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In 1971, Auslander [1] has introduced the notion of representation
dimension of an artin algebra. His definition is as follows (see Section 1
for details on the notation):

Definition A. Let Λ be an artin algebra. We set

A(Λ) = {Γ artin algebra | dom.dim Γ ≥ 2 and Λ ∼
Morita

EndΓ(I0(Γ))}.

Here I0(Γ) denotes the injective envelope of Γ as Γ-module.

The representation dimension of Λ is defined as

repdim Λ =

{
1 if Λ is semi-simple
min{gl.dim Γ | Γ ∈ A(Λ)} otherwise.

Auslander has shown that an algebra is of finite representation type,
that is, it admits only finitely many indecomposable modules up to
isomorphism, if and only if its representation dimension is at most 2.
We will give a proof of this fact in Section 1 as Corollary 1.9. This
led Auslander to the expectation, “that this notion gives a reasonable
way of measuring how far an artin algebra is from being of finite
representation type.” [1, III.5, lines 2, 3]

Igusa and Todorov [6] have shown that there is a connection be-
tween Auslander’s representation dimension and the finitistic dimen-
sion conjecture.

Finitistic dimension conjecture. Let Λ be an artin algebra, and

fin.dim Λ = sup{pdX | X ∈ mod Λ such that pdX <∞}.
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480 Steffen Oppermann

Then

fin.dim Λ <∞.

More precisely, they have shown that the finitistic dimension con-
jecture holds for any artin algebra of representation dimension at most
three. Here we will prove this in Section 2.

Unfortunately, it turned out to be rather hard to compute the ac-
tual value of the representation dimension of a given algebra. How-
ever, in 2003 Iyama [8] has shown that the representation dimension
of a finite dimensional algebra is always finite. He did so by explic-
itly constructing an algebra Γ ∈ A(Λ) with gl.dim Γ < ∞, so the
minimum in the definition above is always finite. We will explain his
construction and prove that it works in Section 3 here. When applied
to a given algebra, this construction yields an upper bound for the
representation dimension of this algebra.

By Auslander’s result mentioned above, it was known that any
representation infinite algebra has representation dimension at least
three. However, it was not known whether numbers greater than three
can occur as the representation dimension of a finite dimensional al-
gebra, until Rouquier [12] has shown in 2005 that the representation
dimension of the exterior algebra of an n-dimensional vector space is
always n + 1. Here, in Section 4, we will take a slightly different ap-
proach to show that any number occurs as the representation dimen-
sion of some artin algebra. In order to do so we will give Rouquier’s
definition of dimension of a triangulated category [12, 13], and the
author’s generalization to subcategories [10]. We will then explain
what is the connection of these dimensions to Auslander’s represen-
tation dimension. Finally we will use this method to determine the
representation dimension of the Beilinson algebras.

1. Different definitions and first properties

In this section we give three different definitions of representation
dimension. We show that, provided the algebra is not semi-simple,
all three definitions are equivalent. We will give some indication as
to when which definition is most helpful. In particular we will prove
Auslander’s theorem, saying that an algebra has representation di-
mension at most two if and only if it is representation finite, using
Definition C.
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Notation. For an artin algebra Λ we denote by mod Λ the category of
finitely generated left Λ-modules. We denote byD : mod Λ mod Λop

the standard duality.

Let us start by recalling Auslander’s original definition as given in
the introduction. First we define the notions involved.

Notation. Let Λ be an artin algebra. Let M ∈ mod Λ. Then we
denote by pdM and idM the projective dimension and injective di-
mension of M , respectively. We denote by gl.dim Λ the global dimen-
sion of Λ, that is the maximum over the projective dimensions of all
modules.

1.1. Definition. Let Λ be an artin algebra, and let

Λ I0(Λ) I1(Λ) · · ·
be a minimal injective resolution. Then the dominant dimension of
Λ is

dom.dim Λ = inf{n ∈ N | In(Λ) is not projective}.
1.2. Definition. Let Λ and Γ be to artin algebras. We say Λ and Γ
are Morita equivalent (denoted by Λ ∼

Morita
Γ if there is a projective

generator P ∈ mod Λ (that is a projective module P ∈ proj Λ such
that Λ ∈ addP ) such that Γ ∼= EndΛ(P ).

Definition A. Let Λ be an artin algebra. We set

A(Λ) = {Γ artin algebra | dom.dim Γ ≥ 2 and Λ ∼
Morita

EndΓ(I0(Γ))}.

Here I0(Γ) denotes the injective envelope of Γ as Γ-module.

The representation dimension of Λ is defined as

repdim Λ =

{
1 if Λ is semi-simple
min{gl.dim Γ | Γ ∈ A(Λ)} otherwise.

1.3. Observations. • The condition dom.dim Γ ≥ 1 means that
(up to multiplicity) I0(Γ) is the direct sum of all indecompos-
able projective injective Λ-modules.
• We set

S = {X ∈ mod Γ |there is an exact sequence

X B0 B1 with

B0, B1 ∈ add I0(Γ)}.
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Since I0(Γ) is injective the functor F : S mod Λ as de-
picted in the following diagram is an equivalence.

S mod EndΓ(I0(Γ)) mod Λ

add I0(Γ) inj EndΓ(I0(Γ)) inj Λ

DHomΓ(−,I0(Γ)) ≈

≈ ≈

F

• Since dom.dim Γ ≥ 2 we see that Γ ∈ S. In particular it makes
sense to consider F(Γ), and

EndΛ(F(Γ)) = EndΓ(Γ) = Γ.

• The Λ-module F(Γ) is a generator and cogenerator of mod Λ.
That is, it contains all indecomposable projective and all in-
decomposable injective Λ modules as direct summands.

This motivates the following version of Auslander’s original defini-
tion.

Definition B. Let Λ be an artin algebra. Then

repdim Λ = min{ gl.dim End(M) |M ∈ mod Λ

generator and cogenerator}.

A generator cogenerator M realizing the minimum above is called
Auslander generator.

We have seen above that any algebra in A(Λ) is the endomorphism
ring of a generator cogenerator of mod Λ. Hence, in order to show
that the two definitions coincide for any non-semisimple algebra Λ, it
suffices to show than EndΛ(M) ∈ A(Λ) for any generator cogenerator
M of mod Λ.

Proof. Let M I0(M) I1(M) be the start of an injective resolu-
tion of M . Applying the functor Hom(M,−) we obtain

EndΛ(M) HomΛ(M, I0(M)) HomΛ(M, I1(M)).

Now HomΛ(M,DΛ) = DHomΛ(Λ,M), and this is injective as
EndΛ(M)-module since Λ ∈ addM . Hence the sequence above shows
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that
dom.dim EndΛ(M) ≥ 2, and moreover that

EndEndΛ(M)(I0(EndΛ(M))) = EndEndΛ(M)(HomΛ(M, I0(M)))

= EndΛ(I0(M)) ∼
Morita

Λ.

Here the Morita equivalence follows from the fact that M is a cogen-
erator. �

1.4. Definition. For M ∈ mod Λ and X ∈ mod Λ we say that
f : M ′ X is a right M -approximation, if any morphism ϕ : M X
factors through f .

It is called minimal right M -approximation, if it is moreover right
minimal in the sense of [3].

We denote by ΩMX the kernel of a minimal right M -approximation
of X, and inductively we set Ωn+1

M X = ΩMΩn
MX.

We set

M -resol.dimX = inf{n ∈ N | Ωn+1
M X = 0}, and

M -resol.dim(mod Λ) = sup{M -resol.dimX | X ∈ mod Λ}.

1.5. Observations. • The M -approximations and the derived
constructions only depend on addM .
• For M = Λ the M -approximations are projective covers, and

ΩΛ = Ω is the usual syzygy.
• If Λ ∈ addM then right M -approximations are always epi-

morphisms.
• The functor

mod Λ mod EndΛ(M)

addM proj EndΛ(M)

G = HomΛ(M,−)

≈

maps
– kernels to kernels, and
– right M -approximations to projective covers.

In particular for any X ∈ mod Λ we have M -resol.dimX =
pd G(X).
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• For any X ∈ mod Λ we there is a sequence

Ω2
MX M1 M0 X

which is exact in M1. Therefore Ω2
MX ∈ Im G.

• For X ∈ mod Λ we have G(X) ∈ Ω2(mod Γ) if and only if there
is an exact sequence X M0 M1 with M0,M1 ∈ addM .
• If M is a cogenerator then we have G(X) ∈ Ω2(mod Γ) for any
X ∈ mod Λ.

Hence we have shown that Definition B is equivalent to the follow-
ing:

Definition C. Let Λ be an artin algebra. Then

repdim Λ = min{M -resol.dim(mod Λ) |M ∈ mod Λ

generator and cogenerator}+ 2.

1.6. Remark. Motivated by this definition and the examples of al-
gebras where the representation dimension is explicitly known (see
Theorems 4.14 and 4.15) Ringel suggests to normalize the represen-
tation dimension, and set

n.repdim Λ = repdim Λ− 2.

Let us summarize what we have shown so far.

1.7. Theorem. Let Λ be an artin algebra, which is not semi-simple.
Then Definitions A, B, and C are equivalent. (It is easy to see that
they give 1, 0, and 2, respectively for semi-simple algebras.)

1.8. Remarks. • One advantage of Definition B is, that to use
it we have to know only M , and not the rest of the module
category.
• One advantage of Definition C is that, if we do not know M ,

we can work in the module category of Λ and don’t have to
construct projective resolutions in an unknown module cate-
gory.

1.9. Corollary (Auslander). Let Λ be an artin algebra. Then repdim Λ
≤ 2 if and only if Λ has finite representation type.

Proof. Assume first that Λ has finite representation type. Then we can
find an additive generator M of mod Λ (that is a module M ∈ mod Λ,
such that addM = mod Λ). One easily sees that M -resol.dimX = 0
for any X ∈ mod Λ, and hence repdim Λ = 2.
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Now assume that Λ is not representation finite, and let M be an
Auslander generator. Then there is X ∈ mod Λ \ addM . For this
X we have M -resol.dimX ≥ 1, and hence M -resol.dim(mod Λ) ≥ 1.
Therefore repdim Λ ≥ 3. �

1.10. Example. Let Λ be the quiver algebra of linearly oriented A4,
with Auslander-Reiten quiver as depicted below.

M1

M2

M3

projectives injectives

We obtain the following resolution dimensions:

M M -resol.dim(mod Λ)
Λ⊕DΛ 1
Λ⊕DΛ⊕M1 1
Λ⊕DΛ⊕M2 2
Λ⊕DΛ⊕M3 1
Λ⊕DΛ⊕M1 ⊕M2 1
Λ⊕DΛ⊕M1 ⊕M3 1
Λ⊕DΛ⊕M2 ⊕M3 1
Λ⊕DΛ⊕M1 ⊕M2 ⊕M3 0

This suggests that the M -resultion dimension tends to go down if
we make M bigger. However this is not true in general, and in fact
we have

1.11. Theorem (Iyama [7, Theorem 4.6.2]). Let Λ be controlled wild,
and n ∈ N. Then

∃B : ∀M generator and cognerator with B ∈ addM :

M -resol.dim(mod Λ) ≥ n

We now follow Ringel [11] to determine a large class of algebras
which have representation dimension three.
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1.12. Theorem. Assume the category

Sub Λ = {X ∈ mod Λ | X Λn for some n}
contains only finitely many indecomposables (such an algebra is called
torsionless finite). Then repdim Λ ≤ 3. In particular, any represen-
tation infinite torsionless finite algebra has representation dimension
three.

Proof. See [11] for the proof that a torsionless finite algebra is also
cotorsionless finite, that is the category

FacDΛ = {X ∈ ind Λ | DΛn X for some n}
also contains only finitely many indecomposables.

We choose M and M such that addM = Sub Λ and addM =
FacDΛ, and set M = M ⊕M .

Let X ∈ mod Λ. Let M ′
f

X and M
′ f

X be minimal right
M - and M -approximations of X. Since Λ ∈ addM the map f is onto.

Since addM is closed under factors f is into. We take the pullback
as in the following diagram.

M X

K M

PB

Now, since addM is closed under subobjects we have K ∈ addM ,
and hence an M -resolution

K M ′ ⊕M ′ X.

Hence M -resol.dim(mod Λ) ≤ 1, and the claim follows from Defini-
tion C. �

1.13. Examples. The following classes of algebras are torsionless fi-
nite, and hence have representation dimension at most three.

• hereditary algebras
• concealed algebras
• algebras with Rad2 = 0
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2. The connection to the finitistic dimension conjecture

In this section we summarize Igusa and Tororov’s proof of the fol-
lowing result.

2.1. Theorem (Igusa-Todorov [6]). Let Λ be an artin algebra of rep-
resentation dimension at most three. Then

fin.dim Λ <∞.

Recall that fin.dim Λ = sup{pdX | X ∈ mod Λ ∧ pdX <∞}. One
of the most important conjectures about homological properties of
artin algebras is the following:

Finitistic dimension conjecture. Let Λ be an artin algebra, and

fin.dim Λ = sup{pdX | X ∈ mod Λ such that pdX <∞}.

Then

fin.dim Λ <∞.

Hence Igusa and Todorov’s theorem says that the finitistic dimen-
sion conjecture holds for algebras of representation dimension at most
three.

2.2. Remark. It can be very easy to show that repdim Λ ≤ 3 (using
Definition B): If we have a generator cogenerator M it is easy to check
if gl.dim End(M) ≤ 3.

Idea of proof of 2.1. Let M be an Auslander generator. We have to
find an upper bound to pdX for any X ∈ mod Λ of finite projective
dimension.

By Definition C and the assumption of the theorem there is a short
exact sequence

M1 M0 X

with M1 and M0 ∈ addM . Hence there are also short exact sequences

ΩnM1 ΩnM0 ⊕ P ΩnX

for any n (with P projective). Since X has finite projective dimension
eventually we will have

ΩnM1
∼= ΩnM0.
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Now Igusa and Todorov apply the fitting lemma to show that there
is φ(M) ∈ N such that for any M ′,M ′′ ∈ addM

ΩnM ′ ∼= ΩnM ′′ for some n ∈ N
=⇒Ωφ(M)M ′ ∼= Ωφ(M)M ′′

(see [6] for details).

Now split Ωφ(M)M0 = Ωφ(M)M1 = A ⊕ B, with pdA < ∞ and B
a direct sum of indecomposable modules of infinite projective dimen-
sion. In the short exact sequence

A⊕B

(∗ ∗
∗ fB
∗ ∗

)
A⊕B ⊕ P Ωφ(M)X

the map fB has to be an isomorphism (see [6]). Therefore there is a
short exact sequence

A A⊕ P Ωφ(M)X.

Hence

pdX ≤ φ(M) + pdA+ 1

≤ φ(M) + max{pdX | X ∈ add Ωφ(M)M and pdX <∞}+ 1.

Since this upper bound for pdX does not depend on X it follows that

fin.dim Λ ≤ φ(M)+max{pdX | X ∈ add Ωφ(M)M and pdX <∞}+1.

�

2.3. Example. Erdmann, Holm, Iyama, and Schröer [5] have shown
that any special biserial algebra has representation dimension at most
three. With Theorem 2.1 they obtain as a corollary that any special
biserial algebra has finite finitistic dimension.

2.4. Remarks. • The proof only requires the existence of a
short exact sequence M1 M0 X for any X, but does not
need this sequence to be an M -resolution, or M to be a co-
generator.
• In order to show that the finitistic dimension is finite, it would

suffice to treat all X which are syzygies.
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3. Iyama’s finiteness theorem

In this section we give a proof of the following result of Iyama.

3.1. Theorem (Iyama [7, 8]). Let Λ be an artin algebra. Then

repdim Λ <∞.

The strategy of the proof is to construct a generator cogenerator
M ∈ mod Λ such that M -resol.dim(mod Λ) <∞.

3.2. Remark. Iyama [8] has first shown that the generator cogenera-
tor M he constructed has quasi-hereditary endomorphism ring. Hence
its endomorphism ring has finite global dimension, and the represen-
tation dimension is finite by Definition B.

3.3. Construction. Let M0 be any generator cogenerator (typically
we choose M0 = Λ⊕DΛ). Then set inductively

M i+1 = M i/SocEndΛ(M i)M
i.

That means M i+1 is the image of the map

M i (M i)n

M i+1

(α1, . . . , αn)

where α1, . . . , αn generate Rad(M i,M i)End(M i), that is any radical

endomorphism of M i factors through (α1, . . . , αn). In particular the
M i have the properties

(1) Any radical map M i M i factors through M i
proj

M i+1.
(2) For any i we have SubM i+1 ⊆ SubM i.

Note that whenever M i 6= 0 we have length(M i+1) � length(M i).
Since M0 has finite length there is m such that Mm+1 = 0. We set

M = ⊕mi=0M
i.

Clearly this is a generator cogenerator.

3.4. Proposition. With M and m as above we have

M -resol.dim(mod Λ) ≤ m− 1.
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In particular

repdim Λ ≤ m+ 1.

Clearly this implies Theorem 3.1.

Proof. Let X ∈ mod Λ not contain any injective direct summands.
Then we show the following by induction:

(Ak) There is a radical monomorphism Ωk
MX (Mk)n for some n.

(Bk) There is an M -approximation M ′ Ωk
MX with M ′ ∈

add⊕mi=k+1M
i.

(A0) is true (take an injective envelope). We will show (Ak) =⇒
(2)

(Bk)

=⇒
(1)

(Ak+1).

For implication (1) note that, in the setup of (Bk), we have

Ωk+1
M X

∈ Rad
M ′ (Mk+1)n

for some n by Property (2) in Construction 3.3 above.

For implication (2) let s be the biggest number such that there is
an M -approximation M ′ Ωk

M with M ′ ∈ add⊕mi=s+1M
i. We may

assume M ′ to be of the form ⊕mi=s+1(M i)ni for some ni. If we assume
s < k we have the following diagram,

⊕mi=s+1(M i)ni (M s+2)ns+1 ⊕⊕mi=s+2(M i)ni

Ωk
MX (M s+1)n

M -approx

∈ Rad

where the upper map is projection in the components M s+1 M s+2

and identity elsewhere. By Property (1) of Construction 3.3 we can
complete this to a commutative square. Since the image of the right
vertical map is the same as the image of the composition from left
upper to right lower corner, which is Ωk

MX, we obtain the following
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commutative diagram.

⊕mi=s+1(M i)ni (M s+2)ns+1 ⊕⊕mi=s+2(M i)ni

Ωk
MX (M s+1)n

M -approx

∈ Rad

Now the diagonal map is also an M -approximation, contradicting the
minimality of s. Hence s ≥ k, and the inductive statements are shown.

Finally we see that by (Bm) we have Ωm
MX = 0, and hence

M -resol.dimX ≤ m− 1. �

3.5. Example (Result by Auslander). Let Λ with LL Λ = 2 (LL
denotes the Loewy length).

M0 = P ⊕DΛ (P projective non-injective)

M1 = P ⊕DΛ/ SocDΛ︸ ︷︷ ︸
semisimple

M2 = semisimple

M3 = 0 =⇒ repdim Λ ≤ 3.

3.6. Example (Result by Auslander). Let Λ be self-injective. M0 =
Λ. Inductively one sees that the indecomposable direct summands of
M i have pairwise non-isomorphic simple tops, and hence LLM i+1 <
LLM i. Therefore MLL Λ = 0, and repdim Λ ≤ LL Λ.

3.7. Example (Iyama). Let Λ be the Beilinson-algebra kQ/I with

Q =

x0

xn

x0

xn

x0

xn

x0

xn

x0

xn

and

I = (xixj − xjxi).

Starting with M0 = Λ ⊕ DΛ one obtains Mn+2 = 0, and hence
repdim Λ ≤ n+ 2.
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4. Lower bounds

In this section we will restrict ourselves to finite dimensional k-
algebras.

4.1. Idea (Rouquier). M -resol.dimX big ≈ it takes many short exact
sequences to build X from M .

Translation to the triangulated world gives the dimension of a (sub-
category of a) triangulated category.

4.2. Construction. Let T be a triangulated category, and M ∈ T .

〈M〉 = 〈M〉1 = add{M [i] | i ∈ Z}
〈M〉n+1 = add{X | ∃M ′ X M ′′ M ′[1] with

M ′ ∈ 〈M〉 ,M ′′ ∈ 〈M〉n}

The subcategory 〈M〉n is also called “nth thickening of M”. It con-
tains all objects that can be constructed from M using triangles at
most n− 1 times.

4.3. Definition. The dimension of a triangulated category T is

dim T = inf{n | ∃M ∈ T : T = 〈M〉n+1}.

For a subcategory C ⊆ T the dimension is defined to be

dimT C = inf{n | ∃M ∈ T : C ⊆ 〈M〉n+1}.
We will omit the index T when there is no danger of confusion.

Of particular interest to us are dimDb(mod Λ) and dim mod Λ =
dimDb(mod Λ) mod Λ.

4.4. Lemma. Let M ∈ mod Λ be a generator, and X ∈ mod Λ. Then
for any n we have

M -resol.dimX ≤ n =⇒ X ∈ 〈M〉n+1 .

In particular

M -resol.dim(mod Λ) ≥ dim mod Λ, and

repdim Λ ≥ dim mod Λ + 2.

Proof. This follows immediately from the fact that short exact se-
quences in mod Λ turn into triangles in Db(mod Λ). �
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4.5. Lemma.
repdim Λ ≥ dimDb(mod Λ)

Proof. See [9, 12]. �

If we want to use these inequalities to establish lower bounds for
the representation dimension, we need to find a method to prove lower
bounds for dimensions of triangulated categories or their subcate-
gories. One key ingredient is the ghost lemma.

4.6. Definition. Let C′ ⊂ C be categories, f : X Y in C is called

C′-ghost if any composition C ′ X
f
Y with C ′ ∈ C′ vanishes.

Here we look at 〈M〉 ⊂ Db(mod Λ).

4.7. Lemma (Ghost lemma). Let T be a triangulated category, M ∈
T , and

X0

f1
X1

f2
X2

f3
· · ·

fn
Xn

a sequence of 〈M〉-ghosts, such that the composition f1 · · · fn 6= 0.

Then X0 6∈ 〈M〉n.

Proof. See, for instance, [9]. �

4.8. Example. Let T = Db(mod Λ), M = Λ, and X ∈ mod Λ with
pdX = n. Then X 6∈ 〈M〉n.

Proof. The projective resolution

ΩnX Pn−1 Pn−2 P1 P0 X

Ωn−1X ΩX

gives rise to a sequence of maps

X ΩX[1] · · · Ωn−1X[n− 1] ΩnX[n]

in Db(mod Λ). They are all 〈Λ〉-ghosts, and their composition in non-
zero. Hence the claim follows from the ghost lemma. �

4.9. Remark. For this example it suffices for Λ to be a left noetherian
ring.
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4.10. Problem. In order to show that dimDb(mod Λ) or dim mod Λ
is big we need to find such a sequence of 〈M〉-ghosts for an arbitrary
M .

This problem can be solved “in a different world”:

Let X be a reduced scheme of finite type over k. We look at cohX
instead of mod Λ.

4.11. Remark. The easiest (and most important) examples are:

An : cohAn = mod k[x1, . . . , xn]

Pn : cohPn = modgr k[x0, . . . , xn]/(modules of finite length)

The important difference between mod Λ and cohX is that in the
geometric setup we have an extra tool: localization. For any closed
point p we have the local ring Op, and for any M ∈ cohX, the corre-
sponding module Mp ∈ modOp.

We denote by kp = Op/p the simple sheaf concentrated in point p.
(This is called a “skyscraper sheaf”.)

4.12. Lemma. Let X be a reduced scheme of finite type over k, and
M ∈ cohX. Then Mp is projective over Op for all p in a dense open
set of closed points in X.

4.13. Corollary.

dimDb(cohX){kp | p a closed point in X} ≥ dimX

Proof. Choose a closed point p in an irreducible component of X which
has the same dimension as X, such thatMp is projective overOp. Then

kp ∈ 〈M〉n =⇒ kp ∈ 〈Mp〉n ⊆ 〈Op〉n
=⇒

Example
4.8

n  pdOp
kp ≥ dimX. �

Back to finite dimensional algebras. The first examples of alge-
bras of representation dimension strictly bigger then three have been
the exterior algebras.

4.14. Theorem (Rouquier). Let Λ be the exterior algebra of an n-
dimensional vector space. Then

repdim Λ = n+ 1.

São Paulo J.Math.Sci. 4, 3 (2010), 479–498



Representation dimension of artin algebras 495

Vague idea of proof. (see [12] for details) Use Koszul duality

Db(mod Λ)
RHom(k,−)

D(dgmod k[x1, . . . , xn])

and relate the latter category to the derived category of coherent
sheaves on Pn−1. �

Here we want to look at the Beilinson algebras in more detail.

4.15. Theorem. Let Λ be the Beilinson algebra (see Example 3.7)
kQ/I with

Q =

x0

xn

x0

xn

x0

xn

x0

xn

x0

xn

and

I = (xixj − xjxi).

Then

repdim Λ = n+ 2.

Proof. The sheaf T = O⊕O(1) · · ·⊕O(n) is a tilting bundle in cohPn
with End(T ) = Λ. Hence it induces a derived equivalence

Db(cohPn)
RHom(T,−)

Db(mod Λ).

Since ExtiPn(O(j), kp) = 0 for i ≥ 1, for any j, and any closed point p,
the functor RHom(T,−) maps {kp | p closed point} to mod Λ. Hence

dimDb(mod Λ) mod Λ ≥ dimDb(mod Λ) RHom(T, {kp | p closed point})
= dimDb(cohX){kp | p closed point}
≥

Corollary 4.13
n

Now repdim Λ ≥ n+2 by Lemma 4.4. We have seen repdim Λ ≤ n+2
in Example 3.7. �

4.16. Remark. The proof above (showing that repdim Λ ≥ n + 2)
works for any algebra Λ that comes up as the endomorphism ring of
a tilting object in cohX, where X is a reduced scheme of dimension n.

São Paulo J.Math.Sci. 4, 3 (2010), 479–498



496 Steffen Oppermann

4.17. Example. For X = P1 × · · · × P1︸ ︷︷ ︸
n copies

there is a tilting bundle

T = ⊕i∈{0,1}nO(i1)⊗ · · · ⊗ O(in).

By Remark 4.16 the endomorphism ring of T has representation di-
mension at least n+ 2. Using Iyama’s upper bound (Proposition 3.4)
one easily sees that repdim Λ = n+ 2.

The algebras arising here have the following shape:

n = 1: End(T ) = k[ ]
n = 2: End(T ) = kQ/I with

Q =

x1

y1

x1

y1

x2 y2 x2 y2

and

I = (x1x2 − x2x1, x1y2 − y2x1, y1x2 − x2y1, y1y2 − y2y1).

n = 3: End(T ) = kQ/I with

Q = and

I = (similar commutation relations).

and similar hypercubes with commutation relations for larger n.

We conclude by giving two more general results giving lower bounds
for the representation dimension by relating the module category to
some commutative setup:
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Setup for the lattice theorem: Let R be a finitely generated commu-
tative algebra over k without zero divisors, and let Λ be a finite di-
mensional k-algebra. Let L be a Λ ⊗k R-lattice (that is a bimodule,
which is projective over R). Then the functor

L⊗R − : finite length modules over R mod Λ

is exact, and hence induces maps

(L⊗R −)Extd : ExtdR(X,Y ) ExtdΛ(L⊗R X,L⊗R Y )

for R-modules X and Y of finite length.

4.18. Theorem (Lattice theorem – see [10]). Let Λ, R and L be as
above, and d ∈ N. Assume

(L⊗R −)Extd(ExtdR(R/p, R/p)) 6= 0

for all p in a dense subset of maximal ideals of R. Then

repdim Λ ≥ d+ 2.

4.19. Theorem (Bergh [4]). Assume Λ is self-injective, and the even
Hochschild cohomology ring satisfies a finite generation hypothesis (see
[4]). Then

repdim Λ ≥ Krull.dim HH2∗(Λ) + 1.

(Here Krull.dim HH2∗(Λ) denotes the Krull dimension of the (com-
mutative) even Hochschild cohomology ring.)
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embeddings and representation dimension, Adv. Math. 185 (2004), no. 1,
159–177.

São Paulo J.Math.Sci. 4, 3 (2010), 479–498



498 Steffen Oppermann

[6] Kiyoshi Igusa and Gordana Todorov, On the finitistic global dimension con-
jecture for Artin algebras, Representations of algebras and related topics,
Fields Inst. Commun., vol. 45, Amer. Math. Soc., Providence, RI, 2005,
pp. 201–204.

[7] Osamu Iyama, Rejective subcategories of artin algebras and orders,
preprint, arXiv:math.RT/0311281.

[8] , Finiteness of representation dimension, Proc. Amer. Math. Soc.
131 (2003), no. 4, 1011–1014.

[9] Henning Krause and Dirk Kussin, Rouquier’s theorem on representation
dimension, Trends in representation theory of algebras and related topics,
Contemp. Math., vol. 406, Amer. Math. Soc., Providence, RI, 2006, pp. 95–
103.

[10] Steffen Oppermann, Lower bounds for Auslander’s representation dimen-
sion, Duke Math. J. 148 (2009), no. 2, 211–249 .

[11] Claus Michael Ringel, The torsionless modules of an artin algebra, 2008.
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