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ABSTRACT: Some techniques of multivariate statistical analysis can only be conducted on a complete
data matrix, but the process of data collection often misses some elements. Imputation is a technique by
which the missing elements are replaced by plausible values, so that a valid analysis can be performed
on the completed data set. A multiple imputation method is proposed based on a modification to the
singular value decomposition (SVD) method for single imputation, developed by Krzanowski. The method
was evaluated on a genotype × environment (G × E) interaction matrix obtained from a randomized blocks
experiment on Eucalyptus grandis grown in multienvironments. Values of E. grandis heights in the G ×
E complete interaction matrix were deleted randomly at three different rates (5%, 10%, 30%) and were
then imputed by the proposed methodology. The results were assessed by means of a general measure
of performance (Tacc), and showed a small bias when compared to the original data. However, bias values
were greater than the variability of imputations relative to their mean, indicating a smaller accuracy of the
proposed method in relation to its precision. The proposed methodology uses the maximum amount of
available information, does not have any restrictions regarding the pattern or mechanism of the missing
values, and is free of assumptions on the data distribution or structure.
Key words: missing data, nonparametric, eigenvalue, eigenvector, genotype-environment

IMPUTAÇÃO MÚLTIPLA  LIVRE DE DISTRIBUIÇÃO EM
MATRIZ DE INTERAÇÃO POR MEIO DE DECOMPOSIÇÃO

POR VALOR SINGULAR

RESUMO: Algumas técnicas de análise estatística multivariada só podem ser realizadas com uma
matriz de dados completa, porém o processo de coleta dos dados freqüentemente leva a uma matriz
com dados ausentes. A imputação é uma técnica, na qual os dados ausentes são preenchidos com
valores plausíveis, para uma posterior análise na matriz completa. Neste trabalho, nós propomos um
método de imputação múltipla, baseado no método da decomposição por valores singulares (DVS)
para imputação simples, desenvolvido por Krzanowski, e avaliado numa matriz de interação genótipos
× ambientes (G × E), proveniente de um ensaio com o delineamento aleatorizado em blocos em
multiambientes com genótipos de Eucalyptus grandis. Valores da altura de E. grandis da matriz
completa de interação G × E foram retirados aleatoriamente em três diferentes proporções (5%, 10%,
30%), os quais foram imputados valores dados pelo método proposto. Os resultados obtidos por meio
da medida geral de exatidão ou acurácia (Tacc) mostraram um viés pequeno, em relação aos valores
originais. No entanto, seus valores foram maiores do que a variabilidade dos valores imputados em
relação à sua média, indicando uma exatidão ou acurácia menor do método proposto em relação à sua
precisão. A metodologia proposta utiliza o maior número de informação disponível, não possui qualquer
restrição quanto ao padrão e mecanismo de ausência de dados e é livre de suposição sobre a distribuição
ou estrutura dos dados.
Palavras-chave: dados ausentes, não-paramétrico, autovalor, autovetor, genótipo-ambiente

INTRODUCTION

Imputation is a technique in which missing el-

ements of a data matrix are replaced by plausible val-
ues, so that a valid analysis can be made on the com-
plete data set (observed + imputed). Various imputa-
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tion methods have been proposed over the years, but
the current interest is now focussed mostly on mul-
tiple imputation (MI). MI was first proposed by
Rubin (1978), and several other references including
Little & Rubin (1987, 2002); Rubin (1987); Rubin
& Schenker (1986); Schafer (1997, 1999); Tanner
& Wong (1987) and Zhang (2003) provide excellent
descriptions of the technique. The basic idea of the
procedure is to replace each missing value by a set
of M imputed values that are drawn from the data
distribution, with the variation in these values repre-
senting the uncertainty about the true value to be im-
puted.

The MI procedure involves three distinct steps
(i) Imputation: The missing values are estimated M
times, generating M completed data sets; (ii) Analy-
sis: The M completed data sets are analyzed, using ap-
propriate statistical procedures for the problem at hand,
and (iii) Combination: The M separate sets of results
are combined into one single inference.

The imputation is the most critical step, and
the model used in this step is not necessarily the same
as the one used in the analysis step. This makes the
MI procedure more attractive, as the model used to
impute data is not always the best one suited for the
analysis.

On combining the results of the M analyses,
the combined estimative variance consists of the vari-
ance within the imputations and, therefore, the uncer-
tainty in the imputed data is incorporated into the final
inference.

A method is here proposed for the first step
of the multiple imputation, without making any as-
sumptions about the data distribution or structure, by
using the singular value decomposition (SVD) of a
genotype × environment (G × E) interaction matrix for
those models whose analysis needs a complete matrix.
The performance of the method is then investigated
on randomly deleted entries in the G × E interaction
matrix obtained from an experiment on Eucalyptus
grandis progenies.

MATERIAL AND METHODS

The data used in this study were obtained from
experiments conducted in seven environments, at the
south and southeast regions of Brazil, on 20 Eucalyp-
tus grandis progenies obtained from Australia (km 12,
South of Ravenshoe-Mt Pandanus-QLD, 43°41'10" W
and 22°45'30" S at 33 m above sea level, lot 14,420).
A randomized block design with six plants per plot and
ten replicates was used, the whole experiment taking
up a space of dimension 3.0 m by 2.0 m (Lavoranti,
2003).

The value yij represents the mean tree height
(m) over 10 blocks of the plot means for the ith geno-
type (i = 1,2,...,20) in the jth environment (j = 1,2,...7)
of Eucalyptus grandis. The resulting 20 × 7 matrix of
yij values constitutes the G × E interaction matrix. Val-
ues from this matrix were then deleted randomly to
form three different incomplete matrices differing in
the proportions of deleted values. The first matrix had
5% deleted, the second 10%, and the third 30%. The
same random number seed was used in generating
each set of deletions ( ith row; jth column), so that the
deleted entries of the second matrix: (6;3), (1;4), (3;4),
(6;4), (20;4), (6;5), (7;7) included those deleted in the
first: (2;2), (19;2), (10;4), (13;4), (19;4), (5;6), (4;7),
and the deleted entries of the third matrix: (3;1), (9;1),
(13;1), (15;1), (18;1), (5;2), (11;2), (3;3), (7;3),
(17;3), (19;3), (9;4), (12;4), (15;4), (17;4), (8;5),
(12;5), (16;5), (2;6), (15;6), (16;6), (17;6), (19;6),
(6;7), (8;7), (11;7), (12;7), (13;7), included those de-
leted in each of the other two. The SAS statistical sys-
tem, by means of the SAS (2004a) and SAS (2004b),
was used in the development of the programs and data
analyses described below.

For a distribution free approach, the imputed
values were obtained by means of a modification to
the simple imputation system developed by Krzanowski
(1988). This method starts from the observation made
by Good (1969), that any matrix Y(n,p) can be decom-
posed by the singular value decomposition into the
form

Y = UDVT,  (1)

in which UTU = VTV = VVT = Ip, UUT = In and D =
diag(d1, ..., dp) with d1 ≥ d2 ≥,..., ≥ dp ≥ 0. The matri-
ces YTY and YYT have the same eigenvalues, and the
elements di are the square roots of these eigenvalues;
the ith column vi = (vi1,..., vip)

T of the Vp×p matrix is the
eigenvector corresponding to the ith largest eigenvalue

2
id  of YTY; while the jth column uj = (u1j,..., unj)

 T of
the Un×p matrix is the eigenvector corresponding to the
jth largest eigenvalue 2

jd  of YYT. The decomposition
(1) has its elementwise representation as follows:

.=
1=

jhhih

p

h
ij vduy �  (2)

Krzanowski (1987) used this representation as
a basis for determining the dimensionality of a multi-
variate data set. If the data structure is essentially H-
dimensional then the variation in the remaining (p – H)
dimensions can be treated as random noise. The main
features of the data can thus be supposed to lie in the
space of the first H principal components. The corre-
spondence between the quantities on the right-hand
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side of (2) and the principal axes of the data configu-
ration suggests, therefore, the H-component model

,=
1=

ijjhhih

H

h

ij vduy ���  (3)

in which εij is a residual term.
Supposing that the model (3) holds for a speci-

fied value of H, but the single observation yij is miss-
ing from the data matrix, then yij can be estimated by

,=ˆ

1=

)(
jhhih

H

h

H
ij vduy �  (4)

in which the uih, dh, vjh, must be estimated from the
remaining data. The best estimates of these latter quan-
tities will be those that use the maximal amount of data.
Denote by Y (-i) the data matrix obtained on deleting
the ith row from Y, and by Y(-j) the data matrix obtained
on deleting the jth column from Y, and suppose that
the singular value decompositions of these matrices are
given by:

 ),,,(=),(=),(=, 1 pshsh
T ddvu KDVUVDU=Y i)( −

 (5)

and

 ).~,,~(=~),~(=~),~(=~,~~~
11 −− pshsh

T ddvu KDVUVDU=Y j)(

 (6)

The maximum-data estimates of uih and vjh in
(4) are clearly  and , respectively, while
dh can be estimated either by ,  or by some com-
bination of the two. Krzanowski (1988) suggested using

hh dd
~  as a suitable compromise, so that an estimate

of the missing value yij is given by:

))(
~~(=ˆ

1=

)(
hjhhih

H

h

H
ij dvduy �

Following the maximum-data precept, the high-
est possible value of H should be used. From (6) this
is evidently p – 1, so that the value to be imputed for
yij will be:

))(
~~(=ˆ

1

1=

hjhhih

p

h

ij dvduy �
�

. (7)

An iterative numerical process is needed to find
the appropriate quantities in (7). Starting with initial
“guesses” for the missing values, each iteration requires
singular value decompositions for the reduced matri-
ces Y (-i), Y(-j) for every (i, j) where there is a missing
value. The use of (7) provides the updated imputation
for that position, and the process continues until con-

vergence (i.e. stability in the successive imputed val-
ues). The initial “guesses” for the missing values yij are
most easily provided by the mean  of the jth column
of the existing values. To avoid any possible variation
in the influence among columns, for example caused
by different measurement scales, it is recommended
to first standardise Y (completed using the initial
“guesses”). The Y (-i) and Y(-j) matrices should also be
standardised at each step, so that all operations are con-
ducted on standardised quantities. At the end, the com-
pleted matrix Y (i.e. observed + imputed values) should
be returned to its original scale. Thus if   repre-
sents each value of the completed matrix, the jth col-
umn mean ( ) and standard deviation ( ) are cal-
culated and each value of the completed matrix Y is
obtained in its original scale as )()()(= c

ij
c
j

c
jij ysyy + .

The modification to this method that is here
proposed is a generalisation to the exponents of  and

 in (7) when generating the imputations (m = 1,...,
M) in the first step of the MI. For full generality, if d
b ad  is represented as a fractional power  

b
a

d , we pro-
pose changing the exponents in (7) to  b

a

hd
~

~  and   b
a

hd  sub-
ject to the exponents summing to 1 (i.e. 1=

~

b
aa + ). In this

way, different weights can be assigned to (5) and (6)
in the final estimate of yij in (7), by varying the expo-
nents of  and , whereas the current form forces
them to have equal weights.

Each different value of a~ and consequently of
a  generates a new completed matrix Y, thus provid-
ing a mechanism for generating the M different com-
pleted data sets at the first step of the multiple impu-
tation process.

The number of imputations is governed by the
number of different exponents used. According to
Molenberghs & Verbeke (2005); Rubin (1987) and
Schafer (1999), between 3 and 5 imputations should
be enough to characterise the variability between im-
putations. Thus, if it is decided on 5 changes in the
exponents, between 40% and 60% variation can be
produced in the weight given to (5) and (6) by start-
ing with a fixed denominator (b = 20, for instance)
and taking values (8, 9, 10, 11 and 12) for a~ and (12,
11, 10, 9 and 8) respectively for a . These choices lead
to a variation of (40%, 45%, 50%, 55% and 60%) re-
spectively in the proportions of (5) and (6) in

.  (8)

The methodology described above and pro-
posed here uses the greatest quantity of values in
Y and does not depend on any distribution in the re-
sponse variable, being applicable to any matrix of nu-
meric data.
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Implementation of the method was made by
means of a program developed in the IML module of
the statistical system SAS, which, after its execution,
resulted in a data file with the M = 5 completed data
sets, ready to be used in the second step of the MI.

The procedures were applied to the three re-
duced data matrices, containing 5%, 10% and 30% of
missing values. Stability of the imputed values, or their
convergence to a single value, was generally achieved
within 20 iterations, but, for reasons of security and
generality in the program execution, 50 iterations was
the default setting. For each percentage of missing val-
ues, dispersion graphics were produced for those po-
sitions in the data matrix that were randomly deleted
at the 5% deletion level. This could be done because
the random deletions had the same initial value as seed
for all the different percentage deletion levels.

As a measure of performance of the method
at missing value position l (falling in row i and col-
umn j), the following expression was used:

1

)ˆ(

=

2

)(
1=

�

��

M

VOy

acc

l
m

ij

M

m
l

,

adapted from Penny & Jolliffe (1999), in which M is
the number of imputations at that missing value posi-
tion, VOl is the original randomly deleted value at that
position, and  is the mth imputation at that posi-
tion using (8) according to the proposed method. This
expression is computed for l = 1,2,...,na, where na is
the total number of missing values. The expression can
be separated into two terms,

1
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 (9)

where  is the actual value imputed at position l, so
that the first term represents a variance over the M
values in each position and the second a bias in the
final imputation. Thus the first term is a measure of
precision and the second term a measure of accuracy
at position l.

An overall measure of performance Tacc may
be computed by averaging the accl measures as fol-
lows:

.= 1=

na

acc

T

l

na

l
acc

�

in which na = g × e × porc, with g representing the
total number of genotypes, e representing the total
number of environments and porc representing the per-
centage of missing data.

Tacc may similarly be broken into two compo-
nents,

Tacc = VE + VQM  (10)

in which

]
1

)ˆ(
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 (11)

and

1

)(1
=

2

1= �

�
�

M

VOYM

na
VQM ll

na

l

 (12)

The first component (VE) represents the pooled
variance between imputations within positions, there-
fore the greater its value is, the smaller is the preci-
sion of the multiple imputation method. However, a
small value for this component does not necessarily
mean that the imputation method is good, for the
method may be biased. The second component (VQM)
represents the average squared bias between the val-
ues of  and VO, so the smaller the bias is, the big-
ger is the number of imputations that are similar to the
original values and the greater is their accuracy. There-
fore, the smaller are the values of VE and VQM, the
larger is the multiple imputation method.

RESULTS AND DISCUSSION

Table 1 gives the results for 5%, 10% and 30%
of missing values of a random deletion in the matrix.
The variability between imputations within each miss-
ing value is relatively small, as shown by the small co-
efficients of variation. Furthermore, this variability in-
creases as the percentage of missing data rises from
5% to 10%, except at the position (19;2) (Figures 1
and 2). When the percentage of missing values in-
creases from 10% to 30%, the variability increases at
positions (19;2), (10;4) and (19;4), and it decreases
at positions (2;2), (13;4), (5;6) and (4;7) (Figures 2
and 3). The overall precision of multiple imputation is
good for these data (Tables 1-2). As for the accuracy,
which is the difference between the imputed values and
the original values, this shows less consistency than
the precision. Values of acc are nearly all larger than
their counterparts Var in Table 1, but the pattern is
more variable in the other table. So there is no clear
relationship between precision and accuracy over the
individual missing value positions.

On aggregating over missing value positions,
the larger component of the general measure (Tacc) in
(10) at all the missing percentages is the average
squared bias, see Table 2. However, as the percent-
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Table 1 - Imputations for mean heights (m) at each position (ith row; jth column) of a random deletion (5%, 10% and 30%
missing).

VO: Original value. : Imputations means. Var: Variance between imputations. CV : Coefficient of variation. acc : Accuracy.

noiteleD
noitisop

OV
noitatupmI

1 2 3 4 5 raV VC cca

gnissim%5

)2;2( 00.42 73.22 53.22 53.22 53.22 53.22 53.22 1000.0 40.0 083.3

)2;91( 21.02 73.12 39.02 39.02 39.02 39.02 20.12 7830.0 49.0 150.1

)4;01( 49.81 60.12 50.12 30.12 20.12 10.12 30.12 4000.0 01.0 964.5

)4;31( 87.81 09.61 80.71 90.71 01.71 11.71 60.71 7700.0 25.0 427.3

)4;91( 86.51 85.41 79.41 89.41 00.51 10.51 19.41 9330.0 32.1 677.0

)6;5( 60.81 05.71 85.71 75.71 55.71 45.71 55.71 0100.0 81.0 723.0

)7;4( 30.31 28.21 08.21 08.21 08.21 18.21 18.21 1000.0 70.0 460.0

gnissim%01

)2;2( 00.42 03.32 26.52 31.52 56.52 46.52 70.52 3620.1 40.4 454.2

)2;91( 21.02 35.12 33.12 62.12 04.12 33.12 73.12 1010.0 84.0 529.1

)4;01( 49.81 58.81 29.81 09.81 60.91 60.91 69.81 7900.0 15.0 010.0

)4;31( 87.81 88.61 17.81 76.81 47.81 37.81 53.81 3276.0 74.4 809.0

)4;91( 86.51 28.41 35.51 55.51 86.51 86.51 54.51 6031.0 33.2 791.0

)6;5( 60.81 87.61 30.61 29.61 98.61 98.61 07.61 5241.0 72.2 544.2

)7;4( 30.31 29.21 25.31 65.31 64.31 54.31 83.31 3070.0 69.1 622.0

gnissim%03

)2;2( 00.42 87.32 49.32 41.32 22.32 49.22 04.32 5581.0 58.1 036.0

)2;91( 21.02 06.12 26.12 88.12 88.12 09.12 87.12 6220.0 07.0 144.3

)4;01( 49.81 00.91 87.91 68.81 27.81 89.81 70.91 5271.0 71.2 391.0

)4;31( 87.81 34.61 33.61 50.71 39.51 72.61 04.61 6661.0 94.2 912.7

)4;91( 86.51 11.51 75.41 64.51 22.41 96.51 10.51 3073.0 70.4 239.0

)6;5( 60.81 46.71 71.71 95.71 76.71 76.71 55.71 8540.0 22.1 573.0

)7;4( 30.31 36.21 37.21 16.21 27.21 17.21 86.21 0300.0 44.0 551.0

Y

Table 2 - General performance measure of the proposed
multiple imputation method, with 5%, 10% and
30% missing values.

ycaruccalareneG

gnissiM V
E

MQV T
cca

%5 9110.0 2101.2 1311.2

%01 0071.0 1382.1 1354.1

%03 0702.0 1102.1 1804.1

Figure 1 - Mean imputation height, standard error and standard
deviation with 5% missing values.

age of missing values rises, the variation between im-
putations defined by expression (11) increases while
the average squared bias defined by expression (12)
decreases. This results in an improvement of the overall
performance, which can be seen through the decrease
in the general measure as defined by expression (10).

The proposed method for multiple imputation
uses the maximum amount of information available
from the original data matrix and is free from assump-
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Figure 2 - Mean imputation height, standard error and standard
deviation with 10% missing values, for the same
positions as the data with 5% missing values.

Figure 3 - Mean imputation height, standard error and standard
deviation with 30% missing values, for the same
positions as the data with 5% missing values.

tions about the distribution or structure of the data.
In the G × E interaction matrix for the E. grandis
height data, the variability in relation to the mean of
imputed values is small, indicating a high precision,
and the bias in relation to the original values is also
small, indicating good accuracy. However, its values
are greater than the variability in relation to the imputed
values mean, indicating less accuracy in the proposed
model.
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