São Paulo Journal of Mathematical Sciences 2, 1 (2008), 21-28

Exponential decay of correlation for the Stochastic Process associated to the Entropy Penalized Method

Diogo A. Gomes¹

IST - Portugal

Artur O. Lopes²

Inst. Mat - UFRGS -Brasil

Abstract. In this paper we present an upper bound for the decay of correlation for the stationary stochastic process associated with the Entropy Penalized Method. Let $L(x, v) : \mathbb{T}^n \times \mathbb{R}^n \to \mathbb{R}$ be a C^1 Lagrangian of the form

$$L(x,v) = \frac{1}{2} |v|^{2} - U(x) + \langle P, v \rangle.$$

We point out that we do not assume more differentiability of L according the the dimension of the torus \mathbb{T}^n .

1. Definitions and the set up of the problem

Let \mathbb{T}^n be the *n*-dimensional torus. In this paper we assume that the Lagrangian, $L(x, v) : \mathbb{T}^n \times \mathbb{R}^N \to \mathbb{R}$ has the form

$$L(x,v) = \frac{1}{2} |v|^2 - U(x) + \langle P, v \rangle,$$

where $U \in C^1(\mathbb{T}^n)$, and $P \in \mathbb{R}^n$ is constant.

¹ Partially supported by the Center for Mathematical Analysis, Geometry and Dynamical Systems through FCT Program POCTI/FEDER and also by grant POCI/FEDER/MAT/55745/2004.

 $^{^2}$ Partially, supported by CNPq, PRONEX – Sistemas Dinâmicos, Instituto do Milênio, and beneficiary of CAPES financial support.

We consider here the discrete time Aubry-Mather problem [4] and the Entropy Penalized Mather method which provides a way to obtain approximations by continuous densities of the Aubry-Mather measure. We refer the reader to [4] and the last section of [5] for some of the main properties of Aubry-Mather measures, subactions, Peierl's barrier, etc...

The Entropy Penalized Mather problem (see [6] for general properties of this problem) can be used to approximate Mather measures [2] by means of absolutely continuous densities $\mu_{\epsilon,h}(x)$, when $\epsilon, h \to 0$, both in the continuous case or in the discrete case. In [5] it is presented a Large Deviation principle associated to this procedure. We briefly mention some definitions and results.

Consider, for each value of ϵ and h, the operators acting on continuous functions ϕ :

$$\mathcal{G}[\phi](x) := -\epsilon h \ln \left[\int_{\mathbb{R}^N} e^{-\frac{hL(x,v) + \phi(x+hv)}{\epsilon h}} dv \right].$$

and

$$\bar{\mathcal{G}}[\phi](x) := -\epsilon h \ln \left[\int_{\mathbb{R}^N} e^{-\frac{hL(x-hv,v) + \phi(x-hv)}{\epsilon h}} dv \right].$$

Denote by $\phi_{\epsilon,h}$ the solution of $\mathcal{G}[\phi_{\epsilon,h}] = \phi_{\epsilon,h} + \lambda_{\epsilon,h}$, and by $\overline{\phi}_{\epsilon,h}$ the solution of $\overline{\mathcal{G}}[\phi_{\epsilon,h}] = \overline{\phi}_{\epsilon,h} + \lambda_{\epsilon,h}$. Let

$$\theta_{\epsilon,h}(x) = e^{-\frac{\bar{\phi}_{\epsilon,h}(x) + \phi_{\epsilon,h}(x)}{\epsilon h}}$$

By adding a suitable constant to $\phi_{\epsilon,h}$ or $\bar{\phi}_{\epsilon,h}$, we can assume that $\theta_{\epsilon,h}(x)$ is a probability density on \mathbb{T}^N . From D. Gomes and E. Valdinoci, it is known that the probability measure on $\mathbb{T}^N \times \mathbb{R}^N$

$$\mu_{\epsilon,h}(x,v) = \theta_{\epsilon,h}(x) \, e^{-\frac{hL(x,v) + \phi_{\epsilon,h}(x+hv) - \phi_{\epsilon,h}(x) - \lambda_{\epsilon,h}}{\epsilon h}}$$

is a solution to the entropy penalized Mather problem:

$$\min_{\mathcal{M}_h} \left\{ \int_{\mathbb{T}^N \times \mathbb{R}^N} L(x, v) d\mu(x, v) + \epsilon S[\mu] \right\},\$$

where the entropy S is given by

$$S[\mu] = \int_{\mathbb{T}^N \times \mathbb{R}^N} \mu(x, v) \ln \frac{\mu(x, v)}{\int_{\mathbb{R}^N} \mu(x, w) dw} dx dv,$$

and

$$\mathcal{M}_h := \left\{ \mu \in \mathcal{M}; \int_{\mathbb{T}^N \times \mathbb{R}^N} \varphi(x + hv) - \varphi(x) d\mu = 0, \forall \varphi \in C(\mathbb{T}^N) \right\}.$$
(1)

Here \mathcal{M} denotes the set of probability densities on $\mathbb{T}^N \times \mathbb{R}^N$ and we will call $\mu \in \mathcal{M}_h$ a holonomic probability measure.

We will be interested in measures that minimize the functional bellow (under the holonomic constrain)

$$\int_{\mathbb{T}^N \times \mathbb{R}^N} L(x, v) d\mu(x, v) + \epsilon S[\mu].$$
(2)

Note that, for any probability $\mu(x, v)$ by concavity of ln implies

$$\begin{split} -S[\mu] &= \int_{\mathbb{T}^N \times \mathbb{R}^N} \mu(x, v) \ln \frac{\int_{\mathbb{R}^N} \mu(x, w) dw}{\mu(x, v)} dx \, dv \leq \\ & \ln \int_{\mathbb{T}^N \times \mathbb{R}^N} \mu(x, v) \frac{\int_{\mathbb{R}^N} \mu(x, w) dw}{\mu(x, v)} dx \, dv = 0. \end{split}$$

This is the entropy penalized version of the discrete time Aubry-Mather problem, see [4], where we look for probability measures $\mu \in \mathcal{M}_h$ that minimize the action

$$\int_{\mathbb{T}^N \times \mathbb{R}^N} L(x, v) d\mu(x, v) \tag{3}$$

Definition 1: The forward (non-normalized) Perron operator \mathcal{L} is defined

$$x \to \varphi(x) \Rightarrow x \to \mathcal{L}(\varphi)(x) = \int e^{-\frac{L(x,v)}{\epsilon}} \varphi(x+hv) dv,$$

In [6] it is shown that \mathcal{L} has a unique eigenfunction $e^{-\frac{\phi_{\epsilon,h}}{h\epsilon}}$ with eigenvalue $e^{-\frac{\lambda_{\epsilon,h}}{h\epsilon}}$

Definition 2: The backward operator \mathcal{N} is given by

$$x \to \varphi(x) \Rightarrow x \to \mathcal{N}(\varphi)(x) = \int e^{-\frac{L(x-hv,v)}{\epsilon}} \varphi(x-hv) dv,$$

In [6] it is shown that \mathcal{N} has a unique eigenfunction $e^{-\frac{\bar{\phi}_{\epsilon,h}}{h\epsilon}}$ with eigenvalue $e^{-\frac{\lambda_{\epsilon,h}}{h\epsilon}}$

Definition 3: The operator

$$g(x) \to \mathcal{F}(g)(x) = \int e^{-\frac{hL(x,v) + \phi_{\epsilon,h}(x+hv) - \phi_{\epsilon,h}(x) - \lambda_{\epsilon,h}}{\epsilon h}} g(x+hv) \, dv,$$

is the normalized forward Perron operator.

From [6] we have that given a continuous function $g : \mathbb{T}^n \to \mathbb{R}$, then $\mathcal{F}^m(g)$ converges to the unique eigenfunction k as $m \to \infty$. We show in this paper that for ϵ and h fixed, the convergence is exponentially fast.

Our notation:

$$\begin{split} \theta &= \theta_{\epsilon,h}(x) = e^{-\frac{\bar{\phi}_{\epsilon,h}(x) + \phi_{\epsilon,h}(x)}{\epsilon h}}, \\ \gamma(x,v) &= \gamma_{\epsilon,h}(x,v) = e^{-\frac{hL(x,v) + \phi_{\epsilon,h}(x+hv) - \phi_{\epsilon,h}(x) - \lambda_{\epsilon,h}}{\epsilon h}}, \\ \text{in such way that } \mu_{\epsilon,h} &= \theta_{\epsilon,h}(x)\gamma_{\epsilon,h}(x,v). \end{split}$$

2. Reversed Markov Process and Adjoint Operator

In this section we define the reversed Markov process and compute the adjoint of \mathcal{F} in $\mathcal{L}^2(\theta)$. We assume h = 1 from now on.

We can consider the stationary forward Markovian process X_n according to the initial probability $\theta(x)$ and transition $\gamma(x, v)$. For example

$$P(X_0 \in A_0) = \int_{x \in \mathbb{T}^n \cap A_0} \theta(x) dx,$$
$$P(X_0 \in A_0, X_1 \in A_1) = \int_{x \in \mathbb{T}^n \cap A_0, \ (x+v) \in A_1} \theta(x) \gamma(x,v) \, dx \, dv,$$

and so on. Define the backward transfer operator \mathcal{F}^* acting on continuous functions f(x) by

$$\mathcal{F}^*(f)(x) = \int \frac{\theta(x-v)\,\gamma(x-v,v)}{\theta(x)}\,f(x-v)\,dv.$$

The backward transition kernel is given by

$$Q(x,v) = \frac{\theta(x-v)\,\gamma(x-v,v)}{\theta(x)}.$$

The fact that for any x we have $\int Q(x, v) dv = 1$ follows from Theorem 32 in [6]. We will show in Corollary 1 that θ is an invariant measure for the process with transition kernel Q, more precisely, that

$$\int g d\theta = \int \mathcal{F}^*(g) d\theta,$$

for any $g \in \mathcal{L}^2(d\theta)$.

Theorem 1. \mathcal{F}^* is the adjoint of \mathcal{F} in $\mathcal{L}^2(\theta)$, that is for all $f, g \in \mathcal{L}^2(\theta)$ then

$$\int f(x)\mathcal{F}g(x)\theta(x)dx = \int g(x)\mathcal{F}^*f(x)\theta(x)dx.$$

Proof. Consider $f, g \in \mathcal{L}^2(\theta)$, then

$$\begin{split} \int g(x) \left[\mathcal{F}^*(f)(x) \right] \theta(x) dx &= \\ &= \int g(x) \left[\int \frac{\theta(x-v) \gamma(x-v,v)}{\theta(x)} f(x-v) dv \right] \theta(x) dx \\ &= \int g(x) \left[\int \theta(x-v) \gamma(x-v,v) f(x-v) dv \right] dx \\ &= \int \left[\int \left[g(x) \theta(x-v) \gamma(x-v,v) f(x-v) \right] dx \right] dv \\ &= \int \left[\int g(x+v) \theta(x) \gamma(x,v) f(x) dx \right] dv \\ &= \int f(x) \left[\int \gamma(x,v) g(x+v) dv \right] \theta(x) dx \\ &= \int f(x) \left[\int e^{-\frac{L(x,v) + \phi_{\epsilon,1}(x+v) - \phi_{\epsilon,1}(x) - \lambda_{\epsilon,1}}{\epsilon}} g(x+v) dv \right] \theta(x) dx \\ &= \int f(x) \left[\mathcal{F}(g)(x) \right] \theta(x) dx, \end{split}$$

where we use above the change of coordinates $x \to x - v$ and the fact that μ is holonomic.

Corollary 1. Consider the inner product $\langle \cdot, \cdot \rangle$ in $\mathcal{L}^2(\theta)$. Then \mathcal{F} leaves invariant the orthogonal space to the constant functions: $\{g \mid \langle g, 1 \rangle = \int g 1 d\theta = 0\}$. Furthermore

$$\int g d\theta = \int \mathcal{F}^*(g) d\theta.$$

Proof. Note that $\mathcal{F}(1) = 1$, therefore

$$\int g 1 d\theta = \int g \mathcal{F}(1) d\theta = \int \mathcal{F}^*(g) d\theta.$$

Thus if $\int g 1 d\theta = 0$ it follows $\int \mathcal{F}^*(g) d\theta = 0$.

3. Spectral gap, exponential convergence and decay of correlations

From [6] it is known that \mathcal{L} has a unique (normalized) eigenfunction $e^{-\frac{\phi_{\epsilon,h}}{h\epsilon}}$ corresponding to the largest eigenvalue $e^{-\frac{\lambda_{\epsilon,h}}{h\epsilon}}$, in the next theorem we prove the this eigenvalue is separated from the rest of the spectrum.

São Paulo J.Math.Sci. 2, 1 (2008), 21-28

Theorem 2. The largest eigenvalue of \mathcal{L} is at a positive distance from the rest of the spectrum.

Proof. We will prove the result for the normalized operator

$$g(x) \to \mathcal{F}(g)(x) = \int e^{-\frac{hL(x,v) + \phi_{\epsilon,h}(x+hv) - \phi_{\epsilon,h}(x) - \lambda_{\epsilon,h}}{\epsilon h}} g(x+hv) dv.$$

Recall from [6] that the functions $\phi_{\epsilon,h}(x)$ and $\phi_{\epsilon,h}(x)$ are differentiable. In this way we consider a new Lagrangian (adding $\phi_{\epsilon,h}(x+hv) - \phi_{\epsilon,h}(x) - \lambda_{\epsilon,h}$) in such way $\mathcal{L} = \mathcal{F}$. We also assume $\epsilon = 1$ and h = 1 from now on.

Therefore,

$$g(x) \to \mathcal{F}(g)(x) = \int e^{-L(x,v)} g(x+v) dv,$$

the eigenvalue is 1, and, by the results in [6], the corresponding eigenspace is one-dimensional and is generated by the constant functions.

Suppose there exist a sequence of $f_p \in \mathcal{L}^2(\theta), p \in \mathbb{N}$. such that

$$\mathcal{F}(f_p) = \lambda_p(f_p),$$

 $\langle f_p, 1 \rangle = 0, \ \lambda_p \to 1 \text{ and } ||f_p|| = 1$. If the operator is compact, then the theorem follows from the classical argument: through a subsequence $f_p \to f$, and since $\lambda_p \to 1$ we have $\mathcal{F}(f) = f$. Furthermore, since $\langle f_p, 1 \rangle = 0$, it follows $\langle f, 1 \rangle = 0$, which is a contradiction. Therefore we proceed to establish the compactness of the operator \mathcal{F} .

To establish compactness, consider $g \in \mathcal{L}^2(\theta)$. We claim that $f = \mathcal{F}(g)$ is in the Sobolev space \mathcal{H}^1 (see [3] for definition and properties). Indeed, for a fixed x, we will compute the derivative of f. Integrating by parts we have

$$\begin{aligned} \frac{d}{dx}f(x) &= \frac{d}{dx}\left(\mathcal{F}(g)\left(x\right)\right) = \\ &= \int \left(\left[\frac{d}{dx}g(x+v)\right]e^{-L(x,v)} - L(x,v)\left[\frac{d}{dx}e^{-L(x,v)}\right]g(x+v)\right)dv \\ &= \int \left(\left[\frac{d}{dv}g(x+v)\right]e^{-L(x,v)} - L(x,v)\left[\frac{d}{dx}e^{-L(x,v)}\right]g(x+v)\right)dv \\ &= \int \left(\left[\frac{d}{dv}e^{-L(x,v)}\right]g(x+v) - L(x,v)\left[\frac{d}{dx}e^{-L(x,v)}\right]g(x+v)\right)dv \\ &= \int \left(\left[\frac{d}{dv}e^{-L(x,v)}\right] - L(x,v)\left[\frac{d}{dx}e^{-L(x,v)}\right]g(x+v)\right)dv.\end{aligned}$$

From the hypothesis about L, if $g \in \mathcal{L}^2(\theta)$, then indeed $\frac{d}{dx} f$ is also in $\mathcal{L}^2(\theta)$ (with the above derivative).

Note that, for v uniformly in a bounded set

$$\left\|\frac{d}{dx}f\right\|_{2} \leq \left\|\frac{d}{dx}f\right\|_{\infty} \leq \left\|\left[\frac{d}{dv}e^{-L(x,v)}\right] - L(x,v)\left[\frac{d}{dx}e^{-L(x,v)}\right]\right\|_{2} \|g\|_{2}.$$

Therefore, f is in the Sobolev space \mathcal{H}^1 .

By iterating the procedure described above, we have that

$$g_j = \mathcal{F}^j(g) \in \mathcal{H}^j.$$

It is known that if $j > \frac{n}{2}$, where *n* is the dimension of the torus \mathbb{T}^n , then g_j is continuous Hölder continuous[3]. Thus the operator \mathcal{F} is compact and g_j is differentiable for a much more larger *j*. From the reasoning described before, $f_p \to f$, and $\mathcal{F}(f) = f$, $\langle f, 1 \rangle = 0$ and *f* is differentiable. It is easy to see that the modulus of concavity of *f* is bounded (the iteration by \mathcal{F} does not decrease it). We can add a constant to *f* and by linearity of \mathcal{F} we also get a new fixed point for \mathcal{F} (note that $\mathcal{F}(1) = 1$). Therefore, we can assume $f = e^{-g}$ for some *g*.

In this way, we obtain a contradiction with the uniqueness in Theorem 26 in [6]. $\hfill \Box$

Suppose $\int g(x) \theta(x) dx = 0$. For ϵ, h fixed, then it follows from above that $\mathcal{F}^m(g) \to 0$ with exponential velocity (according to the spectral gap).

Consider the backward stationary Markov process Y_n according to the transition Q(x, v) and initial probability θ as above.

Theorem 3. Given f(x), g(x) with $\int f(x) \theta(x) dx = \int g(x) \theta(x) dx = 0$, it follows

$$\int g(Y_0) f(Y_n) \, dP \to 0,$$

with exponential velocity.

Proof. Note that

$$\int g(Y_0) f(Y_1) dP = \int g(x) \left(\int Q(x, v) f(x - v) dv \right) \theta(x) dx =$$
$$\int g(x) \left[\mathcal{F}^*(f)(x) \right] \theta(x) dx = \int f(x) \left[\mathcal{F}(g)(x) \right] \theta(x) dx.$$

In the same way, for any n

$$\int g(Y_0) f(Y_n) dP = \int f(x) \left[\mathcal{F}^n(g)(x) \right] \theta(x) dx$$

The exponential decay of correlation follows from this.

Theorem 4. Let $f(x), g(x) \in \mathcal{L}^2(\theta)$ be such that $\int f(x) \theta(x) dx = \int g(x) \theta(x) dx = 0$. Then

$$\int g(X_0) f(X_n) \, dP \to 0,$$

with exponential velocity.

Proof. Now, for analyzing the decay of the forward system, X_n , with transition $\gamma(x, v)$, we have to consider the backwark operator \mathcal{F}^* , use the fact that its exponential convergent, that is $(\mathcal{F}^*)^n(g) \to 0$, if $\int g(x) \theta(x) dx = 0$, and the result follows in the same way.

References

- [1] Piermarco Cannarsa and Carlo Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA, 2004.
- G Contreras and R. Iturriaga. Global Minimizers of Autonomous Lagrangians. AMS 2004. To appear.
- [3] L. C. Evans. Partial Differential equations. AMS 2004.
- D. A. Gomes. Viscosity Solution methods and discrete Aubry-Mather problem. Discrete Contin. Dyn. Syst., 13(1): 103-116, 2005.
- [5] D. A. Gomes, A. O. Lopes and J. Mohr. The Mather measure and a Large Deviation Principle for the Entropy Penalized Method, (2007) to appear
- [6] Diogo A. Gomes and Enrico Valdinoci. Entropy Penalization Methods for Hamilton-Jacobi Equations. Adv. Math. 215, No. 1, 94-152, 2007.