of Maya 

social structure (Scarborough and Valdez 2003). When considering economic inputs from 

agriculture, Kunen and Hughbanks (2003:93-94) employed patterns witnessed in other 

forms of resource specialization, such as lithic and ceramic manufacturing, to make the 

point that agriculturalists independently operated on the community or household level. 

In their analysis, Kunen and Hughbanks (2003:101-105) utilized Potter and King’s 

(1995) model to illustrate that those communities or households that practiced agronomy 

were (1) internally oriented through the desultory aggregation of agricultural features 

such as: terraces, berms, and rock piles. The proximity of settlements to environmental 

zones strongly suggested the concentration of resources when accompanied by localized 

labor inputs. (2) The consolidation of labor would have enhanced production. 

Specialization as witnessed through the construction of terraces, berms, as well as the 

positioning of rock piles displays a unique commitment to the understandings of 

landscape modifications as they pertain to agronomy.  

While discernable data concerning resource cultivation on a horizontal social 

platform is limited, Hageman and Lohse (2003) demonstrate heterarchical formations in 

the suburban regions surrounding Dos Hombres through evidence of coordination on the 

community or household level. As noted in the introduction to Heterarchy, Political 

Economy, and the Ancient Maya: The Three Rivers Region of the East-Central Yucatán 

Peninsula, Scarborough and Valdez (2003) proposed incentives for suburban site choice 
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as being related to favorable topography, fresh water accumulations, and soil properties 

that were conducive to cultivation. Consequently, Hageman and Lohse (2003:113) 

contend that those migrant populations would have been forced to deal with the effects of 

environmental degradation that commenced during deforestation of the Middle 

Preclassic. The combination of required labor inputs to reorient the landscape (and those 

requirements associated with continual cultivation), as well as the corresponding 

evidence of increased migrations into the region present optimal conditions for the 

formation of unified communities.  

 One such suggestion of unified communities is Lohse’s (2004) characterization of 

the corporate group. As Lohse puts it (2004:132-133) a corporate group is defined as a 

settlement that consisted of multi-family groups that shared a common lineage. 

Moreover, those groups were typically unified in resource production and displayed 

evidence of social ordering that was oriented to the control and management of resources. 

Cross-culturally, the development of corporate groups has been considered a 

manifestation of a decentralized political structure and limitations in access to resources 

(Hayden and Cannon 1982). For the purposes of identifying the presence of a corporate 

group Hageman and Lohse (2003:113-119) argue that the group may express a stratified 

status arrangement, control over production, residential proximity to resources, and 

structures representative of administrative function. Examples, as provided for by Fedick 

(1995), Neff, et al. (1995), and Kunen (2001) help to illustrate the notion of resource 

production facilitated by corporate land holdings through indications of management and 

contiguity (Figure 12). In contrast to those systems that were considered corporate in 
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nature, Scarborough and Valdez (2003) offer a perspective that suggests growth and 

development based off of environmental and temporal pressures. As such, those 

“resource-specialized communities” within the Three Rivers Region failed to consistently 

yield evidence of stratification within their local communities. Scarborough and Valdez 

(2003:5) go further to suggest environmental factors as the agency behind unification 

through the repetition of site choice preferences. While other options may have existed 

for resource exploitation, the consolidation of efforts into specific resource strategies 

could have explained the complicated nature of the Late Classic political economy.  
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While the existence of these corporate communities signifies land holdings 

indicative of localized control the question as to how they appropriated influence within 

the political economy of the region is less obvious. Ethnohistoric accounts documented 

by the Spanish detailed marketplace activities that incorporated farmers who exchanged 

surplus agricultural goods (Tozzer 1941). Additionally, Wolf (1955:459) advocated for a 

complementary relationship between corporate communities and the economy. However, 

Neff (2010:261) suggested a tributary purpose for surplus materials in his study of 

political economy in the hinterlands of Xunantunich. While archaeological evidence 

within the Three Rivers Region is sparse, King and Shaw (2003, 2006 and 2007), and 

Shaw and King (2016) have worked to identify architecture and behaviors associated 

Figure 12: Images show structural orientation with agricultural areas. Top left: Illustration of the landscape 

in the upper Belize River valley, by Fedick 1994: 121, figure 10. Right: Agricultural zone 1 in the Far west 

Bajo of La Milpa, after Kunen 2001:336, figure 5. Bottom left: Mapped settlements near the site of Dos 

Chombitos, by Neff 2010:254, figure 11.2. 
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with marketplace activities at Maax Na. Structural evidence of marketplace plausibility 

was noticeable in the west plaza of Maax Na through the presence of unobstructed 

entryways leading into the area. Those gateways would have allowed marketers access to 

areas of exchange, while other passages remained secluded or obstructed. Furthermore, 

the structures that framed the west plaza appeared abnormally smaller in height and 

width, which the authors suggested would have allowed ample space for marketplace 

stalls. While soil testing for geochemical markers within the west plaza was insufficient, 

elevated phosphorus (P) levels within the plaza correlated to Terry et al.’s (2016) 

geochemical study of marketplaces at the site of Coba in Quintana Roo.  

In a sense, Maya Lowland marketplaces would have allowed for central spaces 

for exchange of small scale trade, while also incorporating a wide range of surplus goods 

such as: agricultural materials, ceramics, and lithics, to name a few. Scarborough and 

Valdez (2003) propose these areas within regional centers as ideal for that function, 

however, identification within the Three Rivers Region has been limited and mostly 

depended of the work of King and Shaw (2003 and 2007). Nonetheless, farming 

households and communities would have been likely dependent on successful 

cultivations on a continual scale. The results of which could have significantly 

contributed to subsistence needs, rates of exchange, and / or excise fees. In large part, the 

active participation of farming communities in their local political economy was 

dependent on resource management in terms of both labor and land. The proposed 

rehabilitation and subsequent modification of the landscape would have required 
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extensive commitments of labor over an expanded period of time as well as a focus on 

methods of land modification and cultivation. 

Factors in Agricultural Production in the Central Lowlands 

Late Classic agrarian production in the Central Maya Lowlands was comprised of 

a variety of techniques that were used to satisfy dietary needs and to stimulate local and 

household economies. Several tree species, such as: ramon, cacao, sapodilla, and avocado 

are considered to have been available to the ancient Maya, as well as an assortment of 

other grain, bean, squash, and root species (Zier 1980; Sharer 1994:446; Sheets et al. 

2012). The adoption of isotopic analysis has allowed researchers the ability to identify the 

parameters of individual consumption in the Central Lowlands (White and Schwarcz 

1989). Additionally, the analysis of pollen and phytoliths within the soil’s matrix has 

provided indications of plant species that grew naturally and those which were cultivated 

within the region (Guderjan 2007), as well as in the wider Central Lowlands (Webb et al. 

2004). While traditional views of Maya agriculture were firmly in support of swidden 

technology as the dominant form of production, contradictions in the capabilities of 

swidden farming associated with regional population estimates caused that view to falter 

(Drucker and Fox 1982. Although conventional wisdom suggests the use of a variety of 

production methods, Late Classic cultivation in northwestern Belize has been considered 

to coincide with community dispersal along the landscape. (Scarborough and Valdez 

2003). It has been well documented (by: Beach et al. 2003; Scarborough and Valdez 

2003; Kunen 2004; Beach et al. 2011) that the type and variety of agricultural 
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installations were dependent on environmental factors (primarily: local topography, 

hydrology, and soil accumulations), as well as social factors, including: labor inputs. The 

three methods of cultivation which have been reported within the Three Rivers Region 

include: milpa environments, terracing, and bajo extraction zones. However, due to the 

nature of this project, only terracing will be discussed below. The following section will 

begin with a brief report on Late Classic cultigens, and then proceed into a detailed 

account of terracing within the Central Lowlands. 

Consumption and Cultivation 

The presence of several tree and plant species have been documented within the Central 

Lowlands, as well as the wider Maya region (Fedick 2010; Ross 2011). While some 

questions remain regarding the extent to which many of those tree and plant species were 

consumed, the analysis of historical records, in addition to pollen, phytoliths, and stable 

isotopes have provided some insight into the dynamics between cultivation and 

consumption. As with previous historical records that documented early interactions with 

the Maya, the great bulk of material regarding observations of Maya diets is derived from 

Spanish accounts, as well as those of later colonizing forces (Tozzer 1941). Consumed 

and cultivated species were noted to include maize (Zea mays), and beans (Phaseolus), as 

well as peppers, cacao, and a variety of fruit and root crops (Tozzer 1941). It should be 

noted that the Spanish also identified the cultivation of cotton, which was likely used for 

textile production (Jones 1994). Of the foods consumed, plant remains formed the 

principal element of subsistence, while animal products assumed a supplemental role.  
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While those historical accounts have been considered a fundamental (if not 

fragmented or biased) source for reconstructing Maya subsistence patterns, contemporary 

methods have provided a much more complex depiction of consumption and cultivation. 

White and Schwarz’ (1989) isotopic analysis of remains identified in the Central 

Lowlands of Belize has yielded important details of consumption on a social and 

temporal scale. In their study, White and Schwarz (1989:463-464) show the importance 

of C4 species such as maize in the diet. Although little variation of maize consumption 

was identified between elite and non-elite context, the authors suggested a slightly lower 

than average δ13C ratio for one of the elite remains, which also appeared to possess 

higher δ15N values signifying increased aquatic species consumption. In lieu of those 

results, Pohl et al. (1996:110) contended that the bulk of subsistence in the Central 

Lowlands consisted of locally available resources, while also speculating that maize 

consumption may have been higher on average within elite clusters.   

Pollen studies have contributed significant understanding into the vegetation of 

the Central Lowlands through a focus on the analysis of pollen spores trapped within the 

soil’s matrix. By complementing pollen and isotope analysis with absolute dating 

methods, researchers have not only worked to reconstruct the paleo-environment, but also 

better understand the production of maize (Zea mays). As a result, Pohl et al. (1996:368) 

has estimated the introduction of maize and manioc into the Central Lowlands of Belize 

by BCE 3400, which correlates well with findings from Fritz (1994), and Long et al. 

(1989) in highland Mexico (Figure 13). According to White and Schwarz’ (1989:463) 
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isotopic analysis, C4 consumption during the Preclassic period was high and remained so 

through the Early Classic. Those levels were reduced during the Late Classic at the 

Central Lowland site of Lamanai, where C4 consumption appears to have been replaced 

by C3 species (such as: ramon and root crops. See: Figure 14). The eventual decrease in 

C4 consumption as well as the increase in C3 species in the diet may be attributable to 

diminishing populations or seal level rise that occurred during the Late Classic.

 

  

Figure 13: Image displays pollen and charcoal samples retrieved from Cobwebb Swamp in Belize. 

Courtesy of Pohl, et al (1996:362, figure 4). 
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Overall, the adaptability of the Central Lowland Maya was not only visible in 

their conformation to social constraints, but also to environmental pressures as habitable 

and arable landscapes became inundated. As witnessed above, migrations into the Three 

Rivers Region during the Preclassic and Classic periods (with an emphasis on mass 

migrations occurring during the Late Classic), as well as changes to consumption and 

cultivation in the wider Central Lowlands, help to illustrate their utility in managing 

mechanisms of change. That versatility has also been observed in the agricultural 

methods that were employed in resource production. Although the variety of methods 

were dependent on the landscape, their organization of labor and subsequent construction 

highlight efforts to adapt to social and environmental limitations. As such, the following 

section will delve into the implementation of terraces within the Central Lowlands, with 

an emphasis of those uncovered within the Three Rivers Region. 

Late Classic Geotechnical Construction in the Three Rivers Region 

Evidence of geotechnical construction in the Central Lowlands region presents an 

alluring view of Maya adaptability to complex environmental and social processes. 

Environmental degradation, spurred by deforestation, would have likely exposed hillside 

regions to episodes of erosion that were enhanced by periods of increased rainfall. The 

loss of soil, and consequently the soil’s nutrients, would have severely limited the 

possibility of cultivation in these areas without the adoption of methods of soil 

conservation and water management. Many view the coalescence of communities around 

hillside cultivation as respondent to the unique environmental conditions that were 
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presented (Kunen 2001:326; Scarborough and Valdez 2003:5). The infusion of those 

resources into the local political economy would have further stratified the hierarchical 

nature of commoner interactions.  

Although it is difficult to trace the derivation of Central Lowland terrace 

technologies, their widely shared function of soil retention is accomplished through a 

gradient reduction that allows for management of runoff across sensitive areas (Figure 

15). Several terraced features have been investigated across the variable topography of 

the Three Rivers Region at sites such as: La Milpa (Hammond et al. 1996; Kunen 2001), 

Guijarral (Hughbanks 2006); Las Terrazas group (Hageman and Lohse 2003); within the 

suburban regions of Dos Hombres (Trachman 2006); as well as along the Rio Bravo 

escarpment (Paxton O’Neal 1999). Additionally, several terrace formations have been 

witnessed within the Dos Hombres to Gran Cacao Archaeology Project (Boudreaux and 

Sullivan 2015:62; Cortes-Rincon 2015:125; Cortes-Rincon 2016, personal 

communication). Those witnessed manifestations have occurred adjacent to a small 

upland ceremonial center as well as throughout the transitional environmental zones of 

Figure 15: Illustration of a hillside modified from a slope to a terraced formation. Note the decline in 

gradient would lessen the flow of water and run-off, Healy 1983. 
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the hinterlands between Dos Hombres and Gran Cacao. While terrace functions appear to 

conform to examples encountered across the Central Lowlands, the development and use 

of installations within the Three Rivers Region appears essentially limited to the Late 

Classic Period (Table 1). Irrespective of their chronology, the establishment of 

geotechnical structures has been regarded on their ability to ease soil erosion and create 

planting platforms through the control and diversion of runoff, as well as the 

accumulation of soil upslope of retaining walls. Although two basic designs of retaining 

walls have been observed (the single walled and doubled walled versions) within the 

Three Rivers Region, the most prominent type observed has been the double walled 

design which would have provided increased stability against the shear stress of adjacent 

soils. 

Retaining wall design. Contemporary literature focusing on geotechnical construction 

implies three basic criteria for retaining wall design. Those criteria gauge the structure 

based on its ability to withstand lateral earth pressures and the foundation’s capacity to 

maintain the stability of the structure (Caltrans 2004: 5.6.4; Brooks and Nielsen 2013: 7; 

Table 1: Radiocarbon dating of Samples from buried context near terraced and bajos in the Three Rivers 

Region. Courtesy of Beach et al. 2002. 
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and Keskin 2017: 27). Although it is injudicious to assume Maya understandings as 

parallel to conventional wisdoms, the stability of Late Classic geotechnical constructions, 

as witnessed by researchers more than a millennium after their inception, demonstrates 

the attention that was directed towards the reliability of structures. Failure of a retaining 

wall rests on the feature’s stability and ability to withstand the active pressures generated 

from the upslope soils behind the wall and which force the structure away from the 

retained soils. Additionally, the passive pressures (which require greater force) 

originating from in front of the wall act to force the structure into the retained soils (see: 

figure 16, and also: Lee et al. 1983: 248–268 Al-Khafaji and Andersland 1992: 353-383; 

Bray 2003: 22.1-22.6). While several methods are currently employed to retain soils, the 

Late Classic Maya utilized those materials which would have been available to reach 

their desired outcome.  
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  As previously mentioned, retaining wall design in the Three Rivers Region 

consisted of either single or dual walled structures that were supported by fill consisting 

of midden materials and cobbles. The walls that framed the structure have been described 

as being comprised of large unshaped limestone boulders of varying quality (Kunen 

2001:326-327; Beach et al. 2002:391: Murtha Jr. 2002:161). In single walled versions, a 

fill of rounded cobbles serves as an abutment to the structure. Whereas in double walled 

versions, equivalent arrangements of boulders are filled with midden materials as well as 

chert and/or limestone cobbles (Figure 17). The dimensions of retaining wall structures 

have been observed to range from 60 – 165 centimeters wide at the base, and 150 – 340 

Figure 16: Coulomb’s active earth pressure, with BC depicting the failure plane, W the weight of the failure 

plane from points A, B, C, N equals the shear force on plane BC, and F equaling the force of both S and N. 

After Das 2010:2-12, Figure 2.6 
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centimeters in height (Healy, et al. 1983:402). It should be noted that chich mounds 

resembling geotechnical constructions have been identified and investigated at La 

Milpa’s far West Bajo and Guijarral. Those structures appear to consist of single or dual 

retaining walls with a buttress of gravel, incased in chert nodules. While their presence 

appears to signify an intentional motivation for their construction, their erratic 

distribution suggests a more reactionary response to environmental conditions such as 

erosion caused by increased population and land use (Beach et al. 2002:392). In all 

previous investigations of regional geotechnical constructions, no evidence of mortar (in 

the form of limestone plaster) has been identified which suggest the retaining wall 

boulders were dry-stacked to form a gravity wall that depended on its weight to maintain 

form in light of adjacent earth pressures.  
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 Terrace construction. Terrace construction would have likely occurred in 

segments across a given hillside and a taken more than a decade to naturally fill in if 

using erosion as the method of soil redistribution. Observations by the Valles Altos 

conservation program in the Central and Western Andes of Venezuela, as well as in the 

western highlands of Guatemala have provided an assessment of terrace construction 

using only local materials (Williams, et al. 1986:35-41). The initial phase of construction 

as cited by Williams et al. (1986) commenced with excavations to bedrock that spanned 

the expected footprint of the retaining wall (Figure 18). By setting the foundation of the 

structure atop bedrock, designers would have been able to ensure foundational stability. 

For cohesive distributions of terraces across a given hillside, Treacy (1989:189) 

suggested designers in Peru’s Colca Valley preferred a bottom-up approach of 

installation to ensure efficiency. Once excavated, the large boulders that formed the 

Figure 17: Illustration of four types of retaining walls identified in the Three Rivers Region. Courtesy of Beach, 

et al. 2002: 380, figure 2. 
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retaining wall would need to be transported from their source to their destination. In the 

example described by Williams, et al. (1986:36), mechanical equipment eased the load of 

heavy lifting, however the Late Classic Maya would have been limited in methods of 

boulder transportation (there is no evidence of wheel or pack animal use). Once on site, 

the boulders would need to be positioned along the retaining wall with the larger boulders 

anchoring the base of the structure. Following boulder placement, a fill of midden 

material and/or limestone and chert cobbles would have been added to occupy voids in 

the rock structure. The levelling of the platform represents the final phase of construction 

and if using an incremental method, could take more than a decade to complete (Williams 

et al. 1986:38).  
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Figure 18: Method of terrace construction as noted by Treacy 1989: 40, figure 41. 
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Summary of terracing in the Three Rivers Region. Geotechnical investigations 

within the Three Rivers Region have uncovered several forms of retaining wall 

construction which seem to correlate with the landforms they were associated with 

(Beach et al. 1995:142-3). Those types include (1) contour terraces: which were built on 

slopes with a gradual degree of incline; (2) box terraces: that were typically found in 

association with households; (3) large footslope terraces: that were constructed at the foot 

of steep embankments, and; (4) check dams which worked to transport water away from 

a particular region. Regardless of the type, terracing was a labor-intensive venture that 

required attention in many different respects. The level of preservation required to 

maintain terrace farming would have included: the repair of collapsed walls, directing 

water flow, and ensuring soil fertility in the planting platforms. The maintaining of 

terraces would have required a constant commitment of labor over an extended period of 

time if the structure was expected to produce a yield over multiple growing seasons. If 

continual growth was the expectation (as opposed to swidden farming) the resultant 

depletion of nutrients would require soil fertilization which Beach et al. (2002:379) 

suggest may be identifiable through the increased presence of phosphorus in soils. Of 

consequence to soil fertilization and cultivation would have been the method of soil 

preparation for soils prior to planting. As noted by Flores-Delgadillo et al. (2001:113, 

118), the thin nature of soils along the Yucatán Peninsula discouraged tilling as a method 

of preparation (an observation that was also noted by the Spanish). In its place, farmers 

were likely to have fertilized those areas immediate to the surfaces in need. 
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RESEARCH METHODOLOGY 

As mentioned, the purpose of this project was to develop a clearer understanding 

of the land management strategies represented at the household residential group located 

at N350 / W125. With the central focus of this investigation squarely posited on 

hinterland resource production, the summation of past field work in and around this site 

provided an incentive to focus efforts on areas that showed evidence of landscape 

modifications associated with agricultural production. Of primary interest was the 

suggestion of terracing around the house group (Chenault and Boudreaux 2015: 33), 

which led to speculation of its function, be it for cultivation and/ or residential purposes. 

While the presence of residential terracing could provide insights into architectural 

designs aimed at increasing stability on varied landscapes, the presence of agricultural 

terracing could provide greater detail regarding resource specialization and cohesion 

among nearby house groups. With that in mind, a corollary goal of the primary objective 

was to verify the extent of terracing present. Previous surveys in the area suggested the 

possible inclusion of a nearby house group within the confines of the previously observed 

terrace (Cortes-Rincon 2015, personal communication), and if the case was proven, may 

suggest the motivation behind the structure being agricultural as opposed to residential. 

Beach, et al. (2002: 379) eluded to the difficulties experienced when identifying terrace 

construction across the landscape which included naturally occurring features that held 

the ability to resemble terrace construction. These included tree falls that occurred in a 
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horizontal fashion across hill slopes masked by subsequent soil deposition, as well as 

stratified sedimentation that resembled beveled surfaces.  

Of significant importance to the presence of terraced features was the design of 

the retaining wall that was implemented to retain upslope soils. As noted above, soil 

retention strategies were primarily based on single or double walled varieties with 

inclusions of cobbles or midden materials serving as fill. The importance of geotechnical 

design can be realized through the structure’s ability to withstand lateral earth pressures 

expressed through soil and water accumulations adjacent to the retaining wall. Two key 

features that help to regulate retaining wall stability are the presence of irrigation near 

retaining walls, which could lessen erosion and regulate the burden of pressure exerted 

from water build up, as well as the wall’s porosity which would encourage at-rest 

pressures. The third element of geotechnical stability rests in its foundation, and thus the 

structure’s ability to remain anchored in position relative to the surrounding soils. 

Previous examples of excavated geotechnical construction in the Three Rivers Region 

implies constructions occurring atop bedrock which would have provided substantial 

benefit to the dependability to the structure (Beach et al. 2006). Consequently, the 

identification of retaining wall structures would provide defendable evidence of terrace 

construction across the landscape.  

In addition to gaining an understanding of terrace scope and retaining wall design, 

this project sought to take measures of soil fertility along terraced expanses with the hope 

of identifying variation in the distribution of edaphic factors. Agricultural production 
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across a given landscape is complicated by a number of complex relationships that must 

be sustained in order to allow for the continuous cultivation of an area. That relationship 

is hindered further by the degree of gradient deviation present across cultivated fields. 

While it is difficult to reconstruct the ways in which the Late Classic Maya would have 

maintained the fertility of soils, the outcome of their efforts may reflect distinctions in the 

modern forested environment. Those distinctions may show evidence of past efforts 

through a number of effects that resulted from past intensive cultivation. More obvious 

indicators may include the health of modern vegetation in areas where vital nutrients 

were either depleted or concentrated. Additionally, modern plant development may show 

distress in areas immediate to geotechnical structures through the effects of root 

impedance. Less obvious indicators of past manipulation may also be represented in the 

distribution of plant essential nutrients, as noted by Beach et al. (2002:379).  

In an ideal environment, the essential nutrients needed by vegetation are provided 

through the nutrient cycle which recycles organic and inorganic materials into necessary 

nutrients for plants. Those nutrients include a range of macronutrients that are necessary 

in high quantities and micronutrients that, while consumed in smaller amounts, provides a 

large motivation for the development of enzymes and chlorophyll production (Verheye 

2011). The macronutrients that are in highest demand include: nitrogen (N), phosphorus 

(P), potassium (K), calcium (Ca), magnesium (Mg), and sulphur (S).  Of those six 

macronutrients N, P, and K are consumed at higher rates in cultivated crops which 

gradually increases throughout plant development (Alley et al. 2009). Bundy (1998) 
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calculated the total withdraw of N from soils by maize as 30 kilograms per hectare (based 

on the solid material of plants grown on various Wisconsin soils). In addition to the 

uptake of N from soils, 34 kg of K and 5.6 kg of P were needed to produce a healthy 

return. It was also noted that more than 60 percent of P consumption took place within 

the first 75 days after seeding (Figure 19). In the context of a continual cultivation, 

nutrient replenishment would be required to take place at an increased rate to compensate 

for the previous uptake of harvested yields. Nutrient rich materials that would have been 

available to the Late Classic Maya for soil fertilization include: human and animal waste, 

decomposing plant material, and nutrient rich soils from low-lying regions (Smyth et al. 

1995:339; Robin 2001:19).  

Figure 19: P consumption during the life of maize. Courtesy of Martz, et al. 2009: figure 2. 
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Working off of the assumption that the presence of terracing in an agricultural 

context implies the adoption of methods supporting continual, the questions that 

remained focused on the composition of geotechnical structures and the possibility of 

identifying evidence of past intensive production by examining the soil’s nutrient content. 

Those question hindered on the nutrient demand of the regrowing forest, as well as 

processes of erosion since the site was last occupied more than a millennium ago, and 

that threatened to hinder current interpretations. Two of those processes are post-

occupational erosion, which was identified by Fisher et al. (2003) in the Lake Pátzcuaro 

Basin of Mexico, as well as the regrowth of the forest as noted by Brokaw and Mallory 

(1995) within the PfB. With those considerations in mind, this inquiry sought to 

understand the purpose of terracing present at the household group of N350 / W125 and 

to expose the ways in which soil was retained through retaining wall design. An 

additional goal of this project was to pursue indications of past fertilization by measuring 

the soil’s fertility in order to identify possible variations within the soil’s matrix. The 

achievement of those goals was based on data derived from fieldwork at the household 

group of N350 / W125, as well as comparative data in the surrounding region to answer 

the questions of:  

1. Did terracing at the household group of N350 / W125 represent residential or 

agricultural purposes? 

a. Does the extent of terracing present imply stratified associations 

between those household groups encompassed by the feature?  
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2. Have geotechnical structures provided tolerable compensation against lateral 

earth pressures and erosion?  

a. Are similarities in the design and purpose of retaining walls at N350 / 

W125 comparable to previously identified retaining wall features in the 

region? 

3. Can evidence of past fertilization strategies in continuously cultivated areas be 

distinguished from the surrounding landscape by measuring phosphorus 

availability? 

a. Can phosphorus availability suggest an exhaustive cultivation strategy, 

or does it signify adequate fertilization? 

Field Methods 

This project utilized geographical information systems (GIS), surface surveys, 

excavations and soil analyses in order to accomplish the goals of identifying agricultural 

terracing and to uncover possible indications land management. Efforts began during the 

spring of 2016 with the analysis of images acquired from satellite-based remote sensing. 

Due to limitations in landscape visibility resulting from the thickness of the rainforest’s 

vegetation, pre-fieldwork analysis relied heavily on vegetation density and health to 

approximate the presence of geotechnical construction and areas of past cultivation. This 

was done through the employment of the Normalized Difference Vegetation Index 

(NDVI) for the area of interest which measured the absorbance and reflection of solar 
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radiation by vegetation. Surface surveys, mapping, excavations and soil sampling 

occurred during the summer of 2016 with the generous assistance of Humboldt State 

University field school students, staff members, locally hired workers, and volunteers. 

Following the field season, all soil samples were exported to Humboldt State University 

for analysis within the Core Facility of the College of Natural Resources and Sciences. 

Additionally, geospatial data obtained during the field season by crews using a total 

mapping station, as well as data made available by Light Detection and Ranging 

(LiDAR) was analyzed with the aid of ArcMap 10.5.1. The following sections will 

provide additional detail regarding those methods used in the field as well as those 

undertaken in the laboratory.  

Survey 

During the 2015 field season, crews surveyed the transitional forest surrounding the 

house group situated at N350 / W125. This included the household group located at N250 

/ W75 which was situated approximately 70 meters away from the southwest border of 

the platform located at N350 / W125. Additionally, the area surrounding the residential 

area of N750 / W0 was surveyed in attempts to identify and land management strategies 

previously in practice. Surveys utilized the grid system that was previously created by 

members of the DH2GC (Cortes-Rincon 2012b, 2013; Cortes-Rincon et al. 2013; Perkins 

2012; Boudreaux 2013) to frame the area of interest. Sighting compasses were employed 

to ensure bearing during surveys, and observed features were marked using a Garmin 

Etrex Hcx GPS. The areas surrounding the house groups were mapped using a Nikon 

total mapping station. 
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Excavation 

Following the observation of retaining wall features, a shallow trench was placed on a 

north-to-south axis running perpendicular to the retaining walls and extended ten meters 

beyond those areas were retaining walls were noticeable. Two, one-meter by half-meter 

excavation units were placed on the north and south rims of each retaining wall in order 

to expose a cross-section of retaining walls, and excavated to depths depending on soil 

change. Each excavation unit was denoted by a sub-operation letter, and concluding 

depths were labeled as lots. Excavation units were expanded as needed and typically were 

used to extend the visibility of geotechnical constructions. Each unit was excavated with 

trowels and screened through 1/8th inch mesh. Difficulties in excavation necessitated the 

use rock hammers in some areas. In total, five excavation units were opened, the majority 

of which proceeded until bedrock to ensure complete exposure. All collected materials 

were transported to the field laboratory of the R.E.W. Adams field camp for analysis. 

Soil sampling 

The sampling strategy devised was developed to include an area of the previously 

identified terraces as well as an area of land that was not contained within the feature. 

Grids were established with the use of wood stakes and spaced in 10-meter intervals 

along a northerly bearing of 92°. Following the establishment of the grid, the contained 

area was surveyed for surface artifacts. Test pits were excavated by shovel as well as with 

the use of a post-hole digger. Each test pit was designated by a sub-operation letter, with 

lots defining the depths of soil characteristics. Soil samples were collected from each 

horizon within the test pit using a sterile trowel and stored in Uline Whirl-Pak soil and 
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specimen sample bags. On average, 130 grams of soil was collected in each horizon, 

although some variation in sample size resulted from the presence of soil with high 

amounts of sediment. Previous excavations at this site during the field season of 2015 

provided the goal for shovel test depth by exposing the underlying stratigraphy along the 

terrace platforms. As a result, test pits corresponded with the soil horizons that were 

evident through excavation and extended no less than 40 centimeters, while in some areas 

excavations achieved deeper depths in order to correspond with the horizons present. The 

first grid that was established was placed along the western reaches of the household 

group at N350 / W125 and comprised a total area of 1,500 square meters across a gently 

sloping landscape that was moderately forested in areas. The second grid at N350 / W125 

was established along the northeastern reaches of the household group and purposed with 

sampling the terrace platform that extended from the shoulder of the hill slope. In all, 

2,000 square meters were sampled from the site located at N350 / W125. Soil sampling in 

the area of N750 / W0 was intended to provide comparative data for the soil testing that 

was completed at N350 / W125. The area immediately surrounding the household groups 

was variable to the south and leveled out as it stretched towards the Rio Bravo in the 

north. In similar fashion to the grids that were developed at N350 / W125, the grids at 

N750 / W0 were set using wood stakes that were set at ten-meter intervals. The total area 

that was sampled equaled 900 square meters. 
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Laboratory Methods 

NDVI 

Prior to the commencement of fieldwork, the Normalized Difference Vegetation 

Index (NDVI) of the area was analyzed in order to identify ranges of vegetation health. 

The basic principle behind NDVI is that as healthy plants absorb solar insolation, they 

also reflect green and near infrared light (NIR). This process is driven by the absorption 

of red (650 nm) and blue (475 nm) light by chlorophyll in plants, and the reflection of 

green (510 nm) and NIR (700 nm to 1 µm) by a healthy leaf’s cellular structure. 

Conversely, unhealthy plant life reflects more visible light and less NIR light. Visible and 

NIR light can be remotely detected through the use of a multichannel Advanced Very 

High-Resolution Radiometer (AVHRR) and allows researchers the ability to calculate the 

light reflected by plant life through the following algorithm: (NIR – R)/(NIR+R). The 

results of this equation range from -1 to 1, with healthier plants occupying ranges closer 

to 1 (Gillies, et al. 2010). The adoption of NDVI in the planning stages was intended to 

aid in the location of areas that reflect less than adequate conditions for plant health along 

abandoned terrace structures. Those conditions were expected to range from areas that 

suffered from nutrient depletion, to the presence of retaining walls that would inhibit 

growth. 

Soil testing methodology 

The relevance of using P availability as a proxy for past fertilization is derived 

from its necessity in plant growth, as well as its limited mobility in the soil. As 



82 

 

 

mentioned, P is classified as a macronutrient due the quantity required by plants relative 

to other nutrients (Leytem and Mikkelsen 2013). It should also be noted that while 

consumed in relatively high amounts, P deficiencies act to severely limit plant growth 

(Usuda and Shimogawara 1991). Those limitations are due to P’s role in the transfer of 

energy, photosynthesis, respiration, as well as cell division and growth. In the soil, P’s 

behavior is unique in that it remains relatively immobile due its highly reactive nature 

(Holford 1997). This reactive nature allows P to interact with air, water, and soil to form 

orthophosphates that are less soluble than other minerals (Leytem and Mikkelsen 2013). 

P is primarily found in the three forms within the soil, and exist as a phosphate ion when 

combined with other elements. In its simplest form, the phosphate ion PO4
3-

 results from 

P’s interaction with H2O. The soil’s pH also directly affects P’s reactiveness with acidic 

conditions being conducive to the formation of the Dihydrogen phosphate H2PO4-. In 

contrast, soils with a higher pH, and thus more alkaline encourage the configuration of a 

hydrogen phosphate, HPO4
2-.  

While P ions may exist in several different forms within the soil, P is considered 

to be divided between three pools of accumulation, the solution, active, and fixed pools. 

Solution P represents the smallest of the three pools and accounts for the P that is 

available to plants in the form of orthophosphates. In this form, P has more mobility due 

to its solubility and is consumed by plants primarily through diffusion (Leytem and 

Mikkelsen 2013). The active pool is classified as the solid phase of P in soils that 

provides the source of P for solution pools. The primary form of P in active pools is 
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considered to be inorganic phosphates that are adsorbed to particles in the soil and which 

have the propensity to form soluble compounds that are reactive to Ca and Al. The third 

pool of P contains insoluble inorganic and organic compounds that are unyielding to 

mineralization by the soil’s biota (Stewart and Tiessen 1987). Those long-lived 

compounds account for the majority of P in the soil, and are a result of the absorption of 

P with elements in the soil. The method used by this project to measure the availability P 

used an extraction method developed by Mehlich (1984) and utilized weak acids to 

dissolve portions of the Ca, Fe, and Al compounds in soil. Colorimetric analysis of 

available P was facilitated through the adoption of the ascorbic acid method that is based 

on the principle that orthophosphate ions in an acidic molybdate solution forms a 

phosphomolybdate complex that can be reduced using ascorbic acid.  

Sample analysis. The methods described represent those utilized by this project 

and are defined by those that have shown to be effective by Mehlich (1984). The process 

involves three major steps (preparation, extraction, and analysis) that are each followed 

by additional processes to ensure reproducibility. While the method used by this project 

varied somewhat from Mehlich (1984), testing has indicated reliable results to those 

utilizing Mehlich’s (1984) original version. Variations were based on the volume of 

extractant used and attempted to limit the amount of excess solution required as 

compared to that needed for analysis. The results of preliminary testing on soils from 
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northern California showed little variation between the results of the recommended 

volume of extract and that of the reduced (by 1/2) volume (Figure 20). 

In accordance with Mehlich (1984), nutrient extraction was facilitated through 

mechanisms of solubilization using acetic (CH3COOH) and nitric acids (HNO3). Acetic 

acid has been found to decompose apatite, as well as keeping the solution below a pH of 

2.9 which prevents the precipitation of calcium fluoride. Additionally, the combination of 

acetic and nitric acids increases the solubility of Fe and Al phosphates while extracting a 

portion of available Ca phosphates. The use of ammonium fluoride (NH4F) in the 

extractant displaces P anions, while ammonium nitrate (NH4NO3) is exchanged with 

complex Al cations. The presence of EDTA allows enhanced micronutrient extraction by 

acting as a chelating agent. The processes of sample preparation and extraction are listed 

below.  

Figure 20: Results of test measuring change in volume of extractant and mass of soil sample. 
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Sample preparation 

Step 1: Air dry samples for 24 hours prior to extraction.  

Step 2: Sieve or grind soils through a 10mm screen. 

Sample extraction 

Step 1: Weigh 2.0g (+/- .05) of fine ground soil and add to 50mL sample vial. 

Step 2: Combine 12.5 mL of Mehlich 3 Extraction solution to the sample tube 

containing soil sample. 

Step 3: Shake samples using a reciprocating shaker for five minutes at 200 

oscillations per minute. 

Step 5: Filter extract using a polytetrafluoroethylene (PFTE) membrane with a 

pore size of 0.45 μm for syringe filtration. 

Step 6: Transfer 1mL of extract to a corresponding glass test tube. 

Preparation of reagents 

Step 1: (Reagent A) Combine 3.0g of Ammonium molybdate, antimony 

potassium tartrate, and sulfuric acid (H2SO4 should be prepared separately 

according to recommended methods using 40mL concentrate), and bring to 

500mL using deionized water. 

Step 2: (Reagent B) Should be prepared as needed. Add 2.64g of ascorbic acid to 

reagent A. bring to 500mL with deionized water. 
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Extract analysis 

Step 1: Add 500 µl of sample extract to 1.5 ml of deionized water, and 500 µl of 

combined reagent A and B. 

Step 3: Allow samples to develop a blue coloration for no more than 30 minutes. 

Step 3: Transfer 200 µl of solution to a black 96-well clear bottom -plate to 

measure solution absorption with a spectrometer set to 882 nm. 
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FIELD AND LABORATORY RESULTS 

The field work conducted at N350 / W125 resulted in the identification of two 

retaining wall features. The first terrace identified was located by a prominent line of dual 

limestone boulders that protruded through the surface of the soil. This feature appeared to 

originate approximately 10 meters beyond the household group platform and continued in 

an easterly direction for approximately 40 to 50 meters before becoming 

indistinguishable with the landscape. A second, subjacent retaining wall was also 

recognized by the protrusion of dual limestone boulders that followed the contour of the 

landscape to the west of the household group. While the subjacent feature appeared to be 

constructed in a less robust fashion than the aloft retaining wall, it extended from beyond 

the northwestern reaches of the house group in a southerly direction for more than 80 

meters. Although the western retaining wall eventually became indistinguishable with the 

landscape, its path followed the contour of the landscape around the northwestern edge of 

the nearby house group of N250 / W75. Both retaining walls that were identified 

appeared to maintain a double-walled form with construction fill of small limestone 

cobbles and midden material. Both features also utilized the bedrock as foundation for 

support.  

Survey and Excavation Results 

The first retaining wall that was located was observed along the northern 

perimeter of the household group at N350 / W125 and designated as terrace feature 

number one. This feature was identifiable by the prominent line of large limestone 
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boulders that protruded through the surface of the soil. Continued surveying along the 

northeast quadrant of the house group identified a continuation of that linear stone pattern 

that followed the contour of the gradually sloping landscape. It appeared as though the 

soil eroded from upslope to cover the retaining wall in some areas. Evidence of this 

geotechnical structure began to the north of the northern most platform and continued 

intermittently for an additional 40 to 50 meters before turning towards a southerly 

direction and becoming indistinct with the surrounding landscape. The placement of large 

(30 to 50 centimeters in diameter), sub-angular stones that primarily consisted of 

limestone provided the best way to delineate the stone wall feature (Figure 21). 

Identification of the second retaining wall was less easily identified due to the lack of 

above-ground features as compared to the higher terrace.   
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The irrigation channels that were identified during previous research were 

revisited in an attempt to define their origin. Conclusions of that investigation identified 

two separate channels emanating from the southern reaches of the house group that 

appeared to unite and terminate at the northernmost aguada along the southern periphery 

of the house group. Cut stones appeared to have been strategically placed along the route 

to redirect ground water towards those southern aguadas (figures 22 and 23). 

Additionally, a fourth aguada was located to the north of the house group. The fourth 

aguada was positioned approximately seven meters beyond the northern terrace and 

appeared to be slightly larger than those located south of the house group. Excavations 

were originally placed in areas where it was estimated they would expose of a cross 

section of the terrace retaining wall. This was done through the employment of a 17-

meter-long and ½-meter-wide trench that spanned the widths of both observed terraces. 

Prior to installing the excavation units within the narrow trench, the area was surveyed 

for surface artifacts and the humus layer was removed.  
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Figure 22: Irrigation channel that directed water to the south of the house group at N350/ W125. 

Top image is the overhead view. Photo credit Byron Smith 
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Sub-Operation D 

Sub-Operation D was located to the north of terrace feature one and extended from what 

was assumed the midpoint of the retaining wall and continued for one meter along the 

confines of the skinny trench. The surface of the outlined area consisted of sparse 

vegetation and roots within a soil that was classified with a very dark greyish brown hue 

(5yr 3/2). Surface surveys prior to excavation uncovered no artifacts. 

 Lot 1.The uppermost horizon maintained a dark greyish brown hue, with a 

significant portion of organic matter. This allowed crews to identify this lot as the O 

horizon and extended for roughly five centimeters before terminating into a subsequent 

horizon. The artifacts that were recovered from this lot include several small utilitarian 

ceramic sherds (less than two centimeters in diameter) of Late Classic origin (Boudreaux 

2016). Additionally, several obsidian prismatic blades were observed along the northern 

section of the lot.  

Lot 2.The second lot began with the observation of a change in the soil’s hue to a 

very dark grey (10yr 3/1) that contained little organic matter and a number of small 

utilitarian lithic and ceramic artifacts that maintained a likeness to those uncovered in lot 

1. Additionally, the medial portion of tertiary prismatic blade of El Chayal origin (Cortes-

Rincon 2016, personal communication) was uncovered within the topsoil. Excavation in 

the topsoil of lot 2 uncovered several large stones consisting of limestone that exceeded 

20 centimeters in diameter. Additionally, a large quantity (greater than 60) of small (less 

than 8 centimeters in diameter) sub-angular and cut stones were observed.  
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Lot 3. During the excavation of subsoil, it was noted that the large stones that 

began to appear in lot 2 were much larger than expected. The sub-angular limestones 

were greater than 40 centimeters in diameter and extended through the eastern and 

western profiles of the unit. The soil in this lot developed a lighter hue which was 

identified as a dark grey (10yr 4/1) with no organic matter. A total of 44 ceramic sherds 

were recovered from the final few centimeters of lot 3, most of which appearing to be 

tightly packed between the fill stones that also occupied this region. The proximal end of 

a secondary prismatic blade sourced to El Chayal (Cortes-Rincon 2016, personal 

communication) was recovered along the northern reaches of the unit which contained 

evidence of lateral nicking. Additionally, the shell of a salt water mollusk was recovered. 

There continued to be a large amount (greater than 40 in count) of small (less than 8 

centimeters) sub-angular and cut stones within this lot although the average size became 

greater. 

Sub-Operation E 

The purpose of Sub-Operation E was to provide an alternative view of the terrace’s cross-

section that was initially exposed by Sub-Operation D. Lots were determined by the 

stratigraphy of the soil. The orientation of Sub-Operation E remained consistent with the 

previously mentioned skinny trench and extended for one meter from the suggested mid-

point of the retaining wall. Vegetation along the surface of the unit was sparse, and the 

crest of a single limestone deposit extended through the northwest corner’s superficial 

region. Initial survey of the unit revealed no surface level artifacts and the soil maintained 

a dark greyish brown hue (consistent with the humus layer of Sub-Operation D, 5yr 3/2). 
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 Lot 1. Excavations through the humus layer revealed several small (less than 8 

centimeters in diameter) non-diagnostic ceramic sherds of Late Classic origin, as well as 

what appeared to be the rim of a water bowl just beyond the northern edge of the 

retaining wall’s capstone (figure 24). A moderate number of lithic flakes were also 

observed, but not collected. Early into the excavation of lot 1, it became evident that the 

large stone located along the northwest profile of the unit was larger than previously 

expected. Additionally, several medium sized (less than 15 centimeters in diameter) sub-

angular stones were deposited along the northern region. The placement of stones (both 

large and medium sized) in lot 1 suggested displacement due to erosion. Similarly, the 

limestone boulder marking the western limit of the retaining wall within the unit held a 

curvilinear cut form which appeared consistent with that of the large stone that extended 

beyond the surface layer of the southwestern corner of the lot (figure 24). 

Lot 2. The second lot was distinguished form lot 1 due to its very dark greyish 

brown hue (10yr 3/2); and it contained some organic material. The progress within this 

lot was hindered by the presence of several large- to medium-sized stones. Several 

ceramic sherds were observed, most of which were small (less than eight centimeters in 

diameter), non-descript pieces that shared a Late Classic chronology (Boudreaux 2016). 

There were a number of small stones (less than 6 centimeters in diameter) recovered from 

this lot, as well as those that were larger than 13 centimeters in diameter, some of which 

appeared to be cut stones.  

Lot 3. Early into excavation of lot 3, the fill stones (small, medium, and large 

sized) that were plentiful in lot 2 became much less abundant and were accompanied by a 
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dark grey soil (10yr 4/1) with some fine roots that extended into this region. Less than 40 

ceramic sherds were observed, all but nine being non-diagnostic, those that were 

diagnostic were worn sherds dating to the Late Classic. Additionally, lithic fragments and 

medial portion of an obsidian prismatic blade was observed and collected along the 

shallow regions of lot 3.  
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Figure 24: Image of outlined water bowl rim in situ. Photo credit, Byron Smith 
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Sub-Operation F 

After the exposure of the northern and southern section of the retaining wall’s cross-

section it was determined that a wider view of the wall design would provide a more 

detailed description. As a result, crews opened an extension of Sub -Operations D and E 

which was centrally positioned and extended for one meter in an easterly direction 

(following the bearing of the retaining wall). Previous survey of the surface area revealed 

no artifacts and surface vegetation was similar to the surrounding area. A large (greater 

than 50 centimeters) limestone capstone protruded from the surface of the lot along the 

southern boundary of the unit (the same capstone that was present along the northern 

boundary of Sub-Operation D). The humus layer maintained a similar hue to that of the 

surrounding humus layer. 

Lot 1. Excavations through the O horizon uncovered several ceramic artifacts, 14 

of which were greater than four centimeters in diameter and collected. The remainder 

were small (less than two centimeters in diameter) non-diagnostic sherds. Along with 

ceramics, several lithic flakes were observed and one prismatic blade was collected. A 

bias to small (less than 13 centimeters in diameter) fill stones was noticed, as opposed to 

those being larger than 13 centimeters in diameter (more than 40 were less than 13 

centimeters, six were greater than 13 centimeters in diameter). The soil within this lot 

consisted of a very dark greyish brown hue (2.5yr 3/3) and contained small roots that 

extended several centimeters beneath the surface of the soil. 
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Lot 2. The soil in lot 2 darkened into a black soil (10yr 2/1) that possessed 

moderate amounts of organic matter along the northern half of the unit and a lighter hue 

(almost consistent with the humus layer, 10yr 3/2) along the southern half of the unit. The 

line of demarcation for variation of soil color appeared to be along the reach of the 

retaining wall’s capstones. While there were some small fill stones recovered from this 

lot, it was considerably less that what was uncovered in the previous lot. Eight ceramic 

sherds were observed, three of those (which were greater than three centimeters in 

diameter) were collected.  

Lot 3. As a result of Sub-Operation F following the contour of the retaining wall, 

the stone distribution within the unit was dominated by medium to large sized sub-

angular stones that slowed the progress of excavations. The soil within lot 3 contained no 

organic material and held a light greyish hue that exhibited a large quantity of small fill 

stones. No artifacts were identified within this lot. 

Sub-Operations G and H 

Both Sub-Operations D and E were terminated at the conclusion of lots three which 

began to display the presence of a tightly packed cobble substratum with some ceramic 

fragments which appeared to extend throughout the entirety of the excavation units. The 

density of this horizon hindered progress, therefore the excavation units were halved in 

order to be as efficient as possible. The area of the new sub-operations was contained 

within a half-meter by half-meter area that extended from midsection of the respective 

units. The moderate and large-sized limestone cobbles (greater than 13 centimeters in 
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diameter) that were present in the previous lots of Sub-Operations D and E were no 

longer evident and artifacts were generally less plentiful. 

Sub-Operation G, Lot 1. The entirety of this lot consisted of small (less than eight 

centimeters in diameter) stones comprised of limestone and chert that were tightly packed 

alongside of ceramic fragments within a soil complex that maintained a dark greyish hue 

(10yr 5/1). Two of the total seven ceramic sherds that were recovered from this region 

were greater than four centimeters in diameter, however all were poorly degraded. The 

depth of the cobble substratum averaged 26 centimeters and concluded at bedrock for a 

total average depth (from surface) of 59 centimeters. 

Sub-Operation H, Lot 1. Similar to Sub -Operation G, sub -operation H contained 

a large majority of limestone and chert cobbles within a surrounding context of small 

ceramic sherds and a dark grey soil (10yr 5/1). The ceramic sherds that were recovered 

were less than four centimeters in diameter and non-diagnostic. No artifacts were 

recovered below the upper regions of the lot. The lot was closed with the exposure of the 

underlying bedrock.  

Sub-Operation I 

Once investigations of terrace number one had been completed, excavation crews 

refocused their efforts on exposing what was thought to be the retaining wall of terrace 

number two. The southeast corner of Sub-Operation I was situated approximately 17 

meters north of the northeast corner of Sub-Operation E. There was an increase in the 

amount of ground level vegetation, which consisted of immature deciduous palms and 



101 

 

 

other broad-leaved varieties. No artifacts were identified along the surface of the lot, and 

one small (less than three centimeters in diameter) ceramic sherd was observed within the 

context of the unit. The uppermost horizon of the soil consisted of a reddish-brown hue 

which gave way to a much darker, crumbly loam that was rich in organic matter. In 

addition to the lack of artifacts within Sub-Operation I, there were no geologic rocks that 

exceeded two centimeters in diameter. As a result, the Sub-Operation was closed in hopes 

of locating a more promising excavation unit. 

Sub-Operation J 

The continuation of excavations of terrace number two proceeded in an area that was 

much more likely to contain evidence of retaining wall construction. Previous surveys 

(Cortes-Rincon 2016, personal communication) had identified an area to the western 

periphery of the household group at N350 / W125 that appeared to continue along the rim 

of a shallow depression before turning in a more westerly direction (into the vicinity of 

the household group located at N250 / W75). The surface level stone alignment was 

characterized by dual rows of correlating limestone installments that followed a linear 

progression. The vegetation around this area consisted primarily of mature palm and 

ceiba trees with little surface level flora. A one–by-one-meter excavation unit was placed 

over the row of limestone boulders which extended from the north edge of the unit and 

extended through the south. 

Lot 1. During the excavation of this lot, several large angular and sub-angular 

stones were completely uncovered. Additionally, the lower region of lot 1 exposed 
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several medium to large limestone boulders that extended throughout the entirety of the 

unit. Fill stones ranging in size from three to seven centimeters in diameter were plentiful 

in the lower half of the unit, and the soil was a dark greyish brown (10yr 5/2) that 

contained a moderate amount of organic material. Several small (less than three 

centimeters in diameter) ceramic sherd were observed. The only lithic artifacts that were 

observed were cut stones. lot 1 reached an average depth of 17.6 centimeters and was 

terminated at the changing of the soil’s characteristics.  

Lot 2. The second lot was characterized by the development of a black (10yr 2/1), 

fine-grained soil that contained little organic matter. The stone distribution (all of which 

consisted of limestone) seemed to have lost its linear arrangement (with the exception of 

those that protruded from the northern and southern profiles). In general, stone size 

ranged between slightly greater than 42 centimeters and slightly less than 27 centimeters 

in diameter. The average depth of this lot was 15 centimeters and contained very little 

cultural material. The lot was terminated with a change in the soil’s color and the 

appearance of a tightly packed cobble structure that contained stones which were 

significantly smaller. 

Lot 3. The beginning of lot 3 was beneath all larger stones that were greater than 

20 centimeters in diameter. The majority of stones observed within this lot consisted of 

sub-angular limestone cobbles that were tightly packed within a dark reddish-brown soil 

(5yr 2.5/2). One ceramic fragment was collected within the context of those cobbles, and 
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no lithic material was identified. Lot 3 was terminated with the presence of a gray fine-

grained soil within the existing context of firmly packed cobbles. 

Sub -operation K 

Sub-Operation K was placed within the confines of Sub-Operation J and was intended to 

ease the progression of excavations to bedrock. The soil within this lot maintained a 

greyish hue that contained no organic matter. Bedrock was reached at a depth of eight 

centimeters, adding to the total depth from surface of 60 centimeters. No artifacts were 

recovered within this lot. 

Soil Phosphorus Test Results 

During the 2016 field season, 77 soil samples were collected from areas 

surrounding N350 / W125. An additional 27 samples were collected from areas near the 

site of N750 / W0, for a total of 104 soil samples. Thin soils predominate the landscape 

of N350/ W125, with slightly deeper soils along the western periphery of the house 

group. The soil’s profile maintained an O, A, Bg, C, R distribution with significant 

mixing of humus and minerals in the topsoil, and gleying in the subsoil along the 

northern reaches of the household group (figure 25). Additionally, tin roots extended into 

the upper regions of the subsoil along the northern terrace. Along the west, the inclusion 

of a dark reddish-brown soil (with a Munsell reading of 5yr 2.5/2) overlaid the gleyed 

subsoil. 



104 

 

 

P availability varied along the landscape ranging from very low to slightly less 

than moderate (0 to 7.4 mg/kg), with the area north of N350 / W125 presenting slightly 

elevated levels of available P as compared to other areas around N350 / W125 and N750 / 

W0. P accumulations of the O horizon along the northern terrace at N350 / W125 held a 

mean value of 5.8 mg/kg, whereas along the western periphery the mean was 3.8 mg/kg. 

Soil tests also determined that those soils located nearer to the downslope retaining wall 

Figure 25: Profile of retained soils on the north slope of the 

household group located at N350 / W125. 
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maintained higher Available P, with those soils 1.5% higher than the adjacent soils 

upslope, and 3% higher than those upslope, nearer to the preceding geotechnical 

structure. Topsoil accumulation averages represented a slight decrease throughout the 

index, and sample results proceeded to decline as they explored into the subsoil regions. 

P speciation suggested by pH levels at N350 / W125 indicates a predominance of HPO4
2- 

which is likely in more alkaline soils (figure 26). Soil pH at N350 / W125 across all 

regions held an average pH of 7.4, with a high of 7.73 and a low of 7.0, well in the ideal 

zone for maize cultivation (figure 27). Soil pH within the control group (N750 / W125) 

was generally more acidic, averaging 6.7, peaking at 7.7, and as low as 5.8 (figure 28). 

 Figure 26: Representation of P speciation at varying pH. Courtesy of 

Hinsinger 2001: 174,  
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Figure 27: Line chart of pH values at N350/W125. 

Figure 28: Line chart of pH values at N750/W0. 
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Individually, soil profiles offered distinctions in accumulations of available P 

along vertical distributions that did not coincide with averages. While general 

distributions of available P throughout the profiles varied, higher accumulations 

irregularly occurred along terrace platforms at N350 / W125 within the subsoil regions 

greater than 15 centimeters in depth (figures 29-33). This showed contrast to many of the 

profiles of the control group which displayed gradually declining distributions (figure 

34). It should be noted that while most profiles in the control group displayed gradual 

declines, there was evidence of abnormal distributions similar to those witnessed at N350 

/ W125.  

 

 

Figure 29: Scatter plot of available P at N50/W125. 
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Figure 31: Scatter plot of available P at N350/W125. 

Figure 30: Scatter plot of available P at N350/W125. 
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Figure 33:  Scatter plot of available P at N350/W125. 

Figure 32: Scatter plot of available P from N350/W125. 
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Figure 34: Scatter plot of available P from N750/W0. 
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DISCUSSION / CONCLUSION 

 This project initially sought to study the Late Classic land management strategies 

at the household group of N350 / W125.  The goal was to better understand an individual 

household group’s approaches to environmental and social impediments in an agricultural 

context by exposing the design of geotechnical structures, as well as the efforts that 

would have been required to reliably produce an unremitting harvest. The relevance of 

this site was situated between its geographical location and the social cohesion witnessed 

within the household group through the accumulation of what appeared to be residential 

structures. The decision of the Late Classic occupants at N350 / W125 to situate their 

household group in the transitional zone between the broken ridges and escoba bajo 

northeast of Dos Hombres implied intention when considering evidence of landscape 

modifications present (Figure 35). Additionally, the size of the group allowed speculation 

regarding the social cohesion needed to secure necessary labor inputs for modifying the 

landscape, as well as for crop cultivation including fertilization. Boudreaux (2013), and 

Cortes-Rincon (2015) previously identified the group of N350 / W125 as a larger 

household among those located within at least the first kilometer of the 12-kilometer 

transect, thus offering perceptions of possible labor inputs. 
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The focus of this project was enhanced by subsequent field efforts, including 

those by the Programme’s director Dr. Fred Valdez Jr, Dr. Timothy Beach, and Nicholas 

Brokaw who secured the airborne remote sensing of the project area, as well as by the 

insights of Dr. Marisol Cortes-Rincon whose prior field work provided a valuable 

resource pertaining to household group organization and landscape modifications 

surrounding the area of interest. As a result, the goals of this project’s earlier inquiries 

were refined to include the purposes of the geotechnical features present and to discern 

the relevance of those features in lieu of the dynamics existing between agricultural 

production and the labor forces needed for implementation and cultivation. With that 

said, the revised goals of this project were to: 

1. Determine whether terracing at the site of N350 / W125 represented residential, 

agricultural, or other environmental initiatives. 

a. Ascertain the implications of the terraces extent to infer the existence of 

stratification between house groups encompassed by the geotechnical 

features present. 

2. Examine the perceived reliability of geotechnical structures against lateral earth 

pressures at N350 / W125. 

a. Realize the methods employed by the Late Classic Maya of N350 / 

W125 involving soil retention, and to compare those methods to others 

witnessed in the Three Rivers Region. 

3. Evaluate the use of P availability in identifying areas of cultivation through the 

identification of fertilized regions. 
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a. Assess the results to infer a relationship between the nutrient demand 

and past fertilization strategies.  

In order to address those questions, the following the section will detail the 

implications of the resulting field and laboratory efforts. This will be done by simply 

attempting to answer those questions listed above while utilizing those methods 

previously discussed. The recognized limitations of this project are valuable in that they 

incorporate the short comings of the research strategy, while simultaneously identifying 

areas of improvement for future endeavors. As such, those limitations are included in the 

implications of field and laboratory undertakings. This section will conclude with a 

summary of the project’s ambition and its importance to understanding Late Classic 

agricultural production in the hinterlands of the Three Rivers Region. 

Terrace Function and Scope at N350 / W125 

Evidence of agricultural terracing within the Three Rivers Region provides a 

range of operational functions that include: supporting residential and ancillary 

structures, providing features that enhance the maturation of seedlings, and the diversion 

of water and/or soil accumulation (Beach and Dunning 1995; Beach, et al. 2002; Hanna, 

et al. 2008; Walling, et al, 2013). Prior to field work, this project’s efforts were focused 

on identifying variations in plant health that may relate to past cultivation, and 

consequently the preliminary detection of retaining wall boundaries. For that early goal, 

the regions index of normalized vegetation difference was employed which appeared to 

show linear distinctions in plant health that may represent areas of modified landscapes 
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(Figure 36). The fieldwork that ensued included pedestrian and geodetic survey methods 

and appeared to confirm those findings resulting from the NDVI analysis. To answer the 

question of terrace function, and their intended purpose, this project considered the 

examples of each terrace type in the Three Rivers Region to build an assessment.  
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Figure 36: NDVI results related to household structures and retaining wall features 
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The use of retaining walls to create support structures for residential constructions 

have been witnessed at several nearby sites such as: Chawak But'o'ob and Dos Hombres 

(Figure 37). Hanna, et al. (2008:2) suggested their purpose as one of gradient reduction to 

support household construction. While some terraced features may have supported both 

structural and agronomic frameworks, their breadths have been indicative of use through 

the presence, or lack of structures within terraced expanses. While there does appear to be 

a retaining wall buttressing the northwestern edges of the household group located at 

N350 / W125, the terraces investigated by this project extended beyond those suspected 

residential terraces into a region that was void of domiciliary or ancillary structures. The 

positioning of retaining wall features along the hillslope also implies intention through 

functionality. While soil retention serves as the dominant function of terraces, their 

location and length offer insights into their purpose. As it has been shown above, the 

uppermost, non-structure supporting terrace surrounding the group at N350 / W125 began 

less that ten meters beyond the shoulder of the hillside and followed the contour of the 

slope for more than 40 meters around the northern edge of the hillside. This terraced was 

followed by a second terrace positioned roughly 20 meters downslope that encased the 

western half of the landscape by following the contour of the hillside. The distance and 

scale of the retaining walls present around the site located at N350 / W125 suggest their 

use was not for the diversion of water, or soil retention at the base of slope. Alternatively, 

their use appears to suggest a need for a leveled landscape that provided an ample range 

of cultivatable land. The resulting calculations of terraced expanses free of structures 
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equals a minimum of 5,919 square meters of arable landscape forming a perimeter around 

the household group located at N350 / W125 (Figure 38). 
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 Figure 37: Reconstructions of residential structures supported by 

terraced features, top image is from Chawak But'o'ob, and produced by 

Hanna et al. 2008. Bottom image is from Dos Hombres, produced by 

Trachman 2007: 
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Figure 38: Terraced landscape surrounding the sites of N350 / W125, and N250 / W75. 
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Implications of Stratification Among Households 

The identification of heterarchical stratification among households is a 

problematic venture when considering the evidence of abandoned settlements left to be 

reclaimed by the forest for more than a millennium. Those concerns are naturally 

heightened by the absence of excavations within households, which could offer valuable 

data regarding the occupants and activities previously held within. In lieu of individual 

household data, the organization of household groups offers some insight into the values 

expressed through structure type, size, and orientation. Additionally, the presence of 

heterarchical relationships to extraneous households, exhibited through proximity have 

the ability to imply stratification in relation to resource production and management. The 

areas surrounding the site located at N350 / W125 allow for speculation involving social 

stratification in the absence of excavation.  

The primary site of interest for this thesis project exhibits a patio oriented 

household group consisting of five structures positioned in a systematic orientation 

around a centralized patio. While informal in nature, the patio group observed at N350 / 

W125 suggest an alignment to a centrally located, created space. The size and 

distribution of structures located at N350 / W125 also resemble residential structures, as 

opposed to those with ancillary or administrative functions. While household excavations 

are necessary to suggest prominence and activity, it is estimated that the structures 

observed exceeded the minimum threshold of 20 square meters for residential structures 

as advised by Ashmore (1981: 47). It would appear, through surface data originating 
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from mound identification that the largest of the five structures present exceeded 60 

square meters, with several others in excess of 50 square meters in diameter. The smallest 

structure observed also exceeded the minimum threshold, maintaining more than 100 

square meters of possible living space. It should also be noted that while individual 

structures may appear continuous, their design could represent, in fact, the presence of 

multiple households along a single household platform. The ambiguities demonstrated 

through the absence of household excavations is compounded when attempting to relate 

size to distinctions in influence. For that reason, determinations relied on household 

group orientation across the landscape in relation to areas of resource production.  

Consequential to the question of heterarchical stratification was the presence of a 

second household group located roughly 70 meters to the west of N350 / W125. The 

containment of the household group located at N250 / W75 by the terraced expanse has 

the ability to offer valuable data regarding possible labor input for retaining wall 

construction, as well as agricultural production. The N250 / W75 contained an estimated 

five households of varying size and orientation (Figure 39). The structures displayed an 

informal arrangement that lacked obvious evidence of organization around a centrally 

located, patio space. Additionally, while each structure maintained the minimum size 

designated by Ashmore (1981) for residential occupancy, they were interpreted to 

represent smaller living spaces as compared to those at N350 / W125. While differences 

between household groups may signify important divisions, size and orientation estimates 

based off of surface-level observations hinders abilities to draw distinctions. For that 
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reason, observable stratification between household groups was limited. Additionally, the 

lack of administrative structures advocates a communal cohesion not advanced by 

political forces. Alternatively, the adaptive capabilities witnessed through soil retention, 

and water management strategies suggest an environmentally focused organization aimed 

at agricultural production. 

  



124 

 

 

  

Figure 39: The five structures located at N350 / W125 were positioned on top of a beveled landscape and 

surrounded by several aguadas 
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Geotechnical Stability and Correlations in the Region 

Early investigations confirmed previous suggestions of terraces to the north of 

N350 / W125, and a more extensive terrace was identified to the west through pedestrian 

survey. The subsequent analysis of airborne remote sensing revealed the existence of the 

continuation of the western terrace beyond what was observed through surveys and 

revealed terracing system that accounted for a large part of the surrounding hillside. 

Excavations of the retaining wall located just beyond the northern rim of the platform 

located at N350 / W125 uncovered the remains of what appeared to be a double walled 

structure consisting of limestone boulders. During excavations, fill material consisting of 

limestone and chert cobbles, as well as small ceramic fragments (less than eight 

centimeters in diameter) were also removed. Although only cross section of the retaining 

wall was excavated, its form, as witnessed by the continuous protrusion of limestone 

boulders beyond the exposed section, appeared to maintain a linear distribution that 

coincided with the slope of the hillside (Figure 40). The western most retaining wall 

displayed a similar form to that of northern retaining wall, with limestone boulders 

exceeding the ground surface. However, excavations in the area of the western terrace 

failed to identify the centerline of the retaining feature (Figure 41). Additionally, 

identifications of the western retaining wall through pedestrian survey represented an 

erratic distribution of surface level limestone boulders.  
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Figure 41: Digital elevation rendering of the areas surrounding N350 /W125. N250 / W75 is in the 

southwest. Sub-Operation J is highlighted to the west. 
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The results of pedestrian survey, excavations, and analysis of remote sensing data 

suggested erosion as affecting the furthest reaching retaining wall, while having less of an 

effect on that wall nearest to the household group’s platform at N350 / W125. That 

exaggerated distortion in the more expansive retaining feature was likely caused by the 

burden of retaining a greater mass of soil, and thus increased lateral pressure in the 

upslope soils. Further fieldwork is needed to determine whether water management 

features in proximity to retaining features. Although, a complex irrigation system was 

confirmed southeast of the group, there were no identifications around retaining features.  

While the geotechnical design present at N350 / W125 seemed to adhere to 

contemporary evidence surrounding lowland Maya retaining wall design. The northern 

terrace contained evidence of stone working that was visible through the presence of 

multiple limestone boulders that appeared to suggest a cohesiveness in design. (see figure 

23. Notice the circular cut on the large boulders in the upper half of the image, as well as 

the spherical design on the boulder that has rolled out of place). The location of the two 

larger cut boulders, although toppled in different directions, seemed to suggest some 

function at the apex of the structure. 

Utilizing Available Phosphorus to Identify Abandoned Agricultural Zones 

Two areas surrounding N350 / W125 were sampled in order to obtain a 

measurement of P availability. Those areas included soils that were identified through 

pedestrian survey as being contained by a retaining feature. The soil sampling strategy to 

the west of the household group was devised to extend beyond the western extents of the 
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terrace to include regions that were both on and off of the terraced landscape. Although 

all results indicated depleted P availability, some regions that extended beyond the 

recognized retaining wall were measured as having a slightly lower concentration of 

available P than those that were within the boundaries of the retaining feature. 

Additionally, many of those areas closest to the household group’s platform also 

displayed slightly declining values. The sampling strategy to the north of the household 

group followed similar parameters to its counterpart in the west by orienting soil sample 

test pits so that a portion of the samples would have been retrieved from areas beyond the 

retaining wall feature. However, later analysis of aerial remote sensing indicated an 

extension of the western most retaining wall that followed the contour of the hillslope 

around its northern reaches. Consequently, measurements in the north showed very little 

variation, which could be due to the lack of evidence of erosion along the northern terrace 

presented by the perceived stability of the retaining feature.  

Measurements of P availability are valuable in quantifying those pools of P that 

have higher mobility and likelihood of change in the soil. As such, available P is included 

in both the solubilized pool, as well as the inorganic P in the labile pool (Geisseler and 

Miyao 2016:154). However, considering the effects of adsorption and precipitation that 

occurs in calcareous soils of high alkalinity (Wandruszka 2006:2), methods that assess 

available solutions would likely under value the levels of P in the soil. To amend that 

concern, future analyses would benefit from the employment of method capable of 

extracting total P from both available and unavailable groups. Additionally, this test 
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relied on Mehlich 3 extraction method to dissolve P compounds in soil samples. The 

weakly acidic nature of the solution makes it reliable when extracting multiple micro and 

macro nutrients in a variety of soils under a wide range of soil pH. However, its inability 

to dissolve a larger degree of calcium cations may hinder its abilities in the naturally 

calcareous soils of northwestern Belize. The bicarbonate extraction method, developed by 

Olsen et al. (1954), may provide more comprehensive results due to its ability to improve 

P extraction in calcareous soils through the precipitation of CaCO3, and the dissolution of 

adsorbed Ca cations.  

Conclusion 

This inquiry sought to evaluate the land management strategies of a Late Classic 

household group in the hinterlands of Dos Hombres. That evaluation was centered on the 

function and reliability of geotechnical features, the consolidation of labor inputs seen 

through the inclusion of multiple household groups, as well as the consequences of past 

maintenance within cultivatable areas. Surveys of the area were encouraged by previous 

work in the area, and distinctions in the health of vegetation displayed through the NDVI 

of the region. Excavations of features employed to retain upslope soils helped to expose 

feature design and reliability. Additionally, soil analysis was utilized to distinguish soils 

within cultivated areas from those regions on the exterior. While the presence of 

residential terracing appears evident, terraced features accented the landscape along three 

edges of the hillside. The lack of structures within the confines of those features, in 

addition to the expanse of land contained within, suggests agriculture as the primary 
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function of those terraces identified surrounding the site of N350 / W125. Formal 

classifications of house group cohesion are problematic in the absence of household 

excavations. However, estimates of household size may allow for approximations of 

labor inputs for agricultural production. The inclusion of two household group sites 

within the circumference of the terracing implies the consolidation of labor that could be 

utilized for the development and maintenance of retaining wall features, as well as for the 

upkeep necessary for the continual cultivation of the landscape.  

While the terraces surrounding the site at N350 / W125 seemed to cohere with 

contemporary evidence of retaining wall design in the Three Rivers Region, there were 

distinct differences between the two retaining features identified at the site. The 

distribution of large boulders used as walls for retaining feature, as well as the smaller 

cobbles and midden materials used a fill were more dispersed in the lower retaining wall 

feature, as opposed to the smaller retaining feature located to the north of the household 

group’s platform. The resulting suggestion implies erosion as the force behind the 

dismantling of the more expansive feature. While likely due to increased soil pressures 

existing in those areas of greater soil accumulations, material deficiencies, and / or 

inconsistent designs may have played a role in retaining wall stability. The utilization of 

available P appears unreliable as a model for identifying areas of past cultivation. This is 

due to several factors that include the nutrient demand of the surrounding forest, as well 

as the behavior of P in calcareous soils. Future analyses should make efforts to explore, 
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not only the solubilized and labile portions within the soil, but also those non-labile forms 

as well.  
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