EXPERIMENTS IN SQUARE LATTICE WITH A COMMON TREATMENT IN ALL BLOCKS*

F. Pimentel Gomes**
GLAUCO P. ViEGAS***

SUMMARY

This paper deals with a generalization of square lattice designs, with k^{2} treatments in blocks of $\mathrm{k}+1$ plots, the extra plot in each block receiving a standard treatment, the same for all blocks. The new design leads to lower variances for contrasts between adjusted treatment means

INTRODUCTION

Since a long time ago, the Instituto Agronômico de Campinas, a research institute located in Campinas, São Paulo, Brasil, uses for its experiments with corn (maize) varieties and hybrids, square lattices with k^{2} treatments and blocks of $\mathrm{k}+1$ plots, the extra plot in each block receiving a standard variety or hybrid, the same for all blocks, not included among the k^{2} original treatments. It is clear, therefore, that these square lattice experiments include, on the whole, $\mathrm{k}^{2}+1$ treatments in blocks of $\mathrm{k}+1$ plots. For example, in a 3^{2} lattice, with 2 orthogonal replications, and treatments $1,2, \ldots, 9$, plus treatment A (standard variety), the blocks would be as follows:

Block 1: 123 A
Block 2: 456 A
Block 3: 789 A
Block 4: 147 A
Block 5: 258 A
Block 6: 369 A
This paper deals with the intrablock analysis of these designs.

1. INTRABLOCK ANALYSIS

In these designs we have $\mathrm{v}=\mathrm{k}^{2}+1$ treatments in a square lattice with \mathbf{m} orthogonal replications, $b=m k$ blocks, of $k+1$ plots. There are k^{2} regular treatments $(1,2, \ldots$, k^{2}), plus a common treatment A . The parameter λ_{ij} is equal to $\mathbf{1}$ for regular treatments

[^0]that appear in the same block (first associates), equal to zero for regular treatments that do not appear in the same block (second associates). But when one of the treatments in the common one, the $\lambda_{i j}=\mathrm{m} . \mathrm{S}_{\mathrm{o}}$, the normal equations (KEMPTHORNE, 1952;PIMENTEL GOMES, 1969) will have coefficients
\[

$$
\begin{aligned}
& c_{i i}=m\left(1 \cdot \frac{1}{k+1}\right)=\frac{m \mathrm{k}}{\mathrm{k}+1}, \\
& c_{\mathrm{ij}}=-\frac{1}{\mathrm{k}+1} \text { (first associates), } \\
& \mathrm{c}_{\mathrm{ij}}=0 \text { (second associates), } \\
& c_{\mathrm{iA}}=\frac{m}{\mathrm{k}+1} \quad \text { (a regular treatment and the common treatment), } \\
& \mathrm{c}_{\mathrm{AA}}=m \mathrm{~m}\left(1-\frac{1}{\mathrm{k}+1}\right)=\frac{m \mathrm{k}^{2}}{\mathrm{k}+1}
\end{aligned}
$$
\]

For the example above, the equation corresponding to treatment $\mathbf{1}$ is:

$$
\frac{m k}{k+1} t_{1}-\frac{1}{k+1} t_{2}-\frac{1}{k+1} t_{3}-\frac{1}{k+1} t_{4} \cdot \frac{k 1}{k+1} t_{7}-\frac{1}{k+1} t_{A}=Q_{1}
$$

and for treatment A (common) it is:

$$
-\frac{m}{k+1} t_{1} \cdot \frac{m}{k+1} t_{2} \cdot \ldots \cdot \frac{m}{k+1} t_{9}+\frac{m^{2}}{k+1} t_{A}=Q_{A} .
$$

Since matrix $\mathrm{C}=\left(\mathrm{c}_{\mathrm{ij}}\right)$ is singular, we introduce a restriction for the treatments effects, which can be

$$
\sum_{i=1}^{k^{2}} t_{i}+k t_{A}=0
$$

The solution of the system of normal equation gives then:

$$
\begin{gathered}
\hat{\mathfrak{t}}_{A}=-\frac{1}{m k} Q_{A}, \\
\hat{\mathfrak{t}}_{\mathrm{i}}=\frac{1}{m} \mathrm{Q}_{\mathrm{i}}+\frac{1}{\mathrm{k}(\mathrm{mk}-\mathrm{k}+\mathrm{m})} \mathrm{Q}_{\mathrm{A}}+\frac{1}{m(\mathrm{mk}-\mathrm{k}+\mathrm{m})}\left[\mathrm{S}_{1}\left(\mathrm{Q}_{\mathrm{i}}\right)+\mathrm{S}_{2}\left(\mathrm{Q}_{\mathrm{i}}\right)+\ldots+\mathrm{S}_{\mathrm{m}}\left(\mathrm{Q}_{\mathrm{i}}\right)\right],
\end{gathered}
$$

where $S_{j}\left(Q_{i}\right)$ is the sum of Q 's in the $j^{\text {th }}$ replication, in the block where the i th treatment appears.

The sum of squares for treatments (adjusted) is:
$\operatorname{SST}($ adjusted $)=\frac{1}{m} \Sigma Q_{i}^{2}+\frac{m-1}{m(m k-k+1)} Q_{A}^{2}+\frac{1}{m(m k \cdot k+m)} \sum_{j, j}, S_{j j}^{2},(Q)$,
where $S_{j j}(Q)$ is the sum of $Q^{\prime} s$ in the $j^{\prime \text { th }}$ block of the $j^{\text {th }}$ replication.
So the analysis of variance is obtained as explained in table 1.

TABLE 1 - Analysis of variance.

Source of variation	D.F.	S.S.
Replications	$\mathrm{m}-1$	As usual
Blocks within replications (unadjusted)	$\mathrm{m} \mathrm{(k-1)}$	As usual
Treatments (adjusted)	k^{2}	By formula
Residual	By subtraction	By subtraction
Total	$\mathrm{mk}(\mathrm{k}+1)-1$	As usual

The adjusted treatment means are:

$$
\hat{\mathrm{m}}_{\mathrm{i}}=\frac{\mathrm{G}}{\mathrm{mk}(\mathrm{k}+1)}+\hat{\mathrm{t}}_{\mathrm{i}} \quad, \quad \hat{\mathrm{~m}}_{\mathrm{A}}=\frac{\mathrm{G}}{\mathrm{mk}(\mathrm{k}+1)}+\hat{\mathrm{t}}_{\mathrm{A}},
$$

where G is the grand total of all plots.

2. CGNTRASTS BETWEEN TREATMENT MEANS

There are 3 cases to be studied.
$1^{\text {st }}$ associates: Two regular treatments occurring in the same block, for instance, treatments 1 and 2 in the example above:

$$
\mathrm{V}\left(\hat{\mathrm{~m}}_{\mathrm{i}}-\hat{\mathrm{m}}_{\mathrm{j}}\right)=\frac{2 \sigma^{2}}{\mathrm{~m}}\left[1+\frac{\mathrm{m}-1}{\mathrm{mk}-\mathrm{k}+\mathrm{m}}\right] .
$$

$2^{\text {nd }}$ associates: Two regular treatments which do not occur in the same block, for instance treatments 1 and 6 in the example above:

$$
\mathrm{V}\left(\hat{\mathrm{~m}}_{\mathrm{i}}-\hat{\mathrm{m}}_{\mathrm{j}}\right)=\frac{2 \sigma^{2}}{\mathrm{~m}}\left[1+\frac{\mathrm{m}}{\mathrm{mk} \cdot \mathrm{k}+\mathrm{m}}\right]
$$

3rd associates: A regular treatment and the common treatment:

$$
\mathrm{V}\left(\hat{\mathrm{~m}}_{\mathrm{i}}-\hat{\mathrm{m}}_{\mathrm{A}}\right)=\sigma^{2}\left[\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{mk}}+\frac{\mathrm{k}-1}{\mathrm{k}(\mathrm{mk} \cdot \mathrm{k}+\mathrm{m})}\right]
$$

3. EXAMPLE OF ANALYSIS

We shall take as example a 5×5 square lattice with 4 orthogonal replications and a common treatment A present in all blocks. The experiment was carried out with corn (maize), and harvest expressed in $\mathrm{kg} / \mathrm{ha}$ (Table 2).

For treatments $1,2, \ldots, 25$ and A we compute now the totals $T_{i}(i=1,2, \ldots$, $25, \mathrm{~A}$) and the adjusted treatment totals

$$
\mathrm{Q}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}}-\Sigma_{\mathrm{j}} \frac{\mathrm{n}_{\mathrm{ij}}}{\mathrm{k}+1} \mathrm{~B}_{\mathrm{j}},
$$

where $N=\left(n_{i j}\right)$ is the incidence matrix, and B_{j} is the total of block j. It is known that the incidence matrix is obtained from elements $n_{i j}$, with $n_{i j}=1$ if treatment i occurs in block j , and $\mathrm{n}_{\mathrm{ij}}=0$, if it does not occur.

However, it is easier to calculate $Q_{i}^{\prime}=(k+1) Q_{i}$, as done in Table 3. We have:

$$
\begin{gathered}
T_{1}=22,194 \\
Q_{1}^{\prime}=6 Q_{1}=6 T_{1}-\left(B_{4}+B_{6}+B_{11}+B_{17}\right)= \\
=6 \times 22,194-(35,150+37,957+34,078+33,002)=7,023 \\
Q_{A}^{\prime}=6 Q_{A}=6 \times 113,169-678,476=538 .
\end{gathered}
$$

TABLE 2 - Yields, in $\mathrm{kg} / \mathrm{ha}$, or corn (maize) in the quadruple square lattice, with a common treatment in all blocks, used as example.

$\begin{aligned} & \text { Block } \\ & \text { N } \mathrm{O} \end{aligned}$							Block Totals
$1^{\text {st }}$ replicate							
1	6,126 (5)	6,497 (11)	6,309 (8)	6,271 (19)	5,743 (22)	6,602 (A)	37,548
2	6,809 (2)	6,642 (10)	5,111 (13)	4,646 (24)	5,240 (16)	6,173 (A)	34,621
3	3,670 (4)	6,899 (7)	5,770 (21)	4,167 (18)	4,195 (15)	6,430 (A)	31,131
4	6,610 (12)	7,166 (20)	5,925 (23)	5,332 (1)	5,509 (9)	4,608 (A)	35,150
5	6,175 (14)	7,413 (3)	5,768 (6)	6,059 (17)	5,704 (25)	7,202 (A)	38,321
							176,771
$2^{\text {nd }}$ replicate							
6	6,218 (1)	6,692 (18)	6,621 (10)	6,321 (14)	6,318 (22)	5,787 (A)	37,957
7	5,580 (2)	5,586 (15)	4,682 (23)	6,155 (19)	8,237 (6)	5,487 (A)	35,727
8	6,199 (25)	3,844 (4)	5,549 (12)	5,550 (16)	6,480 (8)	4,844 (A)	32,466
9	5,960 (11)	5,019 (24)	6,300 (7)	6,993 (20)	5,996 (3)	6,280 (A)	36,548
10	6,986 (17)	5,191 (9)	7,204 (5)	6,999 (21)	6,394 (13)	6,001 (A)	38,775
							181,473
3 rt replicate							
11	6,350 (25)	6,519 (1)	5,195 (13)	6,187 (19)	5,412 (7)	4,415 (A)	34,078
12	4,542 (8)	4,330 (20)	5,580 (2)	3,847 (21)	4,339 (14)	5,273 (A)	27,911
13	4,491 (4)	6,285 (17)	4,927 (11)	3,998 (23)	3,846 (10)	6,044 (A)	29,591
14	5,374 (22)	5,690 (15)	4,230 (3)	4,177 (9)	5,416 (16)	5,165 (A)	30,052
15	6,064 (6)	5,992 (18)	5,780 (5)	5,102 (24)	4,692 (12)	4,887 (A)	31,817
							153,449
$4^{\text {th }}$ replicate							
16	6,052 (7)	6,439 (6)	6,600 (10)	5,855 (8)	7,160 (9)	6,687 (A)	38,793
17	4,125 (1)	5,822 (2)	2,956 (4)	7,022 (5)	7,804 (3)	5,273 (A)	33,002
18	4,235 (13)	4,867 (11)	4,734 (15)	6,342 (14)	7,691 (12)	5,744 (A)	33,613
19	5,199 (16)	3,985 (20)	5,029 (19)	4,998 (18)	6,223 (17)	4,823 (A)	30,257
20	5,129 (29)	5,880 (25)	3,609 (24)	5,718(23)	5,538(22)	6,044 (A)	31,118
							166,783

Formulas given in section 2 can be easily changed to use $\mathrm{Q}^{\prime}=$ values instead of Q - values. We obtain:

$$
\hat{\mathrm{t}}_{\mathrm{A}}=\frac{1}{\mathrm{mk}(\mathrm{k}+1)} \mathrm{Q}_{\mathrm{A}}^{\prime}=(1 / 120) 538=4.5 \approx 4 .
$$

$$
\begin{aligned}
& \hat{\mathrm{t}}_{1}=\frac{1}{m(k+1)} \mathrm{Q}_{j}^{\prime}+\frac{1}{k(k+1)(m k-k+m)} Q_{A}^{\prime}+ \\
& +\frac{1}{(k+1) m(m k-k+m)}\left[S_{1}\left(Q_{i}^{\prime}\right)+S_{2}\left(Q_{i}^{\prime}\right)+\ldots+S_{m}\left(Q_{1}^{\prime}\right)\right]= \\
& =(1 / 24)(-7,023)+(1 / 570)(538)+(1 / 456)(-20,403)=-336 .
\end{aligned}
$$

TABLE 3 - Data analized, with values of T_{i}, Q_{i} and m_{i} for each treatment.

$\begin{gathered} \text { Treat. } \\ \text { no } \end{gathered}$	$\begin{aligned} & 1^{\text {st }} \\ & \text { rep. } \end{aligned}$	$\begin{aligned} & 2^{\text {nd }} \\ & \text { rep. } \end{aligned}$	$\begin{aligned} & 3 \text { rd } \\ & \text { rep. } \end{aligned}$	$\begin{aligned} & 4^{\text {th }} \\ & \text { rep. } \end{aligned}$	T_{i}	Q^{\prime}	m_{i}
1	5,332	6,218	6,519	4,125	22.194	- 7,023	5,318
2	6,809	5,580	5,580	5,822	23.791	11,485	6,146
3	7,413	5,996	4,230	7,804	25.443	14,735	6,369
4	3,670	3,844	4,491	2,956	14.961	-36,424	3,948
5	6,126	7,204	5,780	7,022	26.132	15,650	6,406
6	5,768	8,237	6,064	6,439	26.508	14,390	6,466
7	6,899	6,300	5,412	6,052	24.663	7,428	5,899
8	6,309	6,480	4,542	5,855	23.186	2,398	5,846
9	5,509	5,191	4,177	7,160	22.037	-10,548	5,241
10	6,642	6,621	3,846	6,600	23.709	1,292	5,606
11	6,497	5,960	4,927	4,867	22.251	- 3,794	5,440
12	6,610	5,549	4,692	7,691	24.542	14,206	6,211
13	5,111	6,394	5,195	4,235	20.935	-15,477	4,927
14	6,175	6,321	4,339	6,342	23.177	1,260	5,829
15	4,195	5,586	5,690	4,734	20.205	- 9,293	5,175
16	5,240	5,550	5,416	5,199	21.405	1,034	5,660
17	6,059	6,986	6,285	6,223	25.553	16,374	6,451
18	4,167	6,692	5,892	4,998	21.749	- 668	5,636
19	6,271	6,155	6,187	5,029	23.642	4,242	5,941
20	7,166	6,993	4,330	3,985	22.474	4,978	5,948
21	5,770	6,999	3,847	5,129	21.745	1,535	5,642
22	5,743	6,318	5,374	5,538	22.973	1,163	5,673
23	5,925	4,682	3,998	5,718	20.323	- 9,648	5,130
24	4,646	5,019	5,102	3,609	18.376	-23,848	4,589
25	5,704	6,199	6,350	5,080	23.333	4,015	5,827
A	6,602	5,787	4,415	6,687			
	6,173	5,487	5,273	5,273			
	6,430	4,844	6,044	5,744			
	4,608	6,280	5,165	4,823			
	7,202	6,001	4,287	6,044	113,169	538	5,658

On the other hand, we have:

$$
\begin{aligned}
& \hat{\mathrm{m}}_{1} \hat{=} 5,654-336=5,318 \\
& \hat{\mathrm{~m}}_{\mathrm{A}}=5,654+4=5,658
\end{aligned}
$$

The sum of squares for treatment (adjusted) is:

$$
\begin{aligned}
\operatorname{SST}(\text { adjusted }) & =\frac{1}{m(k+1)^{2}} \Sigma Q_{i}^{\prime 2}+\frac{m-1}{m(k+1)^{2}(m k-k+m)} Q_{A}^{\prime 2}+ \\
& +\frac{1}{m(k+1)^{2}(m k-k+m)} \mathrm{j}_{\mathrm{j}} \Sigma_{\mathrm{j}}, S_{\mathrm{jj}}^{2},\left(\mathrm{Q}_{\mathrm{i})}^{\prime}\right.
\end{aligned}
$$

$$
\text { SST (adjusted) }=(1 / 144) 3,888,633,692+(1 / 912) 289,444+
$$

$$
+(1 / 2,736) 9,235,411,576=30,380,234
$$

The analysis of variance obtained is given in Table 4.

TABLE 4 - Analysis of variance of data in table 2.

Source of variation	D.F.	S.S.	M.S.	F
Blocks	19	$35,779,509$		
Treatments (adjusted)	25	$30,380,234$	$1,215,209$	1.67^{*}
Error	75	$54,631,221$	728,416	

For first assuciates we have:

$$
\hat{\mathrm{V}}\left(\hat{\mathrm{~m}}_{\mathrm{i}}-\hat{\mathrm{m}}_{\mathrm{j}}\right)=\frac{2(728,416)}{4}(1+3 / 19)=(0.5789) 728,416=421,680
$$

For second associates the estimate of variance is:

$$
\hat{V}\left(\hat{\mathrm{~m}}_{\mathrm{i}}-\hat{\mathrm{m}}_{\mathrm{u}}\right)=\frac{2(728,416)}{4}(1+4 / 19)=(0.6053) 728,416=440,910
$$

Finally, for a contrast between the common treatment and any other treatment we have:

$$
\hat{V}\left(\hat{\mathrm{~m}}_{\mathrm{i}}-\hat{\mathrm{m}}_{\mathrm{A}}\right)=728,416\left(\frac{1}{4}+\frac{1}{20}+-\frac{1}{76}\right)=247,278 .
$$

For the usual 5×5 square lattice we should obtain:

$$
\hat{\mathrm{V}}\left(\hat{\mathrm{~m}}_{\mathrm{i}}-\hat{\mathrm{m}}_{\mathrm{u}}\right)=0.6000 \mathrm{~s}^{2}
$$

for first associates, and

$$
\hat{V}\left(\hat{\mathrm{~m}}_{\mathrm{i}}-\hat{\mathrm{m}}_{\mathrm{u}}\right)=0.6333 \mathrm{~s}^{2}
$$

for second associates. We conclude, therefore, that the new design gives lower estimates for these variances.

RESUMO

O Instituto Agronômico de Campinas vem, há muitos anos, utilizando, nos seus ensaios de milho, reticulados quadrados com k^{2} tratamentos em blocos de $\mathrm{k}+1$ parcelas, sendo a parcela extra de cada bloco cultivada com um cultivar padrão (variedade ou híbrido), não incluído entre os k^{2} tratamentos originais. Conclui-se, pois, que esses delineamentos incluem $\mathrm{k}^{2}+1$ tratamentos, em blocos de $\mathrm{k}+1$ parcelas.

O presente trabalho deduz fórmulas para a análise da variância desses delineamentos, e para a estimação das médias ajustadas de tratamentos. Fórmulas para a variância de diversos contrastes são deduzidas. Finalmente, apresenta-se um exemplo, detalhadamente analisado, de urn ensaio em reticulado quadrado com $\mathrm{k}^{2}=25$, e 4 repetições ortogonais, instalado com 26 cultivares, em blocos de 6 parcelas.

LITERATURE CITED

KEMPTHORNE, O., 1952. The Design and Analysis of Experiments. John Wiley \& Sons, New York.
PIMENTEL GOMES, F., 1968. The Solution of Normal Equations of Experiments in Incomplete Blocks. Ciência e Cultura, 20:733-746.

[^0]: * Received for publication in 21/11/1975.
 ** Department of Mathematics and Statistics, ESALQ/USP.
 *** Fundação Cargill.

