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ABSTRACT: Sugarcane mills in Brazil collect a vast amount of data relating to production on an 
annual basis. The analysis of this type of database is complex, especially when factors relating 
to varieties, climate, detailed management techniques, and edaphic conditions are taken into 
account. The aim of this paper was to perform a decision tree analysis of a detailed database 
from a production unit and to evaluate the actionable patterns found in terms of their usefulness 
for increasing production. The decision tree revealed interpretable patterns relating to sugarcane 
yield (R2 = 0.617), certain of which were actionable and had been previously studied and re-
ported in the literature. Based on two actionable patterns relating to soil chemistry, intervention 
which will increase production by almost 2 % were suitable for recommendation. The method 
was successful in reproducing the knowledge of experts of the factors which influence sugar-
cane yield, and the decision trees can support the decision-making process in the context of 
production and the formulation of hypotheses for specific experiments.
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Introduction

The sugarcane (Saccharum spp.) industry sector, 
following the evolution of information technologies, has 
benefited from the automation of processes associated 
with the collection and storage of data during their nor-
mal operation. These processes thus generate databases 
related to production and factors that can influence the 
industry, including those at the commercial block level, 
which is the smallest administrative unit of commercial 
fields. According to Lawes and Lawn (2005), these large 
databases have shown a wide range of uses, including 
predictions of production – as a basis for seasonal plan-
ning – and identification of the soil, climate, and man-
agement factors that affect yield. The main advantage 
of analysing databases of production areas is that they 
represent what actually occurred at the commercial lev-
el and capture, on a large scale, a wide range of interac-
tions between factors, which is difficult to accomplish 
through experimentation in the field. 

Furthermore, research on the interaction of gen-
otype × management × environment with sugarcane 
yield and sugarcane ratoon yield decline has shown that 
management and weather conditions are more influen-
tial than genotype (Ramburan et al., 2011). However, 
studies that simultaneously analyse variables related to 
different varieties, climate, detailed management, and 
edaphic conditions are still rare (Ellis et al., 2001; Fer-
raro et al., 2009; Lawes et al., 2002). Such data sets with 
greater availability of attributes relating to the produc-
tion system lead to a better description of the system, 
and improve the knowledge that can be obtained from 
such data (Zhang et al., 2005; 2006). 

Taking into account the complexity of the avail-
able databases and the focus on identifying patterns that 
will increase production, the decision tree modeling 

technique can be adopted, since it has already been suc-
cessfully applied to several other crops to describe the 
factors that influence yield (De’ath and Fabricius, 2000; 
Ferraro et al., 2009; 2012; Zhang et al., 2005; Zheng et 
al., 2009). We refer to Hastie et al. (2009) for further 
details about decision trees.

In this paper, we discuss how we performed an 
analysis using a decision tree of a detailed database from 
a sugarcane mill and evaluated the usefulness of action-
able patterns found in increasing production.

Materials and Methods

The production unit under study is in Teodoro 
Sampaio, in the state of São Paulo, Brazil (22°31’ S, 
52°10’ W, altitude 321 m). The supplied commercial 
block records for the production and ripening of sug-
arcane correspond to the seasons 2010/11 and 2011/12 
and represent a harvested area of approximately 25,000 
ha per season, with an average block size of 22.6 ha. 
The climate in this region is characterized as suitable for 
rain-fed sugarcane with an annual water deficit between 
10 and 40 mm, mean daily temperature between 20 and 
24 °C, and mean daily temperature of the coldest month 
above 17 °C. The weather for the period evaluated is 
shown in Figure 1.

The studied sugarcane production system was 
non-irrigated. Nitrogen and potassium fertilization was 
applied from the second cut onwards, and phosphorus 
input was applied in planting furrows only. The planting 
system was mechanized in 89 % of the blocks, and 98 
% were mechanically harvested (green cane). The main 
varieties planted were RB86 7515 (47 %), SP81 3250 (13 
%), and SP80 1842 (9 %).

The database used has 2,255 entries, each corre-
sponding to a commercial block, 68 predictor attributes, 
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and sugarcane yield (Y) as the target attribute, given in 
tons of sugarcane per hectare. The predictors available 
in the data set are related to the soil texture in three 
layers (0-25, 25-50, and 80-100 cm), the clay gradient 
between the 25-50 and 0-25-cm layers, soil analysis (P, 
K, Ca, P, pH, sum of bases, base saturation, cation ex-
change capacity [CEC], organic matter, Al, H+Al, Al sat-
uration), and management practices (fertilization rates, 
vinasse and filter cake application, variety, and number 
of cuts). Soil analysis was also used to derive a number 
of relationships between different nutrients, namely Ca/
Mg, Ca/K, Mg/K, K/CEC, and K/(Ca + Mg)½. Additional 
information was included, such as the season in which 
there was a harvest (fall, winter, or spring) and occur-
rence of frost. Detailed information about predictors is 
provided in Appendix1.

The climate was divided into four phenological 
phases throughout the sugarcane development cycle: 
sprouting (phase I), tillering (phase II), growth (phase 
III), and ripening (phase IV). This climate segmentation 
aimed to represent the different effects on each of the 
crop growth phases (Binbol et al., 2006). Because of 
the lack of data on phenology, estimates were based 
on the typical local behavior of the crop, which was 
subsequently validated by the technical team of the 
production unit. Sugarcane planted from Feb till mid-
Apr was classified as an 18-month cycle, with sprout-
ing lasting for one month if planted in Feb and Mar, 
and two months if planted in Apr. Tillering lasted for 
three months. The grand growth phase was assumed to 
last until Feb if the cane was harvested in Mar or until 
Feb if harvested later. The last phase was ripening. For 
sugarcane planted in the second half of Apr until Aug, 
sprouting was assumed to last two months, tillering 
three months, grand growth six months, and ripening 
two months. Sugarcane planted between Sept and Jan 
was classified as a 12-month cycle, with two months of 
sprouting, except for planting in Jan, when it lasted for 

one month. Tillering lasted for three months, and the 
grand growth lasted until two months before harvest. 
These last two months were considered the ripening 
phase. For ratoon sugarcane (the crop that grows from 
stubbles following harvest), sprouting was assumed 
to last one month and tillering three months. Ripen-
ing was assumed to last one month if harvesting was 
in Feb, Mar, or Apr; two months if the harvest was in 
May, June, or July; and three months for the remainder 
of the season.

Since sugarcane is planted all year round in the 
region under study, each possible planting date was 
simplified and segmented into three periods accord-
ing to crop cycle duration and the associated weather: 
18-month-old (blocks planted from Feb to first half of 
Apr), 15-month-old (planting from second half of Apr 
to Aug), and 12-month-old planting (from Sept to Jan). 
From the second cut onward, blocks were considered 
ratoon cane. All statistical analyses were undertaken us-
ing JMP/SAS version 11.2. 

The decision tree was applied to explain the varia-
tion of a target attribute by explanatory variables, which 
means, in the case of this study, explaining the sugar-
cane yield by the 68 predictor attributes. The decision 
tree was constructed by repeated binary splitting of the 
database, defined by a simple rule – type IF... THEN 
– based on a single predictive attribute. At each split 
(called node), the database was segmented into two 
groups in order to reduce the variance of the target attri-
bute as much as possible. In other words, at each node, 
all predictive attributes were ranked based on their ca-
pacity to reduce the target attribute variability, and the 
best one was used to split the data. 

When the predictive attribute is categorical, all 
possible combinations of its levels in two groups were 
tested and the best combination was used to rank the 
predictive attribute among all others. If the predictive 
attribute was continuous, it was split into two groups 

Figure 1 – Monthly precipitation (mm) and average monthly temperature (°C) for the Sugarcane Mill under study, in Teodoro Sampaio, in the state 
of São Paulo, Brazil (22°31’ S, 52°10’ W, altitude 321 m), from Jan 2010 to Nov 2012. 
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from LY*SLY + HY*SHY to HY (SLY + SHY). Using 
data from two years, the evaluation was carried out 
based on the area under conditions for LY and HY in the 
different years, and the production was averaged. 

Results

The decision tree generated (Figure 2) had 16 
leaves and explained 61 % of the variability in the data 
(for training set R2 = 61 %), with 12 significant attri-
butes. By comparison, the multiple linear regression 
method was able to explain 62 % of the variability, but 
with 37 significant attributes. 

The most important factor was the number of 
cuts. This parameter was divided into four groups: 15- 
and 18-month-old plant cane, with an average yield of 
84.3 t ha–1; 12-month-old plant cane (Y = 72.3); second 
cut ratoon cane (Y = 67.2); and ratoon cane from the 
third cut onwards (Y = 49.3).

For the group of number of cuts for 15- and 
18-month-old sugarcane plants, the calcium content 
in the soil was found to have the greatest influence in 
yield (Figure 2, N1), in which areas with values below 
7 mmolc dm–3 had a lower yield (Figure 2, L2) of 79.9 t 
ha–1 compared to the yield of 85.7 t ha–1 in the areas with 
calcium contents greater than or equal to 7 mmolc dm–3 
(Figure 2, L1). 

The average minimum temperature in the third 
stage of development of the crop (growth) was the most 
influential factor for the number of cuts for 12-month-
old plants. The critical value was 15.6 °C, and the aver-
age yield 75.2 t ha–1 for the blocks developed under the 
condition of a temperature greater than or equal to this 
critical level (L3). In  conditions of lower thermal avail-
ability (L4), the average yield was equal to 63.7 t ha–1.

 In the second-cut group, the soil chemistry also 
showed a significant influence. When the Ca/Mg ratio 
was below 2.67, the average yield was 70.9 t ha–1. When 
the ratio was equal to or greater than 2.67, the average 
yield was 64.0 t ha–1, and this node was subdivided once 
due to the potassium content. When the potassium con-
tent was greater than or equal to 1.5 mmolc dm–3 (L6), 
the yield was 71.2 t ha–1. When the potassium content 
was below 1.5 mmolc dm–3 (L7), the average yield was 
equal to 62.5 t ha–1.

Finally, within the group of number of cuts greater 
than or equal to three, a clay content in the topsoil (0 to 
25 cm) greater than or equal to 24 % was associated with 
areas with higher yields (58.1 t ha–1) when compared 
with levels of clay below 24 % (46.2 t ha–1). Within this 
sub-group of more clayey soil, the number of cuts again 
determined the segmentation in the groups equal to the 
third cut (L8) (average yield equal to 65.9 t ha–1) and 
greater than or equal to the fourth cut (L9) (average yield 
equal to 52.8 t ha–1). In the sub-group with clay content 
in the topsoil below 24 %, which corresponded to 38 % 
of the total blocks of the sugarcane mill, the number of 
cuts was also the factor of greatest influence, where clay 

through a cutting point (values below and above this cut-
ting value). All possible cutting points were tested and 
the best was utilized.

The splitting procedure continued to be applied 
automatically by the decision tree algorithm to each 
group separately until a stopping parameter, which had 
been previously defined by the user, was reached. For all 
splits all explanatory variables are automatically tested 
by the algorithm, which then selects the one that mini-
mizes the variance of the two resulting database groups. 

The aim of the decision tree is to partition the re-
sponse into homogeneous groups, but also to keep the 
tree reasonably small, through stopping rules, in order 
to facilitate its interpretation. The two stopping rules 
established were the minimum number of records per 
leaf equal to 40 and the minimum adjusted p-value for 
the division of 0.1 %. The decision tree was represented 
graphically with the root node, which represents the un-
partitioned data, on the left-hand side, and the nodes 
and leaves (each leaf represents one of the final database 
groups) on the right-hand side.

The decision tree can be used for automatic 
knowledge extraction from data sets that are too vo-
luminous for manual analysis, discovering interactions 
between predictors, dealing with several types of data 
(categorical and numerical), and working with non-lin-
earity and threshold-dependent responses. When the 
target attribute is numeric, decisions trees are often 
called regression trees. We maintained the use of deci-
sion trees in this paper even though our target attribute 
was numeric. 

It is important to highlight two limitations of the 
decision tree technique. First, there is no possibility of 
expressing linear relations in a simple and concise way 
similar to linear regression. Second, there is no single 
solution (Zhang et al., 2005). Such advantages and disad-
vantages make the nature of the decision tree technique 
a method that is complementary to other techniques.

The model was developed in a training subset 
(two-thirds of the data, n = 1493) and evaluated in a 
test subset (one-third, n = 762). Since the stopping rules 
are set to avoid a complex tree, this procedure should 
also prevent a model excessively specialized in the train-
ing set and incapable of repeating the performance in 
the test set (overfitting). As a reference to be compared 
to the decision tree, a multiple linear regression with 
a stepwise automated variable selection procedure was 
generated. The 10 % level of significance was used to 
determine the selection of variables as predictors.

For certain rules extracted from the induced tree, 
we evaluated how much the yield could be increased 
based on the pattern found. For an arbitrary split, there 
will be leaves with lower yield (LY) and leaves with 
higher yield (HY), corresponding to different areas with 
lower yield (SLY) and areas with higher yield (SHY). As-
suming that the pattern was actionable, we evaluated 
the potential to bring the area under LY conditions to 
HY conditions. This changed the yield from the node 
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content in the topsoil separates the number of cuts equal 
to or greater than six and the number of cuts from three 
to five. Under these conditions of six and seven cuts, av-
erage daily precipitation greater than or equal to 4.7 mm 
d–1 (L15) and below this value (L16) in the grand growth 
stage of development led to average yields equal to 40.0 
and 35.1 t ha–1, respectively.

An average minimum temperature greater than or 
equal to 19.6 °C in the grand growth stage and fertiliza-
tion with nitrogen were the factors of influence on the 
conditions of the sub-group of number of cuts from three 
to five in soils with clay content in the topsoil below 24 %. 
For N fertilizer rates greater than or equal to 70 kg N ha–1 
(L10), the average yield was 61.8 t ha–1. In the situations 
of fertilization with nitrogen below 70 kg N ha–1, the aver-
age yield was 52.4 t ha–1 (L11). For the average minimum 
temperature in the stage of grand growth below 19.6 °C, 

the average daily precipitation during the grand growth 
stage was the next factor used for splitting the tree. When 
the precipitation was greater than or equal to 5.3 mm d–1 
(L12), the average yield was 49.7 t ha–1; if it was below 
5.3 mm d–1, there was a new division according to the 
sand content in the second layer of the soil (25 to 50 cm): 
for sand content below 84 % (L13), the average yield was 
47.2 t ha–1; for sand content greater than or equal to 84 % 
(L14), the average yield was 39.1 t ha–1.

Discussion

The similarity between coefficient of determina-
tions (R2) of training and test sets indicates that the stop-
ping rules established avoided overfitting given that the 
model had not become excessively specialized in the 
training set, which would consequently reduce its per-

Figure 2 – Decision tree for the analysis of factors of influence on the sugarcane yield (Y = mean ± standard error; N = number of records on the 
leaf; L# = leaf number; N# = node number). In each rectangle, in the top row, the most significant variable selected and the cut-off point (the 
value of the variable in which the division is made) are given; on the central line, the value represents the mean ± standard error of sugarcane 
yield; and, on the bottom line, the number of blocks that satisfies this condition is given. The tree should be interpreted from left to right, up 
to the leaves (rightmost boxes, in gray). In the initial splits, consecutive nodes were created by the same predictor attribute, and the tree was 
simplified in order to reduce one level and to represent the division into four branches instead of two.
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formance in the test set. Nevertheless, the decision tree 
kept its predictive performance, presenting similar re-
sults when compared to multiple linear regression, and 
showed a less complex model based on the number of 
predictive attributes selected. 

As found by Portier and Anderson (1995), Ander-
son et al. (1999), Bruggemann et al. (2001), and Ferraro 
et al. (2009), the number of cuts is the factor of greatest 
influence on cane yield. With the increase in the number 
of cuts, there is a decline in average yield, with the 15- 
and 18-month-old plant canes having the highest yields, 
followed by 12-month-old plants and finally ratoon canes, 
in descending order (Figure 3). The impact of intensive 
mechanization on soil structure, further limiting the devel-
opment of the roots (Braunack and McGarry, 2006), can be 
related to the reduction in yield for the sugarcane ratoons. 
Smith et al. (2005) attribute this reduction in yield to the in-
creased ratio of root/shoot dry mass to age. Simultaneously, 
these roots have a decreasing ability to absorb nutrients 
and water. As a result of this phenomenon, reserves that 
could be aimed at the leaf and stalk are directed to roots 
with ever-decreasing efficiency as they age.

In the model obtained with the decision tree, there 
is an interaction between this reduction in average yield 
as a function of the number of cuts and clay content in 
the topsoil (0-25 cm). For clay levels above 24 % (N5), the 
average yield has a slower decrease (slopes with a 95 % 
Confidence Interval = -5.62 to -4.27) when compared to 
clay contents below 24 % (N7) (slope with a 95 % Con-
fidence Interval = -7.70 to -7.09), which contributes to 
significantly higher stabilization of the more clayey condi-
tion in relation to the less clayey condition (Figure 4). This 
phenomenon can be credited to the higher clay content, 
which is associated with increased water retention and 
the consequent availability to the plant, which contrib-
utes to further development of the aerial part and reduces 
the death of the roots during drought (Smith et al., 2005). 
In sandy soils that have lower water availability, the root 
system is larger and tends to be deeper than in clay soil 
conditions (Laclau and Laclau, 2009; Smith et al., 2005), 
leading to a higher root mass that must be restored during 
every period of drought. In conditions of sugarcane under 
irrigation, it is often observed that more ratoons can be 
harvested (Marin et al., 2011).

Figure 3 – Box-plot for sugarcane yield: plant cane (18, 15 and 12 months) and ratoon (2nd harvest onwards).

Figure 4 – Influence of clay content in the topsoil (0-25 cm) on sugarcane yield for different number of cuts according to the threshold obtained 
by the decision tree model.
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For the first cut (15 or 18 months), there is an in-
teraction with the calcium content, whereas for the sec-
ond cut, the interaction is with the Ca/Mg ratio. In both 
cases, the optimum cut point found by the decision tree 
is similar to the ones previously obtained by other au-
thors through specific experiments. According to Cantar-
ella et al. (1998), Ca contents higher than 7 mmolc dm–3 
did not increase the yield substantially (low correlation 
between yield and Ca content) when the crop reached a 
plateau close to 90 % of the potential yield. This is the 
same limit that was determined by the decision tree as 
the optimal cut point. 

 For the Ca/Mg ratio, the decision tree deter-
mined 2.67 as the optimal value, whereas Cantarella et 
al. (1998) found a value of 3.0. In both cases, that is, 
Cantarella et al.’s (1998) model and our model, higher 
values for the Ca/Mg ratio resulted in a decrease in yield. 
The same chemical interaction of the soil with yield is 
not observed when the first cut is made at 12 months. 
This can be explained by the management of Ca input 
– applied through gypsum and lime during soil prepara-
tion, usually in the driest months – and the amount of 
rain associated with sandy soils, which distributes Ca to 
deeper soil layers up to planting time. The Ca content 
in the topsoil is different according to the timing of the 
planting of the first crop.

Since 12-month cane is planted after the first sig-
nificant rains and 15- and 18-month cane is planted after 
the highest rainfall period of the year, and the rate of 
gypsum and lime may not be similar among planting 
timings (information not available in the database), the 
Ca content in the topsoil for 15- and 18-month-old plants 
is significantly lower than that for 12-month-old plants 
(on average 9.47 and 15.6 mmolc dm–3, respectively). 
Thus, for 12-month-old plants, the number of blocks 
in which Ca content was lower than 7 mmolc dm–3 was 
small; therefore, Ca content in the topsoil is not an influ-
encing factor in this condition. In the second cut, for the 
less favorable conditions of development (Ca/Mg ≥ 2.67), 
potassium levels below 1.5 mmolc dm–3 further reduced 
the yield of sugarcane, which is the value found by the 
decision tree algorithm. Cantarella et al. (1998) found 
that values of K below 1.6 mmolc dm–3 significantly re-
duce the yield (high correlation between yield and K 
content).

The relationship between Ca, Mg, and K, found 
in both the plant and the soil, is a factor that greatly 
influences the crop yield, including sugarcane, because 
of the competition for the adsorption, absorption, and 
transport sites at the root surface. Depending on the dy-
namics of the ionic exchange reactions in soils, an ex-
cess of one cation can impair the absorption of another 
(Marschner, 1995). Although the Ca content and the Ca/
Mg ratio did not appear in the decision tree from the 
third cut onwards, this does not necessarily mean that 
they did not influence yield, but rather that other fac-
tors had greater importance. Another important consid-
eration is that, from the third cut onwards, the levels 

of nutrients in the subsurface (information not available 
in the database) have the greatest influence on yield 
(Landell et al., 2003).

From a practical point of view, these nodes may be 
interpreted as actionable patterns for increasing yield. If 
Ca is a limiting factor for the areas in leaf L2 (about 700 
ha yr–1), it is possible to estimate a gap of 5,000 tons of 
sugarcane in node N1 due to this nutrient deficiency. This 
gap is a consequence of different production in areas un-
der conditions described in L1 in relation to the areas un-
der conditions described in L2. A similar estimation could 
be made for adjusting the calcium/magnesium relation in 
nodes N3 and N4 (approximately 3,200 ha yr–1), resulting 
in a gap of 20,000 tons of sugarcane. This suggests that 
an increase of 25,000 tons of sugarcane can be achieved 
through improvements in lime-application protocols, rep-
resenting an improvement of 2 % compared to the yearly 
current total production level. Since, for each split, the 
algorithm chooses the immediate most relevant factor for 
split, the soil conditions in those areas should be better 
investigated to diagnose which factors limit production. 
This would prevent unsuccessful interventions if the fac-
tors presented by the model are not the only limitation.

Another point to be considered in the difference be-
tween factors of influence on the 12-, 15-, and 18- month-
old plant canes and the first ratoon is that the 12-month-
old plant cane is more sensitive to less favorable climatic 
conditions during the cold and dry period than the others. 
Since a 12-month plant cane is planted at the beginning 
of the rainy season, the plant reaches the grand growth 
phase during winter, when temperature and water can 
limit growth. The dry matter accumulation of sugarcane 
shows a sigmoid behavior, accumulating approximately 
75 % of all dry matter in development phase III, grand 
growth, which is most susceptible to water restriction 
(Binbol et al., 2006; Inman-Bamber, 2004; Inman-Bam-
ber and Smith, 2005; Smit and Singels, 2006) and tem-
perature restriction (Inman-Bamber, 1994; Sinclair et al., 
2004; Singels et al., 2005). It would seem that considering 
the region under study has a good distribution of rainfall 
and that sugarcane has the ability to compensate for less 
severe water restrictions (Wiedenfeld, 2000), temperature 
becomes the primary climate factor which determines 
yield. 

The temperature in the grand growth stage also 
proved to be a factor of influence on yield for the third to 
the fifth cut ratoon cane in soils with clay contents below 
24 % as well as for the 12-month-old plant cane. The cut-
off points of the average minimum temperature attribute, 
whose importance for yield is also highlighted by Binbol 
et al. (2006), were 15.6 °C for 12-month-old plant canes 
and 19.6 °C for ratoon canes from the third to the fifth cut 
under conditions of little clayey surface horizon. These 
different thresholds may be related to the base tempera-
ture for stalk elongation (Inman-Bamber, 1994; Marin et 
al., 2011) frequently reported close to 16 °C or the base 
temperature for leaf appearance (Liu et al., 1998) close 
to 20 °C.
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For the ratoon canes ranging from the third to the 
fifth cut in soils with low clay but less thermal constraint 
(average minimum temperature in period III > 19.6 °C), 
there was a positive response to the applied nitrogen 
doses above 70 kg N ha–1 applied. Sugarcane response 
to N fertilizer is more often found in cane ratoons than 
plant canes (e.g. Franco et al., 2010), which is the pat-
tern found by the tree. While this is not surprising, there 
was an interaction with temperature, where higher 
doses and minimum temperatures in excess of 19.6 °C 
in period III resulted in higher yields. This might sug-
gest that for conditions with increased temperature, the 
availability of nitrogen is a limiting factor.

Even though sugarcane can recover from slightly 
adverse conditions for growth when conditions im-
prove, limitations prevailing in the rapid growth stage 
were found to affect yield more than the number of 
cuts. For areas with more than three harvests (N6), 
most of the splits were based on factors related to soil 
or weather. Under low clay content (N7), for areas with 
three to five harvests (N8), average minimum temper-
ature during the rapid growth stage was the selected 
factor (splits after N8), while for areas with six or 
seven harvests (N12), the average precipitation during 
the rapid growth stage was the determinant factor for 
yield. As mentioned earlier, the rapid growth stage is 
more sensitive to boundary conditions of temperature 
and water availability for change in yield. The tempera-
ture in this stage of development proved to be the first 
factor selected; however, for lower water availability 
conditions, precipitation was selected in sequence by 
the tree. The situations of lower water availability can 
be identified as soils with low clay content or ratoon 
cane, in which the root system has a lower water ab-
sorption capacity. 

From an actionability perspective, even though 
nodes N5, N10, and N12 are not directly actionable as 
they are environment-related, it is possible to choose 
more robust varieties in areas with lower clay content 
or areas that will have most of the growing phase dur-
ing winter (low precipitation and temperature). Despite 
not being the best predictive model, the hierarchical 
structure of the decision tree revealed the relative im-
portance of the predictor variables to sugarcane yield. 
This hierarchical structure of the decision tree showed 
different patterns of yield response in relation to in-
teractions with the management and environmental 
variables. These observed patterns refer to previously 
researched aspects of sugarcane production.

Even though the patterns found had already been 
described by previous research, the technique consis-
tently identified a portion of blocks affected by differ-
ent conditions. If one would try to relate all known 
factors and test for each factor for all blocks, this could 
become an unfeasible exercise given the scale of the 
data. Acting upon the patterns when possible can lead 
to improvements in yield, leveraging the data already 
collected by the mill.

In the case of factors relating to management, the 
current result improves on previous research on the 
application of decision trees to production databases 
seeking to understand the effects of different factors on 
crop yield. Ferraro et al. (2009) found that farm mem-
bership was one of the main factors affecting yield. In 
their case, soil and management data were not avail-
able, being summarized by farm membership. Our re-
sults show that the decision tree was able to find the 
specific factors among soil information (e.g. N5 and N7 
for clay, and L13 and L14 for sand), soil and manage-
ment interaction (e.g. L1 and L2 for Ca, and L5 and N4 
for Ca/Mg rate), and for the purpose of management 
(L10 and L11 for N fertilizer).

The tree’s results are not meant to establish 
cause-and-effect relationships, and further investiga-
tion and experimentation should be carried out to eval-
uate them. However, such trees could be an effective 
tool for prioritizing which interventions to look for in 
different areas. While the exact results are specific to 
this data set, a similar structure of results should be 
expected in data sets from other years, mills, or even 
different crops.

Conclusion

Analysis of the database through the decision 
tree technique could describe comprehensible pat-
terns related to yield, even when handling a complex 
database with a high degree of detail. Part of the pat-
terns identified is actionable and can lead to increases 
in yield. This work highlights the potential of the deci-
sion tree as a tool to assist production system manage-
ment with actual data from production. This analysis 
could be carried out systematically in the mill and 
could be adopted by different mills or even in the 
production of other crops. It could also be useful for 
the formulation of hypotheses for specific scientific 
experiments, particularly for expansion areas, about 
which knowledge of the production system is still 
limited. The hierarchy and interactions between fac-
tors, which were previously studied in isolation in the 
literature, have been described, demonstrating that 
the method is able to consistently reproduce the re-
sults previously presented in the literature (experts’ 
knowledge) and may serve as a basis for the decision-
making process or the formulation of hypotheses for 
specific scientific experiments. 
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Appendix 1 – Description of the predictor attributes.
No. Code Description No. Code Description

1 Al Alumum content in the soil in  
the 0-25 cm layer 35 Mg Magnesium content in the soil in  

the 0-25 cm layer

2 Sand1 Percentage of sand in the soil in the 0-25 cm 
layer 36 MgK Mg/K ratio in the soil in  

the 0-25 cm layer

3 Sand2 Percentage of sand in the soil in the 25-50 cm 
layer 37 OM Organic matter content in the soil in 

 the 0-25 cm layer

4 Sand3 Percentage of sand in the soil in the 80-100 
cm layer 38 P Phosphorus content in the soil in  

the 0-25 cm layer

5 Clay1 Percentage of clay in the soil in the 0-25 cm 
layer 39 pH pH in the soil in the 0-25 cm layer

6 Clay2 Percentage of clay in the soil in the 25-50 cm 
layer 40 avg.ppt.I Average daily precipitation in phase I 

(sprouting)

7 Clay3 Percentage of clay in the soil in  
the 80-100 cm layer 41 avg.ppt.II Average daily precipitation in phase II (tillering)

8 Ca Calcium content in the soil in  
the 0-25 cm layer 42 avg.ppt.III Average daily precipitation in phase III

(growth)

9 CaK Ca/K ratio in the soil in  
the 0-25 cm layer 43 avg.ppt.IV Average daily precipitation in phase IV

(ripening)

10 CaMg Ca/Mg ratio in the soil in  
the 0-25 cm layer 44 accum.ppt.I Accumulated precipitation in phase I (sprouting)

11 CycleD Cycle duration in days 45 accum.ppt.II Accumulated precipitation in phase II (tillering)

12 Cut Number of cuts 46 accum.ppt.III Accumulated precipitation in phase III (growth)

13 CEC CEC in the soil in the 0-25 cm layer 47 accum.ppt.IV Accumulated precipitation in phase IV (ripening)

14 Dens Soil density 48 Sb Sum of bases in the soil in  
the 0-25 cm layer

15 CutTime Cutting time (fall, winter, spring) 49 avg.maxt.I Average maximum temperature in phase I 
(sprouting)

16 Drought.I Higher number of consecutive days without 
precipitation in phase I (sprouting) 50 avg.maxt.II Average maximum temperature in phase II 

(tillering)

17 Drought.II Higher number of days without precipitation in 
phase II (tillering) 51 avg.maxt.III Average maximum temperature in phase III 

(growth)

18 Drought.III Higher number of consecutive days without 
precipitation in phase III (growth) 52 avg.maxt.IV Average maximum temperature in phase IV 

(ripening)

19 Drought.IV Higher number of consecutive days without 
precipitation in phase IV (repining) 53 avg.avgt.I Average temperature in phase I (sprouting)

20 sourceK Source of fertilization with potassium (fertilizer/
vinasse) 54 avg.avgt.II Average temperature in phase II (tillering)

21 ADD.I Accumulated degree days in phase I (sprouting) 55 avg.avgt.III Average temperature in phase III (growth)

22 ADD.II Accumulated degree days in phase II (tillering) 56 avg.avgt.IV Average temperature in phase IV (ripening)

23 ADD.III Accumulated degree days in phase III (growth) 57 avg.mint.I Average minimum temperature in phase I 
(sprouting)

24 Frost Occurrence of frost 58 avg.mint.II Average minimum temperature in phase II 
(tillering)

25 GradText (Percentage clay 25-50 cm/ Percentage clay 
0-25 cm) 59 avg.mint.III Average minimum temperature in phase III 

(growth)

26 HAl H+Al content in the soil in the 0-25 cm layer 60 avg.mint.IV Average minimum temperature in phase IV 
(ripening)

27 Kinput kg ha–1 of fertilization with potassium 61 Cake Amount of filter cake applied

28 Moinput kg ha–1 of fertilization with molybdenum 62 V Percent of base saturation in the soil in the 
0-25 cm layer

29 Ninput kg ha–1 of fertilization with nitrogen 63 Variety Variety cultivated

30 Pinput kg ha–1 of fertilization with phosphorus 64 DrySpell.I Number of periods longer than or equal to 10 
days without rain in phase I (sprouting)

31 K Potassium content in the soil in  
the 0-25 cm layer 65 DrySpell.II Number of periods longer than or equal to 10 

days without rain in phase II (tillering)

32 KCaMg K/(Ca + Mg)½ ratio in the soil in  
the 0-25 cm layer 66 DrySpell.III Number of periods longer than or equal to 10 

days without rain in phase III (growth)

33 KCEC K/CEC ratio in the soil in  
the 0-25 cm layer 67 DrySpell.IV Number of periods longer than or equal to 10 

days without rain in phase IV (ripening)

34 M Soil saturation by aluminum (m%) in the 0-25 
cm layer 68 Vinasse Volume of vinasse applied


