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ABSTRACT: Genome-wide selection (GWS) is currently a technique of great importance in plant 
breeding, since it improves efficiency of genetic evaluations by increasing genetic gains. The 
process is based on genomic estimated breeding values (GEBVs) obtained through phenotypic 
and dense marker genomic information. In this context, GEBVs of N individuals are calculated 
through appropriate models, which estimate the effect of each marker on phenotypes, allowing 
the early identification of genetically superior individuals. However, GWS leads to statistical 
challenges, due to high dimensionality and multicollinearity problems. These challenges 
require the use of statistical methods to approach the regularization of the estimation process. 
Therefore, we aimed to propose a method denominated as triple categorical regression (TCR) 
and compare it with the genomic best linear unbiased predictor (G-BLUP) and Bayesian least 
absolute shrinkage and selection operator (BLASSO) methods that have been widely applied to 
GWS. The methods were evaluated in simulated populations considering four different scenarios. 
Additionally, a modification of the G-BLUP method was proposed based on the TCR-estimated 
(TCR/G-BLUP) results. All methods were applied to real data of cassava (Manihot esculenta) 
with to increase efficiency of a current breeding program. The methods were compared 
through independent validation and efficiency measures, such as prediction accuracy, bias, and 
recovered genomic heritability. The TCR method was suitable to estimate variance components 
and heritability, and the TCR/G-BLUP method provided efficient GEBV predictions. Thus, the 
proposed methods provide new insights for GWS.
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Introduction

Genome-wide selection (GWS) is based on dense 
marker maps covering the entire genome, where all genes 
of a quantitative trait are expected to be in linkage dis-
equilibrium (LD) with these markers. Thus, GWS is used 
to explain the entire genetic variation of a quantitative 
trait and predict its individual genetic merit (Meuwissen 
et al., 2001). The practical application of this genomic in-
formation is a challenge, since the main problem is es-
timation of a large number of marker effects (n) from a 
limited number of phenotyped and genotyped individuals 
(N). Additionally, multicollinearity between markers is a 
relevant issue to be overcome in GWS modeling (Gianola 
et al., 2003). A feasible solution is to treat the markers as 
random effects under genomic best linear unbiased pre-
dictor (G-BLUP) (Goddard, 2009; Van Raden, 2008; Whit-
taker et al., 2000) or Bayesian frameworks (De los Campos 
et al., 2009b). These methods estimate simultaneously n 
effects based on N observations (n >> N), but the smaller 
the n/N ratio, the more accurate the estimation process is. 
Resende et al. (2014) introduced a new and simple GWS 
method named triple categorical regression (TCR); never-
theless, it has not been implemented and evaluated yet. 
This method returns phenotypes in the three categories 
(MM, Mm, and mm) of marker genotypes (3/N << n/N) 
to capture the genetic effects in a locus with genotype 
categories BB, Bb, and bb, where B is the favorable allele. 
This is consistent with the philosophy of the infinitesimal 
genetic model and G-BLUP. 

Breeding programs for cassava (Manihot esculenta) 
have increased intensely (Graciano-Ribeiro et al., 
2009; Nassar, 2007) and have recently used genomic 
information (Azevedo et al., 2016; Oliveira et al., 
2012). Thus, studies to improve the statistical methods 
of genomic selection would have a positive impact on 
genetic improvement of cassava. First, the efficiency 
of the TCR method was evaluated and then compared 
with the G-BLUP and Bayesian least absolute shrinkage 
and selection operator (BLASSO) methods using 
simulated populations based on four different scenarios 
(two heritability levels and two dominance status). In 
addition, we proposed a new method denominated as 
TCR/G-BLUP, which estimates heritability through TCR 
and uses it in the G-BLUP method. The efficiency of all 
the methods was also tested using real data on six traits 
of cassava.

Materials and Methods

Simulated datasets
Data were generated as described by Azevedo et 

al. (2015) and simulated using Real Breeding software 
(Viana, 2011; Viana et al., 2016b). It was generated 
5,000 individuals from the crossing of two populations 
with linkage equilibrium. This resultant population was 
subjected to five generations of random mating without 
mutation, selection, or migration. Thus, the resulting 
composite population presented both Hardy-Weinberg 
equilibrium and linkage disequilibrium (LD). The LD 
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value (∆) in a composite population is given by

∆ =
−






 − −ab

ab
a a b bp p p p

1 2
4

1 2 1 2θ
( )( ) ,

where a and b are two single nucleotide polymorphisms 
(SNPs), two quantitative trait loci (QTLs), or one SNP 
and one QTL, θ is the frequency of recombinant gam-
etes, and p1 and p2 are the allele frequencies in the pa-
rental populations 1 and 2, respectively (Viana, 2004). 
Consequently, the LD value depends on the allele fre-
quencies in the parental populations. 

It was generated 1,000 individuals from 20 full-
sib families (each one with 50 individuals) with diploid 
genomes of 200 centimorgans (cM) (L = 2 morgans) in 
length and with 2,000 equidistant SNP markers sepa-
rated by 0.10 cM among the ten chromosomes. One 
hundred QTLs were distributed in the genome, where 
according to the expression presented by Goddard et al. 
(2011), 95 % of the expected proportion of the genetic 
variation has to be explained by markers. This value 
shows that the genome was sufficiently saturated by 
markers.

This simulation provides a typical small effec-
tive population size (Ne = 39.22) and a large LD in 
the breeding populations. The phenotypic traits were 
simulated taking into account the infinitesimal model 
or polygenic inheritance, that is, traits controlled by 
genes with a small effect. In other words, each of the 
100 QTLs had one additive effect of small magnitude 
on the phenotype. The additive and dominance effects 
were considered independently and were both normally 
distributed with mean zero and genetic variance, allow-
ing the desired level of heritability. The genotypic val-
ues of homozygotes were obtained taking into account 
Gmax = 100(m + a) as the maximum value and Gmin 
= 100(m – a) as the minimum value, where a is the ge-
notypic value of the homozygote and m is the mean of the 
genotypic values. To obtain the phenotypic value, a ran-
dom deviation was added to the genotypic value consider-
ing the normal distribution N(0,σe

2 ), where the variance 
σe

2  was defined according to two levels of heritability in 
the narrow sense at approximately 0.30 and 0.50. Accord-
ing to Azevedo et al. (2015), these heritability levels are 
chosen to represent a trait with low and moderate herita-
bility in cases where the genomic selection is expected to 
be higher than the phenotypic selection. The minor allele 
frequency was smaller than 5 % for all loci.

Scenarios
Four different scenarios were simulated and used 

in the analyses: two heritability levels (0.30 and 0.50, 
associated with the restricted-sense heritability values of 
0.20 and 0.35, respectively) and dominance (absence and 
complete). The description of the scenarios is presented 
in Table 1. These four scenarios were analyzed using the 
TCR, G-BLUP, and BLASSO methods. Each scenario was 
simulated ten times, where nine replicates were used 
as training populations and one replicate was used as 

the validation population. Estimates based on each of 
the nine replicates were validated to calculate accuracy, 
bias, and genomic heritability. Thus, these measures 
were calculated in each repetition of the simulation and 
the mean was generated.

Real data
Genomic selection was performed for six traits 

evaluated in cassava (Manihot esculenta). The experiment 
was carried out under a randomized block design with 
three replicates (10 plants per plot), using 358 accessions 
of cassava. The accessions were genotyped for 390 SNP 
markers. The experiment was established in Cruz das 
Almas, Brazil (12°48’38” S and 39°6’26” W; 220 m above 
sea level) in 2010 and 2011. We evaluated shoot weight, 
total root productivity, percentage amylose content of 
the starch fraction, starch content, hydrogen cyanide, 
and starch yield. Further details of the experiment are 
described at Oliveira et al. (2012).

Triple categorical regression
Using the TCR procedure, for estimation, the pop-

ulation was initially divided into two subpopulations: 
one with individuals or families above the general aver-
age (subpopulation 1, with a higher phenotypic mean u1 
value) and another with individuals or families below 
the general average (subpopulation 2, with a lower phe-
notypic mean u2 value). The difference between these 
values (u1 – u2) is attributed to the higher frequency (p) 
of favorable alleles (and lower frequency of unfavorable 
alleles) in subpopulation 1 in relation to those in sub-
population 2. Thus, u1 – u2 is explained by ∆p = p1 – p2, 
where ∆p is the difference in allele frequencies p1 and 
p2 between these two subpopulations. ∆p values were 
calculated for each marker. Those with positive signals 
were allocated as favorable (type B), that is, their latent 
additive genetic effects or allelic substitution effects (ai) 
were taken as positive. Likewise, those with negative ∆p 
signs had their ai value assigned as negative. The encod-
ing of the incidence matrix (W) was reconfigured. The 
marker genotypes consisting of 0 (mm), 1 (Mm), and 2 
(MM) are compatible with a gene genotype given by 0 
(bb), 1 (Bb), and 2 (BB), where allocation of BB or bb is 
dictated by ai signal. Obviously, the correct allocation of 
BB or bb is probabilistic. On average (statistical expecta-
tion), there is correctness in most loci and most errors 

Table 1 – Scenarios with the respective averages of the additive 
heritability (ha

2 ) due to dominance (hd
2) and total heritability (hg

2 ), 
genetic architectures (traits controlled by genes of small effect; 
polygenic inheritance), and dominance status (absence of 
dominance and complete dominance).

Scenario Dominance status ha
2  hd

2 hg
2 

Scenario 1 Absence 0.22 - 0.22
Scenario 2 Absence 0.33 - 0.33
Scenario 3 Complete 0.21 0.10 0.31
Scenario 4 Complete 0.35 0.17 0.52
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are found in markers with very small effects (tending to 
zero). The approach does not demand an iterative com-
putational method and only uses the concept of genetic 
distance (∆pi signal) associated to both subpopulations. 

The complete algorithm of the method is de-
scribed below: 

i) Subdivide the training population into two according to 
phenotype and corrected for controllable environmental 
effects, as described by De los Campos et al. (2013). 
Consider the following model:

yRAW = X1f + X2r + e

where yRAW is the total phenotype vector without 
correction, f is the vector of fixed environmental effects 
with incidence matrix X2, r is the vector of random 
environmental effects with a matrix of incidence Z , and 
e is the random residual vector assumed as e N I e ( , )0 2s , 
where σe

2  is the residual variance and I is an identity 
matrix. The corrected phenotype is given by 

ˆ ˆ ˆy y X f X r
RAW

= − +1 2

where f̂  and r̂  are estimated and predicted via mixed 
models.

ii) Calculate the value of ∆pi. 

iii) For the marker genotypes consisting of 0 (mm), 1 
(Mm), and 2 (MM), change zero by 2 and 2 by zero in 
each marker column with a negative ∆pi signal, creating 
the gene genotypes to be used in the next step. 

iv) For the gene genotypes given by 0 (bb), 1 (Bb) and 2 
(BB), determine the quantity (nBB) of code 2 in the line 
corresponding to each individual j of the marker file, 
and do the same for codes 1 and zero, obtaining nBb and 
nbb, respectively. 

v) Fit the TCR, defined as follows:

y=1m+ bBBnBBI(BB)+bBbnBbI(Bb)+bbbnbbI(bb) + e
 
where I(BB), I(Bb) and I(bb) are indicator variables. If the ana-
lyzed category is BB, then I(BB)=1 and I(Bb)=I(bb)=0. Simi-
larly, the same can be defined for the other genotype 
categories. Regression coefficients ( β̂ ) are estimated us-
ing the least-squares method thus providing the global 
genetic value of each genotype category as follows:

ˆ ( , ) / ( ); ˆ ( , ) / ( )β βBB BB BB Bb Bb BbCov y n Var n Cov y n Var n= = ; 
and ˆ ( , ) / ( )βbb bb bbCov y n Var n=  

vi) Obtain the genotypic values ( ûBB, ûBb, and ûbb) ac-
cording to the genotype category of markers by calculat-
ing the sum of all loci in each individual of the valida-
tion population as follows:

ûBB = b̂BB nBB=2aB+dBB (total genotypic value of catego-
ry BB in the nBB locus), ûBb= b̂Bb nBb=aB+ab+dBb (total 
genotypic value of category Bb at the nBb locus), and ûbb
= b̂bb nbb=2ab+dbb (total genotypic value of category bb 
in the nbb locus), where aB is the additive genetic effect of 
genotype B, ab is the additive genetic effect of genotype 
b, dBB= –2(1 – p)2d, dbb= –2p2d, and ai= aB– ab, where 
d the genotypic value for one heterozygote (Falconer, 
1989).

vii) Allocate the total genotypic values of each individual 
in a vector.

viii) Compute the genetic variances, as detailed in Table 2.

ix) Estimate the heritability given by ˆ ˆ /ha u y
a

2 2 2= σ σ  and 
ˆ ˆ /hd u y

d

2 2 2= σ σ , where σy
2  is the variance between indi-

vidual phenotypic values.
Compositions of genotypes in terms of frequencies, 

additive effects, and dominance and variances are 
shown in Table 2 (Falconer, 1989). This information was 
used to compose genetic variance estimators by the TCR 
method.

Estimators of genetic effects
Since genotypic values a and –a (Table 2) of BB 

and bb are related to the additive effects, the sum 
ˆ ( ˆ) ˆ ˆµ αa BB bbf u u= = +  provides an estimate of additive ef-
fects of the individual. These can be used for computa-
tion of selective accuracy and prediction bias.

Since d is the genotypic value of heterozygote 
Bb (Table 2) and is related to the dominance effect, it 
is assumed that ˆ ˆµd Bbu= , thus, providing an estimate 
of dominance effects of the individual. This allows to 
compute selective accuracy and bias in predicting domi-
nance effects. With p tending to q (p ≈ q ≈ 0.50), the 
quantity ˆ ˆ ˆ ˆµd Bb BB bbu u u= − +  is also defined as an esti-
mator of these effects.

Table 2 – Allele frequencies (freq), genotypic values (GVs), 
parametric (theoretical) genetic additive effects (ua), dominance 
effects (ud), and variances obtained from the triple categorical 
regression method.

Genotype freq GV ua ud

BB p2 a 2aB = 2qa dBB = –2q2d 
Bb 2pq d aB+ab = (q – p)a dBb = 2pqd 
bb q2 -a 2ab = –2 pa dbb = –2p2d 
Genotype freq  

BB p2 p2(2aB)
2 = p2(2qa)2 p2(–2q2d)2 

Bb 2pq 2pq(aB+ ab)
2 = 2pq[(q – p)a]2 2pq(2pqd)2 

bb q2 q2(2ab)
2 = q2(–2pa)2 q2(–2p2d)2

Sum σ ua

2 = 2pqa2 σ ud

2 = (2pqd)2 

p is the allele frequency of B; q = 1 – p is the allele frequency of b; a and d are 
the genotypic values for one homozygote and heterozygote, respectively; aB 
and ab are the additive genetic effects of genotypes B and b, respectively; and 
a is the allelic substitution effect.

σ ua

2 σ ud

2
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Estimators of genetic variances
Additive variance

According to Table 2, σua

2 =2pqa2 and =f(â)=
ûBB+ûbb; thus, σua

2 =2pqf(â) = 2pqVar(ûBB+ûbb) is an es-
timator for the additive genetic variance, where â  is an 
intrinsic estimator for the allelic substitution effect on 
the loci.

Variance of dominance
Based on Table 2, σud

2 =(2pqd)2. The contrast 2
ûBb–ûBB+ûbb  provides an estimate of d, and, therefore, 
σud

2 = (2pq)2Var(2ûBb – ûBB + ûbb) is an estimator for the 
genetic variance of dominance. With p ≈ q ≈ 0.50, the 
quantity σud

2 =(2pq)24Var(ûBb – ûBB + ûbb) is also defined 
as an estimator of σud

2 .

Total genotypic variance
The variance of the summation ûBb + ûBB + ûbb  

provides information on the total genotypic variance as 
a function of p, d, and a. Thus, Var(ûBb+ûBB+ûbb) = 
f(p, d, a) and the additive and dominance genetic vari-
ances can be extracted from f(p, d, a) through σua

2 = 
2pqVar(ûBb+ûBB+ûbb) and σud

2 =(2pq)2Var(ûBb+ûBB+
ûbb), respectively. Thus, the total genotypic variance is 
given by σug

2 =[2pq +(2pq)2]Var(ûBb+ûBB+ûbb) .

G-BLUP method
The G-BLUP method is based on the following 

linear mixed model given by

y = 1m + Za + Zd + e

where y is a vector of phenotypes (N × 1, where N is the 
number of genotypes and phenotypes of individuals); µ 
is the general mean and 1 is the vector with dimension 
(N × 1), whose elements are equal to 1; a is the vector 
of additive genomic values of individuals (N × 1) with 
incidence matrix Z (N × N), given the variance structure 
a~N(0,Ga σa

2 ), where σa
2  is the additive variance and Ga 

(N × N) is the additive genomic relationship matrix; d 
is the vector of dominance genomic values of individu-
als (N × 1) with incidence matrix Z (N × N), given the 
variance structure d~N(0,Gdσd

2 ), where σd
2  is the domi-

nance variance and Gd (N × N) is the dominance ge-
nomic relationship matrix; and e is the random residual 
vector, with e~N(0, Iσe

2 ), where σe
2  is the residual vari-

ance and I an identity matrix. 
According to Vitezica et al. (2013), the genomic 

relationship matrices for the additive and dominance ef-
fects (Ga and Gd) are given, respectively, by

G WW
p qa

i
n

i i
= ′
∑ =1 2( )

 and G SS
p qd

i
n

i i
= ′
∑ =1

22( )

where pi and qi are the allele frequencies of locus i, W is 
an incidence matrix for the allelic substitution vectors of 
markers (a), and S is the incidence matrix for the effect 

of vectors due to marker dominance (d). According to 
Da et al. (2014), Resende et al. (2014), Van Raden (2008), 
Vitezica et al. (2013), and Wang and Da (2014), the ele-
ments of W and S are given by

W
If MM then p q
If Mm then p q p
If mm then p

=
− →
− → −
− →

   
   
   0

,
,
,

2 2 2
1 2

2 −−





 2p
 and

S
If MM then q
If Mm then pq
If mm then p

=
→
→
→ −







   
   
   0

,
,
,

0 2
1 2

2

2

2  

TCR/G-BLUP method
In order to make the G-BLUP genomic values 

more accurate, an improvement to the method was 
proposed using the estimated heritability provided by 
TCR, characterizing the TCR/G-BLUP method. In this 
method, the strategy to determine the TCR-estimated 
heritability in the mixed model equations of G-BLUP 
was adopted.

 
BLASSO method

The BLASSO (Park and Casella, 2008) regression 
for genomic selection was proposed by De los Campos et 
al. (2009b). BLASSO includes a common variance term 
for the genetic and residual effects of markers. There-
fore, the basic linear model is used to predict the effects 
of markers, y = 1m + Wma + Smd + e, where y, 1, W, S, 
and e were defined previously, ma is the vector of addi-
tive genetic effects of markers, and md is the vector of 
genetic dominance effects of markers.

The BLASSO method is a penalized Bayesian re-
gression procedure whose general estimator is given by 

ˆ {( ˆ ) ( ˆ )m y Wm Sm y Wm Smm a d a d= − − ′ − −argmin

+ +
=
∑ λ λa a
i

n

dm
i

1

}

where la and ld are regularization parameters and 
ˆ ˆ ˆm m ma d= [ ]′ . The BLASSO method was implemented 

in the Bayesian Generalized Linear Regression (BGLR) 
package (De los Campos et al., 2009b; Pérez et al., 2010) 
of the R software package, using 100,000 Markov chain 
Monte Carlo iterations, with a burn-in and thin of 20,000 
and ten iterations, respectively. 

Computer resources
The computational codes of all methods were 

implemented in R software (R Core Team, 2016). 
The G-BLUP method was performed with the Ridge 
Regression and Other Kernels for Genomic Selection 
(rrBLUP) package with the mixed.solve function. The 
BLASSO method was implemented through the BGLR 
package with the BLR function. The algorithm used for 
development of the TCR method is available at http://
www.ppestbio.ufv.br/?page_id=1811.
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Comparison of the methods 
The methods were compared by means of inde-

pendent validations in which the first nine replicates 
were assumed as training populations and used to esti-
mate the effects of SNP markers on the phenotype. The 
tenth repetition was assumed as a validation population 
and used to predict the GEBVs by estimating the effects 
of the markers obtained in the training population. The 
measurements to predict efficiency used were accuracy 
(râa and rddˆ ), recovered prediction bias (byâ and byd̂ ), 
and additive and dominance genomic heritability (haM

2  and 
hdM

2 ) of the estimates based on each of the four simulated 
scenarios.

Accuracy is defined as the correlation between the 
GEBVs and the parametric genetic values. Prediction 
bias is defined as the regression coefficient between phe-
notype and the GEBV, where it is understood that the 
GEBVs were overestimated for regression coefficients 
< 1 and underestimated for regression coefficients > 1. 
The recovered additive molecular heritability is given by 

haM
a

a d e

M

M M

2
2

2 2 2=
+ +

σ

σ σ σ
,

where σa i
n

i i iM
p q m2

1
22= ∑ =  is the additive genomic vari-

ance, where mi
2  is the square of the ith marker with al-

lele frequencies equal to pi and qi. Molecular heritability 
due to dominance is given by 

hdM
d

a d e

M

M M

2
2

2 2 2=
+ +

σ

σ σ σ
, 

where σd i
n

i i i
M

p q d2
1

22= ∑ = ( ) , where di is the genotypic 
value of the heterozygote. The relative efficiency is giv-
en by the ratio between accuracies from the methods 
compared. All these measurements were obtained for 
each replicate in each scenario and the general results 
were reported as average values.

Efficiencies of the G-BLUP and TCR/G-BLUP meth-
ods were compared using six traits evaluated in Manihot 
esculenta. The experiment was set up in a randomized 
block design, with three replicates and ten plants per plot, 
and phenotypes were corrected for block effects. Of the 
358 individuals, 50 were randomly separated to compose 
the validation population. Efficiency measurements were 
the predictive ability ( ryyˆ ), consisting of the correlation be-
tween the estimated genomic values and the phenotypic 
values of the validation population, and prediction bias.

 
Results and Discussion

Simulated data
Table 3 shows the average results of accuracy, 

prediction bias, and heritability obtained by the TCR, 
G-BLUP, and BLASSO methods, associated with the 
predicted additive genomic values that considered the 
absence of dominance and complete dominance. For 
the additive effects, the TCR method outperformed the 
G-BLUP and BLASSO methods in terms of heritability 
estimation (providing estimates very close to the para-
metric heritability), except for scenario 1. For scenario 
2, all three methods did not report suitable estimations 
of heritability. In addition, the TCR method provided es-
timates of non-biased additive genomic values, since the 
regression coefficients were close to the unit. The unbi-
ased property is important when selection involves in-
dividuals of many generations using effects of estimated 
markers in a single generation. On the other hand, the 
TCR method provided lower accuracy than the G-BLUP 
and BLASSO methods did, with the BLASSO method 
standing out in terms of prediction accuracy. In GWS 
studies for genetic improvement of table grapes, Viana 
et al. (2016a) also reported the superiority of the BLAS-
SO method over the ridge regression BLUP method (re-
parametrization of G-BLUP method) for its efficiency in 
predicting additive genomic values. 

Table 3 – Additive heritability (h M
2
a ), accuracy (râa), and bias (byâ), with respective standard deviations, of the additive genomic values estimated by 

the triple categorical regression (TCR), genomic best linear unbiased predictor (G-BLUP), and Bayesian least absolute shrinkage and selection 
operator (BLASSO) methods, considering the additive-dominance model on simulated data.

Model Scenario Method h M
2
a râa byâ

Additive
TCR 0.31 ± 0.03 0.65 ± 0.02 1.09 ± 0.01

Scenario 1 G-BLUP 0.27 ± 0.04 0.64 ± 0.03 1.48 ± 0.04
BLASSO 0.28 ± 0.03 0.76 ± 0.02 1.03 ± 0.06

Additive
TCR 0.47 ± 0.04 0.69 ± 0.02 0.77 ± 0.01

Scenario 2 G-BLUP 0.50 ± 0.04 0.79 ± 0.02 1.30 ± 0.02
BLASSO 0.50 ± 0.05 0.82 ± 0.01 1.00 ± 0.08

Additive-dominance
TCR 0.23 ± 0.03 0.57 ± 0.05 1.09 ± 0.01

Scenario 3 G-BLUP 0.15 ± 0.05 0.63 ± 0.03 1.25 ± 0.35
BLASSO 0.17 ± 0.09 0.63 ± 0.03 1.44 ± 0.65

Additive-dominance
TCR 0.35 ± 0.04 0.62 ± 0.02 1.09 ± 0.01

Scenario 4 G-BLUP 0.27 ± 0.03 0.70 ± 0.02 1.17 ± 0.13
BLASSO 0.18 ± 0.05 0.69 ± 0.03 1.69 ± 0.45

Scenarios with traits controlled by genes of small effects: Scenario 1 ( ha
2 = 0.22), Scenario 2 ( ha

2 = 0.33), Scenario 3 ( ha
2  = 0.21 and hd

2  = 0.10), and Scenario 4 
( ha

2 = 0.35 and hd
2 = 0.17).
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The average results of accuracy, prediction bias, 
and heritability obtained through the TCR, G-BLUP, 
and BLASSO methods, associated with the predicted 
dominance genomic values, are presented in Table 4. 
For the dominance effects, the TCR method present-
ed, on average, heritability estimates that were coin-
cident with the parametric heritability. The G-BLUP 
and BLASSO methods underestimated heritability and 
showed biased values. The TCR method also provided 
higher accuracy than the G-BLUP and BLASSO meth-
ods did (about 0.40 in the TCR method; from 0.31 to 
0.40 in G-BLUP; and from 0.29 to 0.35 in BLASSO) and 
was able to better extract the ratio between dominance 
variance and additive variance. In addition, the TCR 
method presented higher accuracy values for the ef-
fects due to dominance and ratio between variances 
close to parametric values (ratio between dominance 
and additive variances of around 0.50). Thus, for the 
dominance effects, the TCR method showed superior-
ity for all criteria considered.

The results of the simulation study revealed suit-
ability of the TCR method estimators. According to De los 
Campos et al. (2009a), the ability to estimate heritability 
accurately may be a more sensitive criterion for discrimi-
nating and evaluating statistical methods in GWS. This 
greater sensitivity is because heritability is a more com-
plex parameter than the simple correlation coefficients 
used to estimate accuracy of predictions. Furthermore, 
according to Azevedo et al. (2015) and Makowsky et al. 
(2011), the heritability recovered can be considered a 
measurement of quality of GWS model fitting.

The results in Tables 3 and 4 were obtained from 
simulated data, whose mean value of 2pq is equal to 
0.49 and thus has a mean p approximately equal to 
mean q of 0.5, which fits well with broad-based popu-
lations, such as compounds and F2 populations. In this 
case, the TCR method fits better and is a recommended 

alternative. These results are valid for Fisher’s infini-
tesimal genetic model, which does not admit genes of 
larger effects as those in the simulated scenarios.

Table 5 shows the average results of additive 
heritability and heritability due to dominance asso-
ciated with the heritability estimation through total 
genotype variation. Heritability, in the broad sense, 
estimated directly by the estimator of total genotypic 
variance, is an important genetic parameter for plants 
that undergo vegetative propagation (e.g., cassava, eu-
calyptus, and sugarcane) or self-fertilization in which 
the genotype is inherited integrally by the offspring. 
On the other hand, heritability in the restricted sense, 
estimated directly by TCR, is an important genetic pa-
rameter, especially when the interest is the prediction 
gain due to selection for sexual propagation (Falconer, 
1989). The results in Table 5 show that it is possible to 
obtain the additive (restricted sense) heritability using 
the total genotypic variance estimator and the domi-
nance status.

 
Real data

The average results of predictive ability, prediction 
bias, and heritability obtained by the TCR and G-BLUP 
methods, associated with the predicted additive 
genotypic values of six traits evaluated in Manihot 
esculenta, are presented in Table 6. The TCR method 
provided unbiased estimates and smaller values of 
predictive ability than the G-BLUP method did. Because 
TCR reported better heritability and G-BLUP showed 
higher accuracy (simulated data) or predictive ability 
(real data), the strategy to establish the TCR-estimated 
heritability in the mixed-model equations of G-BLUP 
was adopted, generating the TCR/G-BLUP method. 
This approach increased the predictive ability and 
reduced the bias of the G-BLUP method and is therefore 
recommended for practical uses.

According to Oliveira et al. (2012), cassava cultiva-
tion is of great importance to Brazil, as it is one of the 
most relevant commodities for food security. Thus, the Table 4 – Heritability due to dominance (h M

2
d ), accuracy (r

ddˆ
), and 

bias (b
yd̂

), with their respective standard deviations, of the 
genomic values according to the dominance estimated by the 
triple categorical regression (TCR), genomic best linear unbiased 
predictor (G-BLUP), and Bayesian least absolute shrinkage and 
selection operator (BLASSO) methods, and the ratio between 
the heritability values according to the dominance and additive 
values ( h M

2
d / h M

2
a ), considering the additive-dominance model on 

simulated data.

Scenario Method h M
2
d r

ddˆ
b

yd̂
h hdM

2
M

2/ a

TCR 0.10 ± 0.01 0.40 ±0.02 0.90 ± 0.14 0.43
Scenario 3 G-BLUP 0.13 ± 0.06 0.31 ± 0.04 0.70 ± 0.30 0.87

BLASSO 0.13 ± 0.02 0.29 ± 0.05 3.20 ± 5.34 0.76
TCR 0.17 ± 0.02 0.40 ± 0.02 0.96 ± 0.12 0.49

Scenario 4 G-BLUP 0.20 ± 0.02 0.40 ± 0.04 0.74 ± 0.22 0.74
BLASSO 0.29 ± 0.03 0.35 ± 0.03 0.46 ± 0.08 1.61

Scenarios with traits controlled by genes of small effects: Scenario 3 ( ha
2 = 

0.21 and hd
2 = 0.10), and Scenario 4 ( ha

2 = 0.35 and hd
2 = 0.17).

Table 5 – Additive heritability (h M
2
a

), heritability due to dominance 
(h M

2
d ), and heritability in the broad sense (h M

2
g ), with respective 

standard deviations, estimated by the triple categorical regression 
method, considering the genotypic variances and the additive-
dominant model on simulated data.

Scenario Direct estimator h M
2
a h M

2
d h M

2
g

Scenario 3
σ aM

2
 and σdM

2
 0.23 ± 0.03 0.10 ± 0.01 0.33

σ gM
2

 0.24 ± 0.03 0.12 ± 0.01 0.36

Scenario 4
σ aM

2
 and σdM

2 0.35 ± 0.04 0.17 ± 0.02 0.52

σ gM
2 0.37 ± 0.04 0.18 ± 0.02 0.55

Scenarios with traits controlled by genes of small effects: Scenario 3 ( ha
2  = 

0.21 and hd
2  = 0.10) and Scenario 4: ( ha

2  = 0.35 and hd
2  = 0.17).
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prospects of using GWS for cassava traits are crucial, 
since the estimation of genomic values of the individu-
als allows the selection of genetically superior plants in 
the seedling phase, increasing selection gain per unit of 
time. The estimates of heritability obtained by the TCR/
G-BLUP method based on cassava traits were similar to 
the values found by Azevedo et al. (2016) and Oliveira 
et al. (2012).

Conclusions

Based on simulated data, the TCR method out-
performed the G-BLUP and BLASSO methods, show-
ing heritability estimates close to the parametric value. 
Moreover, compared with the other methods, the TCR 
method presented greater accuracy and less bias in the 
prediction of the genomic values due to dominance. 
However, for the additive genomic values, it was less 
accurate. Based on real data and considering the addi-
tive model, TCR was less accurate in terms of prediction 
ability. However, when combined with G-BLUP, it was 
more accurate. The TCR/G-BLUP method was superior 
to the G-BLUP method, with increased predictive abil-
ity and lower bias production, for the traits evaluated in 
cassava.
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