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Abstract. For a given trivial extension A of Cartan class D,,, we
find a combinatorial algorithm giving the configuration of ZD,,
associated to A; this algorithm is stated in the Theorem 6.8 and
illustrated in the Example 6.3. In order to do that, we develop an
inductive embedding technique for the Auslander-Reiten quiver
T'a of a trivial extension A of type D,,. This technique uses the
ordinary quiver QQa, which is the union of oriented cycles, and
a well known set of relations p such that A is the quotient path
algebra kQa/ < p > (see [1], [5] and [6]). Giving a trivial exten-
sion I of type Dy, we get a trivial extension A of type Dy m—1
by inserting a cycle (with m vertices) in one of the so called in-
sertion vertices of Qr. In Section 3, we describe the embedding
of I'r into I'a. This will allow us to deduce properties of I'x from
I'r; and since Qr has less cycles that Qa, we will use this embed-
ding to reduce the study of I'a to the minimal trivial extensions,
which were done in Section 2.

Introduction

In this paper, we only consider basic finite dimensional k-algebras
with k an algebraically closed field. In such a case, an algebra A of
this type is isomorphic to kQ4/I, where Q4 is the ordinary quiver
associated to A and [ is an admissible ideal of the path algebra kQ 4.
For a quiver @, the set of vertices will be denoted by (g and the set
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274 Octavio Mendoza Herndndez

of arrows by Q.

Given a k-algebra A and a vertex j of Q 4, we denote by S; the simple
A-module corresponding to the vertex j; and so, P; will denote the
projective cover of S; and I; the injective envelope of S;.

Let A be an iterated tilted algebra of Dynkin type A (see in [2]);
and let T'(A) := A x D4(A) be the trivial extension of A by its min-
imal injective cogenerator D4(A) = Homy(A, k). The set of vertices
(T'4)o of the Auslander-Reiten quiver I'y of A can be embedded in
the stable part sI'p(4) of the Auslander-Reiten quiver 'z 4y of T'(A).
Since ZA — gI'p(4) is the universal covering of sI'p(y4), the vertices
of I'4 can be embedded in ZA in such a way that knowing the ver-
tices of ZA corresponding to A-modules, we can obtain the arrows
of 'y (see in [8]). Hence, the quiver I'4 is embedded in ZA; and it
is very useful for applications to describe this embedding explicitely.
In [8], this problem was solved by assuming that the set of vertices
in ZA corresponding to the radicals of the indecomposable projective
T(A)-modules is known. So, to have a complete description of this
embedding, it is necessary to give an algorithm to determine which
subsets of vertices in ZA represent the radicals of the indecompos-
able projective modules over a given trivial extension 7" of Dynkin
type A. These kind of vertices of ZA have been considered before by
Chr. Riedtmann, who called them configurations, in a more general
setting [4, 10, 11, 12]. The configurations of selfinjective algebras of
finite type were computed in these works. One could use the results
for selfinjective algebras and then decide which configurations corre-
spond to a given trivial extension A. With a different approach, we
present here a new algorithm giving directly the configuration of a
given trivial extension of Dynkin type D,,. The A,, case was solved in
[9]. In what follows, we summarize the content of the paper.

Section 1: By following [5], we give (see Proposition 1.8) a presen-
tation of the trivial extensions A of Cartan class Dy; and also we
recall the lifting procedure of sI'y to ZDy as was settled in [8, 9].

Section 2: Let A be a trivial extension of Cartan class Dy and
m : ZDny — gI'a be the universal covering of translation quivers.
Consider the subset Cp := {rP; : i € (Qa)o} of sT'a representing
the radicals of the indecomposable projective A-modules P; for i €
(Qr)o, and the set Co = 7 (Cp). In this section, we describe the

configuration Cy associated to a given minimal trivial extension A of
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Configurations of trivial extensions of Dynkin type Dy 275

type Dy. We start by studying, under very special situations, how
rP; can be lifted to ZDy for some j € (Qa)o. We do this first for
arbitrary trivial extensions of Dy type, and then specialize for the
different minimal types defined in the previous section.

Section 3: Let I' be a trivial extension of Cartan class Dy, z an
insertion vertex of Qr (see Definition 2.1) and A be the trivial exten-
sion of Cartan class Dy ,,—1 obtained from I' by inserting the cycle
C,=2z 21 < 29 -+ 21 < z at z. In this section, we study
the embedding of ¢I'r in gI'p. We also study the behavior of the
irreducible morphisms of modI' inside mod A using the embedding
1:modI" — mod A.

Section 4: In the previous section, we described an embedding of
sI'r in ¢I'a. In this section, we study the corresponding embedding
between their coverings k(ZDy) and k(ZDpyyp,—1). Here, the main
results are the Theorem 4.11 and its Corollary 4.12.

Section 5: In this section, we extend the Proposition 2.14 to the
general case, that is, to a trivial extension A of Class II (see Definition
1.2 and Remark 1.9). To do that, we firstly consider the case when
A is minimal of Class II (see 2.14). Then, by using 4.11, we see how
the radicals of the projective modules, associated with the vertices
1,2 and 3 of @4, can be lifted to the universal covering. Further-
more, we also determine some special regions, in the bottom border
of ZD p, where the radicals of the projective modules associated with
the insertion vertices of Qa can be lifted.

Section 6: Let A be a trivial extension of Cartan class D . Consider
the universal covering 7 : ZDy — gl'p of sa. In this section, we give
an algorithm to determine the configuration Cy of ZDy associated to
A. We recall that Cy := 7 1(Cy), where Cy is the set of vertices of
sI'A representing the radicals of the indecomposable projective A-
modules (see [8, 2.7]). We define a subset rP(A,ZDy) of (ZDy)o
and prove that rP (A, ZDy)[Z] := U,;c,rP(A, ZDy)[i] is the desired
configuration. In order to do that, we start this section by defining
some notations needed to state the algorithm: the sections S and
S, , the initial vertices, and the functions border and height defined
on the set of vertices of @x. The algorithm is stated in the Theorem
6.8 and illustrated in the Example 6.3. The remainder of the section
is devoted to the proof of the Theorem 6.8.
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1. Preliminaries

We start this section by recalling well known notions about quivers.
Let @ be a quiver. We denote by Qg the set of vertices and by (1 the
set of arrows of ). For any arrow « of )1 we have that it starts at
o(a)) and ends at e(«). A path p in the quiver @ is either an oriented
sequence of arrows ay, - --a1 with e(oy) = o(ay41) for 1 <t < n or
the symbol e; for i € Q9. We call the paths e; trivial paths and we
define o(e;) = e(e;). Given a nontrivial path p = «a,, - -«a; we define
o(p) = o(aq) and e(p) = e(a,). If 4 is a path in @, we denote by &
the support of § in Q. Thus, § is a subquiver of () having as vertices
and arrows those belonging to §. A nontrivial path p is said to be an
oriented cycle if o(p) = e(p).

Let C = a1 - - - asag be an oriented cycle in Q. We call C min-
imal oriented cycle if the vertices o(a1), 0(az), - - ,0(ay,) are pair-
wise different. It is said that @’ is a full subquiver of @) in case Q'
is a subquiver of @) such that for all vertices i, € Q' we have that
each arrow i = j of Q is also an arrow of Q’. A full subquiver Q' of
@ is called convex if for any path ag — a1 — --- — a¢ in Q, with
ap, ar € Q)), we have a; € Q[ forall t =0,1,--- ,t.

1.1. A presentation of trivial extensions of type D,,.

Following [5], we know that any trivial extension A of type D,,
which is not minimal, can be obtained from one minimal I, of type
Dy, by inserting to I' a trivial extension of type A,, withn = N +
m — 1. In this section, we explain such a construction and also give
a presentation (Qa,I) of A, which will be used throughout all the

paper.

Proposition 1.1. [5] Let A be a trivial extension. Then, A is of type
A, with n > 1, if and only if the ordinary quiver Qa of A satisfies
the following conditions:

(i) Qa has n vertices;

(ii) Qa s the union of oriented cycles and there are no loops in

QA

(iii) any two minimal oriented cycles of Qu, having different sup-
ports, meet in at most one vertex;

(iv) every vertex i € Qp belongs to at most two different supports
of minimal oriented cycles;
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(v) if C1,Co, - -+, Cpy are minimal oriented cycles in Qy such that
Q#ngT’L?éj, andgn@#Qvﬁng#Qv'”ac’m—ln
Cm #0, then C1NCy, = 0.

In what follows, we give, following [5], the ordinary quivers Qx
corresponding to the smallest trivial extensions A of type Dy.

Definition 1.2. [5] Let A be a trivial extension of Cartan class Dy.
We say that A is minimal if the ordinary quiver Qa of A belongs to
one of the following classes of quivers.

(a) Class I with N =4+ n.

1

QA Z,KQX“
\

2
e—>e -+ 0— e 3

L]
4

(b) Class II. This class is divided in 8 subclasses: IIy,I1s and
Il
(bl) Subclass 1T with N =3+ n.

Q i T
—

(b2) Subclass I with N =3+t +m.

Ct bl
A S~}
QA c,. 1/ *e2
NN
N B

(b3) Subclass 113 with N =3 +t+m + n.
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Cs b,
c .\ 1" T bz
) .
QA \..72./4.// \? —
Cl X l bl"l
BRI
a

Remark 1.3. For the trivial extensions of class 11, it will be con-
venient to relax the values of m,n and t to be zero. This means for
example that if m =t = 0 then A is of class I1y. Such a notation
allows us to consider the subclasses 111 and 11y as particular cases of
the subclass 113.

Definition 1.4. [5, 7] Let A be a trivial extension of Dynkin Cartan
class. By [5] (see also [7]), it is known that Qn is the union of oriented
cycles. A minimal oriented cycle C of Qa is said to be elemental if
it is not zero in A.

The elemental cycles are very important to describe the trivial ex-
tensions of finite representation type as can be seen in the following
result.

Theorem 1.5. [5] Let A be a trivial extension of Dynkin Cartan class.
Then A ~ kQa /I, where the quiver Qy is the union of oriented cycles
and the admissible ideal I is generated by:

(i) the paths consisting of n + 1 arrows in an elemental cycle of
length n;
(ii) the paths whose arrows do not belong to a single elemental
cycle;
(iii) the difference q — ¢/, where q and ¢’ are paths starting and
ending at the same vertices and such that there exists a path
v with vq and vq' elemental cycles.
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Remark 1.6. Let A be a trivial extension of Dynkin Cartan class A.
Then:

(1) To have a presentation (Qa,I) for A, it is enough to give the
quiver Qa and the set {Cy, - ,C,,} of supports of the elemental cycles
i Qp since the admissible ideal I is given by the above theorem.

(2) If A = A,,, then by [5], we have that the elemental cycles of Qa
are the minimal oriented cycles.

(3) If A = Dy, and A is minimal, we have by [5], that the elemental
cycles of Qa are the minimal oriented cycles with one exception: the
only minimal oriented cycle, which is not allowed to be elemental, is
the minimal one formed by all the vertices of Qa for A of Subclass
IIs.

In order to get all the trivial extensions of type Dy, by using min-
imal algebras, we need to add trivial extensions of type Ay to some
special vertices in the minimal algebras. So, we recall from [5] this
procedure.

Definition 1.7. [5] Let I' = kQr /I be a trivial extension with I an
admissible ideal of kQr. Let ay,as, - -+, ay be different vertices in Qr
and mi,mo, -+, Ny be natural numbers. Let T = kQ'/(I N kQ')
be a trivial extension, where Q' is a full subquiver of Qr. For each

J=12,---,m, we consider a full subquiver Q.; of Qr and set
Dy, := kQuq;/(INkQq,). We say that ' is obtained from I" by adding
trivial extensions Iy, of Cartan type Ay, to aj for j=1,2,---,m,

if the following conditions hold:

(i) for each j, Ty, is a trivial extension of Cartan type A, with

n; > 2;
(ii) (Qr)o = QLU (Qay)oU -+ U (Qa,,)o; moreover, for each j, we
have that

Q6 n (QCL]‘)O = {aj} and (Qai)O N (QCL]‘)O =0 if i 7£ J;
(iii) I is generated by I MkQ" and INkQq,, for j =1,2,---,m.

Example. Let I' be the trivial extension of Cartan class Dg with Qr
the following quiver and [ the ideal considered in 1.5.
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o~

Consider the following full subquivers of Qr,
1

AN _

2e—re——e3 Q” i -

\/ 3 6

4
We have that I := kQ'/(INkQ") and T := kQ"/(INkQ") are trivial
extension of Cartan class D5 and Ao, respectively. So, I' is obtained
from I'" by adding the trivial extension I'” of Cartan class Ag to the
vertex 3 in @Q’.

The description of the trivial extensions of Cartan class Dy is given
in the following result. Here we use the notation discussed in 1.3.

Proposition 1.8. [5] Let A be a trivial extension of Cartan class Dy.
Then, A is either minimal or can be obtained from a minimal one by
adding trivial extensions of Cartan class Ap; to some of the following
vertices xj indicated with O

Remark 1.9. (1) We will denote by Apin to the minimal trivial ex-
tension corresponding to A in 1.8.

(2) Any trivial extension A of Cartan class Dy will be represented
by one of the pictures given in 1.8. The little square on the vertex x;
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represents a quiver Q;, which will be not drawn, where Q. s either
{x;} or the ordinary quiver of a trivial extension I'y; of Cartan class
A, with nj > 2. Moreover, we say that A is of class I, 11,115,113
or 111 if Apyin is so.

1.2. Lifting sI'p to ZA having some M € ind A as a source.

Throughout this paper, we will use freely the notations that were
settled in [8, 9]. In particular, the lifting process defined in [8], will
be crucial in the paper. For a given trivial extension A of Dynkin
Cartan class A, a fixed object M in ind A and the universal covering
7w ZA — gI'p of sI'p, where gI'j is the stable AR-quiver of A, it
was introduced in [8, Section 3| the notion of the lifting of sI'y to
ZA at the vertex M. Recall that this lifting procedure starts by
fixing an element MJ[0] in the fiber 7=1(M); afterwards, we take a
slice of gI'p starting at M and lift such slice through the universal
covering m : ZA — gI'py to a unique slice of ZA starting at M]0].
Analogously, the slice of ¢I'y starting at 7=!(M) can be lifted to
a slice of ZA starting at 7—1(M]0]). We iterate this procedure, the
necessary number of times, lifting all the vertices of gI's. The minimal
connected subquiver of ZA, which contains all the lifted slices, is
denoted by sI's[0] and will be called the lifting of sI"y to ZA at
M. Then 7| 0] : sT'al0] — sTa is a quiver morphism which is a
bijection on the vertices of gI'A[0]. The inverse was : (s'a)o — (ZA)o
of this bijection, defines an embedding of gI's into ZA. For X € ind A
and i € Z, we denote by X[i] the vertex 77¢™a X|[0] of ZA, where
XI[0] := om(X) and ma is the Loewy Length of the mesh category
k(ZA) (see [8, Section 3]). Furthermore, if we do not want to state
precisely the lifting vertex, we will just say that gI'4[0] is a lifting of
sI'p to ZA. We recall that ma = 2N — 3 if A = Dy.

We introduce now the notions of height function and borders in
ZDpy. To do that, we label the vertices of Dy as follows:

1 2

3 N-2 N-1

°
N
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Definition 1.10. The height in ZDy is the function h = hzp,, :
(ZDyn)o — {1,2,---, N} defined by hzp, (p, q) := q. We distinguish
3 types of borders in ZDy : (a) the bottom border given by all the
vertices of ZDy with height 1, (b) the top border corresponds to
the vertices of ZDy with height N — 1 and (c¢) the middle border
consists of the vertices having height N.

The next picture shows which vertices of the section of ZDy, starting
at (0,1), belong to the borders of ZDy.

(0,N-1) intop border

(0,N) nmiddle border

(0,1)  Inbottom border

Let A be a trivial extension of Cartan class Dy and 7 : ZDy —
sI'p the universal covering of translation quivers. Consider the sub-
set Cp :={rP; : i € (Qa)o} of sI'p representing the radicals of the
indecomposable projective A-modules P; for i € (Q4)o, and set Cp =

77 1(Cy). From [10, 2.3 and 2.2], we know that C, is a configuration of
ZA and Cy is a configuration of gI'z. In this paper, we will define an
algorithm to compute the vertices of ZD y corresponding to the config-

uration Cy associated with A. The fundamental question to start work-
ing with is the following. Let i — j be an arrow of Q5 and suppose
that we know the position on ZDy of some element rP;[0] belonging
to the fiber 7=!(rP;). Then, how does the radical rP; lifts to ZDx?
To answer this question, we will need to compute the support of the
functors k(ZDy)(z, —) and k(ZDy)(—,z) for any vertex z € ZDy.
We will denote by Supp F' the support of a given functor F. Also,
for the sake of simplicity, we set Supp (z, —) := Supp k(ZDny)(z, —)
and Supp (—, z) := Supp k(ZDy)(—, x) whenever it is clear from the
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context which functor is being considered. We recall that (see [8, Sec-
tion 3]) the additive function f, : (ZDx)o — Z, which has value
1 on the slice starting at z, determines the support of the func-
tor k(ZDy)(z, —) since dimy k(ZDn)(z,y) = fz(y). Moreover, it is
known that Supp k(ZDy)(x,—) = Supp k(ZDy)(—,vp,(2)), where
vD, () is the Nakayama permutation. So, by using the additive func-
tion f,, it can be seen that the support of the functors we are inter-
ested in has the following shape.

Remark 1.11. The shaded regions of the pictures below represent the
support of the functor k(ZDy)(z, —).

(a) For1 < hgp,(z) <N —-2:

A

//\//

In particular, if x is in the bottom border of ZDy, we obtain
a triangle with = and vp, () in the bottom border.
(b) For hgp,(z) =N —1:

z z

A\ \_/
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where v, (x) = { z if N is even

y if N is odd.
(¢) For hzgp,(z) =N :

if N is even
where vp,, (z) = { Z z; N is odd.

Proposition 1.12. Let A be a trivial extension of Cartan class Dy,
i — j an arrow in Qp and sT'A[0] a lifting of sI'a to ZDy at rP;.
Then

(a) rP;[0] € Supp (77 rP;[0], -) \ Supp (rF;[0], -);

(b) if rP; ~ P;/soc P;j, then 7=1rP;[0] = rP;[0] and rP;[0] belongs
to some border of ZDy .

Proof. (a) By [9, Prop. 3.4], we get that rP;[0] € Supp (771 P;[0], —).
On the other hand k(ZDy)(rP;[0], r P;[0]) = 0 since QA has no loops
(see 1.8 and [9, Proposition 1.1]).

(b) Let rP; ~ Pj/soc P;. Thus 7~ 'rP; ~ rP;. On the other hand, in
order to see that rP;[0] belongs to some border of ZDy, it is enough
to prove that rP;/soc P; is indecomposable. To do that, we will use;
firstly, the description of @A given in Subsection 1.1; and secondly, a
combinatorial description of the number of the indecomposable direct
summands of rPj/soc P; which is given in [6, Corollary 4.12].

Suppose that 7Pj/soc P; has at least two indecomposable direct
summands. Then, from [6, Corollary 4.12], we get the existence of
two elemental cycles C and C’ in Qa such that: (i) « : ¢ — j is in
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C but not in C" and (ii) there is an arrow 3 : j — ¢ which is in
C’ but not in C. Moreover, by [9, Proposition 1.1] and 1.8, we have
that the cycles C' and C’ have exactly one common vertex: the vertex
j. Therefore, from 1.5, we conclude that the path Ga is zero in A.
Hence, the simple S;, associated with the vertex ¢, is a composition
factor of Pj/soc P; which is not a composition factor of rP;; giving a
contradiction since Pj/soc Pj ~ rP;. O

We will need to know the vertices of Supp (771rP;[0],—) \
Supp (rP;[0], —) in case rP;[0] is either on the top or in the middle
border of ZD . These vertices can be easily computed by 1.11.

Remark 1.13. Suppose that rP;[0] is either on the top or in the
middle border of ZD . In the picture below, we have indicated with O
the vertices of

Supp (7' P;[0], —) \ Supp (rP;[0], )

in case hzp (rP;[0]) = N —1 (for hzp, (rP;[0]) = N, the pictures to
be considered are essentially the same).

'r]]’. [.()] .

2. Lifting some vertices of sI'y to ZDy for trivial exten-
sions A

Let A be a trivial extension of Cartan class Dy and 7 : ZDy —
sI'a be the universal covering of translation quivers. Consider the
subset Cp := {rP; : i € (Qa)o} of s['p representing the radicals of
the indecomposable projective A-modules P; for i € (Qx)g, and the
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set Cy = 7~ 1(Cy). In this section, we will describe the configuration

Ca associated to a given minimal trivial extension A of type Dy. We
start by studying, under very special situations, how rP; can be lifted
to ZDy for some j € (Qp)o. We do this first for arbitrary trivial
extensions of Dy type, and then specialize for the different minimal
types defined in the previous section.

2.1. Insertion vertices in (4.

Definition 2.1. [8] Let A be a trivial extension of Cartan class Dy
and I' be a trivial extension of Cartan class Dy. If C' is an elemental
cycle of Qp, Qr is the union of the remaining cycles of Qx and CNQr
is a single vertex z, we say that C is an elimination cycle of Qx
and that T is obtained from A by eliminating the cycle C. Also we
say that A is obtained from I by inserting the cycle C at z.

A vertex x of Qr, where a minimal oriented cycle C' can be inserted in
order to obtain a trivial extension A of Cartan class Dy with N > k,
1s called insertion vertex.

Lemma 2.2. For a trivial extension A of Cartan class Dy, the fol-
lowing statements hold.

(a) Let v = 21 — 29 — -+ — zp—1 — 2z be a path belonging to
a single elemental cycle of Qa. If z1, 29, -+, z¢ are insertion
vertices, then

P, /socP,, ~rP,, |, ---,P,/socP,, ~7rP,.

(b) If A is of class I then rPj/soc Py ~ rPy/soc Py.

(¢) If A is of class II then rP;/soc P; is indecomposable for any
i =1,2,3. Moreover,

(cl) For A of class 11, we have that Ps/soc Py ~ rP,. Fur-
thermore,
rPy/soc Py ~rP,, [socP,, if N =4; and in case N >4,
rPy/soc Py #1P,, [socP,,.
(c2) If A is either of class Iy or 113, then
(i) rP,, /soc P., % rPs/soc Ps for anyi=1,2,---,t;

(ii) 7Py, /soc Py, # rPy/soc Py for any j =1,2,---,m.

(d) For A of class I11, we have that rPy/soc Py ~ S1 ~ rPs/soc Ps
and rPy/soc Py ~ So @ S3 @ M, where M is a uniserial A-
module which has Sq,, Say, -+, Sa, as composition factors.
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Proof. It can be proven by using the description of Q5 given in 1.8
and the generators of the admissible ideal I given in 1.5. O

Lemma 2.3. Let A be a trivial extension of Cartan class Dy, and
let i, j be different vertices of Q. In the case in which rP;/soc P;
is indecomposable, we consider a lifting sT'A[0] of sT'a to ZDy at
rP;/soc P;.

(a) If rP;/soc P; ~ rPj/soc P; then rP;/soc P; is indecomposable.
Moreover, there exist arrows r Pj[—1] — rP;/soc P; [0] «— rP;[—1]
in ZDy. Furthermore, hzp, (rP;/soc P;[0]) = N —2; and, in
case N > 4, we have that hzp, (rP[—1]) > N —2 fort =1, j.

(b) If rP;/soc P; and rPj/soc Pj are indecomposable and there is
an arrow rP;[—1] — rP;/soc P; [0] in ZDy, then rP;/soc P; ~
rP;/soc P;.

Proof. We recall that, if P is a projective and injective indecom-
posable A-module then 0 — rP — rP/socP & P — P/socP — 0 is
an Auslander-Reiten sequence in mod A.

(a) Since rP;/soc P; ~ rP;/soc P;, we obtain that there exist irre-
ducible morphisms rP; — rP;/soc P; and rP; — rP;/soc P;. Suppose
that rP;/soc P; has at least two non-isomorphic indecomposable di-
rect summands X and Y. Then, the quiver of Figure 1 below is a full
subquiver of gI'y.

Fig.1 ,p Fig. 2

On the other hand, it is known that sT'p ~ ZDy/ < 72V73 > (see
[1] and [4]). Hence, rP;/soc P; is indecomposable since the quiver of
the Figure 2 is not a full subquiver of ZD .

Using that there is an irreducible morphism rP; — rP;/soc P;, we get
an arrow 7P [—1] — rP;/soc P; [0] in ZDy for ¢t = i, j. On the other
hand, since rP;/soc P; ~ rP;/soc P;, by using the shape of ZDy, it
follows that hzp, (rP;/soc P; [0]) = N—2 and hzp, (rP;[—1]) > N -2
for t = 1, j; proving (a).
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(b) Let F : k(ZDy) — ind A be a well-behaved functor which is in-
duced by the universal covering 7 : ZDy — gT'z (see [10, 1.5]). Sup-
pose that rPj/soc P; is indecomposable and that there exists an arrow
a : rPj[—1] — rP;/soc P;[0] in ZDy. Then F(@) : rP; — rP;/soc P;
is irreducible. Therefore rP;/soc P; is a direct summand of r P; /soc P;.
Thus rP;/soc P; ~ rP; /soc P; since rPj/soc P; is indecomposable. O

2.2. Lifting rP; to ZDy under certain general conditions.

Lemma 2.4. Let A be a trivial extension of Cartan class Dy, and
i —t — j be arrows of Qp such that i # j.

(a) If P;j/soc P; ~ rP; then rPj/soc Pj is indecomposable. More-
over, for any lifting of sI'a to ZDN at rPj/soc P;, we get that:
erl[—l] belongs to some border of ZDy, 77 'rP;[—1] = rP[0]
an

rP;[0] € Supp (7' P[0], —) \ (Supp (rP[0], —) U Supp (rPj[—1], —)).

(b) If Pj/soc Pj ~rP, and P;/soc P, ~ rP;, then rP; lifts to the
bottom border of ZD .

Proof. (a) Let Pj/socP; ~ rP,. By 1.12 (b), we have that rP;[—1]
belongs to some border of ZDy; and therefore, rPj/soc P; is inde-
composable. On the other hand, 7=1rP;[—1] = rP[0] since 77 1rP; =
rP,. Moreover, since i — t is an arrow of Qa, we get, by 1.12 (a),
that rP;[0] € Supp (r~!'7P[0],—) \ Supp (rF[0], —). Furthermore
k(ZDy)(rPj|—1], 7 F;[0]) = 0 because i # j; proving (a).

(b) Let Pj/soc Pj ~ rP, and P./socP; ~ rP;. From (a), we know
that rP; lifts to some border of ZDy. Let gI's[0] be a lifting of gI's
to ZDy at rPj; and suppose that rP;[0] is either in the middle or in
the top border of ZDy. Then, we get that rP;[0], 7 P,[0] and 7 FP;[0] are
consecutive vertices either in the middle or in the top border of ZDy.
So, by 1.11, we obtain that k(ZDy)(rP;[0], rP[0]) # 0; contradicting
that ¢ # j. Therefore rP;[0] is in the bottom border of ZDy. O

Remark 2.5. In case i — t — j is a path in Qa with i # j and
Pj/socPj ~ rP;, we illustrate in the picture below the shape of the set

Supp (7~ 'rP[0], =) \ (Supp (rP[0], —) U Supp (rP;[-1], —))
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for hzp, (rPj|—1]) = N — 1. The vertices indicated with O, in the
following pictures, are the elements of such a set; and one of these
vertices is v F;[0].

G- o] N even re[-1] rL[o] N odd
| o )

i

Lemma 2.6. Let A be a trivial extension of Cartan class Dy with
N > 4; and let A be such that either i < t — j ori —t <« j is a
subquiver of Qa with rP;/socP; ~ rPj/socP;. Then, for any lifting of
sI'a to ZDy at rPj/socPj, there is an arrow rP;|—1] — rPj/socP;[0]
in ZDy, where rP;[—1] is either in the middle or in the top border of
ZDy.

In the pictures below, we indicated with O the possible position of
rP[0] (respectively rP;[—1]) in ZDy.

(a) TP[0] : In case i «— t — j is a subquiver of Q.

(b) rP[—1]: In case i — t < j is a subquiver of Q.
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Proof. Let i < t — j be a subquiver of @ such that rP;/soc P; ~
rP;j/soc P; (the other case is dual). By 2.3, we get an arrow rP;[—1] —
rP;/soc P;[0] in ZDy with rP;[—1] either in the middle or in the top
border of ZDy since N > 4. Then, applying 1.12 (a) to the arrows
t — j and t — i, we get the result. O

Proposition 2.7. Let A be a trivial extension of Cartan class Dy
with N > 4, and let A be such that either i <t — j ori —t « j is
a subquiver of Q.

(a) The following conditions are equivalent:

al) rP;/soc P, ~ rP;/soc P; and vP;/socP; is indecompos-
J J
able;

(a2) rP4[0] belongs to the bottom border of ZD .
(b) If hZDN(TPi[O]) > N —2 and hZDN(TPj[O]) >N —2, then
hzp (rP[0]) < N — 2.

Proof. Let sI'y[0] be a lifting of sT'y to ZDy at rP;.

(a) The fact that (al) implies (a2) follows easily from 2.6. Suppose
that r P;[0] is in the bottom border of ZD y and assume that i « t — j
is a subquiver of @ (the other case is dual). So, by 1.12 (a), we get
that 7~ P,[—1] and 7~ 'r P;[—1] are in Supp (—, rP[0]). Then r P;[—1]
and rP;[—1] belong to Supp (—, 7rF[0]). On the other hand, since
k(ZDN)(TB[OLTPJ[O]) =0= k(ZDN)(TPJ[O]v'PH[O])v we get by 1.11
(a) that the vertices rP;[—1] and rP;[—1] correspond to the vertices
of Supp (—, 77 P;]0]) indicated with O in the picture below.
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supp (— > 15 [01)

1% [0]

Hence z = rP;/soc P;[—1] = rPj/soc Pj|—1]; and then
rP;/soc P; ~ rP;/soc P;.

(b) Let i — t « j be a subquiver of @4 (for the other case the proof
is dual). Suppose that rP;[0] is in the top border of ZDpy. Then, by
1.12 (a), we get that rP;[0] and rP;[0] are in Supp (7~ 1rP[0], —).
The shaded region in the picture below corresponds to the vertices of
Supp (77 P[0], —).

'c_.l 7P, [0]

Since hzp, (rPi0]) > N — 2 and hzp, (rP;[0]) > N — 2, we get
that either k(ZDy)(rFP;[0], 7P;[0]) # 0 or k(ZDy)(rP;[0], rP5[0]) # 0,
which is a contradiction since k(ZDy)(rP;[0],7P;[0]) and
k(ZDy)(rP;[0], rP5[0]) are both zero because i # j. Therefore rP;[0]
is not in the top border of ZDy. Analogously, it can be proven that
rP[0] is not in the middle border of ZDy. O

2.3. Lifting rP; to ZDy for some special vertices of ().
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Proposition 2.8. Let A be a trivial extension of Cartan class Dy .

(a) Let vy = 21 — 29 — -+ — zg—1 — 2z be a path contained in
a elemental cycle of Qz such that P,,/socP,, ~ rP,,  , ---,
P,,/soc P,, ~ rP,,. Then, for any lifting of sI'n to ZDy at
rP,,, we have that rP,,[0],rP,, ,[0],---,rP,[0] are consecu-
tive vertices in one of the three borders of ZD n; and moreover,
this border is the bottom one if £ > 3.

(b) If A is of class I then hzp, (rF;[0]) > N —2 fori=1,4.

(c) Let A be of class IT and i =1,2,3. Then, we have that rP;[0]
belongs to some border of ZDy; and moreover, if N > 4 and
A is either of class I1y or 113, then hzp, (rF;[0]) > N —2.

Proof. (a) Follows easily from 2.4.

(b) Since A is of class I, by 2.2 (b), we get that rP;/soc P, ~
rPy/soc Py. Then, by 2.3 (b), we obtain the result.

(¢c) By 2.2 (c), we have that rP;/soc P; is indecomposable; and
therefore, rP;[0] is in some border of ZDy. Suppose that N > 4
and A is either of class Il or II3. So, by 2.2 (¢2), we conclude
that rP,, /soc P, % rPs/socPs, rP, /socP, % rPy/socP,, and
rP., /soc P, % rPs/soc P3. Therefore, applying 2.7 to the arrows ¢; —
1—3,2— 3« by,c1 < 2— 3of Qa, we get that hzp, (rF[0]) >
N — 2 since rP;[0] belongs to some border of ZDy for i =1,2,3. O

Proposition 2.9. Let A be a trivial extension of Cartan class Dy
with A of class Iy and N > 4. Then, the following statements hold.

(a) hZDN(TPi[O]) >N —2 fOT’i = 1, 2, 3.

(b) For any lifting of s'a to ZDy at rPs such that hzp, (rP3[0]) =
N — 1, we have that rPy, v Py and rP3 lift to ZDy as follows
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rBI01 7B lo] Xy rp11  rEl1]

X1 if N is odd,
where rP1[0] = { Yll é N is even.

Proof. By 2.2 (cl), it follows rP;/soc P # rP,, /socP,, and
Ps/soc Py ~ rP,. Hence, applying 2.7 to the subquiver 1 — 2 «— ay,
of Qa, we get that rP5[0] is not in the bottom border of ZDy. On
the other hand, by 2.8 (c), we know that rP[0] is in some border of
ZD . Hence, we conclude that hzp, (rFP[0]) > N — 2.

Furthermore, since 77 !'7P; ~ rP,, we have that rP; and rP; lift
consecutively to the same border of ZDy. Thus, for a lifting of gI'p
to ZDy at rP; with hzp, (rP3[0]) = N — 1, we get the picture given
in 2.9 (b). We prove now that rP;[0] = X; if N is odd, otherwise
T’Pl [0] = Yi

Since 1 — 2 and 3 — 1 are arrows of @, we conclude by 1.12 (a)
that 7P [0] € Supp (171 P[0], —) and 7 !'7P[0] € Supp (—, rPs3[1]);
and so,

rP1[0] € Supp (77 1rP[0], =) N Supp (—, 77 P[1]).

Furthermore, by [8, Proposition 3.1] Supp (z, —) = Supp (—, vp, (2))
for any vertex x of ZDy. Thus

rP1[0] € Supp (—, Dy (T_erg[O]) N Supp (yﬁ}v (trPs3[1]), —).

Suppose that N is even. Then, by 1.11 (b), the shaded region of the
picture below correspond to the vertices of the set

Supp (I/[_)}V (rrP3[1]), —) N Supp (—, VD, (7 1r Ry [0]).
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rB[0] 1B 0] VoL TRl x, Vp, ¥ TR0l rBI11 B
R K= <

Since rP;[0] is in some border of ZDy, we get that
rPi[0] € {vp, (TrPs[1]), Y1, vp, (7' P[0]) ).

Therefore, rP;[0] = Y7 since k(ZDy)(rPs[0], I/]:_)}V (trPs3[1])) # 0 and

k(ZDN)(vpy (171 P2[0]), 7 Po[1]) # 0. Analogously, it can be proven
that rP;[0] = X7 if N isodd. O

Proposition 2.10. Let A be a trivial extension of Cartan class Dy
with A of class I11. Then, the following statements hold.

(a) hzpy (rPi[0]) = N —2.

(b) For i = 2,3, we have that rP;[0] belongs to some border of
ZDy; and moreover, hzp, (rP;[0]) > N —2 if N > 4.

(¢c) Forany lifting of sI'p to ZDy at rPy such that hzp , (rP3[0]) =
N — 1, we have that v Py, rPy and v P3 lift to ZDy as follows

rBj[0]
—0& rP 1]
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Proof. By 2.2 (d), we have that 7P} /soc P; has three non-isomorphic
indecomposable direct summands; so, we get that hzp, (rPi[0]) =
N — 2. On the other hand, by 2.2 (d), we obtain that r P /soc Py ~
rP3/soc Ps. Therefore, by 2.3 (a), it follows that r P;[0] belongs to some
border of ZDy for ¢ = 2,3; and moreover, hzp, (rP;[0]) > N — 2 if
N > 4.

Let N > 4, and consider a lifting of gI'py to ZDy at rP; with
hzp, (rPs[0]) = N — 1. Applying 1.12 to the arrows 2 — 1 and 3 — 1
of Qa, we obtain that rP;[0] € Supp (7~ *rP;[0], —) \ Supp (rP1[0], —)
for ¢ = 2, 3. In the picture below, we have indicated with a circle the
elements of Supp (7~ 1rP;[0], —) \ Supp (rP1[0], —) which are in some
border of ZD .

Z

Since hzp ,, (rF;[0]) > N—2for i = 2, 3, we have that {rP;[0], rP[0]} =
{Y, Z}. Hence, using that hzp, (rP3[0]) = N — 1, it follows that
Y =rP[0] and Z =rP3[0]. O

2.4. The configurations for the case Djy.

In the following proposition, we study more closely the trivial ex-
tensions A of Cartan class Dy. In this case, we have that A is either
of class II; or III.From 2.8 (c) and 2.10 (b), we know that rP; can
be lifted to any border of ZD, for any vertex i € Qp (7 # 1if A is
of class I11). We choose the universal covering 7 : ZDy — gI'p such
that hzp, (rP;]0]) > 2 for some fixed vertices t = ¢1,t2 of Q4.

Proposition 2.11. Let A be the trivial extension of Cartan class Dy
given by one of the following quivers
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Q, = z./.;\ﬂ or Q, = 2\\@.‘“
A \a/ A Sﬂl

Letm : ZDy — gT be the universal covering of sUa with hzp, (71 (rP3))
=3 and hzp, (7 1(rP,,)) = 1.

(a) If A is of class 111 and gT'y is lifted to ZDy at rPs, then the
configuration Cp of ZDy4 associated to A is

rBI11 TR

(b) If A is of class II1 and sT'y is lifted to ZDy at rPy, then the
configuration Cp of ZDy4 associated to A is

rP[0] rpI1

\ /N /
\ er [01\\ / \/

.7%7.7 — X .
/N /\ VAN

rPal [0]

Proof. It is straightforward. O
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2.5. The configurations for A minimal of type Dy with N > 4.

In what follows, we determine the vertices of ZDy corresponding
to the configuration Cp if A is minimal and N > 4.
Proposition 2.12. Let A be a trivial extension of Class I and Cartan
class Dy with N > 4, m : ZDy — gI'a be the universal covering of
sUa such that hzp, (m~1(rP1)) = N — 1; and take a lifting of sTa
to ZDy at T(rPy/soc Py). Then rPy and rPy lift to ZDy as in the
picture below; and furthermore, if A is minimal (see the picture in

1.2), the configuration Cp of ZDyN associated to A is as follows

TR [0] rh[1]
AN s
rh,[0] rhI1]

| —a

rB 101 vp, [0] eee vP, [0] rF,[0]

Proof. By 2.2 (b), we know that rP;/soc P, ~ rP,/soc P;. Then,
from 2.3 (a), we get that 7 P;[0] and rP4[0] are immediate predecessors
of rPy /soc P1[0] and hzp, (rF;[0]) > N — 2 for i = 1,4 since N > 4.
Using that the universal covering m : ZDy — gI'p we have chosen
is such that hzp, (rP1[0]) = N — 1, we conclude that rP; and rP;
lift to ZDpy as in the previous picture. On the other hand, by 1.5
and since A is minimal of class I, it can be proven that Ps/soc P3 ~
TPy, , Pa,/socP,, ~ rP, ., - ,Py,/s0cP,, ~ 1P, , P, [socP, =~
rPy. So, applying 2.8 (a) to the path 2 — a3 — a9 — -+ — a, — 3
in @A, we get that the radicals rPs,rP,, ,---,rP,, ,rP; lift consec-
utively to the bottom border of ZDy. On the other hand rP3[0] €
Supp (77 'rP;[0], —) since 1 « 3 is an arrow in Q4; and so, we get the
previous picture, proving the result. O

Let A be a trivial extension of class 1. We recall (see 1.2, 1.3 and
1.9) that the class I is divided in 3 subclasses. Moreover, in case
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N > 4, we have by 2.8 (c) and 2.9 (a) that hzp, (rF;[0]) > N — 2 for
the vertices i = 1,2,3 of Qx.

Lemma 2.13. Let A be a trivial extension of Cartan class Dy with
N > 4 and A minimal of class II. For m > 0, we consider the cycle
B=3—>1—>b »by— -+ — by — 3 of Qa and the universal
covering m : ZDy — sUa of sTa with hzp,(r71(rPs)) = N — 1.
Then, for a lifting of sI'x to ZD N at rP3, the radical of the projective
associated to each vertex of the cycle B lifts to ZDy as is indicated
in the following picture

rP3[0] i(l
.
\ |
) /
rp, (0] -o- rp, [0]

X1 if N—m —3 is even,
where rP[0] = { Y1 if N—m—3 is odd.
Proof. Assume that m > 0, and let « be the path by — by — -+ —
bm in Qp. Since A is minimal of class 11, we get by 1.8 and 2.1 that
~ belongs to a single elemental cycle of QA and that by, bo, -, by,
are insertion vertices of Q. So we obtain from 2.2 (a) the following
isomorphisms

Py, /socPy, ~1rP, . -, Py/s0cPy, ~1P,.

Hence, by 2.8 (a), we have that rP,, ,rP, _,,---,rP, lift consec-
utively to some border of ZDy. We assert that this border is the
bottom one. Indeed, suppose that hzp, (rF,,[0]) > N — 2. Ap-
plying 2.7 (b) to the subquiver 2 — 3 « b, of Qx, we obtain
that hzp, (rP3[0]) < N — 2; giving a contradiction. Thus P, [0]
is in the bottom border of ZDy and 77 rP, [0] = 7P, _.[0] for
i=1,2,---,m—1. On the other hand, applying 1.12 (a) to the arrows
by, — 3,1 — by of Qa, we have that rP,, [0] € Supp (717 R[0], —)
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and rP;[0] € Supp (7717 P, [0], —). So we get the previous picture and
also that rP[0] € {X;,Y1} since hzp, (rPi[0]) > N — 2. Now, we
prove that rP;[0] is either X; or Y; depending on the parity of
N —m —3.
Since 3 — 1 is an arrow in @5, we have from 1.2 and [8, Proposition
3.1 (a)] that

rP1[0] € Supp (=, 7rP3[1]) = Supp (vp, (17 P3[1]), —).

Suppose that N is even (if N is odd the proof is likewise). Consider
the following picture.

7'P3 [0]
_m

B, (0] -+ 1T [0]

Since rP;[0] € Supp (I/[_)}V (trPs[1]), —)N{X1, Y1}, we obtain from 1.11
(a) that

Y7 si m+1isodd.

Using that N —m —3 =N — (m+ 1) — 2 and N is even, it follows
that N —m — 3 is even (resp. odd) if and only if m + 1 is even (resp.
odd); proving the result. O

rPy[0] = { X1 if m+1is even,

Proposition 2.14. Let A be a minimal trivial extension of Class IT
and Cartan class Dy with N > 4. Consider the universal covering
m:ZDNn — sz of sI'a such that hzp, (7= Y(rP3)) = N — 1. Then,

for a lifting of sU'a to ZDy at rP3, the configuration Cx associated
to A is as follows
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n+t vertices

B 5
'rPct[O]-"rPcl[O]

e B u —
oB 0]+ R 0] oy 0]+ Ry [0]

X1 if t4+ n is even,
where rPy[0] = { Yll Z}‘ t+n is odd. and

] Xo if t+m is even,
’"P2[0]—{Y'2 if t+m is odd

Proof. Suppose that A is minimal of class I1;. By 2.9 (b), we have
that v P, and rPs lift to the same border of ZDy. So, we can apply
2.13 to the cycle A =2 -3 - a1 — -+ — a, — 2 of @Q4; and

so, from 2.9, we get that the configuration Cy associated to A is as
follows

7P, [0] X, rPy (1]
rr [0] _’Q: \ / P, (1]
rPa” [0] o e e T‘Pal[ 0]
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X7 if N is odd,

Y; if N is even.

We know that N = n + 3 since A is minimal of class I1; and so, N is

odd if and only if n is even, proving the result for A of class I1;.
Suppose that A is either of class IIy or Il3. Applying 1.12 (a) to

the arrows ¢; — 1 — by, we have that rPy[0] € Supp (77 1rP;,[0], —)

and 7P, [0] € Supp (r~'rP[0], —-); and so, by applying 2.13 to the

elemental cycles 1 -2 - ¢; ¢ — -+ —¢ —land 3 —>1—

by — by — - -+ — by, — 3 of Qp, we obtain the following picture

where rP;[0] = {

TP3[[)] Z n vertices m X1 ]1P3[1] X2[1]
/ j \/ a

// /
o -

/ .
7‘Pbm[0] oo 7Pb1[0] TPC/,[O].”TPcl[O]

where rP[0] € {X1,Y1} since hzp, (rP1[0]) > N — 2. Moreover, we
have the arrow 2 — ¢y in Q; and therefore, by 1.12, we obtain that
rPy[1] € {X>[1], Ya[1]} since hzp, (rP[1]) > N — 2.

We assert that Z = X5 for the Z in the above picture. Indeed, since A
is minimal, we get N = n+m+t+3. Thus 1+n+m+N—-1+t=2N -3
and hence z = 71 THMHN=I+ X, 1] = 72N=83 X, (1] = X,

We assert that rP»[0] and rP;[0] satisfy the stated equalities. For
rP1[0], it can be obtained from 2.13 using that N =n + m +t + 3.
For rP»[0], we apply 1.12 (a) to the arrow 2 — 3 in Q5 obtaining that
rPy[1] € Supp (77 1rP3[1], —). Furthermore, from the above picture,
it can be seen that 7~ "+ rP3[1] = X,[1]. Then, by 1.11 (b), we
conclude that rPs[1] = Xs[1] if ¢t + m is even, and rPs[1] = Ya[1] if
t+misodd. O
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Proposition 2.15. Let A be a minimal trivial extension of Class II1
(see 1.2) and Cartan class Dy with N > 4. Consider the universal
covering ™ : ZDy — gI'pA of sI'a with hZDN(TF_l(T'Pg)) = N —
1. Then, for a lifting of sI'p to ZDy at vPy, the configuration Cy
associated to A is as follows

rP,l0]

7‘1;;1,,1[0] o e . ,PZI[O]

Proof. The radicals rP, 7P, and rPj lift to ZDy as in 2.10. We
prove that rFP,, ,---,rP,, lift consecutively to the bottom border of
ZDy as in the preceding picture. Applying 1.12 (a) to the arrows 2 —
1,3 — 1 and a, — 1 of Qa, we have rP;[0] € Supp (7~ P[0], ) \
Supp (rP1[0], —) for i = 2,3, a,. In the picture given in the proof of
2.10, we indicated with a circle the elements X, Y and Z of
Supp (771 P1[0], —) \ Supp (rP1[0], —) which are in some border of
Dy.

Consider the path v = a1 — a2 — -+ — a, of Qx. Since A is
minimal of class III, we obtain that v belongs to a elemental cy-
cle of Qx and also that aq,as,---,a, are insertion vertices (see

1.8 and 2.1) in Qa. Hence, by 2.2 (a), we get that P, /socP,, ~

-, P,,/soc P,, ~ rP,,. Then, by 2.8 (a), the radicals rP,,,
rP,, ,, - ,rP,, lift consecutively to some border of ZD y. Thus, it is
enough to prove that X = rP, [0] (see the picture given in the proof
of 2.10). By 2.10, we know that Y = rP3[0] and Z = r P[0]; therefore
X =rP,,[0], proving the result. O

2.6. Lifting rP; to ZDy for the vertices j belonging to an
elimination cycle of Q4.

In order to find, in the general case, the configuration Cy associated
to a given trivial extension A, we need firstly to know how can be
lifted to ZDy the radicals of the projective modules associated with
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the vertices of an elimination cycle of Q@ (see 2.1). So, the following
result will be very useful throughout this paper.

Theorem 2.16. Let A be a trivial extension of Cartan class Dy with
N >4, and C = z « 21 « 29 « -+ < zZyp_1 < 2z an elimination
cycle of Qp. Then, for a lifting sT'A[0] of sT'A to ZDy at rP,,, we
have that

(a) hzpy (rP.,[0]) = 1 and 77'rP,,[0] = P, ,[0] for 1 < i <
m — 2,

(b) Supp (r7'rP,,,_,[0],—) N Supp (—, 77 P, [1]) = {rP.[0]}, and
(©) hay (rP.[0]) = m.

Proof. (a) Consider the path v := 2,1 — zp—2 — -+ — 21
in Qa. Then ~ belongs to the elemental cycle C' in Q5. Therefore
21,29, "+, Zm—1 are insertion vertices of Q5. Hence, by 2.2 (a), we get
the isomorphisms P,, /soc P,, ~rP,,,---,P, ,/socP, ., ~rP, .
Thus, by 2.8 (a), it follows that 77'rP,,[0] = rP,,, ,[0] for 1 < i <
m—2 and rP;, [0] belongs to some border of ZD y; furthermore, this
border is the bottom one if m > 4. So, we have to analyze the cases
m=2and m = 3.

Suppose that m = 2. Then C' = z « z; < z; and hence by 1.12
(a) we get that 7P,[0] € Supp (77 1rP,,[0], —) N Supp (—, 7rP,, [1]). If
hzpy (rPs, [0]) > N — 2. Then, by using 1.11, it is not difficult to see
that hzp,, (rP,[0]) = N—2 and Supp (717 P, [0], —)NSupp (—, 77 P, [1])
= {rP,[0]}. In the following picture, we illustrate this fact if
hzpy (rP:,[0])) = N —1 and N is even.

7P, [0] b, 1l

The equality hzp, (rP;[0])) = N — 2 implies that rP,/soc P, has
three indecomposable non-isomorphic direct summands. Using, on
one hand, the combinatorial description ( see [6, Corollary 4.12]) of
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the number of the indecomposable non-isomorphic direct summands
of rPj/soc P; for a vertex j in Qa; and on the other hand, the de-
scription of A given in 1.8, it can be proven that A is of class I11 and
z = 1. Moreover, A is minimal since C is an elimination cycle of Q4.
Furthermore, since N > 4, we get that C' =1« a, « -+« a7 <« 1,
contradicting that C' is an elimination cycle of @ (see 1.8). Hence, for
m = 2, we have that P, [0] belongs to the bottom border of ZDy.

Assume that m = 3. Then C = 2z «— 21 <« 2o <« z; and so
P, /socP, =~ rP,. Suppose that hzp, (rP,[0]) > N — 2. Since
=P, [0] = rP,[0], it can be proven by using 1.11 that there is
only one vertex x € gI'A[0] such that hzp,(x) > N —2 and = ¢
Supp (7P, [0], —) U Supp(—, rP,,[1]) for i = 1,2. In the following pic-
ture, we illustrate this fact in case hzp, (rP;,[0]) = N — 1, where
r= X7 if Nisoddand x = X5 if N is even.

rE, 0] X, rB, 1]

On the other hand, since C'is an elimination cycle of Q 4, we conclude
from 2.8 (b) and (c), 2.9 (a) and 2.10 (b), that there are at least two
vertices i, j € Qa such that i,j & {z1, 22} and hzp, (rP[0]) > N — 2
for t = 4,j. Then we get two vertices rF;[0] and rP;[0] in sI'A[0]
satisfying the same property as the vertex z, contradicting the fact
that there exists just one. Therefore, for m = 3, we also obtain that
rP,, [0] belongs to the bottom border of ZD .

Finally, the proof of (b) and (c) follows easily from (a), 1.11 (a)
and 1.12 (a). O

Remark 2.17. Let A and C = 2z « 21 < 29 + -+ < 2Zy_1 < 2 be
as in 2.16. Then the radicals rP,,,vP,,,--- ,rP, . ,rP, lift to ZDn
as in the following picture
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rP,[0]

—= = = -
rB, 0] eee yB _[0] rB 11 «ee rR_[1]

Zm =1

3. The embedding of sI'gnq,(p)er in sI'a

For a given artin algebra A, we will use freely properties of the mod-
ule category mod A of finitely generated left A-modules, the stable
category mod A module projectives and the Auslander-Reiten trans-
lations 7 and 77! as is found in [3].

Let I' be a trivial extension of Cartan class Dy, z an insertion
vertex of Qr (see 2.1) and A be the trivial extension of Cartan class
Dy m—1 obtained from I' by inserting the cycle C, = z « 21 « 29 «

- Zm_1 < z at z. We will embed gI'r into gI'y. This will allows
us to deduce properties of gI'y from properties of gI'r. Since Qr has
less cycles than Qa, we will use this embedding to reduce our problem
to the minimal case, studied in the previous section.

We recall that I' ~ End (P)? where P :=[[;cg., AP Consider

(see [9, Section 2]) the full subcategory Cp of mod A whose objects
are the modules X such that the projective cover Py(X) of X and the
injective envelope Ip(X) of X belong to add P. Since A is a weakly-
symmetric algebra, from [9, Section 2], we have that the evaluation
functor ep = Homy (P, —) : mod A — modT', allowing the identifica-
tion of mod I with the full subcategory Cp of mod A, induces an equiv-
alence ep : Cp — mod I of stable categories. Let 2 : modI' — mod A
be the full and faithful functor obtained by the composition of the in-
verse equivalence of ep : Cp — modI' and the inclusion Cp € mod A.
In this section, we will study the behavior of the irreducible morphisms
of mod I" inside mod A using the embedding ¢ : modI" — mod A.
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Proposition 3.1. Let I' be a trivial extension of Cartan class Dy,
z an insertion vertex of Qr and A be the trivial extension obtained
from T' by inserting the cycle C, = 2z <« 21 «— 290 «— ++ - zZyp_1 «— 2
at z. Consider the projective A-module P = Hie(Qr)o AP and the
equivalence of stable categories ep : Cp — modI'. Then, the following
statements hold.

(a) indCp decomposes in four connected components X=, X, Y~

and Y1 which are convex subquivers of sT'a as in the picture
below

TI—%Z eose rP S. eee &

“m -1 “1 “m=-1 T‘PZIT@Z e T-P‘/

“m =1
(b) For any X,Y € indCp the following conditions are equivalent.

(bl) f: X — Y is irreducible in mod A.

(b2) X andY are in the same connected component of ind Cp
in sTpa and ep(f) : ep(X) — ep(Y) is irreducible in
mod I
(c) If x is one of the quivers X, Y*, then ep(x) is a convex

subquiver of sU'mna,(pyer and eply 1 X — ep(Xx) is an iso-
morphism of quivers.

Proof. (a) Let Q be the projective A-module [[;" A P.,. Then, by
[9, Theorem 2.4], we know that the objects of mod A which do not be-
long to Cp coincides with Supp Hom (@ /soc @, —)USupp Hom, (—, r@Q).
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Thus, for any lifting sI'A[0] of sI'A to ZDy at rP,,, we get the equal-
ity

sT'A[0]\ind Cp[0] = U?ZISupp (T_IT’PZZ. [0], —)UU?;ISupp (—,rP,[0]).

On the other hand, by 2.17, we know that the radicals rP,,,--- ,rP,,
lift consecutively to the bottom border of ZD y; furthermore, by using
the shape (see in 1.11) that the supports of the functors k(ZDy)(x, —)

and k(ZDy)(—, z) have in ZDy, we obtain that the set
U Supp (7P, [0], —) U U Supp (—, 7P, [0]))

corresponds to the shaded region of the picture below.

rlz,z[O]--- TPZW,—I[O] 521[?)] o SZm-l[O] r}:;:',“] erz[]] i r]/)fm-l[l]

The lifting of the simple A-module S; for i = 2,21, -+, 2,1 was
carried out using that S;[0] = vzp, (771rP;[0]) (see [9, Proposition
3.3]); proving (a).

(b) Let X,Y € indCp.

(b1)=(b2) Assume that f : X — Y is irreducible in mod A. It
follows directly, from [9, Proposition 2.9 (a)], that ep(f) : ep(X) —
ep(Y) is irreducible in modT'. On the other hand, there is an arrow
X — Y in gI'p with X € x, where x is one of the quivers X*, Y+,
Suppose that X and Y are not in the same component of indCp in
sI'A. Then, any path in gI's starting at X and ending at Y has length
at least two, contradicting that X — Y is an arrow of gI's; and so,
we get that X and Y are in x.
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(b2)=-(bl) Assume that X and Y belong to x, where y is one of
the components X*, Y*, and also that ep(f) : ep(X) — ep(Y) is
irreducible in modI'. Suppose that f : X — Y is not irreducible in
mod A. Then, there is a pathin ¢I'j induced by irreducible morphisms

X=MoBam, By — o M, M=y
having non zero composition in mod A. Hence, by [9, Proposition 2.9
(c)], it follows that M; & Cp for j =1,2,---,r — 1. This is a contra-
diction, since by (a) we know that y is a convex subquiver of gI'.

(c) It follows easily from (a) and (b). O
Definition 3.2. Let A be a trivial extension of Dynkin Cartan class.
For X € gT'p, we set:
o o) (X) is the number of arrows in sI'z starting at X;

o Sy (resp. X§) is the section of sT'p starting (resp. ending)
at X;
o XT:={Y €indA : there exists an arrow X — Y in sTp}.

Corollary 3.3. With the hypothesis in 3.1, let X € x be such that
X #S., where x is one of the components X+, Y+ of indCp in sI'y.
If X* & x then

(a) there exists a sectional path in g (denoted also as X ~~Y)

xhm By o, Ity
such that Y € indCp, Y & x and M; ¢ indCp for { =
1,2,--.m —1;
(b) the morphism ep(f) : ep(X) — ep(Y) is irreducible in mod T',
where f:= fm--- f2f1.

Proof. (a) follows easily from 3.1; and (b) from [9, Proposition
2.9(b)]. O

Theorem 3.4. With the hypothesis in 3.1, the following statements
hold.

(a) For any X andY in ind Cp, which do not belong to the same
component of ind Cp in sI'a, the following conditions are equiv-
alent:
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(al) there exists an irreducible morphism ep(X) — ep(Y) in
mod I

(a2) there exists a sectional path X iR M, PE My — - —

M,_4 %y in sI'a such that M; & indCp fori=1,2,---,
r— 1.
Moreover, if (a2) holds then, for f := f.fr—1---f1, we have
that ep(f) : ep(X) — ep(Y) is irreducible in modT.

(b) For any X € indCp, we have that

a)(X) if X is not isomorphic to S, X1 or Xo,
ap(ep(X)) =1 aa(X) =1 if X~ S,
ar(X)+1 if X~ Xy or X ~ Xo,

where X1 := 8,2, p. N 7s, S and Xg:=8-1,65, N

1 -1

—

TraPzy S.
(¢) 7 Hep(aS:)) = ep(T72rals, ).

Proof. By 3.1 we know that indCp decomposes in four connected
components: X~, X", Y~ and Y*. Moreover, ep(X*) and ep(YF) are
convex subquivers of sI'gnq,(pjor. Through this proof, we will fre-
quently use the picture appearing in 3.1; and also, from this picture
we see that the vertex X; (resp. Xg) corresponds to the top of the
shaded triangle X~ (resp. Y7).

Let X € indCp. Then X belongs to x, where x is one of the quivers
XF, Y%, Since A is of Cartan class Dy ,,_1, we get that 1 < o, (X) <
3. If X C x then the result is obtained as a direct consequence of
3.1.

Assume that X & y. If X # 55, then, by 3.3, there is a sectional
path X ~ Z in gI'p such that Z € indCp, Z € x and X ~ Z
induces an irreducible morphism ep(X) — ep(Z) in modT'. On the
other hand, if X Ny # 0 then there is an arrow X — Y’ in x and
this arrow induces, by 3.1, an irreducible morphism ep(X) — ep(Y”)
in modI'. Hence, we have two manners of constructing irreducible
morphisms in modT : (i) by using an arrow X — Y’ of x and (i)
by using a sectional path X ~~ Z as above. Then, to prove (a), it
is enough to see that the irreducible morphisms in modI', starting at
ep(X), are obtained either by (7) or (i7).

For any W € x with W+ ¢ x, we denote by A; (W) the set of arrows
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W — Y’ of x and by A~1(W) the set of sectional paths W ~ Z in
sI'a (as in (74)) such that Z € indCp and Z ¢ x.

We will prove the result by considering the cardinal of the set A; (X)U
Asq(X). If card (A1 (X )UAS1 (X)) = 2 or card( A (X)UAS1 (X)) =3,
the proof is straightforward.

Let card(A;(X) U As1(X)) = 1. So card(A;(X)) = 1 or
card(As1(X)) = 1. In case card(As1(X)) = 1 the proof is also
straightforward.

Suppose that card(A;(X)) = 1. Then X = S, € YT since we have

an arrow X — Y7 in YT and there are no sectional paths X ~» Y as in
3.3. Let W € indCp, we assert that if there exists an irreducible mor-
phism ep(X) — ep(W) then W ~ Y;. Indeed, let @ be the projective
A-module H;n:_ll AP:, and X — Y] []Y2 be an irreducible morphism
in mod A. Consider the section §X starting at X. Then Y7,Ys € §X
and therefore
m—1
Supp Hom, (Y2, —) € | J Supp Hom, (7' Px,, —) = Supp Hom , (M, —)
1=1

where M := @Q/soc @, as can be deduced from the picture below

Let ep(¢) : ep(X) — ep(W) be irreducible. Then ¢ = fi1 + fo
where f;, for ¢ = 1,2, is the composition of a chain X — Y, —
. — +--. — W of irreducible morphisms in ind A. If fy is non zero
then W € SuppHom, (Y2, —) € Supp Hom, (Q/soc @, —); giving a
contradiction since W € ind Cp implies, from [9, Theorem 2.4], that
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Hom, (Q/soc Q, W) = 0. Thus ¢ = f; and therefore ep (W) ~ ep(Y7)
since ep(X) — ep(Y1) is irreducible. Using the fidelity of the functor
ep, we get that W ~ Y;. Hence, we proved that the unique arrow in
sI'r starting at ep(X) is ep(X) — ep(Y1). Hence ap(ep(X)) =1 =
ap(X) -1

To prove (c), we use the sectional path h : Y] ~ 7727\ P, | (see
the picture above). Since ep(h) : ep(Y1) — ep(772rpP,, ) is ir-
reducible and ar(ep(X)) = 1, we conclude that 77 !(ep(aS.)) ~
ep(T72raP,,,_,); proving the result. O

Theorem 3.5. Let I' be a trivial extension of Cartan class Dy with
N > 4. If z is an insertion vertexr of Qr, then rpP.[0] and 1S,[0]
belong to the bottom border of ZD .

Proof. Let A be the trivial extension obtained from I" by inserting
the cycle C, = z <+ z1 «+ z at z. Consider the projective A-module
P = HiG(Qr)o AP; and the equivalence ep : Cp — modI' of stable
categories. Since, by [9, Proposition 3.3], rpP.[0] = TI/[_)}V(FSZ[O])
and the Nakayama permutation vp,, sends the bottom border of ZD y
to itself (see 1.11), it is enough to prove that 1S.[0] belongs to the
bottom border of ZDy. Indeed, by 3.1, we know that ind Cp splits
inside gI'p as four connected components. In the picture below, we
have drawn in gI's three of these components and the position of the
A-modules P, and S; for t = z, 2.

Moreover, by 3.4 (c), we know that 77 (ep(aS.)) =~ ep(772rAP.,);
and since 772rp P,, [0] is in the bottom border of ZDy;; and N >
4, we get that the vertex ep(7 2rpP,,)[0] is so. Hence ep( 5S:)[0]
belongs to the bottom border of ZDpy. On the other hand, by [9,
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Theorem 2.8|, we have that ep(S,) ~ rS.; and therefore pS,[0] is
in the bottom border of ZDy. O

Corollary 3.6. LetI' be a trivial extension of Cartan class Dy, z an
insertion vertex of Qr and A the trivial extension obtained from I' by
inserting the cycle C, = z «— 21 «— 29 < -« z;m_1 < 2z at z. Then,
for the projective A-module P := Hie(Qr)o AP, and the equivalence

ep : Cp — modI' of stable categories, we have that: (a) TS, € Cp,

and (b) ep(TAS2) ~rrP, if N > 4.

Proof.
(a) Follows easily from 3.1 (a).
(b) By (a), we know that 7,5, € Cp. We assert that

(*)  Homp(rS: ep(Ta5:)) #0.
Indeed, by 3.1 (a), we get the following picture

Therefore we have that ep induces an isomorphism
(#+)  Supp Homy(4S., —) N (YT UXT) = Supp Homp(rSs, —),

since by [9, Theorem 2.8] it follows that ep(AS,) ~ rS,. Using that
Homy (AS2, 7AS%,) # 0 (see the picture above) and (*x), we conclude
that Homp(rS:, ep(7S,)) # 0; proving ().

Consider a lifting ¢I'r[0] of sI'r to ZDy at pS,. Then, by (x), we
get that

(xx%)  ep(T52)[0] € Supp (rS:[0], -).
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So, since 7 7S, is in the bottom border of sI'y and N > 4, the iso-
morphism of quivers ep|x- : X~ — ep(X™) gives us that ep(74.5%,)[0]
belongs to the bottom border of ZDy. Furthermore, since z is an in-
sertion vertex of Qr, we obtain by 3.5 that pS,[0] belongs to the bot-
tom border of ZDy. Then, from (x % x), we have that vp, (15;[0]) =
ep(7TAS2)[0]. Hence rrP;[0] = ep(7T A S )[0] since, by [9, Proposition
3.3.], we know that vp, (15,[0]) = rpP.[0]; proving that ep(72S,,) ~
rpP,. O

4. The embedding of k(ZDy) in k(ZDxim-1).

Throughout this section I' is a trivial extension of Cartan class
Dy, z is an insertion vertex of Qr, and A is the trivial extension of
Cartan class Dy4,—1 obtained from I' by inserting the cycle C, =
Z 4 2] & 29 « -+ — zZym_ 1 — 2z at z. In the previous section, we
described an embedding of ¢I'r in gI'a. In this section, we will study
the corresponding embedding between their coverings k(ZDy) and
E(ZD N ym—1)-

Recall that T' ~ Endj(P)°? where P is the projective A-module
Hie(Qp)o AF;. In Section 3, we studied the embedding ¢ : modI' —
modA and saw that indCp splits inside sI's in four convex compo-
nents X*, Y* (see 3.1).

The partition {X~, X*, Y™, Y*} of ind Cp induces, through the equiva-
lence ep : Cp — modT, the partition in gI'r indicated in the following
picture where = := ep(7aS;,) >~ 10 P, (see 3.6).

So, the partition {ep(X™),ep(XT), ep(Y7),ep(YT)} of sTr depends
on the insertion vertex z of Qr, this is, of rrP,.
On the other hand, the embedding 2 : modI" — mod A induces a map
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denoted by the same symbol ¢ : gI'r — gI's. Indeed, let o : M — N
be an arrow of gI'r. Then, by 3.1 and 3.4, there exists a unique
sectional path in gI'y starting at «(M) and ending at +(/N). Hence
we can define 2(a) to be this sectional path. It is not difficult to
see that, if p is a mesh relation in gI'r then 2(p) is zero in k( sT's).
Therefore the map ¢ induces a full and faithful functor, denoted also
by 2: k(sI'r) — k(sTa). Let m: ZDn — sT'r and 7’ : ZDy 11 —
sI'a be the universal coverings of ¢I'r and gI'p respectively. In this
section, we will define a functor ® : k(ZDy) — k(ZD N 4m—1) making
the following diagram commutative

k(ZDy) —2— k(ZDy-4m_1)
Fl lF’
indl'  ——  indA,

where F and F” are the well behaved functors induced by the coverings
7 and 7’ respectively. In order to describe such a functor ®, we
introduce some notation.

4.1. The X, Y partition in ZDy.

Let X be a subset of vertices in ZDy. We denote by Conv (X ) the
convex closure of X in ZDpy, which is the smallest convex subquiver
of ZDy containing the set X. Furthermore, given a vertex x € ZD,

the section of ZDy starting at z will be denoted by S,.

Definition 4.1. For a given vertex x of the bottom border of ZDy,
we define the following vertices and the full convex subquivers of ZD y .

(a) Bs(x) (resp. Bar(x)) is the vertex of the section S, which is
in the top (resp. middle) border of ZDy.

(b) X := Conv ({r 1 (x), 2}).
(¢) X = Conv ({rvp), (2), Bs(a), Bur(a)}) \ Xy .

(d) Y5 = Conv ({r~ 1z, vpy (2)}).

(e) Vit := Conv ({7, Bs(r~ v (2)), Bar(rvpy (1)) \ V5
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In the following picture, the shape of these subquivers of ZDy can
be seen. We also remark that 7'_11/]5}\] () = TN 3(x).

Following [4], we recall that mzp, = 2N — 3, where mzp,, is the
Loewy Length in the mesh category k(ZDy). For any vertex u of
ZDy and any integer i, we set u[i] := 77/ 2N=3) (4). Moreover, if Z is
a subquiver of ZD y and i is any integer, we will consider the i-shifted
subquiver Z[i] := 7*2N=3)(Z) of ZDy.

Definition 4.2. For a given vertezx x of the bottom border of ZDy and
any integer i, we set: C;F[i] :== X [i|U VI [i], C; [i] := X, [i] U Yy [i]
and CF = U;ezCE[i]. Thus, {C5[i],CL[i] : i € Z} is a partition of
ZDy.
Remark 4.3. (1) Since z is an insertion vertex of Qr, we get by
3.5 that if N > 4 then the fiber 71 (rpP,) is contained in the bottom
border of ZDy, where w : ZDy — g'r is the universal covering of
sI'r. In case N = 4, we choose 7 in such a way that 7= (rpP,) belongs
to the bottom border of ZDy.

(2) The Nakayama permutation vp, : (ZDy)o — (ZDpn)o com-
mutes with the translation T of ZDy. Thus, vp, induces a permuta-
tion on ( sI'r)o which is also denoted by vp, .

Lemma 4.4. Let z be an insertion vertex of Qr, m : ZDny — sI'r be
the universal covering of sT'r and {X~, X Y=, YT} be the partition
of indCp in s’z (see 3.1).

(a) If = € m=Y(rpP,), then o | ot X+t — X* and 1|yt Vi
Y+ are quiver isomorphisms.
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(b) Let sT'r[0] be a lifting of sT'r to ZDy at T‘lyﬁi(erz). If
x = rrP,[0] then sT'r[0] = CF[0] U C; [0].

Proof. It follows easily from definitions and 3.1. O
4.2. Definition of the functor ¢ : k(ZDy) — k(ZDN4m-1)-

In what follows, we define a functor ® : kK(ZDy) — k(ZDN1m—1)
which is a “lifting” of the embedding ¢ : indI" — ind A. In order to
get some feeling about the correct definition of ®, we start by looking
at the following situation. Consider the partition {ep(X™), ep(XT),
ep(Y7),ep(YT)} of ¢T'p. Let U and V in indT as in the following
picture.

Then +(U) (resp. (V) is either in the top or in the middle border
of sI'y. By fixing ¢+(U) in the top border of gI'y, we assert that +(U)
and (V) belong to the same border if and only if m — 1 is even.
Indeed, Homp (U, V) = 0 since U = 7V; and so Hom, (2(U),(V)) = 0.
Thus, by using the shape of Supp Hom, (¢(U), —) in gI"s (see 1.11 and
[8, Proposition 3.3]), we get the assertion. Then, motivated by this
property of the functor 2, we introduce the following definitions. To
do that, we will make use of the automorphism o € Aut(ZDy) which
is defined as follows: o(p, N —1) := (p,N), o(p,N) := (p, N — 1) and
o(p,q) := (p,q) in case 1 < ¢ < N —2. That is, o sends the top border
of ZDy to the middle one and fix the other vertices of ZDy.

Let = be a vertex of the bottom border of ZDy and y be a ver-
tex of the top border of ZDy. By using the quivers C, and C, (see
4.2), we will define a k-linear fully faithful functor ® = @, 5 :
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k(ZDyn) — k(ZDpN4m—1). Such a functor depends on the automor-
phism ¢ € Aut(ZDy) and on two functions ®,, 1, x+, @1 4 y+ :
(ZDn)o — (ZDN4m—1)o0- So, we start by defining these auxiliary
functions as follows.

Definition 4.5. The functions ®,,_; , xy+ and @, , y+.
(a) For (p,q) € C;[0]UCF[0], we set

E q) | z; Ep,qgeig@
o ,q+m—1 if (p,q) € X,
<I>m—1,m,X+(p7Q) T (p—|—m—1 q) if (pa(J)Gym_?
o™ p—I—m—l (]+m_1) if (pv(J)ey;—;
if (p,q) € X,
o oo p,q—l—m—l) if (p.q) € X,
m—1,2, YT\ p—|—m—1 q) if (pa) ey,
(p+m—1,g+m—1) if (p,q) €V, .

(b) Fort € CE[i] with i # 0, we set
¢m—1,m,x+( ) 1= @1 a+ (H[—1])[],
D12+ (8) i= Py o y+ (E[—])[1].
Definition 4.6. The function ® = ®,,_1 ;. , on the vertices of ZDy.
e ATt
m-12+(t) if y € UiV

In the following picture, we illustrate the shape of the set ®((ZDx)o)

\/_/"

m =1 Vertices m —1 Vertices m—1 Vertices
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Definition 4.7. The function ® = ®,,_1 ;. , on the arrows of ZDy.

Let w5 z be an arrow of ZDx. By 4.6, it is not difficult to see that
there exists a unique sectional path vy in ZD N 1m—1 starting at ®(w)
and ending at ®(z); and so we set (a) := 7.

Remark 4.8. if a belongs to one of the components X*[i], Y*[i] for
some integer i, then ®(a) is an arrow in ZDNim—1. Moreover, it is
not difficult to see that if p is a mesh relation in ZDy then ®(p) is
zero in k(ZDNim—1). Thus, we get a k-linear fully faithful functor,
denoted also by @

b = <I>m—1,m,y . k‘(ZDN) — k(ZDN+m_1).

Lemma 4.9. Let z be an insertion vertex of Qr, m : ZDny — sI't be
the universal covering of sTr (as fived in 4.3), 7' : ZDN1m—1 — sTa
be the universal covering of sI'a and y be a vertex of the top border of
ZDy. Let sT'r[0] be a lifting of sT'r to ZDy at 7'_11/]3}\] (rpP.) and
take x := rpP,[0] as the fized vertex in the bottom border of ZDy.
We fix a lifting sTA[0] of sTa to ZDNim—1 at T~ iraP,, in such a
way that T71rp P, [0] = 7“11/]5}\]+m71(<1>(erz [0])). Then, the functor

b = <1>m—1,rer[0],y . k(ZDN) — k(ZDN+m_1)
has the following properties:

+
(a) the maps 7T/¢|Xrier o Xoppo X+ and

7r’<I>|yi - : yj;PZ[O] — Y* are quiver isomorphisms,
rr Pz

(b) sU'a[0] = C;(TFPZ[O])[O] U Corep.op 0]

:l: :l:
(C) ¢(CT‘[‘PZ[0] [0]) g C‘I)(T‘FPZ[O])[O]'

Proof. It follows directly from the definitions and 4.4. O
Remark 4.10. In the following two pictures, we illustrate 4.9.
(a) The partition of sI'r[0] induced by the vertex x := rpP,[0].
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vyl dx =1 —erezl[T*m’ APy [0] TAP 1] o o o A Pe 1]

Theorem 4.11. Let I" be a trivial extension of Cartan class Dy, z be
an insertion vertex of Qr and A be the trivial extension obtained from
I' by inserting the minimal cycle C, = z «— 21 «— +++ — 2z 1 «— 2z at
z. Fiz iy € N such that ig := 1 if ' is of Class I, and ig := 3 if T’
is either of Class IT or 111 (see 1.9). Choose the universal coverings
m:ZDN — sI'r and ' : ZDNym-1 — sDa as in 4.9 and such that
hzpy (771 (rrPiy)) = N —1. Consider also the liftings and the full and
faithful functor

(I>Z,i() = q>m—1,erZ[0],y : k(ZDN) - k(ZDN—i—m—l)a

fized in 4.9, where y := rpP;, [0].
If F/ : k(ZDN1m—1) — ind A is a well behaved functor induced by the
uniwersal covering @ : ZD N ym—1 — sLa, then
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(a) there is a well behaved functor F : k(ZDy) — ind T, induced
by the universal covering w : ZDn — sI'r, making the follow-
ing diagram

®,
K(ZDy) —2% k(ZDNsm_1)

Fl lF’
indT —~— ind A

commutative, where 1 is the fully faithful functor defined in
Section 3;

(b) for any vertex t € (Qr)o, the functor ®,;, satisfies:

o) @ustrerio) = { g F 127

(b2) @4, (rS:[0]) = AS:[0].

Proof. For the sake of simplicity, we set ® := &, ;.

(a) Firstly, we prove that 7’® = 7. To do that, we consider the
following functions:

Fy =, - Fy =am|,,-
- /|<I’:|TFPZ (0] G /|<I3>’|rp po0)
1 prd 7T — 2 prd 7T —
X, 1P (0] Yrrps (0]
Fs =am| .+ Fy =am|\,+
- /LI:TFPZ (0] p /|<I3>’|TFPZ [0’
3=T + 4 =T +
Xopp. (0] AAN T

By 4.4 and 4.9, we get that F; and G; are quiver isomorphisms for
any ¢. Hence

GrlFr e Awt(X_ ) = {1}, Gy'BeAut(, p ) = {1},
G3'Fy € Aut(X) o) =1L}, Gy Fre Aw(Yf o) = {1}

T

Then F; = G, F5 = G9; and to obtain 7/® = 2w, we have to prove
that F; = G; for ¢ = 3, 4. By definition we have

& — <I>m—1,rFPz [0],X+ if TFPiO [0] € 2(')7"—11:Pz (0]’
<I>m—1,rFPz [0,y+ if TFPiO [0] € y:I—“Pz [0]*

Sao Paulo J.Math.Sci. 4, 2 (2010), 273-349



Configurations of trivial extensions of Dynkin type Dy 321

Assume that rpP;,[0] € X; P. (0]

similar). Then ® = ®,, 1, p [0+
.) F3 = Gg.

Indeed, since rpP;,[0] is in the top border of ZDy and rpP;,[0] €
X;PZ o) We get that ®(rpP;,[0]) € X*[0] with ®(rpP;,[0]) in the top
border of ZD y 4y,—1. Furthermore, by [9, Theorem 2.8|, we know that
1(rp Py, ) ~ A Piy; and hence 75 P;,[0] € X1[0] since rpP;, [0] € X; P. (0"
So, using that 75 P;,[0] belongs to XT[0] and to the top border of
ZDN4m—1, we obtain that ®(rpP;,[0]) = raP;,[0] since o(rrP;,) ~

raP;, and ep|x+ : Xt — 7TX:1: P. 0] is an isomorphism of quiv-
ers. Therefore ©'®(rpP;,[0]) = raP,,; and hence Gy 'F3(rrP;,[0]) =
rrP;, [0]. Then G5 LFy = 1 since the automorphism o sends the top
border of ZDy to the middle border of ZDy.

.) F4 = G4.
Indeed, let z = rpP,[0]. Then Bs(z) € Xf and By (7 tx) € V.

(for the other case, the proof is very

1

-1 -
TV x

Let F; : k(ZDy) — ind T be a well-behaved functor induced by the
universal covering 7 : ZDy — gI'r. From [8, 3.2 and 3.3], we have
that

Fr : k(ZDy)(Bs(@), Bu(r™w)) — Homp (7 fs(w), mBum(r™ )
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is a k-linear isomorphism. On the other hand, we know that

Homy (fs(x), 7By (r~"x)) ~ Hom, (17 Bs(x), 17 Bar (7~ 2));

and by these isomorphisms, we get Hom , (1735(x), 1w Bar(77 1)) # 0
since, by the preceding picture, we know that k(ZDy)(8s(z), Ba(71z))

# 0. Using that F3 = G3, we have that 17 (B8s(z)) = #'®(Bs(z)). Thus

(#%) am(Bar(t™"z)) € Supp Hom (7' ®(Bs(x)), —).-

Furthermore, by [8, Proposition 3.3], it follows that the universal cov-
ering 7’ : ZDNim_1 — sI'a induces a bijection

Supp k(ZDN-m-1)(2(Bs(x)), —) = Supp Hom, (7'®(Bs(x)), —).-
Moreover, by 1.11, we know the shape of Supp k(ZDnm—1)(®(8s(x)), —)
in ZDN4m—1. Then, by (xx), we conclude that

wm(By (7)) = 7™ B (B (7 L)),
By the definition of ®, we get that @(ﬁM(T Le)) = o™ 180 (@ (77 12)).
Then m(ﬁM(T_lm)) = 7'®(Bun (7~ x)) and hence G L Fy (B (77 1)) =
B (77 x). Thus G LFy = 1 since the automorphlsm o sends the mid-
dle border of ZDN to the top one; proving that 1w = 7/®.

Let F' : k(ZDN4m—1) — ind A be a well behaved functor induced
by the universal covering 7’ : ZDnym_1 — sI'a. Since ir = 7'®. It
is clear how to define F' on the vertices of ZDy (just take F' := 7
on (ZDy)g). Now, we define F' on the arrows of ZDy. For an arrow
x5y of ZDy, we set F(a) :=ep F'®(a), where ep = Hom, (P, —) :
Cp = modT is the equivalence of stable categories given in Section
3. So, we have a functor F' : k(ZDy) — indI'. To see that F' is well-
behaved and makes the diagram of (a) commute, it is enough to prove
that ep F'®(a) is irreducible in mod I for any arrow = — g in ZDy.
Consider the partition {X " P [0][ il X p. [0][ il yTFPZ 0] UL Yp. 0] [7] :
j € Z} of ZDy, we have that ®(x) and ®(y) are either in the same
or in different components of this partition.

If &(x) and ®(y) are in the same component of the above partition.
Then, by the definition of ®, we get that ®(«) is an arrow of ZD n 4,1
and therefore F'®(«) is irreducible in mod A. Hence, from 3.1 (b), we
obtain that ep F'®(«) is irreducible in modT.

Suppose that ®(z) and ®(y) are not in the same component of the
above partition. Then, by the definition of ®, we obtain that 7/(®(z))
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and 7'(®(y)) belong to different components of indCp (see 3.1 (a)).
Moreover 7' (®(«)) is the following sectional path in gI'p

T (®(2)) = My — - — M,y — 7' (2(y))

such that M; ¢ Cp for any ¢ = 1,2,--- ,r — 1. Therefore, by 3.4 (a),
we have that ep F'®(«) is irreducible in modT".

(b) Let t € (Qr)o. We only prove (bl) since the prove of (b2) is
very similar.

If ¢t = z then ®(rpP[0]) = 7( AS2,[0]). Assume that ¢ # z. Then, by
[9, Theorem 2.8], we have that ry P, € Cp and ep(raP;) ~ rrP;. Hence
1(rrP;) o~ rpP; since 1ep ~ 1¢,. On the other hand, by (a), we have
that ©'®(rpP;[0]) = ww(rpP[0]) = 2(rpP;), and then, 7'®(rpP[0]) =
raP; since 1(rpP) ~ rpaP;. Thus ®(rpP[0]) = rAP[0]; proving the
result. O

Corollary 4.12. Let A be a trivial extension of Cartan class Dy
with N > 4. For a given verter z € Qp, the following conditions are
equivalent.

(a) z is an insertion vertex of Q.
(b) rP,[0] belongs to the bottom border of ZDy .
(c) S.[0] belongs to the bottom border of ZD .

In particular, the number of vertices z € Qx such that r P, lifts to the
bottom border of ZD y is larger than 1 and coincides with the number
of insertion vertices of Q.

Proof. (b)& (c) It follows from the equality S,[0] = vp, (77 1rP,[0])
(see in [9, Proposition 3.3].

(a)< (b) If A is minimal then the equivalence follows from 2.12,
2.14 and 2.15. In case A is not minimal, we proceed by induction over

the number of minimal oriented cycles of Q; and so by using 4.11 we
get the result. O

5. Some generalities about trivial extensions of class 1.

In this section, we extend 2.14 to the general case, that is, to a
trivial extension A of Class IT (see 1.2 and 1.9). To do that, we firstly
consider the case when A is minimal of Class II (see 2.14). Then, by
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using 4.11, we see how the radicals of the projective modules, associ-
ated with the vertices 1,2 and 3 of Y5, can be lifted to the universal
covering. Furthermore, we also determine some special regions, in the
bottom border of ZDy, where the radicals of the projective modules
associated with the insertion vertices of Q4 can be lifted. So, through-
out this section, A will be a trivial extension of Class II.

We recall that the ordinary quiver @A of A is described (see 1.2 and
1.9) by drawing the quiver Qp, . of Ay, and small squares on some
vertices of Qp,,,;,.. The small square on a vertex x; € Q4,,,,, represents
a quiver @, which is either {x;} or the ordinary quiver of a trivial
extension Iy, of Cartan class Anj with n; > 2.

Definition 5.1. For a trivial extension A of Class 11, it will be con-
stdered the following subquivers of Q.

Q . a, G, Gy,

. o — ] — @
A, >
o : b .b b

Ab- [ —— [o] —— — [o] )
Q . G Cy €y

AC Ol —— [0 —— « « e — [0

In case one of the numbers n, m ort is zero then the corresponding
quiver Qp,, Qa,or Qa. is the empty set. We set w(A) = [(Qa,)ol
forw € {a,b,c} where | X| stands for the cardinality of a given set X.

Definition 5.2. For a trivial extension A of Class I1, we fix the uni-
versal covering m: ZDn — sU'a such that hzp, (77 1(rP3)) = N — 1;
and moreover, in case N = 4, we add the condition hyp, (1~ (rPy,)) =
1 (see 2.11 (a)). Consider a lifting ( see [8, 3.5]) of sT'a to ZDy at
rPs. For eachw € {a,b, c}, we define the set Ins(Qp,,) as the subset of
the bottom border of ZD n which is illustrated in the following picture.
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c(A) a(A) b(A)

NN

\/- =\\/- ~
Ins(Qy,) Ins(Gy ) Ins(qQ )

A b(A
xpy S0 W o 0 A~

\

-~
Ins QA(,

In what follows, we prove that the radicals of the projective modules
associated to the insertion vertices of Qo belonging to Qa,,, for w €
{a, b, c}, lift to Ins(Qx,, ).

Proposition 5.3. Let A be a trivial extension of Class I1 and Cartan
class Dy . Consider a lifting of sI'pn to ZDyn as in 5.2.

(a) Let = be an insertion vertex of Qp and w € {a,b,c}. If © €
Qn,, then 17 1(rpaP,) C Ins(Qyp,,).
(b) The radicals Py, 7Py and rPs lift to ZDyN as is indicated in
the following picture, where
| X9 if ¢(A)+b(A) is even,
rB[0] = { Yo if e(A) + b(A) is odd.

X1 if e(A) +a(A) i ,
o= {35 LR
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b(A) c(4) a(A b(A)
B X, 'R
XA AT A ‘/\: 2 AL /\1

Proof. We will proceed by induction on the number of elemental
cycles of Qa (see 1.4). If there are not elimination cycles in Qx (see
2.1), then A is minimal and so a(A) = n, b(A) = m and c(A) = t.
Hence, in this case, the result follows from 2.11 (a) and 2.14.

Suppose there is at least one elimination cycle C' in the ordinary
quiver Q4. Since C' C Uyefq b ey @A, We may assume that C' is con-
tained in Q. (for the other cases, the proof is quite similar). Let
C =z 21« 29« -+ zym_1 < 2. Consider the trivial extension
I" of Cartan class Dy_,,11 obtained from A by eliminating the cycle
C. So, by 4.11, we have the full and faithful functor

O :=0,3: k(ZDN_m+1) — k(ZDy).
By induction, we have that the result is true for I'. Furthermore,
since z € Qr, is an insertion vertex of Qr, it follows that rpP,[0] €
Ins(Qr,). Now, consider the partition {CT_[‘PZ[O] [7], C:;PZ[O] [i] : i€Z}
of ZDN_m+1 (see 4.2). In the following picture, we illustrate this

partition where the shaded regions correspond to C’T_F PO
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! b b
e(r) o) rrpa[?wr)\ /C(Q.Y a/(r) (I

rX[-] . AN

\> \ //
P
s D . —
Tns(Qr ) Tns(Qp ) ns(Qr,)

® changes the partition {C?“_[‘PZ[O] [7], C:;PZ[O] [i] : i€Z} of ZDN_pmi1
as is indicated in the following picture (see 4.9 and 4.10).
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c(M+m-1=c(A)

o) b pa
e R
\/ \\\ /N /

’APZ2[0] see TAPZm-l[O] [UESAL) TAPZI[O] TAPZZ[I] eee TAPZm—I[l]

Moreover, by 4.11 (b), we have that ®(rprFP;[0]) = raP;[0] for any
t € (Qr)o with t # z. Now, we are ready to prove items (a) and (b).
(a) Let x be an insertion vertex in Q5. To prove (a), it is enough

tho consider two cases: (al) x € Qa, and (a2) z € Qp, (the case
x € Qn, is quite similar to the first one).

(al) Let = € Qp,. Since Qp, = Qr,, we get by induction that

rrP;[0] € Ins(Qr,). Moreover, by the two figures above, it follows that

¢ (Ins(Qr,)) = Ins(Q4, ). Hence A Py[0] = ®(rp P, [0]) € ®(Ins(Qr,)) =
Ins(Qa,); proving (a) in this case.

(a2) Let z € Q4. Then, either x € (Qr,)o\{z} or = € {z1,22, -+, Zm-1}.
Ifx € {z1,22, -, zZm—1}, by the two figures above, we get that ry P, [0] €
Ins(Qp,) for any i =1,2,--- ,m — 1. Thus A P,[0] € Ins(Qa,)-

In case z € (Qr,)o \ {z}, by induction, we obtain that rpP,[0] €
Ins(Qr,). On the other hand, using the two figures above, we get that
®(Ins(Qr,)) C Ins(Qa,). Hence rp Py[0] = ®(rrP;[0]) € ®(Ins(Qr,)) C
Ins(Qa,); proving (a).
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(b) Since by assumption C' C Qp,, we get that Qx, = Qr, and
Qa, = Qr,. Therefore a(A) = a(I') and b(A) = b(I'). On the other
hand ¢(A) = ¢(I") +m — 1. We only check the first equality in (b) since
the second one can be checked in a very similar way.

We may assume that ¢(T") + b(T") is even ( the other case is similar).
Then, by induction, we have that rpP;[0] = pXs. Furthermore, by
4.11 (b), we obtain that 7y P[0] = ®(rrP2[0]) = ®(1rX2). Now, since

rpP3[0] € X;PZ[O], we have that & = &, . p g x+ (see in 4.6).

Moreover, we have that pXs € y:; P.[0] (see the picture above); and
hence, by the definition of @, it follows that

. Xy ifm —1 is even,
(¥) raP[0] = ®(rX2) = 0™ (4 X2) = { 21/22 if m — 1 is odd.

Since ¢(A) = ¢(T") +m — 1, it follows that ¢(A) +b(A) = ¢(T") +b(T") +
m — 1. As a consequence, we have that ¢(A) + b(A) and m — 1 have
the same parity since ¢(I") + b(T") is even. Hence, from (x), we get the
first equality in (b). O

6. Construction of the configuration associated to a triv-
ial extension of Cartan class Dy.

Let A be a trivial extension of Cartan class Dy. The ordinary quiver
Qn, of a trivial extension A is described in 1.2 and 1.9. We recall that
the quiver QA can be described by drawing only the minimal quiver
QA,,;, of Apin, (see 1.8).

Consider the universal covering m : ZDy — gI'p of gI's. In this
section, we give an algorithm to determine the configuration Cp of
ZDy associated to A. We recall that Cy := 7~ (Cp), where C, is the
set of vertices of gI'p representing the radicals of the indecomposable
projective A-modules (see [8, 2.7]). We define the subset rP (A, ZDy)
of (ZDy)o and prove that rP(A, ZDN)[Z] := U,.,rP(A, ZDy)][i] is
the desired configuration.

We start by defining some notations needed to state the algorithm:
the sections S and S, the initial vertices, and the functions border
and height defined on the set of vertices of Q. The algorithm is stated
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in the Theorem 6.8 and illustrated in the Example 6.3. The remainder
of the section is devoted to the proof of the Theorem 6.8.

In what follows, we introduce two sections in ZDy which are as-
sociated with a given vertex in ZDy. These sections will play an im-
portant role in the algorithm to compute the configuration associated
to the trivial extension A.

Definition 6.1. Associated with a given vertex (p,q) in ZDy, we
have the following two sections in ZDy :

Shg =10+ N—-1i) : 1<i<N -1}
{(p+qi) : 1<i<N-1} ifqg#N,

(ma) "~ )
S(';’N) ifq=N.

In the following picture, we illustrate the shape of the two parallel
sections 8 and S associated with the vertex z = (p, q).

(P+1, N-1) (p+q,N-1) (p+A_f—1,N_1)
e

T=(P,9)

(P+'q,1) (p+N:1, 1)

Definition 6.2. Let A be a trivial extension of Cartan class Dy. The
initial vertices Ini(A) of QA are those in the set

{1, 4} if A is of Class I,
Ini (A —{

{1, 2, 3} otherwise.

The elements of the set (Qa)o \ Ini(A) are called the non-initial
vertices of Q.
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Definition 6.3. Let A be a trivial extension of Cartan class Dy.
Any non-initial vertex © of Qp induces two full connected subquivers

of Qu : namely, Q" and QI’i which are defined as follows.

_7' 7' - _7' +7'
(2) Q' NQy" = {i} and Q" UQY" = Qu;
(b) QX’i = Qu where N is a trivial extension of Cartan class
Dy
(c) ifi is an insertion vertex of Q, we set QI’i :={i}; and oth-
erwise, QI’Z = Quar where N is a trivial extension of Cartan
class A, with n” > 1.

The quivers QX’i and QA’i are said to be the splitting of Qa at the
verter 1.

Example 6.1. Let A be the trivial extension of Class I and Cartan
class Dg given by the quiver:

1
/.\

— 53 \ +53 -~
Q) ? '—"73 ’ Qy 36
2

Definition 6.4. Let A be a trivial extension of Cartan class Dy. The
border map 0y : (Qa)o — {—, %, +} is defined as follows:

(a) OA(i) := x for any initial vertex i of Qx;

(b) for any non-initial vertex j € Q4, ;. , we set Or(j) := + if there
is an arrow j — v with v € Ini (A), otherwise Op(j) := —;
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(c) let C and C' be two elemental cycles of Qa (see 1.4) meeting
only at the non-initial vertex x. Suppose we already have de-
fined Op on the vertices of the cycle C; so, for any verter z of
C', different from x, we set Or(z) := + if there is an arrow
z — x, otherwise Oz (z) := —.

Definition 6.5. Let A be a trivial extension of Cartan class Dy. The
height function hy : (Qa)o — N is defined as follows.

(a) For the initial vertices of Qn :
(al) if A is of Class I, we set hp (1) := N—1 and hy (4) :== N;

(a2) if A is of Class I1, we set hy (3) := N — 1 and

N —1 ifc(A)+0b(A) is even,
ha (2) := {

N if ¢(A) + b(A) is odd;

N —1 ifc(A)+a(A) is even,
ha (1) := {

N if ¢(A) 4+ a(A) is odd;

where a(A), b(A) and c¢(A) are the numbers defined in 5.1
(a3) if Ais of Class I11, we set hp (1) := N—=2, hy (3) := N—1
and hp (2) :== N.

(b) ha(i):= |(QI’i)0| for any non-initial vertez i of Q.

Remark 6.6. Let A be a trivial extension of Cartan class Dy. Con-
sider the universal covering w : ZD N — s and a lifting of sT'A[0] to
ZDp as in 2.10 (c), 2.11, 2.12 and 5.3. Then, for any initial vertez
i of Qn, we have that hy(i) = hzp, (rF;[0]).

Example 6.2. Let A be the trivial extension of Class I and Cartan
class Dy given by the quiver

Z——o ®9
VS
®3

e

6
s
s

e
\Z
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In the following table, we compute the values of the height function
and the border map associated to A.

T€E(@Qa)o I 2 3 4[51617 18710
o) [+ [+ ]*x|-[-]-]+]+F
A |8 [T [T (o141 |21

Definition 6.7. Let A be a trivial extension of Cartan class Dy and
u a vertex of the top border of ZDy. Consider the universal covering
m: ZDN — sT'a and a lifting of sTA[0] to ZDy as in 2.10 (c), 2.11,
2.12 and 5.3. We define the set rP(A,ZDy) := {rP; € (ZDn)o : i €
(Qa)o} by the following rules.
(a) For the initial vertices of Qn :
(al) if A is of Class I, we set rP; := u and define rPy as is
indicated in the picture below

N )

rh rR[1]
— ~—a

N AN
rh, AN

/

/

(a2) if A is of Class 11, we set 77}73 := u and define r/F\’i, for
i =1,2, as is indicated in the picture below, where

- Xo if ¢(A) 4+ b(A) is even,
rPy =

Yo if ¢(A) + b(A) is odd.

- X1 if c(A) 4+ a(A) is even,
rP; =

{ Y1 if e(A) 4+ a(A) is odd.
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c¢(A) a(A) "y b(A) c(A) ﬁA)\ b(A)

XD N AT N A X2 X3

Yyl-1]

(a3) if A is of Class I11, we set r/P\g ;= u and define 7"/1\31', for
i =1,2, as is indicated in the picture below

(b) Let i — j be an arrow in Qa with i a non-initial vertex. Sup-
pose that we already have defined rP;. Then, we set rP; :== X;
for the verter X; in the section S%%FZ

J
hzpy (Xi) = ha (7).

Example 6.3. Let A be the trivial extension of Class 11 and Cartan
class Dy given by the quiver

) satisfying the equality
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TR
N
2 3

In the following table, we compute the values of the height function
and the border map associated to A.

(QA)0123456789
OA() [* [ x [x [+ [+ ][+ [+ ]+
InG) [ 88|82 (42T 1|1

In the picture below, we indicate the vertices of rP(A,ZDyg) with

’m (KRR AR
“0 (e “o ‘o ‘0‘ i ‘n‘
AR

) 7’P1

s
!

i
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Theorem 6.8. Let A be a trivial extension of Cartan class Dy. Fix a
vertex u in ZDpy and take ig € Qp with ig := 1 if A is of Class I and
ig := 3 otherwise. Consider the universal covering © : ZDyn — g'a
and a lifting of sTA[0] to ZDy as in 2.10 (c), 2.11, 2.12, 5.3 and
such that rP;[0] = u. Let rP(A,ZDy) be the set associated to these
data (see 6.7). Then

Q

(a) Ca = rP(A, ZDy)[Z];

(b) w(rP;) = rP; for any vertex i € Qp;
(¢) hzpy (rB;[0]) = ha(i) for any vertex i € Q.

The proof of 6.8 will be carried out by induction on the number
of minimal oriented cycles of Q5. To do that, we delete an elemental
cycle C (see 1.4) of QA obtaining a trivial extension I' having less
elemental cycles than A. So, we get the functions: hy, hr, Oa, Op. In
order to prove that theorem, we have to stablish, firstly, the relation-
ship between such functions. To start with, it is easy to see that the
restriction of dz to (Qr)o is dr. However, the relationship between
ha and hr is more complicated. Hence, to solve this problem, we
introduce the notions of C-linked and C-free vertices of Q4.

Definition 6.9. Let A be a trivial extension of Cartan class Dy, and
C be an elemental cycle of Qa which is not contained in Qay,,,, . It
can be seen easily, that there exists only one chain C = C1,Co, -+, Cy
consisting of elemental cycles of Qp such that: (a) (C;)o N (Cit1)o =
{z;} where x; is a vertex in Qp for 1 < i < £, (b) C; € Qn,,,, for
1<i<?land(c)CyCQn,,,  The vertices x1,x2, -, x4—1 are said
to be C-linked; and the remaining ones of Qa, which are non-initial
vertices, will be called C-free.

Example 6.4. Consider the trivial extension A of Class 115 and Car-
tan class Dg, having as quivers Qx and @ the following ones

min

o l2d 156G o 41 3
P2V SR V7oXY
2 3 2 3
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The elemental cycles of Qp are: C1, Co, C3, C4, Cs and Cg; and can
be seen in the above figures. In this case, we have

ligados: 4. ligados: 5,6

o) vertices 02—{ libres: 5,6,7,8,9.

o) vertices Cg —{

Proposition 6.10. Let A be a trivial extension of Cartan class Dy
and C an elimination cycle of Qp (see 2.1). Consider the trivial
extension I' obtained from A by eliminating the cycle C. Then, for
any verter t € Qr which is a non-initial one, we have that

h t ftc'f )
hﬂﬂ=={;£&;+ugm|_1 %f§§04ﬁiﬂ;

where |(C)o| is the number of vertices in the cycle C.
Proof. It is straightforward. O

In the following proposition, we prove a result that will be essential
to do the inductive step in the proof of 6.8. Here, we make use of the
partition {C; [i], C,f[i] : i € Z} in ZDy induced by a vertex y in the
bottom border of ZDy (see 4.2).

Proposition 6.11. Let A be a trivial extension of Cartan class Dy.
Consider the universal covering w : ZDyx — sI'p and a lifting of
sTA[0] to ZDy as in 2.10 (c), 2.11, 2.12 and 5.3. Then, for any
insertion vertex z of QA and any vertex x € Qa, the following state-
ments hold.

(a) If z € Qn,,,, and Or(x) # *, then rP,[0] € Crp.qo-

(b) If C is an elemental cycle of Qa which is not contained in
QA,,;,, and z is a vertex in the cycle C, then

(M)Mﬂmeq%mﬁmeﬁMw,
(b2) rP.[0] € Crp.jo) if @ is C-free.

Proof. We proceed by induction on the number of minimal cycles
of Q.

(a) Let z € Q4,,,, be an insertion vertex of Q4 and Op(x) # *. If Ais
minimal, then (a) follows from 2.11, 2.12, 2.14 and 2.15. Suppose that
A is not minimal, and let C = x,, < 21 < X9 < -+ < Ty_1 < Ty bE
an elimination cycle of Q5. Consider the trivial extension I' of Cartan
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class Dy _,11 obtained from A by eliminating the cycle C. We make
use of 4.11, and so, we assume all the hypothesis needed there. Hence,
we have a full an faithful functor ® = &, ;, : k(ZDN_pm+1) —
k(ZDy). Thus, by 4.9 and 4.11, we are able to compare the parti-
tion {C_p, [, Clp i) © @ € Z} of ZDy_ji1 with the partition

{CT_APZ[O] [7], C:;\Pz[o] [i]] : i € Z} of ZDy (see the following picture).

X

.
7Py, [0] el [0] Pl B[l

m

The shaded areas in the preceding picture correspond to C’T_F P.0"

Since z,, # z we get by 4.11 (bl) that ®(rpP,[0]) = rpP,[0]. Fur-
thermore, by definition of ® and the above picture, it can be seen

that <I>(C’T_F P, [0]) - C’;(TF p.jo))- Hence, we get
(E1) (Crp.0) € Crippo

If = is a vertex in the cycle C, then by the picture above, 3.1 (a) and

4.11, we obtain that: (i) rA Py, [0] € CT_APZ[O] and (ii) for x # x,,, the

lifted radical 7 P,[0] is in the bottom border of ZDy and ry P, [0] &
o(C ). Thus A P,[0] € C proving (a) in this case.

71 Pop, [0] rA P (0]
Let, now, x be a vertex in Qr different from z,,. Then by induc-
tion 10 P;[0] € G, p. (o Hence raPy[0] = ®(rrP;[0]) € <1>(CT_FPZ[0]) C
Cr_APZ[O] by 4.11 (b) and (E1); proving (a).

(b) Let C be an elemental cycle of Q5 which is not contained in
QA,,;,, and z be a vertex in C. In what follows, we analyze two possi-
bilities.
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Case 1: Suppose that C is an elimination cycle of Q4.

Let C =y «— y1 <« yo «— -+ < ym—_1 < y. By assumption, we have
that z € {y1,¥2, -, Ym—1}. Let T be the trivial extension of Cartan
class Dy _y,11 obtained from A by eliminating the cycle C. We assume
all the hypothesis needed in 4.11, and so, we have a full an faithful
functor ® := @, ;, : K(ZDN_m4+1) — k(ZDy). Consider the partition
{Cr_pPy[o] [7], C’;;Py[o] [i]] : i€ Z} of ZDN_p+1, that can be illustrated
by the shaded areas in the following picture.

ZDn-mur /Y

rpBy[0] vp, ITRLI0]

Applying the functor ® = @, ;, : k(ZDN_m+1) — k(ZDy) to the
partition above we get, by 4.10 and 4.11, that such a partition can be
embedded in k(ZDy) as can be seen in the following picture; further-

more, in this picture, we also illustrate the partition {C_ p, 0] [7], C’:;\ P.[0] [1] :
1 €7} of ZDy for z = y;.
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- ‘ y
By, 100 o o e TaBy, (0] WPy [0] Bl oo By (]

By using the two pictures above, it is not difficult to prove the follow-
ing lemma.

Lemma (E2) For any z € {y1,y2,"* , Ym—1}, we have that

.. :l: :l:
(il) ®(Crp,0) € Crapa o)

(iii) raPy[0] € Cr_APZ[O] for all w € {y1,y2," -, Ym—1}-

Now, we are ready to prove (bl) and (b2) in case C is an elimination
cycle of Q. Let & be a non-initial vertex in @y, that is, dp(z) # *.

(b1) Assume that z is C-linked. If z = y then, by (E2) (i), it

follows that 7y P,[0] € CT , otherwise « € (Qr)o \ {y}; and so, by
raP:[0]

induction we have rrP,[0] € C’:FF p.jo Hence, from (E2) (ii) and 4.11
(b1), we conclude that

raP[0] = @(rePu[0]) € ®(CF 4, ) S CF o

(b2) Assume that z is C-free. If x is a vertex in the cycle C then, by

(E2) (iti), it follows that rAP[0] € C 1 o] Suppose that z € (Qr)o

proving (bl).
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with  # y. Then by induction rpP,[0] € CT_FPZ[O]‘

(E2) (ii) and 4.11 (b1l), we get ra P,[0] = ®(rrP,[0]) € ¢(CT‘_1"PZ[0]
C’T_A (0] proving (b2).

Case 2: Suppose that C is not an elimination cycle of Qx.
Let C" = 2, < @1 + X9 ¢ -+ - < Tpy_1 « T;m be an elimination cycle
of QA having a chain of elemental cycles C = C1,C5,---,C)_,,C) =
C’ as in 6.9 (see the picture below).

Therefore, from
) €

C/=C

Consider the trivial extension I' of Cartan class Dy_,,+1 obtained
from A by eliminating the cycle C’. In particular, we have that z,,
is an insertion vertex of QJr. We assume all the hypothesis needed
in 4.11; and so, we have a full an faithful functor ® := &, ., :
E(ZDN—_m+1) — k(ZDy). Furthermore, we have a partition
{C’T_szm[o][i],C’;sz[O][i] 2 1 € Z} of ZDN_pp+1 (see the first pic-
ture of this proof). We use the functor ®, to compare the parti-
tion {C_p, [d], Clp i) © i € Z} of ZDN_jni1 with the partition
{Cr_APZ[O] [7], C:;\PZ[O] [t]] : i€ Z} of ZDy. Hence, we get the following
lemma.

Lemma (E3) With the preceding notations and hypothesis, we
have

. +
) ¢(CE g

(if) raPe[0] € CF py g

+
) S CL b o

for any vertex w in C'.
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Now, we are ready to prove (bl) and (b2) in case C is not an elimina-
tion cycle of Q. Let x be a non-initial vertex in Q4.

(b1) Assume that x is C-linked. So z € (Qr)o, and by induction,
rrP,[0] € C’:;PZ o) Hence, from (E3) (i) and 4.11 (b1), it follows

AP (0] = (rr P [0]) € ©(C, b ) € CF p o5

proving (bl).

(b2) Assume that z is C-free. If z is a vertex in the cycle C’ then,
by (E3) (ii), we obtain that ry P,[0] € Cr_APZ[O]‘
Suppose that = € (Qr)o with = # z,,. So, we have by induction that

rePp[0l € C b o) Therefore, from (E3) (i) and 4.11 (b1), we get that

proving the result. O

Now, we are in position to prove the main result of this section.

Proof of Theorem 6.8 It is enough to prove (b) since it implies (a)
and (c). The proof will be carried out by induction on the number of
minimal oriented cycles of Q. If A is minimal then from 2.11, 2.12,
2.14 and 2.15 the proof of (b) is complete.

Suppose that A is not minimal. Let C' = z « 21 « 29 «
-+ Zm_1 < 2 be an elimination cycle of 5. Consider the trivial ex-
tension I' of Cartan class Dy_;,11 obtained from A eliminating the
cycle C'. We assume all the hypothesis needed in 4.11; and so, we
have a full an faithful functor

O =D, : k(ZDy-_mi1) — K(ZDy).
Using such a functor, we will compare rP(I", ZD y _,+1) with P (A, ZDy).
Consider the partition {CT_[‘PZ[O] [7], C:;PZ[O] [i]] : i€ Z} of ZDN_p+1

(see 4.10 (a)). Then, the functor ® embeds such a partition in ZD y
as can be seen in 4.10 (b).

By induction, we have that Theorem 6.8 is true for I'; therefore

7 (rpP;) = rpP; for any vertex i € Qp, where 7 : ZDy_m11 — sIT
is the universal covering of ¢I'r.
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Given a vertex x in ZDpy_,4+1, we start by finding a relationship
between hzp, (®(z)) and hzp_,.., ().

Lemma A For any vertex x in ZDyn_p,+1, we have that

al) ®(SE) C ST . if z and 7'z belong to the same component
z )

D(z
in the partition {C'_ ct 1 €Z} of ZDN_mm1;

T‘[‘PZ [0] [Z] ’ T‘[‘Pz [0] [Z]

(a2) (S p. o) €S, P10}

(a3) if z = rpP;[d] for j € (Qr)o \ {z} and d € Z, then z and 771z
belong to the same component in the partition {C

TFPZ[O][Z']’
cr polid @ i € Z} of ZDN 1.

hzDy_is () ifz e Cr_er[O]’
(ad) hzpy (@(z)) = . +
hzDy_ i () +m —1 ifz € Crer[O]'

Proof. We apply the full an faithful functor ® = & ;, to the desired

partition {CT_FPZ[O] [i],C’:rFPZ[O] [i]] : i€ Z} of ZDN_p,y1; afterwards,

by 4.11 and 6.1, we get the items (al), (a2) and (a4) as can be seen
by using the following two pictures.
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YUAS

= / \
AP, [0] o oo WP, _[0] TP [0] WPl oo e P ]

(a3) Denote by p to the set of vertices y in ZDyn_p,+1 such that
y and 7'y do not belong to the same component in the partition
{Cerz [0] [4],
ct P.[0] [1]] : i €Z} of ZDN_pm+1. We assert that

T

o = | Supp(rr P [i], —) U Supp(—, rr . [i]).
1€Z

Indeed, by 1.11 (a), we know the shape in ZDy_, 41 of Supp(—, w)
and Supp(w, —) for any vertex w in the bottom border of ZD N _,41;
and so, our assertion follows from the picture below.
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On the other hand, since j # z we have that
Hom (rpPj, rrP;) = 0 = Hom (rpP;j, rrPs).

Thus, by the assertion above, we conclude that rrP;j[d] & g; proving
(a3). O

Lemma B Let i — j be an arrow in Qr satisfying dp (i) # *. Then

(bl) ifi # zand j # 2, then ®(rp ) € SZ‘(‘(/)F) with hzp,, (D(rrP;))
J
= ha(i);

(b2) if j = 2 then B(rr ;) € S, p o) With hzp (B(rrPy)) = ha(i);

(b3) if i = z then rp P,[d] € S with hzpy (raP:ld]) =m—1=
‘I)(T‘FP]‘)

ha(z) for some integer d.

Proof. (bl) By the definition of rP (I, ZDyN_y+1), we have that
rrP; € S%I(?Z) with hzpy_,,.. (rrP;) = hr(i). On the other hand, by

T‘Fj

Lemma A (al) and (a3), it follows @(@Z) c @(Sﬁ(\i)) C S0

- ek ®(rr Fy)
since Op(i) = OA(1), j # z and rrP; = rpP;[0]. In order to prove that
hZDN(<I>(@i)) = ha(i), we consider two cases and use the equality
hZDN7m+1(7?H) = hr(i) that holds by induction.

Case I: z is a vertex in ()4,,,,. So, in this case, z is the unique

vertex which is C’-linked. In particular, the vertex i is C'-free; and
then, by 6.10, it follows that hp(i) = hp (7). On the other hand, from

6.11 (a), we get that rpP;[0] € Cr_FPZ[O]' Thus, by Lemma A (a4), we

obtain that hZDN(<I>(@i)) = hZDN,mH(@i)- Therefore
hzpy (B(rrP,)) = hzpy ., (10 P;) = hr(i) = ha(i).

Case II: z does not belongs to Qp,,,,- S0, the vertex ¢ is either
C'-linked or C'-free. If i is C'-free, we get by 6.11 (b2) and 6.10 that

rrP;[0] € C,p. 0] and hy (i) = hr(i); and hence

hapy (®(rrP)) = hzpy .., (0 P;) = hr(i) = ha(4).
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Assume that the vertex i is C’-linked. Then, by 6.11 (b1) and 6.10, it
follows that rpP;[0] € CrerPz[o] and ha (i) = hr(i) + m — 1. Therefore,

hzpy ((rrPy)) = hapy_ ., (rrP) +m — 1= hp(i) +m — 1 = hy(i);
proving (bl).

(b2) By the definition of dr (see 6.4), we have that dr(i) = — since
by assumption there is an arrow i — z and z is C’-linked. Then, by
using Lemma A (a2), the proof of (b2) follows similarly as the one
given in (bl).

(b3) Suppose i = z, that is, we have an arrow z — j in Qr
with Jr(z) # *. We may assume that d = 0, since otherwise we
apply an appropriate shifting. Then, by induction, we have that
rpP,[0] € Sa/rg). Since j # z, we conclude, from Lemma A (a3),

rr j
that rpP;[0] and 7 1rpP;[0] belong to the same component in the
partition {CT_FPZ[O] [7], C:FFPZ[O] [i]] : i €Z} of ZDN_;mt1 as can be seen
in the following two pictures.
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But hp(z) = m — 1; and so, by 4.11, we get that rp P.[0] € S9a)

(e ;)
with hzp, (raP:[0]) = m — 1 = hy(z); proving (b3). O

We are now in position to finish the proof of (b) in the Theorem 6.8.
For the initial vertices t of Qx, by 6.6 and 6.7 (a), we conclude that

77(@) = rAP;. On the other hand, since <I>(7"?I\3t) = ®(rpP[0]) =
rAP:[0], we choose the coordinates of 7y P; in ZD y in such a way that
O(rpP;) = raP;. So, we assert the following:

() @(rrP) =raP; forany i€ (Qr)o\{z}.
Indeed, let i — j be an arrow in Qp with dp(j) # * and ¢ # z. Since
O(rpP;) = raAP; for Op(t) = *, to get (C), it is enough to proof the
following;:
1) if j # z and <I>(7"/FFJ) = r/A?j, then @(7?1\3@) = rj\?’i;

2)if j = z then ®(rrPy) € S, p, (o With hap, (2(rrF;)) = ha(d).

But now, the statements 1) and 2) follow from Lemma B items (bl)
and (b2); proving (C).

Let now ¢ be any vertex in Q5. We consider several cases as follows.

Case I: Assume that ¢ € (Qr)o \ {z}. Then, by 4.11 (bl), we have
that ®(rpP;[0]) = rpP;[0]. On the other hand, from (C), we know
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that ®(rr-B;) = ra L. Hence ryP;[0] = ®(rpP[0]) = ®(rr D) = ral;,
proving (b) in this case.

Case II: Let ¢ = z and z — j be an arrow in Qp. Hence, by (C),
we have that ®(rpP;) = raPj since j # z. Therefore, Lemma B (b3)

implies that ry P,[d] € S with h%]‘D(IZV) (raP,[d]) = ha(z); and hence

(=
raP;
raP, = rp P.[d] for some integer d. We may assume that d = 0, since
otherwise we apply an appropriate shifting.

Case III: Suppose that ¢ € {z1,29, -+, 2zm—1}. We already know
that rA P, = rpP,[0]. Then, from the second picture appearing in

the proof of Lemma A, it can be seen that @ = rpP;, [0] and

SO 7"7\73@- = rpB[1] for i = 29, , zpy—1; proving (b) in this case and
ending the proof of the Theorem 6.8.
Od
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