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A counterexample to the existence of a Poisson
structure on a twisted group algebra
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Abstract. Crawley-Boevey [1] introduced the definition of a noncom-
mutative Poisson structure on an associative algebra A that extends the
notion of the usual Poisson bracket. Let (V, ω) be a symplectic mani-
fold and G be a finite group of symplectimorphisms of V . Consider the
twisted group algebra A = C[V ]#G. We produce a counterexample to
prove that it is not always possible to define a noncommutative poisson
structure on C[V ]#G that extends the Poisson bracket on C[V ]G.

1. Introduction

Crawley-Boevey [1] defined a noncommutative Poisson structure on an
associative algebra A over a ring K as a Lie bracket 〈−,−〉 on A/[A,A]
such that for each a ∈ A the map 〈a,−〉 : A/[A,A] → A/[A,A] is induced

by a derivation da : A → A; i.e. 〈a, b〉 = da(b) where the map a 7→ a is
the projection A → A/[A,A]. When A is commutative a noncommutative
Poisson structure is the same as a Poisson bracket.

Let (V, ω) be a symplectic manifold, with the usual Poisson bracket
{−,−} on C[V ]. Let G be a finite group of symplectimorphisms of V . Con-
sider the twisted group algebra A = C[V ]#G. The algebra of G-invariant
polymonials C[V ]G is contained in A/[A,A]. We produce a counterexample
to prove that it is not always possible to define a noncommutative poisson
structure on C[V ]#G that extends the Poisson bracket on C[V ]G.

1The author is grateful to William Crawley-Boevey for a careful review of this paper,
and to Victor Ginzburg for posing the question.
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2. Twisted group algebra and derivations

From now on, let A = C[V ]#G.(C can be replaced by any field of char-
acteristic 0.) We use the symbol gψ to denote the left action of g ∈ G on
ψ ∈ C[V ]. For every g ∈ G we denote (−)g the projection A → C[V ] into
the g-part, i.e, (ψh)g = ψδg,h if ψ ∈ C[V ], h ∈ G. Let G = C0 ∪C1 ∪ · · · be
the conjugacy classes of G, with C0 = {1}.

It is proved in [4] that

A

[A,A]
= HH0(A) = (HH0 (C[V ],C[V ]#G))G ,

therefore

A

[A,A]
=




⊕

g∈G

HH0 (C[V ],C[V ]g)




G

=




⊕

g∈G

C[V ]

〈ϕ− gϕ : ϕ ∈ C[V ]〉
g




G

=
⊕

i

(
C[V ]

〈ϕ− giϕ : ϕ ∈ C[V ]〉

)Ggi

gi

where gi is an arbitrary element of Ci and Gg = {h ∈ G|gh = hg}. The
first summand is precisely C[V ]G. Let Pi be the projection

A→

(
C[V ]

〈ϕ− giϕ : ϕ ∈ C[V ]〉

)Ggi

gi.

The Poisson bracket gives us a family of derivations dψ : C[V ]G →

C[V ]G, φ 7→ {ψ, φ} for ψ ∈ C[V ]G; and we want to extend it to a larger
family. The following Lemma restricts the possibilities.

Lemma 1. Let d : A → A be any derivation. If x ∈ C[V ]g 6= C[V ] then
(d(x))g = 0.

Proof. Let y /∈ C[V ]g. The equality d(xy) = d(yx) implies d(x)y + xd(y) =
d(y)x+ yd(x). The g-part of this equality is

(d(x))g gy + x(d(y))gg = (d(y))ggx+ y (d(x))g g

or
(d(x))g

g
y + x (d(y))g = (d(y))g

g
x+ y (d(x))g .

Since gx = x,g y 6= y we conclude (d(x))g (gy − y) = 0, so (d(x))g = 0 �

São Paulo J.Math.Sci. 3, 1 (2009), 109–113



A counterexample to the existence of a Poisson structure on a twisted group algebra 111

Therefore if the action of G on V is faithful and g 6= 1, the g-part of
the derivative an element of C[V ]g is zero. This implies that for every
ψ ∈ C[V ]G, d(ψ) ∈ C[V ] ⊂ A.

The condition 〈ψg, φh〉 = −〈φh,ψg〉 implies dψg(φh) = −dφh(ψg). Con-

sider the case φ,ψ ∈ C[V ]G, h = 1 and g ∈ Ci, i 6= 0. Since Pi (dψg(φ)) = 0,
we must have 0 = Pi (dφ(ψg)) = Pi (dφ(ψ)g + ψdφ(g)). The only terms that

must be taken into account are dφ(ψ)g+ψ

∑
(dφ(g))hgh−1 hgh

−1. Modulo

[A,A] this is equal to
(

dφ(ψ) +
∑

h

h−1
(
ψ (dφ(g))hgh−1

))

g = (dφ(ψ) + ψσφ,g) g

where σφ,g =
∑

h

h−1
(
(dφ(g))hgh−1

)
does not depend on ψ.

We want 0 = Pi ((dφ(ψ) + ψσφ,g) g) = Pi (({φ,ψ} + ψσφ,g) g) since we

want a Poisson structure extending the usual Poisson bracket on C[V ]G.
Therefore a neccesary condition for the existance of the Poisson structure
is the existance of σφ,g ∈ C[V ] so that

Pi (({φ,ψ} + ψσφ,g) g) = 0 (1)

for every ψ ∈ C[V ]. We will see that this is not always possible.

3. The counterexample

Let V = C
4 with linear coordinates {x1, x2, x3, x4} and the symplectic

form ω = dx1 ∧ dx2 + dx3 ∧ dx4, so C[V ] = C[x1, x2, x3, x4], and

{φ,ψ} =
∂φ

∂x1

∂ψ

∂x2
−

∂φ

∂x2

∂ψ

∂x1
+

∂φ

∂x3

∂ψ

∂x4
−

∂φ

∂x4

∂ψ

∂x3
.

Let G = Z2 n (Z2 ⊕ Z2). Let e, b, c be the generators of the three
copies of Z2 (in that order). G acts on V as follows: b and c act as
diag(−1,−1, 1, 1) and diag(1, 1,−1,−1), respectively, on {x1, x2, x3, x4}
and e interchanges x1 ↔ x3, x2 ↔ x4. Clearly C[V ]G is the set of all polyno-

mials
∑
λi1,i2,i3,i4x

i1
1 x

i2
2 x

i3
3 x

i4
4 such that λi1,i2,i3,i4 6= 0 implies i1 + i2, i3 + i4

are even and λi1,i2,i3,i4 = λi3,i4,i1,i2.

Using Magma (http://magma.maths.usyd.edu.au) we find that the ring
of invariant polynomials is generated, as an algebra, by f1 = x2

1 + x2
3, f2 =

x2
2 + x2

4, f3 = x4
1 + x4

3, f4 = x4
2 + x4

4, h1 = x1x2 + x3x4, h2 = x2
1x

2
2 +

x2
3x

2
4, h3 = x2

1x3x4 + x1x2x
2
3, h4 = x1x2x

2
4 + x2

2x3x4; with relations
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−f1f2h1 + f1h4 + f2h3 − h
3
1 + 2h1h2,

1

2
f

2
1 f2 +

1

2
f1h

2
1 −

1

2
f1h2 −

1

2
f2f3 − h1h3,

1

2
f1f

2
2 −

1

2
f1f4 +

1

2
f2h

2
1 −

1

2
f2h2 − h1h4,

−
1

2
f

2
1 f4 + f1f2h2 −

1

2
f

2
2 f3 + f3f4 − h

2
2,

−
1

2
f

2
1h4 +

1

2
f1f2h3 +

1

2
f1h1h2 −

1

2
f2f3h1 + f3h4 − h2h3,

1

2
f1f2 ∗ h4 −

1

2
f1f4h1 −

1

2
f

2
2h3 +

1

2
f2h1h2 + f4h3 − h2h4,

1

2
f

3
1f2 +

1

2
f

2
1h

2
1 − f

2
1h2 −

1

2
f1f2f3 −

1

2
f3h

2
1 + f3h2 − h

2
3,

1

2
f

2
1 f

2
2 − 3/4f2

1 f4 +
1

2
f1f2h

2
1 − 3/4f2

2 f3 + f3f4 −
1

2
h

2
1h2 − h3h4,

1

2
f1f

3
2 −

1

2
f1f2f4 +

1

2
f

2
2h

2
1 − f

2
2h2 −

1

2
f4h

2
1 + f4h2 − h

2
4.

Proposition 2. The Poisson bracket on C[V ]G cannot be extended to a
Poisson structure on C[V ]#G for V and G as defined above.

Proof. Take φ = x2
1 + x2

3, ψ = x1x2 + x3x4 ∈ C[V ]G and g = b. In this case
{φ,ψ} = 2x2

1 + 2x2
3, 〈ϕ − gϕ : ϕ ∈ C[V ]〉 = 〈x1, x2〉 and Gb = {1, b, c, bc}.

Hence,
(

C[V ]

〈ϕ− gϕ : ϕ ∈ C[V ]〉

)Gg

= C[x3, x4]
{1,b,c,bc} = C[x2

3, x3x4, x
2
4],

so Pi (({φ,ψ}) b) = 2x2
3b

On the other hand, Pi ((ψσφ,g) b) = Pi (((x1x2 + x3x4) σφ,g) b) =
Pi (((x3x4) σφ,g) b) and none of the terms here can be equal to −2x2

3 since
they all contain x4. This contradicts (1). �
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