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ABSTRACT: Knowledge of agricultural soils is a relevant factor for the sustainable development 
of farming activities. Studies on agricultural soils usually begin with the analysis of data obtained 
from sampling a finite number of sites in a particular region of interest. The variables measured 
at each site can be scalar (chemical properties) or functional (infiltration water or penetration re-
sistance). The use of functional geostatistics (FG) allows to perform spatial curve interpolation to 
generate prediction curves (instead of single variables) at sites that lack information. This study 
analyzed soil penetration resistance (PR) data measured between 0 and 35 cm depth at 75 sites 
within a 37 ha plot dedicated to livestock. The data from each site were converted to curves 
using non-parametric smoothing techniques. In this study, a B-splines basis of 18 functions was 
used to estimate PR curves for each of the 75 sites. The applicability of FG as a spatial prediction 
tool for PR curves was then evaluated using cross-validation, and the results were compared with 
classical spatial prediction methods (univariate geostatistics) that are generally used for studying 
this type of information. We concluded that FG is a reliable tool for analyzing PR because a high 
correlation was obtained between the observed and predicted curves (R2 = 94 %). In addition, 
the results from descriptive analyses calculated from field data and FG models were similar for 
the observed and predicted values. 
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Introduction

Agricultural soils behave like a complex system 
that accumulates and transmits air, water, nutrients and 
heat to microorganisms and plants (Orjuela-Matta et al., 
2012). Soil penetration resistance (PR) is a good indica-
tor of soil physical quality once it is easily measured 
and interpreted, and correlated with other soil attributes 
(Guimarães et al., 2013). The PR can be used to manage 
other parameters, such as crop output and water flow 
during rainy seasons or irrigation. Quantifying the de-
gree of soil compression consists of measuring the PR, 
which indirectly measures the energy that roots need 
to deform the soil structure or to penetrate soil pores 
(Medina et al., 2012).

The study of soil properties in agricultural zones 
requires sampling the soil from a finite number of sites 
in the region of interest. Usually, data analyses are per-
formed by calculating univariate descriptive measures 
(location and dispersion), obtaining distribution graphs 
(histograms and box plots), performing multivariate 
analyses (correlations, classification and principal com-
ponents) and using univariate geostatistical analyses 
(variogram estimation, Kriging prediction, and mapping). 
These tools are used to describe the spatial behavior of 
soil attributes (Medina et al., 2012) and to determine the 
existence of different zones that require specific manage-
ment to achieve the expected agricultural yield (Cama-
cho-Tamayo et al., 2013). 

Recently, there has been an increasing interest in 
modeling curve data from dense sets of measurements 
recorded over some domain (time or depth for instance) 
in agronomical studies. Statistical methods to analyze 
this type of data are enclosed in a new branch of statis-

tics called Functional Data Analysis. A number of alter-
native techniques to make spatial prediction from curves 
instead of single data points for each observation site 
have been developed. These methods, known as func-
tional geostatistics (FG) (Giraldo et al., 2010), require 
the application of non-parametric smoothing techniques 
(e.g., kernel or B-spline regression) to convert discrete 
data into continuous functions. These methods have 
been used in several areas, including meteorology, to 
predict temperature curves where weather stations are 
not available (Giraldo et al., 2010) and marine biology 
to predict salinity curves in unsampled estuary zones 
(Reyes et al., 2015). In this study, the FG method was 
applied to PR curves to evaluate its predictive capacity 
and its potential as a tool to describe the spatial vari-
ability of data. 

Materials and Methods

Study area description
The area chosen for this study is located in the 

municipality of Puerto López in Meta, Colombia 
(4°12’38.50” N and 72°43’24.53” W; at an elevation of 
156 meters above sea level). According to the Köppen 
classification, the region has a tropical savanna climate 
(Aw). Precipitation in the zone follows a monomodal re-
gime with an annual average of 2,375 mm, which main-
ly occurs during the rainy season between Apr and Nov. 
The zone has a mean temperature of 27 °C and 75 % rel-
ative humidity (Camacho-Tamayo et al., 2013). Accord-
ing to the USDA classification, the soils in this zone are 
predominantly classified as Typic Haplustox and consist 
of a thick layer of superficial horizon with loamy and 
silty texture as well as a slightly inclined slope (< 5 %). 
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These soils are susceptible to physical degradation due 
to livestock farming on native meadows. However, in re-
cent years, this zone has been incorporated for agricul-
tural production, mainly rice, corn, and soybean.

Field sampling and soil penetration resistance mea-
surement

The experimental site has a surface of 37 ha and 
was planted with corn at the time of sampling. The PR 
readings were taken at sampling points located every 70 
m (75 sites) using a rigid grid. Measurements were per-
formed using an Eijkelkamp penetrologger kit at depths 
0 to 0.35 m by taking one measurement every millimeter 
(for 350 PR measurements at each of the 75 sites) when 
the soil water content was close to field capacity. Howev-
er, this method of data collection represents a limitation 
to apply univariate geostatistical techniques (Cressie, 
1993) because it requires performing 350 separate spa-
tial prediction analyses, which implies in estimating 350 
semivariance functions and performing 350 Kriging pre-
dictions. In addition, this collection method is computa-
tionally impractical to use in multivariate geostatistics 
methods (Hoef and Cressie, 1993) that require estimat-
ing a linear co-regionalization model (Myers, 1982) with 
a large number of variables. In this case, the FG analy-
ses could provide a much simpler modeling alternative 
(Giraldo et al., 2010). 

Functional geostatistics study
This method consists of converting 350 data points 

from each site into a continuous function (e.g., estimat-
ing a smoothed-by-fitting-basis function) and then per-
forming a single geostatistical analysis using the estimat-
ed curves from each site as inputs. This method not only 
eases the computational load but it also provides con-
tinuous predictions as a function of soil depth. There are 
many alternatives to smooth data by using basis func-
tions, including Fourier basis, wavelets, or spline basis 
(Ramsay and Silverman, 2005). A common choice when 
data are not periodic is to use a B-spline basis (Ramsay 
and Silverman, 2005). In this study, considering that the 
PR data do not have a seasonal component, a basis of 18 
functions was used to estimate the PR curves for each of 
the 75 sites. The number of basis functions was selected 
by the cross-validation analysis (Ramsay and Silverman, 
2005). The estimated curves were then subjected to the 
functional Kriging procedure (Caballero et al., 2013) to 
make predictions at unsampled sites. In addition, cross-
validation analyses (leave-one-out) were performed by 
removing the curve from each site and performing the 
functional Kriging predictor for the remaining 74 curves 
to predict the removed curve. These methods resulted in 
an “observed” curve, obtained with the B-spline basis, 
and a Kriging-predicted curve for each site. This proce-
dure is useful to evaluate the method quality, once better 
methods are indicated by smaller differences between 
estimated and predicted values and by comparing this 
method with traditional ones.

The functional Kriging predictor is defined as fol-
lows (Giraldo et al., 2010):
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where χ̂ s0( ) is the predicted curve at site s0; χ(si) corre-
sponds to the curve observed at site si; and i = 1, 2,..., n 
and li, i = 1, ..., n, are the weighting parameters of each 
observed curve to the predicted curve.

The li parameters are estimated by solving the fol-
lowing system of equations (Giraldo et al., 2010):
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where the integrals are the trace-variogram function 
(Giraldo et al., 2010) evaluated for distances between the 
observation sites (matrix to the left of the equal sign) and 
the distances between the observation sites and the pre-
diction site (vector to the right of the equal sign). These 
integrals are calculated by estimating the trace-vario-
gram function, which is given by the following equation 
(Giraldo et al., 2010):

ˆ
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where γ h s s s s hi j i j( ) = ( ) − ={ }, : corresponds to the 
number of sites (pairs) separated by distance and its 
subsequent fit with traditional parametric semivariance 
models (spherical, exponential, Gaussian, and Matérn).

To calculate the prediction, the trace-semivariogram 
function was estimated using Equation 3. This function 
was later used in conjunction with Equation 2 to estimate 
li parameters for the functional Kriging predictor defined 
in Equation 1. The results of the estimation from Equa-
tion 3 and of the fit of a theoretical semivariance model to 
this function have not been included here for simplicity. 
To evaluate the goodness of fit of the functional Kriging 
predictor, three sites for which information was already 
obtained were selected randomly (sites 1, 28, and 56) and 
subjected to cross-validation. The curves for each site 
were removed from the dataset and subsequently pre-
dicted based on the functional Kriging predictor and the 
curves for the remaining 74 sites.

The results obtained from the functional Kriging 
predictor were compared with those obtained using uni-
variate Kriging at depths of 1, 10, 20, and 30 cm (se-
lected to compare predictions at surface, at intermediate 
depth, and at the lowest depths analyzed). To perform 
traditional analyses, the values for the PR values were 
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determined at the depths mentioned above, and the 
semivariance function was calculated for each depth us-
ing the following equation (Cressie, 1993):

   
γ̂ h

N h
z x z x hi ii

n h( ) = ( ) ( ) − +( ) =

( )∑1
2 1

2
  Equation 4

where z(xi) is the PR value at point xi; z(xi+h) is the val-
ue of PR at a point with distance h from the previous 
point; and N(h) is the number of data pairs separated by 
distance h. Semivariance function is the model fitted to 
the experimental semivariogram. The following criteria 
were considered to select the best model: the coefficient 
of determination (R2), which indicate the ratio of change 
in the variable; the least sum of squared errors (LSSE) to 
predict the error between observed and estimated val-
ues from cross validation (CVC). The shared parameters 
among the theoretical semivariance models include the 
nugget (C0), which is a discontinuity in the semivario-
gram at the origin, the variance of the process (C), and 
the range (r), which is the distance until a spatial corre-
lation is obtained. The nugget-variance ratio [C/(C0+C)] 
is often used as a criterion to select a model because 
it establishes the degree of spatial dependence (DSD) 
expressed by the studied attributes. Cambardella et al. 
(1994) suggested the following classifications for DSD: 
Strong, when DSD > 75 %; Moderate, when 25 % ≤ DSD 
≤ 75 %; and Weak, when DSD < 25 %.

Results and Discussion

Descriptive analysis of soil penetration resistance
The soil examined for this study presents optimal 

root development at depths greater than 10 cm (Figure 
1). While Bowen et al. (1994) identified critical values 
that ranges between 0.9 and 1.5 MPa for root growth, 
soils possessing a PR closer to 2.0 MPa were classified 
as having excessive compaction (Leao and Silva, 2006). 
Such compaction influences roots penetration through 
the soil (Chan et al., 2006; Hakansson and Lipiec, 2000; 
Hamza and Anderson, 2005), favors run-off and the ac-
cumulation of water on the surface due to a reduced 
number of porous spaces and the formation of a relative-
ly impermeable surface layer (Islam et al., 2011; Gómez-
Rodríguez et al., 2013).

Descriptive statistics for PR in the studied region 
(for depths of 1, 10, 20, and 30 cm) are shown in Table 
1. The means and medians were similar at each depth, 
and the skewness and kurtosis coefficients were close to 
zero. These results showed that the frequency distribu-
tions were symmetrical and presumably stationary (in 
terms of the mean) in the underlying stochastic process. 
Thus, we concluded that the mean PR fluctuates, and no 
clear trend can be found in the mean PR in this zone (at 
a particular depth). The increase of depth resulted in a 
significant increase in PR (Figure 1).

It is common in soil science studies that associ-
ate skewness coefficient values different from zero with 
non-normality. However, in spatial statistics, it is as-

sumed that data are originated from a random process 
(stationary or non-stationary) and not from a particular 
variable. Then, when the random process is normal, 
the data are a realization (observation) of a multivari-
ate normal distribution and not from an univariate nor-
mal distribution. Consequently, in spatial statistics, the 
skewness coefficient should not be used as an indicator 
of normality. However, from a descriptive point of view 
this coefficient can be considered to check empirically if 
the mean of the process is changing in the region. In spa-
tial statistics, a skewness coefficient close to zero can be 
used as an indicator that the process is stationary, which 
means that average is not changing in the study area.

The relatively low coefficient of variation (CV) val-
ues at depths of 10, 20, and 30 cm (less than 20 %) (Table 
1) indicated that the PR data presented low dispersion 
within locations. At a depth of 1 cm, the CV was 56 %. 
The increased variability in PR at 1 cm could be a conse-
quence of human activities, mainly farming and cultural 
processes, and weathering processes, which are strongly 
linked to areas with high precipitation events.

Functional geostatistics analysis
The results described above only provide mea-

sures for a small selection of depths. Although these 

Table 1 – Statistical summary of soil penetration resistance (PR) 
obtained at 75 locations within a 37-ha plot in Puerto López, Meta, 
Colombia.

Depth (cm) Mean Median CV (%) Maximum Minimum Skewness Kurtosis
1 0.64 0.62 55.9 1.47 0.18 0.72 -0.44
10 1.77 1.74 15.7 2.47 1.12 0.26 -0.06
20 2.08 2.10 12.0 2.65 1.40 -0.50 0.30
30 2.04 2.09 17.7 2.89 1.02 -0.49 0.75
CV: Coefficient of variation; PR values at each location were recorded every 
millimeter from depths 0-35 cm. The results are only shown for four depths.

Figure 1 – Mean soil penetration resistance (PR) curve for the studied 
location and confidence interval (points).
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results undoubtedly allowed to establish general trends 
in the way PR behaves, they did not show the detailed 
way in which PR fluctuates at depth. A more complete 
picture of the behavior pattern exhibited by PR as a func-
tion of depth is shown in Figure 2 as raw data (A) and as 
smoothed data using B-spline basis (B). From a descrip-
tive point of view, we concluded that the curves had less 
PR variability at shallower depths. Near the origin, PR 
varied between approximately 0 and 1.5 MPa, and at 
depths greater than 20 cm, where slopes of the curves ap-
proach zero, PR varied between 1.0 and 3.0 MPa. Figure 
2 also shows a number of atypical PR curves (separated 
from the rest) at depths greater than 15 cm. These results 
would not be detectable using the data shown in Table 1.

As an initial example of the application of this 
methodology, a predicted curve is shown in Figure 3 for 
the PR data obtained at the site with coordinates 952075 
(W) and 1141025 (N) (4°09’52.8” N and 72°48’39.2” W). 
The predicted curve was similar to the behavior pattern 
of the observed data, which suggested that the soil does 
not present limitations for crop root growth for this zone 
(Carrara et al., 2007; Utset and Cid, 2003). At depths 
greater than 15 cm, compaction levels were greater than 
2 MPa PR, which is the critical limit for root growth 
(Chan et al., 2006; Hakansson and Lipiec, 2000; Hamza 
and Anderson, 2005).

The original curves for randomly selected sites (1, 
28 and 56) and their predicted equivalents are shown in 
Figure 4A. Each case showed evidence of goodness-of-fit, 
with similar predicted and smoothed observed curves. 
To obtain a numeric indicator of the goodness-of-fit, a 
simple linear regression was used to compare the 350 
recorded values at each site with the 350 predicted val-
ues (Figure 4B). The observations and predictions were 
significantly correlated with a determination coefficient 
of 94 % (p < 0.001), which indicated that over 90 % 
of variability in the observed PR, data can be explained 
by the proposed predictor. In addition, the prediction 
worked best for PR values greater than 1.0 MPa due 
to the high variability of PR curves at shallow depths. 
Figure 4A shows that predictions resulting from func-
tional geostatistical analysis had a good performance. 
Thus, this methodology allowed for a general character-
ization of the PR behavior at each prediction site to be 
obtained, which is an advantage over other classical sta-
tistical approaches that would provide only point-wise 
predictions. The use of traditional geostatistics with this 
type of data could be limited because it requires more 
computational time in addition to the modeling of many 
semivariograms (one for each depth).

Validation of soil penetration resistance data
Using classical geostatistics, several authors have 

fitted semivariogram models to the PR data by consid-
ering exponential models (Barik et al., 2014; Veronese 
Junior et al., 2006). Medina et al. (2012) found that 
spherical PR models fit best at depths 1 and 20 cm and 
that exponential models fit best at depths 10 and 30 cm. 

Univariate geostatistical analysis of our data indicated 
that exponential models fit the data best at depths 1 and 
30 cm and that spherical models fit best at depths 10 
and 20 cm (Table 2). The more common semivariogram 
models for PR in geostatistical studies are the spherical 
an exponential models. However, these semivariogram 
models have been considered a good method to identify 
the structure of spatial variability for different physical 
properties in agricultural soils (Millán et al., 2012; Me-
dina et al., 2012; Camacho-Tamayo et al., 20013; Barik 
et al., 2014).

Generally, C0 values near zero at each analyzed 
depth and a degree of spatial dependence greater than 
75 % indicate a strong spatial dependence (Cambardel-
la et al., 1994). To compare the results graphically ob-
tained by functional geostatistics with those obtained 
by classical geostatistics, spatial distribution maps were 
built with both methodologies at depths 1, 10, 20, and 
30 cm (Figure 5). These maps indicated that the meth-
odologies led to different results, and this difference 

Figure 2 − Soil penetration resistance (PR) recorded at 75 sites from 
a dedicated ranching area in Puerto López in Meta, Colombia (the 
curves shown are interpolated) (A) and smoothed curves result from 
the use of B-splines (B). Black lines is the mean PR values.
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was particularly evident at the 1 and 10 cm depths. 
Surfaces on the right, obtained with the predictions 
by functional Kriging (Figure 5), were more smoothed 
than surfaces on the left, which were obtained by clas-
sical Kriging, which is associated to the effect of data 
smoothing caused by the use of B-splines, as a previ-
ous step for the functional geostatistical analysis. This 
procedure allowed eliminating the data noise before 
performing the prediction step. Goodness-of-fit was 
evident based on the visible and irregular decrease or 
increase of PR in a number of zones, which is a behav-
ior observed in both plots drawn from recorded and 
predicted data.

As a final step in evaluating functional prediction 
techniques, simple linear regressions were calculated 
to compare the 75 observed PR values with the 75 PR 
predictions obtained at each depth 1, 10, 20 and 30 
cm after using functional geostatistics (Figure 6). High 
correlations were found between the observations and 

Table 2 – Parameters of the semivariogram models fitted to observed 
(Obs) and predicted (Pre) penetration resistance (PR) data at four 
different soil depths (1, 10, 20 and 30 cm).

PR Depth Model C0 C0 + C Range (m) CVC DSD

PR1Obs Exponential 0.025 0.331 143.70 0.80 0.92
PR1Pre Exponential 0.014 0.266 130.80 0.78 0.95
PR10 Obs Spherical 0.002 0.025 151.00 0.69 0.94
PR10 Pre Spherical 0.002 0.024 138.70 0.63 0.92
PR20 Obs Spherical 0.000 0.011 110.50 0.73 1.00
PR20 Pre Spherical 0.000 0.012 128.10 0.67 1.00
PR30 Obs Exponential 0.003 0.031 158.40 0.60 0.89
PR30 Pre Exponential 0.000 0.021 99.60 0.60 1.00
Co: Nugget; Co+C: Sill; CVC: coefficient of cross validation; DSD: degree of 
spatial dependence.

Figure 3 – Soil penetration resistance (PR) curves obtained by 
B-spline smoothing on data collected every millimeter in a zone 
from Puerto López, in Meta, Colombia (gray curves) and prediction 
of the PR curve using the Kriging functional predictor (black curve).

Figure 4 − Superposition of the observed and predicted soil 
penetration resistance (PR) curves (A) and functional cross-
validation of observed vs predicted PR values (B).

predictions, and coefficients of determination increased 
with increasing soil depth.

Conclusions

Functional data with spatial dependence allows 
techniques from spatial statistics and functional data 
analysis to be combined. This study showed how this 
kind of approach can be used to model PR data. Our re-
sults indicated that this alternative proved to be useful. 

Creating spatial distribution maps for the ob-
served and predicted PR values allowed the differences 
between recording sites to be clearly visualized as well 
as the similar behaviors between the observed and pre-
dicted data. In addition, better fits and greater homoge-
neity were found at greater depths. 

Even considering that ordinary Kriging for func-
tional data is a good approach, other alternatives, such 
as continuous time varying Kriging for functional data 
or a functional Kriging total model, could be considered 
and compared in future studies. 
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Figure 5 − Spatial distribution of penetration resistance (PR) obtained with classical geostatistics (left) and by using functional geostatistics (right) 
at soil depths 1, 10, 20, and 30 cm.
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