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1. Introduction

In many situations, solving mathematical problems involves study the so-
lution set of a system of polynomial equations. The language of algebraic
varieties is developed for that purpose. An algebraic variety is a topologi-
cal locally ringed space whose underlying topological space “behave locally
like” the zero set of a system of polynomials in an affine space. A formal
definition can be found for example in Chapter 1 of [18]. A projective
variety is an algebraic variety that can be embedded into some projective
space. Many number theoretic questions are naturally expressed as dio-
phantine problems. Suppose that the algebraic variety X is defined over
the number field F . An algebraic dynamical system ϕ : X → X is a finite
map from the algebraic variety X to itself. One of the tools to study alge-
braic dynamics over number fields is the definition of height functions. A
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(canonical) height function associated to ϕ is a function ĥϕ : X(F̄ ) → R,
that attempts to compute the complexity of the point P ∈ X(F̄ ) relative
to the map ϕ. For instance the points of finite forward orbits for ϕ will
be exactly the points of height ĥϕ(P ) = 0. The notion of height can be
also generalized to subvarieties Y ⊂ X, still measuring the behavior under
iteration. The existence of a map from an algebraic variety to a projective
space and the construction of the height associated to a self map, both
relate to the concept of line bundle. A line bundle is a variety L together
with a map π : L → X, in such a way that for some open covering {Ui} of
X, the restriction L|Ui = π−1(Ui) is isomorphic to Ui × A

1
F . The existence

of a morphism from X to a projective space can be expressed in terms of
line bundles. A line bundle L generated by global sections s0, ..., sr, de-
termines a map to the some projective space P

r. Sufficient conditions for
the construction of a height relative to a dynamical system can also be
expressed in terms of the existence of certain line bundles on X. A line
bundle L that satisfies an equation of the sort ϕ∗L ∼= L⊗α for α > 1, allows
to build a height ĥϕ relative to the self map ϕ : X → X. The existence of
a line bundle as before is called a polarization for the dynamical system ϕ.
A polarized dynamical system has associated a canonical function ĥϕ and a
canonical invariant measure dµϕ,v on the analytic space Xan

v , for each place
v of F . For places at infinity the canonical measure will be the product of
positive currents on Xan

v = Xσ = X ×σ C. For finite places, the canonical
measure will be defined over the Berkovich analytic space Xan

v = Xv
Ber [5]

corresponding to the place in question. A Mahler formula for the height
ĥϕ will compute the height using integration against the canonical mea-
sure. The general Mahler formula for a map ϕ : X → X is a consequence
of the work of Chambert-Loir and Thuillier in theorem 1.3 of [11]. The
Mahler formula over curves was first considered in [24] without the tools of
Berkovich spaces. On the Riemann sphere the formula reads:

Theorem 1.1. Suppose that ϕ : P
1 → P

1 is a map on P
1
F and f(T ) ∈

OF (T ) is a polynomial equation. The height ĥϕ(Div(f)) can be expressed
as sum of integrals over all places v of F of the log of f(x) against the
invariant measure dµϕ,v, that is,

ĥϕ(Div(f)) =
∑

v

∫

P1
v,an

log |f(x)|dµϕ,v.

An important property of the measures dµϕ,v is the equidistribution prop-
erty. Let’s fix a place v of F and an embedding Fv ↪→ Cp. A sequence {Pn}
of points in X(F̄ ) is generic if for any subvariety V ⊂ X there exist N such
that Pn /∈ V for n > N . Let (X,L, ϕ, α) be a polarized dynamical system
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defined over the number field F . A sequence of points {Pn} ∈ X(F̄ ) is said
to be small if hϕ(Pn) converges to zero.

Theorem 1.2. (Yuan [29]) Let (X,L, ϕ, α) be a polarized dynamical system
on the projective variety X defined over the number field F . Let {Pn} a
sequence of points on X(F̄ ) which is generic and small, then for any place
v of F the Galois orbits of the sequence {Pn} are equidistributed in the
analytic space Xan

v with respect to the invariant measure µϕ,v, in the sense
that 1

#(O(Pn))

∑
P∈O(Pn) δP converges weakly to dµϕ,v on Xan

v .

1.1. Notation. Throughout this paper, X will denote a projective alge-
braic variety of dimension n and ϕ : X → X a finite self-map. F will
denote a number field and K an algebraically closed field which is complete
with respect to a non-archimedean absolute value |.|. L will denote a line
bundle on the algebraic variety X. A metrized line bundle (L, ‖.‖) on X

will be denoted by L̄. The variety Xv will denote the variety obtained from
X by extension of F to the algebraically closed and complete field Cp. The
Berkovich analytic space attached to Xv for a place v of F will be denoted
by Xv

Ber.

2. Canonical heights and canonical measures

Height functions are a tool to study dynamics over number fields. As our
first approach to height functions we take a look at the naive height on the
projective space. The naive height computes the complexity of the point
P ∈ PQ̄. Suppose that P ∈ P

n
F . The naive height represents a variation of

the function log max(|x0|, ..., |xn|), weighted over all absolute values on F .

Definition 2.1. The naive height hnv(P ) of a point P = (x0, ..., xn) ∈ P
n
Q̄

is given by

hnv(x0, ..., xn) =
1

[F : Q]

∑

v

log max(|x0|v, ..., |xn|v)
Nv ,

where v is running over all places of F , Fv denotes the completion at v and
Nv = [Fv : Qp] for v/p.

Let X be a non-singular algebraic variety defined over F and L a line bundle
on X. Assume that the global sections s0, ..., sr ∈ Γ(X,L) define a map
φL = (s0, ..., sr) : X → P

r. A height hL associated to L could be defined by
hX,L(P ) = hnv(φL(P )) for all points P ∈ X(F̄ ). This definition however
depend on the selection of the sections. We can construct a height function
hL associated to every element of L ∈ Pic(X) ⊗ R. It will be unique up a
bounded function O(1) on X and it will satisfy:
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(i) hL is R−linear.
(ii) If X = P

n and L = OPn(1), then hL = hnv + O(1).
(iii) If f : X → Y is a morphism of non-singular algebraic varieties and

L ∈ Pic(Y ) ⊗ R, then hX,f∗L = hY,L ◦ f + O(1).

Definition 2.2. Let ϕ : X → X a self-map of X defined over F and let
L ∈ Pic(X) ⊗ R be a line bundle on X such that for some number α > 1
we have ϕ∗L ∼= L⊗α. Such a dynamical system is called a polarized dy-
namical system (X,ϕ,L, α). The canonical height associated to a polarized
dynamical system is given by

ĥϕ(P ) = lim
n→∞

hL(ϕn(P ))

αn
.

The condition α > 1 ensures the existence of the limit. The proof can be
found for example in [19], theorem B.4.1. The canonical height satisfy the
following properties:

(i) hϕ(ϕ(P )) = αhϕ(P ) ∀P ∈ X(F̄ )
(ii) |hϕ(P ) − hL(P )| is bounded on X(F̄ ).

If L is ample we can also have the arithmetic properties:

(iii) hϕ satisfies Northcott’s theorem: points with coordinates in F̄ with
bounded degree and bounded height are finite in number.

(iv) hϕ is a non-negative function.
(v) hϕ(P ) = 0 if and only if P has a finite forward orbit by the map

ϕ. Points with this property are called preperiodic points.
(vi) Lehmer Question: Is there a constant cϕ > 0 such that if P is not

preperiodic, then hϕ(P ) > cϕ/deg(P )?

In a similar way as we did with the height, we can introduce the canoni-
cal invariant measure. Invariant measures were first studied by Brolin [8]
and Lyubich [21] for maps on the Riemann sphere and later extended by
Brien and Duval [7] to projective spaces of higher dimension. Suppose that
(X,ϕ,L, α) is a polarized dynamical system defined over a number field
F . Suppose that σ : F ↪→ C is a place of F over infinity. Let dµ0 be a
smooth probability measure on Xσ = X ×σ C and consider the sequence of

probability measures on Xσ recursively defined by dµk =
ϕ∗dµk−1

αdim(X)
.

Proposition 2.3. The sequence {dµk} converge as long as Xσ is a smooth
variety. The limit dµϕ,σ = limk dµk is called the canonical invariant mea-
sure on Xσ relative to (X,ϕ,L, α).
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The proof of the proposition is outlined in th.3.2.1 of [33]. The work over
P

n is done in [7] and some work in the general case is done in [15]. The
canonical measure satisfy the following properties:

(i) ϕ∗dµϕ,σ = αdim(X)dµϕ,σ (functional equation).
(ii) ϕ∗dµϕ,σ = dµϕ,σ (invariance).
(iii) The measure dµϕ,σ is a probability measure on X.
(iv) The line bundle Lσ = L⊗σ C can be equipped (th 2.2 in [31]) with

a canonical semi-positive metric ‖.‖ϕ,σ . The canonical invariant
measure is the product [12] [13] [14] of positive curvature currents
c1(L̄)n = 1

(πi)∂∂ log ‖.‖ϕ,σ...
1

(πi)∂∂ log ‖.‖ϕ,σ .

3. Examples and global results for polarized maps

3.1. Examples. The main source of examples of polarized dynamical sys-
tems is given by maps on projective spaces and projection of maps on Tori.

Example 3.1. Power maps on P
n.

Consider any of the maps φm : P
n
F → P

n
F , given by φm(x0, ..., xn) =

(xm
0 , ..., xm

n ) with m > 1 and the line bundle O(1) in P
n
F . The ample line

bundle O(1) in P
n
F satisfies φ∗

mO(1) ∼= O(m). The canonical height associ-
ated to φm is the naive height hnv and the invariant measure is the Haar
measure dµ on the Torus S1 × ....×S1. If T0, T1, ..., Tn represent projective
coordinates in P

n, the canonical metric at infinity whose curvature gives
the canonical current is

‖(λ0T0 + ... + λnTn)(a0 : ... : an)‖nv =
|λ0a0 + ... + λnan|

sup(|a0|, ..., |an|)
.

We can verify the identities:

hnv(φm(P )) = mhnv(P ) hnv(P ) ≥ 0 φ
∗
mdµ = dµ.

Example 3.2. Multiplication by n on elliptic curves.

An elliptic curve is a curve that is at the same time a group object in the
category of algebraic varieties. When working over the complex numbers
an elliptic curve can be identified with the quotient C/Z + τZ for some
τ in the upper half-plane H. As a group it admits self maps representing
the multiplication by the different integers. Suppose that we denote the
multiplication by n map by [n] : E → E. Any ample symmetric line bundle

L on E satisfies the equation [n]∗L ∼= Ln2

. The associated canonical height
h[n] can be defined for n > 1 and is the so-called Néron-Tate height hNT

on E. The canonical measure is given by the normalized Haar measure on
the group.
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Example 3.3. Automorphisms on a K 3 surface.

This example is due to Silverman [25]. Consider the family Sa,b ⊂ P
2
F ×P

2
F

of algebraic surfaces defined by {((x0, x1, x2), (y0, y1, y2)) :
∑2

i,j=0 ai,jxiyj =
∑2

i,j,k,l=0 bi,j,k,lxixkyjyl = 0}. The natural projections p1, p2 : Sa,b → P
2,

represents 2 : 1 coverings of P
2 and determine involutions σ1 and σ2. The

group generated by these involutions is an infinite group of automorphisms
on generic members of the family Sa,b. Denote by Li = p∗iOP2(1), E+ =

(2 +
√

3)L1 −L2 and E− = −L1 + (2 +
√

3)L2, the geometry of the family
Sa,b can be used to prove that (σ1 ◦ σ2)

±1∗(E±) = (7 + 4
√

3)E± and we

obtain two canonical heights ĥ± associated to E± and (σ1 ◦ σ2)
±1. The

polarizing line bundles E± are not ample. One can get (E±, E±) = 0.
Another approach to this example can be found in the work of Kawagushi
[20].

3.2. Polarized dynamical systems on smooth projective varieties.
Denote by ΩX the canonical line bundle on the smooth variety X and
by KX its associated canonical divisor. Assuming that the linear system
|mKX | is not empty we can look at the associated rational map φΩm

X
:

X 99K P
l. We define gm = dim(φΩm

X
(X)) and the Kodaira dimension κ(X)

as κ(X) = supm≥1 gm. If all gm = 0, the Kodaira dimension κ(X) is
defined as κ(X) = −1. The Kodaira dimension becomes an obstruction to
the existence of polarized dynamical systems on an algebraic variety.

Lemma 3.4. Let (X,ϕ,L, α) be a polarized system defined over F . Assume

that the line bundle L is ample and X is smooth, then αdim(X) = deg(ϕ).

Proof. Let D be a divisor such that ϕ∗D ≡ αD, let Dk denotes the self-
intersection of D with itself k times and finally let’s put dim(X) = n. We
have

α
n(Dn−1

,D) = ((ϕ∗
D)n−1

, ϕ
∗
D) = ϕ

∗(Dn−1
,D) = deg(ϕ)(Dn−1

,D).

The self-intersection (Dn−1,D) 6= 0 because LD is ample. �

Theorem 3.5. If (X,ϕ,L, α) is a polarized dynamical system with L ample
and X smooth, then κ(X) ≤ 0.

Proof. The proof is taken from [33], proposition 2.1.1 part 1. Let’s denote
by Rϕ the ramification divisor of ϕ : X → X. Then we have Rϕ = KX −
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ϕ∗KX because the map is separable and

Ln−1
Rϕ = Ln−1

KX − Ln−1
ϕ
∗
KX

= Ln−1
KX − α

1−n
ϕ
∗(Ln−1

KX)

= Ln−1
KX − αLn−1

KX = (1 − α)(Ln−1
KX)

The first step in the equations is using the polarization property and the
second step is using lemma 3.4. Now, if κ(X) > 0, then mKX 6= 0 is
effective for some m, and therefore (Ln−1KX) > 0. That contradicts the
facts Ln−1Rϕ ≥ 0 and α > 1. �

Remark 3.6. Polarized maps on Surfaces (proposition 2.3.1 of [33]).

Assume that X is a smooth variety of dimension two. Suppose that the
hypothesis of the previous theorem are valid. If κ = 0 and α is an integer, a
theorem of Beauville ([4], theorem 1) will characterize the universal covering
X̄ of X. As a result X ∼= T/G where T is a complex torus and G is a finite
group. In this case the map ϕ will be induced by a linear map ϕ̄ : C

n → C
n.

If κ < 0 we have to consider rational surfaces and irrational ruled surfaces.
A theorem of Nakayama ([22], theorem 3) will prove that a rational surface
has an endomorphism of degree ≥ 2 if and only if it is toric. The other
possibility are P

1−bundles π : X → C where C has genus greater that zero.
In fact we can reduce to consider C = E an elliptic curve.

3.3. Mahler formula. For a general map ϕ : P
1 → P

1, we can always
consider a polarization by the line bundle O(1), as long as α = deg(ϕ) > 1.
The following result relates the canonical height and the canonical measure.

Theorem 3.7. If ϕ : P
1 → P

1 is given in projective coordinates by a monic
polynomial, we can express the height ĥϕ(P ) of a point P ∈ P

1
Q̄

as sum of

integrals over all places σ at infinity of the log of the minimal polynomial
for P against the invariant measure dµϕ,σ.

ĥϕ(P ) =
1

deg(P )

∑

σ

∫

X(C)
log |f(x)|dµϕ,σ.

The proof can be found in [24] or [23]. It uses the theory of adelic metrized
line bundles developed by S.Zhang in [31] and the Arakelov intersection
theory explained in [27]. Metrized line bundles will be treated with more
details later in this paper. A metric ‖.‖ on a line bundle L is a norm on
each of the fibres, varying continuously. Adelic metrized line bundles are
provided with a collection of metrics ‖.‖v , where v runs over all places of
a number field F . The height of a cycle can be defined relative to any
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adelic metric. In particular we are interested in the height relative to the
canonical adelic metric ‖.‖ϕ of th. 2.2 in [31].

ĥϕ(Y ) =
ˆdeg(c1(L, ‖.‖ϕ)dim(Y )+1|Y )

(dim(Y ) + 1)(c1(L)dim(Y )
.

In this way when Y = P we recover the canonical height of a point via
adelic intersection. Using the symmetry and the recursive definition of
ˆdeg, the canonical height of a principal cycle Div(f) can be expressed by

the formula ĥϕ(Div(f)) =
∑

σ

∫
X(C) log |f(x)|dµϕ,σ and the result follows.

Suppose that we impose no condition on the map ϕ = (P,Q) : P
1
F → P

1
F , it

may happen that the polynomials P an Q have common roots and therefore
the map can not be extended to the integral model P

1
OF

. The formula

will need an error term E(f, vfinite) depending on finite places of bad
reduction, that is, the set of places v where the map does not extend to a
well defined map on P

1
v. We get something like,

ĥϕ(Div(f)) =
∑

σ

∫

P1(C)
log |f(x)|dµϕ,σ + E(f, vfinite).

Intersection theory can give us an idea of the nature of the term
E(f, vfinite). Suppose that we denote by Y the closed subscheme of
X = P

1
OF

determined by the vanishing of P and Q. Suppose also that I is

the sheaf of ideals defined by Y . Then we have a surjection ϕ1 : O2
X � I(d),

where d = deg(P ) = deg(Q). The scheme-theoretic image of the projection
from Y to Spec(OF ) is called “places of bad reduction”. If we denote by
σ : X1 99K X the blow-up of Y in X, we will obtain that for a positive
Cartier divisor E1, the pullback σ∗I = OX1

(−E1), this give rise to a sur-
jective map O2

X1
� σ∗(OX(d)) ⊗OX1

(−E1). By the universal property of
the projective line this gives a map ϕ : X1 → X, extending the original
ϕ : X → X. We can repeat this process with ϕk in place of ϕ and obtain
a model σk : Xk 99K X and a map ϕk : Xk → X. The Cartier divisor Ek

is the sum of connected components Ek =
∑

v∈N,j rv,j,kCv,j,k. The error

term E(f, vfinite) in the Mahler formula can be obtained as limit of the
intersection numbers (ϕ∗

kO(1), σ∗
k Div(f))Xk

.
The methods described above could be extended to study morphisms on the
n-dimensional projective space [23]. It is very interesting however to see a
completely different approach to compute E(f, vfinite) using the concept
of p-adic analytic spaces. Suppose that v is a finite place of F . It will be
nice to embed the reduction X(Fv) in the appropriated analytic space Xan

v
and define a measure dµϕ,v on it. The idea would be to recover the error
term E(f, vfinite) as sum of integrals over finite places. In this way we
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could express our formula in the more symmetric way

ĥϕ(Div(f)) =
∑

v

∫

Xan
v

log |f(x)|dµϕ,v.

This work is carried out in [11]. Suppose that (X,ϕ,L, α) is a polarized
dynamical system on the n-dimensional projective variety X. Suppose that

the section sD corresponds to the divisor D in X and fD = sD/x
deg(D)
0 .

We can express the height of Div(fD) as sum of integrals

ĥϕ(Div(fD)) =
∑

v

∫

XBer
v

log |fD(x)|dµϕ,v ,

where the v is running over all places of F . For finite places the XBer
v is

the Berkovich analytic space [5] associated to v, and dµϕ,v is the invariant
measure on XBer

v introduced in [10]. The theory of Berkovich analytic
spaces is a continuation of the theory of rigid analytic spaces initiated by
Tate. Tate defined rigid analytic space and associated to any scheme X over
a complete field K, a space Xrig that allows to define coherent sheafs and
cohomology similar to the geometric situation K = C. Berkovich spaces
make possible the definition of path-connection and harmonic functions. In
the context of p-adic analytic spaces, the Berkovich spaces make possible
to do measure theory.

4. Berkovich analytic spaces

Let K an algebraically closed field which is complete with respect to a
non-archimedean absolute value |.|. The topology of K induced by its abso-
lute value is totally disconnected and that makes it difficult to establish no-
tions like continuity, homotopy, Laplace operator and harmonic functions,
while working on a scheme X over K. In [5] a new special category of locally
ringed topological spaces is introduced: The Berkovich K-analytic spaces.
Berkovich K-analytic spaces have some properties similar to analytic man-
ifolds, for example each point in a K-analytic space admits a fundamental
system of neighborhoods which are locally compact and path-connected.
A very important point is that one can associate with any scheme X of
locally finite type over K, a Berkovich K-analytic space XBer. The scheme
X is separated (resp. proper, resp. connected) if and only if the XBer is
Hausdorff (resp. compact, resp. path-connected). If X is separated its
dimension is equal to the topological dimension of XBer. Moreover there
is a canonical embedding of X(K) as a dense subspace of XBer. In this
way we can embed a connected scheme X(K), with its locally disconnected
topology, in the path-connected space XBer, and create a better context
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to define continuity, harmonic functions, etc. The following examples are
borrowed from Baker’s presentation in [2].

Example 4.1. The Berkovich space associated to an affine scheme.

Consider the affine scheme X = Spec(A) over K. In this case X is as-
sociated with the analytic space XBer whose underlying topological space
M(A) is made out of all multiplicative seminorms on A, extending the
absolute value on K, equipped with the weakest topology for which all
functions of the form |.| → |f | for f ∈ A are continuous.

Example 4.2. The Berkovich space A
1
Ber.

The underlying topological space of A
1
Ber is the set M(K[T ]) of all multi-

plicative seminorms on K[T ] extending the absolute value on K. For exam-
ple, whenever we consider a disk B(a, r) = {z ∈ K : |z − a| ≤ r} in K, and
define |f |B(a,r) = supz∈B(a,r) |f(z)|, Gauss lemma will imply that |.|B(a,r) is

a multiplicative seminorm on K[T ]. Suppose that x, y corresponds to semi-
norms |.|B(a,r) and |.|B(b,s) respectively. Lets denote by x∨ y the seminorm
associated with the smallest disk B(a, |b − a|) containing both B(a, r) and
B(b, s). A path between x and y can be seen as all seminorms associated to
disks B(a, r′) where r ≤ r′ ≤ |b − a| followed by the seminorms associated
to disks B(b, s′) with |b − a| ≥ s′ ≥ s. Passing from points to seminorms
give for the first time a notion of connectivity on K. However the gen-
eral situation is a little bit more complicated because not all points in the
affine Berkovich space are associated to disks. The following classification
theorem is due to Berkovich.

Theorem 4.3. Every point x ∈ A
1
Ber corresponds to a nested sequence

B(a1, r1) ⊇ B(a2, r2) ⊇ B(a3, r3)..., of closed disks in the sense that

|f |x = lim
n→∞

|f |B(an,rn).

Two nested sequences define the same point of A
1
Ber if and only if

a) each has a nonempty intersection, and their intersections are the same;
or
b) both have empty intersection, and the sequence are cofinal.

Example 4.4. Berkovich projective line P
1
Ber

The Berkovich analytic space P
1
Ber is the one-point compactification of

A
1
Ber. The Berkovich projective space is homeomorphic to the inverse limit

of finite R-trees. If we denote by δ0,1 the point corresponding to the semi-
norm |f |B(0,1) = supz∈B(0,1) |f(z)|, there are infinitely many branches of the
tree emanating from this point. One branch “moving up” to infinity and
the others corresponding to elements in the residue field K̃. Again for any
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point of the branches associated with a disk |.|B(a,r) with rational radius
(r ∈ |K∗|), infinitely many branches keep emerging. Picture 1 in [2] gives
an idea of how the projective Berkovich line looks like.

Example 4.5. Berkovich projective curves of genus at least one.

Let X be a projective curve of genus greater or equal to one. There is
canonically defined subset Σ ⊂ XBer, which is homeomorphic to a finite
one-dimensional CW-complex, and the entire space XBer admits a deforma-
tion retraction r to Σ. The fibres r−1(x), for x ∈ Σ, are all homeomorphic
to topological trees. Picture 4 in [2] provides an example representing the
Berkovich analytic space associated to an elliptic curve with multiplicative
reduction.

4.1. Metrics on Line bundles. Let L be a line bundle on X. A metric
on L is a continuous function ‖s‖ : U → R

+ for each open U ⊂ X and
s ∈ Γ(U,L), such that ‖fs‖ = |f |‖s‖ for all continuous function f : U → K.
For example every continuous function on X, defines a metric on the trivial
line bundle OX , by ‖1‖(x) = exp(−f(x)).

Let X be a projective variety over K. A model X̃ of X over the ring of
integers K0 = {a ∈ K : |a| ≤ 1} is a proper and flat K0-scheme whose

generic fibre is X. Suppose that we have a projective model X̃ of X over
K0, and a line bundle L̃ whose restriction to X is Lm for some m > 0. We
can define a metric on L as follows: let x ∈ X(K) and x̃ : Spec(K0) → X̃

the section extending x, then we have x̃∗L̃ ⊗R K = x∗Lm and for each
l ∈ x∗(L) we can define

‖l‖L̃ = inf
a∈K

{|a|1/m : l ∈ ax̃
∗L̃}.

A metric on L is called algebraic if it is defined by a model X̃ of X. An
algebraic metric is semi-positive if the reduction L̃s of L to the special fibre
X̃s has non-negative degree on every curve. By abuse of notation we will
call semi-positives, all metrics obtained as uniform limit of semi-positive
metrics as before. Let L be a line bundle over X and denote by Lan its
extension to XBer. Suppose that (X̃,L) is a model of (X,L) over K0. Let’s

denote by spX̃ : XBer → X̃s the reduction map. We can define a metric

on the line bundle Lan in the following way: for every open U in X̃ and a
trivialization ε of L over U, one has ‖sp∗

X̃
ε‖ = 1 on sp

−1
X̃

(Us). A metrized

line bundle L̄ on X can be extended in this way to a metrized line bundle
L̄an on the Berkovich space XBer. The same work could be carry out [16]

with formal admissible schemes as models X̃. We have the distinguished
class of functions:
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Definition 4.6. A continuous function over XBer is called a model func-
tion if it is equal to − log ‖1‖1/m for some positive integer m and ‖.‖ is

the metric induced by a model (X̃, L̃) of (X,Lm). If we allow X̃ to be an
admissible formal scheme [16] we obtain formal metrics and formal model
functions.

The following two results allow to restrict the work with continuous func-
tions to the study of formal models and in particular to the completion of
global models along the special fibre. These results are applied to prove
weak convergence results of measures in XBer.

Theorem 4.7. (Gubler) The vector space of formal model functions on
XBer is uniformly dense in the ring of real continuous valued functions on
XBer.

This is theorem 7.12 in [16]. The proof is an application of the Stone-
Weierstrass theorem on the compact XBer.

Theorem 4.8. All formal metrics over the trivial bundle of XBer are in-
duced by global projective K0-models.

This result is already explained in [10]. A proof can be found in lemma 5.5
in [29]. It uses formal GAGA principle.

4.2. Canonical measures on Berkovich spaces. Let X be a projec-
tive variety of dimension n. Suppose that we have metrized line bundles
L1, ...Ln on X, such that the metrics are induced by models (X̃, L̃i) of
(X,Lei) for some positive numbers ei over Spec(K0). Let’s also assume

that the model is normal. If X̃j,s is a connected component of the special

fibre X̃s, by proposition 2.4.4 in [5] there exist a unique point ξj in XBer,

such that the reduction spX̃(ξj) =generic point of X̃j,s. Considering that

the component X̃j,s appears in X̃s with multiplicity ηj , the semi-positive

metrized line bundles L̄1, L̄2, ...L̄n on X̃ actually define a measure

c1(L̄1)...c1(L̄n) =
1

e1...en

∑

j

ηj(c1(L1)...c1(Ln)|X̃j,s)δξj
,

on XBer as linear combination of dirac measures. More generally if Z ⊂ X

is a subvariety of X of dimension m, one can define the measure

c1(L̄1)...c1(L̄m)δZ = i∗c1(L̄1|Z)...c1(L̄m|Z),

where i : ZBer ↪→ XBer is the canonical immersion. The regular Borel
measure c1(L̄1)...c1(L̄n) on XBer satisfy the following properties:

(i) It is multilinear and symmetric in (L1, ‖.‖1),...,(Ln, ‖.‖n).
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(ii) If ϕ : X → X ′ is a morphism of projective varieties of dimension
n, then ϕ∗c1(ϕ

∗L̄1)...c1(ϕ
∗L̄n) = deg(ϕ)c1(L̄1)...c1(L̄n).

(iii) The total mass of the measure is degL1,...,Ln
(X).

(iv) Suppose that L̄0, L̄1, ...L̄n represent metrized line bundles on X.
Suppose also that L̄0, L̄1 are both isomorphic to the trivial line
bundle OX and for i = 0, 1 we denoted ϕi = − log ‖1‖i. Then we
obtain the following version of the Stokes formula:∫
XBer

ϕ0c1(L̄1)c1(L̄2)...c1(L̄n) =
∫
XBer

ϕ1c1(L̄0)c1(L̄2)...c1(L̄n).

(v) Suppose that for all i, L̄i is equipped with a semi-positive met-
ric. For every sequence of algebraic semi-positive metrics L̄i,k on
the Li, converging to the given metric, the sequence of measures
c1(L̄1,k)...c1(L̄n,k)δZ converges to a measure on the subvariety Z

denoted by c1(L̄1)...c1(L̄n)δZ .

Definition 4.9. Let (L, ‖.‖) be a semi-positive metrized line bundle on X.
Suppose that the metrized line bundles L̄1 = L̄2 = .. = L̄n = L̄ are all
equal. The probability measure dµL̄ = c1(L̄)n/c1(L)n is called the probabil-
ity measure on XBer relative to L̄. Suppose that (X,ϕ,L, α) is a polarized
dynamical system on X and L is equipped with the canonical metric ‖.‖ϕ

introduced in [31], then dµϕ = dµL̄ is called the invariant canonical proba-
bility measure on XBer.

Remark 4.10. This measures introduced by Chambert-Loir in [10] over
discrete valued field were extended in [17] to algebraically closed fields.

Example 4.11. The canonical measure over P
1
Ber.

Suppose that X = P
n
K and L = O(1) is provided with the naive metric.

The measure µL̄ on P
n
Ber is the Dirac measure supported on the canonical

point of P
n
Ber whose reduction is the generic point of P

n
K . In the case of

n = 1 it corresponds to the Gauss norm on the formal power series K{T}.

4.3. Intersection theory. Assume as before that X is an algebraic variety
of dimension n over the complete and algebraically closed field K. Let
Z ∈ Zd(X) be a cycle of dimension d on X. Let L̄0, ..., L̄d be a set of
hermitian line bundles [31] provided with semi-positive metrics ‖.‖i on X.
Assume that the sections si of Li intersect properly on Z. In the same spirit
of the Arakelov intersection theory [27], the arithmetic intersection number
ˆdegZ(ĉ1(L0)...ĉ1(Ld)|Z) ∈ R relates to the measure c1(L̄1)...c1(L̄d)δZ by the

recursive equation:

ˆdegZ(ĉ1(L0)...ĉ1(Ld)|Z) = ˆdegZ(ĉ1(L1)...ĉ1(Ld)|Z.Div(s0))

−

∫

XBer

log ‖s0‖dc1(L̄1)...c1(L̄d)δZ .
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For k = 0 and Z =
∑

i niPi (Pi ∈ Xv), we have ˆdegZ =
∑

i niNPi
log N(v)

where NPi
= [K(Pi) : K]. A similar expression is obtained when X is a

complex analytic variety and we interpret c1(L̄i) as the curvature current
relative to the metric, and δZ as the integration current on Z.

4.4. The Blow-up and the Berkovich analytic space. Suppose that
X = P

1
OF

and ϕ = (P,Q) : P
1 → P

1 is a self-map of degree d > 1. In
previous sections we were able to build models σk : Xk 99K X as blow-ups
of subschemes Yk of X. The map ϕk : X 99K X could then be extended
to a map ϕk : Xk → X and the exceptional divisor was written as Ek =∑

v∈N,j rv,j,kCv,j,k. Suppose that the line bundle O(1) on X is endowed

with the naive metric ‖.‖0 at all places. The line bundles Lk = ϕ∗
kO(1)

can be endowed with metrics ‖.‖v,k at every place with the property that

‖.‖v,k = ϕ∗
k‖.‖

1/dk

v,0 . The pair (Xk, L̄k) defines a measure dµL̄v,k
on the

Berkovich space XBer
v . The sequence of metrics ‖.‖k converges to a semi-

positive metric ‖.‖v,ϕ in the sense of [31] and as a consequence we have
the convergence of measures dµL̄v,k

to a measure dµv,ϕ on XBer
v , and the

convergence of the heights hL̄k
to hϕ.

Suppose that we have a polynomial f(T ) and Div(f) = D − deg(f)∞ +∑
finite v v(f)Xv. Let us denote by fk = σ∗

kf and Dk the proper transform of
D by the map σk. Recall that proposition 3.10 in [23] gives (L̄k,Div(fk)) =
dk

∑
v|∞

∫
P1(Cv) log |f |dµv,k. Also the intersection formula on P

1
v,Ber gives

dk
∫

P1

v,Ber

log |f |dµv,k = ˆdeg(ĉ1(L̄k))|Div(fk)).

5. Equidistribution theorems

The application of arithmetic intersection and height theory to proof re-
sults of equidistribution was first considered in [26]. The work is done there
for Abelian varieties defined over number fields and places over infinity. For
the general case consider the algebraic variety X defined over the number
field F . Let’s fix a place v of F and an embedding Fv ↪→ Cp. Let {Pn}
be a sequence of points on X(F̄ ) and let µv be a probability measure on
the associated analytic space Xan

v . In archimedean case it represents the
complex analytic space X(Cv) and in the ultrametric case the Berkovich
analytic space XBer,v.

Definition 5.1. We say that the orbits {O(Pn)} of the sequence {Pn}
under the action of Gal(F̄ /F ) are equidistributed with respect to a measure
µv, when the probability measures µv,n = 1

#(O(Pn))

∑
P∈O(Pn) δP converge

weakly to µv.
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Two concepts related to equidistribution are the notions of a sequence of
points being generic and small. A sequence {Pn} of points in X(F̄ ) is
generic if for any subvariety V ⊂ X there exist N such that Pn /∈ V for
n > N . Let (X,L, ϕ, α) be a polarized dynamical system defined over the
number field F . A sequence of points {Pn} ∈ X(F̄ ) is said to be small if
hϕ(Pn) converges to zero. The following is an equidistribution theorem in
the context of algebraic dynamics.

Theorem 5.2. Let (X,L, ϕ, α) be a polarized dynamical system defined
over the number field F . Let {Pn} a sequence of points on X(F̄ ) which
is generic and small, then for any place v of F the Galois orbits of the
sequence {Pn} are equidistributed in the analytic space Xan

v with respect to
the invariant measure µϕ,v.

The proof is part of Theorem 5.1 in [29]. Archimedean and non-archimedean
places are treated separately. Theorem 4.7 is used to simplify the work over
non-Archimedean places. The first p-adic equidistribution theorems in the
Berkovich setting can be found in [10]. The case of point-wise positive cur-
vature for L̄ was studied in [26] using estimations for the space of global
sections. In the arithmetic context the set of global sections is just the unit
ball of effective sections in the space of all sections. Let L̄ be a metrized
line bundle on X. For any section l ∈ Γ(X,L)R, one has a supremum norm
‖l‖sup = supz∈XC

|l(x)|. Define the invariant h0(L̄) = log #{l ∈ Γ(X,L) :
‖l‖ < 1}. Selecting a Haar measure on Γ(X,L)R, we can define the arith-
metic volume

χ(X, L̄) = log
vol(Bsup)

vol(Γ(X,L)R/Γ(X,L))
.

The Theorem of Hilbert and Samuel relates the arithmetic volume with the
arithmetic self-intersection for powers of an ample semi-positive metrized
line bundle. A line bundle is arithmetically ample if we have the following
conditions: Lσ is ample in the classical sense for every place σ of F , the
curvature of L̄ is semi-positive, the intersection ĉ1(L̄|Y )dim(Y ) > 0 for all
horizontal closed subvariety and ĉ1(L|C) ≥ 0 for any curve on any special
fibre.

Theorem 5.3. (Hilbert-Samuel theorem) Let L̄ be an arithmetically ample
line bundle on X with a semi-positive adelic metric, and dim X = n, then

χ(X, L̄k) ∼
1

(n + 1)!
(ĉ1(L̄)n+1|X)kn+1

.

A line bundle L̄ has a semi-positive adelic [31] metric when the metric
is limit of semi-positive [30] algebraic metrics with non-negative curva-
ture at archimedean places. The Hilbert-Samuel theorem combined with
Minkowski theorem is the key to find global effective sections.
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Lemma 5.4. (Fundamental Inequality) Assume that L̄ is arithmetically
ample, with a semi-positive metric. Let {Pn} be a generic sequence of
points in X(F̄ ). Then,

lim inf hL̄(Pn) ≥
ˆdegX(ĉ1(L̄)n+1)

(n + 1) degX(c1(L)n)
.

The fundamental inequality follows from a combination of Hilbert-Samuel
and th. 4.2 in [30]. It can be applied to the case of a polarized dynamical
system (X,L, ϕ, α), because the L is equipped with the canonical semi-
positive metric ‖.‖ϕ,v . Now, suppose that we denote by L̄(εf) the metrized
line bundle obtained from L̄ by multiplying the metric by exp(−εf) at
each place. When X is an Abelian variety the metric on the line bundle
L̄(εf) is semi-positive for small ε and we can use the lemma to implement a
variational argument. This was the technique used in [26] to prove equidis-
tribution on Abelian varieties. In general, the following theorem of Yuan
in [29] will play the role of the Hilbert-Samuel theorem to find effective
sections.

Theorem 5.5. Suppose that L̄ and M̄ are arithmetically ample. Then,
χ(X, (L̄⊗M̄−1)k) ≥ 1

(n+1)!(ĉ1(L̄)n+1− (n+1)ĉ1(L̄)nĉ1(M̄))kn+1 +o(kn+1).

The equidistribution theorem in [26] played a crucial role to prove the Bo-
gomolov conjecture for Abelian varieties [32]. A different technique gave
equidistribution theorem [6] and Bogomolov conjecture [30] over the mul-
tiplicative group G

n
m. The general case of the Bogomolov conjecture over

Algebraic varieties without a group structure is still open.

Conjecture 5.6. (Dynamical Bogomolov Conjecture). Suppose that
(X,L, ϕ, α) is a polarized dynamical system. Let Y be a irreducible closed
subvariety of X which is not preperiodic. Then there exist a positive num-
ber ε > 0, such that the set {x ∈ Y (F̄ ) : ĥL(x) < ε} is not Zariski dense in
Y.

References

[1] M. Baker, R. Rumely, Potencial theory on the Berkovich projective line, in prepa-
ration, 270 pages, (2006).

[2] M. Baker, An introduction to Berkovich analytic spaces and non-archimedean
potencial theory on curves (draft 3/16/07), Notes in the Arizona Winter School
2007.
Available at http://swc.math.arizona.edu/aws/07/BakerNotesMarch21.pdf.

[3] M. Baker, R. Rumely, Equidistribution of small points, rational dynamics, and
potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), 625–688.
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[27] L. Szpiro, Cours de géométrie arithmétique, Orsay preprint. Available at
http://math.gc.cuny.edu/faculty/szpiro/papers.
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