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According to Quality by Design (QbD) concept, quality should be built into product/method during 
pharmaceutical/analytical development. Usually, there are many input factors that may affect quality of 
product and methods. Recently, Design of Experiments (DoE) have been widely used to understand the 
effects of multidimensional and interactions of input factors on the output responses of pharmaceutical 
products and analytical methods. This paper provides theoretical and practical considerations for 
implementation of Design of Experiments (DoE) in pharmaceutical and/or analytical Quality by Design 
(QbD). This review illustrates the principles and applications of the most common screening designs, 
such as two-level full factorial, fractionate factorial, and Plackett-Burman designs; and optimization 
designs, such as three-level full factorial, central composite designs (CCD), and Box-Behnken designs. 
In addition, the main aspects related to multiple regression model adjustment were discussed, including 
the analysis of variance (ANOVA), regression significance, residuals analysis, determination coefficients 
(R2, R2-adj, and R2-pred), and lack-of-fit of regression model. Therefore, DoE was presented in detail 
since it is the main component of pharmaceutical and analytical QbD.

Keywords: Design of Experiments (DoE). Quality by Design (QbD). Factorial Designs. Central 
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INTRODUCTION

Since the introduction of Quality-by-Design 
(QbD) concepts, it has been accepted that quality of 
pharmaceutical products should be designed and built 
during the manufacturing process. According to Juran 
(Yu et al., 2014), most of quality problems are related to 
the way in which a pharmaceutical product was designed. 
A poor-designed pharmaceutical product will show poor 
safety and efficacy, no matter how many tests or analyses 
have been done to verified its quality. Thus, QbD begins 
with the recognition that quality will not be improved by 
merely increasing analyses of pharmaceutical products. 
In other words, quality must be built into the product. (Yu 
et al., 2014).

QbD is “a systematic approach to pharmaceutical 
development that begins with predefined objectives 
and emphasizes product and process understanding and 

process control, based on sound science and quality risk 
management” (Yu et al., 2014). Application of QbD will 
provide knowledge and scientific understanding to support 
pharmaceutical development (Sangshetti et al., 2017). 
Pharmaceutical QbD goals may include: a) to achieve 
meaningful product quality specifications; b) to increase 
process capability and reduce product variability; c) to 
increase pharmaceutical development and manufacturing 
efficiencies; and d) to enhance cause-effect analysis and 
regulatory flexibility (Yu et al., 2014).

The adoption of risk-based approaches and 
pharmaceutical QbD have been encouraged by most of 
regulatory agencies worldwide (Yu et al., 2014; Bhutani 
et al., 2014). Pharmaceutical QbD concepts has been used 
to enhance manufacturing pharmaceutical products in 
terms of “Six-sigma” approach. “Six-sigma” is a system 
of practices to achieve process improvement, which leads 
to a significantly reduced chance of out-of-specification 
(OOS) products. The significant number of OOS results 
reported indicates that this is an issue to pharmaceutical 
industries (Peraman, Bhadraya, Reddy, 2015).
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However, many times the problems in achieving 
the required “six-sigma” performance is not due to 
manufacturing issues, but due to poor analytical methods 
robustness and reliability. Several authors described the 
application of the QbD concepts in the development of 
analytical methods (Peraman, Bhadraya, Reddy, 2015; 
Bhutani et al., 2014). Analytical QbD is useful in the 
development and optimization of robust and cost-effective 
analytical methods. Implementation of analytical QbD 
provides a better solution to OOS results, as well as it also 
reduces the risk of method failure.

Traditionally, the development and optimization 
of pharmaceutical products and analytical methods 
have been carried-out by analyzing one factor at time 
(OFAT approach) (Bezerra et al., 2008; Candioti et al., 
2014; Politis et al., 2017). One of the factors is changed 
within an appropriate range (or levels), while the others 
are kept constants. In addition to demanding a high 
number of experiments, the OFAT approach does not 
allow to evaluate the existence of interaction between the 
factors, which may lead to an inadequate conduction of 
the development and optimization (Bezerra et al., 2008; 
Candioti et al., 2014; Politis et al., 2017). To overcome 
these limitations, design of experiments (DoE) may 
provide better results with few number of experiments. 
DoE is a set of statistical tools which include screening 
designs; and optimization designs (Bezerra et al., 2008; 
Candioti et al., 2014; Politis et al., 2017).

DoE is the main component of pharmaceutical 
and analytical QbD. Thus, the present paper provides 
theoretical and practical considerations for implementation 
of Design of Experiments (DoE) in pharmaceutical and/or 
analytical Quality by Design (QbD).

STEPS OF PHARMACEUTICAL QUALITY BY 
DESIGN AND ANALYTICAL QUALITY BY 
DESIGN

QbD comprises all elements of pharmaceutical 
development, which will allow to design a quality product 
and its manufacturing process to consistently deliver the 
intended performance concerning its safety and efficacy. 
Using QbD approach, pharmaceutical development will 
provide a complete understanding of the product and its 
manufacturing process (Sangshetti et al., 2017; Zhao, 
Mao, 2017; Yu et al., 2014).

Analytical methods are considered an integral part of 
pharmaceutical development (Bhutani et al., 2014). Thus, 
the application of QbD approach to analytical method 
development is justifiable and a recommended strategy to 
attain regulatory flexibility, to reduce out-of-specification 

results, to achieve a high degree of robustness and a cost-
effective analytical method (Peraman, Bhadraya, Reddy, 
2015; Bhutani et al., 2014).

Establishing of Quality Target Product Profile 
(QTPP) / Analytical Target Profile (ATP)

Quality Target Product Profile (QTPP) is a summary 
of quality characteristics of pharmaceutical product that 
must be achieved to guarantee safety and efficacy. In other 
words, QTPP consists in the definition of expectations in 
final pharmaceutical product (Sangshetti et al., 2017; Yu 
et al., 2014). Considerations for QTPP should include the 
intended use in clinical setting, route of administration, 
dosage form, delivery system, dosage strength, container 
closure system, factors affecting pharmacokinetics 
properties, and product quality criteria (such sterility, 
purity, stability, among others) (Sangshetti et al., 2017; 
Zhao, Mao, 2017; Yu et al., 2014).

Analytical Quality by Design (AQbD) starts with 
the definition of Analytical Target Profile (ATP). ATP 
defines the goal of the analytical method, which will drive 
the method selection, design, and development activities 
(Peraman, Bhadraya, Reddy, 2015; Bhutani et al., 2014). 
In other words, ATP is a statement of what should be 
measure (for example, active pharmaceutical ingredient 
– API), in what it should be measured (for example, in 
pharmaceutical dosage form), and why/when it should be 
measured (for example, during stability study). A required 
level of confidence (target measurement uncertainty - 
usually estimated from accuracy and precision) should be 
state into ATP definition, in order to ensure the quality of 
analytical results (Bhutani et al., 2014).

It seems to be obvious that the main goals of a 
new product or method should be defined before its 
development. However, over the years, this approach has 
been seldom adopted. A well-defined QTPP (or ATP) avoid 
time- and resource-wasting. (Yu et al., 2014)

Identifying of Critical Quality Attributes (CQA) / 
Analytical Method Performance Characteristics 
(AMPC)

Identification of Critical Quality Attributes (CQA) 
is the next step in pharmaceutical QbD. CQA is chemical, 
physical, biological or microbiological properties or 
characteristics of pharmaceutical product (in-process or 
finished) that must be within appropriated specifications to 
ensure quality. CQA may include identity, assay, content, 
uniformity, degradation, products, residual solvents, drug 
release or dissolution, moisture content, microbial limits, 
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and physical properties such as color, shape, size, and 
friability (Sangshetti et al., 2017; Zhang, Mao, 2017). 
Potential CQA derived from QTPP are used to guide 
product and process development. Thus, Critical Material 
Attributes (CMA) and Critical Process Parameters (CPP) 
may also be identified in order to achieved CQA and QTPP, 
consequently (Yu et al., 2014).

Critical Material Attributes (CMA) consists 
of physical, chemical, biological or microbiological 
properties that input material must comply to ensure 
the desired CQA. On the other hand, Critical Process 
Parameters (CPP) are process parameters such as mixing 
time, stirring speed, temperature, air flow, among others 
that must be monitored before or during the process to 
ensure the desired CQA. (Zhao, Mao, 2017)

Analytical Method Performance Characteristics 
(AMPC) are defined to meet the needs of ATP. AMPC 
may be classified into two categories, according to the 
source of error: a) systematic (bias) variability, which 
includes accuracy, specificity, and linearity; and b) 
random (aleatory) variability, which includes precision, 
limit of detection, and limit of quantification. Moreover, 
range and robustness may also be stated into AMPC 
definition. It is always recommended to incorporate 
a joint criterion of method characteristics (at least, 
accuracy and precision) in ATP. Selection of analytical 
technique (such as chromatographic, spectrophotometric, 
or microbiological assays) must be driven by ATP and 
AMPC definitions. (Peraman, Bhadraya, Reddy, 2015; 
Bhutani et al., 2014)

A schematic diagram of the steps for implementation 
of pharmaceutical QbD is showed in Figure 1a, including 

the relationships among CMA, CPA, CQA, Design Space, 
and QTPP. In addition, the steps for implementation of 
analytical QbD is showed in Figure 1b, including the 
relationships among CAP, AMPC, MODR, and ATP.

Risk assessment

Risk assessment is a systematic process of organizing 
knowledge information to support decision. There 
are three essential elements in risk assessment: a) risk 
identification: systematical use of information to identify 
potential sources of hazard from historical data, theoretical 
analysis, and stakeholders’ concerns; b) risk analysis: the 
estimation of risk associated with the identified hazards; 
and c) risk evaluation: comparison of the estimated risks 
using quantitative or qualitative scale to determine their 
significance.

Ishikawa (fishbone) diagram and failure mode and 
effects analysis (FMEA) are widely used risk assessment 
tool. Ishikawa diagram is a qualitative risk assessment 
tool that allows one to identified and classified into 
broad categories the main sources of hazards. In other 
words, this helps answering the question “What might 
be wrong?”. FMEA method is often used to perform a 
quantitative risk assessment, that provides a risk priority 
number (RPN = P x S x D) estimated based on the 
occurrence probability (P), severity (S), and likelihood of 
detection (D). FMEA allows one the answer the questions 
“What is the likely (probability) it will be wrong?” and 
“What are the consequences (severity)?” (Sangshetti et 
al., 2017; Zhao, Mao, 2017; Peraman, Bhadraya, Reddy, 
2015; Bhutani et al., 2014).

FIGURE 1 – Schematic diagram of the steps for implementation of pharmaceutical QbD (a) and analytical QbD (b). Legend: 
CPP = Critical Process Parameter, CMA = Critical Material Attribute, CQA = Critical Quality Attribute, DS = Design Space, 
QTPP = Quality Target Product Profile, CAP = Critical Analytical Parameter, AMPC = Analytical Method Performance 
Characteristic, and ATP = Analytical Target Profile.
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DESIGN OF EXPERIMENTS (DoE)

DoE is a structured and organized method for 
determining the relationships between input factors 
(xi – independent variables) affecting one or more 
output responses (y – dependent variables), through the 
establishment of mathematical models (y = f(xi)).

In DoE approach, the controlled input factors are 
systematically varied to determine their effects on the 
output responses, which allows the determination of the 
most important input factors, the identification of input 
factors setting leading to optimized output responses, and 
the elucidation of interactions between input factors.

Selection of experimental design

Selections of best experimental design should 
consider several aspects, such as defined objectives, number 
of input factors and interactions to be studied, and statistical 
validity and effectiveness of each design. In order to provide 
a better understand of DoE application, experimental 
designs may be divided into two types: a) screening designs; 
and b) optimization designs (Bezerra et al., 2008; Candioti 
et al., 2014; Politis et al., 2017). Table I provides a summary 
of screening and optimization designs characteristics, such 
as number of experiments required, number of levels of 
input factors, and numbers of factors to be studied.

Screening designs
Two-level full factorial designs, fractionate factorial 

designs, and Placket -Burman designs are the most 
used screening designs because of their cost-effective 
advantages. These experimental designs allow one to study 
a wide number of input factors with reduced numbers of 
experiments. However, they also have some limitations 
that should be considered in order to provide a better 
understanding of the effects of input factors on output 
responses (Bezerra et al., 2008; Candioti et al., 2014; 
Politis et al., 2017).

Two-level full factorial designs are the most 
powerful screening designs, once they allow to estimate 
main effects of input factors and their interactions on 
output responses. The main limitations of two-level full 
factorial designs rely on the large number of experiments 
required, when compared to fractionate factorial 
designs and Plackett-Burman designs. The number of 
experiments required for two-level full factorial designs 
may be calculated as 2k, where k is the number of input 
factors to be studied (Bezerra et al., 2008; Candioti et 
al., 2014; Politis et al., 2017). Two-level full factorial 
designs matrix for 2, 3, and 4 input factors are presented 
in Table II.

Fractionate factorial designs are one the most widely 
used for screening purposes, because these designs enable 
the evaluation of large number of input factors with a 
reduced number of experiments required (Bezerra et al., 
2008; Candioti et al., 2014; Politis et al., 2017). This may 
be achieved by fractionating a full factorial 2k design into 
a 2k–p design, where p is the number of generators chosen 
to fractionate the design (Figure 2). For example, when 
examining four input factors, a half-fraction factorial 
design (24–1 = 8 experiments) may be adopted. A quarter-
fraction factorial design (25–2 = 8 experiments) may be 
adopted to study five input factors, with the same number 
of experiments.

However, attention should be paid to the estimation 
of main effects and interaction effects using fractionate 
factorial designs, because some of them are aliased (or 
confounded). For example, using a 23-1

III fractionate 
factorial design, the main effect of X3 is aliased with 
the interaction of X1 and X2 (Figure 3). When adopting 
a 24-1

IV fractionate factorial design, the main effect of 
X4 is aliased with 3rd order interaction of X1, X2, and 
X3. In fractionate factorial designs with resolution III, 
main effects are aliased with 2nd order interactions. When 
using resolution IV designs, main effects are aliased 
with 3rd order interactions and 2nd order interactions are 
aliased with 2nd order interactions. Adopting resolution 

TABLE I – Summary of screening and optimization designs characteristics, number of experiments, levels, and factors

Applications Experimental design Experiments Levels Factors
Screening Plackett-Burman N 2 < N-1

Fractionate factorial 2k-p
Res 2 k > 4

Two-level full factorial 2k 2 2 < k < 5
Optimization Box-Behnken 2k(k-1)+C 3 3 < k < 5

Central composite design 2k+2k+C 5 2 k< 5
3-level factorial 3k 3 2 < k < 3
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V designs, main effects are aliased with 4th order 
interactions and 2nd order interactions are aliased with 
3rd order interactions. Thus, fractionate factorial designs 
may not be suitable for assessing the interactions among 
factors. The resolution of fractionate factorial designs 
is defined according to the selecting of generators. A 
summary of fractionate designs matrix were presented 
in Table III.

Plackett-Burman designs are special types of 
two-level fractionate factorial designs (resolution III), 
which allow one to study up to N-1 input factors with 
N experiments (N should be multiple of 4) (Bezerra et 
al., 2008; Candioti et al., 2014; Politis et al., 2017). An 

example of a Plackett-Burman design matrix used to 
study 11 input factors with 12 experiments is provided 
in Table IV.

Screening designs are often used in the first step to 
DoE in order to select the most important input factors and 
discard the insignificant ones. Pareto charts are useful tools 
to achieve this purpose (Figure 3), because they allow to 
put the input factors (and their interactions) in order of 
importance. For example, based on Pareto chart presented 
in Figure 2a we conclude that input factor X1 is the most 
important, followed by factors X3 and X2, respectively. 
When a fractionate factorial design was adopted, attention 
should be paid to analyze Pareto chart. In other words, 

TABLE II – Two-level full factorial designs matrix for two (22), three (23), and four (24) input factors (X1 to X4)

22 design matrix 23 design matrix 24 design matrix
# X1 X2 # X1 X2 X3 # X1 X2 X3 X4
1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1
2 -1 +1 2 -1 -1 +1 2 -1 -1 -1 +1
3 +1 -1 3 -1 +1 -1 3 -1 -1 +1 -1
4 +1 +1 4 -1 +1 +1 4 -1 -1 +1 +1

5 +1 -1 -1 5 -1 +1 -1 -1
6 +1 -1 +1 6 -1 +1 -1 +1
7 +1 +1 -1 7 -1 +1 +1 -1
8 +1 +1 +1 8 -1 +1 +1 +1

9 +1 -1 -1 -1
10 +1 -1 -1 +1
11 +1 -1 +1 -1
12 +1 -1 +1 +1
13 +1 +1 -1 -1
14 +1 +1 -1 +1
15 +1 +1 +1 -1
16 +1 +1 +1 +1

FIGURE 2 – Illustration of a half-fractionate two-level factorial design (23-1
III) matrix (a), its complementary matrix (b), and two-

level full factorial design (23) matrix (c) for three input factors.
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main effect of input factor X3 (Figure 3a) was aliased 
with the interaction of factors X1 and X2 (Figure 3b). 
For instance, consider that during the development of 

a chromatographic method, one wants to explain the 
resolution between two peaks as functions of the pH of 
mobile phase (X1), amount of organic solvent in mobile 
phase (X2), and flow rate (X3). Based on Pareto chart 
showed in Figure 3a, one may conclude that the flow rate 
is a critical analytical parameter. However, the flow rate 
is aliased (or confounded) with the interaction between 
pH and amount of organic solvent in mobile phase (X3 = 
X1 x X2). This conclusion was wrongly assumed because 
Pareto chart showed in Figure 3a was obtained using a 
fractionate factorial design with resolution III. When using 
a full factorial, flow rate will not be aliased (confounded) 
with the interaction between pH and amount of organic 
solvent in mobile phase, which is evidenced in Pareto chart 
showed in Figure 3b.

However,  Pare to  char ts  does  not  provide 
information of how the output responses are affect 
by varying input factor level. This information may 
be provided by a main effects and interactions plots 
(Figure 4). For example, output response increases by 
varying the input factor X1 from low (-1) to high (+1) 
level, while output response decreases by varying the 
input factor X2 from low (-1) to high (+1) level (Figure 
4a). An advantage of DoE approach over the OFAT 
experimentation relies on the elucidation of interactions 
between input factors. For example, in Figure 4b, the 
output response increases significantly by varying the 
input factor X1 from low (-1) to high (+1) level with X2 
fixed at low level (-1 – grey dots and line), while output 
response remains almost constant by varying the input 
factor X1 from low (-1) to high (+1) level with X2 fixed 
at high level (+1 – black dots and line). Interaction effects 
plots is useful to identified synergism or antagonism 
between input factors on output responses.

TABLE III – Half- and quarter-fractionate two-level factorial designs matrix for three (23-1
III), four (24-1

IV), and five (25-2
III) input 

factors (X1 to X5)

23-1
III design matrix*1 24-1

IV design matrix*2 25-2
III design matrix*3

# X1 X2 X3 # X1 X2 X3 X4 # X1 X2 X3 X4 X5
1 -1 -1 +1 1 -1 -1 -1 -1 1 -1 -1 -1 +1 +1
2 -1 +1 -1 2 +1 -1 -1 +1 2 1 -1 -1 -1 -1
3 +1 -1 -1 3 -1 +1 -1 +1 3 -1 1 -1 -1 +1
4 +1 +1 +1 4 +1 +1 -1 -1 4 1 1 -1 +1 -1

5 -1 -1 +1 +1 5 -1 -1 1 +1 -1
6 +1 -1 +1 -1 6 1 -1 1 -1 +1
7 -1 +1 +1 -1 7 -1 1 1 -1 -1
8 +1 +1 +1 +1 8 1 1 1 +1 +1

*1 X3 = X1 x X2 / *2 X4 = X1 x X2 x X3 / *3 X4 = X1 x X2 and X5 = X1 x X3

FIGURE 3 – Pareto charts representation for main effects (X1, 
X2, and X3) of input factors (a), and main effects (X1, and X2) 
and interaction effects (X1*X2) of input factors (b). Main effect 
of X3 (a) is aliased with the interaction of X1 and X2 (b).
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Optimization designs
Three-level full factorial designs, central composite 

designs, and Box-Behnken designs are the most used 
optimization designs because they allow modeling 

complex response surface. One of the most important 
limitations of screening designs rely on the fact that they 
only allow modeling 1st order (linear) response surface, 
because they have only two level for each input factor. 
Optimization designs uses 3 to 5 levels of each input 
factors, which allow modeling 2nd order (quadratic) 
response surface (Bezerra et al., 2008; Candioti et al., 
2014; Politis et al., 2017). However, due to the increased 
number of experiments required, they are usually used to 
study a reduced number of input factors (Table I).

Three-level full factorial design are often used 
only when two or three input factors need to be study, 
because an increased number of experiments is required. 
The number of experiments required may be calculated 
as 3k, where k is the number of input factors to be studied 
(Bezerra et al., 2008; Candioti et al., 2014; Politis et al., 
2017). For example, a three-level full factorial design for 
three input factors requires 33 = 27 experiments (Table V). 
A 3D spatial representation of  factorial design is provided 
in Figure 5a.

Central composite designs (CCD) are one of the 
most used optimization designs because they use 5 level 
of each input factor with a reduced number of experiments 
required, when compared to three-level full factorial 
design (Bezerra et al., 2008; Candioti et al., 2014; Politis 
et al., 2017). A 3D spatial representation of CCD for three 
input factors is provided in Figure 5b. This design consists 
of the following parts: a) the factorial design points (black 
dots); b) the axial points (grey dots); and c) the center 
point (white dots). CCD matrix is also presented in Table 
V, with the factorial design points (experiments 1-8), the 
axial points (experiments 9-14), and the central point 
(experiments 15-20 - 6 replicas).

TABLE IV – Plackett-Burman design matrix to study 11 input factors (X1 to X11) with 12 experiments

# X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
1 +1 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1
2 +1 +1 -1 +1 -1 -1 -1 +1 +1 +1 -1
3 -1 +1 +1 -1 +1 -1 -1 -1 +1 +1 +1
4 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1 +1
5 +1 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1
6 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1 -1
7 -1 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1
8 -1 -1 +1 +1 +1 -1 +1 +1 -1 +1 -1
9 -1 -1 -1 +1 +1 +1 -1 +1 +1 -1 +1
10 +1 -1 -1 -1 +1 +1 +1 -1 +1 +1 -1
11 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1 +1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

FIGURE 4 – Main effects (a) and interaction (b) plots of input 
factors X1 and X2.
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TABLE V – Three-level full factorial design (33), central composite design (CCD), and Box-Behnken design matrix for three input 
factors (X1, X2, and X3)

33 design matrix Central composite design matrix Box-Behnken matrix
# X1 X2 X3 # X1 X2 X3 # X1 X2 X3
1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
2 -1 -1 0 2 +1 -1 -1 2 +1 -1 0
3 -1 -1 +1 3 -1 +1 -1 3 -1 +1 0
4 -1 0 -1 4 +1 +1 -1 4 +1 +1 0
5 -1 0 0 5 -1 -1 +1 5 -1 0 -1
6 -1 0 +1 6 +1 -1 +1 6 +1 0 -1
7 -1 +1 -1 7 -1 +1 +1 7 -1 0 +1
8 -1 +1 0 8 +1 +1 +1 8 +1 0 +1
9 -1 +1 +1 9 -1,68 0 0 9 0 -1 -1
10 0 -1 -1 10 +1,68 0 0 10 0 +1 -1
11 0 -1 0 11 0 -1,68 0 11 0 -1 +1
12 0 -1 +1 12 0 +1,68 0 12 0 +1 +1
13 0 0 -1 13 0 0 -1,68 13 0 0 0
14 0 0 0 14 0 0 +1,68 14 0 0 0
15 0 0 +1 15 0 0 0 15 0 0 0
16 0 +1 -1 16 0 0 0
17 0 +1 0 17 0 0 0
18 0 +1 +1 18 0 0 0
19 +1 -1 -1 19 0 0 0
20 +1 -1 0 20 0 0 0
21 +1 -1 +1
22 +1 0 -1
23 +1 0 0
24 +1 0 +1
25 +1 +1 -1
26 +1 +1 0
27 +1 +1 +1

FIGURE 5 – Illustration of three-level full factorial design (33) matrix (a), central composite design (CCD) matrix (b), and Box-
Behnken design matrix (c) for three input factors.
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Box-Behnken design are special types of three-level 
fractionate factorial designs, which allows modeling 1st 
and 2nd order response surfaces. These designs are more 
cost-effective than three-level full factorial designs, 
particularly for large number of input factors (Bezerra 
et al., 2008; Candioti et al., 2014; Politis et al., 2017). 
We can see that all points used in Box-Behnken designs 
(Figure 5c) were selected from the 33 full factorial design 
(Figure 5a). The Box-Behnken matrix was also provided 
in Table V.

The simplest model which can be adjusted is based 
on a linear function. This model may be adjusted based 
on the results obtained from at least a fractionate factorial 
design (resolution IV or higher), if the output responses 
are well fitted to Equation 1.

  (1)

Thus, the output response should have a linear 
response surface, as presented in Figure 6a.

To evaluate interactions between input factors, at 
least a two-level full factorial design should be adopted. 
The model can be adjusted based on a linear + interaction 
function, if the output response is well fitted to the 
Equation 2.

  (2)

The response surface obtained using a linear + 
interaction function is presented in Figure 6b.

The main advantage of optimization designs relies 
on the possibility of modeling 2nd order response surfaces, 
because they have 3 to 5 level for each input factor. In 
other words, these designs allow one the assess curvature 
of response surface. The model can be adjusted based on 
a linear + quadratic function, if the output response is well 
fitted to the Equation 3.

  (3)

Thus, the output response should have a curvature 
response surface, due to the presense of quadratic terms 
in regression model. The response surface obtained using 
a linear + quadratic function is presented in Figure 6c.

Finally, it may be necessary to adopt a full model, 
with linear + interaction + quadratic terms. The model can 
be adjusted based on a full model function, if the output 
response is well fitted to the Equation 4.

 (4)

The response surface obtained using a linear + 
interaction + quadratic function is presented in Figure 6d.

Mathematical model should be selected based 
on the application of Analysis of Variance (ANOVA). 
The main idea of ANOVA is to compare the variability 
due to treatment (varying the level of input factors) 
with the variability due to residual error. From this 
comparison, it is possible to evaluate the significance 
of the regression model (Table VI). Regression analysis 
is valid only if the residues (square of the difference 
between response predicted by mathematical model 
and experimental response) present normal distribution 
and homoscedasticity. When necessary, a Box-Cox 
transformation (for example, ln transformation - λ = 0) 
of output response may be used to improve normality 
and homoscedasticity of residues. (Bezerra et al., 2008; 
Candioti et al., 2014; Politis et al., 2017).

Based on ANOVA, we can decide to include or 
to exclude the coefficients of linear terms (for example, 
X1, X2, and X3), interaction terms (for example, X1X2, 
X1X3, and X2X3), and quadratic terms (for example 
X12, X22, and X32). This decision is based on p-values for 
each coefficient regression term. Usually, a coefficient 
regression term should be included in regression model 
when its p-value is lower than 0.05. In other words, 
when the coefficient regression term is significantly 
different from 0. When the regression coefficient term is 
not different from 0 (p-value > 0.05), it indicates that the 
output response is not affect by varying the input factor 
levels. Thus, this coefficient regression term may be 
excluded from the regression model.

Multiple regression model adjustment should be 
assess based on determination coefficients (R2, R2-adj, and 
R2-pred). Determination coefficient (R2) is the proportion 
of the variance in the output response that is predicted 
from the input factors. In other words, how much of 
output response (Y) is explained by the input factors 
(Xs). However, R2 will always increase by adding new 
terms to the regression model. Thus, it is not a good way 
to compared regression models with different number of 
terms (for example, compare a linear model with a full 
model). The adjusted R2 (R2-adj) is a modified version of 
R2 which is adjusted for the number of terms in regression 
model. TheR2-adj increases only if the new term improves 
the regression model. On the other hand, it decreases when 
the term does not improve the regression model. Thus, 
R2-adj allow one to compare the explanatory power of 
regression models that contain different number of terms. 
Predictive R2 (R2-pred) indicates how well a regression 
model predicts output responses for new observations. 
R2-pred is calculated by systematically removing each 
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observation from the data set, estimating the regression 
equation, and determining how well the model predicts 
the removed observation. R2-adj and R2-pred are always 
lower than R2.

In addition, variability due to lack-of-fit of regression 
model should be compared to the variability due to random 
pure error in order to assess regression model adjustment 

(Table VI). Regression model is poorly adjusted when 
the error provided by regression model lack-of-fit is 
significantly higher than random pure error (p-value < 
0.05). On the other hand, when the error provided by 
regression model lack-of-fit is significantly lower than 
random pure error (p-value > 0.05), it indicates that the 
regression model is well fitted. It is important to notice 

FIGURE 6 – Response surface and counter plots for linear (a), linear + interaction (b), linear + quadratic, and full (d) model functions.
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that lack-of-fit error can be estimated only when the 
experimental design includes replicas, usually for central 
point.

Defining Design Space (DS) / Method Operable 
Design Region (MODR)

Design Space (DS) is  a  mult idimensional 
combination and interaction of input factors (usually CMA 
and CPP) that have been proofed to provide assurance of 
quality, and consequently, safety and efficacy. Moving 
the input factors within the design space regions is not 
considered a modification subject to notification, which 
ensure regulatory flexibility (Yu et al., 2014).

In analytical QbD, Method Operable Design 
Region (MODR) (also called analytical design space) 

is the multidimensional combination and interaction 
of analytical conditions (input factors; for example, 
chromatographic conditions) that have been demonstrated 
to provide assurance performance of analytical method 
(output response; for example, resolution between peaks) 
(Bhutani et al., 2014).

Design space region may be obtained by graphical 
optimization from overlaid counter plots of output 
responses (Ys) as functions of input factors (Xs) (Figure 
7). Alternatively, multiple response optimization may be 
estimated by numerical technics of desirability functions. 
Desirability functions are usually design to achieve 
different criteria, for example to maximize, minimize, 
and target optimization of the output responses (Figure 8) 
(Candioti et al., 2014).

TABLE VI – Analysis of variance (ANOVA) used in multiple regression analysis to evaluate regression significance, residual error, 
and lack-of-fit adjustment

Source d.f. SS MS F

Regression p – 1
   

Residuals n – p
  

 

Lack-of-fit m – p
   

Pure error n – m
  

 

Total n – 1
 

  

Legend: d.f. = degrees of freedom, SS = sum of squares, MS = mean square, F = F-test statistics.

FIGURE 7 – Design space (white regions) obtained from counter plot of output response Y1 (a), from counter plot of output response 
Y2 (b), and from overlaid counter plot of output responses Y1 and Y2 (c) as function of input factors X1 and X2.
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Implementing control strategy and Continuous 
improvement

Control strategy is required to ensure that critical 
material attributes (CMA) and critical process parameters 
(CPP) are within the expected limits. Obviously, control 
space should be within the design space (Sangshetti et 
al., 2017). Analytical Process Technology (PAT) is an 
important tool in control strategy implementation, once it 
enables real-time release testing and provides an increased 
level of quality assurance compared to conventional end-
product testing. However, PAT is not the only way to 
implement real-time release. Predictive models may also 
be used as an alternative to conventional release testing 
(Yu et al., 2014; Zhang, Mao, 2017).

In analytical QbD, control strategy is derived 
from the data collected during method development 
and validation, which enables to predict the ability of 
method to meet analytical target profile (ATP) (Peraman, 
Bhadraya, Reddy, 2015). Continuous monitoring of 
method performance allows to detect, identified, and 
address out-of-trend performance of the analytical method 
(Peraman, Bhadraya, Reddy, 2015).

The QbD approach al lows the continuous 
improvement throughout the lifecycle of pharmaceutical 

product and analytical method, including to reduce 
product variability, to improve process performance, to 
reduce out-of-specification results, to improve analytical 
performance, among others.

APPLICATIONS OF DESIGN OF EXPERIMENTS 
IN QbD AND AQbD

Quality by Design approach was accepted by FDA 
in 2004 and described in ‘pharmaceutical cGMPs for 21st 
century – a risk-based approach’. International conference 
on harmonization (ICH) Q8 pharmaceutical development, 
Q9 quality risk assessment, and Q10 pharmaceutical 
quality system provide detailed requirements regarding 
pharmaceutical product quality. QbD and DoE approaches 
help to implement ICH/Q8 and ICH/Q9.

Since QbD approach was accepted by FDA, DoE 
has been widely employed in order to provide a complete 
understanding of the product and its manufacturing 
process. Many applications of DoE used for screening 
and optimization purposes of pharmaceutical products 
and their manufacturing processes may be found in the 
literature. Several input factors (independent variables), 
such as excipient concentrations, stirring time, stirring 
speed, temperature, pressure, among other may be 
screened and optimized using DoE. Studied output 
responses (dependent variables) included particle size, 
entrapment efficiency, dissolution rate, among other. Some 
examples of DoE applications were showed in Table VII.

Application of screening designs in pharmaceutical 
QbD allow to identify the critical material attributes 
(CMAs) and critical process parameters (CPPs) 
(independent variables) affecting the critical quality 
attributes (CQAs) (dependent variables) and, therefore, 
the quality target product profile (QTPP). In addition, 
optimizing design and surface response methodology and 
multiple response optimization allow to define a design 
space region in which CQAs and QTPP are attended. The 
adoption of a design space region based on product and 
process understanding allow regulatory flexibility, because 
changes within the design space region do not require prior 
regulatory approval.

Recently, DoE has been used in the rational 
development and optimization of analytical methods. 
Culture media composition, mobile phase composition, 
flow rate, time of incubation are examples of input 
factors (independent variables) that may the screened and 
optimized using DoE. Several output responses (dependent 
variables), such as retention time, resolution between 
peaks, microbial growth, among other responses were 
found in literature. Table VIII shows some applications 

FIGURE 8 – Desirability functions to maximize (a), minimize 
(b), and target optimization, usually used in multiple response 
optimization.
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TABLE VII – Examples of DoE applications for pharmaceutical development, experimental design adopted, independent variables 
(input factors – Xs), and dependent variables (output responses – Ys)

Experimental 
design Independent variables (Xs) Dependent variables (Ys) Reference

Fractionate factorial 
design

Indomethacin concentration, stabilizer type, 
stabilizer concentration, processing temperature, 
and homogenization pressure

Particle size distribution, zeta potential, and 
physical form (XRD) of nanosuspensions

(Verma et al., 
2009)

Fractionate factorial 
design and central 
composite design

Inlet air temperature, air flow rate and binder 
spray rate during the sprying phase

Moisture of granules and flow through an orifice 
of the granules obtained by fluid bed granulation

(Lourenço et al., 
2012)

3-level factorial 
design

Span 60 : Sodium lauryl sulfate ratio, organic 
: aqueous phase volume ratio, and polymer 
concentration

Emulsion phase stability, viscosity, and 
conductivity

(Badawi, 
El-Khordahui, 

2014)
Box-Behnken 
design

Sodium alginate percentage, chitosan percentage, 
and calcium chloride percentage

Maximum drug encapsulation, particle size and 
drug release of cefpodoxime proxetil chitosan-
alginate beads

(Muftaba, Ali, 
Kohli, 2014)

2-level factorial 
design

Amount of oil (capmul MCM), amount of 
surfactant (tween 80), and amount of cosolvent 
(Transcutol HP)

Globule size, span, equilibrium solubility 
of cilostazol, zeta potential, and dissolution 
e f f i c i e n c y  a t  3 0  m i n  o f  l i p i d  b a s e d 
nanoemulsifying cilostazol

(Pund, Shete, 
Jagadale, 2014)

Multiple response 
optimization

Concentrat ions of  imidazolidinyl  urea, 
methyparaben, propylparaben, and EDTA in 
cosmetic formulations

Slopes from microbial curves of Burkholderia 
c e p a c i a ,  P s e u d o m o n a s  a e r u g i n o s a , 
Staphylococcus aureus, Candida albicans, and 
Aspergillus brasiliensis

(Lourenço et al., 
2015)

Central composite 
design

Percentage of HPMC, percentage of glycerol, 
and drying temperature

Thickness, weight, tensile strength, elongation at 
break, young’s modulus, and disintegration time 
of oroldispersible films

(Visser et al., 
2015)

2-level factorial 
design

Kneading temperature, impeller speed, liquid 
addition, extrusion speed, spheronizer speed, and 
spheronization time

Activity, hardness, and roundness of pellets for 
oral lysozyme delivery

(Sovàny et al., 
2016)

Box-Behnken 
design

Lipid, lipid oil, and surfactand phase Particle size, entrapment, permeation flux, and 
percentage release of aceclofenac loaded-nano 
structured lipid carriers

(Garg et al., 
2017)

Central composite 
design

Combination ratio of Eudragit®FS-30D / 
Eudragit® RS-PO, PVA concentration in 
external phase, and NaCl concentration on 
external phase

Size of microspheres, encapsulation efficiency 
of enoxaparin sodium, percentages released over 
24h in gastric, duodenal and colonic media

(Hales et al., 
2017)

2-level factorial 
design

Surfactant concentration, solid/liquid lipid 
ration, and ultrasonication time

Particle size and particle size distribution of 
nanostructured lipid carriers containing salicylic 
acid for dermal use

(Kovács et al., 
2017)

Box-Behnken 
design

Amount of surfactant/cosurfactant mixture, 
p r o c e s s i n g  p r e s s u r e  a n d  n u m b e r  o f 
homogenization cycles

Globule size, size distribution (PDI), percentage 
transmittance, and drug release of silymarin 
nanoemulsion

(Nagi et al., 
2017)

2-level factorial 
design

Concentrat ions of  ethylhexyl  t r iazone, 
bemotrizinol, and ferulic acid in multifunctional 
sunscreens

Antioxidant activity, and UVA and UVB 
radiation

(Peres et al., 
2017)

3-level factorial 
design

Poloxamer 188, and acetone to methanol ratio Particle size, and entrapment efficiency of 
efavirenz loaded solid lipid nanoparticles

(Raina, Kaur, Jindal, 
2017)

3-level factorial 
design

Oil to surfactant/cosurfactant ratio and 
concentration of gellan gum

In vitro drug release and viscosity at physiological 
pH of a microemulsion of lorazepam via 
intranasal route

(Shah et al., 
2017)

2-level factorial 
design

Hydration temperature, stirring speed, and 
stirring time

Polydispersity index of miltefosine-loaded 
polymeric micelles

(Valenzuela-Oses 
et al., 2017)
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TABLE VIII – Examples of DoE applications for analytical methods development, experimental design adopted, independent 
variables (input factors – Xs), and dependent variables (output responses – Ys)

Experimental 
design Independent variables (Xs) Dependent variables (Ys) Reference

Fractionate factorial 
design and central 
composite design

Culture media compositions (peptone, yeast 
extract, beef extract, and dextrose), inoculum 
proportion, triphenyltetrazolium concentration, 
and neomycin concentration

Microbial growth of Escherichia coli (Francisco et al., 
2014)

2-level factorial 
design and central 
composite design

Microorganism, culture media, volume of seeded 
culture medium, inoculum proportion, and 
linezolid concentration

Inhibition zone sizes (Saviano, Francisco, 
Lourenço, 2014)

Central composite 
design

pH, temperature, flow rate, and gradient slope Retention t ime, efficiency,  and solvent 
consumption in stability indicating UHPLC 
method

(Bousses et al., 
2015)

Box-Behnken 
design

Acetonitrile content in mobile phase, pH of water 
phase, and ammonium acetate concentration in 
water phase

Retention time of exo-iohexol, endo-iohexol, 
and their related compound (A, B, and C) using 
liquid chromatographic method

(Jovanovic et al., 
2015)

2-level factorial 
design and central 
composite design

Time of incubation (after LAL reagent addition 
and after substrate solution addition), volume of 
sample, and volume of LAL reagent

Release of p-nitroaniline during chromogenic 
LAL assays

(Ostronoff, 
Lourenço, 2015)

Fractionate factorial 
design and central 
composite design

Cul ture  media  composi t ions  (peptone, 
yeast extract, beef extract, dextrose, and 
sodium choride), inoculum proportion, and 
triphenyltetrazolium concentration

Microbial growth of Staphylococcus aureus (Saviano et al., 
2015)

2-level factorial 
design and central 
composite design

Culture media composition (yeast extract, 
dex t rose ,  bee f  ex t r ac t ,  and  pep tone ) , 
triphenyltetrazolium concentration, and 
inoculum proportion

Incubation time and microbial growth of 
Staphylococcus aureus

(Francisco et al., 
2016)

Central composite 
design

Triphenyltetrazolium concentration, incubation 
time, nystatin concentration, and inoculum 
proportion

Absorbance of microbial growth of Candida 
albicans

(Jamil et al., 2
016)

3-level factorial 
design

Tetrabutyl ammonium hydroxide concentration, 
buffer pH and organic phase concentration

Capacity factor of eberconazole nitrate (reverse 
phase HPLC method)

(Krishna et al., 
2016)

Central composite 
design

Cyclodextrin concentration, pH, and voltage Resolution between peaks and analysis time of 
a clycodextrin-modified micellar electrokinetic 
chromatography

(Orlandini et al., 
2016)

Box-Behnken 
design

Acetonitrile content in mobile phase, ammonium 
acetate concentration in the aqueous phase, and 
pH of aqueous phase

Retention factor of impurity and selectivity 
of cri t ical  peal  pair  in bilast ine and i ts 
degradation impurities determination by liquid 
chromatographic method

(Terzic et al., 
2016)

Placket-Burman 
design

Temperature, pH, buffer concentration, and 
L-asparaginase concentration

Absorvance at 450 nm, usedfor L-asparaginase 
activity method

(Yao et al., 
2016)

Fractionate factorial 
design

Time of dissolution, volume of dissolution 
media, pH of dissolution media, and rotation 
speed

Amount of acetaminophen dissolved during (Romero, Lourenço, 
2017)

as recent examples of the utilization of DoE in the 
development and optimization of analytical methods.

DoE tools help to identify and explain how critical 
analytical parameters (CAPs) (independent variables) 
affects the analytical method performance characteristics 
(AMPC) (dependent variables) and, therefore, the 
analytical target profile (ATP). MODR may be defined 

based on DoE results. Working within MODR would not 
be considered as change, consequently it does not require 
method revalidation. Recently, FDA has approved new 
drug application based on analytical QbD. Implementation 
of AQbD provides robust analytical methods, which 
plays significant role in drug product development.In 
2013, FDA and EMA initiated a joint research program 
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concerning the AQbD concept. The objective is to define 
protocols for method transfer, methodology for validation 
of MODR, and define review criteria for evaluation of 
QbD based analytical methods. Also, USP Forum has 
published stimuli articles concerning to application of 
AQbD concepts.

The challenges for QbD and AQbD implementation 
include the harmonization of terminologies and concepts, 
training and education of human resources for industries 
and regulatory agencies, and the need of guidelines 
regarding documentation of knowledge generate during 
pharmaceutical and/or method development.
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