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Abstract. We will discuss some new results for the inverse problem of
Variational Calculus. We will consider problems with functionals given
by action forms of order greater than one and subject to non-holonomic
constraints.

1. Introduction

Griffiths (see [16]) presented a new approach to variational problems in
the context of exterior differential systems, and proposed mixed endpoint
conditions for problems with non-holonomic constraints to obtain station-
ary solutions. With these non-holonomic constraints it is generally not
possible to have variations of integral manifolds subject to fixed endpoint
conditions. These mixed endpoint conditions will make the integral over
the boundary of the first variation vanish. In [26] we generalized Grif-
fiths’s framework to variational problems given by multiple integrals, and
established mixed boundary conditions for variational problems with non-
holonomic constraints. The study of Variational Calculus for functionals
defined by multiple integrals was developed by Caratheodory [1929], Weil-
De Donder [1936], Lepage [1936-1942]. Other authors like Dedecker [1953-
1977], Liesen [1967], R. Hermann [1966], H. Goldschmidt and S. Sternberg
[1973], Ouzilou [1972], D. Krupka [1970-1975], I. M. Anderson [1980], P. L.
Garcia and A. Pérez-Rendón [1969-1978], C. Günther [1987], Edelen [1961]
and Rund [1966] contributed with their work to this field.
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In 1887, Helmholtz presented the inverse problem of Variational Calculus
in the following way: Given Pi = Pi(x, uj , uj

x, u
j
xx), is there a Lagrangian

L(x, uj , uj
x) such that Ei(L) = ∂L/∂ui − Dx∂L/∂u

i
x = Pi, where Dx =

∂/∂x+ui
x∂/∂u

i +ui
xx∂/∂u

i
x? Necessary conditions were found for Pi to be

a Euler-Lagrange system (see (3.1) (3.2) and (3.3)). These conditions were
proved to be locally sufficient.

I. M. Anderson [1992], [1980], P. J. Olver [1986], F. Takens [1979], W.
M. Tulczyjew [1980] and A. M. Vinagradov [1964] generalized Helmholtz’s
conditions both for higher order systems of partial differential equations
and for multiple integrals.

In the present text we describe new results for the the inverse problem
of Variational Calculus for multiple integrals in the context of exterior dif-
ferential systems. We deal with non-holonomic constraints in the setting
of the mixed boundary conditions defined in [26]. This work is a follow up
of [29] and [30]. In section I and II we present a short review of the latter
work. In section III we discuss the inverse problem of Variational Calcu-
lus, and conclude in section IV with a study of the generalized Lagrange
problem with non-holonomic constraints.

1.1. Integral manifolds and valued differential systems. Let us con-
sider a manifold X and two subbundles of the cotangent bundle T ∗X, sat-
isfying:

i) I∗ ⊂ T ∗X,
ii) L∗ ⊂ T ∗X with I∗ ⊂ L∗ ⊂ T ∗X,

with the rank (L∗/I∗) = n (a natural number).
We define an integral manifold of (I∗, L∗) as an oriented connected com-

pact n-dimensional smooth manifold N together with a smooth mapping

f : N → X

satisfying:
I∗f(x)

⊥ = L∗f(x)
⊥ + f∗(TN), (1.1)

for all x ∈ N .
N may admit a piecewise smooth boundary ∂N .
V (I∗, L∗) is the collection of integral manifolds f of (I∗, L∗).
Let ϕ be an n-form on X. A valued differential system of (I∗, L∗) is a

triple (I∗, L∗, ϕ).
We define the functional φ associated with (I∗, L∗, ϕ) in V (I∗, L∗) by:

φ : V (I∗, L∗) → R,
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f → φ[f ] =
∫
f∗ϕ. (1.2)

1.2. Local embeddability. Let us define a Pfaffian differential system
which is locally embeddable in J1(Rn, Rm). The differenial system for
the Lagrange problem will be defined later [26]. Let d(C∞(X,L∗)) ⊂
C∞(X,L∗∧T ∗X) and d′ = dimX, s = rankI∗. We denote d(C∞(X,L∗) as
the set of images obtained by the exterior derivative of C∞(X,L∗). We can
set for every p ∈ X a chart coordinate system
{u1, ..., us+n, v1, ..., vd′−s−n} so that:

i)

L∗ = span{duα|1 ≤ α ≤ s+ n}) (1.3)

ii)

L∗⊥ = span{ ∂
∂v
|1 ≤ i ≤ d′ − s− n} (1.4)

for an open subset U of X with p ∈ U , using the Frobenius theorem. Let
δ be the map I∗ ∧ Ω → Λn+1(T ∗U)/I∗u ∧ (Λn(T ∗ U)) induced by:

d : C∞(U, I∗ ∧ Ω) → C∞(U,Λn+1(T ∗U))

in I∗ ∧ Ω.

Definition 1.1. A Pfaffian differential system (I∗, L∗) with d(C∞(X,L)) ⊂
C∞(X,L∗ ∧ T ∗X) is locally embeddable if for every p ∈ X there exists an
open neighborhood U of p and local coframes CF = {θ1, ..., θs} for I∗U and
CF ′ = {θ1, ..., θs, du”s+1, du”s+n} for L∗U , satisfying:

(i) δ(I∗U ∧ Ω) ⊂ T ∗U ∧ Λn(L∗U )/T ∗U ∧ I∗U ∧ Λn−1(L∗)),
(ii) Ker δ is a constant rank subbundle of I∗ ∧ Ω,

where Ω = span{du”s+1 ∧ ... ∧ d̂u”s+j ∧ ... ∧ du”s+n},

d̂u”s+j - means deletion of s+ j factor (for n = 1, d̂u”s+1 = 1).
If I∗ has no Cauchy characteristics, the structure equations are locally:

dθα ≡ πα
j ∧ du”s+j +Aαj′

α′βπ
α′
j′ ∧ θβ +Bα

βjθ
β ∧ du”s+jmodI ∧ I (1.5)

1 ≤ α, α′, β ≤ s, 1 ≤ j, j′, j′′ ≤ n, I = C∞(X, I∗).
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1.3. The Cartan system. We will now define the Cartan system whose
solutions, when projected in X, will be candidates for extremum of φ for
appropriate boundary conditions.

We begin by assuming that (I∗, L∗, ϕ) is a valued differential system on
X, and that W is the total space of I∗. Let us consider χ the canonical
form on T ∗X, and i the inclusion map W i

↪→T
∗X.

We assume that the n-form ω is locally given by:

ω = ω1 ∧ ... ∧ ωn, (1.6)

inducing a nonzero section of Λn(L∗/I∗).

ωi = (−1)i−1ω1 ∧ ... ∧ ω̂i... ∧ ωn. (1.7)

Wn is the n-Cartesian power of W . We define Z as a subset of Wn by
Z = {z ∈ Wn : π′(z) ∈ X}, where π′ is the projection π′(z) : Wn → X,
and ∆Xn is the diagonal submanifold of Xn.
Z is a vector subbundle over X and dimZ = d+ sn. Let ψ be

ψ = π∗ϕ+ (πjoi′)∗[i∗(χ)] ∧ π∗ωj . (1.8)

πj is the natural projection into the jth component πj : Wn →W , i’ is the
inclusion map Z →Wn, π is the natural projection π : Z → X and

Ψ = dψ. (1.9)

Locally, (πjoi′)∗[i∗(χ)] ∧ π∗ωj = λi
jθi

j with θi
j = θj ∧ ωj .

Definition 1.2. The Cartan system C(Ψ) is the ideal generated by the set
of n-forms

{vyΨ where v ∈ C∞(Z, TZ)}.
Integral manifolds of (C(Ψ), ω) are oriented connected compact n-dimensional

smooth manifolds N (possibly with a piecewise smooth boundary ∂N) to-
gether with a smooth mapping f : N → X, satisfying:

f∗θ = 0 for every θ ∈ C(Ψ) (1.10)

and

f∗(ω) 6= 0. (1.11)

We can now express the first variation of φ by:

δφ =
∫

f(N)
vydψ + d(vyψ). (1.12)
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1.4. The momentum space. Let us assume that we have on Z:

(i) a closed (n+ 1)-form Ψ with the associated Cartan system C(Ψ),
(ii) π′∗ω is the pull-back to Z of ω, which is the n-form inducing a

nonzero section on ∧n(L∗/I∗).

Definition 1.3. Let (C(Ψ), π′∗ω)n be the ideal generated by (C(Ψ), π′∗ω) in
C∞(Z,∧nT ∗Z). We say that [z0, E

p
0 ], with z0 ∈ Z and Ep

0 a p-dimensional
subspace of the tangent space Tz0, is a p-dimensional integral element of
(C(Ψ), π′∗ω)n if

(i) < Ep
0 , α >= 0 for all (C(Ψ), π′∗ω)n,

(ii) < Ep
0yω >6= 0.

Vn(C(Ψ), π∗ω)), the set of integral elements [z0, E
p
0 ], is a subset of Gn(Z).

Let π” be the projection Gn(Z) → Z. Let us assume that:

Z1 = π”(Vn(C(Ψ), π∗ω)), V ′n(C(Ψ), π∗ω))) =

{E ∈ Vn(C(Ψ), π∗ω) : E tangent to Z1}, (1.13)

Z2 = π”(V ′n(C(Ψ), π∗ω)), V ”n(C(Ψ), π∗ω))) =

{E ∈ V ′n(C(Ψ, π∗ω) : E tangent to Z2}... (1.14)

are subundles of Z.

Definition 1.4. Let (I∗, L∗, ϕ) be a locally embeddable valued differential
system, and ω = ω1 ∧ ... ∧ ωn. If there exists a k0 ∈ N, such that in the
above construction Zk0 = Zk0+1 = ... = Zk0+n′(n′ ∈ N), with

(i) Zk0 a manifold of dimension (n+ 1)m+ n for m ∈ N, and
(ii) (C(Ψ), π∗ω)Zk0

being a differential system in Zk0 with rn = 0 (Car-
tan number in Cartan-Kähler Theorem) for all Vn−1(C(Ψ), π∗ω)),

then (I∗, L∗, ϕ) is a non-degenerate valued differential system.We will re-
name Zk0 the momentum space Y .

For n = 1 we follow [16] and replace condition (ii) by ψ∧Ψn 6= 0 onZk0 .
We call (C(Ψ), π∗ω)Y the prolongation of (C(Ψ), π∗ω) in the momentum

space. In this construction, the differential system (C(Ψ), π∗ω)Y satisfies:

(i) the projection (C(Ψ), π∗ω) → Y is surjective,
(ii) and the integral manifolds of (C(Ψ), π′∗ω) on Z coincide with those

of (C(Ψ), π∗ω) on Y .
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1.5. Well-posed valued differential systems. Let us assume that

(a) we have the following subbundles of T ∗X

I∗ ⊂ L∗ ⊂ T ∗X
∪ ∪
P ∗ ⊂ M∗

, (1.15)

(b) the locally given n-form ω also induces a nonzero section on
Λn(M∗/P ∗), and

(c) Y ⊂ (P ∗)n|∆Xn , with Y being a subbundle of (P ∗)n|∆Xn .

Definition 1.5. (I∗, L∗, ϕ, P ∗,M∗) is a well-posed valued differential sys-
tem if we have the following conditions fulfilled:

(i) (I∗, L∗, ϕ) is a non-degenerate valued differential system
(with dimY = (n + 1)m + n) and ϕ = Lω for a smooth function
L on X,

(ii) there exists a subbundle P ∗ of I∗ of rank m and a subbundle M∗ of
L∗ of rank m+ n as in (1.15),

(iii) π”∗M∗ = span{π∗θ|θ ∈ C∞(X,M∗)} is completely integrable on Y ,
where π” = π ◦ i, with i once more denoting the inclusion mapping
Y → Z and π the projection Z → X.

CF = {θα, dus+j , πα′
j′ , πα”

j |1 ≤ α ≤ s, 1 ≤ α′ ≤ sl, j
′ ∈ Lα′ , sl+1 ≤ α” ≤

s, 1 ≤ j ≤ n} for T ∗X with Lα′ ⊂ {k ∈ N, 1 ≤ k ≤ n} :

(i)
I∗ = span{θα|1 ≤ α ≤ s}, (1.16)

(ii)
L∗ = span{θα, dus+j |1 ≤ α ≤ s, 1 ≤ j ≤ n}, (1.17)

(iii) T ∗X = L∗⊕R∗ (⊕ denotes a direct sum) withR∗ = span{πα′
j′ , πα”

j |1 ≤
α′ ≤ sl, j

′ ∈ Lα′ , sl+1 ≤ α” ≤ s, 1 ≤ j ≤ n},
(iv)

dθα′
j” ≡ 0 mod I, for j” /∈ Lα′{θα′

j” = θα′ ∧ ωj”}, (1.18)

(v)

dθα′
j′ ≡ πα′

j′ ∧ ω mod I, for j′ ∈ Lα′ , (1.19)

(vi)

dθα”
j ≡ πα”

j ∧ ω mod I, when 1 ≤ j ≤ n, (1.20)

(vii) πα′
j′ , πα”

j are linearly independent mod L.
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In [29], we presented a set of boundary conditions for different types
of well-posed valued differential systems. For these boundary conditions,
solutions of the Cartan system are solutions of the Euler-Lagrange system.
(These have null first variations.)

2. Generalized Lagrange problem

The framework for this Lagrange problem with or without constrains
represents a set of problems that is highly relevant to the study of Calculus
of Variations.

The generalized Lagrange problem is defined on X = J1(Rn,Rm) (the
1 jet manifold), with the canonical system I∗ defined on X (i.e. I∗ =
span{θα = dyα−yα

xidx
i}) and ϕ = Lω, with ω = dx1∧ ...∧dxn. We choose

x1, ..., xn to be coordinates for Rn, and y1, ..., ym coordinates for Rm.

Definition 2.1. Let f be a solution to the canonical differential system
I∗, with the independence condition given by L∗ = span{I∗, dx1, ..., dxn}.
A family F (x, t1, ..., tk) of integral manifolds of (I∗, L∗) is a k-parameter
variation of f k ∈ N if:

(i) F (x, t1, ..., tk) is smooth with (t1, ..., tk) ∈ [0, ε1] × ... × [0, εk], for
εi > 0, 1 ≤ i ≤ k,

(ii) F(t1,...,tk)
.= F (x, t1, ..., tk) ∈ V (I∗, L∗) for all (t1, ..., tk) ∈ [0, ε1] ×

...× [0, εk],
(iii) F (x, 0) = f(x) for all x ∈ N,N ⊂ R.

F∗( ∂
∂ti

) is an infinitesimal variation of F .

We will consider variations satisfying the condition π”(F (x, t)) = π”(f(x))
for all x ∈ ∂N and t ∈ [0, ε] (π” is the projection J1(Rn, Rm) → Rn).

Without loss of generality we can choose v so that vydxi = 0, thus
replacing a one parameter variation of f by another that has the same first
and second variation while satisfying:

π”(F (x, t))N = idN (2.1)
for all t ∈ [0, ε]).

3. Inverse problem for calculus of variations

3.1. First example. In 1887, Helmholtz solved the following problem:

Example 1. Given Pα = Pα(x, uβ, uβ
x, u

β
xx). Is there a Lagrangian

L(x, uβ, uβ
x) such that Eα(L) = ∂L/∂uα − Dx∂L/∂u

α
x = Pα, where Dx =

∂/∂x+ uα
x∂/∂u

α + uα
xx∂/∂u

α
x? He found the necessary conditions for Pα :
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∂Pα/∂u
β
xx = ∂Pβ/∂u

α
xx, (3.1)

∂Pα/∂u
β
x = ∂Pβ/∂u

α
x + 2Dx∂Pβ/∂u

α
xx, (3.2)

∂Pα/∂u
β = ∂Pβ/∂u

α −Dx∂Pβ/∂u
α
x +Dxx∂Pβ/∂u

α
xx. (3.3)

Let E →M be a fibered manifold. J∞(E) (see [5] and [41]) is the infinite
jet of E.
Let

θi = duα − uα
xdx, (3.4)

θα
x = duα

x − uα
xxdx, (3.5)

and
ΩP = Pαθ

α ∧ dx+ 1/2[∂Pα/∂u
β
x −Dx∂Pα/∂u

α
xx]θβ ∧ θβ

+1/2[∂Pα/∂u
α
xx + ∂Pβ/∂u

α
xx]θα ∧ θβ

x . (3.6)

If P satisfies the Helmholtz conditions (3.1), (3.2) and (3.3), then dΩP =
0. If ΩP is exact (equivalently, ifHn+1(E) n+1, de Rham cohomology group
of E is trivial), then Pα is globally variational.

If θL = Ldx+ ∂L/∂uα
xθ

α, then dθL = ΩP .

Volterra [51] showed that if L =
∫
N uαPα(x, tuβ , tuβ

x, tu
β
xx)dt, where N =

[0, 1], then:
Eα(L) = Pα. (3.7)

We obtain a global solution to the inverse problem in the case of one
independent variable and Pα = 0 equations of second order.

In 1964, Vaingberg [50] generalized this result. However, this Lagrangian
is usually of much higher order than necessary.

From [5] one can derive the following theorem:

Theorem 3.1. Let ∆ be a differential operator of order 2k

∆ = Pα(xi, uβ, uβ
1 , ..., u

β
2k)θ

β ∧ ω. (3.8)

Then ∆ is the Euler-Lagrange operator of a kth- order Lagrangian
L(xi, uβ, uβ

1 , ..., u
β
k), if and only if ∆ satifies the higher order Helmholtz

conditions, and the functions

Pα(t) = Pα(xi, uβ, uβ
1 , ..., u

β
k , tu

β
k+1..., t

kuβ
2k) (3.9)

are polynomials in t of degree less or equal to k.

uβ
k denote all possible kth- order derivatives of uβ , 1 ≤ α, β ≤ m and

1 ≤ i ≤ n, θβ = duβ − uβ
xidx

i and ω = dx1 ∧ ... ∧ dxn.
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3.2. Variational Bicomplex. Let us recall now a very important tool for
a globalization of the inverse problem [5], [41].

Definition 3.1. A p-form ω on J∞(E) is said to be of type (r, s), where
r + s = p, if at each point x of J∞(E)

ω(X1, X2, ..., Xp) = 0, (3.10)

whenever either

(i) more than s of the vectors X1, X2, ..., Xp are π∞M vertical, or
(ii) more than r of the vectors X1, X2, ..., Xp annihilate all contact one

forms.

Note: Ωr,s denotes the space of type (r, s) forms on J∞(E).

(i) π : E →M is a fiber bundle.
(ii) There exists a set of differential equations on sections of E.

d = dH + dV

dH : Ωr,s(J∞(E)) → Ωr+1,s(J∞(E)), (3.11)

dV : Ωr,s(J∞(E)) → Ωr,s+1(J∞(E)), (3.12)

d2
H = 0, dHdV = −dV dH , d

2
V = 0. (3.13)

In local coordinates

dHf = [∂f/∂xi + uα
xi∂f/∂u

α + uα
xixj∂f/∂u

α
xj + ...]dxxi

, (3.14)

dV f = ∂f/∂uαθα + ∂f/∂uα
xiθ

α
xi + ... (3.15)

I is locally given by:

I : Ωr,s(J∞(E)) → Ωr,s(J∞(E)), (3.16)

I(ω) =
1
s
θα ∧ [(∂/∂uαyω)−Dxi((∂/∂uα

xiyω) +Dxixj ((∂/∂uα
xixjyω)− ...]

(3.17)

Definition 3.2. The sequences of spaces
↑ dV ↑ dV ↑ δV

0 → Ω0,3 ... → Ωn,3 I−→ F 3 → 0
↑ dV ↑ dV ↑ dV ... ↑ dV ↑ dV ↑ δV

0 → Ω0,2 dH−−→ Ω1,2 dH−−→ Ω2,2 ...
dH−−→ Ωn−1,2 dH−−→ Ωn,2 I−→ F 2 → 0

↑ dV ↑ dV ↑ dV ... ↑ dV ↑ dV ↑ δV

0 → Ω0,1 dH−−→ Ω1,1 dH−−→ Ω2,1 ...
dH−−→ Ωn−1,1 dH−−→ Ωn,1 I−→ F 1 → 0

↑ dV ↑ dV ↑ dV ... ↑ dV ↑ dV ↑ δV

0 → R → Ω0,0 dH−−→ Ω1,0 dH−−→ Ω2,0 ...
dH−−→ Ωn−1,0 dH−−→ Ωn,0

(3.18)

is the Variational Bicomplex.
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Therefore, we have:

0 → R → Ω
0,0 dH−−→ Ω

1,0 dH−−→ Ω
2,0

...
dH−−→ Ω

n−1,0 dH−−→ Ω
n,0 E−→ F

1 δH−−→ F
2 δH−−→ F

3
... (3.19)

3.3. Two other examples.

Example 2. Let T = T (xi, u, uxi , ..., uxi1xi2 ) be a second order operator 1 ≤
i1, i2 ≤ n. We assume that T is a smooth function. Let L = L(xi, u, uxi)
be a first-order operator, with L being a smooth function. E[L] = ∂L/∂u−
Dxi∂L/∂uxi, where Dxi = ∂/∂xi + uxi∂/∂u+ uxi,xi1∂/∂uxi1 + ...

Let v be a lift to the momentum space of an infinitesimal variation
F∗(∂/∂t) of f = πog, where g is a solution of (C(Ψ), π∗ω). The Lie-
derivative of ψ = π∗ϕ+ (πβoi′)∗[i∗(χ)] ∧ π∗ωβ along v is:

vydψ + d(vyψ) = E[L](u)v1π∗(dx1 ∧ ... ∧ dxn))

+d(∂L/∂uxiv1π∗((−1)i−1dx1 ∧ ... ∧ d̂xi... ∧ dxn). (3.20)

If we identify ei with π∗((−1)i−1dx1 ∧ ... ∧ d̂xi... ∧ dxn) at each point of
the integral manifold of (C(Ψ), π∗ω), we can write:

d(∂L/∂uxiv1π∗((−1)i−1dx1 ∧ ... ∧ d̂xi... ∧ dxn))

= DivV [u]π∗(dx1 ∧ ... ∧ dxn),
where

V [u] = ∂L/∂uxiviei. (3.21)

We have
E[L](u) = 0 if L[u] = DivW [u] (3.22)

and
H(T ) = 0 if T [u] is Euler-Lagrange. (3.23)

Helmholtz equations are:

∂T/∂uxi = Dxi∂T/∂uxixi + 1/2Dxi1∂T/∂uxixi1 . (3.24)

There exists a sequence of spaces

V (u) Div−−→ F (u) E−→ F (u) H−→ V (u) (3.25)

that is a cochain complex, the Euler-Lagrange complex, where F [u] is
the set of smooth functions F (xi, u, uxi , ..., uxi1xi2 ), V [u] is the set of vector
fields defined in Rn with F [u] coeficients. This is a particular case of (3.19).
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This complex is exact and thus the inverse problem is solved in this second
example.

Example 3. Let Tα(xi, uβ, uβ
xi , ..., u

β
xi1xi2

) be second-order operators 1 ≤
i1, i2 ≤ n and 1 ≤ β, α ≤ m. We assume that Tα are smooth functions.
Let L = L(xi, uβ, uβ

xi) be a first-order operator, with L being a smooth
function. Eα[L] = ∂L/∂uα−Dxi∂L/∂uα

xi where Dxi = ∂/∂xi +uα
xi∂/∂u

α +
uα

xi,xi1
∂/∂uα

xi1
+ ...

Helmholtz equations are:

∂Tα/∂u
β
xixi1

= ∂Tβ/∂u
α
xixi1

, (3.26)

∂Tα/∂u
β
xi = ∂Tβ/∂u

α
xi + 2Dxi1∂Tα/∂u

α
xixi1

, (3.27)

∂Tα/∂u
β = ∂Tβ/∂u

α −Dxi∂Tβ/∂u
α
xi +Dxixi1∂Tβ/∂u

α
xixi1

. (3.28)

4. G.L. problem with non-holonomic constraints

4.1. G.L. problem with non-holonomic constraints. Let us recall
from [26] the generalized Lagrange problem with non-holonomic constraints
for n > 1,m > 1.

Let us assume gρ(xi, uα, uα
xj ) = 0, with rank[∂gρ/∂uα

xj ] = mn − l,
gρ(xi, uα, uα

xj ) are smooth functions, with 1 ≤ i, j ≤ n, 1 ≤ α ≤ m,
1 ≤ ρ ≤ mn − l and l ≥ 0. (I∗, L∗, ϕ, I∗, L∗) is a well-posed valued differ-
ential system, where: I∗ = span {θα}, and L∗ = span {θα, dxi|1 ≤ i ≤ n}

θα = {duα − uα
xidx

i|1 ≤ i ≤ n} (4.1)
and

θα
j = θα ∧ ωj |1 ≤ i ≤ n}. (4.2)

In this setting we have:

dθµ
i = −duµ

xi ∧ ω, (4.3)
dθσ

iσ = −duσ
xiσ ∧ ω with iσ ∈ Lσ ⊂ {1,...,n} , (4.4)

dθσ
jσ

= +Aiσ
jσµdu

µ
xi ∧ ω +A

iσ′σ
jσσ′du

σ′

xiσ′ ∧ ω
+Bσ

jσαθ
α ∧ ω modI ∧ I with jσ /∈ Lσ. (4.5)

Lµ
xi = (∂/∂uµ

xi −Aiσ
jσµ∂/∂u

σ
xjσ )L, (4.6)

Lσ′

xiσ′ = (∂/∂uσ′

xiσ′ −A
iσ′σ
jσσ′∂/∂u

σ
xjσ )L, (4.7)
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Lνµ

xi′xi
= (∂/∂uµ

xi −Aiσ
jσµ∂/∂u

σ
xjσ )Lν

xi′ , (4.8)

Lµσ′

xixiσ′ = (∂/∂uσ′

xiσ′ −A
iσ′σ
jσσ′∂/∂u

σ
xjσ )Lµ

xi , (4.9)

Lσ′µ

xiσ′ xi
= (∂/∂uµ

xi −Aiσ
jσµ∂/∂u

σ
xjσ )Lσ′

xiσ′ , (4.10)

Lσ′σ“
xiσ′ xiσ“

= (∂/∂uσ“
xiσ“

−Aiσ
jσσ“∂/∂u

σ
xjσ )Lσ′

xiσ′ , (4.11)

with 1 ≤ σ, σ′σ′′ ≤ m−ml and m−ml + 1 ≤ µ, ν ≤ m. (4.12)

We have
∑ml

σ=1 nσ = l, where nσ = n−#Lσ.

Ψ ≡ (Lµ
xi − λµ

xi − λσ
jσ
Aiσ

jσµ)π∗(duµ
xi ∧ ω)

+(Lσ′

xiσ′ − λσ′

xiσ′ − λσ
jσ
A

iσ′σ
jσσ′)π∗(duσ

xiσ ∧ ω)

+dλµ
i ∧ π

∗(θµ
i ) + dλσ

i ∧ π∗(θσ
i )

+(Luα − λσ
jσ
Bσ

jσα + L
uσ′

x
jσ′
Bσ

jσα)π∗(θα ∧ ω) mod I ∧ I, (4.13)

The Cartan system is:

π∗θα
i (1 ≤ α ≤ m and 1 ≤ i ≤ n), (4.14)

(Lµ
xi − λµ

xi − λσ
jσ
Aiσ

jσµ)π∗ω (m−ml + 1 ≤ µ ≤ m), (4.15)

(Lσ′

xiσ′ − λσ′

xiσ′ − λσ
jσ
A

iσ′σ
jσσ′)π∗ω, (4.16)

(1 ≤ σ, σ′, σ“ ≤ mσ with iσ′ ∈ Lσ and jσ /∈ Lσ)

(−dλµ
xi ∧ π∗ωi) + (Luµ − λσ

jσ
Bσ

jσµ + L
uσ′

x
jσ′
Bσ

jσµ) ∧ π∗ω, (4.17)

(−dλσ“
xjσ′′ ∧ π∗ωjσ“

− dλσ′′

xjσ“
∧ π∗ωiσ′′ )

+(Luσ“ − λσ
jσ
Bσ

jσσ“ + L
uσ′

x
jσ′
Bσ

jσσ′′) ∧ π∗ω. (4.18)

Let us assume gρ/∂uµ
xi = 0 for all ml + 1 ≤ µ ≤ m and gρ/∂uσ

xi
σ

= 0 for
all iσ ∈ Lσ and 1 ≤ σ ≤ ml. Then the Euler-Lagrange equations are:

Eµ(L) = ∂L/∂uµ −Dxi∂L/∂u
µ
xi + ∂L/∂uσ′

xiσ′B
σ
jσµ + λσ

jσ
Bσ

jσµ, (4.19)
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Eσ(L) = ∂L/∂uσ −Dxiσ∂L/∂u
σ
xiσ + ∂L/∂uσ′

xiσ′B
σ′
j′
σσ + λσ′

j′
σ
Bσ′

j′
σσ − λσ

jσxiσ .

(4.20)

Proposition 4.1. Let (I∗, L∗) be a locally embeddable differential sys-
tem defined on X = J1(Rn,Rm)|gρ(xi,uα,uα

xj )=0, rank[∂gρ/∂uα
xj ] = mn − l,

gρ(xi, uα, uα
xj ) are smooth functions (1 ≤ i, j ≤ n, 1 ≤ α ≤ m, 1 ≤ ρ ≤

mn−l, l ≥ 0), and gρ/∂uµ
xi = 0 for all ml+1 ≤ µ ≤ m and gρ/∂uσ

xi
σ

= 0
and for all iσ ∈ Lσ and 1 ≤ σ ≤ ml, where I∗ = span {θα}, L∗ = span
{θα, dxi|1 ≤ i ≤ n},

θα = duα − uα
xjdx

j 1 ≤ j ≤ n. (4.21)
Let

Qµ(xi, uµ, uµ
xi , u

µ
xixj , u

σ, uσ
xiσ , u

σ
xiσ xi′σ

, λσ
jσ
, λσ

jσxiσ )
and

Qσ(xi, uµ, uµ
xi , u

µ
xixj , u

σ, uσ
xiσ , u

σ
xiσ xi′σ

, λσ
jσ
, λσ

jσxiσ ),

with ml +1 ≤ µ ≤ m, 1 ≤ σ ≤ ml and 1 ≤ i ≤ n and (iσ, iσ′) ∈ (Lσ)2, with

Qα(xi, uσ, uµ
xi , tu

µ
xixj , u

σ, uσ
xiσ , tu

σ
xiσ xi′σ

, λσ
jσ
, λσ

jσ xiσ ),

1 ≤ α ≤ m being polynomials in t of degree less or equal to 1, and

Pσ = Qσ + λσ′
j′
σ
Bσ′

jσ′σ − λσ
jσxiσ , (4.22)

Pµ = Qµ + λσ
jσ
Bσ

jσµ. (4.23)
Furthermore, if we assume that Pα satisfy Helmholtz conditions and do not
depend on λσ

jσ
and λσ

jσxiσ coordinates, then Qα are locally Euler-Lagrange
operators for a Lagrangian L(xi, uµ, uµ

xi , u
σ, uσ

xi).

Proof: In this case the Helmholtz conditions are:
∂Pα/∂u

β
xixi1

= ∂Pβ/∂u
α
xixi1

, (4.24)

∂Pα/∂u
β
xi = ∂Pβ/∂u

α
xi + 2Dxi1∂Pα/∂u

α
xixi1

, (4.25)

∂Pα/∂u
β = ∂Pβ/∂u

α −Dxi∂Pβ/∂u
α
x +Dxixi1∂Pβ/∂u

α
xixi1

. (4.26)

From Theorem 3.1 we know that a function F (xi, uµ, uµ
xi , u

σ, uσ
xiσ ) can

be found such that Eα[F ] = Pα.
In addition, if in the domain of Pα the sequence of spaces is exact

Ωn,0 E−→ F 1 H−→ 0, (4.27)

then we have a global solution for the inverse problem.
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Example 4. Let X = J1(Rn,Rm)|gρ(xi,uα,uα
xi )=0, rank[∂gρ/∂uα

xj ] = mn−l,
gρ(xi, uα, uα

xi) are smooth functions (1 ≤ i, j ≤ n, 1 ≤ α ≤ m, 1 ≤ ρ ≤ n−
l, l ≥ 0). Furthermore, let us assume that gρ/∂uµ

xi = 0 for all ml + 1 ≤
µ ≤ m and gρ/∂uσ

xi
σ

= 0 for all iσ ∈ Lσ , 1 ≤ σ ≤ ml. I∗ = span {θα},
L∗ = span {θα, dxi|1 ≤ i ≤ n}.

Qσ(xi, uµ, uµ
xi , u

µ
xix

j , uσ, uσ
xiσ , u

σ
xiσ xi′σ

, λσ
jσ
, λσ

jσxiσ ) =

2uσ′

xjσ′B
σ
jσ′α +

∑
iσ

2uσ
xiσ xiσ − λσ

jσ
Bσ

jσσ − λσ
jσxiσ , (4.28)

Qµ(xi, uµ, uµ
xi , u

µ
xix

i, uσ, uσ
xiσ , u

σ
xiσ xi′σ

, λσ
jσ
, λσ

jσxiσ ) =

2uσ
xjσ (xi, u)Bµ

jσα +
∑

i

2uµ
xixi − λσ

jσ
Bσ

jσσ. (4.29)

Qσ − λσ
jσ
Bσ′

j′
σσ − λσ′

j′
σxiσ and Qµ − λσ

jσ
Bµ

jσµ satisfy Helmhotz equations and
are globally Euler-Lagrange operators for L =

∑
iσ

(uσ
xiσ )2 +

∑
jσ(uσ

xjσ )2 +∑
i(u

µ
xi)2.
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[8] E. Cartan. Les systémes differentielles exterieurs et leurs applica-
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