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Abstract. Because the volatility of financial asset returns tends to
arrive in clusters, it is quite likely that outliers appear in patches. In
this case, most of the statistical tests developed to detect outliers have
low power. We propose to use the posterior distribution of the size
of the outlier and of the probability of the presence of an outlier at
each observation to detect and estimate the outlier. This sampling
algorithm is an adapted version of the algorithm proposed by Justel
et al. (2001) for autoregressive time-series models. Our proposed
sampling procedure is applied to a simulated sample according to the
stochastic volatility, a sample of the New York Stock Exchange daily
returns, and a sample of the Brazilian São Paulo Stock Exchange daily
returns.

1. Introduction

The stochastic volatility (SV) model (Harvey et al. (1994), Ghysels et
al. (1996)) has had great success in the study of financial time series.
A large part of this success results from the ability to explain part of the
heavy tails and volatility clustering. According to Kobayashi (2006) “The
estimation of the stochastic volatility (SV) models with jumps has been an
important topic in financial econometrics, because the excess kurtosis that
cannot be explained by the simple SV model is often attributed to jumps
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in returns and volatility.” In other words, there are still some observations
and changes that cannot be accommodated or explained by these models.
This scenario is a matter of concern because empirical studies have shown
that a small number of these observations can have a large effect on the
model estimation and can lead to poor model specification. Therefore, it
is necessary to find statistical tools to uncover these observations. The
correct detection of these observations can provide valuable information
about the series that is under analysis. Another feature of finance data
is that the outliers come in patches because the effect of an unexpected
extreme “good” or “bad” piece of news can last for more than one day. In
this case, most of the statistical tests developed to detect outliers have low
power. To overcome a similar problem in autoregressive processes, Justel
et al. (2001) based a study on the McCulloch and Tsay (1994) Bayesian
approach, and presented a procedure to detect and estimate patches of
outliers in these processes. They used the posterior distributions of the
size of the outlier and of the probability of the presence of an outlier at
each observation to detect and estimate the outlier size. The methodology
was shown to have good power for autoregressive processes. We use the
same concept to detect patches of outliers in stochastic volatility processes.
This procedure is applied here to simulated and empirical data sets.

There are other approaches suggested in the literature for detecting out-
liers in SV models, for example, by comparing posterior Bayes odds as in
Eraker et al. (2003), by an excess of skewness as in Bates (2000), and
by testing a moment condition on the options prices as in Pan (2002).
Another possibility is the use of the method proposed by Chib (1995), i.e.,
to compare the log marginal likelihoods under both models.

This article is organized as follows. Section 2 presents a brief review of
the tests proposed to detect outliers in volatility models, mainly in GARCH
and SV models, the SV model with additive or level outliers, and the model
likelihood. Section 3 presents the adaptation of the methodology of Justel
et al. (2001) to detect patches of outliers in SV model. It also presents the
priors and the conditional posteriors necessary to implement the MCMC
estimation procedure. Section 4 illustrates the methodology with simulated
data and the study of the continuously compounded daily return of the
New York Stock Exchange composite index (NYSE), which was previously
analyzed by Zhang (2004) and Zhang and King (2005), and the Brazilian
São Paulo Stock Exchange return index (IBOVESPA). Section 5 presents
the final remarks.

2. SV models with level outliers

There is a large amount of literature on outlier tests in time series mod-
els, but most of the studies are related to ARMA models. The Chen and
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Liu (1993) procedure, which is one of the most used methods, is an itera-
tive procedure that jointly estimates the model and the outliers to reduce
the masking effect. McCulloch and Tsay (1994) presented a Bayesian ap-
proach to detect outliers in autoregressive models using Gibbs sampling,
and they showed that the procedure has good power in detecting isolated
outliers. However, the iterative procedures can have low power when the
outliers occur near each other, i.e., in patches. Patches of outliers can ap-
pear in time series for many reasons. For example, Tsay et al. (2000)
showed that an innovation outlier in a multivariate process could generate
patches of outliers in a marginal univariate time series. To overcome this
problem, Justel et al. (2001) based a study on the McCulloch and Tsay
(1994) Bayesian approach and presented a procedure to detect and estimate
patches of outliers in autoregressive processes.

More recently, articles have appeared in the literature that address out-
liers in volatility models. Because it is easier to work with GARCH models,
most of the work on volatility outliers is related to GARCH models. See,
for example, van Dijk et al. (1999), Zhang (2004), Zhang and King (2005)
and Hotta and Tsay (2012). In the stochastic volatility models the outliers
are usually referred to as jumps. We can cite Chib et al. (2002), Liesenfeld
and Richard (2003), Jacquier et al. (2004), Kobayashi (2006), Liesenfeld
and Richard (2006), Omori et al. (2007) and Nakajima and Omori (2009)
regarding the SV models.

The SV model with an additive or level outlier (LO) is given by the
following:

yt = δtβt + e
ht
2 εt (1)

ht = µ+ φ(ht−1 − µ) + σηηt,

where |φ| < 1 and εt and ηt, t = 1, · · · , n, have independent standard
Gaussian distributions. We also use the use the following reparametrization
for the SV model:

yt = δtβt + γe
ht
2 εt (2)

ht = φht−1 + σηηt,

where γ = expµ/2, i.e. a positive parameter. The notation δt is an indicator
function that is equal to one whenever an LO is present at the t-th observa-
tion and zero elsewhere, i.e., it has a Bernoulli distribution with parameter
κ (denoted as δt ∼ Ber(κ)). The random variable βt indicates the size of
the outlier at the t-th observation with the log normal distribution

ψt = log(1 + βt) ∼ N(−0.5ν2, ν2),

following Andersen et al. (2002). Denote the n-dimensional vector of
the returns as y = (y1, · · · , yn)′, the vector of (log) volatilities as h =
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(h1, · · · , hn)′, the vector of outlier indicators as δ = (δ1, · · · , δn)′, the vector
of outlier amplitudes as β = (β1, · · · , βn)′, and their transformed values as
ψ = (ψ1, · · · , ψn)′. Denote the vector of parameters as Θ = (µ, φ, σ2η, κ, ν)′.
For the sake of simplicity we will use the same name of the vector of param-
eters Θ when use the parametrization µ or γ. The posterior distribution
of Γ = (Θ′,h′,β′, δ′)′ is

π(Γ|y) ∝ p(y|Γ)p(h|β, δ,Θ)p(β, δ|Θ)p(Θ), (3)

where p(y|Γ) is the likelihood of y given Γ , p(h|β, δ,Θ) is the conditional
density of h, p(β, δ|Θ) is the conditional density of (β′, δ′)′, and p(Θ) is the
prior of Θ. Because of the independence of β and δ we have p(β, δ|Θ) =
p(β|Θ)p(δ|Θ). The same is valid for Γ when we use the parametrization
β or Ψ for the size of outliers.

3. Estimation: priors and conditional posteriors

The model is estimated by the MCMC technique, which was first pro-
posed by Jacquier et al. (2004) in the SV context. In this section, we
present the priors and conditional posteriors necessary to implement the
algorithm. In Subsection 3.4, we present the standard method to sample
the probability of the presence of the LO. This approach is used in the liter-
ature, for example, by Chib et al. (2002), Liesenfeld and Richard (2003),
Jacquier et al. (2004), Kobayashi (2006), Liesenfeld and Richard (2006),
Omori et al. (2007) and Nakajima and Omori (2009). In Subsection
3.5, we present our contribution, where we first detect possible intervals
of observations with patches of outliers, and later we show how to sam-
ple in block, in each interval, the probabilities and size of outliers for each
observation in the intervals.

3.1. Sampling (σ2η, φ). We follow Kim et al. (1998) and Shephard and

Pitt (1997) in sampling σ2η and φ. Observe that, conditional to h and µ, we

have a regression model. Therefore, using the inverse Gamma distribution

IG(σr/2, Sσ/2) as the prior distribution of σ2η, the full conditional posterior

distribution is given by the inverse Gamma distribution:

σ2
η|y,h, φ, µ,β, δ ∼

∼ IG

{
n+ σr

2
,
Sσ + (h1 − µ)2(1− φ2) +

∑n−1
t=1 ((ht+1 − µ)− φ(ht − µ))2

2

}
.

Following Kim et al. (1998) and Shephard and Pitt (1997), we take σr = 5
and Sσ = 0.01× σr.

São Paulo J.Math.Sci. 8, 2 (2014), 169–191



Detection of Patches of Outliers in Stochastic Volatility Processes 173

Reparameterizing φ = 2φ∗ − 1 and using as prior distribution of φ∗ a
beta distribution with parameters (φ(1), φ(2)), the prior of φ is given by the
following:

π(φ) ∝
{

(1 + φ)

2

}φ(1)−1{(1− φ)

2

}φ(2)−1
, φ(1), φ(2) >

1

2
, (4)

and the parameter φ can be sampled from the complete conditional density
using the rejection method as follows.

Considering the prior (4), the complete conditional distribution of φ is
proportional to the following:

π(φ)f(h|µ, φ, σ2η,β, δ),

where

log f(h|µ, φ, σ2
η,β, δ) ∝ − (h1 − µ)2(1− φ)

2σ2
η

+
1

2
log(1− φ2)−

−
∑n−1
t=1 {(ht+1 − µ)− φ(ht − µ)}2

2σ2
η

.

This function is concave in φ for any value of φ(1) and φ(2). Therefore, we
can sample φ using the rejection sampling algorithm. Kim et al. (1998)
took the Taylor expansion of the prior with respect to the following value:

φ̂ =

∑n−1
t=1 (ht+1 − µ)(ht − µ)∑n−1

t=1 (ht − µ)2
.

Therefore, given a proposed value φp from N(φ̂, Vφ), where Vφ =

σ2η{
∑n−1

t=1 (ht−µ)2}−1 this value is accepted with the probability exp{g(φp)−
g(φ∗(i−1))}, where φ∗(i−1) is the sample from the previous (i-1)-th MCMC
iteration, and

g(φ) = log π(φ)− (ht − µ)2(1− φ2)
2σ2η

+
1

2
log(1− φ2).

If the proposed value is rejected, then we take φ∗(i) = φ∗(i−1)

3.2. Sampling µ. Conditional to φ, σ2η and h we have a regression model.
Thus, taking a diffuse prior for µ, the posterior distribution is sampled from
the complete conditional distribution given by the following:

µ|h, φ, σ2η,β, δ ∼ N(µ̂, σ2µ),
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where

µ̂ = σ2µ

{
(1− φ2)
σ2η

h1 +
(1− φ)

σ2η

n−1∑
t=1

(ht+1 − φht)
}
,

and

σ2µ = σ2η{(n− 1)(1− φ2) + (1− φ2)}−1.

3.3. Sampling the volatilities. Jacquier et al. (2004) proposed a
Bayesian approach to the SV model, exploring the structure of the model.
After this seminal paper, several modifications were proposed to improve
the efficiency of the simulation chain. See, for example, Shephard and Pitt
(1997), Kim et al. (1998), Chib et al. (2002), and Chib et al. (2009).
Kim et al. (1998) used a mixture of normal distributions and, conditioned
on the mixture distribution, used the Kalman Filter to jointly sample all
of the volatility vectors. They also proposed to jointly sample all of the
model parameters in order to minimize the chain dependence. Chib et al.
(2002) generalized the method proposed by Kim et al. (1998). They used
covariates and modified the distribution of the disturbances to capture the
type of effect of outliers found in empirical financial series. Zhang and King
(2005) used a single-move random-walk Metropolis-Hasting algorithm.

There are some differences in the papers cited above. Motta and Hotta
(2003) and Liesenfeld and Richard (2006) present a comparison of these
studies. We sample h using the simulation smoother (de Jong and Shephard
, 1995; Durbin and Koopman , 2002).

3.4. Standard sampling of the probabilities and sizes of outliers.
From Section 2 we have that δt ∼ Ber(κ) and ψt = log(1 + βt) ∼
N(−0.5ν2, ν2). We consider the prior distribution of κ given by κ ∼
Beta(u0, n0) and the prior distribution of ν given by ν ∼ LN(ν0, N0),
where LN means lognormal distribution. The parameter κ can be sam-
pled directly from the posterior because we have a conjugate family. The
parameter ν is sampled using the acceptance-rejection Metropolis-Hasting
algorithm (Tierney , 1994). The hyperparameters u0, n0, ν0 and N0 will
be given later.

The procedures for jointly estimating the model and detecting the out-
liers are based on the posterior distributions. Thus, we must calculate the
posterior distributions of δt and βt. The marginal posterior distributions

São Paulo J.Math.Sci. 8, 2 (2014), 169–191



Detection of Patches of Outliers in Stochastic Volatility Processes 175

of the elements of δ are given by the following:

pt = p(δt = 1|y) =
∑
δrt

p(δrt |y)

=
∑
δrt

∫
p(δrt |y,Ψ)p(Ψ|y) dΨ

∝
∑
δrt

∫
p(y|δrt ,Ψ)p(δrt)p(Ψ|y) dΨ, t = 2, . . . , n,

where the sum is over all of the 2n−1 outlier configurations, δrt denotes a
configuration, and p denotes the probability density function for discrete
and continuous distributions. The posterior distributions of the size of the
outlier are given by the following:

p(βt|y) =
∑
δrt

p(δrt |y)p(βt|y, δrt) t = 2, . . . , n.

3.5. Sampling probabilities in a block. McCulloch and Tsay (1994)
used Gibbs sampling to sample from the posterior distributions of the prob-
abilities and of the size of additive outliers in autoregressive models. Justel
et al. (2001) showed that the McCulloch and Tsay (1994) procedure has
good power in detecting isolated outliers in autoregressive models but is
inefficient in the presence of patches of outliers. To overcome this problem,
Justel et al. (2001) proposed an algorithm in two stages. In the first stage,
they identify a possible patch of outliers, and in the second stage, they
identify the observations within the block that are affected by the outliers.
The first stage uses the standard method to sample the probabilities and
the size of the outliers. In the second stage, the sampling is performed
in blocks in each patch. The priors for the second stage are the same as
those in the first stage. The two stages are presented below, and the block
sampling described in Subsection 3.5.2.

3.5.1. Procedure to detect possible patches of outliers. In this section, we
consider the first stage of the Justel et al. (2001) procedure to detect
patches of outliers. Initially, we must define two critical values, c1 and c2,
with c2 < c1 and d. While c1 is defined in step (2), c2 and d are defined in
step (3). The procedure consists of the following steps:

(1) Estimate the model, and denote the estimated probability of the
presence of an outlier in the t-th observation by p̂t. Call the esti-
mates in this step Standard Gibbs Sampler estimates;
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(2) The ti-th observation is suspected of being an outlier if p̂t > c1.
Let T ∗ = {t1, · · · , tm} be the set of observations that are detected
as possible outliers in this step. Justel et al. (2001) suggested
considering the total number of possible outliers to be at most equal
to n/2. Thus, if m > n/2, the we must increase c1;

(3) Consider the second critical value, c2 < c1, to test whether the
2d observations that are nearest to each one of the m observations
found in step (2) are possible outliers. An observation is included
in the window test as a possible outlier if p̂t > c2;

(4) For each value ti ∈ T ∗ define ki = max{0, 1, · · · , d}, with yti−ki >
c2, and vi = max{0, 1, · · · , d}, with yti+vi > c2. The possible
block of outliers related to the observation yti is given by the block
(yti−ki , · · · , yti+vi). Note that, as max(ki, vi) ≤ d, the maximum
length of the block is (2d+ 1);

(5) Any set of consecutive intervals with juxtaposition is concatenated
in a unique block. Thus, the number of possible blocks can be less
than m, and the length of the blocks is unlimited;

(6) The total number of possible outliers is given by the number of
observations covered by the blocks. If this number is larger than
n/2, then the critical value c2 must be increased and/or the value of
d must be decreased. As a third alternative, c1 should be increased;

(7) For each block of observations identified as possible outliers re-
estimate the posterior probability. The next subsection shows how
to estimate the probability inside the blocks. Call the estimates in
this step the Adapted Gibbs Sampler estimates.

3.5.2. Posterior distribution for the block of outliers. After identifying the
possible block of outliers, it is reasonable to sample simultaneously inside
the blocks using Gibbs sampling. To perform this sampling, we must find
the posterior distributions of a block starting, for example in the j-th ob-
servation with a size of, for example, k Then, δj,k = (δj , . . . , δj+k−1)

′ and
βj,k = (βj , . . . , βj+k−1)

′ are the indicator and size of the outliers, respec-
tively.

The posterior distribution of Γ = (Θ′,h′,β′, δ′)′ is given by equation
3. Because we do not have a closed form for the density, we will use the
MCMC to sample from the density. We will use the method presented by
Kim et al. (1998). Rewrite the model as follows:

y∗t = ht + zt
ht = µ+ φ(ht−1 − µ) + σηηt,

where

y∗t = log[yt − (eψt − 1)δt]
2,
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and the distribution of zt = log ε2t is approximated by a mixture of nor-
mal distributions. The complete conditional distribution is given by the
following:

P(δj = 1|y,h,Ψ,Θ, k, δ(j)) =
kfN (yt‖βt, eht)

kfN (yt‖ηt, eht) + (1− k)fN (yt‖0, eht)
,

where δ(j) is obtained from δ by eliminating the component δj , and

fN (yt‖µ, σ2) denotes the density of the normal distribution with a mean µ
and variance σ2 evaluated at yt. For the size of the outlier, we have that
ψt|y,Θ, δ,Ψ(j), ht ∼ N(ψ∗j , b

−1), where

b =
σ2η + δ2t
ν2σ2η

and ψ∗t =
−0.5σ2η + δtyt

bσ2η
.

We need the joint distribution of the size of of all the outliers in the block
to obtain the joint samples. Denote by Γ(δj,k)

and Γ(βj,k)
the vector Γ elim-

inating the vectors δj,k and βj,k, respectively. The posterior distributions
of δj,k and βj,k, are given, respectively by:

p(δj,k|y,Γ(δj,k)
) ∝ p(y|Γ(δj,k)

; δj,k) · κsj,k(1− κ)k−sj,kp(κ),

p(βj,k|y,Γ(βj,k)
) ∝ p(y|Γ(βj,k)

;βj,k) · p(βj,k|ν)p(ν),

where sj,k =
∑j+k−1

t=j δt, and p(κ) and p(ν) are the prior distributions of

κ and p(ν), respectively, and given in Subsection 3.4. The distributions of
the size of the outliers inside each block, conditional to ν are independent.
The first likelihood can be factored as follows:

p(y|θδj,k
; δj,k) = p(yj−12 |θδj,k

)·

·p(yTj,kj |yj−12 ;θδj,k
; δj,k) · p(ynTj,k+1

|yTj,k2 ;θδj,k
),

where ykj = (yj , . . . , yk)
′ and Tj,k = min{n, j + k}. For the LO model (1),

the density is given by the following:

p(y
Tj,k

j |yj−12 ; Γ
(δj,k)

; δj,k) ∝

min{n,j+k}∏
t=j

fN (yt|ht,Θ‖δtβt; eht)fN (ht|h(t),Θ‖µ+ φ(ht−1 − µ);ση).

The likelihood p(y|Γ(βj,k)
;βj,k) can be factored in a similar way. Now,

we have all of the results that are necessary to apply the Gibbs sampler in
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step (7), and we can sample from the posterior distribution of δj,k and βj,k
to estimate their distributions.

In summary, the sampling procedure for (Θ′,h′, δ′,β′)′ is as follows:

• sample φ from the rejection sampling algorithm (see Subsection
3.1);
• σ2η directly from the inverted Gamma density (see Subsection 3.1);
• sample µ directly from the Gaussian density (see Subsection 3.2);
• sample h by simulation smoother (see Subsection 3.3);
• The standard sampling of δ and β is given in Subsection 3.4. The

adapted sampling method inside the block of outliers is given in
Subsection 3.5.2.

4. Examples

We illustrate the performance of the proposed methods with four exam-
ples. Two of the examples are with simulated data and two of the examples
use a real data series, the NYSE series analyzed by Zhang and King (2005)
and the IBOVESPA return series.

The priors adopted for the three series were µ = 2 log γ ∼ N(0, 100);
φ∗ ∼ Beta(20, 1.5), which corresponds to a mean of φ equal to 0.86; κ ∼
Beta(2, 100), σ2η ∼ IG(2.5, 0.05/2); for ν, we took log(ν) ∼ N(−3, 0.15).
The 2.5% and 97.5% percentiles of these priors are (0.588, 0.989) and
(0.0039, 0.0602) for φ and σ2η, respectively, and almost all the real positive
values for γ. The minimum and maximum of the estimates found in the four
examples (the estimates are given by the mean of the posterior distribution)
are equal to (0.940, 0.980), (0.014, 0.065) and (0.986, 2.17) for φ, σ2η and γ,

respectively. This scenario implies that, except for the estimate 0.065 of σ2η,

the priors are not very informative. The second largest estimate of σ2η was
0.048. A more complete analysis of the prior and posterior distributions
and an analysis of the sensitivity on the priors was done and showed that
the use of a less informative prior does not change any of the conclusions.
For this reason, we decided to keep these priors taken from the literature.

The normal distribution as a prior for log(ν) implies a log-normal dis-
tribution as a prior with a mean that is equal to 0.053 and a standard
deviation that is equal to 0.022. The hyperparameters for the prior of κ
imply a mean that is equal to 0.0196 and a standard deviation that is equal
to 0.0137.

To secure convergence, we used a total of 150, 000 iterations in the first
step of the procedure for the standard Gibbs sampler and in the adapted
Gibbs sampler.
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We used the mean of the posterior distributions as the estimates. They
were evaluated as a mean of the last 1, 000 iterations. We used the estimates
given in the standard Gibbs sampler as parameters of the distributions used
in the adapted Gibbs sampler.

We used c1 = 0.5 for the first step of the algorithm and c2 = 0.3 to define
the extreme limits of the patches as threshold values, and d = 2.

4.1. Simulated Data. In the first two examples, we use simulated data
with φ = 0.9811, σ2η = 0.0144 and γ = 1 (µ = 0.0), with a sample size equal
to 1000 with and without outliers.

Simulated series without outliers:

Figure 1 presents the information related to the estimation of the param-
eters φ, σ2η and γ. The figure presents the MCMC sample, the histograms
and the autocorrelation function based on 20, 000 iterations. The first col-
umn presents the results for φ|y, the second for ση|y and the third for
γ|y.
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Figure 1. Graphs of the MCMC sample, histograms of the
posterior distributions of the parameters and the autocorre-
lation function for a series generated without any outliers.

Figure 2 presents the simulated series at the top and the mean of the
marginal posterior distribution of (δt|y), i.e., the probability that an ob-
servation is an outlier. For simplicity, sometimes we refer to the mean as
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the posterior probability of the presence of an outlier. Because all the es-
timated probabilities are smaller than 0.20 we do not detect any outlier in
the simulated series even for values of c1 that are as small as 0.20.

0 100 200 300 400 500 600 700 800 900 1000

ï10

0

10
Returns 

0 100 200 300 400 500 600 700 800 900 1000

0.25

0.50

0.75

1.00
P{b t |y} 

Figure 2. Results for the simulated series without outliers.
a) Simulated series. b) Posterior probability of the presence
of an outlier estimated in step (1).

Simulated series with outliers:

We now insert LO and a volatility outlier (VO) in the data generating
process. The VO is introduced in the volatility equation given in equation
1 as the following:

ht = µ+ φ(ht−1 − µ) + σηηt + δVt β
V
t ,

where δVt is an indicator function for the VO, and βVt is the size of the VO
at the t-th observation.

We take the size of the LO as equal to the standard error of the simulated
series without outliers multiplied by ∆, while the size of the VO is taken as
equal to the standard error of the autoregressive process multiplied by Λ,
i.e., Λ[σ2η(1−φ2)−1]0.5. Two isolated LOs were inserted, one of size 8 (∆ =
8) in the 50-th observation and another of size 5 in the 500-th observation.
We also included six consecutive LOs of size 4 from the 250-th to the 255-th
observation and one VO of size 5 in the 700-th observation. Because we
used exactly the same sampled values for ε′ts and η′ts, the simulated series
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with and without outliers are equal before the innovation outlier, i.e, up to
the 699-th observation, except at the 50-th, from the 250 to the 255-th and
at the 500-th observation, which are affected by additive outliers.

Figure 3 presents the simulated series in the upper part, and the esti-
mated posterior probabilities of the presence of an outlier in step (7), i.e.
estimated by the adapted algorithm, in the lower part. The posterior prob-
abilities estimated in steps (1) and (7) are almost the same outside the
blocks, and the probabilities found in step (1) inside the blocks are given
in Table 1.
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Figure 3. Results for the simulated series with outliers. a)
Simulated series. b) Posterior probability of the presence of
an outlier.

In the first step, the two isolated outliers in the 50-th and 500-th obser-
vations were detected as single outliers with a posterior probability almost
equal to 1.0. Two blocks of width six each were detected, one from the
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250-th to the 255-th observation and another from the 700-th to the 705-
th observation. The first block matches the positions of the block of LOs
introduced and the beginning of the second block is the position where
the VO was introduced. The effect of a VO in the log volatility decreases
exponentially, and the effect in the returns is multiplicative and given by
the exponential of the effect on the log-volatility. In consideration of these
facts it is not immediate to define an equivalent level effect. We just expect
that the effect of and VO should decrease and eventually die out. It is
interesting to note that not all of the posterior probabilities estimated in
step (1) were large inside the blocks. After step (7), all of the estimated
probabilities inside the LO block (see Table 1) are approximately equal to
1.0. In the second block, related to the VO, the posterior probability and
the estimated size are decreasing, which is in agreement with the effect
of a VO, as discussed previously. For all of the other observations, there
was no false detection of an outlier with all of the posterior probabilities
of the presence of an outlier smaller than 0.05. Thus, at least for these two
simulated series the test had a good performance.

The estimates of the probability and the size (mean and standard de-
viation of the posterior distribution) of the detected outliers are given in
Table 1. Except for the observations with VO, we have the true size of the
outlier. Table 1 presents the estimates of the size of the outlier by the stan-
dard Gibbs sampler given in step (1) and by the adapted Gibbs sampler
obtained in step (7). We can see that the standard Gibbs sampler yields
good performance for isolated outliers, but that it is not as good for blocks
of outliers. The adapted Gibbs sampler produces good estimates even when
the outlier occurs in blocks and has a smaller standard deviation than the
standard Gibbs sampler. We can see that the estimates are very close to a
real value with all of the posterior probabilities near 1.0. We can say that
the performance of the test is very good for the simulated series. In the
following, all of the results are for the adapted Gibbs sampler.

4.2. New York Stock Exchange Composite Return Index. In this
subsection, we apply the outlier detection procedure to the NYSE compos-
ite return (in percentages). The sample consists of 1,255 observations from
January 2, 1997 and December 31, 2001. We will use this series to compare
with the results of Zhang and King (2005).

The mean and standard deviation of the posterior distribution of the
parameters φ, σ2η and γ were equal to 0.940(0.006), 0.046(0.005) and
1.150(0.086), respectively.

Figure 4 presents the NYSE return series in the upper part, and the
posterior probabilities of outliers estimated by the proposed method in the
lower part.
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Table 1. Estimation of the size of the outliers in the simu-
lated series with outliers: the mean and standard deviation
(in brackets) of the posterior distribution of the size of the
outlier, and the mean of the posterior distribution of the
presence of an outlier. The results are for the standard
(step (1)) and adapted (step (7)) Gibbs sampler.

Outliers Standard Adapted Real Mean of the Posterior
GS GS Size distribution

∆50 8.0614
(0.9431)

8.0322
(0.8431)

8 1.00

∆250 4.6131
(0.8132)

4.0352
(0.7683)

4 1.00

∆251 2.6140
(0.3421)

3.9816
(0.2667)

4 0.98

∆252 2.8376
(0.3299)

4.0213
(0.3134)

4 1.00

∆253 4.9647
(0.4301)

4.0199
(0.3353)

4 1.00

∆254 3.2369
(0.7012)

4.0325
(0.6831)

4 0.99

∆255 3.7932
(0.4015)

4.3621
(0.3421)

4 1.00

∆500 5.1321
(0.2322)

5.0862
(0.3262)

5 1.00

Λ700 8.2311
(0.3522)

3.9631
(0.1793)

IO 1.00

Λ701 7.4581
(0.3269)

3.8345
(0.1622)

IO 0.99

Λ702 7.2683
(0.3001)

3.6228
(0.1766)

IO 0.97

Λ703 5.7162
(0.2321)

2.6883
(0.1492)

IO 0.87

Λ704 5.5363
(0.2537)

2.6711
(0.1539)

IO 0.63

Λ705 4.021
(0.2251)

2.125
(0.1498)

IO 0.52

Table 2 gives the observations where the posterior probability of the
presence of an outlier is larger than 0.5. The smallest value in Table 2 is
0.8976 and the largest posterior probability of observations not included in
the Table 2 is very small, smaller than 0.1, except for three observations
with probabilities in the interval (0.3, 0.5). These results show that the
method clearly classified whether we have an outlier at each observation
of the series. The effect of the standard and adapted algorithm in the
point estimates is not very large. For instance, the estimates for (φ, ση, β)
were equal to (0.935, 0.192, 1.21) when the model is estimated without out-
liers, and were equal to (0.928, 0.215, 1.24) and (0.940, 0.213, 1.15) when the
model is estimated with outliers using the standard and adapted methods,
respectively.
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Figure 4. Results for the NYSE series. a) Returns. b)
Posterior probability of the presence of an outlier.
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Table 2. Summary of the observations in which the poste-
rior probability of the presence of an outlier is larger than
0.5., NYSE series

Date serial no. Return (%) posterior probability
20/10/97∗ 201 1.139 1.000
21/10/97∗ 202 1.567 0.981
23/10/97∗ 204 -1.847 0.994
27/10/97∗ 206 -6.791 0.974
28/10/97∗ 207 4.113 0.956
26/08/98∗ 415 -1.005 1.000
27/08/98∗ 416 -3.920 1.000
31/00/98∗ 418 -6.352 1.000
16/03/00 807 4.748 1.000
12/04/00∗ 826 -1.056 1.000
13/04/00∗ 827 -1.484 0.985
14/04/00∗ 828 -5.275 0.898
07/09/01∗ 1180 -1.948 0.977
17/09/01∗ 1182 -4.701 0.998
24/09/01∗ 1187 3.356 0.964
∗during or next crisis periods

To compare with the results from Zhang and King (2005), Table 3
presents the observations that are considered to be influential by those
authors and/or by our analysis. Zhang and King (2005) used the slope
and curvature local influence diagnostics, using three types of perturba-
tions, volatility, additive and data perturbations, with a total of six tests,
and they used a GARCH(1,1) model. The volatility perturbation is re-
lated to VO, while the additive and data perturbations are related to
LO. We use the corrected results that are available in X. Zhang home
page in http://users.monash.edu.au/ xzhang/. The fourth column indi-
cates whether the observation was detected as influential by any of the
local perturbation tests. From the total of the 15 observations detected
as outliers by our test, only two were not detected as outliers by any of
the Zhang and King (2005) tests, the 206-th observation (27/10/97), which
is in the middle of a patch of outliers related to the Asian crisis, and the
1187-th observation (25/09/01), which is near two other outliers and the
11-th September terrorist attack. From the 19 observations that were de-
tected by any of the six local influential tests, only six were not detected
by our test, and none were during or near the crisis period. Among the
six observations detected by the volatility perturbation tests (either by the
slope- or curvature-based diagnostics), only one was not detected by our
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test. Among the 15 detected by the additive perturbation, only three were
not detected by our test, and among the 10 detected by the data perturba-
tion tests, four were not detected by our test. Thus, we could say that the
performance of the test was quite good and that it is able to detect all of
the types of perturbations considered by Zhang and King (2005) with the
advantage of using a single model, estimating the size of the outlier and
giving evidence of the presence of the outlier. It is interesting to note that
all of the main crises in the period, the Asian flu in October 1997, the Rus-
sian cold in August 1998, the NASDAQ fall in April 2000 and the terrorist
attack in September 2001, were detected as outliers. The only major crisis
that was not detected as an outlier by our test was the Brazilian Sneeze in
January 1999.

Table 3. Observations detected by the proposed test sta-
tistics and by the Zhang and King local influence tests. The
fourth column shows whether the observation is detected by
any local influence tests.

Type of local perturbation
Patch Local Volatility Additive Data

Date Serial no. test Perturb. Slope Curv. Slope Curv. Slope Curv.
02/09/97∗ 167 Y
20/10/97∗ 201 Y Y Y
21/10/97∗ 202 Y Y Y
23/10/97∗ 204 Y Y Y Y
24/10/95∗ 205 Y Y Y
27/10/97∗ 206 Y Y Y Y Y Y Y
28/10/97∗ 207 Y
27/08/98∗ 415 Y Y Y Y
28/08/98∗ 416 Y Y Y Y Y
31/08/98∗ 418 Y Y Y Y Y Y
15/10/98 450 Y Y
28/10/99 711 Y Y
04/01/00 757 Y Y
16/03/00 807 Y Y Y
12/04/00∗ 826 Y Y Y
13/04/00∗ 827 Y Y Y Y
14/04/00∗ 828 Y Y Y Y Y
16/05/01 1101 Y Y Y
07/09/01∗ 1180 Y Y Y
17/09/01∗ 1182 Y Y Y Y
25/09/01∗ 1187 Y

total 15 18 5 4 7 9 5 6
∗during or next crisis periods

4.3. São Paulo Stock Exchange Return Index. In this last example,
we apply the outlier detection procedure to the IBOVESPA return series
(in terms of percentages). The sample consists of 1, 500 observations from
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January 3, 1995 to December 27, 2000. The main crises in the period were
the Mexican crisis in February and March, 1995, the Asian crisis in 1997
(June in Thailand, August in Indonesia and October in Hong Kong), the
Russian Cold in August 1998 (including the LTCM crisis), the Brazilian
Sneeze in 1999, and the NASDAQ fall in April 2000. The return series is
presented in Figure 5.

The mean and standard deviation of the posterior distribution of the
parameters φ, σ2η and γ, were equal to 0.979(0.009), 0.048(0.025) and
2.170(0.25), respectively. Figure 5 presents the IBOVESPA return series in
the upper part, and the posterior probabilities of outliers estimated by the
proposed method.
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Figure 5. Results for the the IBOVESPA series. a) Re-
turns. b) Posterior probability of the presence of an outlier.
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Table 4 gives observations for which the posterior probability of the pres-
ence of an outlier is larger than 0.5. The three smallest values in the table
are 0.798, 0.867 and 0.933, and the largest posterior probability of the ob-
servations that are not included in the table is smaller than 0.1. Again, the
method clearly classified whether we have an outlier at each observation
in the series. Most of the influential observations detected were during or
near to economic crises. It is interesting to observe that the pattern of
the estimated posterior probability of the presence of an outlier during the
Brazilian Sneeze crisis in 1999 is typical of a VO.

Table 4. Summary of the observations in which the poste-
rior probability of the presence of an outlier is larger than
0.5., IBOVESPA series

Date serial no. Return (%) posterior probability
10/01/1995 4 -10.47 0.9872
12/01/1995 6 9.22 0.9905
10/03/1995∗ 45 22.72 1.0000
26/10/1995 202 -6.84 0.9891
15/07/1997∗ 629 -8.99 1.0000
16/07/1997∗ 630 8.35 1.0000
17/07/1997∗ 631 -7.58 0.9695
18/07/1997∗ 632 -4.87 0.9334
27/10/1997∗ 703 -16.31 0.9840
28/10/1997∗ 704 6.14 0.9889
29/10/1997∗ 705 -6.30 0.9826
30/10/1997∗ 706 -10.42 0.9908
10/09/1998 921 -17.32 1.0000
11/09/1998 922 12.49 0.9861
15/09/1998 924 17.04 1.0000
14/01/1999∗ 1007 -10.59 1.0000
15/01/1999∗ 1008 28.73 1.0000
18/01/1999∗ 1009 5.21 0.9352
19/01/1999∗ 1010 3.59 0.8667
20/01/1999∗ 1011 3.81 0.7983
04/01/2000 1250 -6.67 0.9810
∗during or next crisis periods

5. Concluding remarks

We adapted the Justel et al. (2001) test to detect patches of outliers in
the stochastic volatility model. We applied the suggested procedure to sim-
ulated and real data sets. The test showed good performance when applied
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to all the series. In the analysis of the simulated series, the estimation of the
posterior probability inside the possible blocks improved the performance
of the estimates of the size of the outlier and increased the posterior prob-
ability of the presence of the outliers where they were introduced. This
test was also applied to the NYSE series, which was analyzed by Zhang
and King (2005) using six different tests, i.e., slope- and curvature-based
diagnostics for three types of perturbations. The proposed test produced
a similar result, showing power against different types of outliers with the
advantage of estimating the size of the outlier and giving evidence of the
presence of the outlier. The results of the application to the IBOVESPA
series are also in agreement with the economic facts. In the four examples,
the estimated probability in steps (1) and (7) were either small or close to
1.0, showing that the procedure is quite robust in relation to the choice of
the critical values c1 and c2. This result and the robustness to the choice
of d were verified in an analysis not reported here.
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