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ABSTRACT: Global climate models predict changes on the length of the dry season in the Amazon which
may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and
fraction of sky visible (FSV) at the forest understory on leaf traits and gas exchange of ten rainforest tree
species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA), leaf
thickness (LT), and leaf nitrogen content on photosynthetic parameters. Data were collected in January
(rainy season) and August (dry season) of 2008. A diurnal pattern was observed for light saturated photosynthesis
(A

max
) and stomatal conductance (g

s
), and irrespective of species, A

max
 was lower in the dry season. However,

no effect of the rainfall regime was observed on g
s
 nor on the photosynthetic capacity (A

pot
, measured at

saturating [CO
2
]). A

pot
 and leaf thickness increased with FSV, the converse was true for the FSV-SLA

relationship. Also, a positive relationship was observed between A
pot

 per unit leaf area and leaf nitrogen
content, and between A

pot
 per unit mass and SLA. Although the rainfall regime only slightly affects soil

moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually
lead to an effect on A

max. 
Finally, we report that little variation in FSV seems to affect leaf physiology (A

pot
) and

leaf anatomy (leaf thickness).
Key words: diurnal variation, forest understory, photosynthetic capacity, rainfall seasonality

Características foliares e trocas gasosas em arvoretas de
espécies nativas da Amazônia Central

RESUMO: Os modelos climáticos globais prevêem mudanças na extensão da época seca na Amazônia, o que
pode afetar a fisiologia das árvores. Os objetivos deste trabalho foram determinar o efeito da sazonalidade da
precipitação e fração de céu visível (FSV) no sub-bosque da floresta nas características foliares e trocas gasosas
de 10 espécies florestais da Amazônia Central. Também examinou-se a relação entre área foliar específica
(SLA), espessura da folha (LT) e nitrogênio foliar em parâmetros fotossintéticos. Os resultados foram coletados
nos meses de janeiro (época chuvosa) e agosto (época seca) de 2008. Observou-se um padrão de variação diurna
na fotossíntese saturada por luz (A

max
) e na condutância estomática (g

s
). Independente da espécie, A

max
 foi

menor na época seca. No entanto, não houve efeito da sazonalidade das chuvas em g
s
 nem na capacidade

fotossintética (A
pot

 medida em [CO
2
] saturante). A

pot
 e a espessura da folha (LT) aumentaram com FSV, o

contrário foi observado para a relação FSV-SLA. Também, observou-se uma relação positiva entre A
pot

 por
unidade de área e conteúdo de nitrogênio foliar, e entre A

pot
, por unidade de massa e SLA. Embora o regime das

chuvas apenas levemente influenciou a umidade do solo, características fotossintéticas parecem responderem a
fatores relacionados com as chuvas, o que repercute em A

max
. Finalmente, relata-se que pequenas variações em

FSV parecem afetar a fisiologia da folha (A
pot

) e a anatomia foliar (espessura da folha).
Palavras-chave: capacidade fotossintética, sub-bosque, variação diurna, sazonalidade das chuvas

Introduction

Global climate models predict that in the Amazon
the length of the dry season period will be extended as
a result of global warming associated to an increase of
atmospheric CO

2 
concentration (Cox et al., 2004). In-

deed, a prolonged dry period may affect plant growth
and physiological processes, such as photosynthesis and
respiration (Hughes, 2000). Although severe soil mois-
ture depletion during prolonged drought may lead to sto-
matal closure and a decline in leaf area (Nepstad et al.,
1994), there is still controversy on whether draught-in-

duced water deficit limits tree growth in the Central
Amazon. During the 2005 drought, for example, Saleska
et al. (2007) reported an enhanced vegetation index of
the forest based on moderate resolution imaging
spectroradiometer (MODIS) satellite data. This is con-
trary to what should be expected, as changes in precipi-
tation can alter growth rates (Lewis et al., 2004). In a rain-
fall exclusion experiment, a 60% reduction of incoming
throughfall led to a drastic increase (38%) in tree mor-
tality (Nepstad et al., 2007), much higher than commonly
recorded in the Central Amazon, about 1.1% per year
(Williamson et al., 2000). Although sapling photosyn-
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thetic traits of canopy trees have received some atten-
tion in tropical forest (e.g. Marenco and Vieira, 2005;
Poorter and Oberbauer, 1993), how seasonality of the
rainfall regime affects seedling and sapling photosyn-
thetic traits in the Central Amazon still remains to be
elucidated.

In addition to soil moisture, light availability is one
of the most important factors limiting seedling and sap-
ling growth in the forest understory (Denslow et al.,
1990; Valladares and Niinemets, 2008). Through the
canopy profile light varies not only in total quantity, but
also in quality, as the red/far red (R/Fr) ratio declines
towards the forest floor (Smith, 1982). Low irradiance
often leads to a decrease in leaf thickness and light satu-
rated photosynthesis (A

max
), whereas specific leaf area

(SLA) commonly increases under low light intensity
(Oguchi et al., 2005). Plant growth is the result of a com-
plex of interacting factors intrinsically related to carbon
gain via photosynthesis and loss due to respiration.
However, over a wide range of plants species and growth
conditions there seems to be a positive relationship be-
tween plant growth and photosynthetic rates (Kruger and
Volin, 2006)

In this study we hypothesized that variation in soil
moisture and subtle changes in light availability in the
forest understory affect leaf traits and carbon gain in sap-
lings of canopy trees. Thus, the aims of this work were
to determine the effect of the seasonal rainfall regime
and understory irradiance on leaf traits and gas exchange
in ten rainforest tree species. We also examined the ef-
fect of specific leaf area (SLA), leaf thickness (LT), and
nitrogen content on the photosynthetic capacity.

Material and Methods

The study was conducted 60 km north of Manaus
(02º36’21" S; 60°08’11" W), state of Amazonas, Brazil,
in an area of native “terra-firme” forest. The region has
characteristics of a humid equatorial climate, with a
short mild dry season (July-September, with a rainfall
of 50-100 mm per month), and a dry-wet transition
month (October). The wet season extends from Novem-

ber to May (200-300 mm month–1). Annual precipitation
is 2240 mm (Inmet, 2008, mean of 1961 to 1990). The area
is covered by a dense forest and the predominant soil
type is an Oxisol of low fertility, clay texture and pH
of 4.2 to 4.5.

We used saplings (1.5 to 2-m tall) of 10 tree species
selected taking into account their shade tolerance, rela-
tive abundance of saplings in the forest understory (at
least three replications per species), and economic im-
portance (Table 1). The gas exchange parameters were
measured with an infrared gas analyzer (Li-6400, Li-Cor,
NE, USA) using one or two leaves per plant and three
saplings per species on each season. Light saturated pho-
tosynthesis (A

max
) was measured at ambient CO

2
 concen-

tration (380 μmol mol–1), light saturation (1000 μmol m–2

s–1, and ambient temperature (28 ± 1ºC). Potential pho-
tosynthesis (A

pot
, hereafter termed photosynthetic capac-

ity) was also measured at light saturation, but at a [CO
2
]

of 2000 μmol mol–1, rather than ambient [CO
2
]. Gas ex-

change data were collected after a stabilization period
of about 10-15 min (total coefficient of variation < 0.7%).
The effect of the time of day on stomatal conductance
(g

s
) and A

max
 was assessed across species by collecting

data between 06h00 and 18h00. Data were collected in
January and August 2008 in mature and fully expanded
leaves.

Specific leaf area (SLA, the leaf area to leaf mass ra-
tio) was determined in both seasons. As additional in-
formation, leaf thickness was determined in the dry sea-
son and leaf nitrogen content in the wet season. We mea-
sured SLA in a sample of six circles of 240-mm2- per leaf
obtained from a sample of two to eight leaves per plant,
depending on leaf size. We only determined nitrogen
(Kjeldahl method) in the wet season (first studied sea-
son) in order to preserve the foliage for further studies
in the same area. Fresh leaf thickness (FLT) and dry leaf
thickness (DLT) were measured with digital calipers in
240-mm2-leaf circles (two per leaf) punched from the
widest part of the leaf blade, and between the major veins
(accuracy of 10 μm). Leaves used for SLA, leaf nitrogen
and leaf thickness measurements were the same or simi-
lar in appearance (when more than two leaves were re-

Table 1 – Families and importance of the species.

seicepS ylimaF ecnatropmI

anaekcudsihrramihC eterPled eaecaibuR metsyslarutlucivliS

isnenaiugasunilccE amyEs aecatopaS metsyslarutlucivliS

mulpmamulyxorhtyrE .htB eaecalyxorhtyrE metsyslarutlucivliS

ailofignolboainaciL .ldnatS eaecanalabosyrhC yrtsudnirebmiT

isnenaiugairetuoP .lbuAs eaecatopaS yrtsudnirebmiT

asomecaraeroniR .ztK.O).ccuZte.traM( eaecaloiV metsyslarutlucivliS

anainimelliugaecoroS .hciduaG eaecaroM laitnetoplacigolocamrahP

ataloilofinusirtsagarteT .rtauC).lgnE( eaecaresruB metsyslarutlucivliS

allyhpolacaloriV .braW)ecurpS( eaecacitsiryM laitnetoplacigolocamrahP

anaurujaigyZ ociR.L)smraH( eaecabaF metsyslarutlucivliS



Mendes & Marenco626

Sci. Agric. (Piracicaba, Braz.), v.67, n.6, p.624-632, November/December 2010

quired for analysis) to those used for gas exchange de-
terminations. Leaf dry mass was obtained after leaf de-
hydration at 72°C until constant mass. The fraction of
sky visible (FSV) beneath the canopy was measured us-
ing a canopy analyzer (LAI-2000, Li-Cor, NE, USA), un-
der overcast sky conditions to improve the accuracy of
the instrument, and calculated by integrating the gap frac-
tion to yield the fraction of sky not blocked by foliage.
For each sapling, six FSV readings, collected at a dis-
tance of about 1.5 m from the stem and forming a circle
around the plant (the microsite), were recorded at each
microsite and a mean value was obtained. The height of
the sensor above the ground corresponded to the height
of leaves used for the gas exchange measurements (1 to
2 m above the ground). Finally, we used a second LAI-
2000 sensor, operating in the remote mode and installed
on the top of a 40-m-tall observation tower (located in a
nearby area), to log FSV values above the forest canopy.

Irradiance and rainfall data were recorded above the
forest canopy at the top of the 40-m tall observation
tower. Irradiance at the observation tower (I

open
) was

measured using a quantum sensor (Li-190 SA, Li-Cor,
NE, USA). Understory irradiance (I

und
) was estimated

as the product of FSV by I
open

 (i.e. I
und

 = FSV x I
open

).
We are aware that I

und
 is lower than the actual light

availability at sapling height, as it does not take into
account the background of diffuse light in the forest
understory (about 5-8 μmol m–2 s–1 at midday (Marenco
and Vieira, 2005). Temperature and air humidity data
were recorded at 30-min-intervals with a sensor
(Humitter 50y, Vaisala Oy, Finland) connected to a
datalogger (Li-1400, Li-Cor, NE, USA) at a selected site
in the understory. In addition, an external quantum sen-
sor (Li-190 SA, Li-Cor, USA) mounted on the Li-6400's
irga head was used to log irradiance data at the same
time as gas exchange measurements were made. Both
in the dry and rainy season, soil moisture was deter-
mined gravimetrically: 100(S

w
 - S

d
)/S

w
,where S

w
 and S

d

represent the mass of wet and dry, undisturbed 110-cm3-
soil samples. Soil samples were collected at random in
the study area at the depth of 200 mm, both in the wet

(26 samples) and dry season (12 samples). All data, but
leaf thickness and N content (determined only in one
season), were subjected to analysis of variance
(ANOVA) to assess the effect of the rainfall seasonal-
ity on the parameters. The Lilliefors test was conducted
to assess whether experimental errors were normally
distributed. As no transformation was needed, all sta-
tistical analyses were carried out on untransformed
data. When the effect of rainfall seasonality on the vari-
ables was not significant (p > 0.05), data were pooled
and linear or quadratic regression analyses conducted
to examine the effect of FSV and SLA on photosynthetic
traits. Tukey post-hoc test was used for mean separa-
tion (p ≤ 0.05).

Results and Discussion

Monthly rainfall was 353 mm in January and 105 mm
in August (Table 2), which is in accordance with the his-
torical mean (1961-1990) for the region (Inmet, 2008). In
these months, soil moisture ranged between 31% in the
dry season to 32% in the wet season, near the soil satu-
ration point of 39% on a wet soil basis (Table 2). Air
temperature at the forest floor ranged from 22°C at night
to 29°C at noon, and for most of the day the relative
humidity was above 90%, with no difference between
seasons (Figure 1). Accumulated irradiance at the forest
floor was 0.3 and 0.6 mol m–2 day–1 in the wet and dry
seasons, respectively. On the other hand, mean maxi-
mum understory irradiance was about 10 and 20 μmol
m–2 s–1 for the wet and dry seasons, respectively, or about
1.5-2% of the irradiance recorded above the forest canopy
(Figure 1). I

und
 values reported in this study are a some-

what higher than those observed by others (Kursar and
Coley, 1999; Marenco and Vieira, 2005), perhaps because
our I

und
 values were recorded about 1-2 m above the

ground rather than at the forest floor. Molion (1987) es-
timated that the irradiance that reaches the forest floor
is 1.2% (approximately 14 μmol m–2 s–1 on a sunny day)
of that received above the forest canopy, similar to our
I

und
 values observed in the wet season.

Table 2 – Light saturated photosynthesis (A
max

) (mean ± SE), photosynthetic capacity (A
pot

), fraction of sky visible (FSV),
stomatal conductance (g

s
), leaf area index, photosynthetic photon flux density (PFD) above the forest canopy,

rainfall and soil moisture observed in January (rainy season) and August (dry season) of 2008.

retemaraP yraunaJ tsuguA

A
xam
(μ mlom 2– s 1– ) a3.0±3.3 b2.0±5.2

A
top
(μ mlom 2– s 1– ) a42.0±40.8 a13.0±66.8

)sseltinu(VSF b100.0±410.0 a100.0±020.0

g
s

mlom( 2– s 1– ) a10.0±1.0 a10.0±1.0

)sseltinu(xedniaerafaeL a50.0±1.5 b60.0±7.4

mlom(DFP 2– yad 1– ) b2.1±38.02 a0.1±25.13
1 )mm(llafniaR 353 501

)%(erutsiomlioS a%6.0±23 a%4.0±13
1Value measured in January and August (one data, no SE). Means followed by the same letters within rows do not differ according to
Tukey test at 5% probability.
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Early in the morning and late in the afternoon sto-
mata did not respond to light stimulus, remaining closed
even at saturating irradiance (1000 μmol m–2 s–1) for pho-
tosynthesis in the leaf chamber (Figure 2). Stomata
closed and A

max
 declined as the vapor pressure deficit

(VPD) increased (Figure 3). However, as the forest un-
derstory became brighter, A

max
 and g

s
 tended to linearly

increase with irradiance (Figure 4), which indicates that
in this environment g

s
 and A

max
 are under the influence

of a diurnal cycle, perhaps affected by light and VPD
(Figures 3, 4). Our results agree with those reported by
Kaiser and Kappen (2000) who observed maximum g

s
 val-

ues between 10h00 and 14h00 and a minimum stomatal
aperture at sunset.

Light induces stomatal opening (Shimazaki et al.,
2007) and thus stomata may open at irradiances above
2-8 μmol m–2 s–1 (Habermann, 1973). However, soon af-
ter dawn light was ineffective in triggering stomatal open-
ing. Since irradiance, relative humidity and temperature
changed during daytime on the forest floor (Figure 1), it
is possible that somehow these environmental factors
affected stomatal functioning during the day. Although
the light environment had an effect on g

s
 (p < 0.05, Fig-

ure 4B), the correlation between g
s
 and irradiance at mea-

suring time was tenuous (r2 = 0.05*). VPD has an im-
portant effect on g

s
, but it only explains 24% of varia-

tion (Figure 3B). Thus, we cannot rule out the effect of
endogenous factors in modulating stomatal functioning,
as reported by others, both in herbaceous plants (Gorton
et al., 1993; Holmes and Klein, 1986) and forest trees
(Doughty et al., 2006).

Although there was no difference in soil moisture
between the dry and rainy season, A

max
 was lower in the

dry season (Table 2), which suggests that even a slight
decline in soil moisture, or perhaps in leaf water poten-
tial associated to a higher irradiance in the dry period,
may affect some photosynthetic traits of understory sap-
lings, perhaps mesophyll conductance (g

m
). Under pro-

gressive drought g
m
 may decline (Flexas et al., 2002). This

hypothesis is consistent with the fact that both A
pot

 and
g

s 
were unaffected by rainfall seasonality. As g

s
 was not

influenced by rainfall seasonality (Table 2), differences
in A

max
 between seasons may be ascribed to a limitation

of carbon uptake imposed by non-stomatal factors. Had
the dry season had any detrimental effect on Rubisco

Figure 1 – Diurnal irradiance above the forest canopy (A, I
open

),
and relative humidity (RH), temperature (T) and
irradiance at the forest understory (B, I

und
). Data

were collected in January (rainy season, R) and August
(dry season, D) of 2008.
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Figure 2 – Diurnal variation in light saturated photosynthesis
(A, A

max
), stomatal conductance (B, g

s
) in January

(rainy season, open circle, ) and August (dry
season, closed circle, ) of 2008 in saplings of 10
forest tree species of the Central Amazon. Each symbol
represents one leaf (one or two leaves per plant).
Measurements were made at a [CO

2
] of 380 μmol

mol–1, irradiance of 1000 μmol m–2 s–1 and leaf
temperature of 28 ± 1ºC. The continuous line shows
the trend observed throughout the day. **significant
at p < 0.01.
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activity or ATP synthesis (Flexas and Medrano, 2002)
A

pot
 should have declined, but it did not. This allows

us to conclude that the seasonality may have an effect
on g

m
. In relation to the seasonal effect on A

max
 is im-

portant to take into account that climate models pre-
dict changes in the total rainfall in the Amazon as a
result of global warming (Cox et al. 2004; Oyama and
Nobre, 2003). Besides, differences among species were
not observed in A

max
 nor in A

pot
, so data from both rain-

fall seasons were pooled to obtain a mean value for each
species (Table 3).

At ambient CO
2
 concentration (380 μmol mol–1), A

max

was closely related with g
s
 (r2 = 0.60**, Figure 5A), which

is consistent with results reported by others (Machado
et al., 2002; Marenco et al., 2006; Park and Furukawa,
1999). Nonetheless, the correlation between A

pot
 and g

s

was very low (r2 = 0.01ns) at saturating CO
2
 concentra-

tion  (Figure 5B), indicating that A
pot

 is little influenced
by stomatal opening in the g

s
 range observed for most

of the day (08h00 to 16h00). Except very early in the
morning, when most stomata were closed, their resis-
tance to CO

2
 diffusion into intercellular spaces was off-

set by an elevated CO
2
 concentration in the leaf cham-

ber. However, when g
s
 was very low (less than 0.015 mol

m–2 s–1, denoted by diamonds in Figure 5B) the resistance
imposed by stomatal closure was not compensated by a
high CO

2
 concentration in the leaf chamber, which led

to a reduction in photosynthetic capacity. Thus, a g
s
 of

0.015 mol m–2 s–1 most likely reflects a threshold below
which leaf conductance is mainly due to cuticular con-
ductance (g

c
). Because A

pot 
remained quite constant for

most of the day, the effect of FSV, SLA, LT and leaf ni-
trogen on photosynthetic rates were examined with re-
spect to A

pot
 rather that A

max
, which was strongly depen-

dent on g
s
. FSV was positively related to leaf thickness

Figure 3 – Relationship between light saturated photosynthesis
(A, A

max
) and stomatal conductance (B, g

s
) and vapor

pressure deficit (VPD), in January (rainy season, open
circle, ) and August (dry season, closed circle, ) of
2008 in saplings of 10 forest tree species of the Central
Amazon. Each symbol represents one leaf (one or
two leaves per plant). Experimental conditions as
described in Figure 2. **significant at p < 0.01.
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Table 3 – Light saturated photosynthesis (A
max

), photosynthetic capacity (A
pot

), specific leaf area (SLA), fresh leaf thickness
(FLT), dry leaf thickness (DLT), and leaf nitrogen content determined in saplings of native tree species of
the Central Amazon. Each value represents the mean of two seasons (A

max
, A

pot
 and SLA) or one season (leaf

thickness and leaf nitrogen).

Means followed by the same letters within columns do not differ according to Tukey test at 5% probability.

seicepS A
xam

A
top

ALS TLF TLD negortinfaeL

------------- μ mlom 2– s 1– ------------- m2 gk 1– ------------------mm------------------ mg 2–

anaekcud.C a9.2 a0.8 cb3.61 a32.0 a81.0 cb3.1

sisnenaiug.E a6.3 a3.8 c2.41 dc81.0 cb31.0 ba4.1

mulpma.E a2.4 a6.9 ba0.91 ba22.0 ba61.0 dcb1.1

ailofignolbo.L a7.2 a1.7 cb3.51 a32.0 ba61.0 dcb2.1

sisnenaiug.P a5.3 a8.8 cba9.61 d51.0 c11.0 dc0.1

asomecar.R a7.2 a0.8 a8.02 ba12.0 ba51.0 dc9.0

anainimelliug.S a0.2 a6.8 c5.31 cba02.0 ba51.0 a7.1

ataloilofinu.T a3.2 a1.8 ba7.81 dc61.0 c11.0 d9.0

allyhpolac.V a5.2 a1.8 cb9.51 dc61.0 cb31.0 cb2.1

anauruj.Z a9.2 a7.8 cb4.51 dcb71.0 cb21.0 cb3.1

naeM 3.3 3.8 6.61 91.0 41.0 2.1

)%(VC 9.22 5.15 8.71 0.41 8.02 0.02
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(Figures 6A, B) and A
pot

 (Figure 6C), whereas its rela-
tionship with SLA was negative (Figure 6D). DLT ranged
from 0.11 mm in P. guianensis and T. unifoliolata to 0.18
mm in C. duckeana (Table 3), with an increase of about
35% in fresh leaves (Table 3), in both cases, a positive
correlation between leaf thickness and A

pot
 was found

(Figure 7).
The effect of FSV on A

pot
, LT and SLA shows that

even small changes in intensity of light in the forest floor
can alter the performance of the photosynthetic appara-
tus. This is in agreement with results reported by oth-
ers (Ellsworth and Reich, 1993; Oguchi et al., 2005;
Weston et al., 2000), who observed increases in LT in
leaves exposed to brighter environments. The relation-
ship between LT and A

pot
 concurs with previous find-

ings (McMillen and McClendon, 1983; Niinemets, 1999;
Reich et al., 1998). Even when A

pot
 and LT and SLA were

strongly related (Figures 7, 8), we cannot attribute in-
creases in A

pot 
only to variations in LT or SLA, as pho-

Figure 5 – Relationship between light saturated photosynthesis
(A, A

max
) and photosynthetic capacity (B, A

pot
) and

stomatal conductance (g
s
) in January (rainy season,

open circle, ) and August (dry season, closed circle,
) of 2008 in saplings of ten native forest tree species of

the Central Amazon. A
pot

 was measured at a [CO
2
] of

2000 μmol mol–1 and saturating light. Other
experimental conditions as described in Figure 2. The
diamonds ( ) in Figure 5B show the values of A

pot

soon after dawn, when g
s
 was very low. Each symbol

represents one leaf (one or two leaves per plant). ns:
not significant (p > 0.05), **significant at p < 0.01.
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Figure 4 – Relationship between light saturated photosynthesis
(A, A

max
) and stomatal conductance (B, g

s
) and

instantaneous irradiance recorded at the forest
understory during gas exchange measurements, in
January (rainy season, open circle, ) and August
(dry season, closed circle, ) of 2008 in saplings of
10 forest tree species of the Central Amazon. Each
symbol represents one leaf (one or two leaves per
plant). Experimental conditions as described in Figure
2. *significant at p < 0.05; **significant at p < 0.01.
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tosynthetic compounds are less effectively used in
thicker leaves, perhaps because of a lower leaf conduc-
tance in these leaves (Niinemets, 1999).

FSV values increased from 0.014 in January (rainy
season) to 0.020 in August (dry season) (Table 2), con-
firming results obtained previously by Marenco and
Vieira (2005). We attributed the difference in FSV val-
ues between the evaluated rainfall seasons to differences
in leaf area index between the rainy and dry season (5.1
versus 4.7, Table 2) or to the higher solar radiation re-
corded in the dry season (Table 2). High irradiance in
the dry season can result in greater carbon assimilation
during this part of the year as suggested by Huete et al.
(2006). However, a higher light intensity in the forest
canopy in the dry season apparently does not contrib-
ute to increase the photosynthetic capacity of saplings
at the forest floor, although across species, we found an
effect of FSV on A

pot 
irrespective of the seasonal rainfall

regime, perhaps due to an effect of the R/Fr ratio on
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photosynthetic rates. For Acmena ingens, for example,
under low irradiance (≤ 20 % of full sunlight) g

s 
and A

max

where lower in plants grown under a reduced R/Fr ra-
tio (0.2) than in control plants (R/Fr of sunlight, 1.2)
(Turnbull, 1991).

SLA ranged from 13.5 m2 kg–1 in S. guilleminiana to
20.8 m2 kg–1 in R. racemosa, whereas the leaf nitrogen con-
tent varied between 0.9 g m–2 for T. unifoliolata and R.
racemosa to 1.7 g m–2 for S. guilleminiana (Table 3). SLA
values found in this study are within the range (15 and
24 m2 kg–1) observed by Marenco and Vieira (2005) for
saplings of canopy tree species. FSV had a positive ef-
fect on LT, and a negative one on SLA (p < 0.05). The
positive effect of leaf nitrogen on A

pot
 (Figure 9) is con-

sistent with the results reported by Hikosaka (2004;
2005). However, although significant, the relationship
between A

pot
 and leaf N was weak (r2 = 0.14, p < 0.05)

(Figure 9), indicating that a substantial fraction of the
leaf nitrogen is partitioned into non-photosynthetic struc-
tures. On the other hand, differences in determination
coefficients (r2) between DLT and SLA against FSV
(0.11** versus 0.05* for SLA, Figure 6B, D) occur because
SLA depends not only on LT, but also on leaf density
(Niinemets, 1999), which suggests that FSV has a lower
effect on leaf density. Although LT is affected by growth
irradiance, we can not explain the wide variations in SLA

Figure 6 – Fresh (A, FLT) and dry leaf thickness (B, DLT), photosynthetic capacity (C, A
pot

) and specific leaf area (D, SLA) as a
function of the fraction of sky visible (FSV) in January (rainy season, open circle,  ) and August (dry season, closed
circle, ) of 2008 in saplings of ten forest tree species of the Central Amazon. Experimental conditions as described in Figure
5. Each symbol represents one leaf (one or two leaves per plant). *significant at p < 0.05; **significant at p < 0.01
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among species only by differences in microsite bright-
ness (inferred by FSV values) at the forest floor. This
suggests that the genetic background of each species
plays a major role in determining adaptive strategies to
the physical and ecological environment (soil fertility
and acidity, herbivory, etc.), which thereby leads to
changes in LT and SLA under a given growth conditions
(Lee et al., 2000; Peeters, 2002). Increase in LT (decline
in SLA) is often related to higher photosynthetic rates
per unit leaf area (McMillen and McClendon, 1983; Yun
and Taylor, 1986), because of a greater accumulation of
photosynthetic proteins. However, it may also involve
an increase in the amount of molecules and compounds
not directly related to carbon assimilation but with a
key role for plant defense against herbivory and for in-
creasing resistance against other physical hazards (Coley,
1988; Wright and Cannon, 2001).

Although the rainfall regime only slightly affected
soil moisture, some photosynthetic traits (perhaps g

m
)

seem to be responsive to rainfall-related environmental
attributes, which eventually lead to an effect on A

max
. In

the forest understory, A
max

 and g
s
 of saplings appear to

be highly sensitive to diurnal variation, and even when
stomatal functioning is affected by environment factors
(e.g., light and VPD), somehow endogenous factors also
seem to have a role in stomatal movements. However,
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the dry season of 2008 was not strong enough to unam-
biguously negate any potential effect of rainfall season-
ality on the photosynthetic capacity of saplings. Further
studies are needed to elucidate how a prolonged dry sea-
son may affect the diurnal pattern of photosynthesis,
Rubisco activity, and electron transport rates, which may
ultimately affect tree growth in the Central Amazon. Fi-
nally, even though irradiance in the forest floor is usu-
ally very low, it remarkably affects leaf physiology and
leaf anatomy, as photosynthetic capacity, LT and SLA
responded to variations in the fraction of sky visible in
the forest understory.

Acknowledgements

To the Ministry of Science and Technology MCT/
INPA, FAPEAM (project PIPT-1746-08), CAPES and
CNPq.

References

Coley, P.D. 1988. Effects of plant growth rate and leaf lifetime on
the amount and type of anti-herbivore defense. Oecologia 74:
531-536.

Cox, P.M.; Betts, R.A.; Collins, M.; Harris, P.P.; Huntingford, C.;
Jones, C.D. 2004. Amazonian forest dieback under climate-
carbon cycle projections for the 21st century. Theoretical and
Applied Climatology 78: 137-156.

Denslow, J.S.; Schultz, J.C.; Vitousek, P.M.; Strain, B.R. 1990.
Growth responses of tropical shrubs to treefall gap
environments. Ecology 71: 165-179.

Doughty, C.E.; Goulden, M.L.; Miller, S.D.; Rocha, H.R. 2006.
Circadian rhythms constrain leaf and canopy gas exchange in
an Amazonian forest. Geophysical Research Letters 33: 1-5
(L15404, DOI 10.1029/2006GL026750).

Ellsworth, D.S.; Reich, P.B. 1993. Canopy structure and vertical
patterns of photosynthesis and related leaf traits in a deciduous
forest. Oecologia 96: 169-178.

Figure 8 – Relationship between photosynthetic capacity (A
pot

)
and specific leaf area (SLA) in January (wet season,
open circle, ) and August (dry season, closed circle,

) of 2008 in saplings of forest tree species of the Central
Amazon. Experimental conditions as described in
Figure 5. Each symbol represents one leaf (one or
two leaves per plant). **significant at p < 0.01.

y = 22.8 + 6.9x 
r2 = 0.41**

0

60

120

180

240

300

4 10 16 22 28

A
po

t (n
m

ol
 g

-1
s-1

)

SLA (m2 kg-1)

Figure 7 – Relationship between photosynthetic capacity (A
pot

)
and fresh leaf thickness (A, FLT) and dry leaf
thickness (B, DLT) in August (dry season) of 2008
in saplings of ten forest tree species of the Central
Amazon. Experimental conditions as described in
Figure 5. Each symbol represents one leaf (one or
two leaves per plant). **significant at p < 0.01.

0

4

8

12

16

20
A

po
t(

µm
ol

 m
-2

s-1
)

r = 0.39** A

0

4

8

12

16

20

0 0.08 0.16 0.24 0.32

A
po

t(
µm

ol
 m

-2
s-1

)

LT (mm)

r = 0.39** B

Figure 9 – Relationship between photosynthetic capacity (A
pot

)
and leaf nitrogen content in January (wet season) of
2008 in saplings of ten forest tree species of the Central
Amazon. Experimental conditions as described in
Figure 5. Each symbol represents one leaf (one or
two leaves per plant). *significant at p < 0.05.

y = 5.52 + 2.07x
r2 = 0.14*

0

4

8

12

16

20

0 0.5 1 1.5 2 2.5

A
po

t (µ
m

ol
 m

-2
s-1

)

Nitrogen (g  m-2)



Mendes & Marenco632

Sci. Agric. (Piracicaba, Braz.), v.67, n.6, p.624-632, November/December 2010

Flexas, J.; Medrano, H. 2002. Drought-inhibition of photosynthesis
in C

3
 plants: stomatal and non-stomatal limitations revisited.

Annals of Botany 89: 183-189.
Flexas, J; Bota, J., Escalona, J.M.; Sampol, B.; Medrano, H. 2002.

Effects of drought on photosynthesis in grapevines under field
conditions: an evaluation of stomatal and mesophyll limitations.
Functional Plant Biology 29: 461-471

Gorton, H.L.; Williams, W.E.; Assmann, S.M. 1993. Circadian
rhythms in stomatal responsiveness to red and blue-light. Plant
Physiology 103: 399-406.

Habermann, H.M. 1973. Evidence for two photoreactions and
possible involvement of phytochrome in light-dependent
stomatal opening. Plant Physiology 51: 543-548.

Hikosaka, K. 2004. Interspecific difference in the photosynthesis–
nitrogen relationship: patterns, physiological causes, and
ecological importance. Journal of Plant Research 117: 481-494.

Hikosaka, K. 2005. Nitrogen partitioning in the photosynthetic
apparatus of Plantago asiatica leaves grown under different
temperature and light conditions: similarities and differences
between temperature and light acclimation. Plant and Cell
Physiology 46: 1283-1290.

Holmes, M.G.; Klein, W.H. 1986. Photocontrol of dark circadian
rhythms in stomata of Phaseolus vulgaris L. Plant Physiology 82:
28-33.

Huete, A.R.; Didan, K.; Shimabukuro, Y.E.; Ratana, P.; Saleska,
S.R.; Hutyra, L.R.; Yang, W; Nemani, R.R.; Myneni, R. 2006.
Amazon rainforests green-up with sunlight in dry season.
Geophysical Research Letters 33: 1-4 (L06405. DOI:10.1029/
2005GL025583).

Hughes, L. 2000. Biological consequences of global warming: is the
signal already apparent? Trends in Ecology and Evolution 15:
56-61.

Instituto Nacional de Meteorologia [INMET]. 2008. Climate.
Available at: http://www.inmet.gov.br/clima.  [Accessed Nov.
15, 2008].

Kaiser, H.; Kappen, L. 2000. In situ observation of stomatal
movements and gas exchange of Aegopodium podagraria L. in
the understorey. Journal of Experimental Botany 51: 1741-1749.

Kruger, E.L.; Volin, J.C. 2006. Reexamining the empirical relation
between plant growth and leaf photosynthesis. Functional Plant
Biology 33: 421-429.

Kursar, T.A.; Coley, P.D. 1999. Contrasting modes of light
acclimation in two species of the rainforest understory.
Oecologia 121: 489-498.

Lee, D.W.; Oberbauer, S.F.; Johnson, P.; Krishnapilay, B.; Mansor,
M.; Mohamad, H.; Yap, S.K. 2000. Effects of irradiance and
spectral quality on leaf structure and function in seedlings of
two Southeast Asian Hopea (Dipterocarpaceae) species.
American Journal of Botany 87: 447-455.

Lewis, S.L.; Malhi, Y.; Phillips, O.L. 2004. Fingerprinting the
impacts of global change on tropical forests. Philosophical
Transactions of the Royal Society of London 359: 437-462.

Machado, E.C.; Medina, C.L.; Gomes, M.M.A.; Habermann, G.
2002. Seasonal variation of photosynthetic rates, stomatal
conductance and leaf water potential in ‘Valencia’ orange trees.
Scientia Agricola 59: 53-58 (in Portuguese, with abstract in
English).

Marenco, R.A.; Siebke, K.; Farquhar, G.D.; Ball, M.C. 2006.
Hydraulically based stomatal oscillations and stomatal
patchiness in Gossypium hirsutum. Functional Plant Biology 33:
1103-1113.

 Marenco, R.A.; Vieira, G. 2005. Specific leaf area and
photosynthetic parameters of tree species in the forest
understorey as a function of the microsite light environment in
Central Amazonia. Journal of Tropical Forest Science 17: 265-
278.

McMillen, G.G.; McClendon, J.H. 1983. Dependence of
photosynthetic rates on leaf density thickness in deciduous
woody plants grown in sun and shade. Plant Physiology 72:
674-678.

Molion, L.C.B. 1987. Micrometeorology of an Amazonian rain
forest. p. 255-272. In: Dickinson, R.E, ed. The geophysiology
of Amazonia: vegetation and climate interactions. John Wiley,
New York, NY, USA.

Nepstad, D.C.; Carvalho, C.R.; Davidson, E.A.; Jipp, P.H.;
Lefebvre, P.A.; Negreiros, G.H.; Silva, E.D.; Stone, T.A.;
Trumbore, S.E.; Vieira, S. 1994. The role of deep roots in the
hydrological and carbon cycles of Amazonian forests and
pastures. Nature 372: 666-669.

 Nepstad, D.C.; Tohver, I.M.; Ray, D.; Moutinho, P.; Cardinot,
G. 2007. Mortality of large trees and lianas following experimental
drought in an Amazon forest. Ecology 88: 2259-2269.

Niinemets, U. 1999. Research review components of leaf dry mass
per area: thickness and density; alter leaf photosynthetic
capacity in reverse directions in woody plants. New Phytologist
144: 35-47.

Oguchi, R.; Hikosaka, K.; Hirose, T. 2005. Leaf anatomy as a
constraint for photosynthetic acclimation: differential responses
in leaf anatomy to increasing growth irradiance among three
deciduous trees. Plant, Cell and Environment 28: 916-927.

Oyama, M.D.; Nobre, C.A. 2003. A new climate-vegetation
equilibrium state for Tropical South America. Geophysical
Research Letters 30: 1-4 (DOI:10.1029/2003GL018600).

Park, S.Y.; Furukawa, A. 1999. Photosynthetic and stomatal
responses of two tropical and two temperate trees to
atmospheric humidity. Photosynthetica 36: 181-186.

Peeters, P.J. 2002. Correlations between leaf structural traits and
the densities of herbivorous insect guilds. Biological Journal of
the Linnean Society 77: 43-65.

Poorter, L.; Oberbauer, S.F. 1993. Photosynthetic induction
responses of two rain-forest tree species in relation to light
environment. Oecologia 96: 193-199.

Reich, P.B.; Ellsworth, D.S.; Walters, M.B. 1998. Leaf structure
(specific leaf area) modulates photosynthesis-nitrogen relations:
evidence from within and across species and functional groups.
Functional Ecology 12: 948-958.

Saleska, S.R.; Didan, K.; Huete, A.R.; Da Rocha, H.R. 2007.
Amazon forests green-up during 2005 drought. Science 318: 612-
612.

Shimazaki, K.I.; Doi, M.; Assmann, S.M., Kinoshita, T. 2007. Light
regulation of stomatal movement. Annual Review of Plant
Biology 58: 219-247.

Smith, H. 1982. Light quality, photoperception, and plant strategy.
Annual Review of Plant Physiology 33: 481-518.

 Turnbull, M.H. 1991. The effect of light quantity and quality
during development on the photosynthetic characteristics of
six Australian rainforest tree species. Oecologia 87: 110-117.

Valladares, F.; Niinemets, U. 2008. Shade tolerance, a key plant
feature of complex nature and consequences. Annual Review of
Ecology Evolution and Systematics 39: 237-257.

Weston, E.; Thorogood, K.; Vinti, G.; López-Juez, E. 2000. Light
quantity controls leaf-cell and chloroplast development in
Arabidopsis thaliana wild type and blue-light-perception mutants.
Planta 211: 807-815.

Williamson, G.B.; Laurance, W.F.; Oliveira, A.A.; Delamônica,
P.; Gascon, C.; Lovejoy, T.E.; Pohl, L. 2000. Amazonian tree
mortality during the 1997 El Niño drought. Conservation
Biology 14: 1538-1542.

Wright, I.J.; Cannon, K. 2001. Relationships between leaf lifespan
and structural defences in a low-nutrient, sclerophyll flora.
Functional Ecology 15: 351-359.

Yun, J.I.; Taylor, S.E. 1986. Adaptive implications of leaf thickness
for sun- and shade-grown Abutilon theophrasti. Ecology 67: 1314-
1318.

Received March 05, 2009
Accepted June 14, 2010


