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ABSTRACT: The additive main effect and multiplicative interaction (AMMI) models allows analysts to
detect interactions between rows and columns in a two-way table. However, there are many methods
proposed in the literature to determine the number of multiplicative components to include in the AMMI
model. These methods typically give different results for any particular data set, so the user needs some
guidance as to which methods to use. In this paper we compare four commonly used methods using
simulated data based on real experiments, and provide some general recommendations.
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ESCOLHA DE COMPONENTES NOS MODELOS DE
EFEITOS PRINCIPAIS ADITIVOS E INTERAÇÃO

MULTIPLICATIVA (AMMI)

RESUMO: Os modelos de efeitos principais aditivos e interação significativa (AMMI) permitem ao analista
detectar interações entre linhas e colunas em uma tabela de dupla entrada. Entretanto, existem muitos
métodos propostos na literatura para determinar o número de componentes multiplicativos a incluir nos
modelos AMMI. Esses métodos fornecem diferentes resultados para um particular conjunto de dados.
Assim, o usuário necessita de orientação sobre quais métodos usar. Nesse trabalho investigamos quatro
métodos comumente utilizados em um amplo espectro de condições usando dados simulados baseados em
dados de ensaios reais. O método de Eastment-Krzanowski apresentou melhor desempenho; cada um dos
outros métodos exibiram baixo desempenho em alguma das situações estudadas.
Palavras-chave: tabela de dupla entrada, componentes principais, simulação

INTRODUCTION

There are many tests in the literature for de-
ciding how many components should be retained in
additive and multiplicative interaction models. They
include those by Gollob (1968), Mandel (1969; 1971),
Corsten & van Eijnsbergen (1972), Johnson & Graybill
(1972), Hegemann & Johnson (1976), Yochmowitz &
Cornell (1978), and Cornelius (1993), among others.
Data for analysis are assumed to come in the form of
a two-way table. The classical model for such a table
is the ANOVA model

yij = μ + gi + ej + δij

i=1,…,g, j=1,…,e, where yij is the observation in the
i-th row and j-th column of the table, μ is the overall
mean effect, gi represents the i-th row effect, and ej the
j-th column effect. The terms δij can either be seen as
residuals or as interaction terms between rows and col-

umns. The above model is called the additive model.
However, it is quite possible that the interaction terms
δij still contain some structure, and therefore one can
model them by a set of multiplicative components plus
residual error:

∑ =
+= m
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The number of components m ≤ min {g-1, e-
1} should be chosen in such a way that the residual εij
represents white noise. Combining the last two expres-
sions above yields an additive main effect and multi-
plicative interaction (AMMI) model for the two-way
table:
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To estimate the unknown parameters in
the model, one usually first uses row/column means
for the main effects and then performs a singular
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value decomposition of the residual matrix for the
interaction parameters. This classical approach cor-
responds essentially to a least squares fit of the full
model.

Nonadditive effects are frequently observed in
two-way tables, and, as Daniel (1976) points out, the
nonadditivity is often associated with just a few rows
or columns of the table. As observed by Snee (1982),
the interpretation of nonadditivity is less of a problem
if replicate observations are present for each of the
cells of the table. However when there is only one ob-
servation per cell, it is not possible to distinguish be-
tween row- or column-related nonhomogeneous vari-
ance, and interaction from the observed data alone. In
this situation, the use of a model that will detect a va-
riety of different types of nonadditivity in two-way
tables can be very helpful.

For this reason, a primary objective is to de-
termine the optimal number of multiplicative terms in
the AMMI model. Also, good prediction of the true
trait response in each cell of the two-way table can be
achieved by truncating the AMMI model, so criteria
for determining the number of components needed to
explain the patterns of interactions have been the ob-
jects of some research.

Dias & Krzanowski (2003) described two
‘leave-one-out’ methods to determine the number m of
components to be retained in the AMMI model, and
two other methods based on F-tests: the Gollob and
Cornelius tests. However, these methods gave differ-
ent results when applied to several data sets, so some
guidance is needed regarding their properties if a
choice between them is to be made in practice. In the
present paper we conduct a comparison of the meth-
ods, to establish conditions under which each method
might be expected to perform satisfactorily, by means
of a simulation study built round real experimental
data.

MATERIAL AND METHODS

Data and Model
Model and examples are described in terms of

a set of g genotypes that have been tested experimen-
tally in e environments. The mean yield for each
combination of genotype and environment, obtained
from n replications of an experiment (a balanced set
of data) can be represented by the array Y(g×e)=[yij].

The AMMI model postulates additive compo-
nents for the main effects of genotypes (gi) and envi-
ronments (ej), and multiplicative components for the
effect of the interaction (ge)ij, referred to as genotype
× environment interaction (GEI). Thus, the mean re-
sponse of genotype i in an environment j is modelled

by:

∑ =
ε+γλα+++μ=

m
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in which (ge)ij is represented by:

∑ =

m
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Estimates of the overall mean (μ) and the main
effects (gi and ej) are obtained in the context of a simple
two-way ANOVA of the array of means Y(g×e). The re-
siduals from this array then constitute the array of in-
teractions GE(g×e)=[(ge)ij], and the multiplicative inter-
action terms are estimated from the singular value de-
composition (SVD) of this array. Thus, λk is estimated
by the k-th singular value of GE, αik is estimated by
i-th element of the left singular vector αααααk(g×1), and γjk is
estimated by j-th element of the right singular vector
γγγγγT

k(1×e) associated with λk (Good, 1969; Mandel, 1971;
Piepho, 1995). If the interaction contains one or more
terms (m ≥ 1), then it is assumed that the errors have
a homogeneous variance after the nonadditivity effects
have been taken into account.

Snee (1982) points out that nonadditivity in a
two-way table, with one observation per cell, may be
due either to row- or column-related nonhomogeneous
variance, or to interaction between the row and col-
umn factors. He discusses one example involving the
effect of four varieties of wheat in 13 locations, and
shows that the variety-related nonhomogeneous vari-
ance detected by several authors is more usefully in-
terpreted as a level-dependent interaction due to the
differences among the yields of different varieties of
wheat being larger in those locations that have higher
yields. Also, he comments that experience has indi-
cated that frequently only one multiplicative term is
needed to describe the nonadditivity.

Methods for selecting number of interaction com-
ponents

Dias & Krzanowski (2003) present two meth-
ods based on a full ‘leave-one-out’ procedure that op-
timizes the cross-validation process (i.e. maximises the
number of data points left in the set at each iteration
without incurring bias due to resubstitution), and
two methods based on F-tests. The Eastment &
Krzanowski (1982) and Gabriel (2002) cross-valida-
tion methods assume that we wish to predict the ele-
ments xij of the matrix X by means of the model:
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. The methods are those out-

lined by Krzanowski (1987) and Gabriel (2002) respec-
tively, in which we predict the value m

ijx̂  of xij
(i=1,…,g; j=1,…,e) for each possible choice of m (the
number of components), and measure the discrepancy
between actual and predicted values as

2

1 1

)ˆ(1)( ij
m
ij

g

i

e

j
xx

ge
mPRESS −= ∑∑

= =

However, to avoid bias in the prediction, the
data point xij must not be used in the calculation of m

ijx̂
for each i and j. Hence, appeal to some form of cross-
validation is indicated, and the two approaches
differ in the way that they handle this. However, both
assume that the SVD of X  can be written as
X=UDVT. The Eastment-Krzanowski method utilizes
the following statistic to determine the number of com-
ponents in the model:
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where Dm is the number of degrees of freedom required
to fit the m-th component and Dr is the number of de-
grees of freedom remaining after fitting the m-th com-
ponent. The standard cross-validation procedure is to
subdivide X into a number of groups, delete each group
in turn from the data, evaluate the parameters of the
predictor from the remaining data, and predict the de-
leted values (Wold, 1976; 1978). The most precise pre-
diction results when each deleted group is as small as
possible, and in the present instance that means a single
element of X (Krzanowski, 1987). Denoting by X(-i) the
result of deleting the ith row of X and mean-centering
the columns, and by X(-j) the result of deleting the jth
column of X and mean centering the rows, following
the scheme given by Eastment & Krzanowski (1982),
one can write

Ti)( VDUX =−  with )u( st=U , )v( st=V , and

)d,...,ddiag( p1=D

and

T
j)(

~~~ VDUX =−  with )u~(~
st=U , )v~(~

st=V , and

)d~,...,d~diag(~
1-p1=D

Now consider the predictor
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Each element on the right-hand side of this
equation is obtained from SVD of X, mean-centered
after omitting either the i-th row or the j-th column.
Thus, the value xij has nowhere been used in calculat-
ing the prediction, and maximum use has been made
of the other elements of X. Calculations here are ex-
act, so there is no problem with convergence as op-
posed to expectation maximization approaches that
have also been applied to AMMI, but are not guaran-
teed to converge.

On the other hand, the Gabriel method takes
a mixture of regression and lower-rank approxima-
tion and utilizes PRESS(m) and PRECORR(m)=
Corr(xij,

m
ijx̂ |∀ i,j) to achieve the same goal. The

proposed algorithm for cross-validation of lower rank
approximations is as follows.

For given (GEI) matrix X, use the partition

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=
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T
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x

X

and approximate the submatrix X\11 by its rank m fit
using the SVD

∑
=
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where U = [u1,..., um], V = [v1,..., vm], and D =
diag[d1,..., dm].
Then predict x11 by

.1
T-1T

1.11x̂ xUVDx=

and obtain the cross-validation residual 111111 x̂-xe = .
Similarly obtain the cross-validation fitted val-

ues ijx̂  and residuals ijijij x̂-xe =  for all other ele-
ments xij, i=1,…,g, j=1,…,m; (i,j) ≠ (1,1). Each will re-
quire a different partition of X. These residuals and fit-
ted values can be summarized by PRESS(m) and
PRECORR(m) respectively.

With either method, choice of m can be based
on some suitable function of PRESS(m). However, the
features of this statistic differ for the two methods.
Gabriel’s approach yields values that first decrease and
then (usually) increase with m. He therefore suggests
that the optimum value of m is the one that yields the
minimum of the function. The Eastment-Krzanowski
approach produces (generally) a set of values that is
monotonically decreasing with m. The optimum value
for m is the highest value of m at which the statistic
W is greater than unity.
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The Gollob (1968) approximate F-test assumes
that 22 /ˆ σλkn  is distributed as a chi-square variable,
and he suggests using the statistic

))meanError(MSf(ˆF 1
2
mλ=

against an F-distribution with f1=g+e-1-(2m) and ge(n-
1) degrees of freedom, or g(e-1)(n-1) degrees of free-
dom if blocks are present, to test the m-th multiplica-
tive term of the model for significance. By contrast,
Cornelius et al. (1992) uses

mean))MS(Error )/(fλ̂-(SS(GEI)F 2

m

1k

2
kmR, ∑=

=

against an F-distribution with f2=(g-1-m)(e-1-m) and
ge(n-1) degrees of freedom, or g(e-1)(n-1) degrees of
freedom if blocks are present, to test significance of
lack of fit of the m-term model.

Piepho (1995) investigated the robustness (to
the assumptions of homogeneity and normality of the
errors) of some alternative tests to select an AMMI
model. He comments that F tests applied in accordance
with Gollob’s (1968) criterion are liberal in that they
select too many multiplicative terms. Of the four meth-
ods he studied, including that of Gollob (1968), the test
proposed by Cornelius et al. (1992) was the most ro-
bust. The author thus recommends that preliminary
evaluations should be conducted to verify the validity
of the assumptions if one of the other tests is to be
used. In our study, the tests of Gollob and Cornelius
were performed at α = 0.05. We note that other pos-
sible tests of both PRESS and F form exist (e.g. the
PRESS test in Cornelius et al., 1996, and the F test
based on the Goodman-Haberman theorem described
by Cornelius, 1993), but we have not included them
in the comparisons to keep the investigation to a man-
ageable size.

Simulation Study
We studied by simulation the behaviour of the

above methods of selecting the number of interaction
components in AMMI models. However, to make the
simulations realistic, we based them around real data
sets for which the model is appropriate, according to
the following scheme.

Suppose that Y = [yij] is the two-way table for
a chosen data set, and that we fit the AMMI model

∑ =
++++=

m
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for a given value of m. Let an over-bar denote aver-
age, with ‘.’ indicating the subscripts over which sum-
mation takes place. Therefore, ..ˆ y=μ , ...ˆ yyg ii −=  ,

...ˆ yye jj −=  and αikλkγjk is estimated from the k-th

component of the SVD of .... yyyy jiij +−−=GE  .
The model assumes εij ~ N(0,σ 2), and σ2 is estimated
from the error sum of squares in the ANOVA of the
data set.

To generate a data set in the simulation study
for a chosen value of m, we simply form the values

∑ =
++++=

m
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where the ijε̂  are independently drawn from a N(0, 2σ̂ )
distribution. By these means it is possible to generate
repeated data sets which mimic the patterns of the
original data, but which have built in to them a speci-
fied number of interaction components (governed by
the initial choice of m). Also, by varying some of the
parameter values, it is possible to force particular struc-
tures on the data. For example, by changing the val-
ues of iλ̂ we can force some components to have a
greater or smaller contribution to the interaction. We
used both of these devices in the simulations reported
below.

Wheat Yield Data
Our main study uses as a basis the wheat yield

data, Trial 3, given by Cornelius & Crossa (1999) who
describe five multi-environment (MET) international
cultivar trials, all set in randomized block design. Trial
3 concerns maize (Zea mays L.), with 9 cultivars, 20
sites and n = 4.

The first series of simulation experiments was
conducted to investigate the sensitivity of the methods
to increasing numbers of interaction components in the
data. We set the number of interaction components m
successively equal to 0, 1, 2,…,9 and then used all es-
timated parameters from the original data, and the
scheme outlined above, to produce the simulated data.
We generated 100 repetitions for each of these 10 ex-
periments, and used the four methods described above
to determine in each case how many interaction com-
ponents should be included in the model. Table 1 re-
ports the value chosen most frequently for each method
and each experiment.

We then conducted three further series of
experiments, constraining the emphasis of components
in each case as suggested in the previous section.
In the first series of experiments, we arranged for
each of the nine interaction components to have
approximately equal weight. To do this we arranged
that λ̂  values had the following pattern: ,cˆ2

1 =λ
,c99.0ˆ2

2 =λ  ,c98.0ˆ2
3 =λ  …, ,c92.0ˆ2

9 =λ  but with c cho-
sen such that ∑=

9

1

2λ̂
i i equalled the original GEI sum of

squares and 2
9

2
2

2
1 λ̂λ̂λ̂ ≥≥≥ K . Once again 100 repeti-

tions were provided for each experiment, and modal
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choices of number of interaction components are pre-
sented for each method and each experiment in Table 2.

In the second series of experiments, we
inflated the first three 2

iλ̂  to have high values and
reduced the remaining 2

iλ̂ , but in proportion to their
actual values so that ∑=

9

1

2λ̂
i i  was again equal to the

original sum of squares of GEI. In the third series of
experiments, the first three 2

iλ̂  values were again in-
flated while the remaining 2

iλ̂  values were reduced, but
the latter were now set to be approximately constant.
Results from these two series are given in Tables 3 and
4 respectively.

As a final study we used the data of Trial 5
from Cornelius & Crossa (1999) as the basis for our
simulations. This was a simple trial, and considered by
the original author to be relatively free of interaction
effects. Here we have 8 cultivars and 59 sites. We
therefore only conducted the unconstrained form of
experiments (i.e. as in Table 1), and show the results
in Table 5.

DISCUSSION

We admit at the outset that our investigations
are by no means exhaustive (a comparison of just four
methods on a relatively small set of conditions), and
are not designed in such a way that ‘optimal’ meth-
ods can be determined with respect to some well-de-
fined mathematical objective function. Instead, we
start from the view that there may often be conflict
in practice among the methods, and that what is re-
quired by the practitioner is some reassurance that a
chosen method is likely to perform ‘reasonably’. So
our conclusions in this discussion are essentially
qualitative in nature, measured against what we be-
lieve to be reasonable interpretations of each studied
situation.

m ikswonazrK-tnemtsaE leirbaG bolloG suilenroC derauqsseulavralugnislanigirO
0 1 1 1 1 23.041
1 2 2 2 1 17.73
2 2 3 2 2 50.62
3 2 4 3 2 35.12
4 2 3 4 3 73.21
5 1 3 5 4 09.6
6 1 3 5 4 15.2
7 1 3 5 4 92.2
8 1 2 5 - 0

tesatadlanigirO 2 7 2 2

Table 1 - Modal number of AMMI multiplicative terms chosen by the Eastment-Krzanowski, Gabriel, Gollob and Cornelius
methods and the original eigenvalues squared, with the ‘true’ singular values put equal to the original empirical
singular values; 100 repetitions of simulated data based on Trial 3 results in Cornelius & Crossa (1999).

Table 3 - Modal number of AMMI multiplicative terms
chosen by the Eastment-Krzanowski, Gabriel,
Gollob and Cornelius methods; 100 repetitions
of simulated data based on Trial 3 results in
Cornelius & Crossa (1999), three large
singular values and the rest small, but
proportional to the empirical values from
analysis of the original data.

M ikswonazrK-tnemtsaE leirbaG bolloG suilenroC
0 1 1 1 1
1 2 2 2 1
2 3 3 2 2
3 3 4 3 3
4 3 4 3 3
5 3 4 3 3
6 3 4 3 3
7 3 4 3 3
8 3 4 3 -

Table 2 - Modal number of AMMI multiplicative terms
chosen by the Eastment-Krzanowski, Gabriel,
Gollob and Cornelius methods; 100 repetitions
of simulated data based on Trial 3 results in
Cornelius & Crossa (1999), ‘true’ singular
values nearly equal.

M ikswonazrK-tnemtsaE leirbaG bolloG suilenroC
0 1 1 1 1
1 2 2 2 1
2 3 3 2 2
3 3 4 3 3
4 1 5 4 4
5 1 6 5 5
6 1 7 6 6
7 1 1 7 7
8 1 1 8 -
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The four methods of selecting the number of
multiplicative interaction components have indeed
yielded different results on the simulated data sets
used here. Moreover, the results for these tests give
conflicting recommendations on a particular m value
for a data set. This feature can be seen clearly in
Tables 1-5.

In general terms, the two methods based on
F-tests are conservative and are prone to select a
fairly high value of m. The Eastment-Krzanowski
method, on the other hand, is clearly the most parsi-
monious: it never selects a value of m greater than 3,
and usually recommends either m = 1 or m = 2. We
note that this accords closely with the view of Snee
(1982) as regards an adequate description of nonad-
ditivity.

Passing to particular results, consider the first
experiment. The number of interaction components
chosen by each method from a single analysis of the
original data (as reported by Dias & Krzanowski,
2003) is given at the foot of Table 1: all methods sug-
gest two components, except Gabriel’s method which
suggests seven components. Table 1 then shows the
modal number of components chosen by each method
as progressively more interaction terms are included
in the simulated data. Since there appear to be only
about two interaction components in the original data,
and since the components are added according to their
ranking in order of decreasing  values (last column of
Table 1), we would expect the addition of the third and
succeeding components to have little effect. The four
methods show different patterns of behaviour. The
Eastment-Krzanowski method is very stable, choosing
an m value of 2 for the original data compared with 1
or 2 for all simulations. Gabriel’s and Gollob’s meth-
ods are very volatile, the former contrasting m = 7 for
the original data with values 1, 2, 3 or 4 for the simu-
lations, and the latter having all values between one
and five in the simulations, but m = 2 for the original
data. Cornelius’ method is less volatile but still exhibits
a range of values from 1 to 4.

Consider next the simulations with constrained
interaction components. In Tables 3 and 4, where the
interaction components have been constrained by
heavily weighting the first three components, it is prob-
ably reasonable to say that no method should choose a
value greater than 3. The methods of Eastment-
Krzanowski and Cornelius accord with this, while those
of Gabriel and Gollob recommend a value of 4 for a sub-
stantial proportion of cases. However, in both cases we
would expect the highest value reached to then stay con-

Table 5 - Modal number of AMMI multiplicative terms chosen by the Eastment-Krzanowski, Gabriel, Gollob and Cornelius
methods and the original eigenvalues squared; 100 repetitions of simulated data based on Trial 5 results in Cornelius
& Crossa (1999).

Abbreviations: AMMI, additive main effects and multiplicative interaction model; ANOVA, analysis of variance; GEI, genotype x
environment interaction; MET, multi-environment trials; MS, mean square, PRESS, predictive sum of squares; PRECORR, predictive
correlation; SS, sum of squares; SVD, singular value decomposition.

m ikswonazrK-tnemtsaE leirbaG bolloG suilenroC derauqsseulavralugnislanigirO
0 1 1 1 1 35.56
1 1 2 2 1 40.84
2 1 3 2 2 65.34
3 1 4 3 3 97.73
4 1 5 4 3 58.32
5 1 1 5 4 87.22
6 1 1 5 5 16.12
7 1 1 6 6 0

tesatadlanigirO 1 1 2 3

Table 4 - Modal number of AMMI multiplicative terms
chosen by the Eastment-Krzanowski, Gabriel,
Gollob and Cornelius methods; 100 repetitions
of simulated data based on Trial 3 results in
Cornelius & Crossa (1999), three large
singular values and the rest small and all equal.

M ikswonazrK-tnemtsaE leirbaG bolloG suilenroC

0 1 1 1 1

1 2 2 2 1

2 3 3 2 2

3 3 3 3 2

4 3 3 4 2

5 1 3 4 3

6 1 3 4 3

7 1 3 4 3

8 1 3 4 -
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stant as more components are added. Here the Eastment-
Krzanowski method fails in Table 4, where m drops back
down from 3 to 1 from M = 5 onwards.

In Table 2 the components have a fairly even
weighting, so perhaps we would expect there to be a
monotonically increasing value of m as M rises. All
methods apart from that of Eastment-Krzanowski do
indeed exhibit such an increasing set of values,
whereas this method again drops back from 3 to 1 at
M = 4 onwards.

Finally, Table 5 reports a case where terms are
successively added in the simulations as m increases,
but where the originator of the data believed there to
be little interaction. The very even distribution and low
values of the squared eigenvalues (last column of Table
5) support this view. The Eastment-Krzanowski
method suggests just one component (the minimum
value possible) for all M values, while all other meth-
ods exhibit an upward trend in number of components
chosen as m increases, and select very large values for
at least some of these cases. Tables 1-5 do not present
a modal number of AMMI multiplicative terms for the
Cornelius method from m equal to eight because of
negative degrees of freedom.

In summary, therefore, it is a rather mixed pic-
ture. The Eastment-Krzanowski method is stable and
behaves appropriately in the presence of a relatively
small number of ‘important’ components, but gener-
ally underestimates when there is a larger number. The
Gabriel method is very volatile and tends to choose
slightly too many components in many situations. Of
the F-test methods, the one by Cornelius exhibits ap-
propriate behaviour in the presence of ‘important’ com-
ponents, but is less stable than Eastment-Krzanowski.
Finally, the Gollob version is broadly similar to the
Cornelius method but with slightly worse stability, and
is likely to choose more components in some situa-
tions. So, finally, the Eastment-Krzanowski method
appears to be the preferable cross-validatory one while
the Cornelius method would be the recommended F-
test method. The former is preferable to the latter if
parsimony is a major consideration, but the latter is
preferable if the presence of a large number of inter-
action components is suspected. Given the different
performances of the two methods, however, both
should perhaps be used before making a decision in a
practical application. These conclusions support those
arrived at by Dias & Krzanowski (2003) from the
analysis of real data.
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