
Lavras Simulation Hydrology model 265

Sci. Agric. (Piracicaba, Braz.), v.68, n.3, p.265-274, May/June 2011

Development, sensitivity and uncertainty analysis of
LASH model

Samuel Beskow1,2; Carlos Rogério de Mello2*; Lloyd Darrell Norton3

1
UFPel – Centro de Desenvolvimento Tecnológico/Engenharia Hídrica – 96060-290 – Pelotas, RS – Brasil.

2
UFLA – Depto. de Engenharia, C.P. 3037 – 37200-000 – Lavras, MG – Brasil.

3
USDA/ARS – National Soil Erosion Research Laboratory, 275 South Russell Street, Purdue University,

47907-2077 – West Lafayette, IN – USA.
*Corresponding author <crmello@deg.ufla.br>

ABSTRACT: Many hydrologic models have been developed to help manage natural resources all over the world.
Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many
calibration parameters. This has brought serious difficulties for applying them in watersheds where there is scarcity of
data. The development of  the Lavras Simulation of  Hydrology (LASH) in a GIS framework is described in this study,
which focuses on its main components, parameters, and capabilities. Coupled with LASH, sensitivity analysis, parameter
range reduction, and uncertainty analysis were performed prior to the calibration effort by using specific techniques
(Morris method, Monte Carlo simulation and a Generalized Likelihood Uncertainty Estimation - GLUE) with a data
base from a Brazilian Tropical Experimental Watershed (32 km2), in order to predict streamflow on a daily basis.
LASH is a simple deterministic and spatially distributed model using long-term data sets, and a few maps to predict
streamflow at a watershed outlet. We were able to identify the most sensitive parameters which are associated with
the base flow and surface runoff components, using a reference watershed. Using a conservative threshold, two
parameters had their range of values reduced, thus resulting in outputs closer to measured values and facilitating
automatic calibration of the model with less required iterations. GLUE was found to be an efficient method to
analyze uncertainties related to the prediction of mean daily streamflow in the watershed.
Key words: GLUE methodology, Morris method, hydrologic modeling, parameter ranges, automatic calibration

Desenvolvimento, sensibilidade e análise de incertezas do modelo LASH

RESUMO: Diversos modelos hidrológicos têm sido desenvolvidos no intuito de auxiliar na gestão de recursos
naturais em todo o mundo. Porém, a maioria desses modelos apresenta um alto grau de complexidade em relação
tanto à necessidade de base de dados, quanto ao número de parâmetros de calibração. Em virtude desses fatores, se
torna difícil a aplicação em bacias hidrográficas que têm bases de dados reduzidas. Neste artigo é descrito o
desenvolvimento do modelo Lavras Simulation of  Hydrology (LASH) em uma estrutura de SIG, buscando enfatizar
seus principais componentes e parâmetros, bem como suas potencialidades. Além da descrição do modelo, também
foram realizadas a análise de sensibilidade, a redução do intervalo de parâmetros e a análise de incertezas,
anteriormente à fase de calibração, utilizando metodologias específicas (método de Morris, simulação de Monte
Carlo e o método Generalized Likelihood Uncertainty Equation (GLUE)), com a base de dados de uma bacia
hidrográfica experimental tropical brasileira (32 km²), a fim de simular a vazão total média diária. O LASH é um
modelo classificado como determinístico e distribuído, que utiliza dados de longo termo e poucos mapas para
predizer vazão na seção de controle de bacias hidrográficas. Foi possível identificar os parâmetros mais sensíveis do
modelo para a bacia hidrográfica de referência, os quais estão associados com os componentes de escoamento de
base e superficial direto. Em função do limiar conservador utilizado neste estudo, foram reduzidos os intervalos de
dois parâmetros, dessa forma gerando resultados simulados mais realísticos e também facilitando a calibração
automática do modelo com um menor número de iterações necessárias. O método da GLUE mostrou ser eficiente
frente à análise de incertezas relacionadas à predição de vazão na bacia de estudo.
Palavras-chave: metodologia GLUE, método de Morris, modelagem hidrológica, intervalos de parâmetros, calibração
automática

Introduction

Most hydrologic models are too complex to be used in
areas with limited data (Beskow et al., 2009b). Under this
aspect, a model with a simple approach which makes use of
less data may be preferable for better water resource man-
agement. The LASH model is a simple hydrologic model
designed for prediction of streamflow in watersheds where
there are limited physical data.

Studies concerning models applied to watersheds
usually consider the following steps: calibration, validation,
and prediction (Arabi et al., 2007). Calibration is a funda-
mental step towards application of hydrologic models, be-
cause it enables one to fit a set of parameters which are
unique for a specific watershed. It is very important to de-
termine which parameters may cause the most significant ef-
fect on the output of interest through sensitivity analysis
(Benaman and Shoemaker, 2004). Sensitivity analysis evalu-
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ates which parameters should be taken into account in the
calibration phase (Blasone et al., 2008). This kind of analy-
sis has been successfully applied in several studies concern-
ing hydrologic modeling prior to calibration (Muleta and
Nicklow, 2005; White and Chaubey, 2005; Van Griensven et
al., 2006).

A model may contain parameters not based on field data
(Benaman and Shoemaker, 2004). Therefore, to these param-
eters are given suggested ranges of  values found for other
sites. Nevertheless, some parameters may have very broad
ranges instead of narrow and acceptable ranges, thus result-
ing in not only many unrealistic estimations, but also ineffi-
ciency in the optimization method (Blasone et al., 2008).
Methodologies based on sensitivity and uncertainty analyses
including Monte Carlo simulations have been widely used
in studies concerning reduction of parameter ranges which
both have broad suggested intervals and generate too many
inaccurate predictions (Arabi et al., 2007; Wei et al., 2008;
Huang and Liang, 2006).

The objectives of this paper were to: (i) describe the
LASH model as well as its parameters and capabilities; (ii)
identify the most sensitive parameters of the model and to
reduce their suggested ranges; and (iii) evaluate uncertainties
with respect to streamflow predictions prior to model cali-
bration.

Material and Methods

A new hydrological computational model was developed
for this study, named as Lavras Simulation of  Hydrology
(LASH). This model is similar to the one presented by Mello
et al. (2008), however, this new model uses a distributed ap-
proach instead of either lumped or semi-distributed. LASH
was designed to take into account temporal and spatial vari-
ability of all the variables included in the hydrologic compo-
nents by dividing the watershed into homogeneous grid cells.

This is a semi-physically based and continuous simula-
tion model, using the following components on a daily ba-
sis: evapotranspiration, interceptation of precipitation by land
cover, capillary rise, soil water availability, surface runoff, sub-
surface flow, and base flow. The model is divided into three
basic modules: (i) its first module is designed to compute
surface runoff  flow, subsurface flow, base flow, and capillary
rise, which are drained from the soil layer considered in the
water balance; (ii) the second module generates flow within
each cell to the stream network; this module takes into ac-
count the lag effect using the concept of  linear soil reservoir
(Collischonn et al., 2007; Tucci, 2005); (iii) in the last mod-
ule, LASH employs the Muskingum-Cunge Linear Model to
propagate the flows through the channel network.

Soil water balance is calculated at each time step for each
grid cell in the watershed (Equation 1). The number of grid
cells depends on both the cell size and how large the study
watershed is.
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where j and i are indexes associated to time step and grid

cell, respectively; 
i

j
tA is the soil water availability (mm) for the

grid cell i at the end of the time step j; 1−
i

j
tA represents the

soil water availability (mm) for the grid cell i at the start of
the time step j; Δt is the time step (daily); Pi corresponds to
the precipitation (mm Δt–1) minus the interceptation of pre-
cipitation by land cover; ETi is the evapotranspiration (mm
Δt–1); Dsi is the surface runoff (mm); Dssi represents the sub-
surface flow (mm Δt–1); DBi is the base flow (mm Δt–1); and
DCRi corresponds to the capillary rise depth (mm Δt–1). The
variable 1−

i

j
tA  is computed for each time step for each cell.

Once precipitation begins, it is stored on the vegetation
cover until maximum interceptation storage (Imax) is reached,
which is calculated (Equation 2) for each grid cell as a linear
function of Leaf Area Index (LAI) (Almeida et al., 2007;
Collischonn et al., 2007; Zhou et al., 2006). LASH uses the
Penman-Monteith equation (Allen et al., 1998) to compute
how much from intercepted water is evaporated in each time
step.

Imaxi = α . LAIi  (2)

where α is the interceptation coefficient, assumed to be 0.2
mm (Collischonn et al., 2007); LAI is the leaf area index (m2

m–2), which can be obtained from either literature or field
trials. Since LAI values may have a great variation over time,
an option was implemented in LASH so that users can in-
put a separate file (linked to the land-use map) in order to
represent such time dependent variation for each land-use.

The Curve-Number Modified Mishra-Singh (CN-MMS)
model (Mishra et al., 2003) was employed in LASH for esti-
mating the surface runoff component (DS), in mm (Equa-
tion 3). All of the variables with a subscript i in equations
mean that such variable is computed for each grid cell at time
j.
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where Ia is the initial abstraction (mm); M corresponds to
the antecedent soil moisture (mm); and S is the soil poten-
tial maximum retention (mm).
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where λ is an initial abstraction coefficient (dimensionless);
and P5 represents the 5-day antecedent precipitation (mm).
Even though λ can vary between 0 and ∞, Mishra et al. (2003)
and Mishra et al. (2006) suggest employing values from 0
to 0.5 to calibrate this parameter.
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Si = (θSi – θ0i) . hi  (6)

where θS is the saturation soil water content (m3 m–3); θ0 rep-
resents the current soil water content (m3 m–3); and h is the
control layer of the water budget (rooting depth, mm).
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Ami = (θSi – θPWPi) . hi  (7)

where Am is the maximum soil water availability (mm); and
θPWP corresponds to the permanent wilting point soil water
content (m3 m–3).

Si = Ami – Ati  (8)

where At represents the soil water availability at time j.
The Brooks and Corey equation (Rawls et al., 1993) was

adapted in the LASH to simulate the subsurface (DSS) e base
flow (DB) components (mm per day).
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where KSS corresponds to the hydraulic conductivity of the
subsurface reservoir (mm per day), which is a calibration pa-
rameter; ACC is the minimum soil water availability to gen-
erate subsurface flow (mm); PS represents the pore-size in-
dex which may be assumed constant and equal to 0.4 due to
its low sensitivity (Collischonn et al., 2007).

The following equation was implemented in LASH in or-
der to simulate the base flow component (DB), in mm per
day (Collischonn et al., 2007):
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where KB corresponds to the hydraulic conductivity of the
shallow saturated zone reservoir (mm per day), which has
been considered as a parameter of calibration due to diffi-
culty in obtaining it through field trials; and AC is the mini-
mum soil water availability to generate base flow (mm).

The capillary rise component (DCR), in mm per day, was
implemented in LASH to allow simulation of situations in
which some areas of the watershed have low soil water avail-
ability, thus occurring rise of water from shallow aquifer to
the soil layer and making it available for evapotranspiration.
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where KCR corresponds to the maximum flow returning to
soil by capillary rise (mm per day), being considered a pa-
rameter of calibration; and ACR is the soil water availability
limit (mm) so that capillary rise occurs.

The evapotranspiration (ET) module, in mm per day,
was incorporated in LASH making use of the Penman-
Monteith equation, described in Allen et al. (1998). The vari-
ables for ET calculation can be input into LASH taking into
account their spatial and temporal variability, since some of
them may have a considerable variation throughout the year.
However, if soil moisture is less than a given limit of soil
water availability, actual evapotranspiration is less than or
equal to the crop evapotranspiration. The relationship be-
tween crop evapotranspiration and actual evapotranspiration
can be expressed by the coefficient KS which depends on the
soil moisture in time j (Allen et al., 1998).

Once the model computes DS, DSS and DB, it converts
each flow component to discharge. It is necessary to account
for the delay of the inflow to the stream network, therefore,
a flow routing method has to be used. The method of lin-
ear reservoirs was chosen to route flow through each cell,
since it is a simple approach and it has been successfully used
in many other studies (Zhou et al., 2006; Collischonn et al.,
2007; Mello et al., 2008). The following equations are used
to compute outflow from the three reservoirs as previously
stated:
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where, QSi, QSSi and QBi are the outflows from surface, sub-
surface and groundwater reservoirs (m3 s–1) of  the cell i, re-
spectively; 

i

j
SV , 

i

j
SSV , and 

i

j
BV  are the water volumes in the

surface, subsurface and groundwater reservoirs (m3) of  the
cell i at time j, respectively; TCi corresponds to the time of
concentration (s); CB represents the recession time (s) which
can be calculated from a hydrograph previously monitored
in the watershed; and CS and CSS are response time param-
eters. It is worthwhile to point out that (CS . TC) is less than
(CSS . TC) and the latter is less than CB due to different delays
in each reservoir. The time of  concentration can be estimated
by different equations which are described in literature. Mean
daily streamflow at the outlet is obtained by summing the
three outflow components as stated before, which are propa-
gated through the drainage network using the Muskingum-
Cunge Linear Model.

There are many variables which may have spatial varia-
tion. All of the maps used by the model are derived from
the DEM, land-use, soil or channel network maps. In addi-
tion to the maps, LASH also needs two other files in table
format. The first one contains information on climatic data
as well as observed discharge (m3 s–1) over the time. The fol-
lowing climatic data are necessary in the model to compute
evapotranspiration on a daily basis according with Penman-
Monteith equation.

A second file in table format is used to inform the model
of the variation in parameters connected to the land-use over
time, for instance, leaf area index (m2 m–2), height (m), al-
bedo (dimensionless), surface resistance (s m–1), rooting
depth (mm), and crop coefficient (dimensionless). The op-
timization algorithm is based on the Shuffled Complex
Evolution (SCE-UA) method (Duan et al., 1992). The SCE-
UA is a global optimization method that has been exten-
sively used and accepted in the field of hydrology for several
years. Complete details about this method can be found in
Duan et al. (1992) and Duan et al. (1994).

For this study, all the procedures are based on the meth-
odology described by Benaman and Shoemaker (2004) fol-
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lowing four steps, however, some adaptations were made
in accordance with Arabi et al. (2007). Basically, the method-
ology uses two sampling methods: (i) the Morris method
(Morris, 1991) which can be classified as One-factor-At-a-
Time (OAT) sensitivity analysis (Saltelli et al., 2004); and (ii)
Generalized Likelihood Uncertainty Estimation – GLUE
(Beven and Binley, 1992). A twelve month period was used
for all the analyses conducted in this study.

The first step of this method regards the initial sensitiv-
ity analysis and establishment of upper and lower bounds
for each parameter. It assesses all of the calibration param-
eters used in the model to choose those that are most sen-
sitive and those with large uncertainties. The Morris method
(Morris, 1991) was applied to carry out the sensitivity analy-
sis of LASH. Local sensitivity indices (dk) were computed for
each parameter (Table 1) applying Equation 15, while global
sensitivity indices (dg) were obtained by taking the average
of these local sensitivities at different points sampled in the
respective parameter space.

( ) ( )1 2 1 1, , , , , , ,
( ) − +⎡ + Δ − ⎤⎦⎣=

Δ

… … nk k k
k

y x x x x x x y x
d x  (15)

where y (x) represents the model output of interest; Δ is
the elementary effect of a small perturbation of the kth com-
ponent. The perturbation is a predetermined multiple of 1/
(p - 1) in which p corresponds to the number of  intervals
that a parameter range is divided by.

In this study, a rescaled sensitivity index (dr) was applied,
which was recommended by Arabi et al. (2007). The dr in-
dex was determined by dividing the global sensitivity indi-
ces by their total sum. The values of dr can vary between 0
and 1 in such a way that the greater the value, the more sen-
sitive the respective parameter is.

The second step regards the Initial Monte Carlo simula-
tion. It starts once the first step is carried out, it is possible
to define all of the parameters that will be used in step 2.
For this step, the Monte Carlo method was employed to
evaluate the results from the model by varying all the uncer-
tain parameters simultaneously (step 1), taking values within
their recommended range (Table 1). Values for the sensitive
parameters were selected randomly according to their respec-
tive probability distribution. As there is no prior informa-
tion with respect to the probability distribution of the pa-
rameters, uniform distributions were assumed for all the pa-
rameters by taking into account minimum and maximum
values for each parameter (Table 1). Studies carried out by
Beven and Freer (2001), Benaman and Shoemaker (2004),
Arabi et al. (2007), and Wei et al. (2008) also used the same
assumption.

Once all the runs are performed for step 2, a cumulative
density function can be generated (Benaman and Shoemaker,
2004). This function describes the variation in output as a
result of all the uncertain parameters, which are varied at the
same time within their suggested ranges. In this case, the
analyzed output variable was mean daily streamflow.

Finally, it is necessary to verify if  the analyzed output vari-
able is close to the median of the results obtained through
Monte Carlo simulation as well as to determine if the prob-
ability distribution has a reasonable range with respect to the
model output variable. If  so, it can be assumed that the pa-
rameter ranges suggested in Table 1 are realistic for this wa-
tershed. Otherwise, some parameters may have their ranges
unrealistic for this watershed; therefore, another analysis may
have to be performed following steps 3 – 4 described be-
low.

The third step regards the Range adjustment using in-
terval-spaced sensitivity. This step is necessary when some

Table 1 – Analyzed parameters in the initial sensitivity analysis and range adjustment.

Parameter Description Range Reference
λ Initial abstraction coefficient 0 - 0.5 Mishra et al. (2006)
θ0 Current soil moisture (m3 m-3, estimated as % of  Am) 10 - 95 -
KSS Hydraulic conductivity of  subsurface reservoir (mm per day) 0 - 182.4 Rawls et al. (1993)
KB Hydraulic conductivity of  shallow saturated zone reservoir (mm per day) 0 - 6

KCR Maximum flow returning to soil by capillary rise (mm per day) 0 - 5 Collischonn et al.
(2007)

ACC
Minimum soil water availability to generate subsurface flow (mm, estimated as % of
Am) 0 - 30

AC Minimum soil water availability to generate base flow (mm, estimated as % of  Am) 0 - 30
ACR Soil water availability limit so that capillary rise occurs (mm, estimated as % of  Am) 0 - 50

AL
Lower limit of  soil water availability below which a decrease of  evapotranspiraton
occurs (mm, estimated as % of  Am) 10 - 70

α Interceptation coefficient 0 - 0.5
PS Pore-size index 0.3 - 0.7
CS Response time parameter of  the surface reservoir  CS < CSS Mello et al. (2008)
CSS Response time parameter of  the sub-surface reservoir CS < CSS < CB Mello et al. (2008)
QR Reference discharge (m3 s-1), used in the Muskingum-Cunge routing method 1 - 25

n Manning's roughness coefficient (s m-1/3), used in the Muskingum-Cunge routing
method 0.02 - 0.04 Collischonn et al.

(2007)
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parameter bounds need to be narrowed, since the combina-
tion of different parameters provides a considerable num-
ber of unrealistic results.

Interval-spaced sensitivity was performed to assess the
effect of different model parameters on the mean daily
streamflow values. For this analysis, each parameter of con-
cern is evaluated while keeping the remaining parameters at
their base value. Base values can be selected by different ap-
proaches: (i) previous manual or automatic calibration; (ii)
values obtained from either literature or field measurements
carried out in the same watershed. Each analyzed parameter
had its range divided into equal intervals. The choice relative
to the number of  intervals is subjective; however, Arabi et
al. (2007) recommended using 20 - 50 intervals for each pa-
rameter range. Following this mathematical process a graph
can be produced, which allows evaluating if the parameter
range is generating unrealistic results. Since model parameters
have different ranges, the following equation was applied to
compute normalized values for the x-axis for each param-
eter (Arabi et al., 2007).

α −
=

−
i i

i
i i

LB
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UB LB
 (16)

where Ni is the normalized value of the parameter i, which
is determined as a function of absolute value αi and its up-
per (UBi) and lower (LBi) bounds (Table 1).

Nash-Sutcliffe (CNS) and its logarithmic version (log(CNS))
(Nash and Sutcliffe, 1970) efficiency coefficients were used in
this study as cutoff criteria in order to distinguish between
behavior and non-behavior range.
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where QOi corresponds to the observed streamflow at time
j, QOM is the mean observed streamflow, QSj represents the
simulated streamflow at time j, QSM is the mean simulated
streamflow, log(QOj) is the logarithm of  the observed
streamflow at time j, log(QSj) is the logarithm of the simu-
lated streamflow at time j, logm(QO) corresponds to the mean
logarithm of  the observed streamflows. Once the efficiency
coefficients are computed for each parameter, ranges (upper
and lower bound) can be adjusted.

The fourth step – Final Monte Carlo Simulation – in-
volves Monte Carlo analysis in order to assess the influence
of the narrowed parameter range over the model outputs.
This part of the analysis is similar to Step 2; however, a
GLUE likelihood measure is computed for each model run
using equation 19 according with procedures described in

Arabi et al. (2007) and Blasone et al. (2008). In addition, new
parameter values were taken simultaneously for all the pa-
rameters that had a considerable sensitivity.

( )
2

21
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S
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where L(p|Y) corresponds to the likelihood measure of the
parameter set (p) for the observed data (Y); the values σS
and σO represent the variance of the error between model
prediction and observed data, and the variance of  the ob-
served data, respectively.

Parameter data sets that produce likelihood values less
than a certain threshold are considered “nonbehavioral” and
then discarded, whereas, the rest of the parameter sets are
termed “behavioral” (Stedinger et al., 2008). The latter pa-
rameter sets are then used to compute likelihood weights,
thereafter, each weight is divided by their sum and then they
are sorted. In this way, a cumulative distribution for the
model output parameter of interest is created and used for
estimating uncertainty bounds.

The Jaguara Experimental Watershed (JEW) was used
as a case study area to apply the LASH model and the above-
mentioned procedures related to sensitivity analysis, adjust-
ment of parameter ranges, and uncertainty analysis. This ex-
perimental watershed is located in southern Minas Gerais
State, Brazil (Figure 1), has an area of about 32 km2 and its
drainage network presents a permanent hydrological regime.

The annual mean temperature in this region is approxi-
mately 19ºC, varying from 14 to 22ºC. According with
Köppen’s classification the climate is characterized as Cwa,
with high concentration of precipitation during both spring
and summer (from October to March), whereas, autumn and
winter are dry and cool. The mean annual precipitation is
about 1400 mm.

The used period was a consistent year with no gaps or
problems derived from monitoring and, in addition, it con-
tained a great variation on hydrological events including high
peak flow as well as many consecutive drought days.

Figure 1 – Location of the channel network, outlet, weather
station, and points of measurement of soil moisture
in the Jaguara Experimental Watershed.
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Variables with respect to weather were monitored every
30 min in the JEW through a complete and compact weather
station for the whole period. Such variables included tem-
perature, relative humidity, wind speed, and solar radiation.
The discharge data set was obtained from an automatic gauge
station located at the JEW’s outlet and a stage-discharge rat-
ing curve.

An image from the satellite ALOS from May, 2008 which
provides multispectral and 10-m resolution images, was ac-
quired in order to classify the land-uses in JEW. This allowed
us to determine that the watershed was occupied by euca-
lyptus (7.68%), coffee (4.11%), bare soil (9.63%), maize
(22.85%), native vegetation (13.13%), and pasture (42.60%).
The digital elevation model (DEM) of JEW was obtained
with 30-m resolution, which enabled the generation of a
slope map and delineation of the channel network. The
slope gradients of this watershed ranged from 0 to 46.9%,
with a mean value of 11.6%. The soil map of JEW pre-
sented the following percentage distribution: Oxisols
(59.8%), Cambisols (23.4%) and Fluvic Neosols (16.8%)
(Menezes et al., 2009).

Field trials were carried out in the JEW in order to quantify
the spatial variation of saturated soil water content and perma-
nent wilting point water content (Figure 1). Several points of
measurement were sampled throughout the JEW and used to
apply geostatistical procedures; thereafter, a semivariogram and
a kriging map were obtained for each variable.

Results and discussion

The Morris method (Morris, 1991) was applied to deter-
mine which model parameters should be considered as most
sensitive. The greater the rescaled sensitivity index (dr), the
more sensitive the respective parameter is. In this way, the
LASH model parameters are outlined in Table 2 in a descend-
ing order with respect to sensitivity in mean daily streamflow.

Even though the methodology suggested by Morris (1991)
is unsophisticated, it allowed us to identify the most sensi-
tive parameters for the LASH model.

All parameters in the sensitivity analysis were important
except n and QR which are part of the Muskingum-Cunge
routing method (Table 2). This indicates that the model is
not sensitive to the Muskingum-Cunge routing method for
this watershed. A reasonable explanation for the non-sensi-
tivity of these two parameters is that the channels in JEW
are narrow and steep, thus the channel network does not have
a significant influence on water accumulation and propaga-
tion (Collischonn et al., 2007).

The parameters KB and AC were the most sensitive in the
model, proving that the JEW is governed by base flow pro-
cess. In other studies (Collischon et al., 2007; Mello et al.,
2008), AC was considered to have a low sensitivity and, there-
fore, it was kept as a constant value. However, in this water-
shed our study showed that this parameter was greatly sen-
sitive and should be taken into account during the calibra-
tion step, especially in watersheds that are governed by base
flow. Since AC is computed as function of  Am and the latter
variable is calculated in a spatially distributed approach
throughout the watershed (based on different values of satu-
ration soil moisture and wilting point soil moisture), AC
might have been estimated better in this study than in the
above-mentioned studies. As JEW is composed mostly by
deep soils with slope gradients less than 18% (Oxissols) and
the mean annual precipitation is greater than 1,400 mm, the
aquifer recharge process is highly significant. By analyzing the
contribution of each flow component for the studied pe-
riod, we found results as follows: base flow (62.51%), sur-
face runoff (25.10%), and subsurface flow (12.39%). There-
fore, base flow is predominant in comparison to direct sur-
face runoff  and subsurface flow, thus justifying why the pa-
rameter (KB) associated with the former component was the
most sensitive.

Table 2 – Sensitivity analysis of  the LASH model.

Parameter Component dr Min (CNS) Min [log (CNS)]
KB Base flow 0.26 0.22         -43.28
AC Base flow 0.16 0.43           -3.61
θ0 Initial soil water availability 0.14 0.16 0.09
λ Surface runoff 0.14 0.09 0.56
ACR Capillary rise 0.08 0.56 0.50
AL Evapotranspiration 0.07 0.63 0.72
α Interceptation 0.05 0.62 0.72
PS Subsurface 0.03 0.63 0.71
KSS Subsurface 0.02 0.62 0.63
ACC Subsurface 0.02 0.64 0.69
KCR Capillary rise 0.01 0.66 0.72
CS Surface runoff 0.01 0.39 0.59
CSS Subsurface 0.01 0.64 0.69
n Routing in the channel network 0.00 0.66 0.73
QR Routing in the channel network 0.00 0.66 0.73
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The parameter related to surface runoff (λ) also had a
high sensitivity. This behavior goes along with results pre-
sented in other papers (Mello et al., 2008; Beskow et al.,
2009a). Variation in values for this parameter is expected to
occur when simulating different watersheds, since this pa-
rameter is strongly affected by the following factors (Mishra
et al., 2003; Beskow et al., 2009a): (a) climatic conditions such
as temperature and solar radiation, which are important for
evapotranspiration calculation; and (b) pluvial behavior of
the study watershed due to its influence on antecedent soil
moisture content.

The soil water content (θ0) represents the hydrological ini-
tial condition of watersheds, and was found to have con-
siderable sensitivity. The establishment of  realistic ranges for
this parameter depends on when the simulation starts. As
in this case, the simulation began in January, which is the
most humid month, soil moisture was high. Viola et al.
(2009) recommend setting constant values of θ0 for long-
term hydrologic simulation models due to the difficulty of
soil moisture monitoring at the watershed scale. However,
we suggest including θ0 as a calibration variable for improve-
ment of the model performance in future simulation using
LASH if this input is unavailable.

The parameter ACR presented a considerable sensitivity
for this watershed (Table 2). It is advisable to take into ac-
count capillary rise, since this may be an important compo-
nent if the watershed has savannahs, riparian forests or
springs, thus causing rise of water from shallow aquifer to
the soil layer. Two statistics of  precision are presented in Table
2 (CNS and log (CNS)), which are goodness-of-fit measures
and refer to the minimum values found in the interval-
spaced sensitivity analysis. These statistics can be used as a
cutoff criterion in this study to eliminate portions of the
parameter ranges in which either CNS or log (CNS) is negative.
There were only two parameters (KB and AC) that had mini-
mum values of  log (CNS) below zero, which indicates that
their parameter ranges are producing unrealistic outputs and
then they need to be narrowed.

After performing the prior step (sensitivity analysis), we
chose all of  the parameters presented in Table 2, except QR
and n, to carry out this analysis for mean daily streamflow as
the output variable studied in the Monte Carlo based simula-
tions. The choice for the number of Monte Carlo simulations
is quite subjective; nevertheless, this step simply attempts to
find out if the parameter ranges should be narrowed. This
way, it is not necessary to run as many iterations as for the
uncertainty analysis. For the same kind of analysis, Benaman
and Shoemaker (2004) used 500 Monte Carlo based runs by
varying simultaneously 36 input parameters for the SWAT
model in order to simulate streamflow and sediment trans-
port at the watershed scale. In the present study, only 13 pa-
rameters of the LASH model were evaluated, and 500 itera-
tions were found to be a reasonable number.

A 12-month simulation period was used to produce Fig-
ure 2. It represents the cumulative probability distribution
of daily streamflow using 500 Monte Carlo runs which in-
volved variation of the model input parameters simulta-
neously (using ranges established in Table 1).  The mean

observed streamflow is presented in Figure 2 through a
solid vertical line. A dashed line was drawn in order to em-
phasize the streamflow corresponding to the median of
the cumulative probability distribution. Comparing these
two lines one can observe that the line representing ob-
served streamflow is distant from the median of  the cu-
mulative probability distribution. Therefore, we concluded
that the streamflow results are biased to low. Most of  the
runs (about 95%) provided mean daily streamflow less than
the observed streamflow. This occurred because of  uncer-
tainties concerning some parameters, whose initial ranges
should be narrowed to facilitate a better automatic calibra-
tion. Otherwise, the automatic calibration process would
take many parameter sets and would produce unrealistic re-
sults.

Thirteen parameters from Table 2 were used to assess
interval-spaced sensitivity based on 50 runs for each param-
eter within its respective range (Table 1). A manual calibra-
tion was applied to determine the base values for the model
parameters used in this study. The most difficult decision in
this step was to define a cutoff criterion (threshold, T), since
it is subjective. We used an assumption recommended by
Arabi et al. (2007), in which statistics CNS and log (CNS) ≤ 0
were considered unacceptable and used as a threshold to re-
duce parameter ranges. Based on the results presented in
Table 2, through the columns Min (CNS) and Min (log (CNS)),
it was possible to determine which parameter bounds were
reduced. Figure 3 shows the four most sensitive parameters
and how their ranges were narrowed using the threshold T.
In addition to the threshold used (T ≤ 0), Table 3 also illus-
trates the parameter ranges that would have been narrowed
if other T values had been applied.

Two parameters presented a large range that had a major
influence on the model output. These would cause too many
parameter sets to be unrealistic for this watershed in case of

Figure 2 – Cumulative probability distribution of the mean daily
streamflow for 500 Monte Carlo runs.
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using suggested ranges for calibration, and in addition, the
optimization method would be inefficient. Because only one
parameter is changed at a time, we should be careful with
the choice of the threshold for reduction of ranges. Accord-
ing to Too high values should not be set as threshold be-
cause realistic portions of parameter ranges may be removed
if all parameters are considered at once (Benaman and Shoe-
maker, 2004). Arabi et al. (2007) and Benaman and Shoe-
maker (2004) used similar methodologies for adjustment of
parameter ranges of  the SWAT model. In both studies, re-

Table 3 – Adjustment of  parameter ranges using different
thresholds.

1T ≤ 0; 2T ≤ 0.15; 3T ≤ 0.3.

Parameter Suggested
range

New
range1

New
range2 New range3

KB 0 - 6 1.3 - 6 1.45 - 6 1.7 - 6
AC 0 - 30 0 - 11 0 - 10 0 - 9.5
λ 0 - 0.5 - 0.01 - 0.5 0.015 - 0.4
θ0 10 - 90 - 14 - 95 25 - 93

Figure 3 – Spaced-interval sensitivity analysis changing (a) KB, (b) AC, (c) antecedent soil moisture, and (d) initial abstraction coefficient.
The x-axis shows normalized values of each parameter (equation 17).

sults allowed them to conclude that the streamflow-related
parameters did not need a range reduction. As the sediment-
related parameters were found to be more sensitive, they had
their ranges reduced, thus eliminating portions of the pa-
rameter ranges which were causing many unrealistic predic-
tions.

Figure 4 shows the cumulative GLUE distribution for
mean streamflow using both the suggested parameter ranges
and the new parameter ranges. Each line represents 5000
Monte Carlo runs. Comparing the difference between the two
lines it was found that the reduction of ranges caused a con-
siderable impact on the results even though the mean ob-
served data did not correspond exactly to the 50th percentile
of the cumulative probability distribution. This proves that
range adjustment should be applied to make the output
more accurate.

 It is usual to establish uncertainty bounds for the GLUE
analysis (Blasone et al., 2008), which were here defined as 5th

and 95th percentiles of the distribution. These percentiles were
0.194 and 0.423 m3 s–1, respectively, when the initial param-
eter ranges were used. In contrast, 0.242 and 0.472 m3 s–1

were the values found for the same percentiles when the nar-
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Figure 5 – Observed and simulated daily streamflows at the outlet
of the JEW and rainfall data over the calibration period
(from January 2006 to December 2007).

Figure 4 – Cumulative Generalized Likelihood Estimation
distribution using both initial parameter ranges and
narrowed parameter ranges. Each line except the
vertical one represents 5000 Monte Carlos runs taking
values randomly from their respective ranges.

rowed ranges were applied instead. These bounds included
most of the iterations (58.2% of the iterations for the ini-
tial parameter ranges and 70.6% for the narrowed ranges),
which indicates that the variation of the model parameters
was capable of  accounting for the total output uncertainty,
therefore, measurement and model structure errors were bal-
anced (Blasone et al., 2008). The final GLUE simulation pre-
sented results much better than those from the initial GLUE
simulation. The median was equal to 0.352 m3 s–1, differing
only by 9.5% from the mean observed streamflow value,
which demonstrates acceptable results from the GLUE meth-
odology.

Uncertainty analysis has been successfully applied in many
other studies using hydrologic models. Muleta and Nicklow
(2005) and Arabi et al. (2007) used the GLUE methodology
in order to analyze uncertainties with respect to streamflow
and sediment yield estimates simulated through the SWAT
model. They found that sediment yield predictions had more
uncertainties compared to streamflow estimates. Blasone et
al. (2008) performed an uncertainty analysis for the MIKE-
SHE model and concluded that uncertainties in parameters
might not address the total uncertainty of spatially-distrib-
uted variables. These researchers point out that this occurs
when a bias is observed in predictions due to uncertainties
which can arise from both model structure and measurement
error, as occurred in their study for groundwater elevation.
Wei et al. (2008) computed model predictive uncertainties for
the RHEM model to assess erosion risk for different sce-
narios. The authors were able to provide different conserva-
tion plans for decision makers instead of a single value con-
cerning predicted soil loss. The uncertainties related to the
VIC-3L model parameters and their effect on simulated

streamflow values were evaluated successfully by Huang and
Liang (2006).

The four most sensitive parameters found in this study
cannot be easily measured in the field. Huang and Liang
(2006) recommended for parameters like these that they
should be estimated through model calibration. Using a con-
servative threshold (T ≤ 0), only the parameters KB and Ac
had their ranges narrowed. However, if results from GLUE
were not satisfactory, other thresholds would have to be used,
for instance CNS and log (CNS) ≤ 0.15 or ≤ 0.3 (Table 3), in
order to reduce parameter ranges and to proceed with a new
GLUE analysis.

Before narrowing the suggested parameter ranges, the ini-
tial Monte Carlo simulation resulted in a mean streamflow
equal to 0.23 ± 0.01 m3 s–1 for a 95% confidence interval,
which means that 95% of the 5,000-iteration sets will result
in mean streamflow between 0.22 and 0.24 m3 s–1. The final
Monte Carlo simulation produced a mean streamflow of
0.31 ± 0.01 m3 s–1 when the reduced parameter ranges were
taken. These results clearly indicate that the reduction of
bounds influenced considerably the mean streamflow values,
thus improving mean streamflow predictions by 35% and
reducing uncertainties linked to the input parameters. Al-
though this study did not focus on the calibration of the
LASH model, Figure 5 was added to allow readers to ana-
lyze the good performance of  the model for JEW. This type
of analysis can be more efficient if a given watershed has
more data available to be applied to (Muleta and Nicklow,
2005). This analysis should be made for other watersheds
before assuming the same parameters are the most sensitive
as well as their ranges, since parameter ranges depend on spe-
cific characteristics of the watershed. Moreover, since this
model is being applied for the first time, the data from other
watersheds should be used in future for comparison.

Conclusions

The sensitivity analysis was performed for the LASH
model with data from a medium-sized Brazilian watershed,
indicating that the most sensitive parameters were KB, AC,
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θ0, and λ. Using a conservative threshold (CNS or log (CNS) ≤
0) the ranges of two parameters were reduced, thus improv-
ing considerably the uncertainty analysis through GLUE
methodology and making results more accurate for the wa-
tershed under consideration. Moreover, it will be easier to
choose which parameters and their respective ranges should
be considered to perform the calibration of LASH for other
watersheds. These factors will help speed up the optimiza-
tion efforts.
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