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Abstract. In this paper we describe the twisted Hall algebra of bound
quiver with small homological dimension. The description is given
in the terms of the quadratic form associated with the corresponding
bound quiver.

Introduction

Let Q be a quiver, g be a symmetric Kac-Moody algebra associated
with Q, and RepQ(Fq) be the category of finite-dimensional representations
of Q over Fq, the field with q = pn elements. In his remarkable papers
[10, 11] Ringel proved that if Q is a Dynkin quiver then there exists an
isomorphism between the (twisted) Hall algebra associated with RepQ(Fq)
and the positive part U+

t (g) of quantized universal enveloping algebra with
t2 = q.

In this paper we consider the case of a quiver Q bound by an admissible
ideal I. To each such quiver we associate an associative algebra U+

t (Q)
given by relations and generators. In the case when FqQ/I is a representa-
tion directed algebra of global dimension at most 2 we show that there ex-
ists a homomorphism ρ between U+

t (Q) and the corresponding twisted Hall
algebra Htw

RepQ(Fq), in which RepQ(Fq) is a category of finite-dimensional

bound representations of Q. In the case when q 6= 2 we show that ρ is an
isomorphism (see Section 2 for details).
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In final section we state some concrete examples of bound quivers and
corresponding twisted Hall algebras and compare these examples with the
ones obtained in [4].
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1. Preliminaries

1.1. Hall algebras. Let A be an Fq-linear finitary category. We define the
(Ringel) Hall algebra HA to be the C-vector space spanned by elements M
in Iso(A) (the set of isomorphism classes of the objects in A) with a product
defined by:

[M ] ∗ [N ] =
∑
R∈HA

FRM,N [R]

where FRM,N denotes the number of the sub-objectsX ⊂ R such thatX ' N
and R/X ' M . Let K0(A) be Grothendieck group of the category A. By
〈−,−〉 : K0(A)×K0(A)→ Z we denote the Euler characteristic of A:

〈M,N〉 =
∞∑
k=0

(−1)k dim Extk(M,N).

The twisted version of the product is defined by

[M ] · [N ] = q
1
2
〈M,N〉

∑
R∈HA

FRM,N [R]

Both products give HA an associative algebra structure (see [10]). The
twisted version of Hall algebra will be denoted by Htw

A .

We mention that both HA and Htw
A possess a grading by the Grothendieck

group K0(A) (see [10]). For α ∈ K0(A) we denote the degree α piece by
HA[α] and by Htw

A [α].

For more information on Hall algebras the interested reader can see, for
example, [7] and references therein.
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1.2. Lie Algebras Associated with Unit Forms. Recall the class of
Lie algebras associated with unit forms considered by Kosakowska [6]. A
unit form is a mapping T : ZI → Z for some finite index set I which is of
the following form:

T (β) =
∑
i∈I

β2
i +

∑
(i,j)∈I×I

aijβiβj

where aij ∈ Z. An example is given by the form associated to a quiver
defined in Section 2.2. A root of T is a vector β ∈ ZI satisfying T (β) = 1.
A root β is called positive if βi ≥ 0, i ∈ I. We denote the set of roots of T
by ∆T and the set of positive roots of T by ∆+

T .

Define the Lie algebra L(T ) to be the free Lie algebra with generators
{ei : i ∈ I} modulo the ideal generated by the set of all elements of the
form

[ei1 , [ei2 , [· · · [eik−1
, eik ] · · · ]]] (1.1)

such that
k∑
j=2

αij ∈ ∆T , but
k∑
j=1

αij /∈ ∆T ,

where {αi; i ∈ I} denotes the standard basis of ZI . The expression (1.1)
appearing above is called a standard multicommutator. This algebra re-
ceives an NI -grading where each generator ei has degree αi.

Remark 1. The Lie algebra L(T ) was shown ([6, Proposition 4.4]) to be
isomorphic to G+(T )–the positive part of the Lie algebra studied by Barot,
Kussin, and Lenzing in [2]–in the case that T is both weakly positive and
positive semidefinite.

Remark 2. Assuming that the form T is positive definite the minimal set
of defining relations in algebra L(T ) was constructed in [6, Theorem 1.1].

1.3. Quantized Lie Algebras associated with Unit forms. Let T be
a unit form and ∆+

T its set of its positive roots. Let 〈 , 〉T : ZI × ZI → Z
be a bilinear form associated with T :

〈β, β′〉T :=
∑
i∈I

βiβ
′
i +

∑
(i,j)∈I×I

aijβiβ
′
j .

Denote by

〈β, β′〉0T =
∑
i∈I

βiβ
′
i +

∑
(i,j)∈I×I

(aij)−βiβ
′
j ,
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where (aij)− = min{aij , 0}. We consider the function ν : ZI × ZI → Z
defined by

ν(β, β′) = δ
( ∑

(i,j)∈I×I

(aij)−βiβ
′
j

)
〈β, β′〉0T , (1.2)

in which δ : Z→ {0, 1} is defined as δ(0) = 1 and δ(x) = 0 elsewhere.

The free associative algebra C〈ei; i ∈ I〉 is NI -graded by giving ei degree
αi. Fixing t ∈ C we define the map

adtx(y) = xy − t〈β,β′〉T−〈β′,β〉T +2ν(β′,β)−2ν(β,β′)yx (1.3)

for homogeneous elements x and y of degree β and β′ respectively. This map
depends on the form T , but in what follows we use notation adtx(y) assuming
that it is always clear which form we have. Note that if 〈 , 〉T = 〈 , 〉0T
then (1.3) gives

adtx(y) = xy − t±〈β,β′〉0T±〈β′,β〉0T yx.
This is slightly different from the quantized adjoint action:

xy − t〈β,β′〉0T +〈β′,β〉0T yx.

Our version is useful for studying the Hall algebra associated to a quiver,
as we will see in the next section.

Consider the following family of associative algebras

U+
t (T ) = C〈ei; i ∈ I〉/RtT ,

where RtT is the two-sided ideal generated by the set of all elements

adtei1
(adtei2

(· · · adteik−1
(eik) · · · )), (1.4)

such that
∑k

j=2 αij ∈ ∆+
T but

∑k
j=1 αij /∈ ∆+

T .

Remark 3. The specialization of U+
t (T ) at t = 1 is isomorphic to the

universal enveloping algebra of L(T ).

Remark 4. Using Remark 1 one can show that in the case where T is both
weakly positive and positive semidefinite, U+

t (T ) gives a quantization of a
positive part of G+(T ) studied in [2].

Here and further, for an NI graded algebraA, we denote the α-homogeneous
piece by A[α] for α ∈ NI .

Proposition 1. Let α ∈ NI and t be any complex number then

dimC U
+
t (T )[α] = dimC U

+
1 (T )[α] = dimC U(L(T ))[α].

São Paulo J.Math.Sci. 8, 1 (2014), 83–94
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Proof. One can use standard arguments coming from [9] or [11] for instance.

Denote by A the Laurent polynomial ring C[u, u−1]. Then A/(u−1) ∼= C
under the isomorphism of evaluation at u = 1. Let

U+
A (T ) := A〈ei; i ∈ I〉/RuT .

We have:
U+

1 (T ) = A/(u− 1)⊗A U+
A (T ) ∼= C⊗A U+

A (T ).

But U+
1 (T ) = U(L(T )) and hence has a PBW basis with finite dimen-

sional NI homogeneous subspaces, which follows directly from Remark 3
since U+

1 (T ) is exactly the specialization of U+
t (T ) at t = 1. Also, U+

A (T )[α]

is finitely generated as an A-module, α ∈ NI . It remains to be shown that
U+
A (T )[α] is free as an A-module, since in that case we have:

U+
1 (T )[α] ∼= C⊗A U+

A (T )[α] ∼= (C⊗A As) ∼= Cs, for some s ∈ N0.

Let U∗ = C(u)⊗A U+
A (T ). Then U+

A (T )[α] is a submodule of U∗[α] consid-
ered as A-modules, hence is torsion free. Therefore, since A is a principal
ideal domain we see that U+

A (T )[α] is free, which completes the proof. �

2. Category RepQ(Fq) and its twisted Hall algebra

2.1. Category of bound representations of a quiver. Let Q be a
quiver given by a set of vertices Q0 and a set of arrows Q1 denoted by
ρ : i → j for i, j ∈ Q0. We only consider finite quivers without oriented
cycles, loops, or multiple arrows.

A finite-dimensional Fq-representation of Q is given by a tuple

V = ((Vi)i∈Q0 , (Vρ)ρ∈Q1 : Vi → Vj)

of finite-dimensional Fq-vector spaces and Fq-linear maps between them. A
morphism of representations f : V → W is a tuple f = (fi : Vi → Wi)i∈Q0

of Fq-linear maps such that Wρfi = fjWρ for all ρ : i→ j.

Let FqQ be the path algebra of Q and I be an admissible ideal in FqQ (see
[1, Section II.1] for precise definitions). Supposing that I is generated by a
minimal set of relations, we denote by r(i, j) the number of relations with
starting vertex i and terminating vertex j. We say that the representation
V of Q is a bound by I if Vr = 0 for any r ∈ I (that is, all the relations in I
are satisfied). To simplify the notation we denote by RepQ(Fq) the abelian
category of representations of Q over Fq bound by an ideal I assuming
that it is always clear which ideal we have. One can show that RepQ(Fq)
is equivalent to the category of left modules over FqQ/I analogously to
the case of unbound quivers (see [1, Section III.1]). Note that, in general,
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RepQ(Fq) is not hereditary, i.e. we can have Extk(V,W ) 6= 0 for some k > 1
and some representations V and W .

The Grothendieck group K0(RepQ(Fq)) can be naturally identified with

ZQ0 . The dimension dimV ∈ K0(Q) of V is defined by dimV = (dimVi)i∈Q0 .

2.2. Representation directed quivers. In the following we assume that
the algebra FqQ/I is of global dimension at most two. In this case for two
representations V and W with dimV = β and dimW = β′ the Euler form
of RepQ(Fq) has a precise form given in terms of dimension vectors (see [3,
Proposition 2.2])

〈V,W 〉 = dim Hom(V,W )− dim Ext1(V,W ) + dim Ext2(V,W )

=
∑
i∈Q0

βiβ
′
i −

∑
ρ:i→j∈Q1

βiβ
′
j +

∑
(i,j)∈Q0×Q0

r(i, j)βiβ
′
j ,

hence the Euler form gives rise to the following unit form

TQ(β) := 〈β, β〉 =
∑
i∈Q0

β2
i −

∑
ρ:i→j∈Q1

βiβj +
∑

(i,j)∈Q0×Q0

r(i, j)βiβj .

In what follows we only consider the case when the algebra FqQ/I is
representation directed, which, in particular, means that the bound quiver
(Q, I) has just a finite number (up to equivalence) of indecomposable rep-
resentations. In this case we can enumerate the indecomposable represen-
tation V (1), . . . , V (n) in such a way that Ext1(V (k), V (l)) = 0, if k ≤ l and

Hom(V (k), V (l)) = 0, if k < l.

Remark 5. Due to [3] if FqQ/I is representation directed then the form TQ
is weakly positive and the set of its positive roots ∆+

TQ
is finite. Moreover

by [5, Theorem 1.3] we have that if q 6= 2 then the assignment V 7→ dimV
gives rise to a bijection between the set of indecomposable representations
of Q and ∆+

TQ
(see also [3, Theorem 3.3] for the original statement for

algebraically closed fields).

We mention also that Ringel showed that for any representation directed
algebra there exist Hall polynomials which count Hall numbers FRM,N (see

[11, Theorem 1] for details). Let Si denote the simple representation of Q
at vertex i ∈ Q0, i.e. (Si)i = Fq, (Si)j = 0 for j 6= i and (Si)ρ = 0 for all
ρ ∈ Q1. We will need the following

Proposition 2. Let M be an indecomposable bound representation of Q
over Fq. The following identity holds

FM⊕Si
Si,M

= qν(m,αi)−ν(αi,m)FM⊕Si
M,Si

,
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in which i ∈ Q0, m = dimM and ν is a function given by (1.2).

Proof. First we mention that for any V,W,R ∈ RepQ(Fq) we have

FRV,W =
|Ext(V,W )R|
|Hom(V,W )|

· |Aut(R)|
|Aut(V )| · |Aut(W )|

,

in which Ext(V,W )R is the subset of Ext(V,W ) parameterising extensions
with middle term isomorphic to R.

It is straightforward to see that

|Hom(M,Si)| = qν(m,αi), |Hom(Si,M)| = qν(αi,m).

Also we have that

|Ext(M,Si)M⊕Si | = |Ext(Si,M)M⊕Si | = 1.

Therefore

FM⊕Si
Si,M

FM⊕Si
M,Si

=
|Hom(M,Si)|
|Hom(Si,M)|

=
qν(m,αi)

qν(αi,m)
= qν(m,αi)−ν(αi,m).

�

2.3. Twisted Hall algebra of RepQ(Fq). Let Q be a bound quiver of
global dimension at most two. Fixing some t ∈ C consider the quantized
Lie algebra U+

t (TQ) where TQ is the unit form associated with Q.

Remark 6. Suppose that i→ j ∈ Q1. Then we have TQ(αi+αj) = 1, hence

αi + αj ∈ ∆+
TQ
, but 2αi + αj /∈ ∆+

TQ
. We also have 〈αi, αj〉 − 〈αj , αi〉 = −1

and 〈αi, αi + αj〉 − 〈αi + αj , αi, 〉 + 2 = 1. Then we have the following
relation in U+

t (TQ)

adtei(adtei(ej)) = adtei(eiej − t
−1ejei)

= e2
i ej − (t+ t−1)eiejei + eje

2
i = 0

which is the usual quantum Serre relation for simple roots connected by a
single arrow. A similar statement holds for adtej (adtej (ei)).

One can also see that if Q is unbound then U+
t (TQ) is a quantized uni-

versal enveloping algebra of the positive part of the Lie algebra g associated
with a quiver Q. As proved by Ringel (see [10]) in this case the assignment
ei 7→ [Si] (where Si is a simple representation at vertex i ∈ Q0) gives rise
to a homomorphism ρ between U+

t (TQ) (which equals U+
t (g) in this case)

and Htw
RepQ(Fq) with t = +

√
q. Moreover if Q has finite type then ρ is an

isomorphism.

We now prove a similar theorem for bound case.

São Paulo J.Math.Sci. 8, 1 (2014), 83–94
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Theorem 3. Let Q be a quiver and I an admissible ideal in FqQ such
that FqQ/I is of global dimension at most 2 and representation directed.
Then the assignment ei 7→ [Si], i ∈ Q0 gives rise to a homomorphism of
associative algebras

ρ : U+
t (TQ)→ Htw

RepQ(Fq),

with t = +
√
q. Moreover if q 6= 2 then ρ is an isomorphism.

Proof. We show ρ is an homomorphism. We need to show that the rela-
tions (1.4) are satisfied. Let M be an indecomposable representation with
dimension dimM = m. Suppose that m+ αi is not a root. Therefore

[M ] · [Si] = q
1
2
〈m,αi〉FM⊕Si

M,Si
[M ⊕ Si],

[Si] · [M ] = q
1
2
〈αi,m〉FM⊕Si

Si,M
[M ⊕ Si],

By Proposition 2 we have that

[Si] · [M ] = q
1
2
〈αi,m〉qν(αi,m)−ν(m,αi)FM⊕Si

M,Si
[M ⊕ Si]

= q
1
2
〈αi,m〉+ν(m,αi)−ν(αi,m)FM⊕Si

M,Si
[M ⊕ Si].

Thus we have that adt[Si]
([M ]) = 0.

Suppose that m + αi is a root. Then (since FqQ/I is representation
directed) there exists exactly one indecomposable representation with di-
mension m + αi. Denote this representation by M1. Also, we have that
either Ext(Si,M) = 0 or Ext(M,Si) = 0. Assume for definiteness that
Ext(Si,M) = 0. Then

[M ] · [Si] = q
1
2
〈m,αi〉

(
FM⊕Si
M,Si

[M ⊕ Si] + FM1
M,Si

[M1]
)
,

[Si] · [M ] = q
1
2
〈αi,m〉FM⊕Si

Si,M
[M ⊕ Si]

= q
1
2
〈αi,m〉+ν(m,αi)−ν(αi,m)FM⊕Si

M,Si
[M ⊕ Si].

Now we consider

adt[Si]
([M ]) = [Si] · [M ]− t〈αi,m〉−〈m,αi〉+2ν(m,αi)−2ν(αi,m)[M ] · [Si].

The coefficient of [M ⊕ Si] is 0 and hence we are left with adt[Si]
([M ]) =

c[M1], where c 6= 0 ∈ C.

Now suppose that
∑k

j=2 αij ∈ ∆+
TQ

then inductively using adt[Sij−1
]([Mj ]) =

cij−1 [Mj−1] where Mj , j ∈ {2, 3, . . . k} is the unique indecomposable of de-

gree
∑k

`=j αi` and cij ∈ C we conclude that

adt[Si2
](adt[Si3

](· · · adt[Sik−1
]([Sik ]) · · · )) = c[M ]
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where M = M2 and c ∈ C (possibly 0). But then adt[Si1
]([M ]) = 0 as∑k

j=1 αij /∈ ∆+
TQ

. Which proves that ρ is a homomorphism.

Assume now that q 6= 2. Since FqQ/I is representation directed by
Remark 5 we have that Htw

RepQ(Fq) is generated by the roots α ∈ ∆+
TQ

and

dimHtw
RepQ(Fq)[β] =

{
(γα) ∈ N∆+

TQ |
∑

γαα = β
}
.

Hence ρ is an epimorphism. Also we have that dimC L(TQ) ≤ |∆+
TQ
| ([6,

Corollary 4.3]). Therefore by Proposition 1 ρ is a monomorphism. Finally
ρ is an isomorphism.

�

3. Examples and final remarks

3.1. Some examples.

Example 1. Let Q be the following quiver

Q : 1
a // 2

b // 3

bound by I = 〈ba〉 the ideal of FqQ generated by ba. Obviously FqQ/I is a
representation directed algebra. The corresponding quadratic form is:

TQ(β) = β2
1 + β2

2 + β2
3 − β1β2 − β2β3 + β1β3. (3.1)

It is not hard to see that the quantum Serre relations of U+
t (sl4) are satisfied

in Htw
RepQ(Fq) where t = +

√
q. Moreover we have the following additional

relations:

adte1(e3) = 0, adte1(adte2(e3)) = 0.

These relations are due to the fact that α3, α2+α3 are roots but α1+α3 and
α1 +α2 +α3 are not the roots of the form (3.1). Denoting [x, y]t = txy−yx
to be the twisted commutator, we have that

Htw
RepQ(Fq) ' C〈ei | i = 1, 2, 3〉/R.

where R is the two-sided ideal generated by the usual quantum Serre rela-
tions for U+

t (sl4) but with the relation [e3, e1] = 0 replaced by [e3, e1]t = 0
and one extra relation

[e1, [e2, e3]t] = 0.

This computation follows from the fact that the positive root system of
U+
t (TQ) is ∆+(sl4)\{α1 + α2 + α3}.

São Paulo J.Math.Sci. 8, 1 (2014), 83–94
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This description of Htw
RepQ(Fq) is a little bit different than the one obtained

in [4, Example 5.9] for the same quiver Q and ideal I but with slightly
different twisting.

Example 2. More generally let Q be the following quiver

Q : 1
a1 // 2

a2 // . . . an // n

bound by the ideal I = 〈an . . . a1〉 of the algebra FqQ. By similar observa-
tions we have that

Htw
RepQ(Fq) ' C〈ei | i = 1, . . . , n〉/R.

where R is the two-sided ideal generated by the usual quantum Serre
relations for U+

t (sln+1) but with the relation [en, e1] = 0 replaced by
[en, e1]t = 0 and one extra relation

[e1, [e2, . . . , [en−1, en]t . . . ]t].

Similar to the previous case, this follows since the positive root system of
U+
t (TQ) is ∆+(sln)\{α1 + α2 + · · ·+ αn}.

Example 3. Let Q be the following quiver

4

Q : 2

a2

=={{{{{{{{
3

b2

^^========

1

a1

aaCCCCCCCC b1

@@��������

bound by the ideal I = 〈a2a1 − b2b1〉 in FqQ. We have

TQ(β) = β2
1 + β2

2 + β2
3 + β2

4 − β1β2 − β1β3 − β2β4 − β3β4 + β1β4.

In this case apart from the standard relations in Htw
RepQ(Fq), which came

from considering Q as unbound quiver, we have the following extra rela-
tions:

[e4, e1]t = 0, [e1, [e2, e4]t] = 0, [e1, [e3, e4]t] = 0.

This follows from a similar computation of the positive roots of the form
TQ.

Example 4. Let Q be the same quiver as in Example 3 bound by ideal
I = 〈a2a1, b2b1〉. In this case we have

TQ(β) = β2
1 + β2

2 + β2
3 + β2

4 − β1β2 − β1β3 − β2β4 − β3β4 + 2β1β4.
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Hence the extra relations will have the following form

[e1, [e2, e4]t]t−1 = 0, [e1, [e3, e4]t]t−1 = 0

[e4, e1]t2 = 0, [e1, [e2, [e3, e4]t]t] = 0.

As before, this follows from computing the positive roots of the form TQ.

3.2. Commutative representations of quivers over F1 and Hall al-
gebra. As the limiting case of our construction one can also study repre-
sentations of quivers with commutativity conditions over the so-called field
with one element: F1. Such a field is not defined per se, but there is agree-
ment on what should be the definition and basic properties of the category
of vector spaces over F1 as a limiting case of the categories of vector spaces
over Fq (see for example [8]).

Suppose that Q is without oriented cycles and loops. The category
RepQ(F1) of finite-dimensional representations of Q over F1 is defined sim-
ilarly to RepQ(Fq) (see [8, Section 4]). It is straightforward to define the
representation of quiver over F1 which satisfy given relations. In the case
when Q has only commutativity relations it is straightforward to show that
any indecomposable object in RepQ(Fq) is one-dimensional (similar state-
ment to [8, Theorem 5.1]).

M.Szczesny in [8] defined the Hall algebra, HRepQ(F1), of RepQ(F1) for the

case when Q is unbound following Ringel’s definition. A slightly modified
construction can be applied in the bound case as well, and we use the
same notation as the unbound case. Moreover, let K = {0, 1} be the one-
dimensional space over F1. Denote by Si a simple representation of Q at
vertex i ∈ Q0, i.e. (Si)i = K, (Si)j = 0 for j 6= i and (Si)ρ = 0 for all
ρ ∈ Q1. Then one shows the following

Remark 7. Let Q be a quiver without oriented cycles, loops or multiple ar-
rows bound by all possible commutativity relations. The assigment ei 7→ [Si]
gives rise to an epimorphism of associative algebras U+

1 (TQ) and HRepQ(F1).
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