
J Appl Oral Sci.

Abstract

Submitted: September 18, 2017
Modification: March 18, 2018

Accepted: April 9, 2018

Surface morphology and mechanical 
properties of conventional and self-
adhesive resin cements after aqueous 
aging

The stable long-term performance of resin cement under oral environmental 
conditions is a crucial factor to obtain a satisfactory success of the all-
ceramic dental restoration. Objective: This study aimed at evaluating and 
comparing the surface morphology and mechanical property of conventional 
and self-adhesive resin cement after aqueous aging. Materials and Methods: 
Disc-shaped specimens of 3 conventional (C1: Multilink N, C2: Duolink, C3: 
Nexus 3) and 3 self-adhesive (S1: Multilink Speed, S2: Biscem, S3: Maxcem) 
types of resin cements were subjected to irradiation. After 24 h, the Knoop 
microhardness of each resin cement was evaluated. The specimens were 
immersed separately in distilled water and maintained at 37°C. A total of 5 
specimens of each resin cement were collected at the following time intervals 
of immersion: 1, 6, 12 and 18 months. The samples were used to evaluate 
the Knoop parameters of microhardness, sorption and solubility. The surface 
morphology of the specimens after 18 months of immersion was observed by 
scanning electron microscopy. The sorption and solubility data were analyzed 
by two-way ANOVA. The Knoop microhardness was tested by the ANOVA 
repeated measures (P<0.05). Results: The sorption and solubility parameters 
of C1 and S1 exhibited significant fluctuations during the aqueous aging. 
The hardness of the S1 and S2 specimens decreased significantly after an 
18-month water immersion. The S1, S2 and S3 specimens indicated higher 
filler exposure and stripping and apparent pores and cracks compared to 
specimens C1, C2 and C3, respectively. Conclusion: The surface of self-
adhesive resin cements is more susceptible to aqueous damage than that 
of the conventional resin cements.
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Introduction

Bulk fractures were a crucial reason for ceramic 

inlay failure.1,2 However, the marginal degradation 

was considered to be the underlying cause for these 

failures.3,4 The bonding agent of the resin cement 

can lead to a loss of support for the ceramics, which 

produce microfractures that eventually develop 

into bulk fractures.5 Under physiological conditions, 

intraoral mechanisms of sorption, hydrolysis, and 

dynamic fatigue may lead to polymer degradation. 

Walker, et al.6 (2003) suggested that aqueous aging 

with cycling loading could increase the resin matrix 

fracture and the proportion of filler/resin interface 

fracture, which contributed to the cohesive failure 

of resin cement in vivo6. Thus, the stable long-term 

performance of resin cement under oral environmental 

conditions is a crucial factor to obtain a satisfactory 

success of the all-ceramic dental restoration.

At present, various self-adhesive resin cements 

are widely used for luting crowns, inlays, and onlays, 

which are made of composite, alloy, ceramic and 

zirconia, and fiber and titanium posts. This is due 

to their ability to preserve the tooth in the absence 

of restoration conditioning and surface treatment,7 

reducing the time required for the clinical procedure 

and technique sensitivity. In contrast to conventional 

resin cement, the self-adhesive resin cement contains 

functional monomers, namely (meth)acrylate 

monomers with either carboxylic acid groups, such as 

4-methacryloxyethyl trimellitic anhydride (4-META), 

or phosphoric acid groups, like 10-methacryloxydecyl 

dihydrogen phosphate (MDP)8. These acid monomers 

can demineralize and infiltrate the tooth substrate, 

resulting in micromechanical retention,9,10 while they 

can react with the tooth tissue hydroxyapatite to form 

the necessary chemical bond.11 The concentration of 

acidic monomers in the self-adhesive resin cement 

should be considerably low to avoid excessive 

hydrophilicity in the final polymer, and sufficiently 

high to achieve an acceptable bonding to the dentin 

and enamel.12 Following their initial mixture, the self-

adhesive resin cements are fairly hydrophilic, which 

facilitates their wetting conditions and their adaptation 

to the tooth surface. Nevertheless, the materials 

become more hydrophobic as the acid functionality 

is consumed via reaction with tooth calcium ions and 

due to effects of various metal oxides from the ion-

leachable fillers.8 However, certain in vitro studies 

indicated that self-adhesive resin cements exhibit 

specific deficiencies. Moraes, et al.13 (2011) detected 

the polymerization behaviors of four self-adhesive 

resin cements during the initial 30-min post-cure 

period, finding that self-adhesive resin cement had 

a slower polymerization rate and a lower degree of 

conversion in comparison with conventional resin 

cement under either dual- or self-cure mode.13 Han, et 

al.14 (2007) detected the degradation of self-adhesive 

cement surfaces following 90 days of immersion in 

water.

The inability of self-adhesive resin cements to 

control their excessive hydrophilic character can cause 

swelling, which may compromise both the mechanical 

strength as the dimensional stability.8 To date, a limited 

number of clinical studies have reported the reliability 

of self-adhesive resin cements. Azevedo, et al.15 

(2012) showed that all indirect restorations including 

self-adhesive resin cement (RelyX Unicem, 3M) could 

be acceptable after 12 months of clinical use. In vitro 

studies conducted by Aschenbrenner, et al.2 (2012) 

suggested that the marginal adaptation of all-ceramic 

MOD-inlays, luted with both dentin- and enamel-

restricted cavities, by self-adhesive resin cements was 

successful.16 In addition, the bond strength required 

for coronal dentin of self-adhesive resin cements has 

proved to be an optimal one- or two-step adhesive,9 

whereas the bond durability regarding glass ceramic 

was equivalent to the conventional resin cement.17 

However, these in vivo and in vitro studies have not 

confirmed the long-term reliability of self-adhesive 

resin cements under oral environmental conditions. 

The frequent use of additional self-adhesive resin 

cements has developed the requirement for extensive 

research regarding their long-term stability and 

performance under aqueous environmental conditions.

The aim of this study was to evaluate the surface 

morphology, and Knoop microhardness, sorption, 

and solubility of conventional and self-adhesive 

resin cements after long-term aqueous aging, and 

to compare their surface aging behaviors. The null 

hypothesis tested was that the surface morphology 

and hardness of self-adhesive resin cements exhibit 

no significant difference from the conventional resin 

cements after aqueous aging.

Surface morphology and mechanical properties of conventional and self-adhesive resin cements after aqueous aging
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Material and methods

Materials	
A total of 3 pairs of conventional (C) and self-

adhesive (S) resin cements (C1: Multilink N, C2: 

Duolink, C3: Nexus 3; S1: Multilink Speed, S2: Biscem, 

S3: Maxcem) were used in this study. Their composite 

specifications are listed in Figure 1. Specimen 

preparation and Knoop microhardness measurement 

were conducted prior to immersion.

All the resin cements were mixed according to the 

manufacturers’ instructions and filled into organic glass 

molds, which were 7 mm in diameter and 1 mm in 

height. A total of 2 transparent polyethylene films were 

placed on both sides. A glass slide was overlaid on both 

sides of the specimens, and slightly finger-pressed 

to extrude the resin cement excess. Subsequently, a 

single side of the mold was irradiated for 20 s with a 

LED dental light (800 mW/cm2, bluephase C8, Ivoclar 

Vivadent, Schaan, Liechtenstein). After irradiation, the 

specimens were collected from the molds. The excess 

cement around the specimens was removed with a 

scalpel blade. A total of 25 specimens were prepared 

for each resin cement. These specimens were kept in 

a light-proof container at 37°C for 24 h.

A total of 5 specimens were collected randomly 

from each resin cement and were evaluated by 

the Knoop microhardness test (HV-1000, Shanghai 

Metallurgical Equipment Company Ltd., Shanghai, 

China). The loading weight was 25 g (0.245 N) and 

the loading time was 15 sec. Every specimen was 

tested five times, and the average value (MPa) was 

calculated. These Knoop microhardness values prior to 

water immersion were used as control values.

Knoop microhardness, sorption, and solubility 
measurements after immersion

At 24 h following irradiation, all specimens were 

placed in a silica gel desiccator (Shanghai Yetuo 

Instrument Company Ltd., Shanghai, China) and were 

stored at 37°C for 24 h. Subsequently, they were 

stored in the silica gel desiccator at 23°C for 1 h. The 

mass of these specimens was assessed on a digital 

balance (FA2004, Shanghai Sunny Hengping Scientific 

Instrument Company Ltd., Shanghai, China). This 

procedure was replicated to attain a constant mass 

(m1, µg).

A total of 20 specimens corresponding to each resin 

Type Commercial 
name

Composition Lot No. Manufacturer

C1 Multilink N Resin matrix: Bis-GMA, DMA resin T18945 Ivoclar-vivadent, Schaan, 
Liechtenstein

Filler: Barium boron fluoroalumino silicate glass, Silica, 
Titanium dioxide

(filler=45.5 wt %)

S1 Multilink Speed Resin matrix: DMA, HEMA, acid monomers R01623 Ivoclar-vivadent, Schaan, 
Liechtenstein

Filler: Barium glass fillers, ytterbium trifluoride, silicon dioxide

(filler=57 wt%; avg.=5.0 μm)

C2 Duolink Resin matrix: Bis-GMA, TEGDMA,  UDMA 1100010525 Bisco Inc., Schaumburg, USA

Filler: glass fillers

(filler=66 wt%; avg. <1.0 μm)

S2 Biscem Resin matrix: Bis-GMA, uncured DMA monomer, phosphate 
acidic monomer

1200000338 Bisco Inc., Schaumburg, USA

Filler: glass filler

(filler=60-62 wt%; avg.=1.0-3.5 μm)

C3 Nexus 3 Resin matrix: Bis-GMA, UDMA, TEGDMA 3592741 Kerr, Orange, USA

Filler: Ba-Al-borosilicate glass

S3 Maxcem Resin matrix: Bis-GMA, glycerol dimethacrylate, GPDM 4349750 Kerr, Orange, USA

Filler: Barium aluminoborosilicate glass

(filler=67 wt%, avg.=3.6 μm)

Figure 1- Components of the resin cements tested in this study

Bis-GMA: Bisphenol A-diglycidyl methacrylate; TEGDMA: triethylene glycol dimethacrylate; DMA: dimethacrylate; HEMA: 2-hydroxyethyl 
methacrylate; UDMA: urethane dimethacrylate; GPDM: Glycerophosphoric acid dimethacrylate
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cement were divided randomly into 4 subgroups (n=5) 

and separately immersed in a 10 ml light-proof glass 

vial of distilled water, which was maintained at 37°C 

for the following immersion time intervals: 1, 6, 12, 

and 18 months. The water was changed every month.

After immersion, five specimens were collected 

and washed with distilled water. The specimens were 

dry-blotted with an absorbent paper to remove the 

excess of surface liquid and weighted until the balance 

reached a constant weight, designated as m2 (µg).

At this time point, the Knoop microhardness of 

these specimens was tested according to the test 

conditions previously mentioned.

Finally, these specimens were reconditioned 

according to the constant mass, following the 

aforementioned desiccation procedure one more time. 

The constant mass was marked as m3 (µg).

In accordance with the ISO 4049 specification18, 

values for the sorption (Wsp) and the solubility (Wsl) 

at specific times were calculated using the following 

equations, respectively:

Wsp = [m2 - m3] ÷ V         (1)

Wsl = [m1 - m3] ÷ V          (2)

Where m1 is the initial mass before immersion; 

m2 is the saturated mass at a specific time; m3 is 

the final mass at a specific time; V is the volume of 

the specimen.

Surface morphology of the specimen after 18 
months of water immersion

After 18 months of immersion, the surface 

morphology of specimens after the measurement of 

sorption and solubility was observed using scanning 

electron microscopy (SEM, S-4800, Hitachi Ltd, Tokyo, 

Japan).

Statistical analysis
The mean values and standard deviations were 

calculated for each test group. The data were analyzed 

by SPSS (Version 20.0, SPSS Inc., Chicago, Illinois, 

USA). Sorption and solubility were analyzed by two-

way ANOVA (resin cements, immersion time), and 

one-way ANOVA and SNK tests were used as a further 

comparison. The repeated measurement was used 

for Knoop hardness. The significance was set at 0.05 

(P<0.05).

Results

Knoop microhardness
Changes in the microhardness levels of all 

resin cements during the total period of water 

immersion are shown in Table 1. Microhardness 

values prior to immersion were used as a baseline. 

The microhardness of 3 conventional resin cements 

exhibited no significant change during the total 

period of water immersion. However, the three self-

adhesive resin cements exhibited different changing 

patterns regarding microhardness during the total 

water immersion period. The microhardness value 

of S1 decreased significantly only after 18 months of 

immersion, whereas that of S2 decreased gradually 

and that of S3 exhibited no significant decrease during 

the entire immersion process.

Sorption and solubility
Two-way ANOVA showed that the sorption and 

solubility were significantly influenced by time 

(p<0.001) and materials (p<0.001), and by the 

interaction between them (p<0.001). Changes in the 

sorption and solubility values of all resin cements 

during the total period of aqueous aging are graphically 

Material Immersion time

24 h 1 mon 6 mon 12 mon 18 mon

C1 35.25(0.74)a 34.92(0.16)a 34.68(3.95)a 33.59(1.82)a 33.31(0.83)a

C2 36.19(1.48)a 36.60(3.88)a 36.84(1.05)a 36.50(4.18)a 35.80(2.56)a

C3 29.05(0.98)a 29.26(3.50)a 29.84(3.06)a 29.82(3.69)a 29.18(3.29)a

S1 38.63(4.27)a 41.14(2.59)a 42.21(1.78)a 37.56(2.53)a 21.95(1.03)b

S2 22.76(1.16)a 21.28(1.19)b 18.89(1.28)c 16.89(1.03)d 16.91(0.82)d

S3 18.63(2.89)a 21.81(1.56)b 25.60(2.39)c 24.57(2.20)b,c 18.00(2.42)a

Table 1- Mean (standard deviation) Knoop microhardness of conventional and self-adhesive resin cements

In the conventional resin cement, no significant differences were noted when its values were compared with the corresponding ones prior 
to the immersion. In self-adhesive resin cement, the same superscript indicates no significant differences compared with the values prior 
to immersion (24 h) (P<0.05)

Surface morphology and mechanical properties of conventional and self-adhesive resin cements after aqueous aging
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presented in Figure 2. During 18 months of aqueous 

aging, the sorption and solubility of C1 and S1 

indicated fluctuating changes, while the sorption and 

solubility of C2, C3, and S3 exhibited no apparent 

fluctuations. In the first 6-month period of aqueous 

aging, the sorption and solubility of S2 showed a 

significant fluctuating change. Following this time 

period, the change trend was stable.

Surface morphology observation
The surface morphology of the six resin cements 

after 18 months of water immersion is shown in Figure 

3. S1 exhibited higher levels of filler exposure and 

stripping compared with C1, while S2 and S3 had 

apparent cracks and/or pores compared to C2 and C3. 

The specimen S3 was completely fractured.

Figure 2- Sorption and solubility of conventional and self-adhesive resin cements during the total period of water immersion

PAN Y, XU X, SUN F, MENG X
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Discussion

The manufacturers of several materials often do 

not entirely disclose details of material composition 

and, as a result, self-adhesive resin cements notably 

lean on acidic monomers that impose formulation 

stability complications. In clinical practice, the aging 

of resin cement may lead to restorative failure. With 

the exception of occlusion and abrasion, the sorption 

and solubility are significant parameters that should 

be considered for the preservation of resin cements.

Polydimethacrylate resins such as resin cement 

are glassy polymers. The water sorption in glassy 

polymers is generally described by a dual-mode 

theory, which assumes that the amount of sorbed 

molecules consists of two populations.19,20 The first 

molecular population follows the ordinary Henry’s law 

and the second one is trapped in polymer microvoids, 

following the Langmuir isotherm. This phenomenon 

Figure 3- Scanning electron microscopy (SEM) photographs of all resin cements, after 18 months of water immersion. The exposed fillers, 
cracks, and voids can be observed in each photograph and are marked with white arrows

Surface morphology and mechanical properties of conventional and self-adhesive resin cements after aqueous aging
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is clearly described by the free volume theory, which 

suggests that glassy polymers generally have a non-

equilibrium liquid structure and contain an equilibrium 

hole-free volume defined by Henry’s law, as well as 

an extra non-equilibrium hole-free volume, frozen into 

the micro-voids, that is described by the Langmuir’s 

isotherm.21,22

In this study, C2 and C3 exhibited no significant 

change of sorption and solubility during the aqueous 

aging process and their solubility values were positive, 

suggesting that C2 and C3 could absorb water 

and elute non-reacted monomers in an aqueous 

environment according to Henry’s law. In addition, 

water molecules would occupy the available space, 

such as microvoids and morphological defects and, 

consequently, their polymer construction would exert 

no significant change. This was confirmed by their 

surface hardness and surface morphology after 18 

months of aqueous aging.

An increase in the free space should lead to an 

increased sorption, while the solubility values indicated 

the changes noted in the free space to some extent. 

While C1 showed a wavy change of sorption and 

solubility during aqueous aging, its solubility value was 

negative, even at 6 months of aqueous aging. This 

indicates that, in addition to Henry’s law, Langmuir’s 

sorption played a significant role during aqueous 

aging. The sorption occurred by the successive 

binding interactions with the hydrophilic groups that 

formed hydrogen bonds.23 This suggested that C1 

could be more hydrophilic when compared to C2 and 

C3. Although the surface hardness of C1 exhibited no 

significant decrease, the surface morphology indicated 

the evidence of filler exposure and stripping.

S1 exhibited a significantly wavy change of 

sorption and solubility compared to C1. In addition 

to the hydrophilic acid-monomer, according to the 

information provided by the manufacturer the S1 

specimen contained HEMA, which is a mono-vinyl 

monomer commonly used as the polymerizable 

component and as a hydrophilic primer in adhesive 

resins.24 HEMA may further enlarge the polymer 

network, resulting in the additional formation of micro-

voids with increased uptake of “free” water.25,26 The 

more hydrophilic S1 indicated additional filler exposure 

and stripping compared to C1, which resulted in the 

decrease of surface hardness after 18 months of 

aqueous aging, since the hardness was significantly 

affected by the filler volume. S1 revealed negative 

values, meaning a loss of weight, which showed the 

same results as the previous study.27

S2 indicated a significant fluctuating change of 

sorption and solubility in the first 6 months of aqueous 

aging in comparison with C2. However, the solubility 

value of S2 was negative during the total period of 

aqueous aging. It was suggested that the transfer of 

water molecules occurred from an absorbed state to 

a bound state, which was dispersed into the polymer 

matrix and acted as a plasticizer that caused the 

polymer swelling. This could explain the S2 surface 

hardness decrease after 18 months of aqueous aging. 

In addition, the plasticization of water might damage 

the structure of the resin matrix and produce additional 

surface pores and cracks during aqueous aging.

The change in the parameters of sorption and 

solubility of S3 were similar to those of C3, although 

negative solubility was not observed. However, the S3 

containing acid-monomer exhibited higher sorption 

value compared to the C3. The water sorption did not 

affect the surface hardness, although it damaged the 

structure of the resin matrix, which resulted in the 

complete fracture of specimen S3. Previous studies 

have shown that S3 exhibited poor bond durability 

with dentine, and the bond failure of S3 and dentine 

was 100% in adhesive fractures.10,23,28

In this study, the surface morphology of the 

conventional resin cements indicated higher integrity, 

while the self-adhesive resin cements exhibited 

additional filler exposure and striping, as well as pores, 

grooves, cracks and even complete specimen fracture, 

as determined by SEM. Thus, the hypothesis that the 

water aging behavior of self-adhesive resin cements 

exerts no significant effects from that of conventional 

resin cements must be rejected.

Marginal integrity and bonding effectiveness 

have been reported to be the most important factors 

affecting the restoration longevity.29,30 The cracking 

and filler stripping of resin cements may lead to 

marginal fracture and microleakage, which may further 

influence the survival rate of indirect restorations. 

Therefore, clinical trials with longer observation 

periods are required to confirm the data collected from 

this investigation.
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Conclusions

Within the limitations of this in vitro study, we 

concluded the self-adhesive resin cement is more 

susceptible to water aging in comparison with the 

conventional resin cement.
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