A counterexample to the existence of a Poisson structure on a twisted group algebra

Eliana Zoque ${ }^{1}$
Department of Mathematics, The University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
E-mail address: elizoque@math.uchicago.edu

Abstract

Crawley-Boevey [1] introduced the definition of a noncommutative Poisson structure on an associative algebra A that extends the notion of the usual Poisson bracket. Let (V, ω) be a symplectic manifold and G be a finite group of symplectimorphisms of V. Consider the twisted group algebra $A=\mathbb{C}[V] \# G$. We produce a counterexample to prove that it is not always possible to define a noncommutative poisson structure on $\mathbb{C}[V] \# G$ that extends the Poisson bracket on $\mathbb{C}[V]^{G}$.

1. Introduction

Crawley-Boevey [1] defined a noncommutative Poisson structure on an associative algebra A over a ring K as a Lie bracket $\langle-,-\rangle$ on $A /[A, A]$ such that for each $a \in A$ the map $\langle\bar{a},-\rangle: A /[A, A] \rightarrow A /[A, A]$ is induced by a derivation $d_{a}: A \rightarrow A$; i.e. $\langle\bar{a}, \bar{b}\rangle=\overline{d_{a}(b)}$ where the map $a \mapsto \bar{a}$ is the projection $A \rightarrow A /[A, A]$. When A is commutative a noncommutative Poisson structure is the same as a Poisson bracket.

Let (V, ω) be a symplectic manifold, with the usual Poisson bracket $\{-,-\}$ on $\mathbb{C}[V]$. Let G be a finite group of symplectimorphisms of V. Consider the twisted group algebra $A=\mathbb{C}[V] \# G$. The algebra of G-invariant polymonials $\mathbb{C}[V]^{G}$ is contained in $A /[A, A]$. We produce a counterexample to prove that it is not always possible to define a noncommutative poisson structure on $\mathbb{C}[V] \# G$ that extends the Poisson bracket on $\mathbb{C}[V]^{G}$.

[^0]
2. Twisted group algebra and derivations

From now on, let $A=\mathbb{C}[V] \# G$. \mathbb{C} can be replaced by any field of characteristic 0 .) We use the symbol ${ }^{g} \psi$ to denote the left action of $g \in G$ on $\psi \in \mathbb{C}[V]$. For every $g \in G$ we denote $(-)_{g}$ the projection $A \rightarrow \mathbb{C}[V]$ into the g-part, i.e, $(\psi h)_{g}=\psi \delta_{g, h}$ if $\psi \in \mathbb{C}[V], h \in G$. Let $G=C_{0} \cup C_{1} \cup \cdots$ be the conjugacy classes of G, with $C_{0}=\{1\}$.

It is proved in [4] that

$$
\frac{A}{[A, A]}=H H_{0}(A)=\left(H H_{0}(\mathbb{C}[V], \mathbb{C}[V] \# G)\right)^{G}
$$

therefore

$$
\begin{aligned}
\frac{A}{[A, A]} & =\left(\bigoplus_{g \in G} H H_{0}(\mathbb{C}[V], \mathbb{C}[V] g)\right)^{G} \\
& =\left(\bigoplus_{g \in G} \frac{\mathbb{C}[V]}{\left\langle\varphi-g^{g} \varphi: \varphi \in \mathbb{C}[V]\right\rangle} g\right)^{G} \\
& =\bigoplus_{i}\left(\frac{\mathbb{C}[V]}{\left\langle\varphi-g_{i} \varphi: \varphi \in \mathbb{C}[V]\right\rangle}\right)^{G_{g_{i}}} g_{i}
\end{aligned}
$$

where g_{i} is an arbitrary element of C_{i} and $G_{g}=\{h \in G \mid g h=h g\}$. The first summand is precisely $\mathbb{C}[V]^{G}$. Let P_{i} be the projection

$$
A \rightarrow\left(\frac{\mathbb{C}[V]}{\left\langle\varphi-g_{i} \varphi: \varphi \in \mathbb{C}[V]\right\rangle}\right)^{G_{g_{i}}} g_{i}
$$

The Poisson bracket gives us a family of derivations $d_{\psi}: \mathbb{C}[V]^{G} \rightarrow$ $\mathbb{C}[V]^{G}, \phi \mapsto\{\psi, \phi\}$ for $\psi \in \mathbb{C}[V]^{G}$; and we want to extend it to a larger family. The following Lemma restricts the possibilities.
Lemma 1. Let $d: A \rightarrow A$ be any derivation. If $x \in \mathbb{C}[V]^{g} \neq \mathbb{C}[V]$ then $(d(x))_{g}=0$.

Proof. Let $y \notin \mathbb{C}[V]^{g}$. The equality $d(x y)=d(y x)$ implies $d(x) y+x d(y)=$ $d(y) x+y d(x)$. The g-part of this equality is

$$
(d(x))_{g} g y+x(d(y))_{g} g=(d(y))_{g} g x+y(d(x))_{g} g
$$

or

$$
(d(x))_{g}{ }^{g} y+x(d(y))_{g}=(d(y))_{g}{ }^{g} x+y(d(x))_{g} .
$$

Since ${ }^{g} x=x,^{g} y \neq y$ we conclude $(d(x))_{g}\left({ }^{g} y-y\right)=0$, so $(d(x))_{g}=0$

Therefore if the action of G on V is faithful and $g \neq 1$, the g-part of the derivative an element of $\mathbb{C}[V]^{g}$ is zero. This implies that for every $\psi \in \mathbb{C}[V]^{G}, d(\psi) \in \mathbb{C}[V] \subset A$.

The condition $\langle\overline{\psi g}, \overline{\phi h}\rangle=-\langle\overline{\phi h}, \overline{\psi g}\rangle$ implies $\overline{d_{\psi g}(\phi h)}=-\overline{d_{\phi h}(\psi g)}$. Consider the case $\phi, \psi \in \mathbb{C}[V]^{G}, h=1$ and $g \in C_{i}, i \neq 0$. Since $P_{i}\left(d_{\psi g}(\phi)\right)=0$, we must have $0=P_{i}\left(d_{\phi}(\psi g)\right)=P_{i}\left(d_{\phi}(\psi) g+\psi d_{\phi}(g)\right)$. The only terms that must be taken into account are $d_{\phi}(\psi) g+\psi \sum\left(d_{\phi}(g)\right)_{h g h^{-1}} h g h^{-1}$. Modulo $[A, A]$ this is equal to

$$
\left(d_{\phi}(\psi)+\sum_{h} h^{-1}\left(\psi\left(d_{\phi}(g)\right)_{h g h^{-1}}\right)\right) g=\left(d_{\phi}(\psi)+\psi \sigma_{\phi, g}\right) g
$$

where $\sigma_{\phi, g}=\sum_{h}{ }^{h^{-1}}\left(\left(d_{\phi}(g)\right)_{h g h^{-1}}\right)$ does not depend on ψ.
We want $0=P_{i}\left(\left(d_{\phi}(\psi)+\psi \sigma_{\phi, g}\right) g\right)=P_{i}\left(\left(\{\phi, \psi\}+\psi \sigma_{\phi, g}\right) g\right)$ since we want a Poisson structure extending the usual Poisson bracket on $\mathbb{C}[V]^{G}$. Therefore a neccesary condition for the existance of the Poisson structure is the existance of $\sigma_{\phi, g} \in \mathbb{C}[V]$ so that

$$
\begin{equation*}
P_{i}\left(\left(\{\phi, \psi\}+\psi \sigma_{\phi, g}\right) g\right)=0 \tag{1}
\end{equation*}
$$

for every $\psi \in \mathbb{C}[V]$. We will see that this is not always possible.

3. The counterexample

Let $V=\mathbb{C}^{4}$ with linear coordinates $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and the symplectic form $\omega=d x_{1} \wedge d x_{2}+d x_{3} \wedge d x_{4}$, so $\mathbb{C}[V]=\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$, and

$$
\{\phi, \psi\}=\frac{\partial \phi}{\partial x_{1}} \frac{\partial \psi}{\partial x_{2}}-\frac{\partial \phi}{\partial x_{2}} \frac{\partial \psi}{\partial x_{1}}+\frac{\partial \phi}{\partial x_{3}} \frac{\partial \psi}{\partial x_{4}}-\frac{\partial \phi}{\partial x_{4}} \frac{\partial \psi}{\partial x_{3}} .
$$

Let $G=\mathbb{Z}_{2} \ltimes\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right)$. Let e, b, c be the generators of the three copies of \mathbb{Z}_{2} (in that order). G acts on V as follows: b and c act as $\operatorname{diag}(-1,-1,1,1)$ and $\operatorname{diag}(1,1,-1,-1)$, respectively, on $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and e interchanges $x_{1} \leftrightarrow x_{3}, x_{2} \leftrightarrow x_{4}$. Clearly $\mathbb{C}[V]^{G}$ is the set of all polynomials $\sum \lambda_{i_{1}, i_{2}, i_{3}, i_{4}} x_{1}^{i_{1}} x_{2}^{i_{2}} x_{3}^{i_{3}} x_{4}^{i_{4}}$ such that $\lambda_{i_{1}, i_{2}, i_{3}, i_{4}} \neq 0$ implies $i_{1}+i_{2}, i_{3}+i_{4}$ are even and $\lambda_{i_{1}, i_{2}, i_{3}, i_{4}}=\lambda_{i_{3}, i_{4}, i_{1}, i_{2}}$.

Using Magma (http://magma.maths.usyd.edu.au) we find that the ring of invariant polynomials is generated, as an algebra, by $f_{1}=x_{1}^{2}+x_{3}^{2}, f_{2}=$ $x_{2}^{2}+x_{4}^{2}, f_{3}=x_{1}^{4}+x_{3}^{4}, f_{4}=x_{2}^{4}+x_{4}^{4}, h_{1}=x_{1} x_{2}+x_{3} x_{4}, h_{2}=x_{1}^{2} x_{2}^{2}+$ $x_{3}^{2} x_{4}^{2}, h_{3}=x_{1}^{2} x_{3} x_{4}+x_{1} x_{2} x_{3}^{2}, h_{4}=x_{1} x_{2} x_{4}^{2}+x_{2}^{2} x_{3} x_{4} ;$ with relations

$$
\begin{gathered}
-f_{1} f_{2} h_{1}+f_{1} h_{4}+f_{2} h_{3}-h_{1}^{3}+2 h_{1} h_{2}, \\
\frac{1}{2} f_{1}^{2} f_{2}+\frac{1}{2} f_{1} h_{1}^{2}-\frac{1}{2} f_{1} h_{2}-\frac{1}{2} f_{2} f_{3}-h_{1} h_{3}, \\
\frac{1}{2} f_{1} f_{2}^{2}-\frac{1}{2} f_{1} f_{4}+\frac{1}{2} f_{2} h_{1}^{2}-\frac{1}{2} f_{2} h_{2}-h_{1} h_{4}, \\
-\frac{1}{2} f_{1}^{2} f_{4}+f_{1} f_{2} h_{2}-\frac{1}{2} f_{2}^{2} f_{3}+f_{3} f_{4}-h_{2}^{2}, \\
-\frac{1}{2} f_{1}^{2} h_{4}+\frac{1}{2} f_{1} f_{2} h_{3}+\frac{1}{2} f_{1} h_{1} h_{2}-\frac{1}{2} f_{2} f_{3} h_{1}+f_{3} h_{4}-h_{2} h_{3}, \\
\frac{1}{2} f_{1} f_{2} * h_{4}-\frac{1}{2} f_{1} f_{4} h_{1}-\frac{1}{2} f_{2}^{2} h_{3}+\frac{1}{2} f_{2} h_{1} h_{2}+f_{4} h_{3}-h_{2} h_{4}, \\
\frac{1}{2} f_{1}^{3} f_{2}+\frac{1}{2} f_{1}^{2} h_{1}^{2}-f_{1}^{2} h_{2}-\frac{1}{2} f_{1} f_{2} f_{3}-\frac{1}{2} f_{3} h_{1}^{2}+f_{3} h_{2}-h_{3}^{2}, \\
\frac{1}{2} f_{1}^{2} f_{2}^{2}-3 / 4 f_{1}^{2} f_{4}+\frac{1}{2} f_{1} f_{2} h_{1}^{2}-3 / 4 f_{2}^{2} f_{3}+f_{3} f_{4}-\frac{1}{2} h_{1}^{2} h_{2}-h_{3} h_{4}, \\
\frac{1}{2} f_{1} f_{2}^{3}-\frac{1}{2} f_{1} f_{2} f_{4}+\frac{1}{2} f_{2}^{2} h_{1}^{2}-f_{2}^{2} h_{2}-\frac{1}{2} f_{4} h_{1}^{2}+f_{4} h_{2}-h_{4}^{2} .
\end{gathered}
$$

Proposition 2. The Poisson bracket on $\mathbb{C}[V]^{G}$ cannot be extended to a Poisson structure on $\mathbb{C}[V] \# G$ for V and G as defined above.

Proof. Take $\phi=x_{1}^{2}+x_{3}^{2}, \psi=x_{1} x_{2}+x_{3} x_{4} \in \mathbb{C}[V]^{G}$ and $g=b$. In this case $\{\phi, \psi\}=2 x_{1}^{2}+2 x_{3}^{2},\left\langle\varphi-{ }^{g} \varphi: \varphi \in \mathbb{C}[V]\right\rangle=\left\langle x_{1}, x_{2}\right\rangle$ and $G_{b}=\{1, b, c, b c\}$. Hence,

$$
\left(\frac{\mathbb{C}[V]}{\left\langle\varphi-{ }^{g} \varphi: \varphi \in \mathbb{C}[V]\right\rangle}\right)^{G_{g}}=\mathbb{C}\left[x_{3}, x_{4}\right]^{\{1, b, c, b c\}}=\mathbb{C}\left[x_{3}^{2}, x_{3} x_{4}, x_{4}^{2}\right],
$$

so $P_{i}((\{\phi, \psi\}) b)=2 x_{3}^{2} b$
On the other hand, $P_{i}\left(\left(\psi \sigma_{\phi, g}\right) b\right)=P_{i}\left(\left(\left(x_{1} x_{2}+x_{3} x_{4}\right) \sigma_{\phi, g}\right) b\right)=$ $P_{i}\left(\left(\left(x_{3} x_{4}\right) \sigma_{\phi, g}\right) b\right)$ and none of the terms here can be equal to $-2 x_{3}^{2}$ since they all contain x_{4}. This contradicts (1).

References

[1] W. Crawley-Boevey. A note on commutative Poisson structures, AirXiv: math.QA/0506268.
[2] A. Cannas da Silva. Lectures on symplectic geometry, Lecture Notes in Mathematics, 1764, Springer-Verlag, Berlin, 2001.
[3] J.J. Cannon, C. Playoust, An Introduction to Algebraic Programming in Magma, Sydney: School of Mathematics and Statistics, University of Sydney, 1996.

A counterexample to the existence of a Poisson structure on a twisted group algebra 113
[4] V. Dolgushev, P. Etingof, Hochschild cohomology of quantized symplectic orbifolds and the Chen-Ruan cohomology, Int. Math. Res. Not. 2005, no. 27, 1657-1688, also math.QA/0410562.

[^0]: ${ }^{1}$ The author is grateful to William Crawley-Boevey for a careful review of this paper, and to Victor Ginzburg for posing the question.

