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The effects of randomness, an unavoidable feature of intracellular environments, are observed at higher hierarchical
levels of living matter organization, such as cells, tissues, and organisms. Additionally, the many compounds inter-
acting as a well-orchestrated network of reactions increase the difficulties of assessing these systems using only
experiments. This limitation indicates that elucidation of the dynamics of biological systems is a complex task that
will benefit from the establishment of principles to help describe, categorize, and predict the behavior of these
systems. The theoretical machinery already available, or ones to be discovered to help solve biological problems,
might play an important role in these processes. Here, we demonstrate the application of theoretical tools by
discussing some biological problems that we have approached mathematically: fluctuations in gene expression and
cell proliferation in the context of loss of contact inhibition. We discuss the methods that have been employed to
provide the reader with a biologically motivated phenomenological perspective of the use of theoretical methods.
Finally, we end this review with a discussion of new research perspectives motivated by our results.
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Inhibition.

’ INTRODUCTION

Description of physical phenomena by theoretical methods
has motivated the construction of a rich machinery ranging
across general relativity (description of the behavior of matter
at the macroscopic scale), quantum mechanics (description
of the behavior of matter at the microscopic scale), electro-
magnetism (description of electric charges, magnetic dipoles
and light-related phenomena), and condensed matter theory
(microscopic description of solid-state systems). These tools
have enabled the control and design of specific experiments
which outcomes are predicted within specific error ranges, as
well the development of new technologies derived from the
knowledge that those tools motivated. Fortunately, theories
have a scope of applicability, i.e., they do not explain all
observed data related to a given phenomenon. In general, this
limitation has led to the development of new theories that
may lead to additional verifiable hypothesis. For example, in
contrast to Newtonian gravity, general relativity successfully

predicts precession of the perihelion of Mercury or light
bending by the sun. Furthermore, experiments aimed at
investigating different manifestations of a phenomenon would
require the development of specific theoretical or techno-
logical tools. For example, one may consider the use of
tensor calculus in general relativity instead of vector calculus
of Newtonian gravitation or the high-precision instruments
required for detection of gravitational waves. Biology, how-
ever, has followed a different historical trajectory, with the
predominant use of experimental methods. Biologists also
rely on qualitative models to help construct a static picture of
biological phenomena. This approach has relevant scientific
and technological implications. Examples include the estab-
lishment of evolutionary theory—a key paradigm of modern
science—or the ability to control biological phenomena at the
molecular level, as occurs in the production of human insulin.
However, this strategy has a clear limit if one is interested in
the dynamics resulting from the interactions of many com-
pounds at different levels of living matter, such as organisms,
tissues, cells and molecules. Additionally, interactions among
components at different levels give rise to a highly complex
picture whose description will demand the use of all machin-
ery available in the scientific toolbox. These techniques include
the use of mathematical methods not only as a number-
crunching technique but also as a strategy for formulating
new principles to describe biological phenomena, for testing
hypotheses that cannot be assessed experimentally, and, in
the case of successful theories, for predicting the outcomes
of different experimental designs or guiding the development
of new technologies.DOI: 10.6061/clinics/2018/e536s
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In this mini-review, we explain the usefulness of quanti-
tative techniques in the investigation of biological phenom-
ena. We consider the application of stochastic methods to
describe phenomena occurring at the molecular and cellular
levels. The first topic will be reviewed within the scope of
a two-state stochastic model to quantify the expression
of a gene that is either self-repressed or externally regulated.
We approach the second topic with a stochastic model to
quantify the role of contact inhibition in a co-culture in vitro
experiment combining keratinocytes and melanoma cells.
Our investigations have enabled us to understand how the
synthesis of gene products is influenced by the promoter’s
ON and OFF switching at the molecular level. More speci-
fically, we have shown that self-repression is the only mech-
anism required for noise reduction in protein numbers (1).
Furthermore, we used this model to approach noise in the
development of Drosophila melanogaster embryos to under-
stand how an externally regulated gene produces mRNA
during development with a proper spatio-temporal pattern (2).
At the cellular level, the mechanism for cell proliferation
control called contact inhibition was quantified as an exclu-
sion diameter between cells. This mechanism enables the
formation of clusters of melanoma cells in co-culture with
keratinocytes (3). Furthermore, the model predicts that mela-
noma cells will prevail in a given spatial domain, if one
observes the cell population dynamics during a sufficiently
long period, because of their low degree of contact inhibition
(or smaller exclusion diameters).
The intrinsic randomness of biological phenomena justifies

the use of a stochastic approach to investigate these pro-
cesses. At the intracellular level, randomness is caused by
low copy numbers of chemical reactants and their hetero-
geneous distribution inside the cell (4). For example, random
fluctuations have been widely observed in gene expression of
both prokaryotic and eukaryotic cells by fluorescence tech-
niques (5-20). Interestingly, however, the noise shape may
be controlled by different gene regulatory strategies, such
as self-repression that leads to low noise regimes (1,21-24).
Alternatively, external regulation has been identified as
a gene regulatory strategy that results in increased noise
(5,25,26). These results suggest self-repression as a unique
mechanism controlling gene expression when high precision
is necessary, as is the case during development. However,
recent results have shown that external regulation may be
sufficient to generate the required spatial precision for the
formation of stripes of gene expression along the anterior-
posterior (AP) axis of a D. melanogaster embryo (2,27,28).
Indeed, developmental processes require high precision to

control the production of specific gene products to ensure
that they are present at the proper locations and times during
the life of an organism. This fact may lead to the perception
that noise is always detrimental to the cell. Such a premise is
not always true. For example, individual cells increase their
chance of survival under stress conditions via noise in gene
expression and the consequential generation of phenotypic
diversification (29-32). However, normally behaving tissues
are characterized by well-organized cellular structures along
space and time. This organization is achieved by homeostatic
mechanisms controlling cell densities in tissues. However,
molecular fluctuations may affect cell genetics, modify the
regulation of proliferation-related gene expression to favor
cell duplication, and induce the appearance of carcinoma
in situ. The latter generates spatially disorganized cell struc-
tures in tissues, disrupts homeostasis, and provides conditions

for an invasive cell phenotype to appear. Thus, a mani-
festation of stochasticity is a beneficial trait for cancer cells
(at the individual level), but at the organism level, the noise
eventually has lethal effects.

Therefore, an important challenge in cancer biology is to
determine the mechanisms underlying the progression of
a carcinoma in situ and how these cells become prevalent
within a region for a sufficiently long interval such that an
invasive phenotype appears. One important mechanism
necessary for the prevalence of tumor cells is the loss of con-
tact inhibition (33,34). Contact inhibition of proliferation in
culture experiments is associated with the ability of cells to
maintain their density in a given tissue at optimal values (35,36).
Loss of this ability causes cancer cells to keep proliferating
in culture experiments even when confluence is reached (33).
In contrast, it has been shown that hypersensitivity to contact
inhibition in fibroblasts of naked mole rats is a mechanism
that stops proliferation at low cell densities in culture experi-
ments, which is caused by the interplay between the p16 and
p27 cyclin-dependent kinase inhibitors. When these proteins
are expressed together, both can inhibit proliferation at lower
cell densities than that when p16 is not expressed (37). These
experimental results suggest the necessity of a quantitative
description of the intensity of contact inhibition in normal
or cancer cells to enhance our ability to predict or describe
carcinoma in situ growth.

The next sections are devoted to an overview of the three
applications mentioned above and to some research per-
spectives. We start with the stochastic model for regulation of
gene expression. We explain the chemical kinetics that enables
the self-repressing gene to be expressed at low noise regimes.
Furthermore, we present our results in the context of develop-
ment of D. melanogaster embryos, which indicates the possi-
bility of using this model to approach complex organisms.
Then, we move on to the cell level approach to quantify the
degree of contact inhibition between two cells as an exclusion
diameter. Lower degrees of contact inhibition are indicated
by smaller exclusion diameters, and this method is applied
to describe a co-culture experiment with melanoma cells and
keratinocytes. We present some possibilities for future investi-
gations in the last section.

Random fluctuations in gene expression
Randomness in gene expression has been measured in

terms of the Fano factor, defined as the ratio of the vari-
ance to the average. We denote the number of gene prod-
ucts by n (the number of proteins or mRNAs) and the Fano
factor is

F¼ n2
� �� nh i2

nh i : ð1Þ

The Fano factor provides a measure to compare a prob-
ability distribution with the Poissonian distribution. The
Poissonian distribution has F=1, while Fo1, characterizes a
sub-Poissonian distribution. The super-Poissonian distribu-
tion has F41. Determining the probability distribution
governing the gene product number is important because it
provides some hints on the regulatory strategy of the gene.
For example, a constitutive gene has n, which is governed
by a Poissonian distribution; a sub-Poissonian distribution
governs the expression of a self-repressing gene (1), while
super-Poissonian distributions might indicate positive feed-
back (governed by a bimodal distribution) or bursty expression
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of a two or more genes (governed by a gamma or a negative
binomial distribution).
The above analysis is completed for regulation of gene

expression modeled by a binary promoter assuming states
ON or OFF. When the promoter is ON, there is synthesis
of gene products at rate k, while no synthesis occurs in the
OFF state. The gene products decay at a rate r. The rate of
promoter switching from the OFF to ON state is denoted
by f while the opposite transition occurs at rate h1 (for the
self-repressing gene) or rate h2 (for the externally regulating
gene). Figure 1A and 1B presents a cartoon of our simplified
model for regulation of gene expression.
The scheme presented in Figure 1A and 1B corresponds to

the set of effective chemical reactions presented below. The left-
hand equations correspond to the self-repressing gene (SRG),
while the equations for the externally regulated gene (ERG)
are presented on the right. For the SRG, we denote a protein
by P. The regulatory region of the gene is denoted by R and
the gene state is determined by the binding of P to the regu-
latory region. The regulatory protein of the ERG is denoted by
Pe, and its product is M. The symbols on top of the arrows
indicate the reaction rates.

Equations 2 and 6 indicate the protein synthesis, while
degradation is indicated by Equations 3 and 7. The
gene switching from the ON to OFF state is indicated
by Equations 4 and 8, while the opposite transition is
presented by Equations 5 and 9. The system of effective
reactions presented here is very simplified compared with
the complexity of gene regulation and gene expression in
mammals. However, such a simplification is necessary for
establishing a quantitative description based on exactly
solvable models.
The probability of finding the gene in the ON (or OFF) state

when there are n gene products inside the cell is denoted by
an (or bn). Hence, the state of the system is determined by
two random variables (m,n), with m E {ON,OFF} and n being
a non-negative integer. These probabilities can be computed

for a specific stochastic process governing their evolution.
Here, we use a continuous-time Markov process, also known
as a master equation, which is characterized by a combina-
tion of the individual transitions of the state of the system.
The left-hand side of a master equation has the rate of change
of the probability for the system being in a given state, while
the right-hand side has the processes that cause the changes
in probabilities. A positive term on the right-hand side of
the master equation is a transition that brings the system to
the current state, while transitions taking the system from the
current state are negative.
The master equations governing the dynamics of the

probabilities (an,bn) are written below. We interpret the first
term on the right-hand side and the remaining terms follow-
ing the same framework. The term proportional to k has a
positive and a negative component, an-1 and an. The former
indicates that if the state of the system is (ON, n - 1) and there
is synthesis of a gene product, the system reaches state
(ON, n), while the second indicates that synthesis takes
the system from the current state (ON, n) towards state
(ON, n + 1). The master equations are written as

dan
dt

¼ kðan� 1 � anÞþr½ðnþ 1Þanþ 1 �nan� � ðh1nþ h2Þan þ fbn; ð10Þ

dbn
dt

¼ r½ðnþ 1Þbnþ 1 � nbn� þ ðh1nþ h2Þan � fbn; ð11Þ

where the self-repressing gene is modeled considering h1a0
and h2=0 because the switching rate from the ON to OFF
state depends on n. The contrary condition, h1=0 and h2a0,
results in a model for the externally regulated gene. The
solutions to Equations 10 and 11 have been obtained exactly
for the self-repressing gene (38,39) and the externally regu-
lated gene (40,41).
Living organisms have the striking capability to regulate

the expression of their genes with proper spatio-temporal
precision. Hence, although random variations in gene prod-
uct levels are observed, these fluctuations are regulated to
lie within specific ranges in normally behaving biological
systems. An important issue is to find regulatory strategies
underlying this precision to classify the biological functions
of gene regulatory strategies. For example, it was experi-
mentally demonstrated that self-repression reduces random
fluctuations in gene expression (21,22,24), a fact also discussed
under a theoretical perspective (23). However, the mechanisms

Figure 1 - (A) is a representation of a self-repressing gene, and (B) represents an externally regulated gene. The protein number is
denoted by n, while its synthesis (degradation) rate is denoted by k(r). The ON to OFF and the OFF to ON state switching rates are
indicated by h, and f, respectively.

Self-repressing gene Externally regulating gene

j !k P; ð2Þ j !k M; ð6Þ

P !r j; ð3Þ M !r j; ð7Þ

RþP !h1 RP; ð4Þ RþPe !h2 RPe; ð8Þ

RP !f RþP; ð5Þ RPe !f RþPe; ð9Þ
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enabling this noise reduction were not clear. This process is
shown by writing the Fano factor as

F¼ 1þ x
nh i ; ð12Þ

where x is the covariance between the variables (m,n) when
the values (ON, OFF) of m are represented by the synthesis
rates (k/r,0) to enable computation of x. The model for the
self-repressing gene has a domain of regimes with xo0 gene-
rating sub-Fano probability distributions (1). These regimes
occur when the gene switching between the ON and OFF
states is the most frequent process compared with synthesis
or degradation of gene products during a given time interval.
Figure 2A shows the Fano factor for a self-repressing

gene in the sub-Fano regime. Note the possibility of finding
arbitrarily low values for F when nh i=1. This situation cor-
responds to a kinetic model in which the regulatory protein
has a high affinity to the regulatory region controlling
the expression of the gene. In this regime, once a regulatory
protein is released from the DNA and the gene turns ON, an
available protein rapidly binds to the DNA and the gene
switches back to the OFF state.
The cartoon that we generated for gene regulation may appear

to be a strong simplification of the whole picture in metazoans.
However, we may use this approach for description of eukary-
otes under specific assumptions. For example, during its early
developmental stages, D. melanogaster embryos are characterized
by a syncytium in which the cells only have their nuclei. This fact
enables us to apply the gene transcription model for an externally
regulating gene and use it as a first step to understand how
fluctuations in mRNA synthesis relates with noise in mRNA
borders’ domain positioning during pattern formation.
Indeed, we carried out this approach to model the trans-

cription of the even-skipped (eve) gene, which is important
for the formation of a spatial pattern of protein concentration
along the AP axis of the embryo that will determine speci-
fic functional segments in the adult organism (2). The eve
mRNA spatial pattern is characterized by a Gaussian profile
at the onset of gastrulation (Figure 2B). To apply our model,
we assumed a one-dimensional lattice where each node has a

single copy of eve. The lattice represents the AP axis of the
embryo, and theoretical values for nh i at each node of the
lattice were compared with observed values for the eve mRNA
fluorescence obtained experimentally (42). At this stage, the
challenge was to propose a method to convert the intensity of
immunofluorescence into the number of mRNAs. Then, we
compared the two spatial patterns at the onset of gastrulation
(theoretical and experimental) and obtained a good agree-
ment. The second stage was to compute the values of nh i±s
along the whole lattice, where s indicates the standard devia-
tion on n. Then, we compared the position of the borders
of the domains and their fluctuations with the experimental
data (27). The results showed theoretical fluctuations with the
same magnitude as those observed experimentally. This find-
ing was unexpected as it indicates that the required spatial
precision for pattern formation in embryos can be achieved
without the most precise gene regulatory strategy.

Cell level models
There is strong experimental evidence indicating that loss

of contact inhibition is a key process that enables tumors
to grow and allows their occurrence within a given tissue
(forming the carcinoma in situ) (33-36), while hypersensi-
tivity to contact inhibition may prevent the presence of
tumors (37). These effects indicate the necessity of a quanti-
tative (and geometric) understanding of how contact inhibi-
tion affects proliferation dynamics and cellular spatial distribution
in tissues. Such an approach will be useful for understanding
cancer development and for designing techniques for early
diagnosis and treatment. To approach this problem, we have
proposed a co-culture experiment combining keratinocytes
(HaCaT or normal) and melanoma (SK-MEL-147 or cancer)
cells (3). We considered an initial configuration of 10:1
(keratinocytes: melanoma cells) and evaluated the cell density
daily until confluence was reached. The initial configuration
was composed by well-mixed populations of keratinocytes
and melanoma cells. At confluence, we observed spatial
patterns with normal cells being spread out and surrounding
melanoma clusters (Figure 3A). In this experiment, the growth
rates of the two subpopulations of cells were fitted by

Figure 2 - (A) Fano factor versus average protein number for the self-repressing gene. The value of a is fixed as 500. The values of bs are
indicated within the graph, while we varied the value of z0. (B) Spatial profile of mRNA average amounts along the AP axis of a D.
melanogaster embryo. We also included the fluctuation in the positions of the borders of the peak expression along with the standard
deviation of n at each nucleus along the AP axis. The positions of the borders are computed at the point where nh i is half of its maximal
value at the position 41.5% of the embryo length.
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Gompertz logistic-like curves (43) (Figure 3B). Gompertz
curves are characterized by a sigmoidal shape such that
the population densities have exponential-like growth in the
early phase. The growth rate reaches a maximal value and
starts diminishing while cell population density asymptoti-
cally approaches its maximal value. The early density growth
rate is proportional to a constant, which is the inverse of the
cell division time during the early phase of culture experi-
ments when the growth is still approximately exponential.
The fitting has shown that the growth rate of both cell types
had the same value, while the final proportions of the two
populations diminished from 10:1 to E 4:1 (Figure 3C shows
the temporal evolution of this ratio). This result shows the
limitation of Gompertz-like curves to describe experimental
results when distinct cell types interact in the same environ-
ment. Specifically, these models have been developed in the
context of predator-prey interactions in an environment with
finite resource availability (44). We did not find any instance
of a co-culture of melanoma and normal cells interacting similar
to a predator-prey system in the literature. Hence, a quantitative
description of our system required a different approach.
A cartoon presenting our approach, based on the Widom-

Rowlinson model (45-47), is shown in Figure 4A. The tissue
is represented by a two-dimensional grid of size L�L.
Melanoma (or normal) cells are indicated in blue (or red) and
can occupy the grid’s vertices. The distance between two
cells is the smallest number of edges connecting their vertices.
The latter enables us to define contact inhibition by means of
an exclusion diameter around the cell represented by the
shadowed areas around the red circles of Figure 4A. The
vertices within purple regions cannot be occupied by mela-
noma cells, while the normal cells cannot occupy the vertices
within the red shadowed areas. The exclusion diameters are
reciprocal and show that melanoma cells can be separated

by only one edge. In our model, cell type i (i=1 or i=2 for
melanoma or normal cells, respectively) undergoes division
(with rate ai), quiescence (with rate si), death (with rate ri)
and migration (with rate di).
In reference (3) the dynamics of the model is established by

the following Markov chain Monte Carlo method described
below. A vertex x of the grid is selected with probability
L-2 and its state is verified as occupied or empty. 1) For the
vertex being occupied by the i-th cell type: x remains
occupied (quiescence) with probability ai/Q; there is a
probability ðnðiÞe ðxÞdi þ riÞ=Q for vertex x to be empty when

Q¼QðxÞ¼ ai þ nðiÞe di þ ri. The vertex x becomes empty because
of cell death or migration occurring with probability ri/Q or
nðiÞe di

Q respectively. In case of migration, the cell arrives at any
vertex at distance D(i,j) that satisfies the admissibility rule.
The number of vertices around x that can receive the cell is
indicated by nðiÞe ðxÞ and 1

nðiÞe ðxÞ is the probability for the arrival
of the migrating cell to one of those vertieces. 2) For the vertex
x being empty: it remains empty with probability r1 þ r2Þð =R
(one might define the probability using a different rate,
with the cost of parameter addition); the vertex x may
become occupied by the i-th cell type with probability
niðxÞðai þ diÞ�ðiÞ=R, where cell division (or migration) occurs
with probability niðxÞai�ðiÞ=R (or niðxÞdi�ðiÞ=R), where

R¼RðxÞ¼ P2

i¼ 1
ri þ niðxÞ½ �. The number of the nearest vertices

around x allowed to receive the i-th cell type is denoted by
ni(x). The migrating cell around x is chosen with probability
1
ni
ðxÞ such that the original vertex becomes empty after

migration. The symbolP(i) is equal to 1 or 0 when the vertex x
may or may not receive the i-th cell type according to the
admissibility rule, and x remains empty for R=r1+r2.

Figure 3 - (A) Representative configuration of the co-culture experiment at the confluence regime. (B) Evolution of the individual
populations until confluence is reached and their fitting by a sigmoidal curve. (C) Experimental ratio of melanoma to normal cells over
time. (D) Simulation of the ratio of melanoma to normal cells over time.
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Figure 3D shows the ratio of the density of normal to
tumor cells of our simulations, and the curve has the same
shape as the one obtained experimentally. Furthermore, in our
simulations, the cell densities of the two subpopulations follow
the same pattern observed in the experiments (Figure 3).
Hence, it is fair to conclude that in our model, the curve has
the same shape as the one obtained experimentally and is a
strong candidate to quantify how different degrees of contact
inhibition affect the dynamics of cell proliferation in co-culture
experiments and, hopefully, in tissues.
Indeed, Figure 4B shows the spatial configuration that we

obtained after simulating our model. The blue cells form clusters
that are surrounded by the red ones, a pattern similar to that
observed in our co-culture experiments (Figure 3A). The
distribution of cell to cell distances observed in our experi-
ment is shown in Figure 4D, and at confluence, the typical
distance separating normal cells is greater than that separat-
ing cancer cells by a factor of B2 (see Figure 4C). This obser-
vation reinforces our geometrical interpretation of contact
inhibition as an exclusion diameter and the cancer cells as
allelophilic (allelo, the other; phylia, affinity). In our study, we
also found the correspondence between the spatial scales of
the pattern observed in our simulations and the experiments,
demonstrating the agreement between the melanoma cluster
distribution of perimeter ratios of the major to minor axis,
areas and convex hull (3).

Perspectives
Our results provide some perspectives for further research,

and a non-exhaustive set of possibilities is discussed below.

The use of a stochastic binary model for gene expression in
the eve stripe 2 along the AP axis of the fruit fly embryo is
needed to elucidate the effects of chemical reaction fluctua-
tions on the spatial organization of the cells. Furthermore, the
model for a self-repressing gene can be used in the context
of cancer to investigate the behavior of BACH1 production
under influence of a bio-metallic compound such as heme (48).
BACH1 is a self-repressing transcription factor that is (48)
overexpressed in triple-negative breast cancer cells. Its role as
a metastasis promoter has been demonstrated, and a model
for regulation of BACH1 expression level might be relevant
to the development of new therapeutic approaches. Heme
accelerates BACH1 decay, and we can use the self-repressing
model to develop a strategy that reduces both the expected
amounts of BACH1 within the cells and their fluctuations to
increase cancer treatment effectiveness. Under a more theo-
retical perspective, we may also consider investigating the
meaning of the symmetries of the stochastic binary models
(23,26) aiming to model two interacting genes.

For the cell level models, one may propose a Markov chain
to approach tumor cell phenotypic heterogeneity. Tumor
progression can yield changes in its architecture that result in
tumor cell death or the development of invasive phenotypes
because of the scarcity of space and resources (49-52). Addi-
tionally, environmental cues may modulate the expression of
transcription factors regulating the internal cell dynamics
(53-56). Consequently, at a random time, a cell may have its
phenotype transformed from a predominantly proliferative one
to an invasive one. This phenomenon suggests proposing a cell
level model for tumor progression based on two phenotypes,

Figure 4 - (A) Cartoon of our model for proliferation under different allelophylic degrees. (B) Spatial configuration achieved in our
simulations at the co-culture confluence regime. (C) Experimental cell-to-cell distance distribution (the blue/red curve indicates the
cancer/normal cells histogram). (D) Normal-to-normal (red) and melanoma-to-melanoma (blue) cell count in a 50 � 50 mm2 region as
they are further away from the interface with the melanoma clusters.
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where the invasive phenotype originates from the prolif-
erative one. The dynamics is simulated by a Markov chain
with transition rates dependent on the population size
as an effective representation of homeostatic mechanisms.
Alternatively, the use of the stochastic model for contact
inhibition may also be extended to the condition in which
there are three or more interacting cell types. In that case,
we may start with three cell states, accounting for keratino-
cytes, melanocytes and melanomas. Here, the melanomas
would result from a modification of melanocytes, and we
may use these results to investigate the conditions for the
progression of a melanoma in situ from a normal condition.
Reference (3) presents simulations in a 2-dimensional grid
to describe the results obtained with culture or co-culture
experiments. A next step is to construct three-dimensional
grids to enable us to describe in vivo experiments and,
hence, obtain a richer picture of carcinogenesis. One natural
challenge of such an approach is to establish the grids’
topology with different numbers of nearest neighbors.
These simulations will enable us to develop new imaging
analysis tools that will be useful for a quantitative spatial
characterization at different stages of carcinogenesis. These
data may lead to the development of non-supervised tools
for tissue characterization.
Figure 3A shows four yellow squares, one within a

melanoma cluster and the remaining three within the normal
cells in a sequence starting at the interface between the two
domains. Inspection is sufficient to verify that normal cells
near melanomas are closer to each other than those that are
further from the cluster. The cell density decreases exponen-
tially, suggesting the existence of a molecular mechanism
dependent on the presence of the melanoma cells to change
the cell’s exclusion diameter. This finding indicates the neces-
sity of combining the approaches for the cellular and mole-
cular levels for a better understanding of cancer biology.
It will be useful to determine how molecular level fluctua-
tions originate cancer heterogeneity.
Our investigations on the molecular mechanisms of carcino-

genesis may also have implications for the analysis of random
effects of low-dose and low-dose rates of ionizing radiation
(57,58). Radiation therapy is estimated to account for 50% of
cancer treatment cases, and this treatment may play a role in
the late appearance of tumors. Hence, understanding how
low-dose and low-dose rates of ionizing radiation affect cells
is an important scientific problem with clinical implications.
For these regimes, one expects the effects of ionizing radiation
to be stochastic such that it is natural to employ an approach
based on probabilistic theory. Initial attempts at stochastic
modeling of biological effects are based on target theory (59),
while more detailed deterministic models have been proposed
recently to account for DNA repair mechanisms of mamma-
lian cells (60). For the latter, we will employ the Langevin
technique to evaluate randomness in deterministic models.
In a different research direction, one may notice that 90% of
radiation treatments use radiofrequency-driven linear accel-
erators of electrons (RF-Linac). These RF sources are not very
precise and may lead to radiation exposure of both the tumor
and neighboring cells. Hence, continuous efforts have been
made to identify new radiation sources, including laser-
accelerated electrons for the generation of tunable and quasi-
energetic X-ray sources (61,62). The development of this
technology relies heavily on computational simulations of the
laser plasma interactions devoted to the optimization of
the X-rays generated through electron acceleration by lasers.

These simulations may guide experimental designs for genera-
tion of X-rays for clinical purposes.
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