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Alzheimer disease is the most common cause of dementia among the elderly, accounting for ,60-70% of all cases of
dementia. The neuropathological hallmarks of Alzheimer disease are senile plaques (mainly containing b-amyloid
peptide derived from amyloid precursor protein) and neurofibrillary tangles (containing hyperphosphorylated Tau
protein), along with neuronal loss. At present there is no effective treatment for Alzheimer disease. Given the
prevalence and poor prognosis of the disease, the development of animal models has been a research priority to
understand pathogenic mechanisms and to test therapeutic strategies. Most cases of Alzheimer disease occur
sporadically in people over 65 years old, and are not genetically inherited. Roughly 5% of patients with Alzheimer
disease have familial Alzheimer disease—that is, related to a genetic predisposition, including mutations in the
amyloid precursor protein, presenilin 1, and presenilin 2 genes. The discovery of genes for familial Alzheimer disease
has allowed transgenic models to be generated through the overexpression of the amyloid precursor protein and/or
presenilins harboring one or several mutations found in familial Alzheimer disease. Although none of these models
fully replicates the human disease, they have provided valuable insights into disease mechanisms as well as
opportunities to test therapeutic approaches. This review describes the main transgenic mouse models of Alzheimer
disease which have been adopted in Alzheimer disease research, and discusses the insights into Alzheimer disease
pathogenesis from studies in such models. In summary, the Alzheimer disease mouse models have been the key to
understanding the roles of soluble b-amyloid oligomers in disease pathogenesis, as well as of the relationship
between b-amyloid and Tau pathologies.
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INTRODUCTION

Alzheimer disease (AD), a progressive neurodegenerative
disorder, is the most common cause of dementia among the
elderly. It accounts for ,60-70% of all dementia cases.
Prevalence increases with age from ,1% in the 60–64-year
age group, to 24-33% in those aged .85 years.1 The
neuropathological hallmarks of AD are the presence in the
brain of extracellular senile plaques and intracellular
neurofibrillary tangles, along with neuronal loss. Senile
plaques mainly consist of fibrils of 39-42(43) amino acid b-
amyloid (Ab) peptide that are surrounded by dystrophic
neurites and reactive glial cells. The Ab peptide itself is
derived from the processing of a larger precursor protein
known as the amyloid precursor protein (APP).2 The
dysfunction of APP metabolism and the consequent
accumulation of Ab peptides and their aggregation in the
form of senile plaques in the brain parenchyma of
individuals with AD, have been considered crucial for
neurodegeneration in the disease. This is the so-called
‘‘amyloid cascade hypothesis’’.3,4 However, more recently,

soluble oligomers of Ab peptide have been correlated with
synaptic loss in the brain of AD subjects.5-7 Neurofibrillary
tangles contain hyperphosphorylated and aggregated forms
of Tau, a microtubule-associated protein that normally
promotes the assembly and stability of microtubules in
neuronal cells.2 Abnormally hyperphosphorylated Tau in
AD brain accumulates in neurons into paired helical
filaments, which in turn aggregate into neurofibrillary
tangles leading to neuronal death.8 Therefore, the neuro-
pathological hallmarks of AD induce progressive neuronal
dysfunction and degeneration, resulting in severe brain
atrophy and decline of memory and other cognitive
functions.2 Although not a criterion for diagnosis of AD,
the deposition of Ab in the cerebral vasculature, named
cerebral amyloid angiopathy (CAA), can be detected in 90%
of patients with AD.9 However, CAA can occur in the
absence of AD pathology and vice versa.10

Most cases of AD occur sporadically in people over
65 years old, and are not genetically inherited. Roughly 5%
of patients with AD have familial Alzheimer disease (FAD),
an uncommon form that tends to strike sooner, and is
related to a genetic predisposition, including mutations in
the APP gene on chromosome 21, presenilin 1 (PS1) gene on
chromosome 14, and presenilin 2 (PS2) gene on chromosome
1.1 The etiology of AD is unclear and at present there is no
effective treatment. Given the prevalence and poor prog-
nosis of the disease, the development of animal models has
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been a research priority to understand pathogenic mechan-
isms and to test therapeutic strategies. The discovery of
genes for familial forms of AD has allowed transgenic
models to be created that reproduce many critical aspects of
the disease. Initially, before the discovery of FAD mutations,
attempts were made to overexpress wild-type APP in
transgenic mice by pronuclear injection. However, none of
these efforts produced anything that resembled an Ab
plaque or any other recognizable AD-type pathology. After
the discovery of FAD mutations in APP, a number of groups
turned their attention to making AD models based on the
overexpression of transgenes containing FAD mutations
using a variety of promoters.11 This review describes the
main transgenic mouse models of AD which have been
adopted in AD research, and discusses the insights into AD
pathogenesis from studies in transgenic models.

1. Genetics implicated in Alzheimer disease
pathogenesis

Mutations in APP linked to FAD include Dutch (E693Q),10

London (V717I),12 Indiana (V717F),13 Swedish (K670N/
M671L),14 Florida (I716V),15 Iowa (D694N),16 and Arctic
(E693G)17 mutations. To date, more than 160 mutations in
PS1 linked to FAD have been discovered (see http://www.
molgen.ua.ac.be/ADMutations). Mutations in a related
gene, now called PS2, were soon linked to FAD as well.18

Most of FAD mutations cause aberrant APP processing

toward the longer, more amyloidogenic Ab1-42 species.19

The Ab is located partially within the ectodomain (N-
terminal portion) and partly within the transmembrane
domain (C-terminal portion) of APP. At least three enzymes
are responsible for the processing of APP and have been
called a-, b- and c-secretases. The processing pathway by a-
secretase, called non-amyloidogenic, cleaves APP within the
Ab domain in the C-terminal portion of the sequence of this
peptide, producing soluble APPa, which has neurotrophic
and neuroprotective effects. The processing pathway by
b- and c-secretases, called amyloidogenic, cleaves APP in
the N- and C-terminal portions of the Ab region, respec-
tively, producing Ab peptide. c-Secretase cleaves APP at

various adjacent sites to form species of Ab containing 39 to
43 amino acids.20 Presenilins contribute to the catalytic
activity of the c-secretase complex.1 Processing of APP by
a-, b- and c-secretases is illustrated in Figure 1.

The Swedish mutation, which is located just outside the N-
terminus of the Ab domain of APP, favors b-secretase
cleavage in vitro21 and is associated with an increased level
and deposition of Ab1-42 in AD brain.22 The Dutch and Iowa
mutations, which are located in the Ab domain of APP,
accelerate Ab1-40 fibril formation in vitro.23,24 The Dutch
mutation is associated with cerebrovascular Ab deposition—
that is, CAA, resulting in cerebral hemorrhages and dementia
in patients with AD,10 whereas the Iowa mutation is
associated with severe CAA, widespread neurofibrillary
tangles, and unusually extensive distribution of Ab1-40 in
plaques in AD brain.16 The Arctic mutation, which is also
located inside the Ab domain, makes APP less available to a-
secretase cleavage and increases b-secretase processing of
APP thus favoring intracellular Ab production in vitro.25,26

The Arctic mutation is associated with severe CAA in the
absence of hemorrhage, abundant parenchymal Ab deposits,
and neurofibrillary tangles in AD brain.27 The London
mutation, which is located in the transmembrane domain of
APP, as well as the PS1 and PS2 mutations alter c-secretase
cleavage and increase the Ab1-42 level and/or the Ab1-42/Ab1-

40 ratio in vitro.28-30 The London mutation is associated with
extensive parenchymal Ab deposition and abundant senile
plaques and neurofibrillary tangles, as well as moderate CAA
in AD brain.31,32 The Indiana mutation, which is also located
in the transmembrane domain of APP, is associated with
large number of neurofibrillary tangles and senile plaques, as
well as mild CAA in AD brain.33 The Florida mutation, which
is also located in the transmembrane domain of APP, affects
c-secretase cleavage causing an increased Ab1-42 concentra-
tion and Ab1-42/Ab1-40 ratio in vitro.15,30

2. Transgenic mouse models of Alzheimer disease
Mouse Models with APP Mutation. Games et al34

reported the first transgenic AD model, termed PDAPP
mice, which overexpress a human APP transgene containing
the Indiana mutation (V717F) under the control of the platelet-

Figure 1 - Schematic diagram illustrating proteolytic cleavage of the amyloid precursor protein (APP). a-Secretase (non-amyloidogenic
pathway) cleaves APP within the Ab domain to liberate two peptides, including the neuroprotective soluble APPa, whereas b- and c-
secretases (amyloidogenic pathway) act sequentially to cleave APP in the N- and C-terminal portions of the Ab region, respectively,
producing Ab peptide and initiating neurodegenerative activity.
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derived growth factor-b promoter. Ab1-42 constituted 27% of
the Ab present in the brain of young PDAPP mice, and this
percentage increased to 89% in 12-month-old animals. The
mice developed senile plaques that were primarily composed
of Ab1-42.

35 PDAPP mice showed age-related Ab deposition in
cortical and limbic regions that began at 8 months and
progressed to cover 20-50% of the neuropil in the cingulate
cortex, entorhinal cortex, and hippocampus of 18-month-old
animals. Ab deposition was associated with dystrophic
neurites and extensive gliosis (reactive astrocytes and
activated microglia), however, there was no overt neuronal
loss in the entorhinal cortex, hippocampal CA1 field, or
cingulate cortex through 18 months of age in PDAPP mice.36

Dystrophic neurites immunoreactive for hyperphosphorylated
Tau were observed near Ab plaques after 14 months of age,
although no paired helical filaments and neurofibrillary tangles
were identified.37 PDAPP mice showed significant and age-
dependent synaptic loss, and a rather marked hippocampal
atrophy was observed as early as 3 months of age in these
mice.38 Young PDAPP mice showed deficits in spatial learning
and memory, which worsened with increasing age and Ab
burden.39

Similarly, Hsiao et al.40 overexpressed in mice a human
APP transgene containing the Swedish mutation (K670N/
M671L) driven by a hamster prion protein promoter. These
mice, termed Tg2576 mice, have been the most widely
studied AD transgenic model. Tg2576 mice exhibited age-
dependent increase of Ab1-40 and Ab1-42 levels and Ab
deposition, resulting in senile plaques similar to those found
in AD. Ab plaques were first clearly seen by 11-13 months,
eventually becoming widespread in cortical and limbic
structures.40 Ab deposits were associated with prominent
gliosis and neuritic dystrophy, without overt neuronal loss
in the hippocampal CA1 field or apparent synapse loss in
the hippocampal dentate gyrus.41 Tg2576 mice exhibited
deficits in synaptic plasticity in the hippocampal CA1 field
and dentate gyrus, decreased dendritic spine density in the
dentate gyrus, and impaired spatial memory and contextual
fear conditioning months before significant Ab deposition,
which was detectable at 18 months of age.42,43 A decrease in
spine density was detected as early as 4 months of age, and
synaptic dysfunction and memory impairment were
observed by 5 months. Moreover, an increase in the ratio
of soluble Ab1-42/Ab1-40 was first observed at these early
ages—that is, at ,4-5 months of age.43 Tg2576 mice also
showed increased intraneuronal Ab1-42 accumulation with
aging, and this accumulation was associated with abnormal
synaptic morphology before Ab plaque pathology.44

Subsequently, many other transgenic lines were devel-
oped with approaches similar to those used to develop
PDAPP and Tg2576 mice, typically relying on strong
promoters to drive overexpression of APP transgenes
containing single or multiple FAD mutations. For example,
TgCRND8 mice, which express multiple human APP
mutations—that is, Swedish and Indiana mutations driven
by the prion protein promoter, exhibited an aggressive
neuropathology with onset of parenchymal Ab deposition
and cognitive deficits as early as 3 months of age, and with
dense Ab plaques and neuritic dystrophy evident from 5
months of age. TgCRND8 mice exhibited an excess of brain
Ab1-42 over Ab1-40, and the high-level production of Ab1-42

was associated with spatial learning impairment at 6
months of age. Neurofibrillary tangles and neurodegenera-
tion were absent.45 The formation of plaques was concurrent

with the appearance of activated microglia and shortly
followed by the clustering of activated astrocytes around
plaques at 3.5 months of age in TgCRND8 mice.46

Doubly transgenic mice which express human APP with
the Swedish mutation driven by the platelet-derived growth
factor-b promoter combined with a PS1 mutation (M146L)
under the control of the prion protein promoter, termed
APP/PS1 mice, developed large numbers of fibrillar Ab
deposits in the cerebral cortex and hippocampus that
resembled compact Ab plaques. These mice showed a
selective increase in Ab1-42 in their brains and reduced
performance in a spatial memory task before substantial Ab
deposition was apparent.47 The fibrillar Ab deposits were
associated with dystrophic neurites and activated astrocytes
and microglia in APP/PS1 mice.48

APP23 mice, which express human APP with only the
Swedish mutation driven by a Thy1 promoter, showed
neuronal overexpression of APP. At 6 months of age, APP23
mice showed first rare Ab deposits, which increased with
age in size and number and occupied a substantial area of
the neocortex and hippocampus in 24-month-old mice. The
Ab plaques were surrounded by gliosis (activated microglia
and astrocytes) and dystrophic neurites that were immu-
noreactive for hyperphosphorylated Tau despite the lack of
neurofibrillary tangles.49 Determination of plaque-asso-
ciated Ab1-42 peptides in brain revealed a fivefold increase
in APP23 mice at 6 months. In addition, APP23 mice
showed an age-dependent decline of spatial memory from
the age of 3 months, and locomotor activity and exploratory
behavior deficits at 6 months. Spatial memory deficits
preceded plaque formation and the increase in plaque-
associated Ab1-42 peptides, but correlated negatively with
brain soluble Ab concentration in 3-month-old APP23
mutants.50 APP23 mice have often been used to study
CAA pathogenesis. Significant deposition of Ab in the
cerebral vasculature—that is, CAA was described in aging
APP23 mice. CAA in these mice was associated with local
neuronal loss, synaptic loss, microglial activation, and
microhemorrhage.51,52

Transgenic mice expressing human APP with the Dutch
(E693Q) and Iowa (D694N) mutations combined with the
Swedish mutation under the control of the Thy1.2 promoter,
termed Tg-SwDI mice, developed largely diffuse, Ab
plaque-like deposits in the brain parenchyma starting at 3
months of age with high association with Ab accumulation
in the cerebral microvasculature. Ab1-40 peptides are largely
the predominant species that accumulates in these mice.53

Tg-SwDI mice were impaired in the performance of a spatial
learning and memory task at 3, 9, and 12 months of age.54

APPDutch mice, expressing human APP with only the
Dutch mutation regulated by the Thy1 promoter, showed
neuronal overexpression of APP and increased ratio of
Ab1-40/Ab1-42 in the brain that resulted in extensive vascular
Ab deposition with essentially no parenchymal deposi-
tion.55 These researchers also developed a transgenic line
that expresses human APP-Dutch mutation crossed with
mutant PS1 (G384A), termed APPDutch/PS1 mice. These
mice, with about half the Ab1-40/Ab1-42 ratio of APPDutch
mice brain, developed parenchymal Ab plaques with little
vascular deposition. By contrast, young transgenic mice
harboring human APP with the Arctic mutation (E693G)
combined with APP-Swedish and APP-Indiana mutations
directed by the platelet-derived growth factor-b promoter,
termed hAPP-Arc mice, developed prominent parenchymal
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Ab plaque deposits with little CAA despite a reduced
proportion of Ab1-42/Ab1-40.56

Tg-ArcSwe mice with both APP-Swedish and APP-Arctic
mutations driven by the Thy1 promoter were developed by
two independent groups.57,58 Tg-ArcSwe mice exhibited an
age-dependent increase in intraneuronal Ab accumulation
and deficits in spatial memory and contextual fear con-
ditioning, starting at the age of 6 months, before the onset of
Ab plaque formation as well as CAA.57-59 The cognitive
impairments correlated inversely with soluble Ab levels in
Tg-ArcSwe mice.59 Recently, a mouse model expressing
human APP with only the Arctic mutation under the control
of the Thy1 promoter, termed APPArc mice, was reported
by Rönnbäck et al.60 APPArc mice showed an age-
dependent progression of parenchymal and vascular Ab
deposition, starting in the subiculum and spreading to the
thalamus, and deficits in hippocampus-dependent spatial
learning and memory test. In contrast to transgenic models
with both the Swedish and Arctic mutations,57,58 APPArc
mice did not show any punctate intraneuronal Ab immu-
noreactivity.60

APP transgenic mouse models have been troubled by the
difficulty of inducing the characteristic cytoskeletal pathol-
ogy of AD. For example, in PDAPP mice, phosphorylated
Tau sites do accumulate within dystrophic neurites in
animals of 14 months of age or older, but there are no paired
helical filaments and no neurofibrillary tangle-like lesions.37

Other models have been similar in their lack of any
neurofibrillary tangle-like pathology, such as TgCRND845

and APP23 mice.49

Mouse Models with Tau Mutation. Transgenic mice that
exhibit neurofibrillary tangle-like lesions and Ab plaques
have been produced by combining FAD mutations with
mutant forms of Tau found in a distinct form of dementia
known as frontotemporal dementia and parkinsonism
linked to chromosome 17 (FTDP-17).61 Lewis et al.62 first
crossed Tg2576 mice with a transgenic line known as JNPL3,
which expresses P301L mutant Tau associated with FTDP-
17, generating a bigenic transgenic model referred to as
TAPP mice. Singly transgenic JNPL3 mice were known to
develop neurofibrillary tangle-like lesions, and TAPP mice
exhibited both neurofibrillary tangles and Ab plaques.
TAPP mice aged 8 months and older displayed more
neurofibrillary pathology in limbic regions, most notably
the amygdala, than age-matched JNPL3 mice.

Later, Oddo et al.63 generated a triple transgenic model of
AD, termed 3xTg-AD mice, which expressed human APP-
Swedish (K670N/M671L) and FTDP-17 Tau (P301L) muta-
tions from exogenous transgenes regulated by the Thy1
promoter combined with a PS1 mutation (M146V) from the
endogenous mouse gene. There was a progressive increase
in Ab formation as a function of age in the 3xTg-AD brain
and a particularly pronounced effect on Ab1-42 levels. In
3xTg-AD mice, intraneuronal Ab accumulation was appar-
ent between 3 and 4 months of age in the neocortex, and at 6
months of age in the hippocampal CA1 field and amygdala.
Extracellular Ab deposits first became apparent in 6-month-
old mice in the frontal cortex and were readily evident by 12
months in other cortical regions and in the hippocampus.
Ab plaques preceded Tau pathology, which was not evident
until about 1 year of age.63,64 Tau was conformationally
altered and hyperphosphorylated at multiple residues in the
brain of 3xTg-AD mice in an age-related manner. Tau-
reactive dystrophic neurites were also evident in older

3xTg-AD brain. Functionally, 3xTg-AD mice developed age-
dependent synaptic plasticity deficits, but before Ab plaque
and neurofibrillary tangle pathologies; synaptic dysfunction
correlated with the accumulation of intraneuronal Ab1-42.63

In addition, these mice manifested earliest retention
impairment in spatial memory at 4 months of age that
correlated with the accumulation of intraneuronal Ab1-42. At
6 months of age, 3xTg-AD mice showed retention deficits in
spatial memory and contextual fear conditioning tasks.64

Another problem with the AD transgenic mouse models
has been the general difficulty of producing neuronal loss.
For example, neither PDAPP nor Tg2576 mice, despite
having extensive Ab deposition, exhibit significant neuronal
loss.36,41 APP23 mice show only modest losses of pyramidal
cells in hippocampal CA1 field (about 15%), losses that are
far less than those observed in AD. No quantitative
evidence of neuronal loss was observed in the neocortex
as a whole.65

Mouse Models with Presenilin Mutation. More sub-
stantial neuronal loss has been reported in mice
expressing multiple APP and PS1 mutations.66-68 One
model showing massive neuronal loss is APPSL/PS1 mice,
which express human APP with the Swedish and London
(V717I) mutations driven by the Thy1 promoter and human
PS1 with the M146L mutation under the control of the
HMG-CoA-reductase promoter. In APPSL/PS1 mice,
intraneuronal Ab1-40 and Ab1-42 stainings preceded Ab
plaque deposition, which started at 3 months of age.
Ab was observed in the somatodendritic and axonal
compartments of neurons in the subiculum, hippocampal
CA1 field, as well as in cortical areas.66 The Ab1-42/Ab1-40

ratio was increased in APPSL/PS1 mice.69 A substantial loss
(about 30%) of pyramidal neurons in the hippocampal CA1-
3 fields was detected in 17-month-old APPSL/PS1 mice. The
loss of neurons was observed at sites of Ab aggregation and
surrounding astrocytes but, most importantly, was also
clearly observed in areas of the parenchyma distant from Ab
plaques.70 Furthermore, APPSL/PS1 mice displayed severe
age-related synaptic loss within hippocampal dentate gyrus
and CA1-3 fields at 17 months of age, even in regions free of
extracellular Ab deposits.69

Another model showing marked neuronal loss expresses
human APP-Swedish and APP-London mutations driven by
the Thy1 promoter together with two PS1 knock-in (KI)
mutations (M233T/L235P) in the murine PS1 gene, and is
referred to as APP/PS1KI mice. The APP/PS1KI model is so
far the model with the most aggressive pathology. These
animals showed early extracellular Ab deposition at the age
of 2.5 months, which was preceded by strong intraneuronal
Ab accumulation in the hippocampal CA1/2 fields. At 6
months of age, widespread and numerous Ab deposits were
found within the hippocampal, cortical, and thalamic areas.
Ab1-42 was the predominant (85%) Ab isovariant produced
in APP/PS1KI mice, and Ab1-42 oligomers were highly
abundant in the APP/PS1KI brain.67 Further pathological
features starting at the age of 6 months included severe
axonal degeneration, as well as reduced ability to perform
working memory and motor tasks.71,72 At this time point
also synaptic dysfunction and loss became evident in APP/
PS1KI brain. In addition, at 6 months of age, a loss of 33% of
hippocampal CA1 pyramidal neurons was demonstrated,
together with a decreased volume of the CA1 pyramidal cell
layer of 30%, and an atrophy of the entire hippocampus of
18%.73 Analysis of the frontal cortex revealed an early loss of
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cortical neurons starting at the age of 6 months which
correlated with the transient intraneuronal Ab accumulation
in contrast to extracellular Ab plaque pathology.74 At 10
months of age, an extensive neuronal loss (.50%) was
present in the pyramidal cell layer of hippocampal CA1/2
fields that correlated with strong accumulation of intraneur-
onal Ab but not with extracellular Ab deposits in APP/
PS1KI mice. A very significant astrogliosis developed in the
area of strong intraneuronal Ab accumulation and neuronal
loss.67

Finally, 5xFAD mice expressing human APP with the
Swedish, Florida (I716V) and London mutations together
with mutant PS1 (M146L/L286V) regulated by the Thy1
promoter were generated, and robust neuronal loss was
observed. 5xFAD mice exhibited dramatically higher levels
of Ab1-42 than those of Ab1-40, and rapidly accumulated
massive amounts of cerebral Ab1-42 at young ages. Ab
deposition began at 2 months of age in deep cortical layers
and in the subiculum. As mice aged, Ab deposits spread to
fill much of the cerebral cortex, subiculum, and hippocam-
pus. Ab plaques were also observed in the thalamus,
brainstem, and olfactory bulb in older mice, but deposits
were less numerous in these brain regions. Astrogliosis and
microgliosis were proportional to Ab1-42 levels and Ab
deposition in 5xFAD brain and began at approximately the
time when plaques initially appeared. Intraneuronal Ab1-42

accumulated in 5xFAD brain starting at 1.5 months of age,
just before the first appearance of Ab deposits at 2 months.
Synaptic loss started already at 4 months of age and was
significant from 9 months in 5xFAD brain, and large

pyramidal neurons in cortical layer 5 and subiculum were
visibly reduced in number at 9 months of age.68 5xFAD mice
developed deficits in spatial memory tasks and also
exhibited impairments in trace and contextual fear con-
ditioning tests at 4-6 months of age.68,75

Data on the characteristics of the main transgenic mouse
models of AD are summarized in Table 1.

3. Insights into Alzheimer disease pathogenesis
from studies in transgenic models

Although none of the AD transgenic models fully
replicates the human disease, they have suggested new
insights into the pathophysiology of Ab toxicity, particu-
larly with respect to the effects of different Ab species and
the possible pathogenic role of Ab oligomers.11

In the 1980s it was debated whether Ab deposits, and in
particular CAA at the cerebral vessel walls, had a central
nervous system or a peripheral source.11 Studies in APP23
mice, which developed a similar degree of both Ab plaques
and CAA, provided the first evidence that a neuronal source
of APP/Ab is sufficient to induce cerebrovascular Ab and
associated neurodegeneration.51 Accordingly, studies in
transgenic mice with almost exclusive neuronal central
nervous system expression of APP, like APPDutch mice,
which develop almost only CAA, strongly suggest that
neuronal Ab produced in the brain generates cerebrovascular
Ab neuropathology. In addition, although Ab1-42 may be
needed as a seed for Ab deposition in either compartment
(parenchyma and vasculature), studies in APPDutch and

Table 1 - Neuropathological features of the main transgenic mouse models of Alzheimer disease.

Mouse

model Gene (mutation)

Intraneuronal

Ab

Parenchymal

Ab plaques

Hyperphos-

phorylated

Tau

Neurofi-

brillary

tangles

Neuronal

loss

Synaptic

loss CAA

Primary

reference

PDAPP APP (V717F) - Yes Yes No No Yes - Games et al. 1995

Tg2576 APP (K670N/M671L) Yes Yes - - No No - Hsiao et al. 1996

TgCRND8 APP (K670N/M671L, V717F) - Yes - No No - - Chishti et al. 2001

APP/PS1 APP (K670N/M671L),

PS1 (M146L)

- Yes - - - - - Holcomb et al.

1998

APP23 APP (K670N/M671L) - Yes Yes No Little Yes Yes Sturchler-Pierrat

et al. 1997

Tg-SwDI APP (E693Q, D694N) - Yes - - - - Yes Davis et al. 2004

APPDutch APP (E693Q) - Little - - - - Yes Herzig et al. 2004

APPDutch/PS1 APP (E693Q),

PS1 (G384A)

- Yes - - - - Little Herzig et al. 2004

hAPP-Arc APP (E693G, K670N/M671L,

V717F)

- Yes - - - - Little Cheng et al. 2004

Tg-ArcSwe APP (E693G, K670N/M671L) Yes Yes - - - - Yes Lord et al. 2006

Knobloch et al.

2007

APPArc APP (E693G) - Yes - - - - Yes Rönnbäck et al.

2011

TAPP APP (K670N/M671L),

Tau (P301L)

- Yes - Yes - - - Lewis et al. 2001

3xTg-AD APP (K670N/M671L),

Tau (P301L),

PS1 (M146V)

Yes Yes Yes Yes - No - Oddo et al. 2003

APPSL/PS1 APP (K670N/M671L, V717I),

PS1 (M146L)

Yes Yes - - Yes Yes - Wirths et al. 2002

APP/PS1KI APP (K670N/M671L, V717I),

PS1 (M233T/L235P)

Yes Yes - - Yes Yes - Casas et al. 2004

5xFAD APP (K670N/M671L, I716V,

V717I),

PS1 (M146L/L286V)

Yes Yes - - Yes Yes - Oakley et al. 2006

CAA = cerebral amyloid angiopathy; Dash (-) = not reported.
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APPDutch/PS1 mice suggest that Ab1-40 promotes vascular
deposition, whereas Ab1-42 shifts deposition toward par-
enchymal Ab.55 Moreover, studies in hAPP-Arc mice, with
APP-Arctic mutation (E693G) combined with APP-Swedish
and APP-Indiana mutations, suggest that some property of
the APP E693G mutation, besides its effect on the Ab1-40/Ab1-

42 ratio, may also influence parenchymal deposition versus
vascular deposition.56 Therefore, the existing AD transgenic
mouse models have shown considerable utility in decipher-
ing the pathobiology of CAA.

Analyses of the brain of APP transgenic mouse models in
which large amounts of Ab have accumulated in plaques but
no neurodegeneration has developed, such as PDAPP,35,36

Tg2576,40,41 TgCRND8,45 and APP2365 mice, provide no or
very sparse support for the well-established amyloid cascade
hypothesis. This hypothesis supports the idea that increased
Ab production and extracellular accumulation in plaques
leads to neurotoxicity, resulting in widespread neuronal loss
and dementia.76 Some reasons for this have been discussed.
Perhaps the neurotoxicity is sparse in APP mouse models
because murine neurons might be devoid of the downstream
pathways necessary for Ab to induce toxicity, such as the
processes leading to Tau aggregation and neurofibrillary
tangle formation in AD brain.11 Interestingly, subsequent to
the original amyloid hypothesis, it became clear that Ab
plaque counts correlate relatively poorly with the level of
cognitive decline in AD and that the number of neurofibrillary
tangles correlates more strongly with the degree of dementia.77

Perhaps only certain species of Ab (Ab1-40, Ab1-42, or truncated
Ab) are neurotoxic, and by using mutations linked to familial
AD we poorly replicate the processes of Ab production and
aggregation in sporadic AD brain.11 Curiously, truncated Ab
peptides were demonstrated in AD brain more than 10 years
ago,78,79 but the observations were partially ignored. Today it
is well established that only a fraction of Ab in postmortem AD
brain is full-length Ab1-40 or Ab1-42; N-terminally truncated
variants of Ab (Ab3-42 and Ab11-42) are prevalent in senile
plaques of AD brain.80,81 Unlike the classical amyloid cascade
hypothesis, it was subsequently shown that soluble oligomers
of Ab1-42 and not plaque-associated Ab correlate best with
cognitive dysfunction in AD.6,82

There is now a great interest in identifying which Ab
species (Ab1-40, Ab1-42, or truncated Ab) and form (oligomers
or deposits) would be responsible for neurotoxicity, and in
understanding the relationship between Ab and Tau pathol-
ogies.11 APP transgenic mice have provided strong evidence
for the toxicity of soluble Ab oligomers in vivo by showing
that many pathological and functional changes in mice occur
before the appearance of Ab plaque pathology. For example,
studies in PDAPP mice demonstrated that loss of volume in
the hippocampus, predominantly localized to the dentate
gyrus, was present in 100-day-old mice well before Ab
deposition in plaques.83 In addition, loss in total dendritic
length was evident in the dentate gyrus of 90-day-old PDAPP
mice well before Ab accumulation occurs.84 Tg2576 mice
exhibited increased ratio of soluble Ab1-42/Ab1-40, deficits in
synaptic plasticity in the hippocampal CA1 field and dentate
gyrus, loss of dendritic spines in the dentate gyrus, and
impaired spatial and contextual memory months before
significant Ab deposition.42,43 In APP23 mice, spatial memory
deficits preceded plaque formation and the increase in
plaque-associated Ab1-42 peptides, but correlated negatively
with soluble Ab concentration.50 Tg-ArcSwe mice exhibited
robust deficits in spatial memory and contextual fear

conditioning before the onset of Ab deposition,57-59 and the
cognitive impairments correlated inversely with soluble Ab
levels.59 3xTg-AD mice developed age-dependent synaptic
plasticity deficits and spatial memory impairment before Ab
plaque and neurofibrillary tangle pathologies but instead in
correlation with soluble Ab1-42.63,64 Finally, APP/PS1 mice,
which exhibit large numbers of compact Ab plaques in the
cerebral cortex and hippocampus, showed a selective
increase in Ab1-42 in their brains and reduced performance
in a spatial memory task in the period preceding overt Ab
deposition.47 These studies are consistent with the more
critical role of Ab1-42 in the pathogenesis of AD and suggest a
neurotoxic effect of soluble forms of Ab.

Since the discovery that truncated Ab3-42 represents a
major species in senile plaques of AD brain,80,81 this peptide
has received considerable attention. In comparison with
Ab1-42, Ab3-42 has stronger aggregation propensity and
increased toxicity in vitro.85-87 Recently, a new transgenic
mouse model (TBA2) was generated,88 which expressed
only truncated Ab3-42 in neurons without any of the other
Ab peptides, and it was demonstrated for the first time that
this peptide is neurotoxic in vivo, inducing neuronal loss
and concomitant neurological deficits characterized by loss
of motor coordination and ataxia.

In the past, Ab has been regarded as acting extracellularly,
whereas recent evidence points to toxic effects of Ab in
intracellular compartments. First reports showing that Ab is
initially deposited in neurons before occurring in the
extracellular space date back roughly 20 years.89,90 More
recently, it has been shown that neurons in AD-vulnerable
regions accumulate Ab1-42 and it has been further suggested
that this accumulation precedes extracellular Ab deposition
and neurofibrillary tangle formation.91 Consecutively, a
variety of reports has been published demonstrating Ab in
neurons of AD brain.92-95 Curiously, soluble Ab oligomers,
which have been suggested as the most toxic species, are
formed, preferentially, intracellularly within neuronal pro-
cesses and synapses rather than extracellularly.96,97 In all
transgenic mouse models in which marked neuronal loss has
been so far reported, this was preceded by considerable
amounts of intraneuronal Ab peptides.98 For example, in
APP/PS1KI mice, which developed severe learning deficits
correlating with CA1 field neuronal loss and hippocampal
atrophy, increased intraneuronal Ab1-42 and not plaque-
associated Ab coincided well with neuronal loss; the
intraneuronal N-truncated Ab3-42 species was also increased,
however, the dominant species was Ab1-42 in the APP/PS1KI
model.67,73 In agreement with this study, investigations in
TBA2 mice showed for the first time that intraneuronal Ab3-42

accumulation is sufficient for triggering neuronal death and
inducing an associated neurological phenotype. Although
the TBA2 model lacks important AD-typical neuropatholo-
gical features like tangles and hippocampal degeneration, it
clearly demonstrated that intraneuronal Ab3-42 is neurotoxic
in vivo.88 Intraneuronal Ab1-42 accumulation has also been
reported in several transgenic mouse models with no overt
neuronal loss, including Tg2576,44 3xTg-AD,63 and 5xFAD.68

These studies indicate that intraneuronal soluble Ab is a
pathological feature of AD that has long been neglected and
is turning out to be the key factor leading to neuronal loss in
the disease before the extracellular Ab deposition.

Loss of neuronal synaptic density and synapse number
represents another invariant feature of AD that appears to
precede overt neuronal degeneration.99,100 Notably, it has been

Animal models of Alzheimer disease
Schaeffer EL et al.

CLINICS 2011;66(S1):45-54

50



shown that the loss of synaptic terminals correlates better with
cognitive decline than plaque and tangle load or neuronal loss,
leading to the concept that losing synapses is one of the key
events leading to cognitive dysfunction in AD.37,101-104 There is
accumulating evidence from AD transgenic mice that intra-
neuronal Ab1-42 triggers not only early neuronal loss but also
synaptic deficits. For example, Tg2576 mice showed increased
intraneuronal Ab1-42 accumulation with aging, and this
accumulation was associated with abnormal synaptic mor-
phology before Ab plaque pathology.44 3xTg-AD mice devel-
oped age-dependent synaptic plasticity deficits, but before Ab
plaque and neurofibrillary tangle pathologies; synaptic dys-
function correlated with the accumulation of intraneuronal
Ab1-42.

63 Intraneuronal Ab1-42 accumulated in 5xFAD brain
starting at 1.5 months of age, just before the first appearance of
Ab deposits at 2 months. Synaptic loss started already at 4
months of age and was significant from 9 months in 5xFAD
brain, whereas local neuronal loss first became apparent at 9
months of age.68 The development of the APPSL/PS1 mice,
which exhibit intraneuronal Ab1-42 accumulation, offered for
the first time the possibility to address the question of whether
alterations in synaptic integrity precede neuronal loss in a
transgenic animal model of AD, and the data indicated that loss
of neurons was of limited impact on age-related synaptic loss
and that at least part of synaptic loss seen in regions free of Ab
deposits was due to elevated levels of soluble Ab oligomers.69

Regarding the interaction between Ab and Tau pathologies,
although Ab plaque development is almost certainly driven by
the APP and PS1 FAD mutations, whereas the tangle-like
pathology is driven by the Tau mutations, it does appear that
such mutations interact, as suggested by studies in transgenic
mouse models with Tau mutation. For example, bigenic TAPP
mice (expressing K670N/M671L mutant APP and P301L
mutant Tau) have enhanced neurofibrillary pathology in
limbic regions, most notably the amygdala, in comparison
with transgenic JNPL3 animals (expressing singly P301L
mutant Tau), suggesting that the formation of Tau inclusions
might be influenced by increasing the level of APP or Ab
peptides.62 Additionally, intracerebral injections of anti-Ab
antibodies into the hippocampus of 3xTg-AD mice not only
reduced Ab accumulation but also resulted in clearance of
early-stage, but not late-stage, hyperphosphorylated Tau
aggregates. Whereas Ab deposits were cleared within 3 days,
the Tau lesions required a slightly longer time and were not
reduced until 5 days after injection. Thus, Ab was cleared first,
followed by the clearance of Tau localized in the somatoden-
dritic compartment. Conversely, by 30 days after injection, Ab
deposits reemerged, although the Tau pathology was not
apparent at this time point.105 These studies thus show that
modulating Ab affects Tau pathology and suggest that Tau
pathology may be downstream of Ab generation.

CONCLUSION

To study AD, a variety of transgenic mouse models has
been generated through the overexpression of the APP and/
or the presenilins harboring one or several mutations found
in familial AD.34,40,45,49,53,55-58,60,62,63,66-68 Although none of
the AD transgenic mice models reproduces the human
condition exactly, the ability to study similar pathological
processes in living animals has provided valuable insights
into disease mechanisms and opportunities to test therapeu-
tic approaches.11 The AD mouse models have been key to
understanding the roles of soluble Ab oligomers in disease

pathogenesis, as well as of the relationship between Ab and
Tau pathologies. Data obtained from the comparison of
different AD mouse lines indicate that the onset and the
severity of the Ab deposits are directly linked to the level of
soluble Ab1-42 peptide.42,43,47,58,59,63,64,83,84 There is accumu-
lating evidence from AD transgenic mice that intraneuronal
Ab1-42 triggers early neuronal loss as well as synaptic
deficits.63,67-69,73 Studies in a transgenic animal model of
AD that exhibits marked neuronal and synaptic loss indicate
that alterations in synaptic integrity precede neuronal loss,69

which is in accordance with the hypothesis that synaptic loss
is one of the earliest events in AD pathogenesis.37,101-104

Furthermore, evidence from AD transgenic mouse models
supports the notion that Ab may directly or indirectly interact
with Tau to accelerate neurofibrillary tangle formation.62,105

Finally, the AD transgenic models may allow to define and
evaluate potential drug targets and to develop therapeutic
strategies that might interfere or delay the onset of AD.106
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72. Wirths O, Breyhan H, Schäfer S, Roth C, Bayer TA. Deficits in working
memory and motor performance in the APP/PS1ki mouse model for
Alzheimer’s disease. Neurobiol Aging. 2008;29:891-901, doi: 10.1016/j.
neurobiolaging.2006.12.004.

73. Breyhan H, Wirths O, Duan K, Marcello A, Rettig J, Bayer TA. APP/
PS1KI bigenic mice develop early synaptic deficits and hippocampus
atrophy. Acta Neuropathol. 2009;117:677-85, doi: 10.1007/s00401-009-
0539-7.

74. Christensen DZ, Kraus SL, Flohr A, Cotel MC, Wirths O, Bayer TA.
Transient intraneuronal A beta rather than extracellular plaque
pathology correlates with neuron loss in the frontal cortex of APP/
PS1KI mice. Acta Neuropathol. 2008;116:647-55, doi: 10.1007/s00401-
008-0451-6.

75. Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M, Berry R, et al. BACE1
gene deletion prevents neuron loss and memory deficits in 5XFAD
APP/PS1 transgenic mice. Neurobiol Dis. 2007;26:134-45, doi: 10.1016/j.
nbd.2006.12.008.

76. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease:
progress and problems on the road to therapeutics. Science.
2002;297:353-6, doi: 10.1126/science.1072994.

77. Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type
pathologic changes in nondemented elderly individuals matches the
pattern in Alzheimer’s disease. Neurology. 1992;42:1681-8.

78. Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, Cotter RJ, et al.
Structural alterations in the peptide backbone of beta-amyloid core
protein may account for its deposition and stability in Alzheimer’s
disease. J Biol Chem. 1993;268:3072-83.

79. Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S.
Dominant and differential deposition of distinct beta-amyloid peptide

species, A beta N3(pE), in senile plaques. Neuron. 1995;14:457-66, doi:
10.1016/0896-6273(95)90301-1.

80. Russo C, Saido TC, DeBusk LM, Tabaton M, Gambetti P, Teller JK.
Heterogeneity of water-soluble amyloid beta-peptide in Alzheimer’s
disease and Down’s syndrome brains. FEBS Lett. 1997;409:411-6, doi: 10.
1016/S0014-5793(97)00564-4.

81. Russo C, Salis S, Dolcini V, Venezia V, Song XH, Teller JK, et al. Amino-
terminal modification and tyrosine phosphorylation of [corrected]
carboxy-terminal fragments of the amyloid precursor protein in
Alzheimer’s disease and Down’s syndrome brain. Neurobiol Dis
2001;8:173-180, doi: 10.1006/nbdi.2000.0357.
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