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REVIEW

GENDER AND SEX HORMONES INFLUENCE THE
RESPONSE TO TRAUMA AND SEPSIS – POTENTIAL
THERAPEUTIC APPROACHES

Martin K. Angele,a Markus C. Frantz,b Irshad H. Chaudry c

Angele MK, Frantz MC, Chaudry IH. Gender and sex hormones influence the response to trauma and sepsis—potential
therapeutic approaches. CLINICS. 2006;61(5):479-88.

Several clinical and experimental studies have demonstrated gender dimorphism in immune and organ responsiveness and in the
susceptibility to and morbidity from shock, trauma, and sepsis. In this respect, cell-mediated immune responses have been shown
to be depressed in males following trauma-hemorrhage, whereas they were aintained/enhanced in proestrus females. Furthermore,
sex hormones have been shown to be responsible for this gender-specific immune response following adverse circulatory conditions.
More specifically, studies indicate that androgens produce immunodepression following trauma-hemorrhage in males. In contrast,
female sex steroids appear to exhibit immunoprotective properties following trauma and severe blood loss. With regard to the
underlying mechanisms, receptors for sex hormones have been identified on various immune cells suggesting direct effects of
these hormones on the immune cells. Alternatively, indirect effects of sex hormones, ie, modulation of cardiovascular responses
or androgen- and estrogen-synthesizing enzymes, might contribute to gender-specific immune responses. Recent studies indicate
that sex hormones, eg, dehydroepiandrosterone (DHEA), also modulate the function of peripheral blood mononuclear cells in
surgical patients. Thus, the immunomodulatory properties of sex hormones/receptor antagonists/sex steroid synthesizing enzymes
following trauma-hemorrhage suggests novel therapeutic strategies for the treatment of immunodepression in surgical patients.
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INTRODUCTION

Several clinical and experimental studies suggest that
gender affects humoral and cell-mediated immune re-
sponses. In this regard, a remarkable female preponderance
of autoimmune diseases, ie, systemic lupus erythematosus
(SLE) (female to male ratio of 9:1), Hashimoto’s thyroidi-
tis, rheumatoid arthritis, and primary biliary cirrhosis, has
been observed in both humans and experimental studies.1-4

In addition, higher levels of circulating plasma antibody
titers have been found in females compared to males.5

While it is plausible that some sex-linked genes may con-
tribute to the genetic predisposition for the disease, other
likely culprits for this gender bias are male and female sex
hormones.2,6 In this respect, the onset and course of
autoimmune lupus in the F1 NZB/NZW mouse model var-
ies depending on the sex steroid environment. In contrast
to males, female mice of this strain are known to develop
lupus erythematosus. Pre-pubertal administration of 5að-
dihydrotestosterone, however, prevents the onset of the dis-
ease.7,8 Similarly, change of sex steroid environment by cas-
trating male mice leads to development of lupus erythema-
tosus in normally unaffected males.8,9 Moreover, adminis-
tration of estradiol to female mice increased the levels of
anti-dsDNA antibodies.10 Thus, in contrast to male sex ster-
oids, female sex steroids appear to exhibit
immunoenhancing effects on B-cell function. Further sup-
port for the notion that male and female sex steroids dif-
ferently affect autoimmune disease processes comes from
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studies that demonstrate lower androgen and increased
estrogen metabolite levels in women with SLE compared
to age-matched healthy female controls.11-13. Moreover, in-
creased estrogenic activity has been reported in patients
with lupus erythematosus.13.

Sexual dimorphism also seems to play a role in cell-
mediated immune responses. In this respect, Calzolari dem-
onstrated as early as 1898 an enlargement of the rabbit’s
thymus when castrated before sexual maturity, thereby in-
dicating a connection between sexual environment and im-
munology.14. In more recent studies, skin allograft rejec-
tion time has been reported to be shorter in males com-
pared to females.15. Castration of male mice, however, has
been found to balance those gender differences by increas-
ing time for skin rejection.15.

The above mentioned studies collectively suggest that
gender as well as male and female sex steroids exhibit
immunomodulatory properties on humoral and cell-mediated
immune functions under normal conditions and following
disease processes. In this review article, gender-specific im-
mune responses as well as the effects of sex steroids on cell-
mediated immunity following shock will be discussed. This
article will focus on macrophages and T-cells, since those
immune cells are known to be a first line of defense in host
resistance and play a central role in the regulation of the im-
mune system.16 The aim of this review is to emphasize the
importance of gender and the state of the estrus cycle in fe-
males on the immune response following trauma and severe
blood loss. Furthermore, the potential for modulating sex
hormone effects as novel strategies for the treatment of
immunodepression will be discussed.

Gender dimorphism in trauma, shock and sepsis

Several investigators are attempting to elucidate the in-
fluence of gender on the individual response to trauma,
shock, and sepsis. In this respect, male gender and age are
reported to be risk factors for development of sepsis and
multiple organ failure following trauma.17-23 These epide-
miological studies report that the majority of injured vic-
tims are young males.20,21 Gender differences, however, ex-
ist not only in the prevalence of trauma, but also in the in-
creased susceptibility to septic complications after trauma
and blood loss as well as after major surgery. In this re-
spect, Offener et al identified male gender as an independ-
ent risk factor for the development of severe infection in
surgical patients.24 In a retrospective study incorporating 4
major sepsis studies, Bone reported a preponderance of
morbidity and mortality from sepsis in males as compared
to females.17 McGowan et al also reported a significantly
higher incidence of bacteremic infections in traumatized

males than in females.19 Furthermore, a retrospective study
incorporating 30,286 trauma victims with an injury sever-
ity score (ISS) > 15 demonstrated a significantly higher in-
cidence of pneumonia in males.25 Trauma patients with an
ISS < 15 displayed no differences in the incidence of pneu-
monia.25 Moreover, Schroder et al have shown a signifi-
cantly higher survival rate in women (74%) compared to
men (31%) following the onset of sepsis.26

In addition to differences in the incidence of gender-
dimorphic septic complications, gender-specific cytokine
patterns have been observed in surgical patients.
Oberholzner et al found significantly elevated IL-6 and
procalcitonin levels in male trauma patients compared to
females.27 Wichmann et al28 indicated that despite compa-
rable preoperative cell counts, significant postoperative gen-
der differences regarding B-lymphocyte, T-lymphocyte, T-
helper cell counts, and NK cell counts were evident. While
only a short, insignificant depression of these immune com-
petent cells was detected in women, men suffered long-last-
ing (5 days) depression of these cells. Furthermore, women
showed a more pronounced immediate (day 1)
proinflammatory response (circulating IL-6) after abdomi-
nal surgery.28 Conversely, Majetschak et al29 did not find
gender-specific cytokine responses in trauma patients with
an ISS > 16. In male trauma victims with septic compli-
cations, however, increased IL-6 and TNF-a levels were
evident. This increase was not observed in female trauma
victims with septic complications.29

Similar gender-dimorphic findings have been demon-
strated in experimental studies following severe blood loss
and the induction of sepsis or sepsis-like states (Fig. 1).30-

32 Female Wistar rats have been reported to be more re-
sistant to lethal circulatory stress induced by trauma or in-
testinal ischemia.32 In addition, female mice in the proestrus
state of their estrus cycle tolerate sepsis better than male
mice as demonstrated by increased survival rates of females
following polymicrobial septic challenge (female survival
rate 60% compared to 25% in male animals).31 This im-
proved survival was associated with maintained splenocyte

Figure 1 - Schematic illustration of the effect of gender on cell-mediated
immune responses following trauma and severe blood loss.
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functions in females compared to depressed immune re-
sponses in male mice under those conditions.31 Moreover,
female mice in the proestrus state of the estrus cycle have
been found to exhibit normal/enhanced splenic and peri-
toneal macrophage cytokine release as opposed to de-
pressed immune responses in males following trauma-
hemorrhage.30 Furthermore, proestrus female mice show
enhanced release of splenocyte Th1 lymphokines, ie, IL-
2, IFN-g, compared to depressed Th1 lymphokine release
capacities in male mice following trauma-hemorrhage.30

Four hours following LPS injection, 4-fold greater plasma
IL-1 levels have been found in female mice than in male
animals.33 Thus, higher levels of proinflammatory cytokines
early following the induction of sepsis in female mice
might contribute to the better maintained immune responses
in females under those conditions. In contrast to Th1
lymphokines, the release of the anti-inflammatory Th2
lymphokine IL-10 has been found to be increased in males
and decreased in females following trauma-hemorrhage.34

In addition, studies by Altura et al indicate that female rats
maintain reticuloendothelial system phagocytic activity fol-
lowing circulatory stress which might further protect im-
mune response under those conditions.32

In addition to peripheral immune cells, gender-specific
immune responses have also been demonstrated in the thy-
mus, the primary site of T-cell lymphopoiesis.35,36

Thymocytes and lymphocytes from normal female mice
have been reported to respond more vigorously to exog-
enous and allergenic antigens than do cells from male
mice.36 Moreover, an increased thymocyte apoptosis rate
was evident in males but not in proestrus females follow-
ing trauma-hemorrhage.35 The increased apoptotic fre-
quency in male animals was associated with a depressed
IL-3 release capacity of thymocytes and a significant re-
duction in thymocyte count.35 Since thymocyte apoptosis
was determined at 3 days following trauma-hemorrhage,
it remains unknown whether an increased rate of thymic
apoptosis in females was evident at an earlier or later time
point than used in this study.35 It also remains to be deter-
mined whether the presence of enhanced apoptosis in the
T-cell lymphopoetic tissue (eg, the thymus in male mice)
contributes directly and/or indirectly to the development of
host immunosuppression following trauma-hemorrhage in
males through the loss of maturing T-cells. Alternatively,
the increased apoptotic rate in males following trauma-
hemorrhage might be an attempt by the immune system to
eliminate potential autoreactive T cells that might be in-
duced in an increased number following trauma-
hemorrhage in males.37 Further studies are required to ad-
dress the question of whether the increased thymocyte
apoptotic rate is detrimental to the immune system or

whether the increased thymic apoptosis in males prevents
additional deleterious effects on the host by eliminating
potentially harmful cells. Further support for the importance
of the thymus in mediating the effects of sex steroids on
the immune system comes from studies using castrated
NZB/NZW mice, which develop systemic lupus erythema-
tosus.38 In those experiments, thymectomy has been found
to abrogate the protective effects of administered andro-
gens on the induction of systemic lupus erythematosus.38

Studies have also suggested that the estrus cycle influ-
ences the immune responses following hemorrhage. In this
regard, studies by Wichmann et al and Krzych et al sug-
gest that the proestrus state of the estrus cycle is charac-
terized by a more vigorous immune response compared to
the diestrus state.30,39,40 Similarly, the highest levels of IL-
1 secretion observed in mononuclear cells, have been en-
countered during the follicular phase of the menstrual cy-
cle in women.41-43 These peaks of responsiveness appear to
correspond with elevated levels of estrogen and pregne-
nolone during the proestrus state.40 Thus, differences in the
estrogenic state might explain why some clinical studies
have failed to demonstrate gender differences in the im-
mune response following trauma and adverse circulatory
conditions.

Immune response following shock depends on sex
steroid environment

Several studies were conducted in order to elucidate the
effect of sex steroids on cell-mediated immune responses
following trauma-hemorrhage. In this respect, the respon-
sible hormones in gender-specific immune response origi-
nate primarily from the gonads and secondarily from the
thymus and the hypothalamus-pituitary gland (Fig. 2).44-50

Male gender seems to play an important role in mediating

Figure 2 - Schematic illustration of the effect of male and female sex
hormones on cell-mediated immune responses, ie, macrophage function and
Th1 and Th2 lymphocyte responses following trauma and severe blood loss.
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immunosuppressive effects. Experimental studies indicated
that depletion of male sex steroids by castration 2 weeks
prior to the onset of trauma-hemorrhage prevented the de-
pression of splenic and peritoneal macrophage cytokine re-
lease, as well as splenocyte immune responses following
trauma-hemorrhage.47,49-51. Moreover, depression of MHC
II expression in splenic and peritoneal macrophages was
prevented by depletion of testosterone prior to trauma-
hemorrhage.52 In addition, castration of male mice.47,49 nor-
malized the increased proinflammatory cytokine release by
Kupffer cells normally observed in intact males following
trauma-hemorrhage.53

To identify whether testosterone itself is responsible for
the depression of cell-mediated immune responses follow-
ing hemorrhage in males, studies were conducted in which
female mice were pretreated with 5a-dihydrotestosterone
(DHT) for 2 weeks prior to trauma-hemorrhage.45,46 The re-
sults demonstrated that female mice that had artificially el-
evated plasma testosterone levels (ie, comparable to males),
displayed similar immune responses to hemorrhage as
males, namely depression of splenic and peritoneal mac-
rophage function.45 Furthermore, pretreatment of female
mice with DHT depressed the release of Th1 lymphokines,
ie, IL-2, IFN-g, by splenocytes following trauma-
hemorrhage to levels comparable to normal male animals.46.
A similar change of sex steroid environment by depletion
of female steroids by ovariectomy prior to trauma-
hemorrhage depressed cell-mediated immune responses
following trauma-hemorrhage, thereby increasing the
lethality from subsequent sepsis54. In this respect, female
sex steroids seem to exhibit enhancing effects on cell-me-
diated immune responses54-56. Recent investigations indicate
that castrated male animals treated with DHT exhibit de-
pressed cell-mediated immune responses comparable to
normal male animals, whereas additional administration of
estradiol prevented the depression of immune responses.47,50

Moreover, elevated circulating 17²-estradiol levels in
proestrus females have been shown to play a direct role in
the maintenance of immunocompetence after trauma-
hemorrhage.54 In addition, a single dose of estradiol fol-
lowing trauma-hemorrhage and resuscitation restored di-
minished splenocyte and splenic macrophage immune func-
tions.57,58. This improvement in the immune responses was
associated with a significantly increased survival rate fol-
lowing the induction of subsequent sepsis.58 These findings
therefore indicate that the depressed splenic and peritoneal
immune responses after trauma-hemorrhage can be normal-
ized by estradiol administration. Similarly, Asai et al dem-
onstrated stimulatory effects of estradiol on the responsive-
ness of human PBMCs to LPS in vitro.59

Thus, estrogen appears to be the causative factor in the

maintenance of immunocompetence in females after
trauma-hemorrhage, and its administration in ovariect-
omized or postmenopausal females following trauma-
hemorrhage should be helpful in preventing immune de-
pression under such conditions. The judicious use of fe-
male sex steroids or the antagonists of androgens represent
potentially novel approaches for the treatment of immune
depression following trauma and severe hemorrhagic shock.

Sex steroids differently affect the cardiovascular
system

Recent studies indicate that gender also affects cardio-
vascular responses.60. Castration of male rats 2 weeks prior
to the onset of trauma-hemorrhage prevented the depres-
sion of myocardial function as evidenced by significantly
higher values of heart performance in vivo.61 Similarly,
treatment of male rats with the androgen receptor antago-
nist, flutamide, has also been found to prevent the depres-
sion of cardiovascular responses following trauma and se-
vere blood loss.62 Moreover, trauma-hemorrhage lead to di-
minished cardiac performance and lower organ blood flow
in male animals.63,64 Recently, differences in the regulation
of plasma and tissue volumes between males and proestrus
females during and after trauma-hemorrhage have been
found.65 In this respect, proestrus females showed an in-
creased circulating blood volume during and after trauma-
hemorrhage which might contribute to the improved im-
mune and organ functions in females.65 Moreover, cardio-
vascular and hepatocellular functions were maintained in
proestrus females after resuscitation, whereas they showed
depression in males and estrus females.60

Estradiol has been found to exhibit protective effects
on cardiovascular responses following adverse circulatory
conditions.32,66 Administration of 17bð-estradiol signifi-
cantly improved cardiac performance, cardiac output, and
hepatocellular function, and attenuated the increase in
plasma IL-6 levels.66 These studies therefore indicate that
female and male sex steroids exhibit divergent effects on
cardiovascular responses under normal conditions and fol-
lowing shock. However, the exact relationship between car-
diovascular and immune responses contributing to the gen-
der dimorphism following trauma and severe blood loss re-
mains to be elucidated.

Influence of age on gender-specific immune responses

The influence of gender was investigated not only in
young (6-8 weeks old) but also in middle-aged (1 year old)
and aged (2 years old) mice. Interestingly, in the popula-
tion of aged mice with decreased levels of sex steroids, a
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reversed gender-related immune response following trauma-
hemorrhage has been identified.34,67,68 As opposed to young
mice, aged male mice exhibit enhanced release capacities
for proinflammatory cytokines by splenic macrophages and
Th1 cytokines by splenic lymphocytes compared to de-
pressed release in aged females following trauma-
hemorrhage.34,67,68 Changes in the levels of male and female
sex steroids with age appear to contribute to the loss of the
immunoprotective properties present in younger females.
Further studies are required to elucidate whether the ad-
vantage in the morbidity and mortality from sepsis might
be lost in older females or become comparable to that of
aged male mice.

The results described above are in accordance with
clinical findings demonstrating a higher mortality rate in
septic post-menopausal women compared to male patients69

McLauchlan et al69 reviewed a group of 125 patients with
a mean age of 66 years who were admitted to the inten-
sive care unit with abdominal sepsis. The hospital mortal-
ity rate was 63% and the factors associated with mortality
included age and female sex. In addition,
Watanakunakorn’s70 review of the medical records of pa-
tients who fulfilled the criteria for the diagnosis of Staphy-
lococcus aureus endocarditis indicated that, at age 60 or
older, female gender was associated with higher mortality.
The above studies collectively suggest that age, gender, as
well as the state of the estrus cycle in females should be
taken into consideration in designing not only experimen-
tal, but also clinical studies examining immune responses
following trauma-hemorrhage.

Potential mechanisms

Several studies indicate that sex steroids might exhibit
direct immunomodulatory effects on immune cells. In this
respect, the presence of estrogen receptors on various im-
mune cells, ie, thymocytes, macrophages, and leukocytes,
has been demonstrated.2,71. Moreover, the testosterone
receptor antagonist, flutamide, restored macrophage and
splenocyte as well as cardiovascular function following
trauma-hemorrhage in vivo.72,73 Thus, sex steroids may
modulate immune responses directly via specific receptor
mediated processes. Further in vitro studies have demon-
strated immunomodulatory properties of sex steroids on
immune cells in vitro. In this regard, addition of DHT to
the culture medium decreased the release of IL-3 and in-
creased the apoptotic frequency of thymocytes harvested
from sham and hemorrhaged animals.35 Studies by Chao
et al have shown that peritoneal macrophage TNF produc-
tion can be increased if they are cultured in the presence
of estradiol.74 Furthermore, the cytotoxic T lymphocyte ac-

tivity has been found to be increased after addition of
estrogen to the culture media in vitro.2

Trauma itself seems to play a role in different immuno-
modulatory properties of sex steroids. In this respect, under
physiological plasma testosterone levels, trauma-hemorrhage
is associated with depressed cell-mediated immune re-
sponses, whereas sham-operated animals do not show such
a depression.45-47, 50 Furthermore, recent studies indicate that
the synthesis of sex steroids is altered following trauma-
hemorrhage.75,76 An increased dihydrotestosterone synthesis
and a decreased catabolism of this steroid hormone have
been demonstrated in male T lymphocytes following trauma-
hemorrhage whereas the reverse occurs in proestrus females,
ie, increased synthesis and decreased catabolism of estradiol
take place in the T lymphocytes.75,76

These studies demonstrate several potential mechanisms
by which sex steroids might modulate immune responses
following adverse circulatory conditions. Nonetheless, we
are in the early stages of elucidating the complex interac-
tions of sex hormones and the immune system. Further
studies will be required to determine the exact underlying
pathways that are influenced by sex steroids under normal
as well as following trauma-hemorrhage.

Potential therapeutic strategies

Androgen receptor antagonists
Several animal studies have shown beneficial effects of

castration by depleting plasma testosterone levels prior to
trauma and hemorrhage. In order to transfer those effects into
clinical usage, studies mimicking castration by the use of
the androgen receptor antagonist, flutamide, were conducted.
Administration of flutamide at a dosage of 25 mg/kg body
weight following trauma-hemorrhage and resuscitation nor-
malized the depressed splenic and peritoneal macrophage
cytokine release.73 In addition, flutamide administration on
3 consecutive days following trauma-hemorrhage not only
restored the depressed splenocyte and splenic macrophage
cytokine release even after the induction of subsequent sep-
sis but also significantly decreased the mortality of post-
hemorrhaged animals subjected to a subsequent septic chal-
lenge.72 Since flutamide is used in patients with testicular
cancer for periods longer than 3 days without major adverse
effects, the short-term use of this androgen receptor antago-
nist in male trauma patients would appear to be a safe and
useful adjunct for the treatment of immune and cardiovas-
cular depression under those conditions.

The steroid hormone dehydroepiandrosterone (DHEA)
Dehydroepiandrosterone (DHEA) is the major circulat-

ing steroid hormone in humans. As an intermediate in the
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sex steroid synthesis it can be metabolized to both testo-
sterone and estrogen. In view of the immunoenhancing ef-
fects of estrogen administration following trauma-
hemorrhage, DHEA has been reported to exhibit predomi-
nantly estrogenic effects in a male hormonal environment.77

In additional studies, DHEA administered at a dose of 100
mg per animal prevented the depression of cell-mediated
immune responses following trauma-hemorrhage and resus-
citation as evidenced by maintained splenic and peritoneal
macrophage cytokine release and normalized splenocyte
lymphokine release.78,79 In addition, administration of
DHEA following trauma-hemorrhage significantly im-
proved the survival rate of animals subjected to subsequent
sepsis compared to vehicle-treated animals.78 Similar to the
experimental results, DHEA normalized the depressed
proinflammatory cytokine release capacities of human pe-
ripheral blood mononuclear cells (PBMCs) following ma-
jor abdominal surgery in vitro.80 The effect of DHEA on
PBMC function followed a dose-dependent manner. Thus,
DHEA might also exhibit beneficial effects in male trauma
patients by preventing the depression of cell-mediated im-
mune responses under those conditions. In the United
States, DHEA is widely used as an over-the-counter drug
without any serious side effects. In female trauma victims,
administration of estrogen appears to be a useful adjunct
for decreasing mortality under those conditions.

SUMMARY

Despite the fact that gender differences in the morbid-
ity and mortality from trauma, shock, and sepsis have been

observed in several clinical studies, alterations in the im-
mune functions following shock have been investigated pri-
marily using young male laboratory animals. Recently nu-
merous studies have been initiated investigating the effect
of gender, age, and sex hormones on immune responses fol-
lowing shock and trauma. The findings of our studies sug-
gest that low testosterone and/or high estradiol appears to
be protective for the host following trauma and severe blood
loss. Although the exact underlying mechanism(s) for the
immunomodulatory properties of sex hormones on cell-
mediated immune and cardiovascular responses following
trauma-hemorrhage remain unknown, there is evidence that
both direct and indirect effects of sex steroids act
synergistically in modulating the immune and cardiovas-
cular responses. In this respect, sex hormone receptors have
been identified on various immune cells suggesting receptor
mediated processes. Other studies suggest the release of
secondary mediators that alter immune responses follow-
ing adverse circulatory conditions. In view of these find-
ings, clinically relevant therapeutic strategies have been
developed using the androgen receptor antagonist,
flutamide, and/or estrogen or agents with estrogenic effects,
eg, DHEA, which might yield safe and useful therapeutic
adjunct approaches for the treatment of immune and car-
diovascular depression in trauma victims. Moreover, gen-
der should be taken into account when studying the im-
mune or cardiovascular responses following trauma and
shock. This notion is supported by the observation that
immunmodulatory strategies using IL-10 improved survival
in males but not in females following trauma-hemorrhage
and subsequent sepsis.81

RESUMO

Angele MK, Frantz MC, Chaudry IH. Hormônios sexuais
influenciam a resposta ao trauma e à sepsis – possíveis so-
luções terapêuticas. CLINICS. 2006;61(5):479-88.

Uma série de estudos clínicos e experimentais demonstram
a existência de dimorfismo sexual das respostas imuno-
lógicas e orgânicas, bem como da suscetibilidade e
morbidade em relação ao choque, ao trauma e à sepse. Res-
postas imunes celularmente mediadas apresentam-se depri-
midas em machos em resposta ao binômio trauma-hemor-
ragia, mas conservados/enaltecidos em fêmeas em proestro.
Adicionalmente demonstra-se que os hormônios sexuais são
responsáveis por esta dicomotomia de resposta sexualmente
específica, em condições cardiovasculares adversas. Estu-
dos específicos indicam que os andrógenos produzem

imunodepressão pós-trauma hemorragia em machos. Em
contraste, esteróides sexuais femininos parecem exibir pro-
priedades imunoprotetoras após episódios de trauma com
ou sem perda importante de sangue. No terreno dos meca-
nismos subjacentes, foram identificados receptores para
hormônios sexuais em várias células do sistema imuno-
lógico, sugerindo a existência de efeitos diretos destes
hormônios sobre tais células. Alternativamente, observam
efeitos indiretos de hormônios sexuais tais como modula-
ção das respostas cardiovasculares das enzimas sinteti-
zadores de andrógeno e estrógeno, que podem contribuir
para as estas respostas sexualmente diferenciadas. Estudos
recentes indicam que os hormônios sexuais, como por
exemplo a dehidroepiandrosterona também modulam a fun-
ção de células mononucleares da série branca em pacien-
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tes cirúrgicos. Assim, as propriedades imunomodulatórias
de hormônios sexuais/antagonistas de receptores/enzimas
sintetizadores de esteróides após a ocorrência de trauma
ou de hemorragia sugerem o caminho para novas estraté-
gias terapêuticas para o tratamento de imunodepressão em

pacientes cirúrgicos.

UNITERMOS: Dimorfismo sexual. Esteroides sexuais.
Choque hemorrágico. Depressão immune. Imuno-
modulação.
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