

University of Nebraska Medical Center DigitalCommons@UNMC

Posters and Presentations: Nebraska ASAP

Nebraska Antimicrobial Stewardship Assessment and Promotion Program

Spring 4-25-2019

Improving Antimicrobial Stewardship Programs in Small Community Hospitals Through an Assessment and Feedback Model

Philip Chung

Nebraska Medicine, pchung@nebraskamed.com

Kate Tyner

Nebraska Medicine, ltyner@nebraskamed.com

Scott Bergman

Nebraska Medicine, scbergman@nebraskamed.com

Terry Micheels

Nebraska Medicine, tmicheels@nebraskamed.com

Mark Rupp
University of Nebraska Medical Center, merupp@unmc.edu

Follow this and additional works at: https://digitalcommons.unmc.edu/asap_pres See next page for additional authors

Part of the Infectious Disease Commons, and the Public Health Commons

Recommended Citation

Chung, Philip; Tyner, Kate; Bergman, Scott; Micheels, Terry; Rupp, Mark; Schwedhelm, Michelle; Tierney, Maureen; Ashraf, Muhammad Salman; and Van Schooneveld, Trevor, "Improving Antimicrobial Stewardship Programs in Small Community Hospitals Through an Assessment and Feedback Model" (2019). *Posters and Presentations: Nebraska ASAP*. 2.

https://digitalcommons.unmc.edu/asap_pres/2

This Poster is brought to you for free and open access by the Nebraska Antimicrobial Stewardship Assessment and Promotion Program at DigitalCommons@UNMC. It has been accepted for inclusion in Posters and Presentations: Nebraska ASAP by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.

Authors Philip Chung, Kate Tyner, Scott Bergman, Terry Micheels, Mark Rupp, Michelle Schwedhelm, Maureen Tierney, Muhammad Salman Ashraf, and Trevor Van Schooneveld

Improving Antimicrobial Stewardship Programs in Small Community Hospitals Through an Assessment and Feedback Model

NEBRASKA
Good Life. Great Mission.

DEDT OF HEALTH AND HUMAN SERVI

Philip Chung, PharmD, MS, BCIDP¹, Kate Tyner, BSN, RN, CIC¹, Scott Bergman, PharmD, BCPS^{1,2}, Terry Micheels, MSN, RN, CIC¹, Mark E. Rupp, MD^{1,2}, Michelle Schwedhelm, MSN, RN¹, Maureen Tierney, MD, MSc³, Muhammad Salman Ashraf, MBBS^{1,2}, Trevor Van Schooneveld, MD^{1,2}

¹Nebraska Medicine and ²University of Nebraska Medical Center, Omaha, NE; ³Nebraska Department of Health and Human Services, Healthcare-Associated Infection Team, Lincoln, NE

Contact Information:
Philip Chung
988173 Nebraska Medicine
Omaha, NE 68198-8173
Email: pchung@nebraskamed.com
Website: asap.nebraskamed.com

BACKGROUND

- Small community hospitals (SCH) often lack expertise and resources for antimicrobial stewardship program (ASP) implementation
- The CDC recommends collaboration with ASP experts in these situations
- The Nebraska Antimicrobial Stewardship Assessment and Promotion Program
 (ASAP) is a statewide initiative supported by the NE Department of Health and
 Human Services, Healthcare-Associated Infection/Antimicrobial Resistance
 Team through a CDC grant
- The mission of the program is to assist healthcare facilities in acute, long-term and ambulatory care settings implement ASP and other initiatives to improve antimicrobial use

METHODS

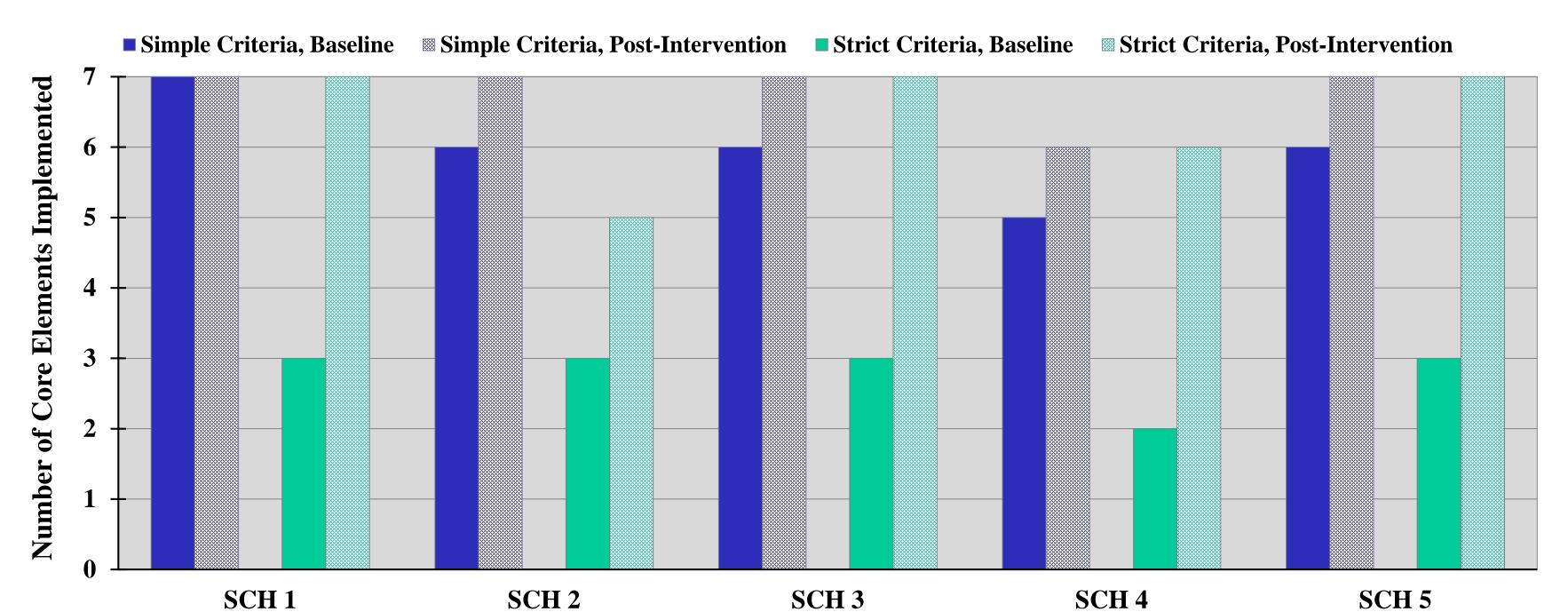
- ASAP performed onsite evaluation of antimicrobial stewardship efforts in 5 SCH in April to June 2017 using a 54-item survey based on CDC ASP core elements (CE) via in-person interview of ASP committee members
- Following onsite assessments, ASAP provided facility-specific recommendations for ASP implementation, and periodically contacted these SCH to support and follow progress for 12 months
- The following ASP metrics obtained 6 to 12 months before and after onsite visits were compared:
 - Number of ASP core elements met
 - * Extent of ASAP recommendations implemented
 - Levofloxacin usage in days of therapy (DOT) / 1000 patient-days (PD)
 - \bullet Susceptibilities of E coli to commonly tested antimicrobials
 - ❖ Incidence of hospital-onset *Clostridioides difficile* infection (HO-CDI)

RESULTS

Table 1. Baseline Characteristics of Small Community Hospital Assessed (N = 5)

Baseline Characteristics*	No. of Facilities
Bed size – median (range)	25 (10-161) beds
Average census – median (range)	7 (3-77) beds
Availability of infectious diseases/antimicrobial stewardship-trained physician	1
Availability of infectious diseases/antimicrobial stewardship-trained pharmacist	0
Formed multidisciplinary antimicrobial stewardship team	5
Team member responsible for daily antimicrobial stewardship activities	
Pharmacist	3
Infection Preventionist	2

^{*} Data are presented as number of facilities except bed size and average census


Table 2. Comparison of Baseline and Post-Intervention Antimicrobial Stewardship Metrics

Parameters	Baseline	Post- Intervention			
Number of facilities meeting all core elements based on simple criteria*	1	4			
ASAP recommendations provided at baseline and implemented post-intervention	48	38			
Levofloxacin days of therapy/1000 patient-days—mean (SD) [†]	114.7 (39.6)	71.1 (44.3)			
Number of facilities with hospital-onset Clostridioides difficile infections	1	1			
C. difficile infection/10,000 patient-days—median (range) [‡]	6.6 (0.0-32.8)	0.0 (0.0-19.7)			

^{*} Using the simple criteria, a multi-component core element (Action, Tracking, Reporting, Education) is met if any subcomponent is implemented \dagger The 37% reduction observed was statistically significant (p = 0.04)

‡ Based on 11 months of data before and after onsite visit from the single facility with hospital-onset *C. difficile* infections

Figure 1. Comparison of Pre- and Post-Intervention Core Element Implementation Using Different Criteria

Abbreviation: SCH = small community hospital

Simple criteria = core elements with multiple components (Action, Tracking, Reporting, Education) are met if any components are satisfied Strict criteria = must satisfy 1) time-out OR prospective audit-feedback for Action; 2) track antibiotic use AND resistance data for Penerting; 4) educate prescribers AND staff for Education

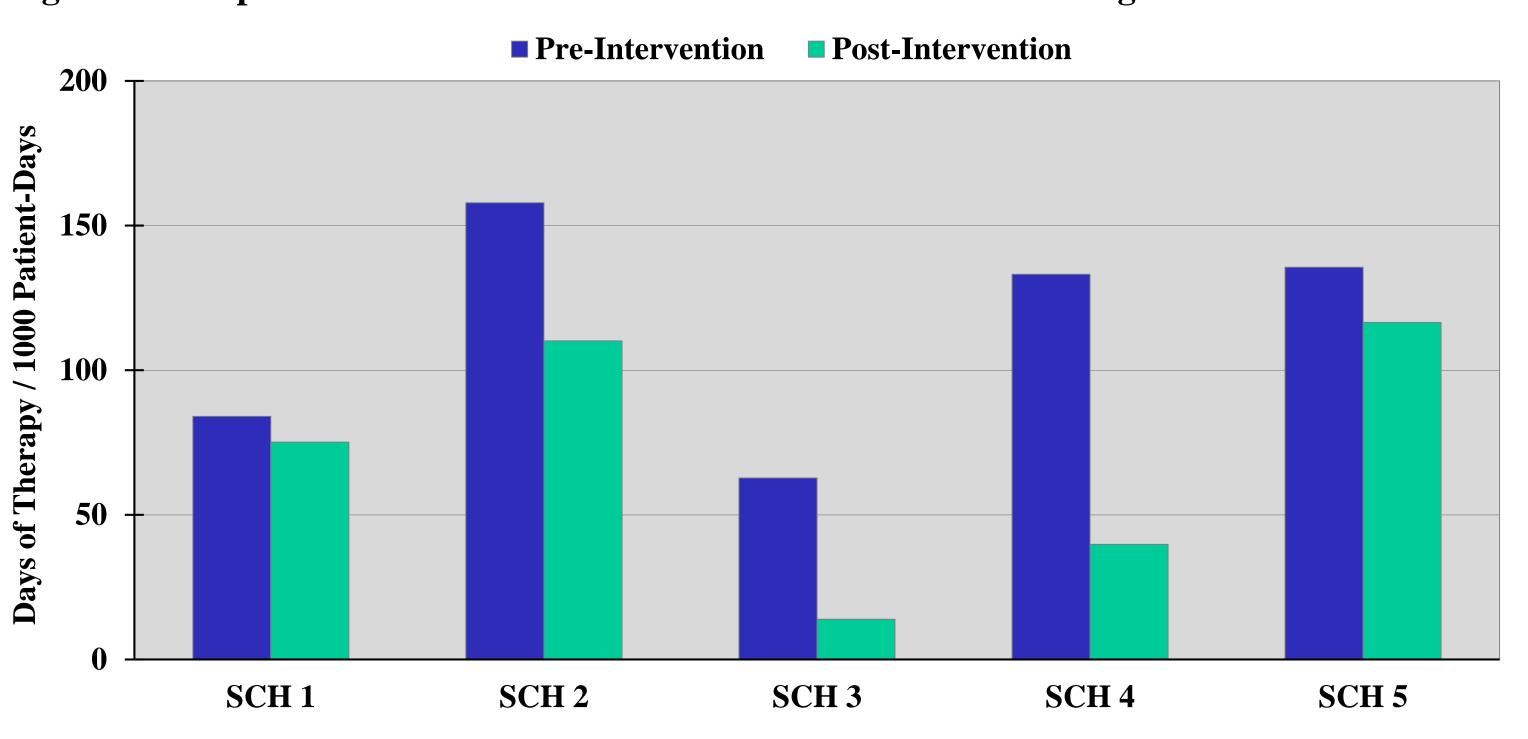

3) report antibiotic use AND resistance data for Reporting; 4) educate prescribers AND staff for Education

Table 3. Pre- and Post-Intervention Antimicrobial Susceptibilities for *E coli*

Small Community Hospitals				Percent Susceptible if ≥30 Isolates or (Number Susceptible / Number Tested) if <30 isolates													
	No. Tested			Ampicillin/ Piperacillin/ Tazobactam		Cefazolin		Cefotaxime or Ceftriaxone		Ertapenem, Imipenem or Meropenem		Ciprofloxacin or Levofloxacin		TMP/SMX			
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	
1	761	913	56	56	98	99	93	90	99	93	100	100	80	68	77	73	
2	137	127	52	54	99	94*	93	87	94	91	100	99	68	67	78	80	
3	320	316	50*	56	95*	96*	86	89	93	94*	100	100	70	81*	71	79	
4	62	86	69	57	89	88	92	85	(2/2)	(2/3)	100	99	73	87	79	81	
5	133	183	47	55	97	98	95	95	98	98	100	100	72	74	80	81	

Abbreviation: TMP/SMX = trimethoprim/sulfamethoxazole

Figure 2. Comparison of Pre- and Post-Intervention Levofloxacin Usage

Abbreviation: SCH = small community hospital Pre- and post-intervention data are based on usage from July to December 2016 and July to December 2017, respectively

DISCUSSIONS

- The assessment and feedback model employed to facilitate ASP implementation resulted in an increase in the median number of CE met from 6 to 7 (p=0.13)
- All but one facility met all 7 CE at the end of one year; the single deficient hospital only lacked ASP education to providers
- Of the 48 recommendations provided by ASAP, 79% were either partially or fully implemented by the end of one year
- Mean levofloxacin use in the 5 SCH reduced from 114.7 DOT/1000 PD in July to
 December 2016 to 71.1 DOT/1000 PD in July to December 2017 (p=0.04)
- The median incidence of CDI decreased from 6.6 to 0.0 cases/10,000 PD (p=0.74) in the single SCH with any HO-CDI
- Overall antimicrobial susceptibilities for *E coli* were unchanged before and after site visits for ceftriaxone/cefotaxime (93% vs. 94%), sulfamethoxazole/trimethoprim (76% vs. 75%) and ciprofloxacin/levofloxacin (67% vs. 68%)

CONCLUSIONS

- Assessment and feedback by experts with infectious diseases/antimicrobial stewardship experience resulted in an increased number of SCH with ASP meeting all 7 CDC antimicrobial stewardship core elements
- Favorable outcomes in antimicrobial use and CDI rates were also observed
- Antimicrobial susceptibilities remained unchanged but the follow-up period was brief

DISCLOSURE

The authors of this study have nothing to disclose pertaining to the content of this poster.

^{*} Percents susceptible are based on the indicated number tested +/- 2 isolates for these antimicrobials