Revista Brasileira de Ciências Farmacêuticas *Brazilian Journal of Pharmaceutical Sciences* vol. 38, n. 2, abr./jun., 2002

New triterpene and triterpenoid glycosides from Ilex brevicuspis

Alexandre T. Cardoso Taketa¹, Manfred Gondorf¹, Eberhard Breitmaier¹, Eloir Paulo Schenkel^{2*}

¹Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn – Germany, ²Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina

*Correspondence:

E.P. Schenkel
Departamento de Ciências
Farmacêuticas - Centro de Ciências da
Saúde
Universidade Federal de Santa
Catarina -Campus Universitário /
Trindade
88.040-900 - Florianópolis-SC, Brasil
E-mail: schenkel@ccs.uísc.br

From the leaves of Ilex brevicuspis were isolated a new triterpene, 20(S)- 3β , 19α -dihydroxyurs-12-en-23,28-dioic acid, named here brevicuspic acid, and two new triterpenoid glycosides, 3-O- α -L-arabinopyranosyl-20(S)-pomolic acid-28-O- β -D-glucopyranosyl ester, named brevicuspisaponin 3, and the 23-sodium salt of (20S)- 3β , 19α ,24-trihydroxyurs-12-en-23,28-dioic acid- 28β -O- β -D-glucopyranosyl ester, along with the known compound 3-O- α -L-arabinopyranosyl-20(S)- 19α ,24-dihydroxyursolic acid-28-O- β -D-glucopyranosyl ester, already described for Ilex argentina. Their structures were established on the basis of chemical and spectroscopic methods.

Uniterms:

- Aquifoliaceae
- Ilex brevicuspis
- Triterpenes
- Saponins
- Brevicuspic acid
- Brevicuspisaponins 3 and 4

INTRODUCTION

As previously reported, the leaves of *Ilex brevicuspis* Reissek (Aquifoliaceae) afforded the triterpenes ursolic acid, 23-methylester of 20(S)-rotundioic acid, and the new glycosides brevicuspisaponin 1 and 2(Taketa *et al.*, 2000). Continuing the investigation on the leaves of *I. brevicuspis*, as a part of our studies on the adulterants of the genuine maté, *Ilex paraguariensis* (Taketa, Schenkel., 1994; Schenkel *et al.*, 1995; Heinzmann, Schenkel, 1995; Pires *et al.*, 1997; Schenkel *et al.*, 1997; Athayde *et al.*, 1999; Reginatto *et al.*, 1999; Athayde *et al.*, 2001), we report here further new triterpene and saponins from the title plant.

MATERIAL AND METHODS

Plant material

Leaves of *Ilex brevicuspis* Reissek were collected in Osório, State of Rio Grande do Sul, Brazil. A herbarium specimen (leg. Coelho 163) is on deposit in the Herbarium of the Botany Department of the Federal University of Rio

Grande do Sul (Herbarium ICN, Porto Alegre, Brazil).

General experimental procedures

Melting points were obtained in a Kofler melting point apparatus and are uncorrected. IR spectra were recorded in a Perkin-Elmer 881 spectrophotometer. Optical rotations were measured in a Perkin-Elmer 241 polarimeter. EIMS and HRMS spectra were performed in a MS50 spectrometer and FAB-MS spectra on a Concept 1H spectrometer. ¹H and ¹³C NMR spectra were recorded in Bruker AMX and DRX 500 spectrometers. TLC were carried out on silica gel (Merck) GF₂₅₄ and sugars and glycosides were eluted with EtOAc/MeOH/HOAc/H₂O 13:3:4:3. All compounds were visualized using the vanillin-sulfuric acid reagent/100 °C/10 min. Open CC were performed on a normal phase silica gel 40-60 mm using the eluants CHCl₂/MeOH 97:3 and cyclohexane/ acetone 1:1 to 1a and 2a, CHCl₂/MeOH 9:1 to 1 and CHCl₂/EtOH/H₂O 8:4:0.5 to **2**, **3** and **4**. For **3**, the phase LiChroprep C-18, 40-63 mm, the eluant MeOH/H₂O 3:1 and Sephadex LH-20 in MeOH were used for final purifications.

Extraction and isolation

Air-dried leaves (589 g) were crushed and extracted with ethanol (1.5 L) at room temperature (2 x 7 days). The ethanolic extract (2 L) was evaporated to dryness under reduced pressure and the residue (69 g) was then suspended in water (700 mL) and extracted with chloroform (5 x 500 mL). Between the water and chloroform phases an emulsified phase was formed. The emulsified phase was evaporated to dryness to give the fraction containing the saponins (19 g). Part of this residue was repeatedly chromatographed to give compounds 1 (17 mg), 2 (13 mg) and pure compounds 3 (26 mg) and 4 (17 mg).

Acid hydrolysis

Compounds **2**, **3** and **4** were hydrolyzed on TLC plates in order to identify their sugars, as described by Kartnig and Wegschaider (1972).

Acetylation of compounds 1, 2 and 4

Compounds 1 (3 mg), 2 (3 mg) and 4 (6 mg) were acetylated with acetic anhydride/pyridine (1:1) at room temperature overnight, affording peracetylated compounds 1a, 2a and 4a.

Acetylated derivative (1a):

Acetylated brevicuspic acid [20(S)-3 β ,19 α -dihydroxyurs-12-en-23,28-dioic acid] (1)

White powder, mp 232-235 °C. $[\alpha]^{20}_{589}$ +33°, $[\alpha]^{20}_{578}$

+80°, [α]²⁰₅₄₆ +94° and [α]²⁰₄₃₆ +182° (MeOH, c 0.17). IR $v^{\rm KBr}_{\rm max}$ cm⁻¹: 3425, 2932, 1741, 1698, 1456, 1372, 1237, 1030. FAB-MS (positive-ion mode, mNBA) m/z: 567.3 [M + Na]⁺, 467.2, 421.3, 338.3. EIMS m/z: 544.4 [M]⁺, 426.4, 498.4, 482.4, 438.3, 426.4, 407.3. HRMS: 526.3291 [M-H₂O]⁺. ¹H NMR (Table I) and ¹³C NMR (Table II).

Brevicuspisaponin 3(2):

[3-O- α -L-arabinopyranosyl-20(S)-pomolic acid-28-O- β -D-glucopyranosyl ester]

FAB-MS (positive-ion mode, mNBA) *m/z*: 789.4 [M+Na]⁺, 703.4, 687.4, 613.1, 599.1, 531.2.

Peracetylated derivative (2a):

White powder, mp 153-155 °C . $[\alpha]^{20}_{589}$ +17°, $[\alpha]^{20}_{578}$ +21°, $[\alpha]^{20}_{546}$ +23°, $[\alpha]^{20}_{436}$ +39° and $[\alpha]^{20}_{365}$ +61° (CHCl₃, c 0.21). IR v^{KBr}_{max} cm⁻¹: 3481, 2946, 1752, 1370, 1224, 1056. FAB-MS (positive-ion mode, mNBA) m/z: 1083.4 [M + Na]⁺, 904.4, 850.4, 783.3, 683.4, 667.2, 613.3. ¹H NMR (Table I) and ¹³C NMR (Table II).

ILA-1(3):

[3β -O- α -L-arabinopyranosyl-20(S)- 19α , 24-dihydroxyursolic acid-28-O- β -D-glucopyranosyl ester]

White powder, mp 200-204 °C [α]²⁰₅₈₉ +12°, [α]²⁰₅₇₈ +13°, [α]²⁰₅₄₆ +14°, [α]²⁰₄₃₆ +24° and [α]²⁰₃₆₅ +37° (MeOH, c 0.25). IR n^{KBr}_{max} cm⁻¹: 3437, 2932, 1734, 1637, 1382, 1074. FAB-MS (positive mode, mNBA) m/z: 805.3 [M+Na]⁺, 642, 482, 411. ¹H NMR (Table I) and ¹³C NMR (Table II).

Brevicuspisaponin 4 (4):

[23-sodium salt of (20S)-3 β ,19 α ,24-trihydroxyurs-12-en-23,28-dioic acid-28 β -O- β -D-glucopyranosyl ester]

FABMS (positive-ion mode, thioglycerol) m/z: 725.3 [M+Na]⁺, 703.3 [M+H]⁺, 539.2 [M-C₆H₁₁O₅]. IR $v^{\rm KBr}_{\rm max}$ cm⁻¹: 3422, 2930, 1735, 1573, 1457, 1383, 1232, 1073.

Peracetylated derivative (4a):

White powder, mp 153-155 °C. FAB-MS (positive-ion mode, mNBA) m/z: 955.4 [M+H]^{+ 1}H NMR (Table I) and ¹³C NMR (Table II).

RESULTS AND DISCUSSION

Triterpene 1 and saponins 2, 3 and 4 were isolated from the emulsified phase obtained from the leaves of the title plant, using the procedure described in the experimental section. Due to difficulty in purifications, compounds 1, 2 and 4 were acetylated in order to afford pure compounds 1a, 2a and 4a.

EIMS spectrum of **1a** display a molecular peak at m/ z 544 [M⁺] as molecular ion, which together with the HRMS from the fragment ion with m/z 526.3291 [M⁺- H_2O] suggested the molecular formula $C_{32}H_{48}O_7$. The triterpenoid structure was confirmed by the ¹H broadbanddecoupled ¹³C NMR experiment which exhibited the presence of one acetyl group (δ_c 170.2 and 21.1) and thirty other carbon atoms. The DEPT subspectra revealed the presence of six methyl, nine methylene, six methane groups. It was possible to recognize the existence of two carboxy groups (δ_c 180.7 and 179.2), one double bond (δ_c 126.8 and 139.5), one acetylated sec alcohol group ($\delta_{\rm C}$ 78.5) and one *tert* alcohol group (δ_c 73.3). The ¹H NMR spectrum showed the presence of five angular methyl groups (δ_H 0.94, 1.05, 1.42, 1.52 and 1.68) and one methyl group attached to CH ($\delta_{\rm H}$ 1.10, d, ${}^{3}J$ = 7.0 Hz), suggesting an ursane or oleanane derivative. The multiplicities at δ_{μ} 5.76 (3α-H, dd, ${}^{3}J$ = 12.0 and 3.4 Hz) indicated a 3βhydroxy substitution on this skeleton. HMBC experiment allowed to locate 24-CH₃ ($\delta_{\rm C}$ 12.8) and 23-COOH ($\delta_{\rm C}$ 179.2) at C-4. NOE enhancements were detected for 25β - CH_3 (δ_H 0.94, s) and 24- CH_3 (δ_H 1.52, s) in a ROESY experiment, indicating the 4a-configuration of the carboxy group.

In the ¹H NMR spectrum, the deshielded methylene hydrogen proton at $\delta_{\rm H}$ 3.19 showed characteristic multiplicities (td, J= 12.9 and 3.8 Hz) that established an axial relative stereochemistry for 16 α -H. It was confirmed through the W-type correlation observed between proton signals at $\delta_{\rm H}$ 2.02 (equatorial 16 β -H) and $\delta_{\rm H}$ 3.26 (equatorial 16 β -H)

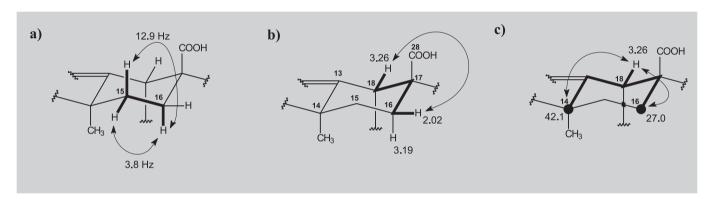
TABLE 1- 13 C-NMR data for the acetylated derivatives **1a**, **2a** and **4a**, and compound **3** (pyridine- d_c)

C	1a*	2a*	3	4a	
1	38.2	38.7	38.7	38.8	
2	23.5	26.7	27.0	24.0	
3	78.5	89.5	89.2	77.9	
4	52.1	39.4	44.4	54.9	
5	52.0	55.9	56.4	52.6	
6	21.3	18.7	19.1	23.1	
7	33.2	33.8	33.8	34.2	
8	40.5	40.4	40.5	40.6	
9	47.8	47.8	47.8	48.1	
10	36.7	37.2	36.9	37.0	
11	23.9	24.1	24.8	24.2	
12	126.8	128.1	127.7	127.7	
13	139.5	138.4	139.0	138.4	
14	42.1	42.3	42.3	42.1	
15	29.2	29.3	29.3	29.2	
16	27.0	26.8	26.9	26.6	
17	47.9	48.6	48.5	48.6	
18	47.4	47.2	47.3	47.1	
19	73.3	73.4	73.5	73.3	
20	43.2	42.9	43.0	42.9	
21	24.9	24.7	24.4	24.7	
22	32.4	31.8	32.0	31.7	
23	179.2	28.1	23.6	176.5	
24	12.8	17.0	63.5	63.9	
25	15.8	15.7	15.6	15.5	
26	17.1	17.5	17.5	17.1	
27	24.3	24.3	24.7	24.1	
28	180.7	176.5	177.2	176.4	
29	29.8	29.8	30.0	29.6	
30	16.1	16.1	16.2	16.0	
Ara-1'		104.0	106.7		
Ara-2'		70.5	73.0		
Ara-3'		71.5	74.7		
Ara-4'		69.1	69.6		
Ara-5'		64.1	66.9		
Glc-1"		92.5	96.0	92.4	
Glc-2"		71.1	74.3	71.0	
Glc-3"		73.6	79.1	73.6	
Glc-4"		69.0	71.2	69.0	
Glc-5"		73.2	79.5	73.1	
Glc-6"		62.3	62.3	62.3	

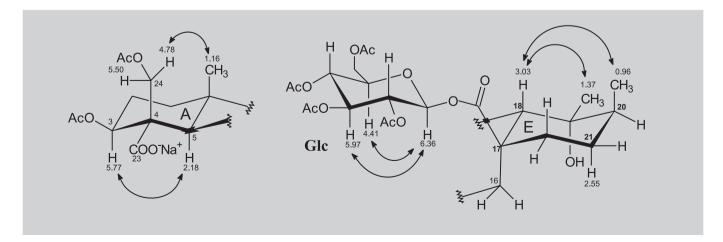
*Values for the acetyl groups are not recorded in the table. Acetyl groups: $\delta_C \cong 20 \text{ (CH}_3)$ and $\delta_C \cong 168 \text{ (C=O)}$.

TABLE II - 1 H-NMR data for the acetylated derivatives **1a**, **2a** and **4a**, and compound **3** (pyridine-d₅) (multiplicities; J= Hz)

H	1a*	2a*	3	4a
1	$1.09/\alpha$ - $1.53/\beta$	$0.91/\alpha$ - $1.54/\beta$	0.91/α - 1.52/β	1.12/α - 1.62/β
2	$1.71/\beta$ - $1.92/\alpha$	$1.84/\beta$ - $2.04/\alpha$	2.03/β - 2.18 (td; 13.8, 4.0)/α	$1.12/\beta$ - $1.86/\alpha$
3	5.76 (<i>dd</i> ; 12.0, 3.4)/α	$3.23/\alpha$	3.50 (dd; 11.6, 4.8)/α	$5.77/\alpha$
5	$1.99/\alpha$	$0.82/\alpha$	$0.95/\alpha$	$2.18/\alpha$
6	$1.54/\alpha$ - $1.65/\beta$	$1.37/\beta$ - $1.55/\alpha$	$1.37/\beta$ - $1.61/\alpha$	1.94 - 2.10
7	1.30 - 1.68	$1.34/\beta$ - $1.59/\alpha$	$1.44/\beta$ - $1.54/\alpha$	$1.37/\beta$ - $1.70/\alpha$
9	$1.91/\alpha$	$1.79/\alpha$	$1.77/\alpha$	$1.91/\alpha$
11	2.00 - 2.00	2.00 - 2.00	1.93 - 1.98	2.03 - 2.03
12	5.54	5.50	5.49	5.49
15	1.19/α - 2.22 (<i>td</i> ; 13.5, 3.8)/	$3 1.24/\alpha - 1.87/\beta$	1.26/α - 2.47 (<i>td</i> ; 13.6, 4.1)/β	$1.15/\alpha$ - $1.64/\beta$
16	2.02/β - 3.19 (<i>td</i> ; 12.9, 3.8)/o	α 1.87/ β - 3.16 (td; 11.6, 4.3)/ α	2.09/β - 3.23 (td; 13.1, 4.3)/α	$1.82/\beta$ - 3.12 (td; $11.8, 3.5$)/ α
18	$3.26 (s)/\beta$	$3.03 (s)/\beta$	$3.18 (s)/\beta$	$3.03 (s)/\beta$
20	$1.99/\alpha$	$1.92/\alpha$	$1.94/\alpha$	$1.90/\alpha$
21	1.30/β - 2.68 (tt; 13.5, 3.3)/c	α 1.18/ β - 2.57 (tt; 13.3, 4.2)/ α	$1.17/\beta$ - 2.59 (tt; $13.6, 3.9$)/ α	$1.17/\beta$ - 2.55 (tt; 13.2, 3.5)/a
22	1.93/α - 2.22 (<i>td</i> ; 13.5, 3.8)/	3 1.80/a - 1.98/β	$1.90/\alpha$ - $2.09/\beta$	$1.78/\alpha$ - $1.97/\beta$
23	-	1.08 (s)	1.50 (s)	-
24	1.52 (s)	0.94 (s)	3.59 (<i>d</i> ; 11.1) - 4.37 (ov.)	4.78 (<i>d</i> ; 11.2) - 5.50 (ov.)
25	0.94 (s)	0.94 (s)	0.84 (s)	1.16 (s)
26	1.05 (s)	0.97 (s)	1.15 (s)	1.00 (s)
27	1.68 (s)	1.70 (s)	1.71 (s)	1.63 (s)
29	1.42 (s)	1.36 (s)	1.37 (s)	1.37 (s)
30	1.10 (<i>d</i> ; 7.0)	0.98 (<i>d</i> ; 6.6)	0.97 (<i>d</i> ; 7.1)	0.96 (<i>d</i> ; 6.8)
Ara-1'		4.83 (<i>d</i> ; 7)	4.87 (<i>d</i> ; 6.7)	
Ara-2'		5.77 (ov.)	4.42 (ov.)	
Ara-3'		5.56 (<i>dd</i> ; 10.0, 3.3)	4.19 (dd; 8.2, 3.4)	
Ara-4'		5.64 (ov.)	4.35 (ov.)	
Ara-5'		3.90 (<i>d</i> ;13.0) - 4.28 (<i>dd</i> ; 13.0, 2.3)	3.85 (<i>d</i> ; 10.9) - 4.36 (ov.)	
Glc-1"		6.35 (<i>d</i> ; 8.0)	6.34 (<i>d</i> ; 7.8)	6.36 (<i>d</i> ; 8.0)
Glc-2"		5.75 (ov.)	4.23 (t; 8.5)	5.74 (<i>dd</i> ; 8.6, 8.4)
Glc-3"		5.98 (<i>t</i> ; 9.5)	4.31 (<i>t</i> ; 8.5)	5.97 (dd; 9.5, 8.6)
Glc-4"		5.63 (ov.)	4.40 (ov.)	5.62 (dd; 9.6, 9.5)
Glc-5"		4.41 (<i>ddd</i> ; 9.5, 4.2, 2.2)	4.05 (<i>ddd</i> ; 9.7, 3.8, 3.0)	4.41 (<i>ddd</i> ; 9.2, 4.1, 2.0)
Glc-6"		4.33 (dd; 12.1, 2.2) 4.63 (dd; 12.3, 4.2	2) 4.38 (ov.) 4.43 (ov.)	4.32 (<i>d</i> ; 12.1) 4.60 (<i>dd</i> ; 12.6, 4.3)


^{*}Values for the acetyl groups are not recorded in the table.

rial 18β-H) in the HH COSY experiment. Further, evidence for an equatorial 18β-H was provided by heteronuclear long-range correlation *via* three bonds couplings, ${}^3J({}^{13}C, {}^{1}H)$, detected by the HMBC experiment. This proton displayed cross-signals with carbons C-14 ($\delta_{\rm C}$ 42.1) and C-16 ($\delta_{\rm C}$ 27.0), revealing a dihedral angle close to 180°, providing evidence for the *cis*-fusion between the rings D/E.


A triplet of triplets (3J =13.3 and 3.3 Hz) observed for 21α-H ($\delta_{\rm H}$ 2.68, axial) revealed the β-configuration of the C-30 methyl group ($\delta_{\rm H}$ 16.1), corresponding to an ursane derivative with the 20(S)-configuration that could be confirmed by means of the ROESY experiment, indicating spatial correlation between the 18β-H ($\delta_{\rm H}$ 3.26) and hydrogens 29β-CH₃ ($\delta_{\rm H}$ 1.42) and 30β-CH₃ ($\delta_{\rm H}$ 1.10). Compared with ursolic acid (Tkachev *et al.*, 1994), compound 1a presented two important γ-effects in the ring E. The first one was caused by the axial 30β-CH₃,

shielding the carbons C-18 and C-22 by 5 and 4 ppm, respectively, in the 13 C NMR. The second effect was observed due to the presence of the axial 19α -hydroxy group, that shielded C-21 by about 6 ppm. Thus, **1a** differs from the structure of rotundioic acid (Nakatni *et al.*, 1989) by a different configuration of C-20 and turns out to be the peracetylated derivative of 20(S)- 3β , 19α -dihydroxyurs-12-en-23,28-dioic acid, named brevicuspic acid.

Fast atom bombardment mass spectroscopy (FAB-MS, positive mode) of **2a** generated a fragment at m/z 1083 [M+Na]⁺ as a pseudo molecular ion, in accordance with seven acetylated OH groups and with the spectrum obtained for the non-peracetylated compound **2**, showing a pseudo molecular ion at m/z = 789 [M+Na]⁺. ¹³C NMR of **2a** data revealed the occurrence of signals from one carboxy carbon (δ_c 176.5), seven acetate groups (δ_c 169 - 170 and δ_c 20.7 - 21.1), one double bond (δ_c 128.1 and

FIGURE 1 - Ring D from **1a**: additional evidence for the relative configuration by the ¹H NMR coupling constants (**a**), W-type correlation deduced from the HH COSY diagram (**b**) and long-range correlation ${}^3J({}^{13}C, {}^{1}H)$ in the HMBC experiments (**c**).

FIGURE 2 - Main ROESY correlation observed for compound 4a in pyridine- d_s .

138.4), two anomeric carbons ($\delta_{\rm C}$ 104.0 and 92.5), one glycosylated *sec* alcohol ($\delta_{\rm C}$ 89.5) and one *tert* alcohol ($\delta_{\rm C}$ 73.4). ¹H NMR confirmed the presence of six angular methyl groups ($\delta_{\rm H}$ 2x 0.94, 0.97, 1.08, 1.36 and 1.70), one methyl group attached to CH ($\delta_{\rm H}$ 0.98, d, ³J= 6.6 Hz), one olefinic proton ($\delta_{\rm H}$ 5.50) and two anomeric sugar protons ($\delta_{\rm H}$ 4.83, d, ³J= 8.0 Hz and $\delta_{\rm H}$ 6.35, d, ³J= 8.0 Hz). Both sugars presented antiperiplanar configuration of 1'-H and 2'-H (³J= 8.0 Hz), reflecting the α-configuration of the L-arabinopyranose and the β-configuration of the D-glucopyranose. The glycosidic linkages were established using the HMBC techniques. It was possible to observe correlation between the anomeric proton of α-L-arabinose ($\delta_{\rm H}$ 4.83) and C-3 ($\delta_{\rm C}$ 89.5), and also between the anomeric proton of β-D-glucose ($\delta_{\rm H}$ 6.35) and C-28 ($\delta_{\rm C}$ 176.5).

ROESY experiments were used to establish the α-configuration for 1'-H ($\delta_{\rm H}$ 4.83), 3-H ($\delta_{\rm H}$ 3.23) and 23-CH₃ ($\delta_{\rm H}$ 1.08, s). Moreover, the β-configuration of 29-CH₃ ($\delta_{\rm H}$ 1.36, s) attached to C-19 ($d_{\rm C}$ 73.4) indicated the presence of a 19α-*tert* alcohol group. In the same way, the α-configuration of 20-H ($\delta_{\rm H}$ 1.92) defined the configuration 30β-CH₃ ($\delta_{\rm H}$ 0.98, d, 3J = 6.6 Hz) at C-20. These data indicated the aglycone to be the 20(S)-isomer of pomolic acid (Brieskorn *et al.*, 1967) and compound **2a** was elucidated as the peracetylated derivative obtained from the 3-O-α-L-arabinopyranosyl-20(S)-pomolic acid-28-O-β-D-glucopyranosyl ester, named brevicuspisaponin 3.

Examination of compound **3** allowed its characterization as ILA-1, a saponin already isolated from the leaves of *Ilex argentina*(Schenkel *et al.*,1995). One- and two-dimensional NMR spectroscopic data confirmed **3** as 3-O- α -L-arabinopyranosyl-20(S)-19 α ,24-dihydroxyursolic acid-28-O- β -D-glucopyranosyl ester.

Compound **4** was characterized as a sodium salt by IR that shows a symmetric stretching band at 1573 cm⁻¹, a diagnostic frequency for a carboxylic acid salt. The presence of the sodium was determined by the flame ionization, employing a polarized filter for the D-sodium line, and compounds **3** as negative control. Acidic hydrolysis on TLC plates (Kartning, Wegschaider, 1972) indicated the presence of glucose. The FABMS of this genuine saponin (positive-ion mode) displayed peaks at m/z= 725.3 [M+Na]⁺and 703.3 [M+H]⁺. Compound **4a** showed the pseudo-molecular ion by FABMS (positive-ion mode) at m/z= 955.4 [M + H]⁺.

¹³C NMR spectra of compound **4a** revealed the presence of signals of two carboxy carbons ($\delta_{\rm C}$ 176.4 and 176.5), one double bond ($\delta_{\rm C}$ 127.7 and 138.4), one anomeric sugar carbon ($\delta_{\rm C}$ 92.4), one *sec*-hydroxyl ($\delta_{\rm C}$ 77.9), one *tert*-hydroxyl functions ($\delta_{\rm C}$ 73.3) and two

hydroxymethyl groups ($\delta_{\rm C}$ 62.3 and 63.9). The ¹H NMR spectrum showed the presence of four angular methyl groups ($\delta_{\rm H}$ 1.00, 1.16, 1.37 and 1.63), one methyl group attached to CH ($\delta_{\rm H}$ 0.96, d, ³ J_{HH} = 6.8 Hz), one olefinic proton ($\delta_{\rm H}$ 5.49) and one anomeric sugar proton ($\delta_{\rm H}$ 6.36, d, ³ J_{HH} = 8.0 Hz). Its NMR data comparison with compound **2a** (table 2) indicated that the sugar β -D-glucose was esterified with the C-28 carboxy function in the aglycone.

The location of the carboxylate group at C-4 was derived from the HMBC correlation signals δ_c 176.5 $\leftrightarrow \delta_u$ $4.78 (24_A-H)$ and $5.50 (24_B-H)$. Moreover, the carbon resonance of this hydroxymethyl group presented long-range correlation with the signals at δ_H 5.77 (3 α -H) and 2.18 (5 α -H). The occurrence of a triplet of triplets at $\delta_{\rm H}$ 2.55 $(J_{HH} = 13.2 \text{ and } 3.5 \text{ Hz})$ indicated an axial hydrogen 21α -H and thus, the (20S)-configuration. It was corroborated through spatial correlation observed between 18 β -H (δ_{H} 3.03) and hydrogens 29 β -CH₃ (δ _H 1.37) and 30 β -CH₃ (δ _H 0.96; d, ${}^{3}J_{HH}$ = 6.8 Hz) in the ROESY diagram (Figure 2). Furthermore, ROESY correlation between signals at δ_{H} $4.78 (24_{\text{A}}\beta\text{-H})$ and $\delta_{\text{H}} 1.16 (25\beta\text{-CH}_{3})$ also established the configuration on C-4 and located the sodium carboxylate group at C-23 (4α -configuration). This experiment also showed the correlation between 3α -H (δ_H 5.77) and 5α -H $(\delta_{H} 2.18)$. Thus, compound **4a** is a new saponin and was elucidated as the peracetylated derivative from of the 23sodium salt of (20S)- 3β,19α,24-trihydroxyurs-12-en-23,28-dioic acid-28β-O-β-D-glucopyranosyl ester, named brevicuspisaponin 4.

Considering these and the previous published results (Taketa *et al.*, 2000), the saponin profile of *I. Brevicuspis* leaves is markedly different from those found in *I. paraguariensis* leaves. The latter presents saponins derived from the oleanolic and ursolic acid without oxygenated functions at C-19, C-23 or C-24, as demonstrated to *I. brevicuspis*. These are important features that may be useful to develop methodologies for the quality control of maté products based on the characterization of the free triterpenes or the saponins.

ACKNOWLEDGMENTS

We are grateful to the Botanist Geraldo C. Coelho from the Departamento de Biologia e Química of Universidade de Ijuí, Ijuí/RS for locating, identifying and helping to collect the plant material, to Dr. G. Eckhardt and to Mrs. U. Dahmen (Bonn University), for recording the mass and IR spectra. This work was supported by research stipends from DAAD (Germany), and CNPq (Brazil).

RESUMO

Novos triterpenos e glicosídeos triterpenóides de *Ilex* brevicuspis

Das folhas de Ilex brevicuspis foram isolados e identificados um novo triterpeno, ácido 20(S)- 3β , 19α -diidroxiurs-12-en-23, 28-dióico, denominado ácido brevicúspico, e dois novos glicosídeos, éster 28-O- β -D-glicopiranosil do ácido 3β -O- α -L-arabinopiranosil-20(S)-pomólico e o sal sódico em C-23 do ester 28β -O- β -D-glicopiranosil do ácido (20S)- 3β , 19α , 24-triidroxiurs-12-en-23, 28-dióico. Foi isolado ainda o éster 28-O- β -D-glicopiranosil do ácido 3β -O- α -L-arabinopiranosil-20(S)- 19α , 24-diidroxiursólico, já descrito anteriormente para a espécie Ilex argentina. As estruturas foram estabelecidas por métodos espectroscópicos e químicos.

UNITERMOS: Aquifoliaceae. Ilex brevicuspis. Triterpenos. Saponinas. Ácido brevicúspico. Brevicuspisaponinas 3 e 4.

REFERENCES

- ATHAYDE, M. L., SCHENKEL, E. P., GOSMANN, G., GUILLAUME, D. Triterpenoids from the leaves of *Ilex theezans* Martius ex Reiss. *Acta Farm. Bonaerense*, v. 18, p. 49-52, 1999.
- ATHAYDE, M. L., SCHENKEL, E.P., GNOATO, S., GOSMANN, G., GIBERTI, G.C., GUILLAUME D. Triterpenes and saponins from *Ilex argentina* leaves. *Acta Farm. Bonaerense*, v. 20, p.13-16, 2001.
- BRIESKORN, C. H., WUNDERER, H. Pomol- und Pomolsäure. *Chem. Ber.*, v. 100, p. 1252-1253, 1967.
- HEINZMANN, B.M., SCHENKEL, E. P. Saponins from *Ilex dumosa*. *J. Nat. Prod.*, v. 58, p. 1419-1422, 1995.
- KARTING, T., WEGSCHAIDER, O. Zur Kenntnis der Saponine aus *Herniaria glabra*. *Planta Med.*, v. 21, p.144-150, 1972.

- NAKATANI, M., MIYAZAKI, Y., IWASHITA, T., NAOKI, H., HASE, T. Triterpenes from *Ilex rotunda* fruits. *Phytochemistry*, v. 28, p.1479-1482, 1989.
- PIRES, V. S., GUILLAUME, D., GOSMANN, G., SCHENKEL, E. P. "Erva-Mate" adulterating plants: saponins from *Ilex dumosa. J. Agric. Food Chem.*, v. 45, p.1027-1031, 1997.
- REGINATTO, F. H., ATHAYDE, M. L., GOSMANN, G., SCHENKEL, E. P. Methylxanthines accumulation in *Ilex* Species Caffeine and theobromine in erva-mate (*Ilex paraguariensis*) and other *Ilex* species. *J. Braz. Chem. Soc.* v. 10, p.443-446, 1999.
- SCHENKEL, E. P., ATHAYDE, M. L., GIBERTI, G. C., GUILLAUME, D. A new saponin from *Ilex argentina*. *Acta Farm. Bonaerense*, v.14, p.5-10, 1995.
- SCHENKEL, E.P., GOSMANN, G., MONTANHA, J.A., HEINZMANN, B.M., ATHAYDE, M.L., TAKETA, A.T.C., PIRES, V., GUILLAUME, D. Saponins from maté *Ilex paraguariensis* and other South American *Ilex* species: Ten years research on *Ilex* saponins. *Ciênc. Cult.*, v. 49, p.315-320, 1997.
- TAKETA, A. T. C., SCHENKEL, E. P. Saponins from *Ilex* pseudobuxus. Acta Farm. Bonaerense, v.13, p.159-164, 1994.
- TAKETA, A. T. C., SCHMITTMANN-SCHLAGER, T., GUILLAUME, D., GOSMANN, G., SCHENKEL, E.P. Triterpenoid glycosides and a triterpene from *Ilex brevicuspis*. *Phytochemistry*, v. 53, p. 901-904, 2000.
- TKACHEV, A. V., DENISOV, A. Y., GATILOV, Y. V., BAGRYANSKAYA, I. Y., SHEVTSOV, S. A., RYBALOVA, T. V. Stereochemistry of hydrogen peroxide-acetic acid oxidation of ursolic acid and related compounds. *Tetrahedron*, v. 50, p.11459-11462, 1994.

Recebido para publicação em 20/12/01.