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ABSTRACT 

FINE-SCALE CHANGE DETECTION USING UNMANNED AIRCRAFT SYSTEMS 

(UAS)  

TO INFORM REPRODUCTIVE BIOLOGY IN NESTING WATERBIRDS 

 

Sharon Dulava 

 

Aerial photographic surveys from manned aircraft are commonly used to estimate 

the size of bird breeding colonies but are rarely used to evaluate reproductive success. 

Recent technological advances have spurred interest in the use of unmanned aircraft 

systems (UAS) for monitoring wildlife. The ability to repeatedly sample and collect 

imagery at fine-scale spatial and temporal resolutions while minimizing disturbance and 

safety risks make UAS particularly appealing for monitoring colonial nesting waterbirds. 

In addition, advances in photogrammetric and GIS software have allowed for more 

streamlined data processing and analysis. Using UAS imagery collected at Anaho Island 

National Wildlife Refuge during the peak of the nesting bird season, I evaluated the 

utility of UAS for monitoring and informing the reproductive biology of breeding 

American white pelicans (Pelecanus erythrorhynchos). By using a multitemporal nearest 

neighbor analysis for fine-scale change detection, I developed a novel, automated method 

to differentiate nesting from non-nesting individuals. All UAS images collected were of 

sufficient pixel resolution to differentiate adult pelicans from chicks, surrounding 
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landscape features, and other species nesting on the island. No visual signs of disturbance 

due to the UAS were recorded. Pelican counts derived from UAS imagery were 

significantly higher than counts made from the ground at observation stations on the 

island. Analysis of multitemporal images provided more accurate classifications of 

nesting birds than did monotemporal images, on the condition that multitemporal images 

aligned with less than 0.5 m error. Nest classifications using multitemporal imagery were 

not significantly different when conducted across a 24 hour period compared to a 2 hour 

period. This technology shows promise for greatly enhancing the quality of colony 

monitoring data for large colonies and a species that is highly sensitive to disturbance.  
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INTRODUCTION 

Wildlife managers often rely on data collected visually by observers on the 

ground or in low-flying aircraft to estimate distribution and abundance of target species. 

In many cases, aerial surveys are the only viable option for collecting data over large 

areas or challenging terrain where methods such as ground counting take too much time 

and effort. Aerial remote sensing technology has been traditionally used for mapping 

static landscape features, but wildlife biologists have been experimenting with aerial 

photography for wildlife surveys since at least the first half of the 20th century (Salmon 

and Lockley 1933, Leedy 1948). Remotely sensed imagery as a source of population 

estimates provides a permanent record, allowing for repeated analysis by multiple 

investigators or application of different methods (Terletzky et al. 2012).  

Aerial photography captured using fixed-wing aircraft or helicopters is commonly 

used for monitoring colonial nesting birds and marine mammal haul-outs (Anderson et al. 

2004, Capitolo et al. 2011, Weigand et al. 2012). Photographic counts of bird colonies 

have been found to be significantly more accurate than real-time observer estimates 

(Frederick et al. 2003) and are recommended for some species (Pacific Flyway Council 

2013a). Continuous, unsupervised photography that produces images for both detection 

and enumeration of individuals has only recently begun to be used in mammal and bird 

surveys (Heide-Jorgensen 2004, Martin et al. 2012, Sardà-Palomera et al. 2012, 

Vermeulen et al. 2013, Chabot et al. 2015, Hodgson et al. 2016). While the use of aerial 

photography reduces observer bias and improves accuracy, safety concerns, logistical 
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challenges, cost and disturbance remain significant challenges. In particular, the costs 

associated with manned flights often prohibit short-term repeated sampling. Similarly, 

conducting counts of wildlife from satellite imagery is typically limited by high costs and 

relatively low spatial and temporal resolutions (Loarie et al. 2007, Linchant et al. 2015) 

Unmanned aircraft systems (UAS), commonly referred to as “drones,” are gaining 

attention for their potential utility in multiple areas, including natural resource 

management. “Unmanned” systems have been used for decades for remote sensing. 

Kites, balloons, and even pigeons have been used for military missions and photography 

for over a century, with many missions predating manned flights (Watts et al. 2012). The 

design and development of modern unmanned aircraft has been driven primarily for 

military applications, with a focus on missions deemed too dull, dirty, or dangerous for a 

human to be present in the aircraft (Marshall et al. 2016). Wildlife surveys commonly 

utilize manned flights flown under visual flight rules (VFR) and at low-altitude (e.g., 200 

ft. Above Ground Level [AGL]), making them inherently hazardous to pilots and 

observers. For example, 91 job-related deaths of wildlife biologists were documented 

from 1937 to 2000 in the United States, with 39 aviation accidents accounting for 66% of 

deaths (Sasse 2003). Where applicable, UAS have the potential to greatly reduce safety 

risks associated with aerial wildlife surveys as well as reduce the risk of disturbance to 

study species (Chabot and Bird 2015).  

UAS consist of a flight platform, sensor payload, and ground control station. UAS 

platforms range greatly in size and overall design. UAS platforms may be large like the 
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NASA Ikhana platform (a modified Predator B with a 66 ft. wing span) or tiny enough to 

fit into the palm of your hand like the Prox Dynamics Black Hornet nano UAS. The 

Federal Aviation Administration (FAA) currently classifies any unmanned aircraft 

weighing less than 55 lbs. as small UAS, or sUAS. Due to their relative affordability, 

transportability, and size, sUAS are commonly being used for natural resource missions. 

sUAS platforms are generally classified as either VTOLs or fixed-wing aircraft. VTOL 

UAS may have a single or multiple rotors, or in some cases ducted fans, that allow them 

to hover and be launched without the need for a runway. Fixed-wing UAS are generally 

capable of flying relatively faster and for longer periods of time than VTOLs. Depending 

on the size of the platform, they may be hand-launched or require a runway for takeoff 

and landing. 

Until recently, sensors and instruments necessary for many natural resource 

applications have been too large or expensive for UAS missions. Technological 

advancements over the past decade have not only improved the design of smaller, safer 

platforms but also the size and cost of sensors. This miniaturization has greatly increased 

the potential for various natural resource purposes by reducing costs, risks, and increasing 

image resolution. A review of literature related to aerial photographic wildlife surveys 

shows that although there have been relatively few, albeit an increasing number, of UAS 

studies targeting wildlife to date, there are numerous applications where UAS may 

someday replace surveys conducted with manned aircraft (Table 1). 
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Table 1. Review of studies using aerial photography to census wildlife 

Survey 

Platform Species Targets Authors 
UAS Waterfowl/Waterbirds Abd-Elrahman et al. 2005, Chabot and Bird 2012, Sardà-

Palomera et al. 2012, Chabot et al. 2015,  Dulava et al. 

2015, Hodgson et al. 2016 

 Terrestrial Vertebrates 

(Birds, Marine 

Mammals, Reptiles) 

Pierce et al. 2006, Martin 2012, Bureau of Ocean and 

Energy Management 2013    

 Marine Mammals Hodgson et al. 2013, Maire et al. 2013 

 Large Mammals Vermeulen et al. 2013, Goebel et al. 2015 

Kite Seabirds Fraser et al. 1999 

Manned 

Aircraft 
Waterfowl/Waterbirds, 

Marine Mammals 
Heyland 1972 

 Waterfowl/Waterbirds Salmon and Lockley 1933, Provan 1942, Chattin 1952, 

Grzimek and Grzimek 1960, Bartholomew and 

Pennycuick 1973, Ferguson and Kuck 1979, Sidle and 

Ferguson 1982, Haramis and Goldsberry 1985, Benning 

and Johnson 1985, Gilmer et al. 1988, Bajzak and Piatt 

1990, Anthony and Anderson 1995, Dolbeer et al. 1997, 

Wilson 2011, Neill et al. 2012, Buckland et al. 2012, Bako 

et al. 2014 

 Small Mammals Doiron and Wilson 1974, Driscoll and Watson 1974, 

Tietjen et al. 1978 

 Seabirds Kadlec and Drury 1968, Harris and Lloyd 1977, Trathan 

2004, Capitolo et al. 2011, Groom et al. 2013 

 Marine Mammals Mathisen and Lopp 1963, Dohl 1975, Braham et al. 1977, 

Scott and Winn 1978, Hiby et al. 1988, Lowry et al. 1996, 

Westlake et al. 1997, Udevitz et al. 2008, Schweder et al. 

2010, Koski and Thomas 2013 

 Large Mammals Watson and Turner 1965, Huddleston and Roberts 1968, 

Sinclair 1969, 1972, D.F. Perkins 1971, Croze 1972, 

Pegau and Hemming 1972, Eltringham and Woodford 

1973, Griffiths 1973, Lavigne and Øritsland 1974, Bente 

and Roeneau 1978, Valkenburg et al. 1985 

 Fish Eicher 1953, Visser et al. 2002 
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 Regardless of how they are obtained, processing and obtaining data from imagery 

can be time consuming (Linchant et al. 2015). If processing time is high and a high level 

of geospatial experience is required to regularly process data, the tradeoff of collecting 

cheaper and less reliable data may appear to be a more feasible option. To counteract this, 

the design of a cost-effective, efficient approach for data collection, analysis, and 

management is necessary. Several attempts have been made to develop automated 

counting methods for wildlife (Bajzak and Piatt 1990, Laliberte and Ripple 2003, Trathan 

2004, Descamps et al. 2011, Normandeau Associates Inc. 2012, Groom et al. 2013, Maire 

et al. 2013, Conn et al. 2014, Lhoest et al. 2015), but few examples exist for developing 

automated methods for assessing additional population measures such as reproductive 

success.   

For colonial waterbirds, counts of adults at nesting colonies may not provide 

managers with a meaningful index of population trends. Measures of productivity are 

more commonly used to assess trends in overall population health and as indicators for 

the health of the surrounding aquatic ecosystem. Measuring reproductive success is often 

difficult in colonial nesting species because of the frequent inability to mark adults, 

conduct daily monitoring, and track juveniles from hatching until fledging (Erwin and 

Custer 2013). In addition, frequent in-colony searches cause disturbance and can increase 

mortality (Boellstorff et al. 1988, Nisbet et al. 1990). When intensive nest searches and 

frequent monitoring are not feasible, annual fledging success, defined as the number of 
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fledglings divided by the number of active nests in a given year, is a commonly used 

metric of reproductive success (Wiens and Reynolds 2005).  

Snapshots in time may offer estimates of total adults present, but in order to 

estimate the number of active nests, adults sitting on nests must be differentiated from 

non-nesting birds (e.g., courting birds, loafing birds, attending mates, and fledglings). In 

addition to numerical estimates, spatial data for active nest locations may be useful for 

monitoring nests throughout the nesting season. The advent of UAS technology, with its 

ability to collect imagery more frequently than manned aircraft and satellite imagery, 

provides a novel approach to estimating active nests by detecting birds that are stationary 

through time. Sardà-Palomera et al. (2012) utilized multiple sequential UAS flights and 

this technique to manually track nests of black-headed gulls. While using fine-scale 

change detection may provide highly accurate nest estimates, data processing times may 

be prohibitive if such efforts are conducted manually, particularly for large colonies of 

nesting birds. This highlights the need to develop automated methods not only for feature 

extraction but for change detection to detect movement and thus differentiate active nests 

from non-nesting birds.  

Anaho Island National Wildlife Refuge’s recently released Natural Resource 

Management Plan identified monitoring reproductive success of the island’s breeding 

American white pelicans as a need for management (Hoffman et al. 2015). I partnered 

with the U.S. Fish and Wildlife Service (USFWS) and U.S. Geological Survey (USGS) to 

conduct proof-of-concept UAS flights for monitoring nesting American white pelicans at 
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Anaho Island National Wildlife Refuge. I tested available UAS and GIS technology for 

collecting spatial data of pelicans present on Anaho Island and developed a novel 

automated approach for classifying actively nesting birds in monotemporal and 

multitemporal imagery.  

The goals for this study were to 1) assess the utility of UAS for monitoring 

nesting American white pelicans and 2) develop an analytic framework for distinguishing 

sedentary, nesting birds from loafing adults using fine-scale change detection (Figure 1). 

I addressed three primary questions to inform these goals: 1) How do UAS-derived 

pelican counts compare to refuge protocol ground counts? 2) Is change detection using 

multitemporal images more accurate for distinguishing nesting from non-nesting birds 

than a single (monotemporal) image? 3) What is the appropriate length of time between 

flights to maximize accuracy of the multitemporal approach? 

 

 

Figure 1. Workflow summarizing steps to obtain active nest spatial data from UAS survey  
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MATERIALS AND METHODS 

Study Site and Species 

Anaho Island National Wildlife Refuge (NWR) (39°57'08.1"N 119°30'49.1"W), a 

rocky, tufa-covered island located on Pyramid Lake in Washoe County, Nevada, is 

managed by the USFWS under an agreement with the Pyramid Lake Paiute Tribe 

(Error! Reference source not found.). It hosts the second largest breeding colony of 

American white pelicans (Pelecanus erythrorhynchos) in the western United States 

(Pacific Flyway Council 2013a). It is also a regular breeding ground for double-crested 

cormorants (Phalacrocorax auritus), California gulls (Larus californicus), Caspian terns 

(Hydroprogne caspia), and great blue herons (Ardea herodias) (U.S. Fish and Wildlife 

Service 2002). The Refuge’s Comprehensive Conservation Plan and Natural Resource 

Management Plan designate monitoring of colonial nesting waterbirds as a priority 

activity (U.S. Fish and Wildlife Service 2002, Hoffman et al. 2015). USFWS biologists 

currently monitor colonial nesting waterbirds at Anaho Island by conducting ground 

surveys on and off the island. Sensitivity to human disturbance, particularly for breeding 

pelicans, restricts survey locations (D. Withers, personal communication). Aerial 

photography taken from aircraft is the recommended method for counting American 

white pelican and double-crested cormorant breeding colonies and is the current method 

used to assess breeding population numbers for the majority of active colonies within the 

Western Population (Pacific Flyway Council 2013a, b). This strategy is defined in the 

Anaho Island Inventory and Monitoring plan with a goal of pilot implementation by the 
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end of 2015 (Hoffman et al. 2015). In addition to contributing adult numbers to national 

monitoring efforts, the Refuge is interested in collecting data on reproductive success that 

could be used to trigger management or research should levels fall below a set threshold 

(Hoffman et al. 2015). UAS would allow Anaho Island staff to transition to a more 

standardized waterbird monitoring approach while potentially saving money (compared 

to manned flights), decreasing safety risks, and minimizing disturbance. 

 

Figure 2. Anaho Island National Wildlife Refuge in Pyramid Lake, Washoe County, Nevada 

 

American white pelicans are a large (127 to 165 cm in length) waterbird with 

white plumage (Knopf and Evans 2004), making them easily distinguishable in aerial 
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imagery. They are colonial and nest on the ground in a mostly uniform dispersion 

approximately one meter from their neighbors when measuring from the center of the 

nest (Schaller 1964). Nests consist of shallow, low-rimmed depressions in the ground that 

are sometimes lined with vegetation (Knopf and Evans 2004), making them difficult to 

locate post-season. On Anaho Island, nests sometimes persist over nesting seasons due to 

the dry desert climate (D. Withers, personal communication).  Nesting phenology is 

variable but typically occurs between April and August (Knopf and Evans 2004), with 

peak numbers on Anaho traditionally occurring in mid-May (D. Withers, personal 

communication).  American white pelicans lay one to two eggs per clutch. Both parents 

take turns incubating and eggs are continuously guarded (Schaller 1964). Eggs hatch 

approximately thirty days after laying (Knopf 1979). Nidicolous young are attended by 

adults for another two to three weeks until leaving to form creches with other juveniles 

(Evans 1984).  

American white pelicans breed in several nesting colonies on the eastern and 

southeastern portions of Anaho Island (Figure 5). The location of individual nests and 

extent of sub-colony areas varies annually. Although pelicans make up the majority of 

nesting birds on the island, some areas are shared with other species. Refuge records 

indicate that historically, mixed-species colonies were not as common and additional sub-

colony areas were utilized that are not currently active, but the majority of the nesting 

activity was and remains on the east side of the island (U.S. Fish and Wildlife Service 

2015).   
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American white pelicans are highly sensitive to human disturbance during the 

nesting season. Human activity, including close, loud passes by motorboats and aircraft, 

can cause parents to leave nests, exposing eggs and chicks to temperature extremes and 

predation by avian predators such as gulls. It is recommended that any research and 

monitoring activities take precautions to minimize undue disturbance (Johnson Jr and 

Sloan 1976, Boellstorff et al. 1988, Pacific Flyway Council 2013a). Human intrusions 

into breeding colonies, particularly during the courtship and early incubation phases, can 

cause colony desertion and are discouraged (Knopf and Evans 2004). This presents a 

problem to managers who require quality population monitoring data to inform 

management actions, such as those pertaining to pelican depredation on fish resources.  

Surveys 

This project was a collaborative effort between Humboldt State University, the 

U.S. Fish and Wildlife Service, and the U.S. Geological Survey (USGS). The USGS 

National Unmanned Aircraft Systems Project Office piloted UAS and maintained 

operational control over missions at Anaho Island. The Anaho Island mission was flown 

under an existing Memorandum of Agreement between the FAA UAS Integration Office 

(AFS-80) and the Department of the Interior (DOI) Office of Aviation Services (OAS) 

and thus did not require the acquisition of a Certificate of Authorization or Agreement 

(COA). 

Flights over Anaho Island were conducted using the RQ-11A Raven sUAS. The 

Raven is a hand-launched, fixed-wing platform classified as a small unmanned aerial 
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vehicle (Figure 3, Table 2). It is equipped with a high-resolution point-and-shoot camera 

along with additional optics for transmitting live airborne video images, compass 

headings and location information to a ground control unit (GCU) and remote video 

terminal (RVT). The system employs a self-stabilizing aircraft configuration with 

stability augmentation avionics. The Raven system is typically operated by a two-person 

team consisting of a Pilot and Mission Controller. 

 

Figure 3. RQ-11A Raven UAS and ground control station (photos courtesy of USGS) 
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Table 2. Specifications for USGS RQ-11A Raven UAS 

Specifications  

Platform Type Fixed-Wing 

Wingspan 55 in. 

Length 36 in. 

Weight 4.2 lbs. 

Payload Nose Weight 6.5 oz. 

Operating Altitude 150 to 1,000 ft. AGL 

Cruise Speed 30 mph (13.5 m/s) 

Range 10 km (Line of Sight) 

Motor Direct drive electric 

Aircraft Batteries LiS02 (single-use) Li-Ion (rechargeable) 

Flight Duration 60-90 min 

Launch and Recovery Hand-Launched, Deep Stall Landing, 

Autoland 

Ground Control Station Falconview 

Features Hand launched, Autonomous Navigation 

 

 A Canon S100 12.1 megapixel (4,000 x 3,000 pixel image) GPS-enabled point 

and shoot camera was attached to the Raven platform. The camera was set to shoot at a 

continuous rate (1 image/3 seconds) during each flight in order to capture overlapping 

images with a minimum of 60% forelap and sidelap. GPS data (x,y,z coordinates) were 

automatically recorded into the image metadata during flights. 
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USGS National UAS Project Office pilots conducted flights across the eastern 

edge of Anaho Island where nesting colonies were known to occur on May 12 and May 

13, 2015, the peak of American white pelican nesting on Anaho Island. A ground control 

station was set up on the mainland along the eastern shore of Pyramid Lake, 

approximately 1 km from the nearest edge of the island.  Two observers (in addition to 

the pilot) maintained line-of-sight with the UAS at all times; one observer was stationed 

with the pilot on the mainland and the other was stationed on a boat within Pyramid 

Lake.  A total of three flights (hereafter flights 1, 2, and 3) were completed on pre-

programmed North-South transects using overlapping still photography. Camera settings, 

flight altitude, and the resulting mean ground sample distance for imagery collected over 

Anaho Island are documented in Table 3. All images were 8-bit and stored in JPEG (Joint 

Photographic Experts Group) image files with an approximate 4:1 compression ratio.  

Flight 1 took place on May 12, 2015 taking off at 10:26 AM and landing at 

10:54AM for a total flight duration of twenty-eight minutes. Imagery of the island was 

collected for twenty minutes between 10:29AM and 10:49AM. A total of 812 images of 

the island were collected at approximately 122 meters (400 feet) above ground level.   

Flight 2 took place on May 13, 2015 taking off at 10:07AM and landing at 

10:47AM for a total flight duration of forty minutes. Imagery of the island was collected 

for thirty-three minutes between 10:10AM and 10:43AM. A total of 1,322 images of the 

island were collected at approximately 122 meters (400 feet) above ground level.   
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Flight 3 took place on May 13, 2015 taking off at 12:10PM and landing at 

12:42PM for a total flight duration of thirty-two minutes. Imagery of the island was 

collected for twenty-seven minutes between 12:11PM and 12:38PM. A total of 538 

images of the island were collected at approximately 91.5 meters (300 feet) above ground 

level. 

 

Table 3. Camera settings, altitude, and resulting mean ground sample distance for still 

photography flights at Anaho Island 

Flight ISO Aperture 

Focal 

Length 

(mm) 

Shutter 

Speed 

(seconds) 

Target 

Altitude 

(m) 

Mean Ground 

Sample Distance 

(cm) 

1 125 f/2 24 1/2000 122 5.89 

2 80 f/2.5 24 1/2000 122 4.43 

3 80 f/2.5 24 1/2000 91.5 3.50 

 

 Refuge staff placed twelve ground control points around known nesting locations 

on the island prior to the 2015 breeding season. A ground control point (GCP) is a feature 

on the ground with known geographic coordinates that can be accurately located in an 

image. GCPs were used to enhance the geometric accuracy of imagery by acting as tools 

for geometric ground truthing. GCPs were composed of 30 cm diameter orange paint 

bucket lids with a black and white checkerboard pattern chosen for easy visibility against 



16 

 

 

the rocky island background (Figure 4). Staff from the USGS Nevada Water Science 

Center surveyed GCPs using real time kinematics to maximize accuracy.  

 

Figure 4. Ground Control Point at Anaho Island NWR 

 Flights were scheduled to capture windows of suitable weather and lighting 

conditions and to avoid times when pelicans were most active. Peak activity at Anaho 

Island occurs during mate nest swaps in late morning, when pelicans return from foraging 

and swap incubation duties with their mates (D. Withers, personal communication).  One 

biologist with knowledge of waterbird behavior was designated to monitor birds for signs 

of disturbance (i.e., birds shifting or moving off of nests, multiple birds lifting and 

stretching wings or taking flight) while the UAS was overhead. If birds showed any signs 

of disturbance or if there was a threat of a potential bird strike, the observer was to inform 

UAS operators and UAS would increase in altitude. Initial flights started at the regulation 



17 

 

 

UAS flight ceiling (122 m) and gradually lowered to the target flight altitude (between 

122 and 92 m), to reduce the risk of disturbance while still acquiring the minimal 

resolution needed to identify pelicans. 

During UAS flights on May 13, three biologists (including myself) conducted 

ground counts of all colonial nesting birds. The number of nesting pelicans on Anaho 

Island are counted annually (with varying effort from year to year) from several locations 

situated above the nesting colonies. In order to compare the counts obtained by UAS to 

the legacy protocol, we conducted ground counts of all nesting bird species from four 

established locations (Figure 5) along the eastern ridge of the island. The observation 

stations were selected to provide the optimal vantage point for observing the birds 

without causing undue disturbance. We followed the current Refuge survey protocol 

(U.S. Fish and Wildlife Service 2015) and constrained each count to the historically 

delineated colony boundaries. These were determined by visually comparing permanent 

landscape features to colony maps and photographs taken from observation points. 

Multiple observers counted each colony independently to account for observer bias, 

resulting in two to four independent counts for each colony. We used spotting scopes to 

scan through colonies and clickers to tally the number of adult birds (nesting and non-

nesting), nesting birds (active nests), and unattended chicks (chicks that were no longer 

constrained to the nest). We defined active nests as those that contained one or more eggs 

or chicks or with at least one adult in direct attendance, either incubating or standing 
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directly on a nest (U.S. Fish and Wildlife Service 2015). All data were collected in 

accordance with HSU Animal Care Protocol #13/14.W.106.-E.   

In addition to “ocular” counts, I took photographs of each colony during ground 

counts in order to assess the accuracy of observer counts within the same visual range. I 

took multiple overlapping photographs using a Canon EOS Rebel T3i 18.0 MP Digital 

SLR Camera with a Canon 55-250mm lens. Refuge staff mosaicked the resulting images 

in Adobe Photoshop Elements software (Figure 6). I added polygon colony boundaries 

based off of colony maps and permanent landscape features using ArcMap v.10.2 (ESRI, 

Redlands, CA, USA). I then manually digitized point features on all birds visible within 

the boundaries in the mosaicked images.  
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Figure 5. Location of ground observation stations and American white pelican nesting colonies on 

Anaho Island using 2015 nesting season boundaries. 1 = A North to Rocks, 2 = A Rocks 

to Mushroom, 3 = A Mushroom to Fissure, 4 = A Fissure to East, 5 = South Slope, 6 = 

Saddle, 7 = Bluff South, 8 = Bluff North, 9 = B South, 10 = B North, 11 = C, and 12 = D. 

World Imagery Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, 

CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, 

and the GIS User Community 
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Figure 6. Example of mosaicked ground-based photography (Saddle Colony from Observation 

Station #2) 

 

Data Processing  

 Complete coverage of all American white pelican colonies was obtained for 

flights 1 and 2, and near-complete coverage for flight 3. Georeferenced orthomosaic 

raster files were created by both myself and the USGS National UAS Project Office 

(Figure 7, Figure 8, Figure 9). For each flight, images, along with location data for GCPs, 

were aligned and processed using Agisoft Photoscan Professional Edition v.1.1.5 

(Agisoft LLC, St. Petersburg, Russia), a standalone photogrammetry software program. 

Using automated tie point generation along with information from GCPs, Photoscan 

created three-dimensional point clouds that were used to orthorectify mosaicked imagery. 
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A camera calibration was modeled using the frame model within Photoscan and lens 

distortions were corrected via Photoscan’s bundle adjustment. The images’ terrains were 

corrected to the corresponding digital elevation models that were created in Photoscan. 

To maximize the positional fit between images, I used the Georeference tool in ArcMap 

to manually adjust misaligned areas within colonies. This is done by linking control 

points between images to build polynomial transformations that shift the raster to the 

intended new location. 
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Figure 7. Orthomosaic of Anaho Island colonial nesting bird area generated using Agisoft 

Photoscan and images from flight 1 
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Figure 8. Orthomosaic of Anaho Island colonial nesting bird area generated using Agisoft 

Photoscan and images from flight 2 
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Figure 9. Orthomosaic of Anaho Island colonial nesting bird area generated using Agisoft 

Photoscan and images from flight 3 
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When detecting changes across multitemporal images, the relative positional 

accuracy between images (how well the coincident images are aligned) is more important 

than absolute positional accuracy (how well the image matches a map base) (Horning et 

al. 2010). To quantify the horizontal (x and y) image-to-image alignment error, or 

misregistration, between orthomosaics, I created a series of corresponding checkpoints on 

permanent features for all three images. I used a minimum of twenty points per colony, as 

per Federal Geographic Data Committee guidelines (Federal Geographic Data Committee 

1998). I calculated the root mean square error (RMSE) and 95% confidence levels for 

each colony between flights 1, 2, and 3 using the formula 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(∆𝑋𝑖2 + ∆𝑌𝑖2)

𝑛

𝑖=1

 

where n is the number of checkpoints, i is the checkpoint number, ∆𝑋𝑖 is the X 

misregistration checkpoint distance, and ∆𝑌𝑖 is the Y misregistration checkpoint distance. 

To calculate 95% confidence levels, I multiplied the RMSE values by 1.7308, as x and y 

errors were normally distributed (Federal Geographic Data Committee 1998). I used the 

resulting values to assess how alignment errors between images affected my 

multitemporal change detection results.  

The large number of pelicans present on Anaho Island warranted the use of 

automated feature extraction methods over manual digitization methods. The features 
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surrounding nesting pelicans on Anaho Island include light-colored, often white-washed 

rocks, making it necessary to use object based analysis (both spectral and spatial 

characteristics) rather than relying on spectral characteristics alone. I used Feature 

Analyst (Overwatch Systems, Ltd.), a user-assisted feature extraction application for 

ArcMap, to create iterative pelican feature extraction models. The USGS National 

Unmanned Aircraft Systems Project Office has successfully used Feature Analyst for 

counting American white pelicans and other waterbird species in UAS imagery (Mark 

Bauer personal communication). Feature Analyst utilizes a suite of inductive learning 

algorithms to classify object-specific features specified by the user. After a sample of 

target features are digitized by the user, Feature Analyst uses spectral and spatial context 

characteristics to classify similar features in the imagery. A hierarchical learning 

approach allows the user to further refine the classification by providing feedback (e.g., 

removing clutter by selecting correctly and incorrectly classified features) (Opitz and 

Blundell 2008).  

I used this process, along with the “Convert to Point” Vector Tool, to create point 

features on the backs of pelicans in all three orthomosaics (Figure 10). Training data 

consisted of polygons digitized over a sample of pelican backs. For supervised learning I 

used input representation “Bull’s Eye 2”, size 7, aggregated small classified regions with 

a minimum of 15 pixels, and removed large regions that were over 3 square meters 

(Table 4). I masked areas outside of colony boundaries to reduce processing time. I ran 

individual extraction models for each colony in each set of imagery to see how factors 
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such as resolution and background affect commission and omission error rates. I 

converted the resulting polygons to points that were centered on all pelican features and 

were reviewed and manually edited as necessary. In order to differentiate birds between 

and across images, I assigned all pelican point features a unique identifier attribute; a 

combination of flight and numeric object ID (e.g., “F1_300”).  

 

 

Figure 10. Flowchart for creating bird point features using Feature Analyst. *Select a sample of 

correctly and incorrectly classified features to provide feedback for features to keep and 

remove 
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Table 4. Learning parameters used for supervised classification of pelican features 

Parameter Setting 

Feature Selector N/A 

Resample Image Resolution 

Find Rotated Features Enabled 

Input Representation Bull’s eye 2, size 7 

Mask By Pixel Value Disabled 

Output Format Vector 

Aggregate Small Regions Enabled; 15 pixel minimum1 

Remove Large Regions Enabled; 3 meter maximum 

Smooth Shapes Disabled 

Fill Background Regions with Shapes Disabled 

Masking Mask by colony boundaries 

1 The minimum pixel value is dependent on pixel resolution of imagery 

 

Data Analysis 

Validation data set 

 Due to the risk of disturbance, I was not able to conduct any in-colony walk-

throughs to validate the number and locations of active pelican nests. As a substitute 

validation data set, I used imagery from sequential UAS flights to manually identify all 

nesting birds present on Anaho Island. I categorized birds as “nesting” if they occurred in 

the same location across all three flights (a period of 26 hours) (Figure 11). I created a 

binary response for each bird in the imagery as either 1 (active nest) or 0 (non-nesting). 
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Non-nesting birds included attending mates, unpaired birds, birds that were searching for 

nest sites, and any other loafing birds.  

 

Figure 11. Example of birds marked as non-nesting indicated by red circles. From left to right: 

Flight 1, Flight 2, Flight 3. Red (circle) points indicate bird point features from Flight 1, 

green (triangle) from Flight 2, blue (square) from Flight 3. 

  

Prior to conducting any nest classifications, I reviewed colonies for courting 

flocks. During the nesting season, American white pelicans tend to form flocks of un-

paired, courting birds that are denser than nesting colonies (Knopf 1979). This dense 

cluster of birds was visible both by ground counters and in UAS imagery. I used Program 

R (R Development Core Team, 2016) package ‘spatstat’ (Baddeley and Turner 2005) and 

the ‘nndist’ function to visually inspect the imagery for clusters of birds that had nearest 

neighbor distances of less than 0.7 m (Figure 12Error! Reference source not found.). I 
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removed one such flock, which was confirmed as a courting flock by ground observers, 

prior to conducting any analyses on nesting colonies. 

 

Figure 12. Pelican point features in A Rocks to Mushroom colony showing densely spaced 

courting flock in upper left corner: Gray points indicate birds with a nearest neighbor 

distance under 0.7m 

 

Ground to aerial comparison 

I conducted multiple comparisons between UAS, ground, and ground-based 

photography counts of nesting birds using Program R and a significance level of 0.05. I 

ran linear regression analyses with observed UAS nest counts as the independent variable 

and the corresponding ground and ground image counts as the dependent variables, and 

with ground-based image counts as the independent variable and “ocular” ground 

observer counts as the dependent variable. I conducted additional linear regression 
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analyses to test for a significant correlation between the percent error of ground-based 

counts from manual counts of UAS nests and the following dependent variables: percent 

greasewood and viewing angle from observation station to colony. I noted the regression 

coefficients (𝛽), the significance of the regression (F, P), the coefficient of determination 

(𝑅2), and compared the regression lines with the ideal regression line (equal densities in 

UAS and ground counts y = x) to test the efficiency of ground counts to UAS counts 

(Laursen et al. 2008). I used non-parametric Wilcoxon signed-rank tests to assess if 

median nest counts varied significantly between ground and ground-based image counts, 

and if UAS counts were significantly greater than ground counts. I calculated correction 

factors for converting ground counts to observed UAS values using the mean ground 

count values for each nesting colony. I used counts of total adults rather than nest counts 

to account for fluctuating ratio of nesting to non-nesting birds throughout the nesting 

season. 

Automated nest classification 

I examined two approaches to differentiate active nests from non-nesting birds: a 

monotemporal (single image) method and a multitemporal (sequential image) change 

detection method. My goal was to develop a method to estimate both the number as well 

as the location of active nests. I hypothesized that while a monotemporal method for 

active nest classification requires less data acquisition and processing time, multitemporal 

methods would perform better at classifying active American white pelican nests. I 

conducted nearest neighbor analyses using the Program R package ‘spatstat’ to estimate 
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the number and location of active nests in each colony. For every colony that had 

complete overlap of all three flights, I tested whether a monotemporal or multitemporal 

set of orthomosaics was suitable for estimating the number of active nests. Both Program 

R scripts were written so that users can automatically generate nest locations and 

estimates without any manual data manipulation after the feature extraction process. 

Monotemporal nest classification.  

In general, nests of American white pelicans on Anaho Island are uniformly distributed 

within colonies with some clustering around greasewood (Sarcobatus vermiculatus). The 

reported average distance from the center of one American white pelican nest to another 

is 1.19 m (0.74-1.85, SD = 0.2 m) (Schaller 1964). Individuals that are either much closer 

than this distance or much farther apart may be considered attending mates or loafing 

birds.  Chabot et. al. (2015) estimated the number of nesting terns by considering any 

birds in close proximity as a pair and thus only counting them as one bird. Rather than 

using a thresholding technique to identify birds on only one end of a distance-to-nearest-

neighbor distribution, I excluded birds on both ends of the distribution. Within nesting 

colonies, I hypothesized that birds with large distances from their nearest neighbors 

(>1.85 m) and birds with very small distances from their nearest neighbors (<0.74 m) 

were non-nesting birds or attending mates.  

I developed a semi-automated approach using Program R to remove all bird point 

features with large nearest neighbor distances as well as remove only one bird out of a 

pair of close neighbors (Figure 13). I loaded point features from a selected flight into 
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Program R and used the Spatstat package to convert them into Spatial Point Patterns. I 

used the Spatstat ‘nnwhich’ function to identify the nearest neighbor to each point, and 

the ‘nndist’ function to find the distance to that nearest neighbor. To remove only a single 

bird out of a close pair, I first identified any points that were reciprocal nearest neighbors, 

or nearest neighbors of each other, and coded one out of the pair as a 0, and the other a 1. 

Any points coded as 0 and less than 0.74 m from their neighbor remained a 0, or non-

nesting bird. I also coded any points with nearest neighbor distances greater than 1.85 m 

as non-nesting birds. I coded all the remaining points as 1, or nesting bird.  

 

Figure 13. Workflow depicting nest classification using monotemporal nearest neighbor analysis 

in Program R 
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Multitemporal nest classification.  

Sardà-Palomera et al. (2012) found that using sequential images to estimate the number 

of nests in a Black-headed gull colony was a more accurate method than estimating nests 

from a single image. I conducted a nearest neighbor analysis using point features derived 

from orthomosaics of consecutive flights to estimate the number and location of active 

pelican nests. Because the flights occurred over two days within the span of twenty-six 

hours, I assumed that no new nests would be initiated or abandoned between the first and 

second day. I identified any pelican features that moved, appeared, or disappeared 

between any given image sets and classified them as non-nesting birds. If a pelican 

stayed in the same location across any given image set, I coded it as an active nest.  

I used a reciprocal nearest neighbor change-detection approach to identify and 

estimate the number of active nests rather than using a distance threshold approach in 

order to create a method that would be amenable to minor misregistration errors of 

sequential images. Assuming a high level of spatial accuracy, a bird point feature from 

one flight should have a very small distance to a bird point feature from another flight if 

the bird in the imagery has not moved off the nest. In this case, nearest neighbors should 

be reciprocal. For example, if the nearest neighbor of Point x from Flight A is Point y 

from Flight B, then the nearest neighbor of the same Point y from Flight B will be Point x 

from Flight A. If, however, a bird is not in a particular location in n number of images (it 

has moved or disappeared), then this point feature will have a much larger distance to its 

nearest neighbor in the consecutive image and nearest neighbors will not be reciprocal.  
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To test this method, I developed a function in Program R to identify active nests 

from the existing point features using a reciprocal nearest neighbor analysis across 

multiple images (Figure 14). I loaded all sequential point features into Program R and 

converted them into Spatial Point Patterns. I used the Spatstat function ‘nncross’ to 

identify the nearest neighbor bird point feature from each sequential flight to the 

currently selected flight. If an individual bird point feature had a reciprocal nearest 

neighbor in consecutive flights, it was automatically coded as a 1, or nesting bird. If the 

bird point feature did not have a reciprocal nearest neighbor, it was coded as 0, or non-

nesting bird. To account for varying alignment errors as well as the variance in the 

number of birds within each flight, I compared the mean results of every combination of 

flights (six combinations were possible, e.g., Flights 1,2,3 and Flights 2,1,3 and Flights 

3,2,1 etc.) to observed values that I had checked by hand for each colony.  

Using this same approach, I also compared every combination for only two 

sequential images. This allowed me to assess how estimates of nests and their locations 

changed based on how far apart images were taken (e.g., twenty-four hours vs. two 

hours).  
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Figure 14. Workflow depicting nest classification with multitemporal reciprocal change detection 

between two flights in Program R. The same workflow can be applied to n number of 

flights. 

Statistical Analyses 

I used the following confusion matrix-derived statistics to assess the accuracy of my nest 

classifications: True Skill Statistic, Cohen’s Kappa, percent correctly classified (PCC), 

area under the curve (AUC), specificity, and sensitivity (Table 5). I reviewed the results 

of multiple statistics to account for different nest prevalence rates. Sensitivity can be 

defined as the conditional probability that case X is correctly classified, p( XAlg| XTrue), 

whereas specificity can be defined as the inverse, p( not XAlg | XFalse) (Fielding and Bell 

1997). AUC, or Area Under the (Receiver Operating Characteristic) Curve, is equal to the 

probability that a classifier will rank a randomly chosen positive instance higher than a 



37 

 

 

randomly chosen negative one (Fawcett 2006). Cohen’s Kappa is a measure of agreement 

that can be used to assess agreement between alternative methods of categorical 

assessment. The following ranges of agreement for the Kappa statistic were suggested by 

Landis and Koch (1977): poor K < 0.4; good 0.4 < K < 0.7; excellent K > 0.75. Despite the 

widespread use of Kappa in ecology and remote sensing, several studies have criticized it 

for its dependence on prevalence (Allouche et al. 2006, Pontius et al. 2011). Because the 

ratio of nesting to non-nesting birds in colonies was very high, I also calculated the true 

skill statistic (TSS) as an alternative measure of agreement to Kappa. TSS, also known as 

the Hanssen-Kuipers discriminant, is equal to sensitivity + specificity -1, and ranges from 

-1 to 1, with 1 signifying perfect agreement and values of zero or less signifying 

performance no better than random. Like Kappa, TSS takes into account both omission 

and commission errors and success as a result of random guessing; however, unlike 

Kappa, it is not affected by prevalence or the size of the validation set (Allouche et al. 

2006).  
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Table 5. Accuracy assessment measures for nest classification, where a is the number of true 

positives (active nest), b is the number false positives, c is the number of false negatives, 

d true negatives (non-nesting bird), and n (a+b+c+d) is the total number of sites 

Accuracy Assessment Measures Formula 

Sensitivity a/(a + c) 

Specificity d/(b + d) 

Percent Correctly Classified (a + d)/n 

True Skill Statistic ad - bc 

    (a + c)(b + d) 

Kappa (a + d) - [(a + c)(a + b) + (b + d)(c + d)]/n 

     n - [(a + c)(a + b) + (b + d)(c +d)]/n 

Area Under the Curve 

𝐴 = ∫ 𝑇𝑅𝑃(𝑇)𝐹𝑃𝑅′(𝑇)𝑑𝑇

−∞

∞

 

 

Using package ‘PresenceAbsence’ (Freeman and Moisen 2008) in Program R, I 

created confusion matrices of my predicted versus observed data for every nesting 

colony. I compared the results of the nearest neighbor reciprocal analysis for 

monotemporal and multitemporal imagery. I also compared the resulting statistics in 

order to assess whether sequential flights conducted within a two hour period were 

comparable to flights conducted with twenty-four and twenty-six hour periods. Due to the 

skewed distribution of the resulting statistics, I used non-parametric Wilcoxon signed-

rank tests to test if mean TSS values differed by timing between sequential flights (i.e., 2 

hours, 24 hours, and 26 hours apart). 
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Minor distortions were present in the orthomosaicked images, thus affecting 

image-to-image alignment and the location of the corresponding bird point features. I 

conducted a linear regression analysis using TSS as the independent variable and the 

maximum RMSE between three images as the dependent variable to quantify the effect 

of alignment errors on the results of the three-image reciprocal nearest neighbor analysis. 

I used linear regression on all data points and on only data points where the RMSE was 

less than 0.5 m (half the average nesting distance for American white pelicans) and 

compared the resulting slopes to see if RMS errors only affect TSS after a 0.5m 

threshold.     
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RESULTS 

Surveys 

American white pelicans, double-crested cormorants, California gulls, and great 

blue herons showed no notable response to UAS. Temporary wing flapping by pelicans in 

the Bluff colonies, the only recorded disturbance, occurred due to the presence of ground 

observers. Both adult American white pelicans and chicks were visible in imagery from 

all three flights and were distinguishable from other species nesting on the island (Figure 

15). Double-crested cormorants, California gulls, and great blue herons were also 

identifiable in imagery. Caspian terns were not recorded in either ground or UAS counts, 

but would likely be indistinguishable from California gulls at the collected pixel 

resolutions (3.5 - 5.89 cm). A total of 12,882 adult American white pelicans were counted 

in imagery from flight 1 and 12,485 from flight 2. Totals for flight 3 are not reported due 

to incomplete coverage. The total adult counts for individual colonies are summarized in 

Table 7.  
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Figure 15. UAS images of nesting species on Anaho Island: A) Adult American white pelicans 

and double-crested cormorants, B) adult and juvenile American white pelicans, great blue 

herons, and double-crested cormorants, C) great blue herons, double-crested cormorants, 

and adult American white pelicans, and D) California gulls.  

Data Processing 

The amount of image-to-image alignment error varied between flights and within 

colonies (Table 6). The mean RMSE at a 95% confidence level for colony imagery was 

0.47 m (range = 0.09 – 0.55 m) between flights 1 and 2, 0.36 m (range = 0.15 – 0.97 m) 

between flights 2 and 3, and 0.38 m (range = 0.13 – 0.93 m) between flights 1 and 3. 

Bluff North colony imagery had the highest error between all flights due to patches of 

distortion that were created during image processing.  
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Table 6. Calculated RMSE and corresponding 95% Confidence Levels for horizontal alignment 

error of imagery within pelican colony boundaries between flights 

Colony  RMSE 

(m) 
     

95% 

Confidence 

Level 

 

    Flights    

 1 & 2 2 & 3 1 & 3  1 & 2 2 & 3 1 & 3 

A Rocks to Mushroom 0.14 0.13 0.07  0.25 0.22 0.13 

A Mushroom to Fissure 0.13 0.11 0.13  0.23 0.18 0.22 

A Fissure to East 0.2 0.14 0.18  0.35 0.25 0.31 

B South 0.2 0.08 0.2  0.35 0.15 0.34 

B North 0.05 0.11 0.09  0.09 0.19 0.16 

D 0.21 0.14 0.19  0.36 0.25 0.33 

C 0.24 0.21 0.19  0.41 0.37 0.32 

Saddle 0.28 0.47 0.34  0.49 0.82 0.59 

South Slope 0.29 0.1 0.3  0.5 0.18 0.52 

Bluff North 0.3 0.56 0.54  0.52 0.97 0.93 

Bluff South 0.31 0.23 0.19   0.54 0.4 0.33 

 

 Feature extraction produced point shapefiles for pelicans in all colonies across the 

three orthomosaics. In all cases, no more than one hierarchical learning iteration was 

needed to reach acceptable results. Some errors of omission (i.e., missed birds) or 

commission (i.e., non-bird features incorrectly classified as birds) were present in all 

colonies prior to manual editing. Across all colonies and images, the mean omission rate 

was 8.42% (range = 0.60 – 30.83%) and the mean commission rate was 2.11% (range = 0 

– 10.10%).  
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Data Analysis 

Ground to aerial comparison 

Ground observers counted a mean 7,867 adult American white pelicans, while 

7,903 were counted in ground-based photographs and a mean 12,684 were counted in 

UAS imagery (Table 7). Excluding the A North to Rocks colony (due to incomplete 

coverage), ground observers counted a mean 6,156 pelican nests, while 8,628 nests were 

observed in a manual count of UAS imagery across all three flights. The percent error of 

ground-based “ocular” nest counts from UAS nests ranged from 3 to 73% (all observers) 

and 3 to 68% for ground-based image counts (Figure 16). Ground observers 

underestimated the number of nests compared to manual UAS values (W = 293, Z = 3.5, 

p < 0.001). Counts from ground-based imagery significantly underestimated the number 

of nests as well (W = 55, Z = 2.8, p < 0.001). There was no significant difference 

between ground counts and counts made from ground-based imagery (W = 118.5, Z =  

0.9, p =0.392).  
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Figure 16. Percent error of ground-based image and mean ground nest counts to observed UAS 

nests. Mean and standard deviation values for ground counts are based off multiple 

observer counts. 

There was a significant positive relationship between the manual count of nests 

from UAS imagery and counts of nests by ground observers and in ground-based images 

(𝛽𝑈𝐴𝑆𝑔𝑟𝑜𝑢𝑛𝑑 =0.62, 95% CI = 0.45-0.79, 𝐹1,23 = 52.20, 𝑃 < 0.001, 𝑅2 = 0.69) (Figure 

17). However, ground counters underestimated the number of nests in all but the largest 

colony (Bluff North), where two out of three observers over-counted. For ground-based 

imagery counts, nests were undercounted in all colonies (𝛽𝑈𝐴𝑆𝑔𝑖𝑚𝑎𝑔𝑒 =0.79 (95% CI = 

0.46-1.12, 𝐹1,8 = 22.52, 𝑃 < 0.01, 𝑅2 = 0.74)). There was a strong positive relationship 
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between ground-based image counts to ground “ocular” counts (𝛽𝑔𝑔𝑖𝑚𝑎𝑔𝑒 =0.76 (95% CI 

= 0.63-0.89, 𝐹1,23 = 128.2, 𝑃 < 0.001, 𝑅2 = 0.85). 

Angle of view to the colony from the observations stations had a strong, negative 

impact on percent error for both ground counts (𝛽𝐴𝑛𝑔𝑙𝑒𝑔 =-1.88 (95% CI = -2.76- -

1.00,𝐹1,23 =  17.6, 𝑃 < 0.001, 𝑅2 = 0.43)) and ground-based image counts (𝛽𝐴𝑛𝑔𝑙𝑒𝑔𝑖 =-

2.71 (95% CI = -4.15- -1.28, 𝐹1,8 =  13.8, 𝑃 < 0.01, 𝑅2 = 0.63)). There was no significant 

correlation between percent error to the percent of greasewood cover for either ground 

counts or ground-based imagery counts (𝑃= 0.22, 0.08).  
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Table 7. Summary of ground, ground-based photography, and UAS counts of American white pelicans. Total adult counts encompass 

nest counts. Standard errors for ground counts were based on multiple observer counts. Standard errors for UAS adult totals 

were based on image counts for multiple flights. Percent error for ground nest counts was based on observed UAS nest counts. 

Correction factors (C.F.) for ground adult counts were based on mean ground and mean UAS total adult counts and should be 

updated with future UAS flights. Correction factors are meant to correct total adult counts rather than nest estimates due to 

fluctuations in nesting to non-nesting ratios across colonies and time. 

  Ground   

Ground 

Image  

UAS 

Observed    

 

Adult 

Total  

Nest 

Total  Total 

Adult 

Total  

Nest 

Total Nest 

Adult 

Total 

Colony X̅ s.e. X̅ s.e. X X̅ s.e. X % Error C.F. 

A Fissure-East 463 17.0 473 3.0 347 758 10.7 714 33.75 1.64 

A North-Rocks* 1482 0.0 1416 0.0 2062 3226 0.0 - - 2.13 

A Rocks -Mushroom 585 0.0 488 64.0 475 1228 31.9 666 26.73 2.10 

A Mushroom-

Fissure 532 0.0 431 98.0 401 1312 22.2 1243 65.33 2.47 

B 230 7.0 227 4.1 230 413 1.0 400 43.25 1.79 

Bluff North 1977 375.0 1970 412.7 1765 1857 8.3 1811 8.78 0.94 

Bluff South 473 0.0 470 12.5 469 509 1.2 498 5.62 1.08 

C 526 8.5 518 29.5 566 829 2.1 812 36.21 1.58 

D 289 5.0 285 3.0 261 624 2.8 617 53.81 2.16 

Saddle 486 1.5 483 11.2 484 860 0.9 849 43.11 1.77 

South Slope 824 24.7 811 22.4 843 1046 5.8 1018 20.33 1.27 

Totals* 7867 - 7572 - 7903 12684 - 8628 28.65 1.60 
*Total for percent error based off of values that do not include colony A North to Rocks  



47 

 

 

 

Figure 17. Linear regression of manual UAS nest counts to ground nest counts, UAS nests to 

ground-based image nest count, and ground-based image nest count to ground counts. 

Dashed lines depict slope=1 and intercept=0, i.e. a perfect relationship between count 

methods 
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Automated nest classification 

Monotemporal nest classification. The single image nearest neighbor method 

correctly classified 74% to 98% (mean PCC = 93%, n = 33) of nesting and non-nesting 

birds (Figure 18). However, TSS values ranged from -0.03 to 0.52 (mean = 0.17) and 

Kappa values ranged from -0.03 to 0.36 (mean = 0.14), indicating a poor level of 

agreement to observed data across all colonies. Sensitivity scores ranged from 0.94 to 

0.99 (mean = 0.96) while specificity scores ranged from 0 to 0.44 (mean = 0.20). Area 

Under the Curve scores ranged from 0.51 to 0.70 (mean AUC = 0.58). 

Multitemporal nest classification. The multitemporal reciprocal method using all 

three flight images correctly classified 95% to 100% (mean = 99%, n = 66) of the nesting 

and non-nesting birds when conducted across all three flights (Figure 18). TSS values 

ranged from 0.91 to 1 (mean = 0.99) and Kappa values ranged from 0.47 to 1 (mean = 

0.92), indicating an overall excellent level of agreement to observed data across all 

colonies. Sensitivity scores ranged from 0.95 to 1 (mean = 0.99), specificity scores from 

0.95 to 1 (mean = 1.00), and Area Under the Curve scores from 0.95 to 1 (mean  = 1.00).  

 The multitemporal reciprocal method using two flight images correctly classified 

93% to 100% (mean = 99%, n = 66) of the nesting and non-nesting birds when conducted 

between all combinations of two flights (Figure 18). TSS values ranged from 0.55 to 1.00 

(mean = 0.88) and Kappa values ranged from 0.49 to 1 (mean = 0.89), indicating an 

overall very good level of agreement to observed data across all colonies. Sensitivity 
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scores ranged from 0.97 to 1 (mean = 1.00), specificity scores from 0.67 to 1 (mean = 

0.88), and Area Under the Curve scores from 0.83 to 1 (mean = 0.94). 

For flights conducted on the same day (2 hours apart, n = 22), 96% to 100% 

(mean = 99%) of birds were correctly classified, TSS values ranged from 0.64 to 1 (mean 

= 0.85), Kappa from 0.49 to 1 (mean = 0.87), sensitivity scores from 0.97 to 1.00 (mean 

= 1.00), specificity scores from 0.64 to 1.00 (mean = 0.85), and Area Under the Curve 

scores from 0.82 to 1.00 (mean AUC = 0.94) (Figure 19). For flights conducted on two 

consecutive days (24 and 26 hours apart, n = 44), a 93% to 100% (mean = 99% ) of birds 

were correctly classified, TSS values ranged from 0.55 to 1 (mean = 0.90), Kappa values 

from 0.58 to 1.00 (mean = 0.91), sensitivity scores from 0.97 to 1.00 (mean = 1.00), 

specificity scores from 0.55 to 1.00 (mean = 0.90), and Area Under the Curve scores 

from 0.77 to 1.00 (mean AUC = 0.95). TSS values from flights conducted two hours 

apart were not significantly different from flights conducted 24 hours apart (P = 0.12), 

but were significantly different from flights conducted 26 hours apart (P = 0.02). TSS 

values from flights conducted 24 hours apart were not significantly different from flights 

taken 26 hours apart (P = 0.06, Figure 20).  
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Figure 18. Boxplots showing True Skill Statistic, Kappa, Percent Correctly Classified, 

Sensitivity, Specificity, and Area Under the Curve values for nest classification 

conducted using a monotemporal method (Single) and reciprocal change detection 

method for two flights (Double) and three flights (Triple) 
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Figure 19. Boxplots showing True Skill Statistic, Kappa, Percent Correctly Classified, 

Sensitivity, Specificity, and Area Under the Curve values for nest classification using the 

reciprocal neighbor change detection method for two flights with 2 hour intervals 

(SameDay) and 24-26 hour intervals (AcrossDay) flight intervals 
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Figure 20. Boxplots of True Skill Statistic values for two flight change detection comparing 2-

hour to 24-hour flight interval, 2-hour to 26-hour flight interval, and 24-hour to 26-hour 

flight interval. TSS values are also affected by varying alignment accuracy across 

colonies 
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Results of the reciprocal method for all three flight images strayed from observed 

values due to image-to-image alignment errors that varied based on colony. Nest 

classification accuracy (TSS) was negatively related to alignment error (𝛽 =-0.07, 95% 

CI = -0.097 – 0.051, 𝐹1,9 = 40.52, 𝑃 < 0.001, 𝑅2 = 0.82) between images (Figure 21). 

However, classification accuracy was not related to alignment error when errors were 

under 0.5 m (𝛽 =0.003, 95% CI = -0.003 – 0.001, 𝐹1,9 = 0.65, 𝑃 = 0.45, 𝑅2 = 0.09).  

 

Figure 21. Linear regression of True Skill Statistic score from 3-image change detection to 

horizontal alignment error for each colony, represented here by the maximum root mean 

square error between all 3 images. The solid line represents a regression of all data, the 

dotted line represents regression of data with RMS errors under 0.5 m, and the red line is 

the 0.5 m breakpoint. 
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DISCUSSION 

  This study demonstrates the utility of using UAS for monitoring nesting 

American white pelicans and provides a novel analytic framework for distinguishing 

sedentary, nesting birds from non-nesting birds. I addressed three critical questions and 

found the following: 1) Ground counts of pelicans were significantly lower than UAS-

derived counts with errors increasing with more oblique viewing angles; 2) Using a 

multitemporal change detection approach for distinguishing nesting from non-nesting 

pelicans was more accurate than using a monotemporal nearest neighbor analysis, but 

required image registration with alignment errors not exceeding 0.5 m; 3) Conducting 

sequential flights across two days was marginally better for distinguishing pelican nests 

than conducting flights only two hours apart. 

Surveys 

Based on the results of this study, UAS are capable of collecting imagery of 

sufficient resolution to identify and differentiate adult American white pelicans from 

chicks and other nesting species on Anaho Island with a minimal risk of disturbance. In 

addition, UAS were able to collect data with high temporal resolution and very high 

spatial accuracy in order to test minimally invasive methods for assessing reproductive 

success for highly sensitive species like American white pelicans. It is unknown if any 

pelican fledglings were present during our survey, or if they would be discernable from 

adult pelicans in imagery. Late-season surveys with higher resolution cameras would help 

address this question.  
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  Due to the UAS regulatory environment at the time of the flights, USGS UAS 

pilots were only able to collect three sets of imagery. Future work should involve 

conducting many sets of flights throughout the nesting season to further assess nest 

classification methods and their ability to track nests throughout the season, particularly 

where birds nest in waves. This will also help to inform recommendations for spacing of 

flight sets (e.g., two sequential flights conducted every three weeks throughout the 

nesting season). If multiple flights throughout the nesting season are not possible, regular 

(e.g., biennial) flights capturing total adult pelican counts can be used to update 

correction factors for ground counts.  

Data Processing 

The tradeoff to conducting a UAS or any other aerial flight versus conducting a 

ground count is the amount of time that is needed to process the data.  Image processing 

and bird feature extraction techniques using commercially available software are rapidly 

becoming more available and user-friendly, thus reducing the amount of time needed to 

conduct counts as well as the need for expert assistance. Feature Analyst performed well 

at extracting pelicans in UAS imagery. Digitizing training polygons, training, and 

running models took minutes to perform. However, landscape features such as rocks, 

whitewash, and shadows contributed to omission and commission errors as high as 31%, 

resulting in additional time needed to manually edit point features. Free and open source 

software programs are available for feature extraction and although not tested here, may 
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perform at or above the level of Feature Analyst. Currently, however, few create spatial 

data while also being so user-friendly. 

For difficult to access sites like Anaho Island, UAS surveys conducted from the 

mainland may save time and effort, particularly if precise counts or measures of 

reproductive success are required in monitoring plans. Streamlined workflows including 

a semi-automated approach to identifying active nests will complement new and 

emerging suites of tools designed for user-friendly remote sensing applications. 

Data Analysis 

While UAS may be useful for surveying disturbance-sensitive species, this trait 

made it difficult to conduct ground validation within colonies. I assumed that if a bird 

was present in the same location across all three images in the 26 hour timespan that 

would provide sufficient evidence to classify the bird feature as an active nest. Sardà-

Palomera et al. (2012) recorded a 0.8% difference in UAS counts of black-headed gull 

nests using a sequential image method to a direct, in-colony ground count (n=229). 

During incubation, American white pelicans incubate for 1 to 3 days, only stepping off 

the nest to swap with a mate (Schaller 1969). This near-continuous nest attendance makes 

it unlikely that a significant number of nests were missed due to birds being off the nest. 

In addition, in-colony observations are not immune to observer error. Additional flights 

within a 24 to 48 hour period, in addition to ground observations made on smaller, most 

easily visible colonies, will strengthen active nest assumptions for American white 

pelicans.  
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Counts of nesting and all adult pelicans made from the ground were significantly 

lower than UAS counts in all but one colony. Hodgson et al. (2016) reported similar 

results for penguin and frigatebird colonies and also reported less variance in counts 

derived from UAS imagery than from ground counts, indicating UAS imagery is a more 

precise method for counting colonies. Counts derived from ground-based imagery were 

not significantly different from “ocular” counts made by ground observers, indicating that 

observer bias may play less of a role in undercounting as viewing angles from 

observation stations.  

 Classification of nests using imagery from a single flight performed well at 

classifying nesting birds as nesting, but performed poorly at classifying non-nesting birds 

as non-nesting, largely due to the lack of a clear distance threshold. Within a single 

image, nearest neighbor distances between nesting and non-nesting birds largely 

overlapped, while there was little to no overlap in sequential images (Figure 22). 

Although monotemporal nest classification was overall much less accurate than using 

multitemporal images, it may work better for some species than others. Chabot et al. 

(2015) found that by removing common terns thought to be attending mates in 

monotemporal imagery, they could yield estimates in the 93-96% range of ground 

validation counts. For species that have a high degree of mate attendance, removing a 

single bird out of a close pair might be more informative than it is for pelicans. American 

white pelicans perform brief nest relief ceremonies (0 to 65 minutes, mean 8.4 minutes) 

every one to three days, and a relieved mate may stay near the nest for a short time at an 
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average of 4.4 minutes (Schaller 1964).  In addition, large birds such as pelicans are 

unlikely to land near their partners’ nests, thereby increasing the chances that a pelican 

walking through a nesting colony to attend its mate may not be easily detected in a single 

image.  

 

Figure 22. Density of nearest neighbor distances in meters within a single (monotemporal) flight 

and between sequential (multitemporal) flights for nesting (1) and non-nesting (0) birds. 

 

I assumed that when two birds were very close to each other, only one was an 

attending mate and the other was nesting. When the R function for monotemporal 

imagery is run, it cannot distinguish between the nesting bird and the attending mate, 
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therefore this may decrease the accuracy of this approach. One alternative solution would 

be to remove a point if the nearest neighbor is also close neighbors with another bird. 

However, due to variation in nesting patterns, it is unlikely that this would significantly 

alter accuracy statistics.  

If a count of active nests is only required once in a season, or if weather, time, or 

financial constraints prohibit multiple flights, conducting a nearest neighbor analysis may 

be sufficient to obtain more conservative nest estimates. In addition, a nearest neighbor 

analysis in a single image that identifies all outliers on both ends of the nearest neighbor 

distribution may aid to identify courting flocks, which typically have smaller nearest 

neighbor distances than nesting birds do (Knopf 1979). If only one flight can be 

conducted, it should be flown during the peak nesting season in order to capture nesting 

birds, potential future nesters (in courting flocks), and likely past nesters (birds with 

chicks that have left the nest).  

The multitemporal reciprocal nearest neighbor approach for classifying nests 

achieved good to excellent rates of agreement to the observed nest data for classification 

across three flights and two flights. I must stress that the observed data are non-

independent, and the reciprocal analysis conducted across all three flights should have, in 

theory, matched the observed data. Colonies with very low RMS errors (< 0.5 m) across 

flights had the highest classification accuracy statistics. Specificity, or the proportion of 

correctly classified non-nesting birds, was the primary source of error in analysis across 
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three flights, leading to lower estimates of nests. Specificity scores of less than one were 

due to minor distortions in imagery and the corresponding bird point features, which 

resulted in larger nearest neighbor distances that altered which neighbors were 

reciprocals. Target image-to-image alignment accuracy should take survey species into 

account. For example, if the target species has nests that are spaced one meter apart, then 

RMS errors should be less than half that nesting distance (<0.5 m) across the colony in 

order to avoid misclassifying birds. Insufficient overlap, platform movement, bird 

movement interference with tie point generation in software, and insufficient ground 

control can all contribute to distortion in imagery. GCPs surveyed using RTKs will 

produce better absolute and relative positional accuracy and reduce the amount of time 

needed to manually adjust distortions in orthomosaics. For nesting colonies, semi-

permanent GCPs (e.g., rebar that can hold a replaceable patterned object in place) are 

helpful because they do not need to be re-surveyed annually.  

Nesting bird estimates from two sequential flights were nearly as accurate as three 

sequential flights. The A Rocks to Mushroom colony had the highest error from observed 

data, but had a relatively low RMS error at 0.14 m (95% C.L. = 0.25m). This colony also 

had the highest prevalence of non-nesting birds present (45%), indicating that additional 

flights may be necessary to increase accuracy and reduce the risk of overestimating nests 

in colonies with large numbers of non-nesting birds. Mean and median TSS scores were 

slightly higher for flights conducted across days (0.90, 0.92) than flights conducted on the 

same day within two hours (0.85, 0.86), but there was no statistical significance in TSS 
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scores for flights conducted 24 hours apart. Due to the small sample size of this data set, I 

recommend additional data collection in future aerial surveys to further investigate 

optimal timing of flights. Although loafing flocks tend to rest near shore outside of 

nesting colonies, flights conducted in a time span of less than a few hours risk identifying 

resting attending mates, fledged birds, or other loafing birds as active nests. However, 

flights conducted far apart (e.g., several days) risk violating closure assumptions and may 

incorrectly classify newly established or failed nests.  

A multitemporal approach for nest classification relies on a majority ratio of 

nesting to non-nesting birds. Because unique individuals cannot be identified (marked) 

across all images (reciprocal neighbor points created independently for each flight are 

assumed to be a nest), when the prevalence of non-nesting birds is higher than that of 

nesting birds dispersion patterns are no longer uniform and movement may not be 

detected. To avoid inflated nest estimates, courting flocks or other densely flocking non-

nesting birds should be identified and removed prior to conducting nest classification. 

Flights targeting active nests should be scheduled during peak nesting times, avoiding the 

early and late part of the nesting season. In addition, bird species must nest in generally 

uniform patterns and on even terrain for any nearest neighbor classification utilizing two 

dimensional Euclidian distance approach to work. However, because digital elevation 

models are easily created using photogrammetry software like Photoscan, it may be 

possible to calculate nearest neighbor distances based on three dimensional (x, y, z) 

space, such as rocky sea cliffs.  
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Although it was not tested here, the multitemporal reciprocal neighbor approach 

can theoretically be used to track nests and record new nests with additional flights later 

in the season. Assuming multiple waves of nesting, the maximum number of active nests 

can, in theory be recorded by conducting several sets of sequential flights across the 

nesting season (Figure 23).  

 

 

Figure 23. Example workflow for tracking nests using reciprocal neighbor change detection. 

Change detection is performed at two levels; active nests are estimated using total adult 

shapefiles at several points in the season, and nests are tracked and total nest attempts 

calculated using active nest shapefiles across the season. 
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