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While looking to the scientific literature reported 
in most periodicals, the facts and interpretation of 
energy utilization during single exercises and training 
schedules are based on general information obtained 
by textbooks on general biochemistry. All biochemical 
pathways or processes are based on the utilisation of one 
single molecule, ATP (Adenosine Tri-Phosphate), from 
bacteria to humans. ATP is a nucleotide in which the 
base adenine is linked to a sugar ribose, itself connected 
to three inorganic phosphate (Pi). ATP is the only 
compound that, directly or indirectly, when hydrolysed, 
transfers chemical energy to all other processes that 
requires energy, such as muscle contraction.

The development of biochemical tools (such as 
tissue biopsies and gene access), including molecular 
biology, has given access to the understanding of 

basic facts related to single muscle performance and 
adaptations during training schedules. However, 
knowing thermodynamic principles do not necessarily 
provide information about the rate at which a reaction 
will proceed1. Enzymology is central to biochemistry 
but  one has to know the limit of thermodynamic 
and kinetic principles of  numerous enzymes and 
more precisely factors that change the activity of an 
enzyme. Moreover, the use of recent molecular biology 
techniques, such as the use of mRNA determination 
of an enzyme molecule, does not necessarily predict its 
synthesis. Additionally, some enzymes are “regulatory 
enzymes” that activate or inhibit the activity of a 
metabolic pathway, and thus the maximal activity 
obtained from that pathway. Unfortunately, some 
publications, even with high level of impact factors, 

Abstract

Different fuels are available to generate ATP for muscle activities during sport events. Glycogen from striated 
muscles and liver stores may be converted to lactic acid or almost completely oxidized to carbon dioxide 
(CO

2
), triacylglycerol within the muscle itself and fatty acids from adipose tissue could be converted to 

CO
2
 in acting muscles, some free amino acids can be released within the muscle itself and from intestinal 

stores to sustain the amount of ATP generation indispensable for muscle contraction. All single biochemical 
reactions, but one, need one or several enzymes to activate the conversion of a substrate into a product. 
The energy transformation in biochemical reactions is led by application of so-called free energy. Reversible 
and non-reversible reactions within a metabolic pathway are dependent on specifi c enzymes near or far 
from equilibrium. Allosteric enzymes are regulatory enzymes that provide the direction in the pathway. A 
regulatory enzyme is either activated or inhibited by small regulators (ligands). A reversible substrate cycle 
between A and B is catalyzed by two enzymes with different fl uxes. The need of ATP production for muscle 
contraction is under the leadership of regulatory enzymes and available substrate stores. The improvement of 
adapted metabolic reactions under sport training depends on the appropriate increase of regulatory enzymes 
within the glycolytic and oxidative pathways. The amount of some specifi c enzymes is increased by training 
in order to improve the maximum activity of the metabolic pathway. Unfortunately, several publications 
do not precisely implicate the appropriate enzyme(s) to explain or reject the adaptation induced by the 
training schedule. A few examples will illustrate the factual interpretation and the inadequate allegation.  
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General metabolic pathways during exercise

do not take care of the limitations imposed by enzyme 
kinetics. Let us remember specific words written down 
by a famous exercise biochemist, Eric A. NEWSHOLME, 
as well a marathon runner: 

To perform muscle fibre contraction, there is a need 
for energy released from one single molecule, ATP 
converted to ADP (adenosine diphosphate) and Pi 
(inorganic phosphate). However, the total quantity of 
ATP molecules in human skeletal muscle is very low 
(5-6 mmoles/kg) and the energy demand for muscle 
contraction would be sufficient to sustain intensive 
shortening for only 2-3 seconds. Thus, a variety of fuels 
that lead to generation of ATP from ADP and Pi are 
needed to replenish this local tiny store. Besides ATP 

store, the striated muscle has also an almost immediate 
energy supplier called phosphorylcreatine (PC: 15-20 
mmoles/kg) which transfers its phosphate group to 
ADP, replenishing therefore the ATP molecule during 
or after muscle contraction. However, this PC store 
would maintain theoretically heavy muscle contraction 
for another few seconds (< 7 s): not enough to beat 
the actual World 100 m dash! It appears therefore 
that other energy fuels are needed to sustain muscle 
activities during sport events.

FIGURE 1 - Illustrates the origin of ATP generation from food feeding and local human reserves (muscles, liver, 
adipose tissue).
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Despite the strength of the theory underlying 

this approach (maximum flux rate of enzymes) 

and the direct experimental evidence in support 

of it, many studies have and still attempt to 

provide quantitative information about fluxes 

from activities of ‘near-equilibrium’ enzymes, 

The major aims of the present review is to try to 
shed light on appropriate interpretation of results 
obtained on human subjects involved in exercise 
training, to separate the wheat from the chaff.

such as lactate dehydrogenase for glycolysis, citrate 

synthase for the Krebs cycle and hydroxyacyl-

CoA dehydrogenase for the fatty acid oxidation. 

This is particularly depressing considering that 

experiments on humans involve invasive techniques 

and can be extremely expensive2.
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In human skeletal muscle (such as the vastus 
lateralis of the quadriceps), the ATP and PC 
levels are low, as compared to the local stores of 
macromolecules1,3 (TABLE 1). 

Moreover, in the whole organism, the available 
stores of energetic substances are diversely 
distributed. It appears that glycogen molecules are 

Polymer molecules (proteins, carbohydrates, 
lipids) are converted to elementary substrates 
(amino acids, monosaccharides, fatty acids and 
glycerol). Those hydrolysed reactions do not liberate 
energy immediately used by the muscle cells.

The monomere substrates are converted to simple 
molecules of three (pyruvate) or two (acetate) carbon, 
giving a few supplies of free energy molecules as ATP 
as well as reduced molecules (NADH, Nicotinamide 
Adenine Dinucleotide reduced-H).

All previous small molecules are converted to 
acetyl-CoA (acetyl-coenzyme A), then to a variety of 
metabolic pathways (such as the citric acid cycle, the 
ß-oxidation reaction) which release reduced molecules, 
NADH, FADH

2
 (Flavine Adenine Dinucleotide 

reduced -H). The latter two molecules react with free 
oxygen (O

2
) in the mitochondria giving enough energy 

to recombine ADP and Pi to ATP molecules.

Stage 1

Stage 2

Stage 3

TABLE 1 - Distribution of energy stores in the human vastus lateralis3.

(1) = 90% ATP, 10% 

ADP and AMP; 

(2) = 67% PC, 33% 

creatine.

Substrates Fresh tissue Energy content Disposable energy

(µmol.g-1) (kJ.mol-1) (µmol ~P.g-1)

ATP 6 44 5.1 (1)

PC 15 58 9.9 (2)

Glycogen (glucose residue) 121 2,900 4,350

Triglycerides (ex.palmitate) 9 29,300 3,510

Amino acids (free) 36 1,870 800

mainly located in skeletal muscles and liver, while 
triglycerides are stored in adipose tissues (visceral 
organs mainly) (TABLE 2).

Additionally one has take into account the 
maximal energy released from each type of substrates 
(TABLE 3).

It appears that the maximal power released from 
muscle contraction comes from the few ATP itself 
which is very rapidly restored the other reserve 
stores. The energy release from ATP hydrolysis is 
thus obtained from direct small reserves of ATP 
and PC stores within the muscle fibres, then using 
the glycolytic pathway down to pyruvate ending 
by the oxidation pathways. NEWSHOLME et al.4 

estimated that the energy release from the glycolytic 
pathway (also called anaerobic glycolysis) amounts 
to 97-98% for a 100 m-dash, nearly 50% during a 
800 m-run, and about 3% for a 5,000 m distance 
run. HOCHACHKA and SOMERO5 gave a schematic 
estimation of metabolic rate (expressed as % of 
maximum) from the different substrates towards 
the intensity of the exercise (FIGURE 2).

Eventually, the estimation of the metabolic 
fluxes releasing energy within a skeletal muscle 
fibre depends in fact upon two main factors: 1) 
the availability of the energy stores (muscle and 
periphery); 2) the maximal activity of the specific 
enzymes. 

Besides the compulsory need of metabolic 
compounds, the catalysis of the various energy 
substances is absolutely connected to specific organic 
molecules acting at physiological temperature: 
enzymes.
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TABLE 3 - Estimation of power released from the different energy stores within a human muscle6.

TABLE 2 - Total energy stores in male human subject (70 kg body weight, 28 kg muscle mass, 15% fat mass), in 
the prandial phase3.

Substrates Total dry weight Disposable energy

(kg) (kJ)

Triglycerides 10.5 338,500

Proteins 6 78,250

Glycogen

   Liver 0.100 1,700

   Muscles 0.500 8,500

Blood (glucose, fatty acids) 0.023 420

PC 0.087 17

ATP 0.076 5

Substrates Final products Maximal power output

~ P (µmol.g-1.s-1)

ATP ADP 3.00

PC Creatine 1.60

Glycogen pyruvate, lactate 1.00

Glycogen CO
2
, H

2
O 0.50

Free fatty acids CO
2
, H

2
O 0.24

Amino acids CO
2
, H

2
O ?

FIGURE 2 - Relationship between fuels, major pathways, and maximum metabolic rate during exercise of 
progressive intensity5.

�
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FIGURE 3 - General enzyme activities (Adapted from NEWSHOLME and LEECH1).

All reactions, but one (creatine to creatinine), in 
the human body are under enzyme activities that 
proceed at a satisfactory rate in the cell. Enzymes 
are protein molecules (one or several molecules) 
having a catalytic action inside their structure. This 
active side is a three-dimensional structure that 
binds the substrate to the enzyme complex, which 
results in catalysis. The enzyme-substrate complex, 
which involves weak bonds, is readily reversed. The 
enzyme-substrate complex formation occurs if the 
substrate has groups of atoms that are in the correct 
three-dimensional orientation to interact with the 
binding atoms in the active site. Concentrations of 
substrates, temperature, protons (pH of the milieu) 
change the catalytic activity of an enzyme.

The catalytic activity of an enzyme is measured 
by the rate of its reaction proportional to the 
concentration of the enzyme. It varies according to the 
substrate concentration through a hyperbolic curve 

Regulation of enzyme activities

from first order (the activity increases approximately 
linearly with the increase in substrate concentration) 
to zero order (the substrate concentration has very 
little effect on the rate of reaction (see FIGURE 
3a). However, the activity of some enzymes shows 
a sigmoid curve indicating that the activity of that 
enzyme can be either reduced or activated by small 
molecules (ligands) at the same concentration of 
the substrate (see FIGURE 3b). The latter type of 
enzyme belongs to an “allosteric” model of a better 
physiological significance. Indeed, the allosteric 
enzymes belong to the “substrate cycle system” of 
reversible reactions where the A to B reaction led by 
one enzyme is reversed by reaction B to A by another 
enzyme. The maximal catalytic activity (Vmax) of 
an enzyme and its half Vmax (maximal velocity), 
expressed by the Michaelis-Menten constant (Km), 
has a physiological significance which can estimate 
the metabolic flux of a series of reactions. 

(a) 

(b)         

              

(c)  

         

The Km value also provides information about the 
role of similar regulatory enzyme systems in different 
cells, such as the first step of glucose reaction in the 
glycolytic pathway (glucose to glucose-6-phosphate, 
G6P) (FIGURE 3c). In skeletal muscle, the hexokinase 

action has a very-low Km, meaning the enzyme is 
rapidly saturated by its substrate; in liver, the first 
step by glucokinase is never saturated by higher 
physiological concentration. Thus, FIGURE 3c 
demonstrates that muscle glucose uptake is rapidly 
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Metabolic regulation of carbohydrates

Glycogenolysis and glycolysis within skeletal 
muscle fibres are regulated by far-from equilibrium 
enzymes. Glucose taken up by blood supply (from liver 
glycogen) is catabolized by 10 enzyme reactions down 
to pyruvate.  Only three substrate cycles induced by  

saturated by normal concentration of arterial glucose, 
while liver can rapidly phosphorylate this sugar to be 
converted to glycogen stores after a meal (for example).

Another value has a fundamental importance 
in understanding the relationship between 
biochemical pathways: the Gibbs free energy 
concept which combines the first and second laws 
of thermodynamics. Gibbs, an American scientist, 
used the definition of enthalpy (the heat produced 
by a reaction) together with the entropy (molecular 
disorder induced by the reaction) to determine the 
direction of a reaction of biochemical pathway: 

A   B
∆Go  = - 2.3 RT log Keq (1 mole concentration 

of B and A)
∆G = ∆Go + 2.3 RT log Γ (Γ = real concentration 

of B and A)
∆G = - 2.3 RT log Keq/ Γ 

Practically, the previous enzymatic properties 
means that one has to take into account the Km 
of each enzyme involved in the regulatory flux 
of the pathways, together with the inhibitor and 
stimulating actors of a precise substrate cycle. This 
approach is compulsory to understand the several 
hundred-fold increase of the glycolytic flux as soon 
as one is facing high intensive exercise. 

Besides the free energy concept, one has also to 
consider the coupling of biochemical reactions. A two-
substance reaction A → B can be coupled-in-parallel 
with another reaction X → Y by one specific enzyme 
E1. However, in many cases, the X molecule is regenera-
ted through another couple C → D by another specific 
enzyme E2. Under those conditions we need to know 
the precise metabolic flux (in Joules or kcal) of these 
irreversible reactions (to evaluate the predominance 
of the real flux between the two reactions J1 and J2). 

The enzyme phosphofructokinase 1 (PFK1) is 
inhibited by a resting level in ATP, while it will be 
activated by an excess of ADP released under heavy 
exercise. It may be already visualized that the synthesis 
to glucose from pyruvate is a much slower process. 
This observation points out another important fact 
related to kinetic reaction within a substrate cycle. We 
may consider the existence of equilibrium and non-
equilibrium reactions within a substrate cycle. When 
there is a maximum catalytic activity for one enzyme 
as compared to a much lower activity for the other 
enzyme, this situation characterises a non-equilibrium 
process. Conversely, a reaction is near-equilibrium 
if the activities of the two enzymes are close to each 
other. Thus in the above example of PFK1, we are 
facing a far-from equilibrium reaction, the enzyme 
activity being moderate with a high ATP/ADP ratio 
(resting condition), or at full maximal activity under 
a low ATP/ADP ratio (exercise condition).

     E2 (J2)      

   D    C Flux J2 

    X      Y 

   A    B  Flux J1 

     E1 

   (-) ATP  ADP (+) 

  

Glucose  F6P   F-1,6-BP  pyruvate 

     

   Pi   H2O 
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FBF1�

50
55

5

50

One example may clarify this concept: the 
substrate cycle between fructose-6-phosphate (F6P) 
and fructose-1,6-bisphosphate (F-1,6-BP) in muscle 
glycolysis under resting condition. The numbers 
express the metabolic flux J (µmol-1 kg.min-1) in the 
human vastus lateralis1.

far-from equilibrium enzyme systems are involved in the 
regulation of the glycolytic flux from glucose to pyruvate 
(FIGURE 4). Those enzymes are either activated or 
inhibited by small molecules (ligands) involved in local 
metabolism, such as ATP, ADP, AMP, Pi, PC.
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In order to shed light of these regulatory couples, 
one has to analyze the free energy status of  enzymes 
involved in striated muscle glycolysis3 (TABLE 4). 

All three enzymes leading to the production of 
pyruvate from glucose are far from equilibrium. 
Moreover, muscle glycogen degradation to glucose 
molecules is led by another substrate cycle that 
involves glycogen phosphorylase and glycogen 
synthase3 (FIGURE 5).

Phosphorylation of the two enzymes by ATP 
and a specific protein kinase has opposite action on 
glycogen molecule. Doing so during exercise, the 

release of one glucose molecule is favoured, while 
glycogen synthesis is inhibited, the two enzymes 
being next to glycogen molecules.

The entrance of pyruvate into mitochondria 
is the next step under enzyme regulation. The 
oxidation and decarboxylation of pyruvate by 
pyruvate dehydrogenase (PDH) and its NAD 
cofactor releases acetyl-CoA and NADH + H+. 
Indeed, under resting condition, the PDH action 
is slow down by the available concentration of ATP. 
Then, the acetyl-CoA enters the citric acid cycle 
(CAC, also call the Krebs cycle) were molecules of 
NADH, FADH

2
, H+ are released (as co-enzymes) 

using specific enzymes (FIGURE 6).
Again, the flux of the CAC is led by three allosteric 

enzyme systems (out of a total of 8 enzymes), all far 
from equilibrium. These enzymes are activated or 
inhibited by their co-factors being in excess, such as 
ATP, NADH, ADP, Ca2+, … .Citrate synthase (CS), 
isocitrate dehydrogenase (ICDH) and oxoglutarate 
dehydrogenase (2-OGDH) are the key enzymes 
regulating the flux of the CAC by non-equilibrium 
reactions. However, the limiting flux of the cycle is 
under the leadership of the lowest activity member, 
2-OGDH. This explain why the oxidative flux of 
CAC (unit of metabolite.g tissue-1.min-1) is much 
lower than that obtained by glycolysis.

From those experimental observations, one has to 
choose the correct enzyme system to understand why 
there is no anarchy within a resting muscle. When 
there is no need to produce new ATP molecules in 
the oxidative phosphorylation system (such at rest), 
the regulatory enzymes slow down the activation 
of the glycolytic and mitochondrial pathways, 
favouring the synthesis of carbohydrates (and fat 
molecules, indirectly). How to become overweight 
while overeating and keeping out of exercise…!

�

FIGURE 4 - Factors involved in regulation of keys steps 
in glycolysis. Adapted from NEWSHOLME 
and LEECH1.

Three regulatory enzymes lead the way glycolysis down to pyruvate. Small molecules 

will act to stimulate (ADP, AMP, Pi, NH
4
+, …) or reduce (ATP, PC, …) glycolysis 

according to the need to enhance, or not, the synthesis of new molecules of ATP 

for muscle contraction, as an example.

TABLE 4 - Standard free and real energy released in skeletal human muscle7.

Enzymes ∆Go Keq Γ Keq/Γ ∆G Equilibrium

kJ.mol-1 kJ.mol-1

Hexokinase - 20.9 4,700 0.08 59,000 - 27.9 far from

Phosphofructokinase - 17.1 1050 0.03 35,000 - 26.5 far from

Aldolase + 23.0 1.10-4 9.10-5 11 - 6.1 near

Pyruvate kinase - 24.7 2,000 40 500 - 15.8 far from
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FIGURE 5 -

FIGURE 6 -

Mechanism of adaptation of glycogen degradation or synthesis in muscle and liver tissue according 
to the demand of energy. All enzymes are closed to the glycogen granules located in the cytosol.

Regulation of the activity of pyruvate dehydrogenase (PDH) by small molecules from metabolic cycles 
(Adapted from NEWSHOLME and LEECH1).
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The next regulation to investigate, as far as the 
limitation factor is concerned, is the transfer of free fatty 
acids into the mitochondria. The fatty acid has to be 
linked to coenzyme A (CoA) in the cytoplasm, forming 
a fatty acid-CoA molecule which is transported across 
the external membrane of the mitochondria to react 
with carnitine (an amino acid derivative synthesized 
in the liver and the kidney) by a specific enzyme, the 
fatty acid-carnitine. Taking an example with a C16 
fatty acid molecule (palmitate), the enzyme is called 
carnitine palmitoyltransferase 1 (CPT1) (FIGURE 8).

FIGURE 7 - Control of the metabolic fl ux of the CAC during physical exercise (Adapted from NEWSHOLME and LEECH1).
�
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Metabolic regulation of fatty acids

A translocase transfers the fatty acid-carnitine 
complex through the inner membrane of mitochondria 
and another fatty acid-carnitine complex (herewith 
CPT2) liberates the fatty acid to the matrix of the 
mitochondria where each fatty acid will enter the 
so-called ß-oxidation pathway (each long-chain fatty 
acid is oxidized step by step releasing acetyl-CoA 
molecules which enter into the Krebs cycle). 

The limitation step of fatty acid oxidation is the 
carnitine acyltransferase complex having a low Km, 
and thus a rapid saturated flux.
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FIGURE 8 - Transport of long-chain fatty acid molecules across the inner mitochondrial membrane.
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Metabolic adaptations during exercise in human subjects

The effect of different types of running on 
contents of glycogen (muscle and liver) and 
muscle concentrations of ATP, ADP, PC, Pi and 

It appears that short sprinting lowers PC 
concentration but has a reduced effect on glycogen 
stores. On the contrary, long distance endurance 
running depleted mostly glycogen content but 
has a moderate depletion in PC store and lactate 
production. In all exercise conditions, the muscle ATP 
store remains relatively high, but the Pi shows a major 
increase while the estimated ATP/ADP ratio drops 
to 10% as compared to resting condition. Thus, it 
seems quite clear that small ligands, such as Pi, ADP 
leads to the activation of specific regulatory enzymes. 

How could we investigate the metabolic adaptation 
related to any modification of a specific pathway 
(being activated, or not), as evidence of a change 
in enzyme activity ? The answers are: 1) to choose 
the right limiting enzyme in a metabolic cycle; 2) 
to measure the quantity of that enzyme. The latter 
investigation implies the isolation of that enzyme 
knowing that the metabolic flux is directly related 
to the amount of enzyme available in that tissue. At 
first glance, as soon as we do identify the limiting 
enzyme, we have to apply the general mechanism 
of protein synthesis through the usual sequence: 
DNA → mRNA → protein synthesis. For many 
years, molecular biologists did apply this sequence 
using highly specific tools. Nevertheless, we now 
know that mRNA amplifications do not implicitly 
postulate that new molecules of enzymes (proteins) 
have been made up in a tissue. Moreover, the last 
decade gave us new tools to investigate biogenesis 

TABLE 5 - Effect of running exercise on muscle glycolysis in human subjects1.

Concentrat ions are 

expressed as µmol.g-1 

wet weight (µM.g-1).

Activities Glycogen ATP PC Pi Lactate ATP/ADP

(% from rest) µM.g-1 µM.g-1 µM.g-1 µM.g-1 ratio

Rest 100 6.2 22.0 1.0 0.75 60

400 m 85 5.2 1.9 27.0 23.00 5

2 km 81 5.0 4.2 22.0 28.00 5

21 km 11 5.7 7.2 25.0 3.50 5

in skeletal muscle: the discovery of microRNA 
(miRNA) that posttranscriptionally regulates the 
expression of target genes8. The miRNAs are a class 
of about 22 nucleotide in all animals, plants and 
unicellular eukaryotes non-coding RNAs that control 
diverse biological functions9. DNA proportion from 
miRNA molecules represent about 60% of the total 
DNA package within a cell, while DNA leading to 
protein synthesis is near to 2% of the whole DNA 
particules10. Over 1000 miRNAs have been identified 
within the human genome, and a single miRNA 
may inhibit several target genes, thus acting on 
skeletal muscle differentiation, such as during skeletal 
myogenesis11-12. The increased production of miRNA 
will slow down the synthesis of new protein molecules 
by inducing mRNA cleavage, either by translational 
inhibition and or by promoting the degradation of 
target mRNA, thus inhibiting the production of new 
protein molecules. 

For certain, miRNAs are playing a major role in 
explaining adaptations to cardiac13-14 and skeletal 
muscle hypertrophy in resistance exercise training9, 
in sarcopenia15. Apparently, results from plasma 
circulating miRNAs might have potential value 
as physiological mediators of exercise-induced 
cardiovascular adaptation in athletes16.

Looking to the effects of exercise training, it 
becomes clear one needs to choose the correct 
enzymes to evaluate changes of specific metabolic 
adaptations in skeletal and cardiac muscles.

lactate have been measured to evaluate, indirectly, 
the stimulation of specific metabolic pathways1 
(TABLE 5):
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Numerous publications, even in high standing 
periodicals, concluded on the consequence of 
exercise training by inadequate interpretations 
of correct experimental data using either non-
equilibrium enzymes or miRNA modifications 
without consecutive quantitative and appropriate 
enzyme results.

As noted by NEWSHOLME and LEECH1 several 
authors concluded on adaptations induced by 
exercise training using lactate dehydrogenase (LDH), 
citrate synthase (CS), succinate dehydrogenase 
(SDH) (publications),  … or more recently from 
mRNA increases of CS and PGC1α (Peroxisome 
proliferators-activated receptot-ϒ coactivator) 

Factual interpretations and inadequate allegations

without an enhanced production of  the appropriate 
enzyme protein17.

Other publications use statistical conclusions to 
postulate a relationship adaptation induced by nutritional 
supplementation18-19, low-intensity exercise20. In those 
latter publications, the authors used correct statistical 
methods but emphasized their conclusions using r or r2 
values showing that 50 to 80% of their populations do 
not satisfy the relationship between the two variables.

The most stimulating conclusion on exercise 
adaptations seems to be the comparison between 
two different animal species: man versus other 
vertebrates. TABLE 6 gives us some examples on 
moving capacities between two species.

TABLE 6 - Comparison of performance between endurance athletes, man and humming bird3, 21.

Regulatory enzymes Humming bird Man

(µmol.g-1.min-1) (µmol.g-1.min-1)

Hexokinase 18.4 3.4

Glycogen phosphorylase 32.2 14.0

Phosphofructokinase 108.8 66.0

Carnitine palmitoyltransferase 7.2 1.9

α-oxoglutarate dehydrogenase 9.6 3.0

Comparing the activities of some regulatory enzymes 
of the carbohydrates and fatty acids substrate of a man 
and a humming bird, we have to admit the metabolic 
efficiency of the flying animal is more adapted to release 
energy for its exercise activities. The maximal activities 
of specific enzymes leading to ATP production in the 
cytosol and mitochondria are from 2 to 3.5 fold higher 
in pectoral muscle of the humming bird as compared 
to the vastus lateralis of a human endurance runner3, 21.

Eventually, we are still in the indecision state while 
looking to the precise role of miRNA adaptations 
induced, or not, by exercise training. Presently, we 
are aware of the importance of miRNA influence 
upon adaptations induced by exercise training. For 
example GÜLLER and RUSSELL22 observed a specific 
reduction of miRNA molecules while examining the 
consequences of resistance and endurance training 
sessions (FIGURE 9).
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FIGURE 9 - Infl uence of micro-RNAs (miRNA) on the production of new protein molecules (enzymes, structural 
proteins) in skeletal muscles. Adapted from GÜLLER and RUSSELL22.

S e v e r a l  a u t h o r s 

postulated the effect of 

decreased production of 

different miRNAs upon 

the activation of protein 

synthesis specifically 

involved in exercise 

adaptation. However, 

the initial signals that 

inhibit the production of 

miRNA are still under 

intense investigation.

Moreover, a recent publication emphasizes the 
action of miRNA-34a upon cardiac ageing and 
function in humans23. The quantity of miRNA-34a 
is regularly enhanced from childhood to elderly. 
However, we still need to know details on the precise 
actions induced through miRNA modifications: 
what are the signals acting upon some small DNA 
fragments of miRNA synthesis? Synthesis of miRNAs 
is reduced to enhance new protein molecules (such 
as during exercise training), while they are increased 
to slow down the synthesis of  enzymes and structure 
proteins under specific conditions (such as ageing).

These recent years, besides mRNAs and miRNAs, 
it has been discovered that single RNAs could 
form circular RNA molecules (circRNAs) that are 
predominant transcript isoforms in hundreds of 
human genes24. In March 2013, a paper of MEMCZAK  
et al. published in “Nature” provides evidence that 
numerous circRNAs (about 100 nucleotides each) 
form an important class of post-transcriptional 
regulators in human tissues25. Their data argue 
that circRNAs can be used as potent inhibitors of 
miRNAs, thus inducing protein synthesis in specific 

tissues. For certain it remains to determine if those 
recent facts could be applied under physical exercise 
training. But, once again, what are the signals 
induced by exercise that stimulate the circRNAs?

In order to evaluate the precise biochemical 
mechanisms involved in exercise conditions, as well 
as during training practise, it appears compulsory 
to focus the attention to the regulatory enzymes in 
the appropriate metabolic pathway. Enzymes near-
equilibrium may be stimulated by general nuclear 
factors (such as several hormones) but they will 
not modify the flux of substrates within a specific 
pathway. On the contrary, the increase of far-from-
equilibrium enzymes are needed to evaluate the real 
fluxes and adaptations observed as a consequence of 
metabolic increase, especially in substrate transport, 
the Krebs cycle, and oxidative phosphorylation.

Those regulations seem to be under the expression 
of circRNAs and mi-RNAs which either increase or 
reduce protein molecule synthesis. We still need 
to identify the factors acting on circRNAs and 
miRNAs synthesis under exercise condition and 
training adaptation.

Exercise training 

miRNAs 

Resistance Endurance 

miRNA-1 

miRNA-133a 

miRNA-23a 

miRNA-696 

??? 

Hypertrophy 
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