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OBJECTIVES: Considering that changes in the maternal environment may result in changes in progeny, the aim
of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal
function and autonomic responses in male descendants at an adult age.

METHODS: After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a
sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms
method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were
limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted
mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate,
glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measure-
ments of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac
parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age.

RESULTS: The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular
area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate,
increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone
and reduced baroreflex sensitivity.

CONCLUSIONS: Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in
cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in
blood pressure.
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’ INTRODUCTION

During intrauterine development, fetal organs and tissues
go through developmental periods designated as critical
periods, in which cells undergo intense division (1). Altera-
tions during these critical periods may cause fetal adaptations
or ‘‘fetal programming’’ that result in lifelong consequences
related to metabolic and cardiovascular changes (2-4).
Sleep restriction (SR) seems to affect essential mechanisms

required for the maintenance of homeostasis, resulting in
disorders such as hypertension (5-7), glucose intolerance and
increased production of various hormones such as cortico-
sterone, growth hormone (GH) and adrenocorticotropic

hormone (ACTH), among others (8-11). The mechanisms
underlying such alterations are not yet clear; however,
increases in sympathetic nervous system activity and
hypothalamic-hypophysis-adrenal axis activity appear to be
related to the changes observed after SR (11,12). Studies
performed in humans have shown that sleep deprivation of
about 24–26 h is enough to alter arterial baroreflex function (7)
and cardiac sympathetic modulation (13), increasing blood
pressure values (14). These data support the notion that
autonomic misbalance is related to the changes caused by SR.
SR is a global phenomenon related to modern lifestyle

that affects both men and women (15). During pregnancy,
anatomical and physiological alterations are related to the
onset of sleep disorders (16,17). Furthermore, SR associated
with changes resulting from pregnancy may be harmful to
both maternal and fetal health (17,18). Despite this, few
studies have assessed the impact of SR during pregnancy on
offspring. Alvarenga et al. (19) observed that the progeny of
rats subjected to SR during pregnancy presented hormonal
changes and prejudicial sexual responses in adulthood.
Radhakrishnan et al. (20) showed that SR in late pregnancyDOI: 10.6061/clinics/2016(09)07
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caused anxiety-related behavioral alterations in young off-
spring. Considering that renal development may be affected
by insults during pregnancy (21), we studied the effects of
SR both in late pregnancy and throughout pregnancy on
renal morphology and function (21,22). The consequences of
SR during the last week of pregnancy, a period critical for
kidney development, were studied by Thomal et al. SR
during this stage caused reductions in nephron number and
augmented blood pressure in offspring (21). Lima et al.
showed that SR throughout pregnancy did not produce clear
renal morphological changes but did alter the sensitivity of
the cardiac baroreflex response, suggesting that autonomic
regulation of blood pressure was affected (22). The present
study aimed to assess what effects SR at the end of preg-
nancy has on kidney development and autonomic regulation
of blood pressure.

’ MATERIALS AND METHODS

This study was evaluated and approved by the Ethical
Research Committee of the Universidade Federal de São
Paulo - UNIFESP (CEUA: 7647020614) and adhered to inter-
national guidelines for the care of research animals.

Experimental Groups
Female (weighing 200-250 g) and male (weighing 300-350 g)

three-month-old Wistar rats were used in this study.
The animals (12 female and 6 male) could freely access food
and water throughout the experimental protocol and were
housed in a room with temperature and humidity control
(21±2oC, 60%) and a light/dark cycle of 12:12 h, with lights
on at 07:00.

Pregnancy Confirmation
Two females spent the night with one male and vaginal

discharge was collected the next morning. The presence
of sperm was regarded as a positive result and considered
day zero of pregnancy. The females were then randomly
assigned to either the control mothers group or the SR
mothers group.

Sleep Restriction Protocol
The SR technique was based on the muscle atony that accom-

panies paradoxical sleep (23). Briefly, 10 narrow, circular
platforms (6.5 cm in diameter) were placed inside a tiled tank
(123� 44� 44 cm) filled with water to within 1 cm below the
upper border of the platforms. For the SR mothers, 2 to 6 rats
were placed on the platforms in an arrangement that allowed
them to move inside the tank and jump from one platform to
the other. Two days before the beginning of the study, the
animals were adapted to the water tank for a period of 1 h to
avoid unnecessary falls into the water. The SR mothers were
placed in the tank between the 14th and 20th day of pregnancy
for 20 hours a day (from 2 pm until the next day at 10 am).
After this period, they were returned to their home cages and
could sleep freely. At 10 am on the 20th day of pregnancy, the
SR mothers were placed back into their home cages for
maintenance until spontaneous delivery and weaning of the
offspring. The control group was housed in the same area in
which the sleep deprivation took place.

Birth and Weaning
After birth, the animals were weighed, and six litters, with

a proportion of four males to two females, stayed with their

mothers for 28 days. From the 28th of life, the offspring
were separated from their mothers, and the male offspring
were placed in collective cages containing four animals
per cage. The females were not used in the present study.
The offspring were distributed into two groups: a control
mothers offspring (CO) group and a SR mothers offspring
(SRO) group.

The four male offspring from each litter were used in
different experimental procedures (i.e., analyses of renal
function, cardiac baroreflex analysis, and double pharmaco-
logical blockage) to avoid having siblings undergo the same
evaluations. Initial renal function measurements were per-
formed when the rats were three months old. Cardiovascular
parameters were obtained sequentially. Because the renal
experimental and analysis procedures used in this study are
time-consuming, cardiovascular evaluations were performed
when the rats were four months old.

Indirect Determination of Systolic Blood Pressure
At two months of age, the offspring began adaptation to a

tail plethysmography apparatus. Effective determination of
indirect systolic blood pressure (BPi) was obtained at 3 three
months of age. The animals were placed in acrylic cylinders
with appropriate dimensions for the size of the animal while
the tail remained exposed. The sphygmomanometer had a
sensor connected to a register system (Monitor Ratpalp.b)
and was adjusted to the proximal tail portion of the rat.
Three measurements were performed in sequence; the mean
of these measurements was considered the BPi.

Renal Function Studies
Clearance evaluations were performed when the animals

were three months old. First, anesthesia was induced with
sodium thiopental (90 mg/kg). Next, the trachea was cathe-
terized to maintain adequate ventilation and the carotid artery
and jugular vein were catheterized for infusions and for
blood sampling, respectively. The bladder was catheterized
for urine collection. Following this, the animals received an
infusion solution (0.9% sodium chloride plus 3% mannitol)
delivered at a constant rate. The animals received a primer
solution (1 ml of saline containing inulin, 300 mg/kg and
sodium para-aminohippurate (PAH) 6.66 mg/kg) and then a
continuous infusion (saline containing inulin, 5 mg/min/kg
and PAH, 1.33 mg/min/kg) at 0.1 ml/min. Inulin and PAH
concentrations were measured by colorimetry in plasma and
urine samples to estimate glomerular f iltration rate (GFR)
and renal plasma flow (RPF). The urinary excretion of titra-
table acid (TA) was measured by microtitration. The excreted
amount of ammonium (EANH4) was evaluated by colori-
metry as described previously (24). Sodium (Na+) and potas-
sium (K+) concentrations were determined with a flame
photometer, and after obtaining the concentrations of these
ions in plasma and urine, the filtered load (FL), excreted load
(EL) and fractional excretion (FE%) were calculated.

Renal Morphometric Analysis
After the clearance evaluation, the rats were euthanized

and their kidneys were removed and immersed in Bouin’s
solution for fixation. The kidneys were cut lengthwise, embed-
ded in wax, and sliced into 5-mm-thick sections. The sections
were stained with hematoxylin and eosin and analyzed
using a trinocular microscope. Images (200x magnification)
were acquired using a Nikon microscope (Nikon H550 L)
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connected to a microcomputer and a Nikon DS-Ri1 video
camera. Twenty-five cortical fields (with an area of 277,000 mm2)
were analyzed; the glomeruli were counted and measured
to determine their area and the results are expressed as the
glomeruli per field and mm2, respectively (22,24).

Cardiovascular Parameters
Cardiovascular evaluation was performed when the animals

were four months old. The animals were anesthetized with
xylazine (4 mg/kg) and ketamine (100 mg/kg) and their
femoral veins and arteries were catheterized for drug admin-
istration and to obtain the following cardiovascular parameters:
mean arterial pressure (MAP), systolic blood pressure (SBP),
diastolic blood pressure (DBP) and heart rate (HR) (25). The
ends of the catheters were externalized in the neck region of
the animal, with the aid of a guide catheter. The functional
experiments were performed 24 hours after surgical recovery.
MAP, SAP, DAP and HRwere recorded online using an analog-
digital converter board (PowerLab AD Instruments).

Cardiac Baroreflex Analysis
To analyze the cardiac baroreceptor reflex in awake animals,

increasing doses of phenylephrine (1-3 mg/kg, iv) (Sigma-
Aldrich) were acutely administered to increase blood pressure
and cause reflex bradycardia (25). To reduce blood pressure
and induce reflex tachycardia, increasing doses of sodium
nitroprusside (2, 5 and 7 mg/kg, iv) were administered. The
cardiac baroreflex was evaluated by the mean index relating
changes in HR to changes in MAP and expressed as beats
per mmHg as previously described (25).

Double Pharmacological Blockage Analysis
Autonomic regulation of the heart was analyzed through

recording changes in HR after selective pharmacological
blockade of the parasympathetic and sympathetic nervous
system using anti-cholinergic and beta-blocker drugs, respec-
tively (26). The bradycardic response obtained after b-adrenergic
receptor blockade with atenolol (1 mg/kg, i.v.; Sigma-Aldrich
Co, St Louis, MO, USA) was used to estimate sympathetic
tone (Atenolol D). The tachycardia response after muscarinic
cholinergic receptor blockade with methyl atropine (3 mg/kg,
i.v.; Sigma-Aldrich Co, St Louis, MO, USA) was used to esti-
mate vagal tone (Atropine D). At the end of the experiment,
hexamethonium bromide, a ganglion blocker that also inhibits
the effects of noradrenalin on vessels, was slowly administered
(1 mg/kg, iv; Sigma-Aldrich Co, St Louis, MO, USA). The
sympathetic tone to the vessels was considered the difference
between the minimum MAP obtained after hexamethonium
blockade and the basal MAP (Hexamethonium D).

Spectral Analysis
For spectral analysis of HR and systolic pressure varia-

bility, the beat-by-beat HR and systolic arterial pressure were
recorded over a 10-min period in conscious rats. Fast Fourier
transformation (FFT) was used to calculate the spectral
densities of the frequency components of the HR and systolic
pressure (26). The HR and systolic pressure data were
converted every 100 ms with a cubic spline interpolation
(10 Hz). The interpolated series were divided into half-
overlapping sequential sets of 512 data points (51.2 s). The
segments were inspected visually and nonstationary data
were discarded. A Hanning window was used to attenuate
the side effects. The power intensity was computed using a

direct FFT algorithm for discrete time series. The total power
in the low frequency band (LF: 0.2-0.75 Hz) and high
frequency band (HF: 0.75-3 Hz) was calculated. The LF/HF
power ratio was calculated and used as an indicator of
cardiac sympathovagal balance (27). The basal parameters of
systolic arterial pressure and HR were registered 24 h after
femoral catheterization and before the analysis of cardiac
baroreflex or double pharmacological blockage.

Statistical Analysis
Data are expressed as the means±SE. Statistical analysis

was performed using the program Prism (GraphPad Software).
The normality test, the Kolmogorov-Smirnov test and the
comparative unpaired Student’s t-test were used. For
data that did not present a normal distribution, the Mann
Whitney comparative test was used. Pp0.05 was consid-
ered significant.

’ RESULTS

Body Size Measurements
No significant differences were observed in body weight

measured at 1, 2 and 3 months (Table 1). The naso-anal
length (NAL) was measured monthly; at three months, the
SRO group presented a decrease in NAL in comparison to
the CO group.

Systolic Blood Pressure
At three months, the SRO group had significantly increased

BPi values compared to the CO group (CO: 122.2±0.74; SRO:
144.6±0.94* mmHg).

Renal Function Analysis
GFR was significantly increased in the SRO group com-

pared to the CO group (Table 2). However, RPF and urinary
flow did not differ between the groups (V: CO: 0.11±0.02;
SRO: 0.10±0.01 ml/min/kg). Sodium, potassium and acid
excretion were similar in both groups.

Morphological Parameters for the Kidney
Under microscopic examination, the SRO rats presented a

significant decrease in the glomeruli counted per field com-
pared to the CO rats. Furthermore, the SRO rats also presented
a significant increase in the glomerular area (Figure 1).

Cardiovascular Function
Direct measurements of cardiovascular parameters were

performed at four months. The SRO group demonstrated
significant increases in SAP, MAP and HR compared to the

Table 1 - Body weight (BW) and naso-anal length (NAL) in the
studied groups.

CO SRO

Age (months) BW (g) NAL (cm) BW (g) NAL (cm)

1 85.5±2.6 13.3±0.16 85.3±1.43 13.4±0.14
2 255.8±7.5 19.1±0.2 254.5±4.36 19.1±0.16
3 341.9±8.6 22±0.3 346.2±7.63 21.2±0.2*
N 17 17 24 24

Data are reported as the mean± SEM; N = number of animals in each
group.
CO = control mother offspring; SRO = sleep-restricted mother offspring.
*pp0.05 vs. CO group (Mann Whitney test).

523

CLINICS 2016;71(9):521-527 Sleep restriction effects on offspring
Raimundo JRS et al.



CO group. However, the DAP in the SRO rats was not
significantly different from that in the CO rats (SAP: CO:
124±1.7; SRO: 139±3.02* mmHg; MAP: CO: 103±1.4; SRO:
110±2.7* mmHg; DAP: CO: 91±1.5; SRO: 96±2.9 mmHg;
HR: CO: 335±4.5; SRO: 354±7.5* bpm).

Cardiac Baroreceptor Reflex Sensitivity
The SRO rats demonstrated significant impaired baroreflex

sensitivity (bradycardic reflex response) for sudden eleva-
tions in MAP. However, the tachycardic reflex response
induced by sodium nitroprusside administration showed no
difference between the groups (Figure 2).

Sympathetic and Parasympathetic Tone
The bradycardia observed following the administration of

atenolol (Atenolol D) was significantly greater in the SRO
rats compared to the CO rats. However, the tachycardic
response observed after atropine administration (Atropin D)
was not different between the SRO and CO groups (Table 3).

Balance of Sympatho-Vagal Tone
Table 4 shows the results of spectral analysis for the pulse

interval (PI) and arterial pressure (AP). The LF values for the PI
and APwere significantly higher in the SRO group compared to
the CO group. The HF value for PI was decreased and the LF/HF
ratio was increased in the SRO group, suggesting a sympatho-
vagal misbalance with increased sympathetic modulation.

’ DISCUSSION

The present study revealed that SR during the last week of
pregnancy reduced baroreflex response sensitivity, increased

sympathetic tone to the heart and caused sympatho-vagal
misbalance in adult male offspring. This study also con-
firmed that these offspring present elevated blood pressure
values and renal morpho-functional changes, as described by
Thomal et al. (21).

The participation of the kidneys in the development of
hypertension has long been suggested and numerous mech-
anisms have been proposed to confirm this hypothesis (28,29).
In recent decades, the influence of inadequate intrauterine
growth over nephron formation has also been associated with
the development of hypertension (30-32).

Similarly to nutritional or growth restriction models (33,34),
the SRO group exhibited a significantly reduced number of
nephrons in comparison to the CO group and also presented
glomerular hypertrophy; however, at the ages that the animals
were studied, no decreases in GFR or in sodium excretion
were observed, suggesting that renal adaptations in the SRO
animals may be responsible for dislocation of the pressure-
diuresis curve (35). In fact, increased GFR was observed in the
SRO rats. Under normal conditions, GFR is maintained within
narrow limits even when blood pressure changes due an auto-
regulatory mechanism that acts by changing the resistance of
glomerular arterioles. However, this mechanism may be
weakened during hypertension and increased blood pressure
in the glomerular capillaries may be responsible for enhancing
the GFR (36). It is possible that these changes occurred in the
SRO group; however, further experiments are necessary to
corroborate this hypothesis.

To analyze whether changes in the central regulation of
blood pressure contributed to the increased blood pressure in
the SRO rats, we assessed autonomic cardiac function in this
experimental model. Reduced baroreflex sensitivity, increased
sympathetic tone to the heart and sympatho-vagal misbalance
with an increase in sympathetic modulation were found in the
adult SRO animals.

Impairment in the baroreflex response has been shown
in diseases such as diabetes and hypertension (37,38).
However, the role of baroreceptors in the cardiovascular
system in chronic disease is not clear, especially considering
that after approximately two days of hypertension the adap-
tation of baroreceptors is completed (39). However, in parallel
to baroreceptor adaptation, there is also a reduction in
baroreflex sensitivity, which directly affects blood pressure
regulation (40).

Reduced arterial baroreflex sensitivity may induce an
increase in efferent sympathetic vasomotor activity because,
under physiological conditions, the activity of aortic and
carotid receptors results in an inhibitory effect on sympa-

Table 2 - Renal function analysis in the studied groups.

CO SRO

GFR (ml/min/Kg) 7.5±0.2 8.5±0.4*
RPF (ml/min/Kg) 21.8±1.6 22.8±1.9
TA mM/l 1.3±0.21 1.0±0.33
EANH4 mM/l 2.8±0.63 3.5±1.0
FE Na+ % 0.75±0.16 0.51±0.15
FE K+ % 28.6±2.7 25.6±2.6
N 9 8

Data are reported as the mean ± SEM; N = number of animals/group.
GFR = glomerular filtration rate, RPF = renal plasma flow, TA = titratable
acid, EANH4 = excreted amount of ammonium, FE Na+ = fractional
excretion of sodium, FE K+ = fractional excretion of potassium.
CO = control mother offspring; SRO = sleep-restricted mother offspring.
*pp0.05 vs. CO group (Student́s T test and Mann Whitney test for RPF).

Figure 1 - Number of glomeruli/field and glomerular area of the studied groups.
CO = control mother offspring; SRO = sleep-restricted mother offspring. *pp0.05 vs. CO group (Student́s T test).
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thetic activity (40). Thus, in our experiments, the increase in
sympathetic modulation found in the SRO rats may be
related to a reduction in arterial baroreflex sensitivity,
triggering sympatho-excitation and leading to blood pres-
sure increase. However, the mechanisms underlying the
baroreceptor dysfunction found in the SRO group remain
unclear and require further investigation. Altered baroreflex
sensitivity and sympathetic activity have also been observed
in offspring subjected to prenatal exposure to dexamethasone
(41,42), confirming the role of fetal exposure to corticosteroids
in autonomic alterations in later life.
Interestingly, the progeny of rats subjected to nutritional

restriction during pregnancy also exhibit cardiac baro-
reflex impairment and increased expression of angiotensin II
receptor type 1 (AT1) in brain regions responsible for blood
pressure regulation (43). These changes are probably related to
alterations in efferent autonomic baroreflex pathways.
Increased AT1 receptor expression may be a consequence of

positive feedback due to increased Ang II in the central
nervous system. This is because in rats, the chronic intracer-
ebroventricular infusion of Ang II leads to increased expres-
sion of AT1 receptors and AT1 mRNA in the brain (44). Other
studies have associated increased hypothalamic expression of
AT1 receptors with the use of glucocorticoids (dexamethasone)
during pregnancy (45,46). In this experimental model, hyper-
tension and decreased baroreflex sensitivity in offspring were
also observed (41,42,47). Furthermore, the use of AT1 receptor
inhibitors in late pregnancy attenuated baroreflex impair-
ment and blood pressure increases in offspring (47), suggest-
ing that changes in the expression of RAS components during
development can alter central structures involved in blood
pressure regulation (47). Therefore, we cannot exclude the
possibility that sleep deprivation during pregnancy may alter
the expression of Ang II components within the brain, leading
to cardiovascular alterations as previously reported (22,48)

Figure 2 - Cardiac baroreflex sensibility in the studied groups. (A) Depressor response induced by sodium nitroprusside. (B) Pressor
response induced by phenylephrine.
CO = control mother offspring; SRO = sleep-restricted mother offspring. *pp0.05 vs. CO group

Table 3 - Evaluation of sympathetic and parasympathetic tone.

CO SRO

Atenolol D (bpm) -15±3.27 -40±8.81*
Atropin D (bpm) 113±14.55 91±14.57
Hexamethonium D (mmHg) -38±3.86 -39±3.48
N 7 6

Data are reported as the mean± SEM; N = number of animals/group.
CO = control mother offspring; SRO = sleep-restricted mother offspring.
*pp0.05 vs. CO group (Student́s T test and Mann Whitney test for
Hexamethonium D).

Table 4 - Results of spectral analysis.

CO SRO

LF PI (Hz) 14.08±0.98 25.8±2.1*
HF PI (Hz) 85.92±0.98 74.11±2.1*
LF/HF PI (Hz) 0.17±0.014 0.38±0.043*
LF AP (Hz) 4.48±0.65 7.82±1.09*
HF AP (Hz) 2.9±0.65 2.16±0.32
N 12 9

Data are reported as the mean± SEM; N = number of animals/group.
CO = control mother offspring; SRO = sleep-restricted mother offspring.
*pp0.05 vs. CO group (Student́s T test and Mann Whitney test for HF AP).
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The alterations observed in the SRO group may be related
to corticosterone expression. Several genes are modulated
by glucocorticoids and fetal exposure to non-physiological
concentrations of these hormones may result in the improper
programming of these genes (49). During pregnancy, the
enzyme 11-b-hydroxysteroid dehydrogenase (11bHSD) con-
verts corticosterone (in rats) into non-active metabolites (49).
However, in late pregnancy, the level of this enzyme is
reduced and cortisol (or corticosterone) levels can increase
during this period and reach the developing fetus (49).
The modulation of several hormones may be modified by

SR or sleep deprivation (8,9). Increased secretion of ghrelin,
ACTH, cortisol and GH after sleep deprivation was shown
by Schussler et al. (9). During early pregnancy in mice, sleep
deprivation caused a significant decrease in progesterone
and an increase in corticosterone plasma concentration (50).
Sleep deprivation in rats also increases the concentrations of
corticosterone and norepinephrine in plasma and the
secretion of hypothalamic hormones such as prepro-orexin
(PPO) and neuropeptide Y (NPY) (10).
During critical periods of development, fetal exposure to

non- physiological concentrations of hormones may promote
hypothalamic dysfunction in offspring (51). This perinatal
epigenetic programming phenomenon induced by hormonal
changes during development was initially proposed by
Günter Dörner. In this theory, hormones play a decisive role
because they are influenced by the environment and also
modulate neuroendocrine regulatory systems, which control
all fundamental processes of life (52).
Thus, SR at the end of pregnancy influences the develop-

ment of offspring through hormonal changes, causing
adaptations that result in autonomic and kidney abnormal-
ities that can be observed in the progeny during adulthood.
However, additional research is needed to understand the
mechanisms underlying the modifications observed in the
present study.
The changes observed in offspring subjected to SR are

probably related to increased plasma concentrations of corticos-
terone. The levels of this hormone were not measured in the
current study, although increased secretion of this hormone has
been demonstrated in SR conditions (8-10,45). Thus, further
experiments are needed to confirm this hypothesis.
The present study shows that SR during pregnancy is an

additional risk factor for the development of hypertension
in progeny. The elevation of blood pressure observed in our
experimental model occurred through an increase in the
sympathetic tone of the heart and a decrease in cardiac
baroreflex control, suggesting that central nervous system
changes were involved in fetal programming in this experi-
mental model.
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