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ABSTRACT: Growth functions with upper horizontal asymptote do not have a maximum point, but we
frequently question from which point growth can be considered practically constant, that is, from which
point the curve is sufficiently close to its asymptote, so that the difference can be considered non-significant.
Several methods have been employed for this purpose, such as one that verifies the significance of the
difference between the curve and its asymptote using a t-test, and that of Portz et al. (2000), who used
segmented regression. In the present work, we used logistic growth function, which has horizontal asymptote
and one inflection point, and applied a new method consisting in the mathematical determination of a point
in the curve from which the growth acceleration asymptotically tends to zero. This method showed the
advantage to have biological meaning besides leading to a point quite close to those obtained using the before-
mentioned methods.
Key words: nonlinear regression, logistic model, critical point of growth

Determinação de um ponto suficientemente próximo à assíntota
em funções de crescimento não lineares

RESUMO: Em funções de crescimento que apresentam uma assíntota horizontal superior à curva,
frequentemente surge a questão sobre quando se pode considerar o crescimento como praticamente constante,
isto é, quando a curva está suficientemente próxima à sua assíntota, de modo que se possa declarar a diferença
como sendo não-significativa. Vários métodos têm sido empregados, entre eles o que verifica através do teste t
a significância da diferença entre a curva e sua assíntota. O uso de regressão segmentada, como em Portz et al.
(2000), também tem esse objetivo, isto é, a determinação de um ponto de início de crescimento praticamente
constante. Utilizou-se a função logística de crescimento, a qual possui assíntota horizontal e ponto de inflexão,
e aplicou-se um novo método, que consiste na determinação matemática de um ponto da curva a partir do qual
a aceleração do crescimento tende assintoticamente a zero. Este método, além de ter um significado biológico,
conduz a um ponto bastante próximo aos obtidos pelos métodos anteriormente citados.
Palavras-chave: regressão não linear, modelo logístico, ponto crítico de crescimento

Introduction

Growth functions with upper horizontal asymptote
frequently lead to the question about the point from
which growth can be considered practically constant, i.e.
when the curve is sufficiently close to the asymptote,
indicating non-significant difference. A ‘stop point’ is
then searched in the observations. To make this deci-
sion we can use the method here denominated of “non-
significant difference”, in which the difference between
the curve and its asymptote is verified using a t-test. An-
other method is the use of segmented regression, which
adjusts two lines, the first is ascendant and the second,
parallel to the abscissa axis, and the intersection is an
indicator of the point in which the growth is close to
the asymptote. A practical example can be seen in Portz
et al. (2000).

Critical points in growth curves can be mathemati-
cally determined from the observational data-fitted func-
tion; a frequently utilized point in biological works is
the inflection point of the curve. Gregorczyk (1998)

worked with Richards growth function and considered
three critical points during plant growth: the inflection
point and two other points, one of maximum and an-
other one of minimum acceleration. The searching for
a ‘maximum growth point’ is an important matter in
many research fields. For instance, Chatkin et al. (2001)
fitted a logistic function to verify asthma mortality
trends and then compared this adjusted logistic with a
second degree polynomial, with the aim of obtaining the
maximum point.

In the present study, the logistic growth function was
used, applying a new method consisting in the determi-
nation of a curve point from which the growth accelera-
tion asymptotically tends to zero. Then, this point was
compared with the before-mentioned ones.

Material and Methods

Determination of the asymptotic deceleration point
- PDA

The logistic growth function and its first to fourth-
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order derivatives were considered, all defined within the
interval -∞ < x < ∞,

y = α [1 + exp(-β-γx)]–1  (1)

dx
dy

= α γ exp(-β-γx) [1 + exp(-β-γx)]–2  (2)

2

2

dx
yd = α γ2 exp(-β-γx) [exp(-β-γx) – 1] [1+exp(-β-γx)]–3 (3)

3

3

dx
yd = α γ3 exp(-β-γx) [1- 4 exp(-β-γx) + (exp(-β-γx))2] [1+

exp(-β-γx)]–4  (4)

4

4

dx
yd = α γ4exp(-β-γx)[-1+11exp(-β-γx)-11

(exp(-β-γx))2+(exp(-β-γx))3][1+exp(-β-γx)]–5  (5)

with α, β and γ the parameters, where α > 0 and γ > 0.
The first derivative of the logistic function is always

positive; the x-values that make the other derivatives
equal to zero are:

 

2

2

dx
yd = 0 → exp(-β-γx) = 1, from which

x = -β/γ, y = α/2,
 

3

3

dx
yd = 0 → 1- 4 exp(-β-γx) + (exp(-β-γx))2 = 0, from which

x1 = -[ln(2+√3) + β]/γ,    y1 = α(3-√3)/6

x2 = -[ln(2-√3) + β]/γ,     y2  = α(3+√3)/6

 

4

4

dx
yd = 0 → -1+11exp(-β-γx)-11(exp(-β-γx))2+(exp(-β-γx))3

= 0, from which

x1 = -[ln(5+2√6) + β]/γ, y1 = α(3-√6)/6,

x2 = -β/γ, y2 = α/2,

x3 = -[ln(5-2√6) + β]/γ, y3 = α(3+√6)/6.

Figure 1 represents the functions (1), (2) and (3) for
the estimates of the parameters: a =  α̂  = 517.4 , b =  β̂
= -2.1662, c =  γ̂  = 0.1392.

The logistic function considered here (y) is an in-
creasing function within the interval -∞ < x < ∞, with-
out extreme points and with an inflection point (PI). The
parameter α is the limit of y when x tends to infinity; y
= α is the equation of the upper asymptote. The growth
rate function (y’) has a maximum point, which abscissa
is the abscissa of the inflection point of the curve y, and
has two inflection points. The acceleration growth func-
tion (y’’) presents important information about the
growth: at initial x-values we see a great and positive im-
pulse that soon attains a maximum point called hereaf-
ter ‘maximum acceleration point’ (PAM). Then, the ac-
celeration decreases with time x, is null at the inflection

point of y and thereafter has negative values; therefore,
after the inflection point of y, growth decelerates. The
acceleration attains a minimum, called hereafter ‘maxi-
mum deceleration point’ (PDM), and goes toward an in-
flection point. This point is designated in Figure 1 as
PDA = asymptotic deceleration point; after it, the de-
celeration is very slow and y’’ tends to zero as x tends
to infinity. For this reason, we expect the increases in y
to be very small, and possibly without practical appli-
cation.

The coordinates of the inflection point of the logis-
tic function are the values obtained when the second de-
rivative is equal to zero; equating to zero the third de-
rivative we obtain the coordinates of the points of maxi-
mum acceleration, PAM, and of maximum deceleration,
PDM, which are the maximum and minimum of the ac-
celeration function, respectively; when the fourth deriva-
tive is equal to zero, we obtain the inflection points of
the acceleration function. The last inflection point of the
acceleration function is denoted here by PDA. Consid-
ering the estimates a, b and c of the parameters α, β and
γ, respectively, we have:

Figure 1 – Logistic function of growth (y), growth rate (y’) and
growth acceleration (y’’) related to time x, according
to the logistic function for estimated parameters α̂
= 517.4, β̂  = -2.1662 and  γ̂  = 0.1392; PI (15.6;
258.7) = inflection point of curve y; PDA (32.0;
469.9)= asymptotic deceleration point.

0

200

400

600

0 10 20 30 40 50

x

Logistic - y

PI

PDA

0

5

10

15

20

0 10 20 30 40 50

x

Logistic - y'

-1

0

1

0 10 20 30 40 50

x

Logistic - y''



Nonlinear growth functions 111

Sci. Agric. (Piracicaba, Braz.), v.68, n.1, p.109-114, January/February 2011

 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

++

++

)/6]6a(3 b)/c,  )62-[-(ln(5PDA 

 and  )/6]a(3 b)/c,  )3-(ln(2- [ PDM

  ], a/2 b/c,- [ PI
)/6],3-a(3 b)/c,  )(ln(2- [ PAM

3

3

 (6)

Determination of the non-significant difference
point- DNS

This method takes into account the difference y* =
a - , that is, the estimated difference between the as-
ymptote and the curve y, and verifies the point from
which this difference can be considered non-significant
using a t-test. This point is called here ‘non-significant
difference point’, denoted as DNS. This method proved
to be very rigorous, since the obtained DNS points are
highly far from the observational data origin, sometimes
out of the measured interval, which characterizes ex-
trapolation.

Let Δ = α - y be the difference between the asymp-
tote α and the logistic function (1) and y* = a -  its
estimate. The abscissa x0 of the non-significant differ-
ence point, DNS, is the solution for the equation

T = y*x0
 / √[ V̂ (y*)]x0

 (7)

for T = talpha,df , a t-value at alpha significance level, df =
degrees of freedom in s2 = estimated error variance. The
null hypothesis is H0: Δ = α - y = 0 and the alternative
unilateral hypothesis is H1: α - y > 0. To obtain  V̂ (y*),
the estimated y* variance, we use the formula

V(y*) = f(x)’ (F’F)-1 f(x)σ2  (8)

where

f(x) = [∂Δ/∂α    ∂Δ/∂β     ∂Δ/∂γ]’  (9)

that is, the vector of partial derivatives of Δ = α - y rela-
tive to the parameters α, β and γ, with 3 × 1 dimension,
(F’F)-1σ2 is the variances and co-variances matrix of the
parameters estimates of the logistic, with 3 × 3 dimen-
sion; σ2 is the error variance. We have

Δ = α - y = αΞ/(1+Ξ), with Ξ = exp(-β-γx)

and the partial derivatives relative to the parameters

∂Δ/∂α = Ξ/(1+Ξ),  ∂Δ/∂β = -α Ξ/(1+Ξ)2,  ∂Δ/∂γ = -α
x Ξ/(1+Ξ)2.

The estimated variances and co-variances matrix of
the parameters estimates, a, b and c, is

G-1s2 = 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

fccfbcfac
fbcfbbfab
facfabfaa

 (10)

where G matrix is obtained from F’F matrix by substi-
tuting the parameters for the estimates, and s2 is the re-
sidual mean square.

The estimated variance of y* is obtained from (8),
(9) and (10), with the estimated parameters in the par-
tial derivatives:

V̆ (y*) = X2 (1+X)-4 [(1+X)2 faa + a2 fbb + a2 x2 fcc - 2 a
(1+X) fab - 2 a x (1+X) fac +2a2 x fbc], with X = exp(-b-cx).
 (11)

Using

y* = a - = a X / (1+X)  (12)

we substitute in (7) the equations (11) and (12), for x =
x0, obtaining the non-significant difference point, DNS.

Determination of the point using segmented regres-
sion - PRS

The segmented regression model is well adequate
to estimate growth parameters, according to Robbins
(1986) apud Portz et al. (2000). It consists of two parts:
an ascending or descending inclined straight line fol-
lowed by a horizontal line, in which the intersection
point determines the break point, called here PRS. For
other biological variables, the segmented regression
model describes two intersection lines, both with in-
clination different from zero. The adopted regression
will be the one inclination model which is, for n pairs
(xi ; yi),

yi = a + b(r-xi) + ei, i=1,2...n1, n1+1, ..., n,

with the restriction (r-xi) = 0 for i ≥ n1+1,

where: n1 = number of observations up to the break
point (PRS); a = y-intercept of the horizontal line; -b =
angular coefficient of the inclined line; r = abscissa of
PRS; ei = experimental error.

Determination of the economic optimum point - PE
Let  = F(x) be the adjusted growth function. The

optimum slaughter age of cattle at x = PE, is a solution
for the equation

p F’(x) = r p F(x) + k,

where: p = price per kilogram of animal live weight; r
= interest rate; k = costs per time unit, per animal.

For the logistic function,

p a c X / (1+X)2 = r p a / (1+X) + k  (13)

where X = exp(-b - cx).
The before-mentioned methods to determine a point

sufficiently close to the logistic asymptote will be ap-
plied to monthly weight data of heads of cattle of the
breeds Flemish, Guernsey and Holstein, obtained from
the records of “Seção Técnica de Zootecnia da Escola
Superior de Agricultura Luiz de Queiroz / Universidade
de São Paulo”, Piracicaba, SP. They are summarized in
Table 1.

The logistic function adjusted to each example is

yij = α [1 + exp(-β-γxi)]
–1 + eij

where yij is the weight (kg) of the animal j in x = age i
(months); α, β, γ are parameters and the eij are normal
with mean 0 and variance σ2. We will utilize the NLIN
procedure of SAS Institute (2009).
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This logistic function is largely used in growth stud-
ies of animals and plants. Among recent works we cite
Paul et al. (2009) with pigs, Oliveira et al. (2000) with
Guzerat cattle and Tatar et al. (2009) with goats.

Results and Discussion

Adjustment of the logistic function (1) to data in the
examples is in Table 2. The results obtained using the
‘proc nlin’ of SAS shows the low values of Hougaard
skewness coefficients for the parameters. According to

Table 1 – Examples used to determinate the points
sufficiently close to the logistic asymptote.

n = number of months; r = number of animals (repetitions);
N = number of pairs (x;y) in regression; M = male; F = female.

elpmaxE deerB xeS n r N

1 yesnreuG M 05 1 05

2 hsimelF F 07 4 082

3 yesnreuG F 07 4 772

4 nietsloH F 07 4 082

Table 2 – Adjustment of the logistic function y = α [1 + exp(-β-γx)]-1 to data in the examples in Table 1.

M-yesnreuG:1elpmaxE

retemaraP etamitsE rorrEdtSxorppA stimiLecnedifnoC%59etamixorppA ssenwekS

α 4.715=a 1316.5 1.605 7.825 6201.0

β 2661.2-=b 7570.0 5813.2- 8310.2- 2211.0-

γ 2931.0=c 4500.0 4821.0 1051.0 3501.0

74=fd,0.482=erauqsnaemrorrE

setamitsesretemarapehtfosecnairavocdnasecnairavdetamitsefoxirtaM

71705.13=aaf 005441.0=baf 3533020.0-=caf

30-E13537.5=bbf 40-E60025.3-=cbf

50-E89029.2=ccf

F-hsimelF:2elpmaxE

retemaraP etamitsE rorrEdtSxorppA stimiLecnedifnoC%59etamixorppA ssenwekS

α 3.684=a 3427.4 0.774 6.594 7511.0

β 9874.1-=b 6940.0 6675.1- 2183.1- 9370.0-

γ 1480.0=c 30300.0 2870.0 1090.0 1770.0

772=fd,0.369=erauqsnaemrorrE

setamitsesretemarapehtfosecnairavocdnasecnairavdetamitsefoxirtaM

913.22=aaf 904460.0=baf 873010.0-=caf

30-E2064.2=bbf 40-E1261.1-=cbf

60-E3161.9=ccf

F-yesnreuG:3elpmaxE

retemaraP etamitsE rorrEdtSxorppA stimiLecnedifnoC%59etamixorppA ssenwekS

α 1.683=a 4652.3 7.973 5.293 6380.0

β 6054.1-=b 1650.0 1165.1- 2043.1- 4570.0-

γ 0790.0=c 56300.0 9980.0 2401.0 5190.0

472=fd,5.186=erauqsnaemrorrE

setamitsesretemarapehtfosecnairavocdnasecnairavdetamitsefoxirtaM

783.01=aaf 385540.0=baf 236700.0-=caf

30-E8090.3=bbf 40-E8506.1-=cbf

50-E5403.1=ccf

F-asednaloH-4elpmaxE

retemaraP etamitsE rorrEdtSxorppA stimiLecnedifnoC%59etamixorppA ssenwekS

α 2.315=a 7130.6 3.105 1.525 4821.0

β 3905.1-=b 7860.0 5446.1- 0473.1- 3890.0-

γ 2090.0=c 32400.0 8180.0 5890.0 2801.0

772=fd,4.2191=erauqsnaemrorrE

setamitsesretemarapehtfosecnairavocdnasecnairavdetamitsefoxirtaM

133.63=aaf 91211.0=baf 576710.0-=caf

30-E7027.4=bbf 40-E9203.2-=cbf

50-E9397.1=ccf
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Ratkowsky (1989), coefficients lower than 0.1 indicate
that the parameter estimator is very close-to-linear in
behavior, what is a desirable property for application
of parametric tests. Using the estimates of the param-
eters in Table 2, the mathematical points can be calcu-
lated according to (6) (Table 3). The growth at the point
of asymptotic deceleration, PDA, is [a(3+√6)/6]/a = 90.8
% of the value of the curve asymptote. At this point,
therefore, the animal already presents an ‘optimum
growth’.

Table 4 presents the segmented regression points -
PRS - determined by fitting a segmented regression to
the data in the examples. The ordinates of segmented
regression points are, on average, 89.2 ± 0.85 % of the
asymptote value. To determine non-significant differ-
ence points, DNS, we use the equation (7)

T = yx0

*  / √[ V̂ (y*)]x0
,

with the y* variance estimate in (11), for x = x0, and the
estimates of the parameters, their variances and co-vari-
ances presented in Table 2. Considering the degrees of
freedom in error mean squares in Table 2, and 5% sig-
nificance level, talpha,df values (one-tailed tests) are 1,675
for Example 1 and 1,650 for the others.

The abscissas of non-significant difference points,
DNS, for Examples 1 to 4 are all beyond the interval of
data observation, which suggests that this method is very
rigorous to determine a ‘stop point’. This rigor can be
reduced if we consider a y* difference between  and a
percentage, p, of the estimated asymptote. In this case,
we have: y* = pa -  and

 V̂ (y*) = (1+X)-4 [faa Z2 (1+X)2 + fbb a2 X2 + fcc a2 x2

X2 - 2 fab a Z X (1+X) - 2 fac a Z x X (1+X) + 2 fbc a2 x
X2 ], with Z = p(1+X)-1 and X = exp(-b-cx).

The non-significant difference (DNS) values for p =
0.90 and p = 0.95 are in Table 4. The economic opti-
mum point, PE, was determined using equation (13)
with p/k = 0.353 and r = 0.01. We obtain PE = (30.1;
457.2) for Example 1; this value x = 30.1 is very close to
the other points in Table 4, for Example 1. Figure 2 plots
the critical points for the logistic function adjusted to

DNS 0.90 and DNS 0.95 = non-significant difference between the curve and 0.90 and 0.95 of the asymptote respectively; PRS =
segmented regression point; PDA = asymptotic deceleration point.

Table 4 – PRS, PDA and DNS points for p = 0.90 and p = 0.95, for the examples. Asymptote estimates (a).

stnioP
1elpmaxE 2elpmaxE 3elpmaxE 4elpmaxE

x x x x

09.0SND 7.92 0.454 7.14 9.924 5.53 7.933 7.83 0.154

SRP 4.13 0.664 5.34 9.634 8.53 0.143 6.93 3.554

ADP 0.23 8.964 8.44 5.144 6.83 7.053 1.24 9.564

59.0SND 7.43 6.384 0.05 5.654 1.34 5.263 4.64 2.084

a 4.715 3.684 1.683 2.315

 ŷ  ŷ  ŷ  ŷ

PAM = maximum acceleration point; PI = inflection point; PDM = maximum deceleration point; PDA = asymptotic deceleration
point.

Table 3 – Mathematical points for the growth curves, for each example. Estimated asymptote (a).

stnioP
1elpmaxE 2elpmaxE 3elpmaxE 4elpmaxE

x x x x

MAP 1.6 3.901 9.1 8.201 4.1 6.18 1.2 4.801

IP 6.51 7.852 6.71 2.342 9.41 0.391 7.61 6.652

MDP 0.52 1.804 2.33 5.383 5.82 5.403 3.13 7.404

ADP 0.23 9.964 8.44 7.144 6.83 7.053 1.24 1.664

a 4.715 3.684 1.683 2.315

 ŷ  ŷ  ŷ  ŷ

Figure 2 – Logistic function ŷ = 517.4 / [1 + exp(2.1662 –
0.1392 x)] adjusted to data in Example 1 (___).
Asymptote (–.–), PE = economic slaughter point
(*), PRS = point determined by adjusting a
segmented regression ( ), PDA = point of
asymptotic deceleration ( ), DNS = point of non-
significant difference between y estimated and 0.90
( ) and 0.95 ( ) proportions of the asymptote, at
5% significance level.
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the data in Example 1. Considering the proportion /a
for each point, on average, for all four examples, we have
88.0 ± 0.28, 89.2 ± 0.85, 90.8, and 93.7 ± 0.21 % for the
points non-significant difference, 0.90 (DNS), segmented
regression, (PRS), asymptotic deceleration, (PDA) and
non-significant difference 0.95 (DNS), respectively (Table
4).

The method used to obtain the non-significant dif-
ference (DNS) point yields values extremely close to the
asymptote. However, if a proportion of the asymptote,
such as 0.90 and 0.95, is considered, the obtained values
are close to the others, segmented regression (PRS) and
asymptotic deceleration (PDA). The asymptotic decel-
eration point is highly close to segmented regression
point, the latter being determined using a method al-
ready known in literature (Table 4 and Figure 2). Nev-
ertheless, the asymptotic deceleration point has the ad-
vantage of being a mathematical point with important
biological meaning. The point of asymptotic decelera-
tion, together with the inflection point can, therefore,
be used in discussions about biological growth curves.

Conclusions

The point of the logistic growth curve correspond-
ing to the beginning of an asymptotic deceleration (PDA)
can be used as a criterion to determine when the growth
attains a value sufficiently close to the asymptote, so that
we can ignore posterior increases. It has the advantage
over the other points of presenting biological meaning,
besides being an easy-to-calculate point, only the param-
eters estimates of the function have to be known. The
PDA values obtained in the considered examples agree
with those obtained using the segmented regression
method (PRS). The point of non-significant difference at

5% level between the curve and the estimated asymp-
tote, DNS, is very close to this asymptote. For this rea-
son, it is not a good criterion to determine a ‘stop point’
in growth; an alternative, in this case, is to employ a pro-
portion of the asymptote, such as 0.90 or 0.95, by instance,
which leads to results similar to the remaining points.
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