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To improve the teaching-learning process in the Medicinal Chemistry course, new strategies have been 
incorporated into practical classes of this fundamental discipline of the pharmaceutical curriculum. 
Many changes and improvements have been made in the area of medicinal chemistry so far, and students 
should be prepared for these new approaches with the use of technological resources in this field. 
Practical activities using computational techniques have been directed to the evaluation of chemical and 
physicochemical properties that affect the pharmacokinetics of drugs. Their objectives were to allow 
students to know these tools, to learn how to access them, to search for the structures of drugs and to 
analyze results. To the best of our knowledge, this is the first study in Brazil to demonstrate the use of 
computational practices in teaching pharmacokinetics. Practical classes using Osiris and Molinspiration 
were attractive to students, who developed the activities easily and acquired better theoretical knowledge.

Uniterms: Medicinal chemistry/teaching-learning process. Pharmacy/education. Cheminformatics. 
Pharmacokinetics/teaching. Drugs/molecular properties/teaching. 

Para melhorar o processo ensino-aprendizagem no curso de Química Medicinal novas estratégias estão 
sendo incorporadas às aulas práticas desta disciplina fundamental do currículo farmacêutico. Muitas 
mudanças e melhorias vêm marcando a área de química medicinal e por isso é importante que os alunos 
sejam colocados nestas novas abordagens na área, com a utilização de recursos tecnológicos. As atividades 
práticas foram direcionadas para a avaliação dos dados químicos e físico-químicos de fármacos que 
influenciam as propriedades farmacocinéticas com o auxílio de técnicas computacionais. Os objetivos 
foram permitir aos alunos conhecer essas ferramentas, saber como acessá-las, procurar as estruturas 
de fármacos e analisar os resultados. Este é o primeiro estudo publicado no Brasil que apresenta aula 
prática computacional sobre o tema farmacocinética. As aulas práticas utilizando os servidores Osiris e 
Molinspiration foram atraentes para os alunos, que desenvolveram as atividades com maior facilidade 
e sedimentaram o conhecimento teórico adquirido em sala de aula.

Unitermos: Química medicinal/processo ensino-aprendizagem. Farmácia/educação. Quimioinformática. 
Farmacocinética/ensino. Fármacos/propriedades moleculares/ensino.

INTRODUCTION

To improve the teaching-learning process in the 
Medicinal Chemistry course, new strategies have been 
incorporated into practical classes of this fundamental dis-
cipline of the pharmaceutical curriculum. Many changes 
and improvements have marked the area of medicinal 
chemistry so far, so it is important that students be prepared 
for these new approaches in this field and for the use of 

technological resources. Some of the innovations adapted 
to the practical lessons of this discipline are the use of 
molecular modeling methods (Brito, 2011; Andrade et al., 
2010; Carvalho et al., 2003) and in silico toxicological 
evaluation of drugs (Brito et al., 2010). In the Medicinal 
Chemistry course, lessons cover various topics involving 
the pharmacokinetic phase. In this sense, classes become 
easier to understand, and contents, easier to learn when 
students can search and see practical contextualized results 
of this rule applied to drugs. Practical classes were offered 
in coordination with the specific contents of the theoretical 
lectures. Importantly, the practices were performed using 
free software that students could access easily and whose 
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use other educational institutions might also implement. In 
this study we demonstrate the use and applications of com-
putational tools that facilitate the learning of Lipinski’s 
rule of five (Ro5) and other pharmacokinetic concepts.

Pharmacokinetic phase

In the content of the Medicinal Chemistry lessons, there 
are topics that discuss the pharmaceutical, pharmacokinetic 
and pharmacodynamic phases. The pharmaceutical phase 
refers to drug administration routes (enteral or parenteral) 
and pharmaceutical form (tablet, solution, etc.). The phar-
macokinetic phase has four steps: absorption, distribution, 
metabolism and excretion (ADME). Recently, a phase for the 
toxicological evaluation of new drug candidates has been in-
corporated into it, resulting in the ADME-Tox study. Finally, 
the pharmacodynamic phase deals with drug-macromolecule 
interactions in structurally specific drugs (Knittel, Zavod, 
2008; Thomas, 2003; Korolkovas, Burckhalter, 1988).

The importance of pharmacokinetic properties in 
drug design

The process of designing and developing a drug de-
mands investments in Research & Development (R&D) of 
the order of millions of dollars and decades of work by a 
multidisciplinary team. Estimates indicate a cost of $ 800 
million to 1.4 billion and about 15-25 years from conception 
to the last phase of clinical research (Davis, Riley, 2004). 
Thus, to optimize time and costs, new tools have been intro-
duced in the process of evaluating a drug candidate (Tang 
et al., 2006) and an efficient ADME-Tox study is essential 
to select promising compounds that have higher odds of not 
being discarded in the clinical phase. The use of scientific 
and technological innovations, combining multidisciplinary 
knowledge with information technology, biotechnology, 
chemistry and biology, translates into safer and more effec-
tive planning (Kadan, Roy, 2007; Geldenhuys et al., 2006). 

A major challenge for the development of a drug is 
the evaluation of its ADME-Tox properties in humans. The 
analysis of the pharmacokinetic profile of a drug candidate 
is performed in vitro and in vivo by testing its solubility, 
absorption, permeability and metabolites, among other 
parameters (Biswas et al., 2006).

Lipinski’s rule of five and other criteria

Lipophilicity and solubility are the key molecular 
properties in the absorption of a drug. Pharmacokinetic pa-
rameters were first approached theoretically in 1997 when 
Lipinski and coworkers published the Rule of Five (Ro5) 

based on the study of properties of 2245 drugs of the World 
Drug Index (WDI) database approved for Phase II clinical 
trials (Lipinski et al., 1997). Used to predict the oral bio-
availability of a drug, this rule is based on physicochemical 
characteristics of the tested compounds, including: 
(i) clogP ≤ 5; 
(ii) Molecular weight (MW) ≤ 500 g/mol; 
(iii) Number of hydrogen bond acceptors (HBA) (sum 

of N and O atoms) ≤ 10,
(iv) Number of hydrogen bond donors (HBD) (sum of 

OH and NH groups) ≤ 5.
Other related criteria were added later (Veber et al., 

2002): 
(v) Number of rotatable bonds (nRotb) ≤ 10,
(vi) Polar surface area (PSA) < 140 Å2. 

The simplicity of these criteria to remove outlier 
molecules made them very easy to implement with the use 
of specific software. Thus, the Ro5 moved rapidly up in the 
hierarchy of medicinal chemistry concepts, from being a 
set of alert criteria in the minds of the medicinal chemists 
to a commandment engraved in the high altars of do’s and 
don’ts of drug seekers (Abad-Zapatero, 2007).

Drugs that are administered intravenously are excep-
tions to Ro5 because they do not undergo absorption; the 
same exception applies to other therapeutic classes that act 
as substrates for intestinal transporters (Lipinski, 2004).

Computational tools

In silico approaches are now widely used to study the 
important parameters that may guide medicinal chemist 
in evaluating chemical and physicochemical properties 
of a compound. As these parameters influence pharma-
cokinetic properties, the main objective of the in silico 
studies is to avoid unnecessary expenses associated with 
biological assays of compounds with a high probability 
of presenting future pharmacokinetic problems, and thus 
save time and investments (Kadan, Roy, 2007).

The tendency to use software is steadily growing, es-
pecially in research centers and universities. Importantly, 
however, in silico predictions do not replace or disqualify 
experimental tests, and both should work in partnership 
with each other. Experimental in vitro and in vivo pharma-
cokinetics tests are uniquely important for the evaluation 
of a new drug and, therefore, indispensable.

Understanding that pharmacokinetic properties of 
compounds are closely associated with their chemical 
structure, experimental data are stored in computer data-
bases, and a large number of experimental observations 
are compared with the structural and physicochemical 
properties. These properties can be used to perform 
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computer-assisted in silico screenings (Tetko et al., 2006). 
The reliability of theoretical models is dependent on the 
information contained in databases, which have been 
gradually released by the pharmaceutical industry. These 
models also undergo challenge tests to determine their 
degree of confidence (Kadan, Roy, 2007).

Two good examples of free computational tools 
which help to predict pharmacokinetic properties of drug 
candidates are Osiris (http://www.organic-chemistry.org/
prog/peo/, Actelion Pharmaceuticals, Ltd.) and Molin-
spiration (www.molinspiration.com/chemoinformatics.
html). Several research groups are using pharmacokinetic 
parameters calculated both in Osiris and Molinspiration to 
evaluate their molecules of biological interest (Chohan et 
al., 2010; Jarrahpour et al., 2010; Andrighetti-Frohner et 
al., 2009; Silva et al., 2009; Mishra et al., 2009; Chen et 
al., 2009; Cunico et al., 2009; Perez-Pineiro et al., 2009; 
Vera-DiVaio et al., 2009).

Properties calculated using Osiris 

Osiris can calculate lipophilicity, expressed as clogP, 
solubility in water, expressed as logS, molecular weight, 
drug-likeness indices and drug scores. Moreover, the toxi-
cological properties of the compounds may be shown, but 
this feature was not explored in this practical class. The 
description of a computational medicinal chemistry class 
involving in silico toxicology can be found in Brito, 2010.

Properties calculated using Molinspiration

In Molinspiration, we worked with lipophilicity, 
expressed as clogP, PSA index, nRotb and HBA/HBD 
counts. However, this website offers tools to calculate 
other properties, such as volume and total number of atoms 
in the molecule.

Analyzing the different approaches, the practical 
activities on the computer were directed to the evaluation 
of chemical and physicochemical data that influence the 
pharmacokinetic properties of a drug using computational 
techniques. Specific objectives were to allow the students 
to know these tools, to learn how to access them, to search 
for the structure of drugs and to analyze results. 

MATERIAL AND METHODS

The drugs chosen belong to three different thera-
peutic classes:
(i)  β-adrenergic antagonists: propranolol and pindolol 

(non-selective β2), metoprolol and atenolol (selec-
tive β2) (Figure 1);

(ii)  Quinolone antibiotics: nalidixic acid (1st genera-
tion), ciprofloxacin (2nd generation), moxifloxacin 
(3rd generation) and trovafloxacin (4th generation) 
(Figure 2);

(iiii)  HMG-CoA reductase inhibitors: simvastatin, fluvas-
tatin, atorvastatin and pitavastatin (Figure 3).

FIGURE 1 - Non-selective β2 (pindolol and propranolol) and 
selective β2 (metoprolol and atenolol) adrenergic antagonists.

FIGURE 2 - Quinolone antibiotics from first to fourth generation.

FIGURE 3 - HMG-CoA reductase inhibitors.
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The students performed searches for the chemical 
structures of drugs, their molecular weight (MW), experi-
mental logP (elogP), pharmacological receptor and uses 
of each drug class in the DrugBank (www.drugbank.ca). 
The DrugBank database is a unique bioinformatics and 
cheminformatics resource that combines detailed drug 
data (i.e., chemical, pharmacological and pharmaceutical) 
with comprehensive drug target information (i.e. sequence, 
structure, and pathway) (Wishart et al., 2008). The data-
base contains nearly 4,800 drug entries including >1,350 
FDA-approved small molecule drugs, 123 FDA-approved 
biotech (protein/peptide) drugs, 71 nutraceuticals and 
>3,243 experimental drugs. Additionally, more than 2,500 
non-redundant protein (i.e., drug target) sequences are 
linked to these FDA-approved drug entries (Wishart et 
al., 2006).

After that search, they drew each structure on Mo-
linspiration and Osiris servers, where they obtained and 
visualized the results. After tabulating them to facilitate 
comparisons, we conducted a discussion in class, and then 
they wrote their reports.

The practical course of Medicinal Chemistry is 
taught to students attending the sixth semester of the 
School of Pharmacy of the Fluminense Federal University 
(UFF), in addition to theoretical classes.

RESULTS AND DISCUSSION

One of the topics discussed in the Medicinal 
Chemistry classes is that high oral bioavailability is an 
important factor for the optimization of bioactive mol-
ecules as therapeutic agents. Passive intestinal absorption 
(associated with MW and logP), reduced molecular flex-
ibility (measured by nRotb), low PSA or total hydrogen 
bond counts (HBA and HBD) are important predictors of 
good oral bioavailability. Lipinski used these molecular 
properties when formulating his Ro5. This rule is widely 
used as a filter for drug-like properties, and we used these 

data to discuss our computational practice (Lipinski et 
al., 2001).

β-ADRENERGIC ANTAGONISTS

β-adrenergic antagonists are used primarily to con-
trol hypertension. The drugs chosen for this practice are 
chemically classified as aryloxypropanolamines (Griffith, 
2008). Propranolol is a drug used for migraine prevention, 
because, as it is the most lipophilic drug, it can penetrate 
the blood brain barrier (BBB) more easily. Pindolol and 
propranolol are non-selective antagonists, binding to 
both the β1 to β2 adrenergic receptors, and are, therefore, 
contraindicated for patients with asthma. As atenolol and 
metoprolol are selective for the β2 adrenoreceptor, they 
are more safely used in those patients. 

Table I shows molecular pharmacokinetic properties 
calculated for the β-adrenergic antagonists with Molinspi-
ration and Osiris.

The chemical structures of these compounds (Fi-
gure 1) show that propranolol is the most lipophilic drug 
because of the naphthyl ring. Next is pindolol, which has 
an indole ring and is more hydrophilic than the naphthyl 
propranolol; then comes metoprolol, and finally, atenolol. 
Students noted that the exchange of the functional group 
ether in metoprolol for the amide in atenolol ensured a 
greater hydrophilic character to atenolol, probably due 
to the increased possibility of forming a hydrogen bond 
between the -NH2 of the amide group and water molecules. 

Experimental logPs and calculated logSs (Table I) fol-
lowed the same order: propranolol >> pindolol > metoprolol 
> atenolol. Students observed that estimated logPs also 
followed the same order both using Osiris and Molinspira-
tion. Compared with elogP, the greatest error in clogP was 
0.37 for metoprolol, and the greatest accuracy was 0.03 for 
propranolol, both calculated using Molinspiration.

The calculated PSA values for the drugs ranged 
from 41.5 Å2 (propranolol) to 84.5 Å2 (atenolol). Accord-

TABLE I - Molecular pharmacokinetic properties calculated for the β-adrenergic antagonists with Molinspiration and Osiris

Drug MW elogP
Osiris Molinspiration

clogP logS DL DS clogP PSA HBD HBA nRotb
Pindolol 248 1.9 1.7 -2.49 7.21 0.55 1.98 57.3 3 4 6
Propranolol 259 3 2.81 -3.57 5.73 0.67 2.96 41.5 2 3 6
Metoprolol 267 1.6 1.8 -2.09 7.50 0.56 1.97 50.7 2 4 9
Atenolol 266 0.5 0.41 -2.02 7.90 0.27 0.72 84.5 4 5 8 
Abbreviations: Molecular weight (MW, g/mol), experimental logP (elogP), lipophilicity (clogP), solubility (logS), drug-likeness 
(DL), drug score (DS), polar surface area (PSA, Å2), number of hydrogen bond donor (HBD) and acceptor (HBA) groups, number 
of rotatable bonds (nRotb)
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ing to Kelder et al., a PSA value less than 60 Å2 tends to 
identify CNS-active compounds (Kelder et al., 1999). In 
this sense, students were able to see why propranolol is 
the only drug of the four under study that can be used in 
migraine prevention, i.e., the only one that has good pen-
etration into the BBB.

A traditional method to evaluate drug-likeness is to 
check compliance to Lipinski’s Ro5, which includes the 
numbers of hydrophilic groups, molecular weight and 
hydrophobicity (Lipinski, 2000). The drugs under study 
showed good results when analyzed using Lipinski’s Ro5. 
The analysis of calculated drug-likeness for these drugs 
revealed that atenolol achieved the best index, 7.90. 

The drug scores attributed by Osiris combine drug-
likeness, clogP, logS, MW and toxicity risks into a value 
that may then be used to judge the compound’s overall 
potential to qualify as a drug. This value is calculated by 
multiplying contributions of the individual properties. 
Table I shows that atenolol received the worst drug score, 
0.27. This probably occurred because atenolol has toxicity 
risks (mutagenic, irritant and reproductive) according to 
Osiris (Figure 4). Students conducted searches in medici-
nal chemistry and pharmacology books and did not find 
any mention of these toxicity risks of atenolol (Griffith, 
2008; Westfall, Westfall, 2006).

The nRotb parameter is a measure of molecular flex-
ibility and a very good descriptor of the oral bioavailability 
of drugs (Veber et al., 2002). Rotatable bond is defined as 
any single non-ring bond, bonded to non-terminal heavy 
atom (i.e., non-hydrogen). For the drugs in Table I, metopro-
lol had the highest nRotb value (9). Atenolol has eight rotat-
able bonds, as amide C-N bonds are not considered because 
of their high rotational energy barrier (Veber et al., 2002).

Quinolones

Quinolones are completely synthetic antibiotics 
classified into four generations (Mitscher et al., 2008). 

FIGURE 4 - Osiris results for atenolol.

Nalidixic acid belongs to the 1st generation and is used only 
in uncomplicated infections of the lower urinary tract. The 
main structural difference from the 1st to the 2nd generation 
is the fluorine atom at position 6 of the quinolone ring. 
Ciprofloxacin is one of the main drugs of this generation 
in terms of sales. The main difference from the 2nd to the 
3rd generation, exemplified by moxifloxacin, is the single 
daily dose, and from the 3rd to the 4th generation (trova-
floxacin) the main difference is the activity against anaer-
obes (Mitscher et al., 2008). The analysis of the structures 
(Figure 2) reveals that these drugs tend to become more 
lipophilic from generation to generation. 

After analyzing the chemical structures of these 
compounds (Figure 2) it was easy for students to under-
stand why there is a systematic increase in the experimen-
tal logP (Table II): as the number of hydrocarbon chains 
increases, so does lipophilicity.

According to Table II there were significant clogP 
variations for the quinolones in both Osiris and Molinspi-
ration. Compared with Molinspiration, Osiris predicted 
logP with minor errors, except for nalidixic acid, for which 

TABLE II - Molecular pharmacokinetics properties calculated for quinolones using Molinspiration and Osiris

Drug MW elogP
Osiris Molinspiration

clogP logS DL DS clogP PSA HBD HBA nRotb
Nalidixic Ac. 232 2.1 0.48 -2.67 1.58 0.18 0.81 72.2 1 5 2
Ciprofloxacin 331 2.3 0.13 -3.32 2.07 0.39 -0.70 74.5 2 6 3
Moxifloxacin 401 2.9 0.58 -4.23 1.6 0.32 0.39 83.8 2 7 4
Trovafloxacin 416 3.7 1.51 -6.03 1.37 0.39 0.80 101.4 3 7 3
Abbreviations: Molecular weight (MW, g/mol), experimental logP (elogP), lipophilicity (clogP), solubility (logS), drug-likeness 
(DL), drug score (DS), polar surface area (PSA, Å2), number of hydrogen bond donor (HBD) and acceptor (HBA) groups, number 
of rotatable bonds (nRotb)
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there was an error of ca. 0.6. The highest accuracy was 
predicted by Molinspiration for the nalidixic acid, with 
an error of ca. 0.3.

The analysis according to Lipinski’s Ro5 revealed 
that all compounds showed good results in relation to MW, 
logP, HBD and HBA groups. Compared with previous se-
ries, these drugs have greater MW and more HBA groups.

The quinolone drugs showed worse drug-likeness 
values and drug scores than the drugs studied previously.

The PSA values calculated for the drugs ranged from 
72.2 Å2 (nalidixic acid) to 101.4Å2 (trovafloxacin). 

For these drugs, nRotb values were well below the 
previous series, indicating low flexibility.

HMG-CoA reductase inhibitors

These drugs are members of the class known as 
statins. They inhibit the catalytic site of HMG-CoA reduc-
tase, the rate-determining enzyme located in hepatic tissue 
that produces mevalonate, a small molecule used in the 
synthesis of cholesterol and other mevalonate derivatives 
(Harrold, 2008). This lowers the amount of cholesterol 
produced, which in turn lowers the total amount of LDL 
cholesterol. They are useful in the treatment of hiperlip-
idemia. 

These drugs have greater structural variability 
than those of other classes and the highest lipophilicity, 
expressed by their experimental and calculated logPs 
(Table III). The most lipophilic drug is atorvastatin (with 
elogP=5.7). In fact, atorvastatin has four aromatic rings, 
one more than the other drugs. 

The analysis of logP revealed that both servers calcu-
lated the simvastatin lipophilicity (4.7) with no error, but 
in general Osiris was more accurate in the calculations for 
fluvastatin and atorvastatin, with an error of 0.2 for both. 
The logS values were the largest when compared with the 
other series. The highest value was -6.92 for atorvastatin.

All compounds showed good results in the analysis 

of Lipinski’s Ro5 for MW, logP, and HBA/HBD counts, 
except atorvastatin clogP, which was greater than 5 (5.7), 
and MW, greater than 500 g/mol (558 g/mol), the limits 
of Lipinski’s Ro5. Moreover, the nRotb value (12) shows 
high flexibility for this drug. These results showed that 
atorvastatin violates two of the four criteria of the Ro5 and 
nRotb, which indicates problems with oral bioavailability.

Atorvastatin was launched by the Warner Lambert 
Co. (acquired by Pfizer) under the trade name Lipitor™ in 
1997. Since 2001, Lipitor has been the leading product 
in global pharmaceutical sales, reaching $13.6 billion in 
2006 (Hajkova et al., 2008). It was the first drug to reach 
the annual sales of $10 billion in the US and is currently 
the top selling pharmaceutical product globally.

Our findings show that the Ro5 criteria are very use-
ful in selecting better compounds in chemolibraries, but 
they must be used carefully and cautiously to avoid the 
possible exclusion of promising compounds.

CONCLUSIONS

Computational classes using Osiris and Molinspira-
tion were attractive to students, who developed the activi-
ties with ease and acquired better theoretical knowledge. 
The reports handed in by students showed good sedimen-
tation and maturation of knowledge on the topic of the 
classes. In the informal internal evaluation of the practices, 
all students said that the use of in silico tools contributed 
greatly to their understanding of the content. Of the dif-
ficulties encountered, the most frequent was to understand 
the entirely new concept of PSA. The lessons certainly 
contributed to a better teaching-learning relationship.

Both programs have advantages and disadvantages. 
The advantage of Molinspiration is to provide more data 
(polar surface area, hydrogen bond donor and hydrogen 
bond acceptor) than Osiris. The advantage of Osiris is to 
provide values for drug-likeness and drug scores. Both are 
free software easily accessed by any student.

TABLE III - Molecular pharmacokinetics properties calculated for the HMG-CoA reductase inhibitors using Molinspiration and Osiris

Drug MW elogP
Osiris  Molinspiration

clogP logS DL DS logP PSA HBD HBA nRotb
Simvastatin 418 4.7 4.79 -4.75 0.67 0.43 4.76 72.83 1 5 7
Fluvastatin 411 4.5 4.32 -4.68 -0.05 0.43 4.13 82.69 3 5 8
Atorvastatin 558 5.7 5.55 -6.92 1.03 0.22 5.25 111.78 4 7 12
Pitavastatin 421 - 4.59 -6.37 1.08 0.36 3.91 90.64 3 5 8
Abbreviations: Molecular weight (MW, g/mol), experimental logP (elogP), lipophilicity (clogP), solubility (logS), drug-likeness 
(DL), drug score (DS), polar surface area (PSA, Å2), number of hydrogen bond donor (HBD) and acceptor (HBA) groups, number 
of rotatable bonds (nRotb)
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However, we should be very cautious about relying 
too heavily on the Ro5 criteria, for two reasons: first, there 
are examples of successful drugs (i.e., atorvastatin) that are 
notable violators of the Ro5; and second, we should never 
underestimate the impact of highly improbable events on 
our theories and preconceived notions. This rule is very 
useful to select better compounds in chemolibraries, but 
it must be used carefully and according to specific criteria 
to avoid the possible exclusion of promising compounds.

Drug-likeness indices are inherently limited tools. 
Drug-likeness can be estimated for any molecule, and does 
not evaluate the actual specific effect of a drug (biological 
activity). Furthermore, first-pass metabolism, which is 
biochemically selective, may destroy the pharmacologi-
cal activity of a compound despite its good drug-likeness.

Lipinski’s rule of five has not been included in many 
of the medicinal chemistry books yet, which raises the pos-
sibility of creating a contextualized computational practice 
that may enhance teaching and learning.

ACKNOWLEDGEMENTS

I gratefully acknowledge the financial support 
provided by Pró-Reitoria de Pesquisa, Pós-Graduação e 
Inovação (PROPPi) of Universidade Federal Fluminense.

REFERENCES

ABAD-ZAPATERO, C. A Sorcerer’s apprentice and the rule 
of five: from rule-of-thumb to commandment and beyond. 
Drug Disc. Today, v.12, p.995-998, 2007.

AJAY; WALTERS, W. P.; MURCKO, M. A. Can we learn 
to distinguish between “drug-like” and “nondrug-like” 
molecules? J. Med. Chem., v.41, p.3314-3324, 1998.

ANDRADE, C.H.; TROSSINI, G.H.G.; FERREIRA, E.I. 
Modelagem molecular no ensino de química farmacêutica. 
Rev. Eletr. Farm., v.7, p.1-23, 2010.

ANDRIGHETTI-FROHNER, C.R.; DE OLIVEIRA, K.N.; 
GASPAR-SILVA, D.; PACHECO, L.K.; JOUSSEF, A.C.; 
STEINDEL, M.; SIMOES, C.M.O.; DE SOUZA, A.M.T.; 
MAGALHAES, U.O.; AFONSO, I.F.; RODRIGUES, 
C.R.; NUNES, R.J.; CASTRO, H.C. Synthesis, biological 
evaluation and SAR of sulfonamide 4-methoxychalcone 
derivatives with potential antileishmanial activity. Eur. J. 
Med. Chem., v.44, p.373-383, 2009.

BISWAS, D.; ROY, S.; SEN, S. A Simple Approach for Indexing 
the Oral Druglikeness of a Compound: Discriminating 
Druglike Compounds from Nondruglike Ones. J. Chem. 
Inf. Model., v.46, p.1394-1401, 2006.

BLAKE, J. F. Chemoinformatics - predicting the physicochemical 
properties of ‘druglike’ molecules. Curr. Opin. Biotech., 
v.11, p.104-107, 2000.

BRITO, M. A. Explicando resistência a fármacos: o caso da 
transcriptase reversa do HIV-1. Rev. Eletr. Farm., v.8, 
p.88-107, 2011.

BRITO, M. A. Avaliação de propriedades toxicológicas de 
fármacos in silico no curso experimental de química 
medicinal. Rev. Eletr. Farm., v.7, p.22-29, 2010.

BRÜSTLE, M.; BECK, B.; SCHINDLER, T.; KING, W.; 
MITCHELL, T.; CLARK, T. Descriptors, physical 
properties, and drug-likeness. J. Med. Chem., v.45, p.3345-
3355, 2002.

CARVALHO, I.; PUPO, M.T.; BORGES, A.D.L.; BERNARDES, 
L.S.C. Introdução a modelagem molecular de fármacos no 
curso experimental de química farmacêutica. Quim. Nova, 
v.26, p.428-438, 2003.

CHEN, Y.; ZHU, Q.J.; PAN, J.; YANG, Y.; WU, X.P. A 
prediction model for blood-brain barrier permeation and 
analysis on its parameter biologically. Comp. Meth. Progr. 
Biomed., v.95, p.280-285, 2009.

CHOHAN, Z.H.; YOUSSOUFI, M.H.; JARRAHPOUR, 
A.; BEN HADDA, T. Identification of antibacterial and 
antifungal pharmacophore sites for potent bacteria and fungi 
inhibition: indolenyl sulfonamide derivatives. Eur. J. Med. 
Chem., v.45, p.1189-99, 2010.

CLARK, D. E.; PICKETT, S. D. Computational methods for 
the prediction of drug-likeness. Drug Disc. Today, v.5, 
p.49-58, 2000.

CUNICO, W.; GOMES, C.R.B.; FACCHINETTI, V.; 
MORETH, M.; PENIDO, C.; HENRIQUES, M.G.M.O.; 
VAROTTI, F.P.; KRETTLI, L.G.; KRETTLI, A.U.; 
DA SILVA, F.S. Synthesis, antimalarial evaluation and 
molecular modeling studies of hydroxyethylpiperazines, 
potential aspartyl protease inhibitors. Eur. J. Med. Chem., 
v.44, p.3816-3822, 2009.



M. A. Brito804

DA SILVA, F.D.; DE SOUZA, M.C.B.V.; FRUGULHETTI, 
I.I.P.; CASTRO, H.C.; SOUZA, S.L.D.; DE SOUZA, 
T.M.L.; RODRIGUES, D.Q.; SOUZA, A.M.T.; ABREU, 
P.A.; PASSAMANI, F.; RODRIGUES, C.R.; FERREIRA, 
V.F. Synthesis, HIV-RT inhibitory activity and SAR of 
1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. 
Eur. J. Med. Chem., v.44, p.373-383, 2009.

DAVIS, A. M.; RILEY, R. J. Predictive ADMET studies, the 
challenges and the opportunities. Curr. Op. Chem. Biol., 
v.8, p.378-386, 2004.

ERTL, P.; ROHDE, B.; SELZER, P. Fast calculation of 
molecular polar surface area as a sum of fragment-based 
contributions and its application to the prediction of drug 
transport properties. J.Med.Chem., v.43, p.3714-3717, 
2000. 

GELDENHUYS, W. J.; GAASCH, K. E.; WATSON, M.; 
ALLEN, D. D.; VAN DER SCHYF, C. J. Optimizing the 
use of open-source software applications in drug discovery. 
Drug Disc. Today, v.11, p.127-132, 2006.

GRIFFITH, R.K. Adrenergic receptors and drugs affecting 
adrenergic neurotransmission. In: LEMKE, T.L.; 
WILLIAMS, D.A., (Eds.). Foye´s principles of medicinal 
chemistry. 6.ed. New York: Lippincott Williams & Wilkins, 
2008. p.392-416.

HAJKOVA, M.; KRATOCHVILA, B.; RADL, S. Atorvastatin 
- The world’s best selling drug. Chem. Listy, v.102, p.3-14, 
2008. 

HARROLD, M. Antihyperlipoproteinemics and inhibitors of 
cholesterol biosynthesis. In: LEMKE, T.L.; WILLIAMS, 
D.A., (Eds.). Foye´s principles of medicinal chemistry. 6.ed. 
New York: Lippincott Williams & Wilkins, 2008. p. 1375.

JARRAHPOUR, A.; MOTAMEDIFAR, M.; ZAREI, M.; 
YOUSSOUFI, M.H; MIMOUNI, M.; CHOHAN, Z.H.; 
BEN HADDA, T. Petra, Osiris, and Molinspiration together 
as a guide in drug design: predictions and correlation 
structure/antibacterial activity relationships of new 
n-sulfonyl monocyclic β-lactams. Phosphorus, Sulfur 
Silicon Relat. Elem., v.185, p.1563-5325, 2010.

KADAN, R. U.; ROY, N. Recent trends in drug likeness 
prediction: a comprehensive review of in silico methods. 
Ind. J. Pharm. Sci., v.69, p.609-615, 2007.

KELDER, J.; GROOTENHUIS, P.D.; BAYADA, D.M.; 
DELBRESSINE, L.P.; PLOEMEN, J.P. Polar molecular 
surface as a dominating determinant for oral absorption 
and brain penetration of drugs. Pharm. Res., v.16, p.1514-
1519, 1999.

KNITTEL, J.J.; ZAVOD, R.M. Drug design and relationship of 
functional groups to pharmacologic activity. In: LEMKE, 
T.L.; WILLIAMS, D.A., (Eds.). Foye´s principles of 
medicinal chemistry. 6.ed. New York: Lippincott Williams 
& Wilkins, 2008. p.26-53.

KOROLKOVAS, A; BURCKHALTER, J.H. Química 
Farmacêutica. São Paulo: Ed. Guanabara Koogan, 1988. 
783 p.

LIPINSKI, C. A. Lead- and drug-like compounds: the rule-of-
five revolution. Drug Disc. Today: Technol., v.1, p.337-341, 
2004.

LIPINSKI, C. A.; LOMBARDO, F.; DOMINY, B. W.; FEENEY, 
P. J. Experimental and computational approaches to 
estimate solubility and permeability in drug discovery and 
development settings. Adv. Drug Deliv. Rev., v.46, p.3-26, 
2001.

LIPINSKI, C. A. Drug-like properties and the causes of poor 
solubility and poor permeability. J. Pharmacol. Toxicol. 
Methods, v.44, p.235-249, 2000.

LIPINSKI, C. A.; LOMBARDO, F.; DOMINY, B. W.; FEENEY, 
P. J. Experimental and computational approaches to 
estimate solubility and permeability in drug discovery and 
development settings. Adv. Drug Deliv. Rev., v.23, p.3-25, 
1997.

MITSCHER, L.A.; LEMKE, T.L.; GENTRY, E.J. Antibiotics 
and antimicrobial agents. In: LEMKE, T.L.; WILLIAMS, 
D.A., (Eds.). Foye´s principles of medicinal chemistry. 
6.ed. New York: Lippincott Williams & Wilkins, 2008. 
p.1028-1083.

MOLINSPIRATION Property Calculation Service. Available 
at: <www.molinspiration.com/chemoinformatics.html>. 
Accessed on: 28 Apr. 2011.

MUEGGE, I.; HEALD, S. L.; BRITELLI, D. Simple selection 
criteria for drug-like chemical matter. J. Med. Chem., v.44, 
p.1841-1846, 2001.



Pharmacokinetic study with computational tools in the medicinal chemistry course 805

OPREA, T. I.; DAVIS, A. M.; TEAGUE, S. J.; LEESON, P. D. 
Is there a difference between leads and drugs? A historical 
perspective. J. Chem. Inf. Comput. Sci., v.41, p.1308-1315, 
2001.

PEREZ-PINEIRO, R.; BURGOS, R.; JONES, A.; ANDREW, 
D.C.;RODRIGUEZ, L.C.; SUAREZ, H.; FAIRLAMB, 
M.; WISHART, A.H.; DAVID, S. Development of a novel 
virtual screening cascade protocol to identify potential 
trypanothione reductase inhibitors. J. Med. Chem., v.52, 
p.1670-1679, 2009.

PROUDFOOT, J. R. Drugs, leads, and drug-likeness: an analysis 
of some recently launched drugs. Bioorg. Med. Chem. Lett., 
v.12, p.1647-1650, 2002.

SINGH, M.H.; LAHIRI, N.; KRISHNA, T.M. A comparative 
study on the molecular descriptors for predicting drug-
likeness of small molecules. Bioinformation, v.3, p.384-
386, 2009.

TANG, Y.; ZHU, W.; CHEN, K.; JIANG, H. New technologies 
in computer-aided drug design: toward target identification 
and new chemical entity discovery. Drug Disc. Today 
Techn., v.3, p.307-313, 2006.

TETKO, I. V.; BRUNEAU, P.; MEWES, H.; ROHRER, D. 
C.; PODA, G. I. Can we estimate the accuracy of ADMET 
predictions? Drug Disc. Today, v.11, p.700-707, 2006.

THOMAS G. Fundamentals of Medicinal Chemistry. London: 
John Wiley & Sons, 2003. 410 p.

VEBER, D. F.; JOHNSON, S. R.; CHENG, H-Y.; SMITH, 
B.R.;WARD, K. W.; KOPPLE, K. D. Molecular properties 
that influence the oral bioavailability of drug candidates. J. 
Med. Chem., v.45, p.2615-2623, 2002.

VEBER, D.F.; JOHNSON, S.R.; CHENG, H.-Y.; SMITH, B.R.; 
WARD, K.W.; KOPPLE, K.D. Molecular properties that 
influence the oral bioavailability of drug candidates. J. Med. 
Chem., v.45, p.2615-2623, 2002.

VERA-DIVAIO, M.A.F.; FREITAS, A.C.C.; CASTRO, 
H.C.; DE ALBUQUERQUE, S. C., RODRIGUES, 
C.R.; ALBUQUERQUE, M.G.; MARTINS, R.C.A.; 
HENRIQUES, M.G.M.O.; DIAS, L.R.S. Synthesis, 
antichagasic in vitro evaluation, cytotoxicity assays, 
molecular modeling and SAR/QSAR studies of a 2-phenyl-
3-(1-phenyl-1H-pyrazol-4-yl)-acrylic acid benzylidene-
carbohydrazide series. Bioorg. Med. Chem., v.17, p.295-
303, 2009.

WESSEL, M. D.; JURS, P. C.; TOLAN, J. W.; MUSKAL, 
S. M. Prediction of human intestinal absorption of drug 
compounds from molecular structure. J. Chem. Inf. Comput. 
Sci., v.38, p.726-735, 1998.

WESTFALL, T.C.; WESTFALL, D.P. Agonistas e antagonistas 
adrenérgicos.  In:  Goodman & Gilman. As Bases 
Farmacológicas da Terapêutica. 11.ed. Rio de Janeiro: 
McGrawHill, 2006. p.961-1002.

WISHART, D.S. ;  KNOX, C.;  GUO, A.C.;  CHENG, 
D.; SHRIVASTAVA, S.; TZUR, D.; GAUTAM, B.; 
HASSANALI, M. DrugBank: a knowledgebase for drugs, 
drug actions and drug targets. Nucleic Acids Res., v.36, 
p.901-906, 2008. 

WISHART, D.S.; KNOX, C.; GUO, A.C.; SHRIVASTAVA, 
S.; HASSANALI, M.;, STOTHARD, P.; CHANG, Z.; 
WOOLSEY, J. DrugBank: a comprehensive resource for 
in silico drug discovery and exploration. Nucl. Acids Res., 
v.34, p.668-672, 2006.

Received for publication on 21st April 2011
Accepted for publication on 04th October 2011




