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1. Introduction

The problem of classification of the simple Lie algebras over a field of
characteristic p > 7 was solved in the middle of the 90’s by H. Strade,
R. Block and R. L. Wilson (see [B], [BW1], [BW2], [SW], [S89.1], [S92],
[S92.1], [Wi]). In the beginning of the 2000’s, A. Premet and H. Strade
proved the classification results for p = 5 and 7 in a series of papers [PS1],
[PS2], [PS3], but for p = 2 and p = 3 the problem is still open. Through-
out this paper all algebras are defined over a fixed algebraically closed field
k of characteristic 2 containing the prime field IF2. We start with some
basic definitions and known facts.

Definition 1.1. A Lie algebra L over k is a Lie 2-algebra if there exists
a map L→ L, x 7−→ x[2], called 2-map, such that

(x+ λy)[2] = x[2] + λ2y[2] + λ[x, y], for all x, y ∈ L, λ ∈ k.

It is well known fact that for every algebra A over a field k of character-
istic 2 the corresponding Lie algebra DerkA of k−derivations of A has the
natural structure of 2−Lie algebra such that d[2](a) = d2(a) = d(d((a)).

Definition 1.2. Let L be a Lie algebra such that Z(L) = 0 , which is
also called a centerless Lie algebra. The 2-closure of L in Derk(L),
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denoted by L2 , is the smallest subalgebra of Derk(L) containing L and
closed under the 2-map.

According to H. Strade [S89], the toral rank of L is the maximal dimen-
sion T (L) of the toral subalgebras of L. By definition, a toral subalgebra

is an abelian subalgebra with a basis {t1, . . . , tn} such that t
[2]
i = ti, i =

1, . . . , n. The absolute toral rank TR(L) of a centerless Lie algebra L is
T (L2) — toral rank of 2−closure of L defined above.

The first results for the classification problem in characteristic 2 are as
follows.

Theorem 1.1 (S. Skryabin, [Sk]). Let L be a simple finite dimensional
Lie k-algebra over an algebraically closed field k of characteristic 2. Then
L has absolute toral rank greater or equal to 2.

In the case of absolute toral rank 2, A. Grichkov and A. Premet an-
nounced the following result:

Theorem 1.2 (A. Premet, A. Grichkov [GP]). Let L be a simple Lie
k-algebra of finite dimension with k an algebraically closed field of char-
acteristic 2. If the absolute toral rank of L is 2, then L is classical of
dimension 3, 8, 14 or 26.

The toral rank 3 is a much more difficult case and it is still open. In this
work we begin the study of the simple Lie algebras of dimension seven and
absolute toral rank 3 over an algebraically closed field k of characteristic
2.

In the literature up to this date there appeared only three types of the
simple Lie 2-algebras of dimension 7 and absolute toral rank 3: the Witt-
Zassenhaus algebra W (1; 3) [Ju], the Hamiltonian algebra H2 [SF](p. 144)
(this algebra corresponds to a non-standard 2-form) and a family L(ε) ,
called the Kostrikin-Dzhumadil’daev algebras, that depends on one param-
eter ε ∈ k [K]. Here we calculate some features of these algebras such
as their group of 2-automorphisms and their varieties of idempotent and
nilpotent elements. We also present some Cartan decompositions for these
algebras. The study of the algebras W and H2 is motivated by the following
conjecture.

Conjecture 1.1. Let L be a simple finite dimensional Lie algebra over an
algebraically closed field of characteristic 2. If dimL > 3 then L contains
a subalgebra W or H2.

In this paper we prove that all simple Kostrikin-Dszumadil’daev 7-
dimensional Lie algebras are isomorphic to the Hamiltonian algebra H2.
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This is a reason why we sometimes use in this paper the notation K in-
stead of H2 for this algebra.

In a second paper we will prove that, for dimension 7 and absolute toral
rank 3 , a simple Lie 2-algebra is either isomorphic to a Witt-Zassenhaus
or to a Hamiltonian algebra.

Definition 1.3. Let L be a Lie 2-algebra. A k-linear map ϕ : L → L is
a 2-automorphism of L provided that ϕ(x[2]) = (ϕ(x))[2] for all x ∈ L.
Denote by Autk,2(L) the group of all 2-automorphisms of L.

Note that by definition of Lie 2−algebras, every 2−automorphism of a
Lie 2−algebra is an automorphism of L, but inverse is not true.

Throughout this paper we denote by ā the element a + 1, for a ∈ k,
and 〈M〉 is the k-vector space spanned by the set M .

2. The Witt-Zassenhaus algebra

The simple Witt-Zassenhaus Lie algebra, denoted here by W = W (1; 3),
can be constructed using different approaches as one can see in [Ju], [SF]
or [K]. Here we consider a basis {yi : −1 ≤ i ≤ 5} for W and denote

its 2-closure in Derk(W ) by W2 = 〈η, κ, κ[2], yi : −1 ≤ i ≤ 5〉. The Lie
multiplication in W2 is given by the table below. Note that the diagonal
of this table exhibits the elements x[2] , for each x ∈W2.

The 2-closure W2 of the Witt-Zassenhaus algebra W

η κ κ[2] y−1 y0 y1 y2 y3 y4 y5

η 0 y4 y2 y5 0 0 0 0 0 0

κ y4 κ[2] 0 0 0 y−1 y0 y1 y2 y3

κ[2] y2 0 0 0 0 0 0 y−1 y0 y1

y−1 y5 0 0 κ y−1 y0 y1 y2 y3 y4

y0 0 0 0 y−1 y0 y1 0 y3 0 y5

y1 0 y−1 0 y0 y1 y2 0 y4 y5 0
y2 0 y0 0 y1 0 0 0 y5 0 0
y3 0 y1 y−1 y2 y3 y4 y5 η 0 0
y4 0 y2 y0 y3 0 y5 0 0 0 0
y5 0 y3 y1 y4 y5 0 0 0 0 0

2.1. The group of 2-automorphisms G1 = Autk,2(W2) .

Proposition 2.1. The group G1 of 2-automorphisms of W2 is defined
on the basis elements of W2 , for ϕ = ϕ(α−1, α1, α3, α4, α5) ∈ G1 and
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α−1 6= 0, by:

ϕ : y−1 7−→ α−1 y−1 + α1 y1 + α3 y3 + α4 y4 + α5 y5

y0 7−→ y0 + α4 α
−1
−1 y5

y1 7−→ α−1
−1 y1 + α3 α

−2
−1 y5

y2 7−→ α−2
−1 y2

y3 7−→ α−3
−1 y3 + α1 α

−4
−1 y5

y4 7−→ α−4
−1 y4

y5 7−→ α−5
−1 y5

η 7−→ α−6
−1 η

κ 7−→ α2
−1 κ + α2

3 η + α−1 α1 y0 + (α2
1 + α−1 α3) y2 +

α−1 α4 y3 + (α1 α3 + α−1 α5) y4 + α1 α4 y5

κ[2] 7−→ α4
−1 κ

[2] + α2
−1 α

2
4 η + α3

−1 α3 y0 + α3
−1 α4 y1 +

α2
−1(α1 α3 + α−1 α5) y2 + α2

−1 α
2
3 y4 + α2

−1 α3 α4 y5.

Note that dimkG1 = 5 for every field k of characteristic 2.

Proof. It is not difficult to prove that, for all 0 6= α−1, α1, α2, α3, α4, α5 ∈
k, a map φ defined as in the proposition is a 2-automorphism of W2. In order
to prove that every 2-automorphism of W2 is defined exactly like this, we
first construct some G1−invariant subspaces and subsets of W2. Construct
some G1−invariant subspaces and subsets of W2.

It is clear that all subsets defined below are G1−invariant subsets. Note
that W = [W2,W2].

1. V1 = {x ∈W : x[2] = 0} = Spank{y2, y4, y5},
2. V2 = {x ∈W : [x, V1] ⊆ V1} = Spank{y0, y1, y2, y3, y4, y5},
3. V3 = [V2, V2] = Spank{y1, y3, y4, y5},
4. V4 = [V3, V3] = Spank{y4, y5},
5. V5 = {x ∈ V3 : [x, V3] = 0} = ky5,

6. V6 = {x ∈ V1 : dim[x,W2] = 3} = ky2.

Let ψ be an arbitrary 2-automorphism of W2. Since V5 is G1-invariant,

we may suppose that yψ5 = y5, y
ψ
−1 =

∑5
i=−1 riyi. By [y−1, yi] = yi−1,

i = 0, . . . , 5, we have

yψ4 = r−1y4, y
ψ
3 = r2

−1y3+r−1r1y5, y
ψ
2 = r3

−1y2+r2
−1r0y3+r−1(r0r1+r2r−1)y5.

Since r−1 6= 0 and V6 is G1−invariant, r0 = r2 = 0. Using some 2-
automorphism φ(α−1, α1, α3, α4, α5) we may suppose that r0 = r1 = r2 =

São Paulo J.Math.Sci. 4, 1 (2010), 93–107
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r3 = r4 = r5 = 0. Hence,

yψ−1 = r−1y−1, yψ4 = r−1y4, yψ3 = r2
−1y3,

yψ2 = r3
−1y2, yψ1 = r4

−1y1, yψ0 = r5
−1y0.

By [y0, y5] = y5, we get r5
−1 = 1. Then ψ = φ(r−1, 0, 0, 0, 0).

At last, ηψ = (yψ3 )[2], κψ = (yψ−1)[2], since ψ is an 2-automorphism. 2

2.2. Idempotent and Nilpotent Elements of W2 . The sets of nilpo-
tent and idempotent elements of a Lie algebra are quite important features
of the algebra structure as they allow us to construct different subalgebras
and study the relations among them. In fact a method based on a study
of the orbits of toral elements with respect to the automorphism group of
the algebra and on an investigation of the centralizer of a toral element was
already used in several papers describing the structure of tori and Cartan
subalgebras of a Lie p-algebra, for a prime p , see [S92], [BW2] [R], [W].

Proposition 2.2. For the Lie 2−algebra W2, the variety of idempotent
elements is given by I(W ) =

⋃3
δ=1 I

δ
W , where

I1
W = {a4κ[2] + a2κ+ b2 η + ay−1 + c y0 + (c̄+ b) y1 + (c̄2 + b+ d) y2 +

b y3 + d y4 + (c̄b+ d) y5 : a ∈ k∗, b, c, d ∈ k},
I2
W = {a2 η + y0 + b y1 + b2 y2 + a y3 + ab y4 + c y5 : a ∈ k∗, b, c ∈ k},
I3
W = {y0 + a y1 + a2 y2 + b y5 : a, b ∈ k}.

Moreover, I1
W = {κ[2] + κ + y−1 + y1 + y2}G1 ; that is, all elements of

I1
W belong to the same orbit under the G1-action.

I2
W = ∪b∈k/Z3

{η + y0 + by1 + b2y2 + y3 + by4}G1 , where Z3 = {1, δ, δ2 =
1 + δ}.
I3
W = yG1

0 ∪ {y0 + y1 + y2}G1.

Proof. Let t[2] = t = b1κ
[2] + b2κ + b3η + ay−1 + a0y0 + a1y1 + a2y2 +

a3y3 +a4y4 +a5y5. Comparing the coefficients at k[2], . . . , y5, by Table I we
get:

b1 = b22, b2 = a2, b3 = a2
3, (1)

a = a4a3 + b2a1 + aa0, (2)

a0 = a2
0 + b1a4 + a2b2 + aa1, (3)

a1 = b1a5 + b2a3 + aa2 + a0a1, (4)

a2 = b1b3 + b2a4 + aa3 + a2
1, (5)

a3 = b2a5 + aa4 + a0a3, (6)

São Paulo J.Math.Sci. 4, 1 (2010), 93–107
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a4 = b2b3 + aa5 + a3a1, (7)

a5 = ab3 + a1a4 + a2a3 + a0a5, (8)

Note that 0 6= t is an idempotent if and only if we have all equalities (1)–(8).
By (1), we have b1 = a4. Suppose that a 6= 0. Using (2) we get

a0 = 1 + aa1 + a3a3. (9)

By (5) we get
a2 = a4a2

3 + a2a4 + a2
1 + aa3. (10)

By (7) we have

a4 = aa5 + a3a1 + a2a2
3, a2 = a3a5 + a2a3a1 + a2

1 + aa3; (11)

then t = a4κ[2] + a2 + κ+ a2
3η+ ay−1 + (1 + aa1 + a3a3)y0 + a1y1 + (a3a5 +

a2a3a1 +a2
1 +aa3)y2 +a3y3 +(aa5 +a3a1 +a2a2

3)y4 +a5y5 is an idempotent.

In the case a = 0 the calculations are analogous but more easy.

All statements about the conjugation of idempotents are easy to prove.
For example, consider the set I2

W . If b = 0 then t = a2η + y0 + a y3 + c y5 =

(η + y0 + y3)φ, where φ = φ(x, y, 0, 0, 0), x3 = 1/a, y = xc/a. Suppose that
b 6= 0. In this case t = a2 η + y0 + b y1 + b2 y2 + a y3 + ab y4 + c y5 is
conjugated with t(b1) = η + y0 + b1 y1 + b21 y2 + y3 + b1 y4. Suppose that
t(b1) is conjugated with t(b2) = η + y0 + b2 y1 + b22 y2 + y3 + b2 y4, then
t(b1)φ = t(b2), φ = φ(x, y, z, p, q). Hence, x3 = 1 and b1x = b2. 2

Proposition 2.3. The variety N(W ) of 2-nilpotent elements is given by

N(W ) = {x ∈W2 : x[2] = 0} =
⋃3
i=1 N

i
W , where

N1
W = {aη + b y2 + c y4 + d y5 : a ∈ k∗, b, c, d ∈ k }

N2
W = {aκ[2] + b2

a η + c y0 + b y1 + d y2 + c2

a y4 + bc
a y5 : a ∈ k∗, b, c, d ∈ k }

N3
W = {a y2 + b y4 + c y5 : a, b, c ∈ k } ⊆ W .

Moreover,

i) N1
W = {aη + y2 + cy4 + dy5 : 0 6= a, d, c ∈ k}G1 ∪ {aη + y4 + dy5 : 0 6=

a, d ∈ k, }G1 ∪ {η + dy5 : d ∈ k/Z3}G1 , here k/Z3 is the set of orbits of the
following Z3−action on k : x→ δx, δ3 = 1.

ii) N2
W = {κ[2]}G1 forms one orbit under the G1-action.

iii) N3
W = {y2 + by4 + cy5 : b, c ∈ k}G1 ∪ {y4 + cy5 : c ∈ k}G1 ∪ yG1

5 .

We note also that the G1-stabilizers of the elements in N3
W have dimen-

sion 4, but they may be defined over different fields.

Proof. The set N(W ) we can describe as the set I(W ) but more easy.
Consider the set of G1−orbits of the natural G1−action on N(W ). It is
easy to see that (N1

W )G1 = N1
W . Let n = aη + b y2 + c y4 + d y5 ∈ N1

W

São Paulo J.Math.Sci. 4, 1 (2010), 93–107
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and b 6= 0. Then we can find a diagonal automorphism φ = φ(α, 0, 0, 0, 0)
such that nφ = a1η + y2 + c1y4 + d1y5. Note that for all α1, α2, α3, α4 ∈ k
we have nφ = nφ(α,α1,α2,α3,α4). If nφ = (a2η + y2 + c2y4 + d2y5)φ(β,0,0,0,0),
then β2 = 1 and φ(β, 0, 0, 0, 0) = 1. It means that a1η + y2 + c1y4 + d1y5 is
the unique representative of its G1−orbit.

Analogously we proceed in the case b = 0, c 6= 0. Suppose that b = c = 0.
As above we can find a diagonal automorphism φ such that (aη + dy5)φ =
η + d1y5. Let ψ = φ(β, 0, 0, 0, 0) and (η + d1y5)φ = η + d2y5. Therefore,
β6 = 1 and β−5d1 = d2. Then β = δ ∈ k, δ3 = 1, β−5 = δ, and d1, d2 are
contained in the same Z3−orbit.

The other cases may be considered analogously. 2

3. The Kostrikin-Dzhumadil’daev algebras

The Kostrikin-Dzhumadil’daev Lie algebras L(ε) (or KD-algebras, for
brevity) of dimension 7 form a family depending on one parameter ε ∈
k (see Example 7.2 of [K]). The multiplication table of basis elements in
L(ε) is as follows:

A KD-algebra L(ε)

L(ε)−1 L(ε)0 L(ε)1 L(ε)2

u0 u1 e0 e1 f0 f1 g
u0 · 0 ε u0 ε̄ u1 e0 e1 f1

u1 0 · ε̄ u1 ε u0 e1 e0 f0

e0 ε u0 ε̄ u1 · e1 ε f0 ε̄ f1 g
e1 ε̄ u1 ε u0 e1 · ε f1 ε̄ f0 0
f0 e0 e1 ε f0 ε f1 · g 0
f1 e1 e0 ε̄ f1 ε̄ f0 g · 0
g f1 f0 g 0 0 0 ·

Firstly note that for ε = 0 or ε = 1 the algebra L(ε) is semi-simple but
not simple. It is an easy exercise to prove that L0 and L1 are isomorphic.
For ε 6∈ {0, 1}, the following theorem holds.

Theorem 3.1. Given ε 6∈ {0, 1} , the corresponding simple KD-algebra
L(ε) is isomorphic to the Hamiltonian algebra H2 = H((2, 1), ω).

Proof. For ε ∈ k \ {0, 1} , consider the Lie algebra L(ε) as given
above and apply the following changing of basis: V0 =

√
εε̄(u0 + u1), V1 =

ε u0 + ε̄ u1, F0 = f0 + f1, F0 =
1√
εε̄

(ε̄f0 + εf1), E1 =
e1√
εε̄
, E0 =

São Paulo J.Math.Sci. 4, 1 (2010), 93–107
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e0 + e1, G =
g√
εε̄

. Hence, L(ε) is isomorphic to the Lie algebra K =

〈V0, V1, E0, E1, F0, F1, G〉 given by the Lie multiplication table below. It
is easy to see that a basis of the 2-closure K2 may be chosen as follows:
{t,m, n, V0, V1, E0, E1, F0, F1, G} and the multiplication table in K2 is the
following:

The 2-closure K2 of the KD-algebra K

t m n V0 V1 E1 E0 F1 F0 G

t t 0 0 V0 V1 0 0 F1 F0 0
m 0 0 E0 0 0 0 0 V1 V0 E1

n 0 E0 0 0 F1 G 0 0 0 0
V0 V0 0 0 0 0 V1 0 0 E0 F1

V1 V1 0 F1 0 m V0 V1 E0 E1 F0

E1 0 0 G V1 V0 t E1 F0 F1 0
E0 0 0 0 0 V1 E1 E0 F1 0 G
F1 F1 V1 0 0 E0 F0 F1 n G 0
F0 F0 V0 0 E0 E1 F1 0 G n 0
G 0 E1 0 F1 F0 0 G 0 0 0

Note that K has a Cartan subalgebra C = k{E0, F0, V0} of toral rank one
(but the absolute toral rank of C is equal to two!) Recall that Skryabin’s
Theorem 6.2 [Sk] asserts (in particular) that every finite dimensional simple
Lie algebra L over a field of characteristic 2 with a Cartan subalgebra C
of toral rank one is isomorphic to a Hamiltonian algebra if dimL/L0 =
2, where L0 is a maximal subalgebra that contains C. In our case K0 =
Spank{E0, F0, V0, G, F1} and dimK/K0 = 2. Hence K is a Hamiltonian
algebra by Skryabin’s Theorem. On the other hand there exists a unique
7-dimensional Hamiltonian algebra H2 = H((2, 1), ω), where ω = (1 +

x
(3)
1 x2)dx1 ∧ dx2 is a non-standard 2-form. 2

From now on we will denote a KD-algebra L(ε), for ε 6∈ {0, 1}, simply
by K and its 2-closure by K2, as in the theorem above.

3.1. The group of 2-automorphisms G2 = Autk,2(K2) .

São Paulo J.Math.Sci. 4, 1 (2010), 93–107
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Proposition 3.1. The group of 2-automorphisms G2 of the Lie 2-algebra
K2 is defined on its basis elements, for ϕ = ϕ(a, b, c) ∈ G2 and a 6= 0 , by:

ϕ : E0 7−→ E0 + a−2 b2G
G 7−→ a2G
F0 7−→ aF0

F1 7−→ aF1 + bG
E1 7−→ E1 + a−1 b F1 + cG
V0 7−→ a−1 V0 + a−2 bE0 + a−3 b2 F1 + a−3 b2 F0 + a−4 b3G
V1 7−→ a−1 V1 + a−2 bE1 + a−1 c F1 + a−3 b2 F0 + (a−2 b c+

a−4 b3)G
n 7−→ a2 n
t 7−→ t + a−2 b2 n + a−1 b F0

m 7−→ a−2m + a−4 b2 t + (a−2 c2 + a−6 b4)n + a−3 b V0 +
a−4 b2E1 + a−2 cE0 + a−5 b3 F1 + a−5 b3 F0 +
a−4 b2 cG.

Note that dimkG2 = 3 for every field k of characteristic 2.

Proof. Let φ be an automorphism of K2. Then {x ∈ K : x[2] = x}φ=

{x ∈ K : x[2] = x}= {E0 + aG : a ∈ k}; in particular, Eφ0 = E0 + aG.

For all a1, a2 ∈ k, the map E0 + a2G → E0 + a1G may be extended to

an automorphism ψ = ψa1,a2 . Hence, E
φψ0,a

0 = E0 and we may assume

that Eφ0 = E0. Let S = AnnKE0 = Spank{V0, E0, F0}. Then Sφ = S and

V φ
0 = aV0, 0 6= a ∈ k, since kV0 = {x ∈ S : x[2] = 0}. It is easy to see that

the map τ : E0 → E0, V0 → a−1V0, V1 → a−1V1, F1 → aF1, F0 → aF0,

G → a2G is an automorphism. Therefore, V φτ
0 = V0 and we may suppose

that Eφ0 = E0, V
φ

0 = V0. Since {x ∈ S : x[4] = 0}φ = {x ∈ S : x[4] = 0} =

kV0 ∪ kF0, we have F φ0 = F0. Analogously, if T = {x ∈ K : [x,E0] = x}
then AnnTF0 = kG and Gφ = G. We have Eφ1 = E1 + aF1 + bG, then

[Eφ1 , F
φ
0 ] = [E1, F0]φ = F φ1 = F1 = [E1 + aF1 + bG, F0] = F1 + aG,

and a = 0. Furthermore,

V φ
1 = [E1, V0]φ = [Eφ1 , V

φ
0 ] = [E1 + bG, V0] = V1 + bF1.

It is easy to see that φ is an automorphism. Hence, dimG2 = 3. 2

3.2. Idempotent and Nilpotent Elements of K2 .

Proposition 3.2. For the 2-closure K2 of the KD-algebra, the variety
of idempotent elements I(K) = {x ∈ k2 : 0 6= x[2] = x} is given by

São Paulo J.Math.Sci. 4, 1 (2010), 93–107



102 Alexandre N. Grichkov ∗ and Marinês Guerreiro †

I1
K =

6⋃
i=1

IiK , where

I1
K = {α2 t+ ξ−2m + ξ2(b+ ᾱā)2 n + aξ−1 V0 + ξ−1 V1 + αᾱE1 + bE0 +
ξ(b+ ᾱ(αa+ ᾱ))F1 + ξᾱ(αa+ a+α)F0 + ξ2ᾱ(bα+αa+ a)G : α, a, b ∈
k, ξ ∈ k∗}
I2
K = {t+ ξ2(b2 + b+ c)2 n+ ξ−1 V0 + bE0 + cξ F1 + ξ(b2 + b)F0 + ξ2 b cG :
ξ, b, c ∈ k}
I3
K = { t + ξ−1c2 n + E0 + c ξ F0 + ξ2 dG : ξ, c, d ∈ k}
I4
K = { t + ξ2(c0 + c1)2 n + ξ c1 F1 + c0 ξ F0 + ξ2 c0 c1G : ξ, c0, c1 ∈ k}
I5
K = { δ t+δa2n+a(δF0+F1)+E1 +E0+ dG : δ2 + δ + 1 = 0, a, d ∈ k}
I6
K = {E0 + dG : d ∈ k}.

Proposition 3.3. The variety of nilpotent elements N(K) = {x ∈
K2 : x[2] = 0} is described as follows: N(K) =

⋃6
i=1 N

i
K , where

N1
K = {t + β m +(c2 +β d2)n + β c V0 + E1 + β dE0 + c(F1 + F0)+dG :

β, d, c ∈ k}
N2
K = { t + c2 n + E1 + c (F0 + F1) + dG : d, c ∈ k}

N3
K = {n + dG : d ∈ k}, N4

K = {n + a V0 : a ∈ k}
N5
K = {n + b3 V0 + d b2E0 + b d2(F0 + F1) + d3G : d, b ∈ k}

N6
K = {α3 V0 + α2γ E0 + αγ2 (F0 + F1) + γ3G : α, γ ∈ k}.

Proofs of Propositions 3.2 and 3.3 are analogous to the proof of Propo-
sition 2.2. 2

Proposition 3.4. The G2-orbits of the variety I(K) =
⋃7
i=1 OI

i
K are

I1
K = OI1

K = ∪λ∈kOI1
K,λ, OI

1
K,λ = { t + m + λV0 + V1 }G2

I2
K = OI2

K = ∪b∈kOI2
K,b, OI

2
K,b = { t + V0 + bE0 + bb̄ (F1 + F0) +

b2b̄ G }G2

I3
K = OI3

K = ∪d∈kOI3
K,d, OI

3
K,d = { t + E0 + dG }G2

I4
K = OI4

K ∪OI5
K , OI

4
K = { t }G2 OI5

K = { t + F1 + F0 + G }G2

I5
K = OI6

K = { δt + E1 + E0 : δ2 + δ + 1 = 0}G2

I6
K = OI7

K = {E0 }G2 .

Proof. Show that I1
K = ∪λ∈kOI1

K,λ. Denote by φ(a, b, c) an automor-

phism from Proposition 3.1. Let a1 = ξ, b1 = ξ2(1 + α), c1 = ξ(ξ−3b2 +
ξ(b+ āᾱ)), λ = a1(aξ−1 + a−3

1 b1). Then by direct calculation we get

(t + m + λV0 + V1)φ(a1,b1,c1) = α2 t + ξ−2m + ξ2(b+ ᾱā)2 n + aξ−1 V0 +

ξ−1 V1 + αᾱE1 + bE0 + ξ(b+ᾱ(αa+ᾱ))F1 + ξᾱ(αa+a+α)F0 + ξ2ᾱ(bα+
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αa + a)G ∈ I1
K,λ.

The other cases may be considered analogously. For example,

I6
K = { δ t + E1 + E0 : δ2 + δ + 1 = 0, }G2 ,

since (δ t + E1 + E0)φ(1,a,d+a2) = δ t +δa2n+a(δF0 +F1)+ E1 + E0 + dG.
2

Note that N5
K ⊂ K. We have the following result on the varieties of

nilpotent and idempotent elements.

Theorem 3.2. The varieties I(A) and N(A), for A ∈ {W,K}, are irre-
ducible.

Proof. We write a detailed proof for the variety I(K) and leave the
other cases to the reader. It suffices to prove that the first orbit includes
in its closure (in the Zariski topology) all the other orbits. Observe that a
generic element of the orbit orb(1), in projective coordinates, is written as:
f(λ, ξ, α, b, a) = λ4ξ2α2 t+ λ8m+ ξ4(b2λ2+(λ+α)2(λ+a)2)n+ λ6aξ V0 +
λ7ξ V1 + λ4ξ2α(λ+α)E1 + λ5ξ2bE0 + λ2ξ3(bλ2+(λ+α)(αa+λ2+αλ))F1 +
λ2ξ3(λ+ α)(λα+ aα+ aλ)F0 + λξ4(λ+ α)(bα+ aα+ aλ)G .

1) Now we make the following substitutions: b = 1
λ , ξ = λ3

(1+λ)3
, a =

1

λ(λ+ 1)
, α = 1 and λ̄ = λ+ 1. Hence,

f(λ,
λ3

λ̄3
, 1, λ−1,

1

λλ̄
) =

λ10

λ̄6
(t+ n+ E0 + F0) + λ8m+

λ8

λ̄4
V0 +

λ10

λ̄3
V1 +

λ10

λ̄5
E1 +

λ10

λ̄6
F1.

Let χ be the closure (in the Zariski topology) of the orbit OI1
K . Then we

have λ10(t + n + E0 + F0) + λ̄(λ̄5λ8m + λ̄λ8 V0 + λ̄2λ10 V1 + λ̄λ10E1) +
λ10 F1 ∈ χ . Hence, for λ = 1, one gets u = t + n + E0 + F0 ∈ χ.
Applying the automorphism ϕ(a, b, c) with a2 = b, c = 0 to u we obtain
uϕ = t + E0 + a2G ∈ χ. Therefore, OI3

K is contained in χ.

2) Putting ξ = a, λ = α, α1 = α
a , b1 = b

α , we have

f = f(α, a, α, b, a) = α6a2t + α8m + α2b2a4 n + α6a2 V0 + α7a V1 +

α5a2bE0 + α4a3b F1.

Hence, f
α6a2

= (t + V0) + α2
1m + α1 V1 +

(
b1
α1

)2
n + b1E0 + b1

α1
F1 =

f̄(α1, b1). Therefore, f̄(α1, τα1) = (t + V0 + τ2 n + τF1) + α2
1m +
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α1 V1 + α1E0 . Thus, for α = 0 , one gets g = t + V0 + τ2 n + τF1 ∈ χ.
Applying the automorphism ϕ = ϕ(1, τ, 0) to g, we obtain gϕ = t + V0 +
τ E0 + τ τ̄ (F0 +F1) + τ2τ̄ G ∈ χ. Therefore, OI2

K is also contained in χ.

3) Now put b = 0 and λ = a in f . Then
f = a4ξ2α2 t+ a8m+ a7ξ(V0 + V1) + a4ξ2α(a+α)E1 + a4ξ3(a+α)2(F0 +
F1) + a2ξ4(a+ α)2G.

Substituting a1 = a
ξ , a2 = a

α we have:

g =
f

a4ξ2α2
= t+ a2

1a
2
2m+ (1 + a2)E1 + a1a

2
2(V0 + V1) +

(1 + a2)a2

a1
(F0 +

F1) +
(1 + a2)2

a2
1

G.

For a1 = a2 + 1 one gets g = t + ā2
2a2

2m + ā2E1 + ā2a
2
2(V0 + V1) +

a2(F0 + F1) + G. Hence, if a2 = 1, then g = t + F0 + F1 + G ∈ χ ,
that is, OI4

K is contained in χ.

4) Let λ = τα = b, a = τ2α and so, as τ2+τ = 1, we have α+λ = τ2α.
Hence,

f(τα, ξ, τα, τ2α) = τα6ξ2t + α6ξ2 (E0 + E1) + τ2α8m + τ2α7ξ V0 +
α7ξ V1 .

By substituting ρ =
α

ξ
, one gets

f

α6ξ2
= (τt + E0 + E1) + τ2ρ2m +

τ2ρ V0 + ρ V1 . For ρ = 0 we have τt+ E0+E1 ∈ χ . Therefore, OI6
K ⊂ χ.

5) Applying the automorphism ϕ = ϕ(a, 0, 0) to g = t + F0 + F1 + G ,
we get gϕ = t + a(F0 + F1) + a2G . Hence, for a = 0 , the orbit of t is
also contained in χ.

6) Finally, to prove that OI7
K ⊂ χ, consider 1

b (t + V0 + bE0 + bb̄ (F1 +

F0) + b2b̄ G ) = at + aV0 + E0 + b̄ (F1 + F0) + bb̄ G, with a ∈ k. In
this way, for a = 0, b = 1 , in the Zariski topology, E0 lies in the closure
of OI2

K , which is contained in χ. 2

3.3. Cartan decompositions. An interesting and important problem for
a Lie 2-algebra is the classification of its Cartan subalgebras up to auto-
morphisms. Here we give some examples of Cartan subalgebras of K2 and
W2 such that the corresponding Cartan decomposition is defined over a
field F4 for W2 and over F2 for the algebra K2.

Conjecture 3.1. A toral subalgebra of A2 of dimension 3 always has an
idempotent from I1

A, A ∈ {W,K}. Let T be a toral subalgebra of W2 of
dimension 3. Suppose that T is defined over a field F, then F4 ⊆ F.
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A particular example of a toral Cartan subalgebra T of W2 is generated
by {t1, t2, t3} where t1 = η + y0 + y3, t2 = κ[2] + κ + y−1 + y1 + y2, t3 =

δ2(κ+ y1) + δ(κ[2] + y−1 + y2), with δ2 + δ + 1 = 0, δ3 = 1, δ ∈ k∗.
Let G = 〈α, β, γ〉 be an elementary abelian group of order 8. A Cartan

decomposition of W2 with respect to T is given by

W2 = T ⊕
∑
ξ∈G
⊕Lξ,

where Lξ = 〈eξ〉 and eα = y−1 + y2, eβ = δ2( y0 + y3) + (y2 + y5) + δ y2,
eγ = y0 + y2 + y3 + y4 + y5, eα+β = y−1 + y2 + y5 + δ(y1 + y4) + δ2 y3,
eα+γ = y−1 + y1 + y2 + y3 + y4 + y5, eβ+γ = δ(y0 + y3) + (y2 + y5) + δ2 y4

and eα+β+γ = y−1 + y2 + y5 + δ y3 + δ2 (y1 + y4).

In the diagonal of the table below, we present the elements e
[2]
ξ , ξ ∈

G and t̃ = t3 + δ(t1 + t2), ť = δ2t1 + δt2 + t3. Note that this Cartan
decomposition occurs over a field k with four elements.

eα eβ eγ eα+β eα+γ eβ+γ eα+β+γ

eα t3 + δt2 δ2eα+β eα+γ δ2eβ eγ δeα+β+γ δeβ+γ
eβ δ2eα+β δt1 0 δ2eα δ2eα+β+γ 0 eα+γ
eγ eα+γ 0 t1 eα+β+γ eα 0 eα+β
eα+β δ2eβ δ2eα eα+β+γ t̃ δeβ+γ δeα+γ eγ
eα+γ eγ δ2eα+β+γ eα δeβ+γ t3 + t1 + δt2 δeα+β δ2eβ
eβ+γ δeα+β+γ 0 0 δeα+γ δeα+β δ2t1 δeα
eα+β+γ δeβ+γ δ2eα+γ eα+β eγ δ2eβ δeα ť

Consider the following elements of K2:

t1 = m+ E0 + V1 a1 = E1 + F0 +G b1 = V0 + F0 +G
t2 = t+ n+ F1 a2 = E0 + V1 b2 = E0 + F1

t3 = t+m+ V1 a3 = E1 + F0 b3 = V0

b = V1 + E1 + F1

Let T = 〈ti : i = 1, 2, 3〉 with t
[2]
i = ti. It is easy to verify that [ai, tj ] =

δij ai, I(K) = {t ∈ K : t[2] = t} = {αa1 +a2 +αa3 +b2 +b : α ∈ k}. This
gives a decomposition of K2 on root spaces, and we have the following Lie
multiplication table, where in the diagonal are written the elements x[2].
Observe that this multiplication is defined over the prime field IF2.

São Paulo J.Math.Sci. 4, 1 (2010), 93–107



106 Alexandre N. Grichkov ∗ and Marinês Guerreiro †

t1 t2 t3 a1 a2 b1 a3 b2 b3 b

t1 t1 0 0 a1 0 b1 0 b2 0 b
t2 0 t2 0 0 a2 b1 0 0 b3 b
t3 0 0 t3 0 0 0 a3 b2 b3 b
a1 a1 0 0 t2 b1 a2 0 a3 b b3
a2 0 a2 0 b1 t1 a1 b3 b 0 b2
b1 b1 b1 0 a2 a1 t1 + t2 + t3 b 0 b2 a3

a3 0 0 a3 0 b3 b t2 a1 a2 b1
b2 b2 0 b2 a3 b 0 a1 t1 + t2 + t3 0 a2

b3 0 b3 b3 b 0 b2 a2 0 0 0
b b b b b3 b2 a3 b1 a2 0 t2 + t3
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