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The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-

dependent transcription factor of nuclear receptor superfamily that controls the expression 

of a variety of genes involved in fatty acid metabolism, adipogenesis, and insulin 

sensitivity. PPARγ is a target for insulin-sensitizing drugs, and plays a significant function 

in prostate cancer. On the other side, Glucose transporter 1 (GLUT1) is a uniporter protein 

that facilitates the transport of glucose across the plasma membranes of mammalian cells. 

GLUT1 is overexpressed in numerous tumors and associated with tumor progression and 

poor overall survival. Consequently, GLUT1 is a potential target for cancer treatment. 

First, PPARγ antagonists have potent anti-diabetic activity without serious side 

effects of many of the PPARγ agonists such as thiazolidinedione (TZD) class. In addition, 

PPARγ agonists in cancer model systems have PPARγ-independent mechanisms, but 

PPARγ antagonists have exhibited antiproliferative effects on a broad range of 

hematopoietic and epithelial cell lines, usually with greater potency than agonists. The 
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ligand binding domain (LBD) of PPARγ is large and involves two binding sites: orthosteric 

and allosteric binding sites. Several co-crystal structure of PPARγ ligands show two bound 

molecules, one to the orthosteric pocket and a second bound to the allosteric site. We ran 

docking studies against the orthosteric and allosteric binding sites to determine the most 

favorable binding site for PPARγ antagonists. Our results emphasize that the glide docking 

performed well in predicting the binding affinity of PPARγ antagonists, and the allosteric 

site of PPARγ is the most favorable binding site for antagonists. Besides, we investigated 

the ligand-protein interactions for several PPARγ ligands to explore a structural basis of 

the binding selectivity of PPARγ antagonists. Phe282, Arg288, and Lys367 interact with 

antagonists more than agonists and partial agonists. We fulfilled integrated virtual 

screening and biological assay for the two binding sites of PPARγ; orthosteric and 

allosteric pockets. Several hits of PPARγ antagonists showing single digit of micromolar 

concentration in inhibition of PPARγ generated from the virtual screening of allosteric 

pocket. 

Second, GLUT1 works through conformational switching from an outward-open 

(OOP) to an inward-open (IOP) conformation passing through an occluded conformation. 

It is critical to determine which conformation is preferred by bound ligands because the 

success of structure-based drug design depends on the appropriate starting conformation 

of the target protein. To find out the most favorable GLUT 1 conformation for ligand 

binding, we ran systemic molecular docking studies for different conformations of GLUT1 

using known GLUT1 inhibitors. Our data revealed that the IOP is the preferred 

conformation and that residues Phe291, Phe379, Glu380, Trp388, and Trp412 may play 

critical roles in ligand binding to GLUT1. To identify new chemotypes targeting GLUT1, 
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we built a pharmacophore model and searched against an NCI compound database. Sixteen 

hit molecules with good docking scores were screened for GLUT1 inhibition and 

antiproliferative activities. From these, we identified that compounds NSC657996, 

NSC32458, NSC328095 and NSC295720 inhibited the cell viability in a dose-dependent 

manner and that NSC657996 and NSC328095 are the most potent with less than 10 µM 

concentration in the HCT116 colon cancer cell line. Lead compound NSC295720 was a 

GLUT1 inhibitor. 
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Chapter 1 

Introduction  

 

 1.1. The Peroxisome Proliferator-Activated Receptors (PPARs): 

The peroxisome proliferator-activated receptors (PPARs) are ligand-inducible 

transcription factors and members of the nuclear receptor superfamily.1, 2, 3 There are three 

PPARs isotypes: PPARα (NR1C1), PPARδ (NR1C2) and PPARγ (NR1C3).1, 2, 3 The 

PPARs form heterodimers with retinoid X receptor (RXR) which bind to PPAR-responsive 

regulatory elements (PPREs) in the promoter region of the respective target genes initiating 

transcription of target genes.4,5 The PPARs regulate the expression of several genes 

involved in abiogenesis, lipid metabolism, inflammation, and maintenance of metabolic 

homeostasis.2, 3, 6 The PPARs are receptors for some dietary fats such as oleic, linoleic and 

linolenic acids, and diverse endogenous lipid metabolites, including prostaglandin J2, 8S-

hydroxyeicosatetraenoic acid, and various oxidized phospholipids can bind to PPARs.7, 8, 

9  The structure of PPARs are similar and consist of different functional domains, including 

an N-terminal transactivation domain (AF1), a highly conserved DNA-binding domain 

(DBD) and a C-terminal ligand binding domain (LBD).10, 11 The PPARs receptors have a 

different tissue distribution. PPARα is mostly expressed in muscles, liver, heart, and 

kidney.2  PPARδ is amply expressed throughout the body but at low levels in the liver.2  

The PPARγ receptor has two isoforms that are expressed from the same gene by utilizing 

distinct promoters and exons, γ1 and γ2.2 PPARγ1 is expressed in the large intestine, 

spleen, and mostly in white and brown adipose tissue while PPARγ2 is expressed restricted 

in adipose tissue.2 The PPARs are the significant targets of various synthetic compounds 
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utilized efficiently in the treatment of diabetes, dyslipidemia, atherosclerosis, colon 

inflammation, cancer, infertility, and demyelination.1, 2  

 1.2. The Peroxisome Proliferator-Activated Receptor Gamma (PPARγ): 

The PPARγ is an essential target of many pharmaceuticals that have produced billions 

of dollars (USD) for treating insulin resistance and type 2 diabetes, such as 

thiazolidinedione drugs (TZDs).12 The function of PPARγ depends on the formation of 

heterodimerization with retinoid X receptor α (RXRα) to create a transcription factor that 

can bind peroxisome proliferator response elements (PPRE) on DNA to initiate 

transcription of target genes.13 The PPARγ-based gene regulation includes both gene 

activation and repression events, based on the molecular situation.14 There are three main 

mechanisms of modulation of PPARγ: ligand-independent repression, agonist-dependent 

activation, and antagonist-dependent repression.5 The PPARγ plays a vital role in 

controlling adipogenic and lipogenic pathways, and it is the master regulator of adipocyte 

differentiation.3 The PPARγ regulates gene networks contributed to glucose homeostasis 

and insulin sensitivity.2, 3 PPARγ also plays an essential role in inflammation.2 It has an 

important function in different immune cells such as antigen-presenting myeloid dendritic 

cells and macrophages.2 The PPARγ has been implicated in regulating the pathophysiology 

of several cancers. The PPARγ is overexpressed in numerous tumors, including breast, 

pancreatic, bladder, prostate, and colon.15, 16, 17, 18  

The structure PPARγ has the conserved nuclear receptor domain complex consist of 

the N-terminal activation function-1 (AF-1) domain, which is a ligand-independent 

transactivation domain, The DNA-binding domain (DBD) which identifies and binds 

PPREs within the promoter region of target genes, a flexible hinge region which is a protein 
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domain required for receptor dimerization, and the C-terminal ligand-binding domain 

(LBD) which is a ligand-dependent transactivation domain, and it is responsible for ligand 

binding, dimerization, and transactivation function.12 The LBD of PPARγ has been known 

as the main binding domain for endogenous lipids and regulates the dimerization and the 

transcriptional activity of PPARγ.10 The LBD of PPARγ has been the primary target for 

developing therapeutic compounds of PPARγ such as TZDs.19   

 1.3. The Ligand-Binding Domain (LBD) of PPARγ: 

Many structurally-different small molecules interact with PPARγ through the ligand-

binding domain (LBD).19 The LBD is located in the C-terminal domain of PPARγ, and it 

is a ligand-dependent transactivation domain.5, 10 The LBD includes activation function 2 

(AF-2), which facilitates ligand binding, dimerization, and transactivation functions.20 AF-

2 is extraordinarily active and in a balance between many conformations, varying from 

active to inactive.21, 22 Ligand binding induces conformational changes in the AF-2 surface 

that promote interactions with co-regulators and affect the recruitment of the transcriptional 

machinery to regulate the downstream of gene expression.21, 22 The LBD of PPARγ can 

bind multiple domains in PPARγ and RXRα, forming a non-symmetric complex.23 In 

addition, The LBD of PPARγ interacts with the DNA-binding domain (DBD) to improve 

response-element (RE) binding.23 Several endogenous ligands such as prostaglandin J2, 

8S-hydroxyeicosatetraenoic acid and many small molecules such as TZDs interact with 

PPARγ via the LBD.19   

The crystal structure of LBD of PPARγ revealed that the LBD of PPARγ consists 

of 13 α-helices (H1- H12) and four small β-sheet strands lying between H3 and H6 form a 

three-layer sandwich fold (Figure 1.1).10 The structure of LBD of PPARγ is similar to other 
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nuclear-receptor, except the structure of LBD of PPARγ has an extra helix, H2’, located 

between the first β- sheet and H3.10 In addition, the tertiary position of H2 in PPARγ is 

unlike other LBD of nuclear receptors providing more accessible contact with a ligand.10 

The helices H4, H5, H8 are closely located between helices H1, H3, H7, and H10 at the 

top half of the LBD.10 The loop between helices H2’ and H3 (Ω loop) is thermally mobile 

loop, which is hard to be observed in crystal structures.10 The AF-2 is located at the far C 

terminal of the LBD having three-dimensional (3D) α- helices structure.10 The AF-2 

involves helix H3, H3-4 loop, helix H11, and helix H12.24 The ligand binding site of 

PPARγ is a large T-shaped cavity (~ 1.300 Å) extending from the C terminal domain to the 

β-sheet strands.10  
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Figure 1.1. The secondary Structure of the LBD of PPARγ represented in ribbon model.   
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The ligand binding site is mostly hydrophobic pocket and placed at the bottom half 

of the LBD.10 The LBD of PPARγ has two main ligand-binding sites: orthosteric and 

allosteric binding sites, each site having different properties and binding preferences.24  

The orthosteric site lies from the β-sheet to the far C terminal AF-2 surface which 

it is perpendicular to the T-shaped cavity, and behind H3 (Figure 1.2).10 The orthosteric 

pocket is the canonical binding site for the classic PPARγ agonists, TZDs.25 The orthosteric 

pocket involves H3, H5, H11, and 12, which includes various polar residues such as 

Phe282, Cys285, Ser289, His323, Tyr327, Phe363, Lys367, His449, and Tyr473 (Figure 

1.3). The acidic head group of PPARγ agonist compounds forms hydrogen bonds (H-

bonds) with residues Ser289, His323, His449, and Tyr473.10, 26 The helix H12 is crucial 

for ligand binding at the orthosteric site and PPAR function.27 The PPARγ agonist 

compounds prompt increases AF-2 stabilization and transcriptional activation by directly 

binding and stabilizing H12 especially, Tyr473.25  

In contrast, several PPARγ ligands synthesized having the same activity of PPARγ 

agonist can bind to an alternate site.24 The PPARγ ligands binding this alternative site does 

not compete with endogenous ligand binding at canonical orthosteric pocket so that this 

binding site can be identified as an allosteric site.24 The allosteric Alternate site binding 

has three main mechanisms of pharmacological importance. First, two molar equivalents 

of a PPARγ ligand can bind to LBD of PPARγ, one to the canonical orthosteric site and a 

second to the allosteric site.24 Second, a PPARγ ligand can bind to allosteric pocket when 

the canonical orthosteric site is blocked by a covalent irreversible antagonist. Third, a 

PPARγ ligand can bind to the allosteric site when the canonical orthosteric pocket is tied 

with an endogenous covalent ligand.24 The allosteric site extends between H3 and the β-
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sheet, which it is parallel to H3 (Figure 1.2).10 Ligands binding to the allosteric site can 

also influence PPARγ structure and function by inducing indirectly AF-2 stabilization and 

transcriptional activation.12 The allosteric site surface includes H2’, H3, Ω loop, and β-

sheets.24   
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Figure 1.2. Co-crystal structure of NSI-bound PPARγ (PDB 2HFP) shows two bound NSI 

molecules, one to the orthosteric pocket and a second bound to the allosteric site. 
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Figure 1.3. (A) Crystal structure of PPARγ LBD bound to Rosiglitazone (PDB 2PRG). 

(B) Binding modes of Rosiglitazone in the orthosteric site of PPARγ LBD with polar 

residues for the key interaction. 
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Hydrophilic residues such as Lys265, Arg288, Ser289, Ser342, and Lys367 are mostly 

located at the allosteric pocket. Besides, ligands that selectively bind to the allosteric site 

are possibly exclusive for PPARγ ligands among other nuclear receptor members. 12  

1.4. PPARγ Ligands: 

There are several fatty acids and prostanoids are endogenous ligands for PPARγ. The 

polyunsaturated fatty acids such as inoleic acid, linolenic acid, arachidonic acid, and 

eicosapentaenoic acid are the favorable fatty acid agonists for PPARγ.8, 28 The 15-deoxy-

∆12,14-prostaglandin J2 (15d-PGJ2) is also PPARγ endogenous agonist.8, 7 The endogenous 

ligands have weak PPARγ agonistic effect at micro molar concentrations.29, 30 The TZDs 

such as ciglitazone, rosiglitazone, pioglitazone, englitazone, and troglitazone were the first 

small molecules developed as a new class of PPARγ agonists in the late 1990s (Figure 

1.4).1 They were prepared to improve insulin resistance and antidiabetic activity in patients 

with type 2 diabetes.1 Rosiglitazone has a high affinity to PPARγ, whereas pioglitazone, 

englitazone, and ciglitazone are less potent PPARγ ligands.31 Troglitazone was the first 

TZD class got the Food and Drug Administration (FDA) approval for type 2 diabetes in 

1997.32 However, it was withdrawn from the US in 2000 due to its severe hepatotoxicity.32 

Rosiglitazone and pioglitazone are TZDs, and they are still available in many countries in 

clinical use in the treatment of type 2 diabetes.32 However, they are associated with 

numerous undesirable side effects such as fluid retention, heart failure, weight gain, loss of 

bone mineral density, and cancer.32 Therefore, the use of TZDs is under restrictions now 

by the FDA.32 Several non-TZD PPARγ agonists discovered and developed showed a high 
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affinity to PPARγ high PPARγ agonistic effects such as, Farglitazar, MRL-20, and 

GW1929, GW7845, and GW0207 (Figure 1.5).5   

On the other hand, there are several partial PPARγ agonist molecules such as MRL-24, 

nTZDpa, SR145, SR147, MBX-102, AMG-131, GW0072, FK614, and SR9034 (Figure 

1.6) which partially activate a transcriptional function of a given gene in a wide spectrum 

of transcriptional activation comparing to full agonists.33 The partial agonist compounds 

work as selective PPAR𝛾𝛾 modulators (SPPARMs).33 Therefore, they act as insulin 

sensitizers and antidiabetic effects as full agonists, and they have lower adverse effects 

comparing with full PPARγ agonists.33 The partial agonist compounds favorably stabilize 

and interact with the β sheets and H3 than H12 (Figure 1.7).27 Several PPAR𝛾𝛾 partial 

agonists are presently in clinical trials, and none molecule gets the FDA approval yet.33   

In contrast, several PPARγ antagonist compounds have been identified and prepared to 

improve the therapeutic index and overcome the undesirable side effects of PPARγ agonist 

and partial agonist compounds.34, 35 The PPARγ antagonist compounds exhibited minimum 

transactivation in PPARγ. In general, the PPARγ antagonist compound is defined as a 

compound has the transactivation efficiency is ≤10% of rosiglitazone at 10 μM 

concentration, and maintain a good affinity for the receptor.34 The PPARγ antagonist 

compounds began with covalent PPARγ antagonists such as GW9662, T0070907, and 

SR16832 (Figure 1.8), but covalent antagonists are improbable to be designed and 

developed as therapeutic drugs.34 35 However, non-covalent PPARγ antagonist compounds 

have prepared and developed, such as SR1664, SR1824, and SR11023 (Figure 1.8).34 The 

PPARγ antagonists have strong antidiabetic effects and improve insulin sensitivity. The 

PPARγ antagonists showed none of the side effects of TZDs such as fluid retention with 
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increased risk of weight gain, and loss of bone mineral density.36, 37, 38 In addition, the 

PPARγ antagonist compounds could inhibit the growth of several tumors such as bladder, 

breast, pancreatic, and prostate cancer cells. 15, 16, 17, 18  
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Figure 1.4. Chemical Structures of selective TZDs PPARγ agonists. 
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Figure 1.5. Chemical Structures of non TZDs PPARγ agonists. 
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Figure 1.6. Chemical Structures of PPARγ partial agonists. 
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Figure 1.7. Superimposed ribbon structures of PPARγ with partial agonists.   
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Figure 1.8. Chemical Structures of PPARγ antagonists. 
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 1.5. Mechanism of Action of PPARγ Ligands: 

The antidiabetic effect of PPARγ ligands is mostly accomplished by blocking the 

phosphorylation of PPARγ by cyclin-dependent kinase 5 (Cdk5) at serine 273 related to obesity.39  

The PPARγ agonists, partial agonist, and antagonists can bind to the LBD of PPARγ and induce a 

conformational change of PPARγ that inhibits the ability of Cdk5 to phosphorylate at serine 273.39 

Therefore, the PPARγ agonists, partial agonist, and antagonists could lower glucose levels and 

improve insulin sensitivity.39 The PPARγ full agonists are not required for the strong antidiabetic 

effect, so the PPARγ antagonists improved glucose homeostasis and insulin resistance, and they 

showed none side effects of classical PPARγ agonists such as TZDs.39  

The androgens and the androgen receptor (AR) control the development and growth of prostate 

cancer.40  The suppression of testicular testosterone production was shown to treat prostate cancer.41  

Several AR inhibitors are now approved for the treatment of metastatic prostate cancer.42  However, 

once prostate cancer metastasizes, it eventually develop resistance to AR-targeted therapies.43 44  

Many alterations outside of the AR axis have been proposed to contribute to disease initiation 

and/or progression, including PTEN loss, Nkx3.1 loss, Myc amplification, FOXM1 over-

expression, and PI3K/AKT activity, among others.45, 46, 47, 48, 49 Recently, the PPARγ was identified 

as an oncogene that contributes to prostate cancer development and progression.43, 44, 50, 51    

It was originally thought that PPARγ acted as a tumor suppressor in prostate cancer and that PPARγ 

agonists could be used as therapeutics.52 53 However, the PPARγ agonists were working via PPARγ-

independent mechanisms to inhibit the growth of prostate cancer.54, 55 In fact, PPARγ expression is 

greater in prostate cancer tissue.50, 51, 56 The increased expression of the PPARγ protein had 

decreased survival and increased metastases to the lungs and lymph nodes, and positively correlated 

with prostate cancer.51  Increased PPARγ expression in three AR-negative prostate cancer cell lines, 
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DU-145, PC3, and PC3M, increased cell proliferation and migration.44, 51 The siRNA knockdown 

of PPARγ and treatment with a PPARγ antagonist decreased prostate tumor size.51  Thus, PPARγ 

is a novel and important target in prostate cancers. Warfarin inhibited PPARγ signaling in prostate 

cancers which lead to the inhibition of prostate cancer growth.50, 57 The long-term use of warfarin 

reduced the risk of prostate cancer.50, 57    
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 1.6. The Glucose transporters (GLUTs):  

The Glucose transporters (GLUTs) are members of sugar transporter subfamily of 

the major facilitator superfamily (MFS), and they are membrane proteins encoded by the 

solute carrier family genes; SLC2, and SLC5.58 The MFS superfamily is one of the most 

abundant and ubiquitous secondary transporter super families found in bacteria, 

archaea, and eukarya. The largest family of the MFS is the sugar porter (SP) family.59 

The GLUTs are facilitative diffusion uniporters of glucose and other monosaccharides 

from the extracellular matrix (ECM) into cells based on its concentration gradient.60 The 

GLUTs are mainly responsible for the constant uptake of glucose to cells.61 The GLUTs 

consist of 14 isoforms and are divided into three classes based on the similarity and 

identity of the structures and sequences: Class 1 (GLUTs 1−4, and 14), Class 2 (GLUTs 

5, 7, 9, and 11), and Class 3 (GLUTs 6, 8, 10, 12, and 13).61 The expression and 

distributions GLUTs are different, and they exhibit different transport kinetics, capacity, 

and substrate selectivity. GLUT1, GLUT2, GLUT3, and GLUT4 are considered 

the most extensive sugar transporters.61  

The GLUTs have a conserved core fold which consists of 12 transmembrane helices 

folded into two different domains, the amino and carboxyl terminal domains.62 Each 

domain has six sequential transmembrane helixes domain (TMD) that are folded into a pair 

of ‘3+3’ inverted repeats.63 the amino TMD involves transmembrane helixes (TM 1-6), 

while the carboxyl TMD invovels TM7-12.63 The TM7 and TM10 are broken segments, 

hence termed TM7a/7b and TM10a/10b, respectively (Figure 1.9).63 The GLUTs have the 

intracellular helical (ICH) domain which involves four short intracellular α-helices (IC1–
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4) connect the N-terminal and C-terminal domains, and one short intracellular helix IC5 in 

the C-terminal domain.63 The C-terminal domain provides the main substrate-binding site 

for glucose.64 The GLUTs transports glucose and several monosaccharides, including 

galactose, fructose, mannose, xylose, fucose, arabinose, rhamnose, lyxose, altrose, and 

ribose.65, 66  
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Figure 1.9. The secondary Structure of the GLUT1 represented in ribbon model. The 

amino TMD is colored blue, the carbonyl TMD is colred green, the ICH are colored yellow.  

 

 

 

 

 



23 
 

 

 1.7. Glucose transporter 1 (GLUT1):  

The GLUT1 was the first characterized and identified glucose transporters, and it has 

been a model to recognize and understand the function of glucose transporters. 67 Cancer 

cells transport more glucose than normal cells due to their rapid growth and high rate of 

aerobic glycolysis (Warburg effect).68, 69, 70 The high glucose uptake in cancer cells is 

believed to be related to the upregulated expression of glucose transporter proteins, 

especially GLUT1. The GLUT proteins have been utilized to be targeted for several 

anticancer agents by the conjugation the anticancer agents with sugars to improve the 

delivery and uptake of anticancer agents due to its high expression in tumor cells.71 The 

GLUT1 is upregulated in many types of cancers such as brain72, breast73, lung74, kidney75, 

ovary76, prostate,77 and colon78. In addition, the stimulation of many oncogenes such as 

KRAS,74 BRAF,79 c-myc,80 and p53,81 and transcription factors such as hypoxia-inducible 

factor-1α (HIF-1)82 could upregulate the GLUT1 expression in cancer cells. The positron 

emission tomography (PET) revealed that the GLUTs are overexpressed on the tumor cells 

by the high uptake of 2-deoxy-2-[18F]fluoroglucose, which is a fluorescence glucose 

analog.83  

While GLUT1 is overexpressed in many tumors, it is noted that in the brain, glucose 

transport is facilitated by both GLUT1 and GLUT3.84, 85, 86, 87 Therefore, even though 

GLUT3 has a greater affinity and higher capacity than GLUT1 in the brain, a potent 

GLUT1 inhibitor could lead to neurotoxicity. The inhibition of GLUT1 results in a 

reduction of cancer-cell proliferation and apoptosis.88, 89 Several small-molecule inhibitors 

targeting GLUT1 have been described including resveratrol,90 naringenin,91 phloretin,92 
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cytochalasin B,93 WZB117,94 STF-31,95 pyrazolopyrimidines,96 phenylalanine amides,93 

and (1H-pyrazol-4-yl)quinoline (Figure 1.10).97 These compounds showed the anticancer 

activity against different tumors by their ablity to inhibit the glucose uptake and cell 

proliferation in a dose-dependent manner. All these outcomes emphasize and show the 

possibility to target and inhibit the GLUT1 protein would be a valid method for cancer 

treatment.   
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Figure 1.10. Chemical Structures of GLUT1 inhibitors. 
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 1.8. Conformations of GLUT1 Structure:  

GLUT1 are uniporters, which transport the substrate across the cell membrane down 

its con-centration by the alternating access mechanism, which involves the “rocker-switch” 

movement and the “gated pore” mechanisms.98,99 GLUT1 transport glucose through 

alternating access involves substantial conformational change down its concentration 

gradient64. The conformational change is essential to complete a transport cycle64. GLUT1 

changes from an outward-open conformation (OOP), which opens to the extracellular to 

take up glucose, to an inward-open conformation (IOP), which allows the release of 

glucose to the intracellular cytoplasm via partially outward-occluded (POO), outward-

occluded (OOC) and partially inward-occluded (PIO) conformations (Figure 1.11)63, 64.  

Substrate-free GLUT1 structure favors the OOP conformation because of the exuberant 

interactions between the TMD and the ICH64. Once the substrate binds to the C domain of 

the GLUT1, the binding affinity of the TMD on the extracellular side exceeds the binding 

affinity of the TMD on the intracellular side, so the transporter shifts to the IOP 

conformation to release glucose.64 

Structural studying and analyzing of GLUTs, particularly in complex with ligands, is 

an essential step for ligands design and optimization. The only crystal structures of human 

GLUT1 are for the IOP conformation.64, 93 However, there are several GLUT1 homologous 

crystal structures for different conformations. For example, the crystal structures of human 

glucose transporter 3 (GLUT3), which has an 86% sequence similarity to GLUT1, were 

obtained for the OOC and OOP conformations.63 The crystal structure of Escherichia 

coli proton: Xylose symporter (XylE), which has a 49% sequence similarity and 29% 

sequence identity to GLUT1, were obtained for the POO and PIO conformations.100, 101 
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The essential amino acids interacting with glucose are conserved between XylE and 

GLUT1.100  
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Figure 1.11. An overview of working model of GLUT1: The function of GLUT1 depends 

on conformational change. The IOP is adopted from PDB ID: 4PYP. The OOP 

conformation was constructed by homology modeling of PDB ID: 4ZWC; the POO 

conformation was constructed by homology modeling of PDB ID: 4GBZ; the OOC 

conformation was constructed by homology modeling of PDB ID: 4ZW9; the Partial 

inward occluded PIO conformation was constructed by homology modeling of PDB ID: 

4JA3. 
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 1.9. Binding Interactions of GLUT1:  

The binding site of GLUT1 is predominantly associated with the C domain.64 Several 

amino acids interact with the glucose in different conformations including Gln282, Gln283, 

Asn288, Asn317, Trp388, Asn411, Trp412, and Asn41563 64 100 101. Most of them are mainly 

located on TM7 and TM10, which are responsible for alternating access of GLUT163. 

Trp388 plays an important role in the alternating access of GLUT1 between the outward 

open conformation and inward open conformation102 103. Mutation of Trp388 with leucine 

(W388L) evidently reduce the rate of alternating conformation, and decrease the influx 

activity of GLUT1102, 103. Trp388 is located in TM10, and it does not expose to the binding 

site of GLUT1 in OOP.93 While GLUT1 switch to POO and OOC, Trp388 start shifting to 

the binding site.93 Besides, Trp412, which located in TM11, plays an important role for 

GLUT1 function.104 Mutation of Trp412 intensely inhibits the GLUT1 activity.104 In 

addition, mutation of Phe379 leads to dropping in glucose transport to less than 25%.104 

Therefore, Phe379, Trp388, and Trp412 play an important role in GLUT1 function and 

glucose uptake.  
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Chapter 2 

Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of 

the Peroxisome Proliferator-activated Receptor PPARγ 

 

Abstract:  

Herein we run the docking studies for several antagonists of peroxisome proliferator-

activated receptor gamma (PPARγ), which is a promising target for anticancer, and 

antidiabetic drug design. The crystal structures of PPARγ complexed with ligands revealed 

that PPARγ ligands can bind alternatively orthosteric or allosteric site. The orthosteric 

pocket is the favorable binding site for thiazolidinedione (TZD) class of antidiabetic drugs. 

The glide docking studies performed well in predicting the binding affinity of PPARγ 

antagonists, and they are highly related to the allosteric binding site. Our results emphasize 

that the allosteric site of PPARγ is the most favorable binding site for antagonists. In 

addition, the ligand-protein interactions for several PPARγ antagonists, agonists, and 

partial agonists were analyzed to define the antagonists binding modes and highlight that 

very distinct PPARγ residues interact selectively with antagonists. Phe282, Arg288, and 

Lys367 interact with antagonists more than agonists and partial agonists at allosteric 

pocket. In contrast, Phe282, Phe363, Lys367, and His449 interact with antagonists more 

than agonists and partial agonists at orthosteric pocket.  The molecular modeling provides 

a template to design and develop active and selective therapeutic antagonists against to 

atherosclerosis, diabetes, obesity, and cancer. 
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 2.1. Introduction: 

Peroxisome proliferator-activated receptors (PPARs) are receptors for fatty acids and 

members of the nuclear receptor superfamily.1, 2, 3 PPARs work as ligand activated 

transcription factors that control gene expression of several biological functions such as 

lipid and glucose metabolism and cellular differentiation.1, 2, 3 PPAR family involves three 

isoforms, PPARα, PPARγ, and PPARδ; each isoform has different tissue distribution, 

selectivity, and responsiveness to ligands.1,4 PPARγ is an interesting target because of 

associated with several disorders including atherosclerosis, diabetes, obesity, and cancer.5 

The thiazolidinedione (TZDs) class of antidiabetic drugs, rosiglitazone and pioglitazone, 

are classical PPARγ agonists and they have characterized a significant ligands to treat 

insulin resistance associated with type 2 diabetes so far.6 However, increased PPARγ 

expression has been found to control other pathways that could induce cancer development 

and progression, so PPARγ antagonists could inhibit the growth of bladder, breast, 

pancreatic, and prostate cancer cells.7, 8, 9, 10 In addition, several PPARγ antagonists have 

been showed valuable therapeutic effects in the treatment of obesity with better therapeutic 

index comparing with PPARγ agonists.11, 12 In fact, PPARγ antagonists overcome vigorous 

TZD undesirable side effects such as heart failure, and fluid retention with increased risk 

of weight gain, loss of bone mineral density.11, 12   

PPARγ forms heterodimerization with retinoid X receptorα (RXRα) to produce a 

transcription factor which is able to bind peroxisome proliferator response elements 

(PPRE) on DNA to induce transcription of target genes.13 The PPARγ structure constitutes 

N-terminal domain which include activation function 1 (AF1) that binds co-regulators, a 

central zinc-finger domain for DNA binding (DBD); C-terminal domain which include 
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ligand-binding domain (LBD) and activation function 2 (AF-2) that binds ligands and co-

regulators; and a hinge region that connects the LBD and DBD.14, 15 The C-terminal domain 

has a vital function which facilitates ligand binding, dimerization, and transactivation 

functions.14 The crystal structure of LBD of PPARγ consists of 13 α-helices and four β-

sheet strands. The LBD of PPARγ is similar to other nuclear-receptor structures from helix 

3 to carboxy-terminal domain, but PPARγ has an extra helix, H2’, located between the first 

β- sheet and H3.14  The LBD of PPARγ is large (~ 1,300 Å), mostly hydrophobic pocket, 

and T-shaped cavity which expands from β-sheet strands to carboxy-terminal domain.14 

LBD of PPARγ has two main ligand-binding sites; one lies from the β-sheet to the C-

terminal activation function-2 (AF-2) surface which it is perpendicular to the T-shaped 

cavity, behind H3 (an orthosteric site), while the other one extends between H3 and the β-

sheet which it is parallel to H3 (an allosteric site).14, 16     

TZDs are PPARγ agonists that initiate transcription through binding to a canonical 

orthosteric pocket, and stabilize AF-2 (H11, and H12) which is coactivator interaction 

surface in the PPARγ LBD and assists induction of coactivator proteins to PPARγ target 

gene promoters, which stimuluses chromatin transformation and rises expression of 

PPARγ target genes.17 TZDs generate several interactions with amino acids in H3, H4, 

H10, and AF-2 which involves various polar residues such as Cys285, Ser289, His323, 

Tyr327, Lys367, His449, and Tyr473.14 In contrast, several PPARγ ligands (agonist, partial 

agonist, and antagonist) have alternating binding site located between H3 and the β-

sheets.16 PPARγ ligands binding this alternate site does not compete with endogenous 

ligand binding canonical orthosteric pocket, so this binding site can be identifies as an 

allosteric site.16 Ligands binding to the allosteric site can also induce AF-2 stabilization 
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and transcriptional activation. The allosteric site surface includes: H2’, H3, Ω loop, H7, 

and β-sheets.16 This site involves several hydrophilic residues such as Glu259, Lys265, 

His266, Arg288, Ser289, Glu295, Ser342, Glu343, and Lys367. Besides, ligands binding 

to the allosteric site is possibly exclusive for PPARγ ligands between other nuclear-

receptor members.15     

To define which binding site is the more favorable for PPARγ antagonists and the 

structural basis for PPARγ isoform binding, we run a series of docking studies of testified 

PPARγ antagonists with the crystal structures of PPARγ. In addition, we analyzed the 

ligand-protein interactions to recognize the restudies which are selective for an interaction 

with antagonist. We proposed that docking studies based on crystal structures of PPARγ 

can provide beneficial understanding for PPARγ antagonists develop and design. The 

docking studies showed the allosteric site is more favorable for PPARγ antagonists binding 

affinity, so this site can be utilized for PPARγ antagonists design and develop. 

 2.2. Computational Methods: 

2.2.1 Preparation of Protein Structures: 

We downloaded the X-ray crystal structures of PPARγ wild type complexed with N-

sulfonyl-2-indole carboxamides (NSI) ligand (PDB ID: 2HFP) (Figure 2.1) from the RCSB 

Protein Data Bank (https://www.rcsb.org/structure/2hfp).18 2HFP is a PPARγ co-crystal 

with two molecules of NSI bound at different binding site. There are no missing residues 

in the crystal structure of 2HFP. Straightaway, we used the Protein Preparation Wizard in 

the Schrödinger software suite for protein structure preparation. The side-chain structures 

of Gln and Asn were permitted to flip to maximize H-bond interactions through the Protein 

https://www.rcsb.org/structure/2hfp
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Preparation Wizard process. In addition, water molecules in the crystal structure were 

deleted. Then, the prepared protein was subjected to 500 iterations of energy minimization 

with backbone atoms being restrained using the OPLS force field in the MacroModel 

module in the Schrödinger software suite.19,20   

2.2.2. Preparation of Ligands:  

We collected forty-seventh PPARγ antagonists (Figure 2.2, Figure 2.4, and Figure 2.5) 

from different sources18, 11 15, and we built these antagonists based on the template structure 

of N-sulfonyl-2-indole carboxamides (NSI) ligand in 2HFP. Besides, we built several 

PPARγ agonists, and partial agonists (Figure 2.2, Figure 2.4, and Figure 2.5) for analyzing 

the ligand-protein interactions. All PPARγ ligands were built using the Maestro Build panel 

and subsequently minimized by the MacroModel program using the OPLS2005 force field. 

In addition, we downloaded a database of 3D molecules from the National Cancer Institute 

(NCI), 21 and then four hundred and twenty-three drug-like molecules were randomly 

selected from this database to assess the enrichment factor and validate our docking study. 

The molecules were then subjected to energy minimization using the MacroModel 

program. 

2.2.3. Molecular Docking:  

Docking of the antagonists into the orthosteric and allosteric binding sites of PPARγ 

was completed using the Schrödinger software suite. We generated two grid files for the 

crystal structure of 2HFP using the Glide Grid Generation protocol with the bound ligands 

as centroids, one for orthosteric binding site and the other for allosteric binding site of 

PPARγ. All 47 PPARγ antagonists were docked to each of the two grid files, and we later 

run docking for the 423 NCI drug-like molecules were docked to the allosteric binding site 
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of PPARγ grid file. During the docking process, the scaling factor for receptor van der 

Waals for the nonpolar atoms was set to 0.8 to allow for some flexibility of the receptor, 

and the precision was set as extra precision. Besides, all other parameters were used as 

defaults. The output docking scores were given as extra precision glide scores (XP 

GScore). The XP GScore is stated in term of a predicated binding affinity as well as a 

predicated free energy of binding (∆GPRED). The output ΔGPRED was then related to the 

experimental ΔGEXP, calculated from the experimental IC50 (nM) using the following 

equation 122:  

𝚫𝚫𝚫𝚫𝐄𝐄𝑿𝑿𝑿𝑿(𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌 𝒎𝒎𝒎𝒎𝒌𝒌⁄ ) =  𝑹𝑹𝑹𝑹 𝐥𝐥𝐥𝐥  (𝑰𝑰𝑰𝑰𝟓𝟓𝟓𝟓 (𝒏𝒏𝒏𝒏) × 𝟏𝟏𝟓𝟓−𝟗𝟗)/𝟏𝟏𝟓𝟓𝟓𝟓𝟓𝟓            (𝟏𝟏)                

The Pearson’s R (Pearson’s correlation coefficient) was estimated using Microsoft 

Excel and the root-mean-square error and mean-absolute-error were measured from 

MatLab. Furthermore, we created electrostatic map for the orthosteric binding site of 

PPARγ to estimate the electrostatically favored locations of positive, negative and neutral 

donor locations by using surface and map panel from the molecular operating environment 

(MOE).23  
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Figure 2.1. Co-crystal structure of NSI-bound PPARγ (PDB 2HFP) shows two bound NSI 

molecules, one to the orthosteric pocket and a second bound to the allosteric site (A). 

Chemical Structure of NSI (B).   
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2.3. Results and Discussion: 

2.3.1. Glide Docking: 

We ran docking experiments of 47 PPARγ antagonists against (Figure 2.2) the two 

models of PPARγ binding sites to evaluate the ΔGPRED alongside the orthosteric and 

allosteric binding sites of PPARγ. PPARγ antagonists docking scores are listed in Table 

2.1. The glide docking shows that the glide performance is well in predicting the binding 

affinity of PPARγ antagonists at allosteric binding site. The ΔGPRED of PPARγ antagonists 

at allosteric binding site of PPARγ accomplished well in predicting the binding affinity of 

PPARγ antagonists, and they show better correlation with the ΔGEXP of PPARγ antagonists 

than the ΔGPRED of PPARγ antagonists at orthosteric binding site of PPARγ (Figure 2.3). 

Besides. The Pearson’s correlation coefficient at allosteric binding site was 0.80 and the 

correlation R2 was 0.64 better than the Pearson’s correlation coefficient at orthosteric 

binding site (0.62) and the correlation R2 (0.39). In addition, the average of the difference 

between ΔGEXP and ΔGPRED (ΔΔG), the mean of absolute error (MAE), and the root-mean-

square (RMS) error for PPARγ antagonists docked at allosteric binding site of 1.08, 1.10, 

and 1.29, respectively are lower than respective values at orthosteric binding site (1.50, 

1.63, 1.83, respectively) for PPARγ antagonists (Table 2.2).  

Taken together, our docking results indicate that glide docking is capable of predicting 

ligands binding affinity in different pocket sites of PPARγ. The glide docking reveals that 

the ΔGPRED of PPARγ antagonists is strongly correlated with the ΔGEXP of PPARγ 

antagonists at allosteric binding site. Moreover, the statistical parameters and errors such 

as Pearson’s correlation coefficient, correlation R2
, ΔΔG, MAE, and RMSE of glide 

docking GD based on estimation of free energy of binding for PPARγ antagonists at 
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allosteric binding site much better than at orthosteric binding site. Therefore, the allosteric 

site of PPARγ is the most favorable binding site for PPARγ antagonists.   
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Comp. R R1 R2 R3 

NSI  H 4-CH3OPh Ph 3-CF3Bn 

1 H 4-CH3OPh 4-F-Ph 3-CF3Bn 

2 H 4-CH3OPh 2-CO2MePh 3-CF3Bn 

3 H 4-CH3OPh 2-CH3Ph 3-CF3Bn 

4 H 4-CH3OPh Me 3-CF3Bn 

5 H H Ph 3-CF3Bn 

6 H H 4-F-Ph 3-CF3Bn 

7 H H 4-Cl-Ph 3-CF3Bn 

8 H H 3-CF3-Ph 3-CF3Bn 

9 H H 4-CH3Ph 3-CF3Bn 

10 H H 2-CH3Ph 3-CF3Bn 

11 H H 2-Naphthyl 3-CF3Bn 

12 H H 2-CF3-Ph 3-CF3Bn 

13 H H 2-(5-Chlorothiophene) 3-CF3Bn 

14 H H Me 3-CF3Bn 

15 H H 4-CF3-Ph 4-CF3Bn 

16 H H 3-CF3-Ph 3-CH3OBn 

17 H H 3-CF3-Ph 3-CF3OBn 

18 H H 3-CF3-Ph Et 

19 H H 3-CF3-Ph 4-CF3Bn 

20 H H 3-CF3-Ph 3-BnOBn 

21 H H 3-CF3-Ph Bn 

22 H H 3-CF3-Ph 2,5-DiClBn 

N

R
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HN

O
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O
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23 H H 3-CF3-Ph 4-t-BuBn 

24 Cl H 3-CF3-Ph 3-CF3Bn 

25 OBn H 3-CF3-Ph 3-CF3Bn 

26 OH H 3-CF3-Ph 3-CF3Bn 

Compound R Compound R Compound R 

27 CH3 28 NH2 29 NO2 

Compound R R1 Compound R R1 

SR1664  4-NO2 COOH 36 3-iPr ON
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Figure 2.2. Chemical structures of PPARγ antagonists.   
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Table 2.1.The glide score of 47 PPARγ antagonists against the allosterica and orthostericb 

binding site of PPARγ (2HFP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a: Glide Score of PPARγ antagonists against the allosteric binding site. b: Glide Score of PPARγ antagonists 
against the orthosteric binding site. 

 

Compound IC50 (nM) ∆G_EXP XP GScorea XP GScoreb 

NSI 3 -11.63 -12.59 -14.28 
SR1664 80 -9.68 -10.31 -10.96 

SR11023 108 -9.50 -10.27 -11.85 
1 7 -11.12 -12.64 -14.48 
2 1 -12.28 -12.75 -11.42 
3 7 -11.12 -12.69 -14.14 
4 2 -11.87 -11.46 -11.42 
5 290 -8.92 -10.33 -10.97 
6 720 -8.38 -10.07 -11.63 
7 280 -8.94 -10.25 -10.92 
8 80 -9.68 -10.78 -10.85 
9 290 -8.92 -10.19 -11.07 

10 180 -9.20 -10.21 -11.45 
11 90 -9.61 -11.14 -11.96 
12 80 -9.68 -10.50 -11.02 
13 80 -9.68 -10.20 -11.19 
14 680 -8.41 -8.93 -9.34 
15 700 -8.40 -9.28 -9.90 
16 140 -9.35 -9.40 -11.51 
17 90 -9.61 -10.74 -10.80 
18 2440 -7.66 -7.74 -8.39 
19 400 -8.73 -9.94 -10.27 
20 50 -9.96 -11.55 -10.55 
21 280 -8.94 -9.93 -11.24 
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CONTINUED 

 

 

 

 

 

 

 

 

 

 

 

 

a: Glide Score of PPARγ antagonists against the allosteric binding site. b: Glide Score of PPARγ 
antagonists against the orthosteric binding site. 

Compound IC50 (nM) ∆G_EXP XP GScorea XP GScoreb 

22 380 -8.76 -9.74 -11.45 
23 330 -8.84 -9.37 -11.19 
24 330 -8.84 -9.57 -11.84 
25 770 -8.34 -10.89 -10.06 
26 540 -8.55 -9.74 -10.15 
27 6 -11.22 -11.19 -11.68 
28 32 -10.22 -11.42 -11.08 
29 24 -10.39 -11.04 -11.17 
30 30 -10.26 -12.32 -12.48 
31 7 -11.12 -11.54 -11.63 
32 5 -11.32 -12.43 -12.25 
33 8 -11.05 -11.47 -10.93 
34 5 -11.32 -11.84 -11.83 
35 17 -10.60 -11.91 -12.73 
36 40 -10.09 -11.66 -11.95 
37 7 -11.12 -11.07 -11.06 
38 22 -10.45 -11.13 -11.32 
39 77 -9.70 -12.26 -12.17 
40 62 -9.83 -10.68 -11.27 
41 148 -9.32 -10.96 -10.66 
42 17 -10.60 -13.23 -12.17 
43 1100 -8.13 -10.98 -6.61 
44 80 -9.68 -11.45 -12.28 
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Figure 2.3. Plots of glide docking scores for PPARγ antagonists against allosteric Binding 

site (A), and Orthosteric Binding Site (B). 

 

 

y = 0.63x - 3.55
R² = 0.64

-13

-11

-9

-7
-13 -11 -9 -7

∆G
P

R
E

D
 (k

ca
l/m

ol
)

∆GEXP (kcal/mol)

∆GPRED VS  ∆GEXP

y = 0.53x - 3.82
R² = 0.39

-13

-11

-9

-7
-13 -11 -9 -7

∆G
P

R
E

D
(k

ca
l/m

ol
)

∆GEXP (kcal/mol)

∆GPRED VS  ∆GEXP

A 

B 



60 
 

 

 

 

 

 

 

Table 2.2.Statistical results for the glide score estimation of free energy binding for PPARγ 

antagonists. 

 

 

.  

 Allosteric Binding Site Orthosteric Binding Site 
Pearson's R 0.80 0.62 

Correlation R2 0.64 0.39 
ΔΔG 1.08 1.50 
MAE 1.10 1.63 

RMSE 1.29 1.83 
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2.3.2. Validation of the Glide Docking Studies: 

We used various methods to validate our docking programs and scoring functions.24, 25 

One commonly used method is the pose selection whereby docking software are used to 

re-dock a ligand with a known conformation and orientation, typically from a co-crystal 

structure, into the binding site. Docking method are considered trustworthy when they are 

able to generate poses very close to the native conformation, i.e., with low Root Mean 

Square Deviation (RMSD) value from the known conformation (usually 1.5 or 2 Å 

depending on ligand size).26 The superposition of the Glide-generated docked pose for NSI 

and the native conformation in 2HFP (Figure 2.4) revealed that the RMSD between these 

two poses is 0.22 Å, so the glide docking can successfully generate the native conformation 

and orientation from crystal structure. This low RMSD value show that GD is able 

efficiently of finding the innate poses in crystal structures and can be consistently used to 

define the binding conformations of other ligands. Another validation method is 

enrichment factor (ER). The ER is a general measurement of the efficiency of a docking 

program: the higher the ER, the more accurate the docking program.27 The ER measures 

the concentration of active inhibitors in a specific subset divided (x %) by the concentration 

of active inhibitors in the database.27 The ER can validate if the docking method will be 

satisfactorily able identifying active compounds in protein-ligand interactions in PPARγ 

by docking a library of 47 PPARγ antagonists and 423 drug-like compounds against the 

crystal structure of PPARγ. Docking of 470 compounds against the PPARγ (2HFP) model 

resulted an ER score of 7.02 (Table 3), showing a growth in the chance of finding an active 

PPARγ antagonist using glide docking in the top 10% of hits compared to an otherwise 

random collection. The docking scores of the 423 drug-like compounds against the 2HFP 
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crystal structure are listed in table 2.3. The efficiency of ER tested by evaluating the hit 

rate (HR). HR compares the obtained actual EF with desirable ideal EF.28 In our data set, 

the EF for the ideal case would be 10.00. The HR score of 7.02 for the glide docking 

indicates that active ligands can be identified using this software (Table 2.4).  
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Figure 2.4. The superposition of NSI from the Glide generated pose and the native crystal 

structure (2HFP). NSI from the Glide generated pose (cyan), and the native crystal structure 

(green). 
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Table 2.3. Glide docking scores of drug-like molecules extracted from a NCI database 

Against the PPARγ (2HFP) at allosteric site. 

 

NCI ID XP 
GScore 

NCI ID XP 
GScore 

NCI ID XP 
GScore 

NCI ID XP GScore 

116 -6.57 47742 -8.92 95895 -5.44 130813 -8.28 

153 -6.13 48151 -7.65 99547 -8.54 130842 -5.41 

3098 -3.65 49628 -6.92 101523 -8.59 131366 -8.68 

6918 -5.84 51478 -5.27 101672 -6.10 131367 -8.92 

7579 -7.68 52003 -6.80 101793 -8.08 132263 -7.31 

8008 -7.78 53199 -5.51 103843 -7.19 132898 -7.22 

8490 -5.87 54906 -6.76 105274 -2.80 134118 -6.13 

8609 -8.76 56243 -8.84 105337 -6.56 135634 -6.89 

8611 -9.12 57034 -10.75 106156 -9.66 135848 -9.42 

9011 -4.64 60616 -7.64 106221 -6.73 139461 -7.25 

9349 -7.28 62571 -5.89 110347 -8.63 141337 -5.53 

10406 -6.33 63837 -7.31 110559 -3.91 142333 -7.60 

10671 -9.92 66072 -4.71 111593 -5.81 143351 -7.88 

12985 -7.19 69584 -9.17 112828 -7.57 143748 -8.31 

13481 -8.36 70824 -6.88 113311 -6.99 144441 -6.86 

13843 -8.52 70914 -10.38 113915 -6.69 146005 -5.81 

14013 -9.08 70972 -6.44 114133 -6.67 147980 -6.70 

15285 -8.80 71012 -5.49 114631 -8.18 148001 -6.77 

15903 -6.04 71682 -7.25 114673 -6.33 149543 -5.98 

16764 -8.15 71790 -6.86 114819 -7.01 150206 -5.53 

16765 -8.15 72559 -8.90 117195 -6.40 150386 -8.82 

16768 -9.63 74975 -5.98 117777 -4.40 151215 -7.83 

19223 -6.33 77700 -4.04 119707 -7.51 152426 -8.00 

21312 -7.07 77720 -6.21 119765 -6.67 155243 -8.07 
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24914 -6.17 79023 -9.82 120183 -8.89 156601 -9.99 

26870 -8.66 79566 -5.62 122309 -6.98 156773 -7.17 

27265 -7.41 81129 -5.22 122514 -6.38 157402 -4.63 

30019 -8.80 84538 -7.53 123112 -7.94 157967 -6.14 

30967 -8.94 85154 -6.82 123222 -6.57 161387 -7.11 

31546 -6.82 85267 -7.91 123247 -5.06 162183 -6.11 

33408 -6.04 85410 -6.26 123976 -8.04 162501 -9.45 

34567 -7.56 85518 -7.29 124442 -8.51 162765 -6.29 

36487 -6.69 85679 -7.80 125281 -7.81 163369 -4.53 

36506 -10.26 85740 -5.44 125661 -5.16 164089 -10.94 

37117 -7.73 86711 -8.34 126424 -5.30 164113 -5.63 

37815 -8.77 88972 -5.92 127678 -8.73 164377 -7.48 

39006 -6.08 89808 -8.49 127690 -6.39 164929 -6.86 

39612 -8.07 91332 -10.58 128094 -4.94 165995 -5.63 

42399 -3.86 91397 -8.77 128583 -6.90 167739 -6.07 

44491 -8.35 92204 -7.31 128594 -9.96 167819 -7.97 

45093 -5.71 92228 -6.56 130101 -8.92 170757 -7.31 

234698 -9.18 341661 -10.03 515421 -6.74 630981 -4.02 

240360 -7.78 343544 -8.27 523235 -6.63 632016 -7.68 

244974 -8.87 344240 -9.77 527570 -5.76 632242 -7.23 

254681 -9.24 345725 -6.28 529321 -8.55 633057 -8.81 

269193 -5.06 346878 -7.48 602681 -7.58 633971 -6.54 

270150 -7.33 349963 -8.74 603656 -6.02 637660 -5.35 

270734 -7.73 350111 -7.52 608550 -6.07 638038 -8.44 

273905 -9.93 350986 -6.01 609357 -6.18 639829 -7.75 

277480 -6.71 353485 -7.82 609523 -7.09 640341 -8.46 

279829 -8.74 356465 -8.40 610540 -6.14 640991 -7.84 

281299 -6.16 356785 -6.84 612475 -11.78 640996 -8.47 

284669 -6.31 357681 -7.99 612977 -6.44 641217 -7.11 

CONTINUED 
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289626 -8.76 359827 -7.77 613586 -9.79 641250 -9.53 

291629 -7.83 363784 -8.54 613748 -9.15 641602 -8.05 

292943 -8.22 363918 -7.99 617013 -7.05 642075 -9.13 

294866 -6.30 364069 -5.18 618178 -9.15 642305 -9.36 

296242 -7.28 364385 -6.65 618443 -8.03 642324 -9.54 

298141 -6.91 365357 -9.29 618449 -7.27 643509 -8.32 

299208 -6.69 366098 -10.03 618555 -7.66 644965 -8.06 

299236 -6.60 367933 -9.70 618660 -6.12 645168 -7.72 

300910 -5.19 368279 -9.58 618682 -7.14 645980 -7.98 

304891 -8.56 371012 -7.01 618688 -7.39 646474 -8.47 

308001 -12.89 371194 -9.22 619196 -8.95 647592 -7.47 

309842 -6.26 371488 -6.25 620478 -5.46 648635 -7.81 

310324 -7.03 372059 -6.86 622586 -6.06 648639 -6.49 

310361 -6.11 372302 -8.31 622958 -7.87 648650 -8.51 

310835 -6.76 372523 -6.23 623091 -7.44 648689 -4.84 

313957 -7.85 372642 -7.95 623712 -6.35 651331 -2.48 

317877 -6.57 374682 -6.69 623768 -8.57 652035 -6.80 

318822 -6.85 375722 -8.47 624333 -6.88 652861 -8.23 

319112 -6.44 379100 -11.92 624425 -8.16 652900 -7.40 

319688 -6.66 379472 -6.59 624454 -8.06 654387 -5.83 

320204 -6.91 380509 -6.54 624546 -7.25 655041 -5.69 

320212 -7.15 381584 -7.28 624547 -7.74 656455 -7.52 

320562 -7.93 400063 -6.50 624548 -6.76 657990 -7.19 

320864 -7.16 401688 -7.98 627785 -5.81 658262 -11.55 

325304 -10.66 401696 -9.32 627889 -7.93 658994 -9.12 

328102 -7.03 401828 -6.81 629819 -11.91 659343 -8.01 

331921 -7.88 403031 -4.68 629827 -6.15 661081 -7.54 

333346 -5.14 405904 -8.03 630312 -6.25 662564 -5.93 

335415 -7.73 406369 -6.67 630321 -7.18 664889 -6.47 

CONTINUED 
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335994 -10.45 408562 -9.79 630373 -9.79 665312 -7.94 

337738 -8.06 409253 -6.93 512601 -5.48 666613 -7.16 

338540 -8.51 409615 -7.79 514213 -6.78 666714 -7.03 

171538 -6.3 210344 -9.86 667386 -6.67 682500 -5.65 

172540 -7.21 211226 -8.04 667708 -8.21 682506 -9 

172846 -7.5 211831 -7.32 671438 -7.18 683237 -6.63 

177363 -7.99 212018 -8.1 672084 -9.87 683711 -5.6 

178023 -7.99 212032 -9.16 672293 -6.93 685509 -8.2 

178889 -6.78 212112 -5.07 674002 -6.56 685706 -7.53 

180617 -7.27 213899 -7.67 674012 -7.49 687105 -5.6 

180627 -7.71 215556 -9.97 674612 -6.47 687524 -7.88 

180642 -6.9 216451 -7.77 675766 -7.19 687739 -7.86 

180648 -7.63 216506 -6.5 675767 -7.98 687869 -8.8 

180661 -7.17 216694 -7.7 676464 -6.49 688818 -9.21 

190528 -6.8 217080 -7.22 676607 -10.51 690564 -8.85 

190748 -6.5 226116 -7.55 677157 -8.56 691348 -7.57 

201618 -7.27 226178 -8.16 679497 -8.87 691350 -7.51 

201666 -7.58 226517 -9.62 679513 -7.98 691424 -8.98 

202677 -7.88 227395 -4.9 680329 -6.28 691578 -6.86 

204583 -6.64 230297 -11.56 681170 -7.55 693055 -5.53 

204590 -6.52 231315 -9.15 681536 -6.23 693123 -6.76 

205546 -7.69 231923 -6.49 681633 -9.27 694919 -6.36 

205684 -8.44 232022 -7.76 681958 -8.38 695857 -6.62 

205811 -9.58 731365 -7.04 338620 -7.1   

CONTINUED 
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Table 2.4. Enrichment factor of the glide docking against PPARγ at allosteric site.  

 

 

Number of active PPARγ antagonists  47 

Number of total compounds in the database  470 

Number of active PPARγ antagonists in the top 10% subset  33 

Enrichment factor (EF) (actual)  7.02 

Enrichment factor (EF) (ideal) 10 

Hit rate (HR) 70% 
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2.3.3. Binding Mode of PPARγ Ligands at Allosteric Binding Site:  

Several PPARγ antagonists (Figure 2.2), partial agonists (Figure 2.4), and agonists 

(Figure 2.5) was run in silico docking using GD method to identify the binding mechanisms 

of these compounds, and distinguish the residues that are responsible for antagonists 

binding or agonists, and partial agonists binding. First, we analyzed the protein-ligand 

interactions of several PPARγ ligands at allosteric pocket (Table 2.5). The crystal structure 

of the PPARγ /NSI complex at allosteric binding site reveals that residues Lys256 and 

Ser342 of PPARγ generate two H-bonds to the NSI ligand. In our docking study, the NSI 

ligand was docked to PPARγ and formed two H-bonds with Lys256 and Ser342. This result 

is compatible with the protein-ligand interactions for the crystal structure of the PPARγ 

/NSI complex. The H-bond interactions between PPARγ ligands and PPARγ at allosteric 

binding site show that Lys256 and Ser342 provides H-bonds with the majority of PPARγ 

ligands including PPARγ antagonists, partial agonists, and agonists (Figure2.6). This set 

of H-bond interactions offers a reasonable explanation for the observation that many 

PPARγ ligands are effective against PPARγ. Arg288 of PPARγ looks to be important for 

ligand binding, more so for the PPARγ antagonists in that this residue affords π-cation 

interactions with 13 of the 47 antagonists (≈ 28%) for PPARγ but less than 4 of the 35 

partial agonists (≈ 6%), and less than 3 of the 14 agonists (≈ 14%) for the crystal structure 

of the PPARγ. In addition, Phe282 and Lys367 of PPARγ looks to be important for PPARγ 

antagonists binding, that Lys367 affords H-bonds or π-cation interactions for with 10 of 

the 47 antagonists (≈ 21%), and Phe282 create π–π stacking for with 9 of the 47 antagonists 

(≈ 19%). In contrast, there are less than 4 of the 35 partial agonists (≈ 6%) for Phe282 and 

(≈ 8%) for Lys367, and less than 3 of the 14 agonists (≈ 14%) for Phe282 and (0%) for 
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Lys367 (Figure 2.6). In contrast, Ser289 offers H-bonds with 21 of the 35 partial agonists 

(≈ 58%) for PPARγ but 8 of the 47 antagonists (≈ 17%). Glu343 forms H-bonds with 5 of 

the 14 agonists (≈ 36%) but less than 2 of the 47 antagonists (≈ 2%). Taken together, 

inspection of ligands/ PPARγ interactions at allosteric pocket shows compounds that are 

able to form π-cation interactions with Arg288, π–π stacking with Phe282, and H-bonds or 

π-cation interactions with Lys367 might be attributed to PPARγ antagonists. Therefore, 

our docking results suggest that interactions with residues Phe282, Arg288, and Lys367 

might be more exploited for specific antagonists design than agonists and partial agonists 

at allosteric pocket.   

The docked pose of NSI and its analogues in the PPARγ protein at allosteric pocket 

display that the N- sulfonyl carboxamide group of NSI and its analogues localize close to 

the polar residues of H2’, H3, and β-sheet3 of PPARγ (Figure 2.7), forming favorable two 

H-bond interactions with Lys256, and Ser342. In addition, the benzyl group of some NSI’s 

analogues attached to the nitrogen atom of the indole can create π-cation interactions with 

Arg288 of H3 (Figure 2.7). In the other hands, the docked pose of SR1664 and its analogues 

in the PPARγ protein at allosteric pocket show that the carboxyl group of SR1664 and its 

analogues form forming favorable two H-bond interactions with Lys256, and Ser342. In 

addition, the benzyl group of some SR1664’s analogues attached to the carbamoyl form π–

π stacking with Phe282 of H3, and favorable H-bond interactions or π-cation interactions 

with Lys367 of H7.  
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Compound R R1 Stereo-
chemistry 

Compound R R1 Stereo- 

chemistry 

45 H H  57 2-Me Me S 

46 3-Me H  58 2-Et Me S 

47 3-OMe H  59 2-Br Me S 

48 3-NO2 H  60 2-OiPr Me S 

49 4-Me H  61 3-Cl Me S 

50 4-Br H  62 3-CF3 Me S 

51 4-NO2 H  63 4-Me Me S 

SR9034 H Et ± 64 4-OEt Me S 

52 H Et S 65 3-iPr H  

53 H Et R 66 3-iPr Et S 

54 4-F Me S 67 3-iPr  S 

55 4-Br Me S 68 3-iPr nBu S 

56 4-OMe Me S 69 3-iPr iBu S 
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Compound R Compound R 

71 thiophen-2-
ylmethanamine 

73 cyclobutanamine 

72 diphenylmethanamine 74 cyclohexylmethanamine 
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Figure 2.5. Chemical structures of PPARγ partial agonists.   
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Figure 2.6. Chemical structures of PPARγ agonists. 
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Table 2.5. Residues Interactions of ligands at allosteric site: 

 

 

 

    
Antagonists 
  Compound Interacting Residues Compound Interacting Residues 

NSI Lys265, Ser342 22 Lys265, Ser342 

SR1664 
Lys265, Ser289, Ser342, 
Lys367 23 Lys265, Arg288, Ser342, Lys367 

SR11023 Lys265, Ser289 24 Lys265, Arg288, Ser342 
1 Lys265, Ser342 25 Lys265, Arg288, Ser342 
2 Lys265, Ser342 26 Lys265, Arg288, Ser342 
3 Lys265, Arg288, Ser342 27 Lys265, Ser289, Ser342 
4 Lys265, Ser342 28 Lys265, Ser289, Ser342 
5 Lys265, Ser342 29 Lys265, Ser289 
6 Lys265, Ser342 30 Lys265, Phe282, Ser342, Lys367 
7 Lys265, Ser342 31 Lys265, Ser289 
8 Lys265, Arg288, Ser342 32 Lys265, Phe282, Ser342, Lys367 
9 Lys265, Ser342 33 Lys265, Ser289 
10 Lys265, Arg288, Ser342 34 Lys265, Ser289, Ser342, His449 

11 Lys265, Arg288, Ser342 35 
Lys265, Phe282, Ser342, Lys367, 
His449 

12 Lys265, Ser342 42 Lys265, Phe282, Ser342, Lys367 
13 Lys265, Ser342 44 Arg288 
14 Lys265, Arg288, Ser342 43 Lys265, Phe282, Ser342, Lys367 
15 Lys265, Ser342 36 Lys265, Phe282, Lys367 
16 Lys265, Arg288, Ser342 37 Lys265, Ser342 
17 Lys265, Ser342 38  Phe282, Lys367 
18 Ser342 39 Lys265, Phe282, Lys367 
19 Lys265, Arg288, Ser342 40 Lys265, Gly284 
20 Lys265, Ser342 41 Phe282 
21 Arg288, Ser342, Glu343   
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Agonist 
Compound Interacting Residues 

 
Compound 

 
Interacting Residues 

LOBEGLITAZONE  NA 75 
Lys265, Ser289, 
Ser342 

PIOGLITAZONE  Glu259, Phe282, Gly284 76 
Lys265, Ser289, 
Ser342 

EDAGLITAZONE  Leu228 77 Lys265, Ser342 

ROSIGLITAZONE  
Leu228, Lys265, Glu295, 
Glu343, Tyr327 78 

Lys265, Phe282, 
Ser342 

FARGLITAZAR Lys265, Ser342 GW1929 Ser342, Glu343 

R-1 
Lys265, Arg288, Ser342, 
Glu343, His449 MRL20 Lys265, Ser342 

AMROFRUTIN 2 Lys265, Ser342   

AMROFRUTIN 1 Ser342, Glu343   

Partial 
Agonists     
Compound Interacting Residues Compound Interacting Residues 
AMG-131 Phe282, Ser342, Lys367, His449 58 Lys265, Ser342 

FK614 Arg288 59 Lys265, Ser289, Ser342 
MBX-102 Lys265, Leu340 60 Lys265, Ser289, Ser342 

 MRL-24 
Lys265, Arg288, Ser342, Glu343, 

Lys367 61 Lys265, Ser289 
SR9034 Lys265, Ser289, Ser342 62 Lys265, Ser289, Ser342 

45 Lys265, Ser342 63 Lys265, Ser289, Ser342 
46 Lys265, Ser289, Ser342 64 Lys265, Ser289 
47 Lys265, Ser342 65 Lys265, Ser342 
48 Lys265, Ser289 66 Lys265, Ser289 
49 Lys265, Ser289 67 Glu343 
50 Lys265, Ser289, Ser342 68 Lys265, Ser289 
51 Lys265, Ser332, Ser342 69 Lys265, Ser342 
52 Lys265, Ser289 70 Lys265, Ser342, Lys367 
53 Lys265, Ser289, Ser342 71 Lys265, Ser289, Ser342 
54 Lys265, Ser289, Ser342 72 Lys265, Phe282, Ser342 
55 Lys265, Ser289, Ser342 73 Lys265, Ser289, Ser342 
56 Lys265, Ser342 74 Lys265, Ser289, Ser342 
57 Lys265, Ser289, Ser342   

CONTINUED 
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Figure 2.7. Amino acid frequency of interacting residues of various PPARγ ligands at 

allosteric Binding site.   
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Figure 2.8. Interactions between PPARγ and NSI (an antagonist) (A), SR1664 (an 

antagonist) (B), FK614 (a partial agonist) (C), and MRL20 (an agonist) (D) at allosteric 

binding site. The H-bond interactions are depicted as green dotted lines.  
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2.3.4.  Binding Mode of PPARγ Ligands at Orthosteric Binding Site:  

In contrast, we studied the protein-ligand interactions of PPARγ ligands at orthosteric 

pocket (Table 2.6). The crystal structure of the PPARγ /NSI complex at orthosteric binding 

site exposes that residues Lys367, and His449 of PPARγ generate two H-bonds to the NSI. 

Besides, Phe363, Phe282, and His449 create π–π stacking with the NSI. In our docking 

study, the NSI was docked to PPARγ and formed two H-bonds with Lys367, and His449, 

and π–π stacking with Phe363, Phe282, and His449. This result is also well-matched with 

the protein-ligand interactions for the crystal structure of the PPARγ /NSI complex. Phe282 

of PPARγ looks to be important for ligand interactions, especially for the PPARγ 

antagonists at orthosteric pocket. Phe282 affords π–π stacking with 22 of the 47 antagonists 

(≈ 47%) for PPARγ while 6 of the 36 partial agonists (≈ 17%), and less than 2 of the 14 

agonists (≈ 7%) for the crystal structure of the PPARγ (Figure 2.8). Phe363 of PPARγ also 

looks to be important for ligand interactions for the PPARγ antagonists at orthosteric 

forming π–π stacking with 9 of the 47 antagonists (≈ 19%) for PPARγ but less than 2 of 

the 36 partial agonists (≈ 3%), and of the 14 agonists (≈ 7%) for the crystal structure of the 

PPARγ. Besides, His449 can generate π–π stacking with 15 of the 47 antagonists (≈ 32%) 

for PPARγ while 3 of the 36 partial agonists (≈ 8%), and less than 3 of the 14 agonists (≈ 

14%) for the crystal structure of the PPARγ. Lys367 forms favorable two H-bond with 20 

of the 47 antagonists (≈ 43%) for PPARγ while less than 5 of the 36 partial agonists (≈ 

11%), and of the 14 agonists (≈ 29%) for the crystal structure of the PPARγ. Taken 

together, inspection of ligands/ PPARγ interactions at orthosteric pocket shows compounds 

which are able to form π–π stacking with Phe282, Phe363, and His449, and H-bonds with 

Lys367, and His449 might be attributed to PPARγ antagonists. Therefore, our docking 
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results suggest that interactions with residues Phe282, Phe363, Lys367, and His449 might 

be exploited for specific antagonist design than agonists and partial agonists at allosteric 

pocket.  

The docked pose of NSI and its analogues in the PPARγ protein at orthosteric 

pocket exhibit that the N- sulfonyl carboxamide group of NSI and its analogues is close to 

the polar residues of H7, and H11 of PPARγ (Figure 6a), forming favorable two H-bond 

interactions with Lys367, and His449. In addition, His449 can generate π–π stacking with 

the benzyl group of some NSI’s analogues attached to the nitrogen atom of the indole 

(Figure 5B). Phe282, and Phe363 induce π–π stacking with phenyl ring attached to indole, 

and sulfonyl respectively. In the other hands, the docked pose of SR1664 and its analogues 

in the PPARγ protein at orthosteric pocket show that the carboxyl group of SR1664 and its 

analogues form forming favorable two H-bond interactions with Lys256, and Ser342. In 

addition, the benzyl group of some SR1664’s analogues attached to the carbamoyl form π–

π stacking with Phe282 of H3, and favorable H-bond interactions with Lys367 of H7. 

Ser289 in H3 can also form favorable H-bond interactions with the nitrogen atom of the 

amide group.   
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Table 2.6. Residues Interactions of ligands at orthosteric site. 

    
Antagonists 
Compound Interacting Residues Compound Interacting Residues 

NSI 
Phe282, Phe363, Lys367, 
His449 22 

Phe282, Phe363, 
Lys367 

SR1664 
Lys265, Ser289, Ser342, 
Lys367 23 Phe363 

SR11023 Lys265, Ser289, Ser342 24 
Phe282, Lys367, 
His449 

1 
Phe282, Phe363, Lys367, 
His449 25 Phe363 

2 Phe282, His449 26 Phe282, Lys367 

3 Phe282, Phe363, His449 27 
Lys265, Ser289, 
Ser342 

4 Lys367, His449 28 Lys265, Ser342 

5 Lys367 29 
Lys265, Ser289, 
Ser342 

6 His449 30 
Lys265, Ser289, 
Ser342 

7 Phe282, Lys367, His449 31 
Lys265, Phe282, 
Ser342 

8 Phe282, Lys367, His449 32 
Lys265, Phe282, 
Ser342 

9 Phe282, His449 33 Lys265 

10 Phe363, Lys367, His449 34 
Lys265, Phe282, 
Ser289, Ser342 

11 Phe282, Lys367 35 
Lys265, Ser342, 
Tyr473 

12 Lys367 42 Lys265 
13 Lys367, His449 44 Lys265 
14 Phe282, Lys367, His449 43 NA 
15 Phe282, Lys367, His449 36 Lys265, Ser342 
16 Phe282, Phe363, Lys367 37 Lys265, Phe282 
17 Phe282, Lys367 38 Lys265 
18 Phe282, Lys367 39 Lys265, Ser342 
19 Phe282, Lys367 40 Lys265, Glu291 

20 NA 41 
Lys265, Gly284, 
Tyr327 

21 Phe282, Phe363, Lys367   
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Agonists 
Compound Interacting Residues 

 
Compound 

 
Interacting Residues 

LOBEGLITAZONE  Leu228, Phe282 75 Lys265, Ser289, Ser342 

PIOGLITAZONE  
Leu228, Ser289, Tyr327, 
Glu343 76 Lys265, Ser342 

EDAGLITAZONE  Leu228 77 Lys265, Leu340, Ser342 

ROSIGLITAZONE  
Leu228, Ser289, Tyr327, 
Glu343 78 Lys265, Ser342 

FARGLITAZAR Lys265, Ser342 GW1929 Phe363, Lys367 
R-1 Lys265, Ser342 MRL20 His323 

AMROFRUTIN 2 Lys367, His449   
AMROFRUTIN 1 Lys367   

Partial Agonists 
Interacting Residues Compound Interacting Residues 

Compound 

AMG-131 Phe282, Ser342, 
Lys367 58 Lys265, Ser289, Ser342 

FK614 Phe282, Lys367, 
His449 59 Lys265, Ser289, Ser342 

MBX-102 Phe282, Phe363, 
Lys367, His449 60 Lys265, Ser342 

MRL-24 Phe282, Arg288, 
Glu343, His449 61 Lys265, Ser289, Ser342 

SR9034 Lys265, Ser289, Ser342 62 Lys265, Ser289, Ser342 
45 Lys265, Ser289, Ser342 63 Lys265, Ser289, Ser342 
46 Lys265, Ser342 64 Lys265, Ser289 
47 Lys265, Ser342 65 Lys265, Ser342 
48 Lys265, Ser342 66 Lys265, Ser289, Ser342 
49 Lys265, Ser342 67 Lys265, Ser289, Ser342 
50 Lys265, Ser342 68 Lys265 
51 Lys265, Ser342 69 Lys265 
52 Lys265, Ser289, Ser342 70 Lys265 
53 Lys265, Ser289, Ser342 71 Lys265, Ser289, Ser342 
54 Lys265, Ser289, Ser342 72 Lys265, Phe282, Ser342 
55 Lys265, Ser342 73 Lys265, Ser289, Ser342 
56 Lys265, Ser289, Ser342 74 Arg288 
57 Lys265, Ser289, Ser342  

CONTINUED 
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Figure 2.9. Amino acid frequency of interacting residues of various PPARγ ligands at 

orthosteric Binding site.   
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Figure 2.10. Interactions between PPARγ and NSI (an antagonist) (A), SR1664 (an 

antagonist) (B), FK614 (a partial agonist) (C), and MRL20 (an agonist) (D) at allosteric 

binding site. The H-bond interactions are depicted as green dotted lines.  
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2.3.5. The electrostatic map of PPARγ Binding Sites: 

The electrostatic map of PPARγ protein at allosteric pocket displays that the side chain 

amino group of Lys265, and the backbone amide of Ser342 were situated toward the ligand 

binding site and served as an H-bond acceptor for ligands. The electrostatic maps 

surrounding Lys265, Ser342 for the three proteins PPARγ ligands at allosteric pocket are 

very similar; these residues contribute to H-bond interactions with PPARγ ligands. This 

reveals a rational clarification that several PPARγ ligands form H-bonds with Lys265, and 

Ser342 of the PPARγ at allosteric pocket. This shows that the allosteric pocket of PPARγ 

protein adopts a considerably activation binding site for PPARγ ligands (Figure 2.10). The 

more noticeable difference among the PPARγ ligands at allosteric pocket lies in Arg288; 

it is located deeper in the binding pocket in the allosteric pocket of PPARγ protein. Arg288 

forms favorable π-cation interactions with antagonists, an observation consistent with our 

docking results. The noteworthy residue in the PPARγ protein at allosteric pocket is 

Lys367. Because the side-chain structure is extended, and Lys367 located far from the 

binding pocket (Figure 11C), which it is less likely to interact with ligands. This explains 

why there are only SR1664 and its analogues form H-bonds with Lys367 of PPARγ at 

allosteric pocket (Table 4). In addition, Phe282 is able to form π–π stacking with PPARγ 

ligands and mainly with PPARγ antagonists through its benzyl ring. In contrast, the 

electrostatic map of PPARγ protein at orthosteric pocket shows that the side chain amino 

group of Lys367 served as H-bond donors for ligands, and the nitrogen of imidazole side 

chain of His449 were situated toward the ligand-binding site and served as H-bond 

acceptors for ligands (Figure 11C). Besides, the imidazole side chain of His449 is close to 

(≈ 3.50 Å) the benzyl group of some NSI’s analogues attached to the nitrogen atom of the 
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indole, and it is able to generate π–π stacking. Phe282 and Phe363 enclose the phenyl group 

attached to the sulphonyl.   
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Figure 2.11. Electrostatic surface map of the binding pockets of PPARγ. The hydrophobic 

region is depicted as white; H-bond acceptor as red; and H-bond donor, as blue. (A) 

Allosteric Binding site. (B) Orthosteric Binding Site.    
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2.4. Conclusion: 

PPARγ is an attractive target for drug discovery and development. PPARγ antagonists 

have showed antitumor activity against different tumors. Furthermore, PPARγ antagonists 

have showed better treatment of obesity and diabetic than PPARγ agonists.  The crystal 

structures PPARγ complexed with antagonists revealed that antagonists can occupy the 

two binding sites, orthosteric pocket, and allosteric pocket. Docking of PPARγ antagonists 

efficaciously similar to the experimentally observed binding affinity. Docking studies 

PPARγ shows that the experimental binding affinity of PPARγ antagonists more correlated 

to allosteric binding site than the orthosteric binding site. In addition, the statistical 

parameters of docking scores at allosteric pocket better than orthosteric pocket. Therefore, 

the allosteric site looks like the most favorable binding site for PPARγ antagonists. 

Inspection of ligand/ PPARγ interactions at allosteric binding site shows that the PPARγ 

antagonists seems to require an interaction with residues Phe282, Arg288, and Lys367 

more than agonists or partial agonists. In contrast, PPARγ ligands interactions at orthosteric 

binding site reveals that the PPARγ antagonists are able to interact with residues Phe282, 

Phe363, Lys367, and His449 more than agonists or partial agonists. This study improvs the 

thoughtful of the PPARγ binding site, which assists in the design and optimization of more 

specific PPARγ antagonists. 
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Chapter 3 

Structure-Based Design of PPARγ Antagonists as Potential Anti 

Prostate Cancer Agents 

ABSTRACT: 

The peroxisome proliferator-activated receptor gamma is (PPARγ) recently identified as 

an oncogene and it plays a key role in prostate cancer (PC) development and progression. 

PPARγ antagonists contributed to the inhibition of PC cell growth. We describe a structure-

based approach that led to the discovery of a series of novel hits for PPARγ antagonists. 

We fulfilled integrated virtual screening and biological assay for the two binding sites of 

PPARγ; orthosteric and allosteric pockets. Several hits of PPARγ antagonists showing 

single digit of micro molar concentration in inhibition of PPARγ generated from the virtual 

screening of allosteric pocket. The docking studies showed that compounds have more 

ligand protein interactions at allosteric pocket.  Arg288, Lys367, and His449 are significant 

residues to be targeted by PPARγ antagonists. The allosteric site showed that it is the most 

favorable binding for the PPARγ antagonists.    
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3.1. Introduction:  

Prostate cancer (PC) is the second most diagnosed cancer and sixth leading cause 

of cancer mortality in men in the world.1 The androgens and the androgen receptor (AR) 

control the development and growth of PC2 . Several agents targeting AR signaling have 

improved and approved for the treatment of metastatic PC.3  PC metastasis is still 

irremediable and develops resistance to AR-targeted therapies.4 Several molecular 

pathways have been suggested to overcome PC, including phosphatase and tensin 

homolog (PTEN) loss, NK3 homeobox 1 (Nkx3.1) loss, Myc amplification, Forkhead box 

protein M1  (FoxM1) overexpression, and phosphoinositide 3-kinase/AKT 

serine/threonine kinase 1  (PI3K/AKT) activity.5,6,7,8,9 The peroxisome proliferator-

activated receptor gamma (PPARγ) have recently identified as an oncogene that contributes 

to PC development and progression.10,11,12 PPARγ is a ligand-dependent transcription 

factor belonging to the nuclear hormone receptor superfamily.13  PPARγ is known to play 

a prominent role in adipocyte differentiation, the inflammatory response, lipid metabolism, 

and peripheral glucose utilization.4   

PPARγ was originally thought that PPARγ acted as a tumor suppressor in PC, and 

PPARγ agonists could be used as therapeutics for PC.14,15,16,17 However, further analysis 

clearly demonstrated that the inhibition of PC growth were working via PPARγ-

independent mechanisms.18,19,20 In fact, PPARγ is recently defined as an oncogene in PC, 

and PPARγ expression is greater in PC.11,12,21,22 PPARγ expression increases with stage 

and grade of PC, and PPARγ positively correlated with PC grade.11,12,21,22 Three AR-

negative PC cell lines: DU-145, PC3, and PC3M were revealed that the overexpression of 

PPARγ prompted cell proliferation, migration levels and metastases to the lungs and lymph 
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nodes.11 The siRNA knockdown of PPARγ and treatment with a PPARγ antagonist reduced 

the tumor size of PC.10,11 Besides, Warfarin which inhibited PPARγ signaling in PC cells 

leading to an inhibition of AR signaling and the inhibition of PC cell growth.10 Thus, 

PPARγ is a novel and important target in PC. Therefore, there is an urgent need to develop 

novel, potent PPARγ antagonists for treatment and prevention of PC and other diseases. 

PPARγ is a nuclear receptor and a ligand-dependent transcription factor.23 The 

endogenous lipids and synthetic small molecule ligands bind PPARγ and regulate the 

transcriptional activity of PPARγ through the C-terminal ligand-binding domain (LBD).24 

The LBD of PPARγ is big (>1200 Å3), and there are three binding area within distinct 

regions of the LBD.25 The thiazolidinedione drugs (TZDs) are high-affinity synthetic 

PPARγ agonists, and they are commonly used as insulin sensitizers in patients with type II 

diabetes.4 TZDs binds to the canonical orthosteric pocket of PPARγ, and stabilize the 

activation function 2 (AF-2).26 The AF-2 involves helix 3, helix 5, and the critical helix 

12.27 In contrast, several PPARγ ligands have alternating binding site located between H3 

and the β-sheets and does not compete with endogenous ligand binding the canonical 

orthosteric pocket, so this binding site can be identified as an allosteric site.28  The allosteric 

site surface includes H2’, H3, Ω loop, H7, and β-sheets.28 While hundreds of PPARγ 

agonists and partial agonist have been developed, only a handful of pure antagonists have 

been developed. GW9662 and T0070907 have similar structures, and they are both 

covalent modifiers of target proteins and have never been developed clinically (Figure 

3.1).29,30 Several reversible PPARγ antagonists have been developed, but this class of 

molecules do not have good drug-like properties (Figure 1).31,32   
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Here, we used computational and experimental approach to find novel hits of 

PPARγ antagonists. We performed a comprehensive structure based virtual screening 

(SBVS) comparison between the orthosteric and allosteric sites of PPARγ to find out the 

most favorable binding site for PPARγ antagonists. The identified hit molecules then were 

tested for their ability to suppress PPARγ activation in a cell-based assay. We identified 

regions of the PPARγ protein that can be targeted to design PPARγ antagonists. Besides, 

we discuss the potential ligand protein interactions of PPARγ antagonists for drug 

development and optimization. This comparison revealed a probable basis for the design 

and development of PPARγ antagonists. Our docking results provide an important 

structural insight to the identification and development of several novel PPARγ antagonists 

with potencies in the single-digit micromolar range. 
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Figure 3.1. Representative PPARγ antagonists. 
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3.2. Materials and Methods: 

3.2.1. Virtual screening and molecular modeling:  

A database of 260,071 molecules was downloaded from the National Cancer Institute 

(NCI), then the energy was minimized using MMFF94X force field in Molecular Operating 

Environment (MOE) software.33,34,35 In this study, we used Glide Dock in the Maestro 11.2 

for ligand docking to PPARγ (PDB ID: 2HFP) as a target protein.36,37 Then, two grid files 

was generated by the Glide Grid Generation panel with the bound ligands as the centroid 

of the protein binding pocket for  the orthosteric and allosteric sites of PPARγ.36 The site 

of the bound ligand (NSI) in the crystal structure 2HFP was defined as the centroid. Then, 

all compounds were docked with the precision and ligand sampling were set to extra-

precision (XP) method, and all other parameters were used as defaults.36 The binding 

affinity of the various conformation of PPARγ /ligand complexes was evaluated by the 

Glide scores. The protein/ligand interactions was created by using the Pymol software.38    

3.2.2. Cell lines and culture conditions: 

LNCaP cells (ATCC) were maintained in phenol red-free RPMI 1640 supplemented 

with 10% FBS and antibiotics. LNCaP cells stably expressing AR and PPARγ were 

generated through the transfection of fluorescent and HA-tagged AR and PPARγ (clone 

HsCD00455985). 

3.2.3. Transfection and transcriptional assays: 

LNCaP cells were transfected using Lipofectamine Plus (Thermofisher) with PPAR 

response element (PPRE) driven firefly luciferase and pRL-SV40 (Promega) as a control. 

Cells were transferred to a 96-well plate 24 hours after transfection and treated with 

vehicle, pioglitazone (pio) or the selected compounds in quadruplicate. Luciferase activity 
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was assayed 24 hours after treatment using the dual-luciferase reporter assay system 

(Promega) and the renilla-normalized firefly luciferase activity was reported. IC50s were 

determined by linear regression. Student's t-tests (two-sided and equal variance) were 

performed to determine differences from pio-induced full activity (p < 0.05 indicated by 

an asterisk.) 

3.3. Results and Dissection: 

To identify compounds that can repress the PPARγ-controlled gene expression, we 

carried out docking studies against the crystal structure of PPARγ (PDB ID: 2HFP).37  This 

crystal structure has two ligands occupied two different binding sites of PPARγ, the 

orthosteric and allosteric pockets, forming a 1:2 complex within the crystal (Figure 3.2). 

We performed SBVS to the both binding site of PPARγ. A database of 260,071 molecules 

was downloaded from the National Cancer Institute (NCI), then it was filtered according 

to the Lipinski’s rule of five by the logP (logP < 5), and molecular weight (MW < 500) 

yielding 33,778 drug-like molecules.39 500 compounds were randomly selected from this 

database based on their availability from commercial sources and were then screened and 

docked through the orthosteric and allosteric pockets. There are some compounds have 

molecular weight over 500 because they look like a dimer. The docked results of the top-

scored were chosen as potential PPARγ antagonists based on their glide docking sources. 

The Glide docking scores of these compounds were the minimum docking scores. The 

more minimum docking scores of a compound is the more favorable binding affinity of the 

complex compounds.40 Seven compounds were identified from the SBVS against the 

orthosteric site of PPARγ and they were selected for biological testing for further 

evaluation (Figure 3.3). In contrast, seventeen compounds were identified from the SBVS 
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against the allosteric site of PPARγ and they were selected for biological testing too for 

further evaluation (Figure 3.4). The glide docking results of PPARγ antagonists against the 

orthosteric and allosteric pockets are listed in Table 3.1, and 3.2 respectively.  

The pose selection method was performed to validate the glide docking method.41  

This is a standard method which have been used by comparing the docked pose of a ligand 

with the co-crystal structure of the ligand. A pose with an RMSD < 2.0 Å is considered to 

be good.41 The superposition of the Glide-generated docked pose, and the native 

conformation in the co-crystal structure (PDB ID: 2HFP) for compound NSI (Figure 3.5) 

showed that the RMSD values between these two poses is 0.24 Å for the orthosteric pocket 

and 0.37 Å for the allosteric pocket (Figure 5). These RMSD values indicate that the glide 

docking can successfully predict ligand-binding conformations and it is able to successfully 

reproduce the native conformation. 
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Figure 3.2. The Orthosteric and allosteric sites of PPARγ. The Co-crystal structure of NSI-

bound PPARγ (PDB 2HFP) shows two bound NSI molecules, one to the orthosteric pocket 

and a second bound to the allosteric site. 
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Figure 3.3. Chemical structures of seven hit molecules resulted from the SBVS against the 

orthosteric site. 
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Figure 3.4. Chemical structures of seven hit molecules resulted from the SBVS against the 

allosteric site.  
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Figure 3.5. The superposition of the Glide generated pose and the native ligands of the 

crystal structure (2HFP). The RMSD between these two conformations is 0.24 Å for 

orthosteric site (A) and 0.37 Å for allosteric site (B).  
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The top-scored compounds were then tested for their ability to inhibit PPARγ in a 

luciferase reporter assay. Cells transfected with PPAR-responsive and control reporters 

were treated with the agonist pioglitazone (pio) and the selected compounds overnight. The 

following day, the luciferase activities were determined. We found that three compounds 

resulted from the SBVS against the orthosteric site inhibited the PPARγ activity with IC50s 

in the high micro molar range (Table 3.1). 641851, 404243, 400401 all had better responses 

to increasing doses, allowing for an accurate measurement of IC50s (Figure 3.6). Although 

these antagonists are not potent, this work is an important first step in the rational design 

of PPARγ antagonists.    

In contrast, we found that many of the compounds resulted from the SBVS against the 

allosteric site inhibited PPARγ activity in the micro molar range (Table 3.2). Indeed, the 

potency of these compounds is in single-digit micro molar range with IC50s less than 10 

μM. Among the most potent, with IC50s less than 3 μM, were compounds 51349, 79023, 

215556, and 273905 (Figure 3.7). Although the newly identified antagonists are not quite 

as potent as some existing molecules, this work demonstrates the strong SAR of a novel 

class of PPARy antagonists and is a great starting point for the rational design of even more 

potent PPARγ antagonists. These results demonstrate the utility of SBVS against the 

allosteric site in discovering novel chemical hits that would unlikely to be discovered 

otherwise. 

To explore the structural basis of small molecules antagonists targeting of the PPARγ, we 

further completed docking studies for the orthosteric and allosteric binding site residues to 

determine the binding mode of PPARγ antagonists. Therefore, we studied the docking 

poses of these top-ranking compounds to analyze the ligands protein interactions of PPARγ 



107 
 

antagonists. We found that 641851, 404243, 400401 resulted from the SBVS against the 

orthosteric site had similar interactions with PPARγ. They all had π – π stacking with 

Phe363 and His449 (Figure 3.8). The potency of 400401 toward PPARγ might be attributed 

to their ability to form π – π stacking with Tyr327. In contrast, compounds resulted from 

the SBVS against the allosteric site had more interactions with PPARγ. We divided the 

newly identified hits from the SBVS against the allosteric site into the following two 

groups based on their ligand protein interactions. Group one involves 16768, 51349, 

120176, 205811 formed H-bonds and π –cation interaction with Ser342 and Arg288, 

respectively (Figure 3.9). A ligand interaction to Arg288 is a significant interaction for 

PPARγ antagonists.42  On other side, we found that 128594, 366098, 408562, and 10671 

formed H-bonds and π – π stacking with Lys367 and His449, respectively (Figure 3.10). 

Ligand hydrogen bonding with Lys367 could be an important interaction for PPARγ 

antagonists. Therefore, to design PPARγ antagonists, it is essential to maintain the critical 

H-bonds interaction to Arg288, Ser342, Lys367, and His449 at allosteric site of PPARγ.  
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Figure 3.6. Effects of PPARγ inhibition in LCP cells for compounds resulted from the 

SBVS against the orthosteric site. Cells were transfected with PPREluc + pRL SV40 and 

treated as indicated. The following day, relative luciferase activity was measured. PPARγ 

activity was stimulated by pio, and inhibited by compounds in LCP cells (*P<0.05 

difference from Pio treated cells). 
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Figure 3.7. Effects of PPARγ inhibition in LCP cells for compounds resulted from the 

SBVS against the orthosteric site. Cells were transfected with PPREluc + pRL SV40 and 

treated as indicated. The following day, relative luciferase activity was measured. PPARγ 

activity was stimulated by pio, and inhibited by compounds in LCP cells (*P<0.05 

difference from Pio treated cells). 
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Figure 3.8. Ligands interactions between compounds resulted from the SBVS against the 

orthosteric site and PPARγ for 400401 (A), and 404243 (B). 
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Figure 3.9. Ligands interactions between compounds resulted from the SBVS against the 

allosteric site and PPARγ for group 1, 120176 (A), and 205811 (B). The H-bond 

interactions are shown as green dotted lines.  
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Figure 3.10. Ligands interactions between compounds resulted from the SBVS against the 

allosteric site and PPARγ for group 2, 10671 (A), and 128594 (B). The H-bond interactions 

are shown as green dotted lines.  

 

 

 

 



113 
 

 

 

 

 

 

Table 3.1. The molecular weight, glide score, growth inhibition of LCP cells, and residues 

interactions of compounds resulted from the SBVS against the orthosteric site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Mw (g/mol) XP Gscore IC50 (µM) Residue Interactions 
400401 376.43 -8.60 140.01 Tyr327, Phe363, His449 
404243 406.45 -8.70 274.99 Phe363, His449 
641851 261.33 -7.24 179.51 Phe363, His449 
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Table 3.2. The molecular weight, glide score, growth inhibition of LCP cells, and residues 

interactions of compounds resulted from the SBVS against the allosteric site.  

 

 

Compound Mw (g/mol) XP Gscore IC50 (uM) Residue Interactions 
10671 455.43 -9.92 4.46 Lys367, His449 
16768 435.31 -9.63 2.41 Ser342, Ser289, Arg288 
51349 283.28 -8.5 1.12 Leu228, Glu343, Arg288 
70914 534.68 -10.38 2.27 Phe282 
79023 596.65 -9.82 1.64 Gln271, Ser289, Ser342 
79093 358.35 -8.31 5.39 Ser342, Glu343 
79323 344.32 -8.88 2.47 Leu228 

106156 436.51 -9.66 2.12 Phe282, Ser289 
120176 396.46 -8.05 2.30 Lys265, Ser342, Arg288 
128594 405.45 -9.96 3.53 Ser289, Lys367, His449 
205811 506.94 -9.58 8.72 Ser342, Arg288 
215556 443.89 -9.97 1.68 No Interactions 
273905 534.68 -9.93 1.50 Phe282, Arg288 
366098 411.88 -10.03 2.35 Ser289, Lys367 
408562 446.50 -9.79 5.40 Lys367, His449 
641250 507.33 -9.53 2.75 Leu228, Arg288 
658262 541.60 -11.55 2.58 Arg288, Ser289, Tyr327, Ser342, Glu343 
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3.4. Conclusion: 

The PPARγ is an oncogene protein that prompt PC growth and progress. PPARγ is a novel and 

important target in PC. PPARγ antagonist decreased tumor size. The identification of hit 

compounds is an important step in the development of PPARγ antagonists. PPARγ has two binding 

sites: orthosteric and allosteric sites. Here, we used an integrated computational and experimental 

approach against the crystal structures of PPARγ which is a PPARγ model that has two molar 

equivalents of a ligand binding at different sits. We then performed SBVS of small molecule 

libraries against the two binding sites followed by experimental testing to discover new hits of 

PPARγ antagonists. Compounds, which were identified as PPARγ antagonists, resulted from SBVS 

against the allosteric site much more and more potent than compounds were resulted from SBVS 

against the orthosteric site. Structural analysis of the two binding sites of PPARγ showed that the 

allosteric site has more ligand protein interactions with the compounds. Inspection of ligand/ 

PPARγ interactions showed that a ligand form H-bonds to PPARγ through the residues: Arg288, 

and Lys367 would be PPARγ antagonists. This study improves the understanding of the PPARγ 

binding site, which supports in the design and optimization of more specific PPARγ antagonists. 

Next, we will effort on the design and synthesis and optimized of derivatives of selected hits to 

develop lead candidates as PPARγ antagonists for the treatment of PC and other solid tumors.  
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Chapter 4 

Conformational Studies of Glucose Transporter 1 (GLUT1) as an 

Anticancer Drug Target 

Abstract:  

Glucose transporter 1 (GLUT1) is a facilitative glucose transporter overexpressed in 

various types of tumors; thus, it has been considered as an important target for cancer 

therapy. GLUT1 works through conformational switching from an outward-open (OOP) to 

an inward-open (IOP) conformation passing through an occluded conformation. It is 

critical to determine which conformation is preferred by bound ligands because the success 

of structure-based drug design depends on the appropriate starting conformation of the 

target protein. To find out the most favorable GLUT 1 conformation for ligand binding, we 

ran systemic molecular docking studies for different conformations of GLUT1 using 

known GLUT1 inhibitors. Our data revealed that the IOP is the preferred conformation and 

that residues Phe291, Phe379, Glu380, Trp388, and Trp412 may play critical roles in ligand 

binding to GLUT1. Our data suggests that conformational differences in these five amino 

acids in the different conformers of GLUT1 may be used to design ligands that inhibit 

GLUT1. 
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4.1. Introduction: 

Glucose transporter 1 (GLUT1) is a membrane protein encoded by the solute carrier 

family 2A1 (SLC2A1) genes1. GLUT1 is a member of sugar transporter subfamily of the 

major facilitator superfamily (MFS)2. GLUT1 has a conserved core fold that consists of 12 

transmembrane helices folded into two distinguishing domains, the amino (N) and carboxyl 

(C) terminal domains3. Each domain has six sequential transmembrane helixes (TMs) that 

are folded into a pair of ‘3+3 inverted repeats.3 TM7 and TM10 are broken segments, hence 

termed TM7a/7b and TM10a/10b, respectively4. Four short intracellular α-helices (IC1–4) 

connect the N-terminal and C-terminal domains.4 The C domain provides the main 

substrate-binding site for glucose5. GLUT1 transports monosaccharides including d-

glucose and d-galactose, but does not transport fructose6 7. GLUT1 is expressed in diverse 

tissues with distinct kinetic behavior and different substrate affinity8. 

Cancer cells transport more glucose than normal cells due to their rapid growth and 

high rate of aerobic glycolysis, a phenomenon called the Warburg effect9 10 11. GLUT1 is 

upregulated in many cancers such as brain12, breast13, lung14, kidney15, ovary16, prostate17, 

and colon18. In addition, stimulation of oncogenes like such as KRAS14, BRAF19, c-myc20, 

and p5321, and transcription factors such as hypoxia-inducible factor-1a (HIF-1)22 

upregulate GLUT1 expression. GLUT1 inhibition results in reduction of cancer-cell 

proliferation and apoptosis23 24. While GLUT1 is overexpressed in many tumors, we note 

that in the brain, glucose transport is facilitated by both GLUT1 and GLUT325 26 27 28. 

However, GLUT3 has greater affinity for glucose and higher capacity than GLUT1 in the 

brain (Km for d-glucose of 3.4 mM for GLUT1, and Km for 2-deoxy-glucose of 5 and 1.4 

mM for GLUT1 and GLUT3, respectively)26 27. A ligand selectively bound to GLUT1 
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rather than GLU3 would be able to spare the GLUT3 inhibition and, thus, would minimize 

the potential neurotoxicity due to GLUT inhibition. Several small molecule GLUT1 

inhibitors and chemotypes have been described including resveratrol29, naringenin30, 

phloretin31, cytochalasin B32, WZB11733, STF-3134, pyrazolopyrimidines35, phenylalanine 

amides32, and (1H-pyrazol-4-yl)quinoline36.  

GLUT1 transports substrates by the alternating access mechanism (Figure 4.1), 

which involves the “rocker-switch” movement and the “gated pore” mechanisms37 38. 

GLUT1 changes from an outward-open (OOP) conformation, which opens to the 

extracellular to take up glucose, to an inward-open (IOP) conformation, which allows the 

release of glucose to the intracellular cytoplasm via intermediate outward-occluded (OOC) 

and partially inward-occluded (PIO) conformations39 40 41 42. Substrate-free GLUT1 favors 

the OOP conformation5. Once the substrate binds to the C domain of the GLUT1, the 

transporter shifts to the IOP conformation to release glucose5. 

The only crystal structures of human GLUT1 are for the IOP conformation5 32. 

Since only the IOP conformation is available for the human GLUT1 protein, we built 

homology models for other conformations using GLUT1 homologous crystal structures 

that have already adopted the needed conformations. For example, crystal structures of 

human glucose transporter 3 (GLUT3), which has an 86% sequence similarity to GLUT1, 

were obtained for the OOC and OOP conformations4. The crystal structure of Escherichia 

coli proton: Xylose symporter (XylE), which has a 63% sequence similarity to GLUT1, 

were obtained for the PIO and inward-occluded (IOC) conformations43 44. The essential 

amino acids interacting with glucose are conserved between XylE and GLUT143. 
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 It is critical to determine which conformation is preferred by bound ligands 

because the success of structure-based drug design depends on the appropriate starting 

conformation of the target protein. To identify the most favorable conformation for GLUT1 

inhibitor binding, and to determine important amino residues that may be responsible for 

ligand interactions, we ran a series of docking studies of reported GLUT1 inhibitors against 

GLUT1 in different conformations: Outward-open (the OOP), partially outward occluded 

(POO), outward occluded (OOC), inward-open (IOP), and partially inward occluded (PIO) 

conformations. The docking scores and the enrichment factor (EF) as well as the ligand 

protein interactions suggested that the GLUT1 prefers the IOP conformation for ligand 

binding. 
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Figure 4. 1. An overview of working model of GLUT1: The function of GLUT1 depends 

on conformational change. The IOP is adopted from PDB ID: 4PYP. The OOP 

conformation was constructed by homology modeling of PDB ID: 4ZWC; the POO 

conformation was constructed by homology modeling of PDB ID: 4GBZ; the OOC 

conformation was constructed by homology modeling of PDB ID: 4ZW9; the Partial 

inward occluded PIO conformation was constructed by homology modeling of PDB ID: 

4JA3. 
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4.2. Results and Discussion: 

4.2.1. Homology Modeling of GLUT1: 

The only crystal structures described for GLUT1 (PDB ID: 4PYP, 5EQG, 5EQH, 

and 5EQI) are for the IOP5 32. The OOP, OOC, POO, and PIO conformations for GLUT1 

have not yet been identified by X-ray crystallographic structures; hence, we constructed 

these models through homology modeling. The amino acid residue alignment of GLUT1 

with GLUT3 and XylE proteins showed that they have largely conserved glucose-binding 

residues and the highly conserved residues between these three proteins are highlighted in 

yellow (Figure 4.2). GLUT1 has 66% sequence identity and 80% similarity with GLUT3; 

GLUT1 has 29% sequence identity and 49% similarity with XylE43. The OOP and OOC 

were built through homology modeling by using the crystal structures of human GLUT3 

(PDB ID: 4ZWC, and 4ZW9)4 as templates. Bacterial XylE, a GLUT1 homology model 

(PDB: 4GBZ) was used to model the POO conformation43, and the template (PDB: 4JA3) 

was used to build the PIO conformation44. Structural alignment of GLUT1 to different 

homolog models shows that most of the secondary structures are conserved between these 

models and that the orientation of the folds differs, resulting in the OOP, POO, OOC, PIO, 

and IOP conformations (Figure 4.1).  

Homology modeling is one of the most successful methods to build and predict the 

tertiary structure of a protein that has not been defined45. Homology modeling depends on 

sequence alignment of proteins. If the sequences of two proteins are similar, they will have 

comparable tertiary structure folding45. Amino acid residue alignment of GLUT1 with 

GLUT3 and XylE proteins exhibited that they have notable conserved residues in the 
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sequences, especially at the glucose binding site residues (Figure 4.2). GLUT1 has high 

sequence identity (66%) and similarity (80%) with GLUT3, and GLUT1 has sequence 

identity (29%) and similarity (49%) with XylE43. The accuracy of the models was 

evaluated by comparing the backbone atoms of the homology modeling and the X-ray 

template and measuring the root mean-square deviation (RMSD) between the backbone 

atoms of the homology modeling and the template after superposition. The RMSDs were 

0.59, 0.56, 1.27, and 1.49 Å for the conformations OOP, OOC, POO, and PIO, respectively 

(Figure 4.3). The low RMSDs (0.55–1.49 Å, less than the threshold of 2 Å) indicates that 

these homology models are reliable. 

In addition, the backbone structures of the homology models of GLUT1 were 

evaluated by the Ramachandran’s plots assessment (Figure 4.4). The OOP model had 90%, 

10%, and 0.50% of the residues, respectively, assigned as the “most favored”, “additionally 

allowed”, and “generously allowed” regions. Moreover, no residue was found in the 

“disallowed” region. The OOC model had 90%, 9%, and 1% in the three “allowed” regions, 

and only two residues (0.50%) were in the “disallowed” region (Tyr52 and Gln469). The 

POO model had had 79%, 16%, and 3% in the three “allowed” regions, and five residues 

(1.3%) were in the “disallowed” region (Val39, Ile128, Gln305, Tyr308, and Ser365), 

while the PIO had 78%, 18%, and 3% in the three “allowed” regions, and six residues 

(1.6%) were in the “disallowed” region (Leu115, Ile259, Tyr268, Val307, Tyr308, and 

Trp363). The residues in the disallowed regions are not involved in the glucose binding 

site. Thus, both the RMSD values and the Ramachandran’s plots assessment confirm that 

these homology models of hGLUT1 should be useful for ligand docking. 
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Figure 4. 2. Primary sequence alignment of GLUT1, GLUT3, and XylE: Invariant and 

highly conserved residues between GLUT1, GLUT3, and XylE are highlighted yellow; 

conserved residues between GLUT1 and GLUT3 are highlighted violet; conserved residues 

between GLUT1 and XylE are highlighted teal. The amino acid residues that are bonded 

to D-glucose are highlighted red. The human GLUT3 were used to build the homology 

modeling of OOP and OOC conformations, while bacterial XylE were used to build the 

homology modeling of POO and PIO conformations. 
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Figure 4. 3. An overview of working model of GLUT1: The function of GLUT1 depends 

on conformational change. The inward-open (IOP) conformation, green, was adopted from 

PDB ID: 5EQG; the outward-open (OOP) conformation, cyan, was constructed by 

homology modeling of PDB ID: 4ZWC; the partially outward occluded (POO) 

conformation, yellow, was constructed by homology modeling of PDB ID: 4GBZ; the 

outward-occluded (OOC) conformation, violet, was constructed by homology modeling of 

PDB ID: 4ZW9; the partially inward occluded (PIO) conformation, red, was constructed 

by homology modeling of PDB ID: 4JA3. 
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Figure 4. 4. The Ramachandran plots for the four homology models and the number of 

residues in the disallowed regions:(A) OOP conformation (4ZWC model: zero residues in 

disallowed regions); (B) OOC conformation (4ZW9 model: Only 2 out of 404 residues 

(0.5%) in the disallowed regions: Tyr52 and Gln469); (C) POO conformation (4GBZ 

model: 5 out of 398 residues (1.3%) in the disallowed regions: Val39, Ile128, Gln305, 

Tyr308, and Ser365 ); (D) PIO conformation (4JA3 model: 6 out of 383 residues (1.6%) in 

the disallowed regions: Leu115, Ile259, Tyr268, Val307, Tyr308, and Trp363 ). 
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4.2.2. Docking Scores and Validation: 

To identify amino acids that are essential for ligand binding, we performed docking 

studies with 44 GLUT1 inhibitors [32,36] (Figures 4.5). To evaluate the accuracy of the 

Glide Dock, we first assessed the similarities between the docked poses and original 

conformations in the crystal structures. The root mean square deviation (RMSD) between 

the docked poses and the native conformations found in the crystal structures is used to 

measure the effectiveness of a docking program. A pose with an RMSD < 2.0 Å is 

considered to be good46. The superposition of the Glide generated docked poses of ligands 

and the native conformation in the crystal structure (Figure 4.6) show that the Glide 

program accurately identified the native conformation and, thus, can be reliably used to 

identify the binding conformations of other ligands. The RMSD between two poses for 

5RE in 5EQG, 5RF in 5EQH, 5RH in 5EQI, MAL in 4ZWC, BGC in 4GBZ, GLC in 

4ZW9, and BGC in 4ZW9 were 1.62, 1.49, 1.09, 0.14, 0.61, 0.94, and 0.06 Å, respectively. 

These data validate the accuracy of Glide Dock for this study.  

The docking of GLUT1 inhibitors to the conformational models of GLUT1 (Table 

4.1) reveal that Glide scores are close to the experimental free energies (∆Gexp) where 

∆Gexp was approximated as (∆Gexp = RTlnIC50) for the IOP conformation. In the IOP 

conformation, the difference between ∆Gexp and Glide scores for the majority of GLUT1 

inhibitors was less than 2 kcal/mol. The mean errors (∆∆G) (Table 4.2) between ∆Gexp 

and Glide scores (∆Gpred) was −0.97 kcal/mol, which is lower than ±1.00 for the IOP 

conformation. The predicted docking scores for many compounds were very close to those 

obtained from the experiments. For instance, the ∆∆G for cytochalasin B was only 0.10 

kcal/mol (Table 4.1). The ∆∆G for the IOP model was listed in Table 4.1. The ∆∆G for 
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POO, OOP, and PIO were −1.37, −1.44, and −1.14 kcal/mol, respectively. The mean 

absolute error (MAE), which is the mean absolute value of ∆∆G, was the lowest for the 

IOP conformation. The MAE for the IOP conformation was the lowest 1.45 kcal/mol, while 

the MAE for POO, OOP, and PIO was 1.75, 1.82, and 1.68 kcal/mol, respectively. In 

addition, the root mean square error (RMSE) (Table 4.2) for the IOP was the lowest at 1.79, 

whereas RMSE for POO, OOP, and PIO was 2.07, 2.05, and 1.92, respectively. Finally, 

there were no Glide scores from the OOC. In sum, these data suggest that the IOP is the 

most favorable conformation for ligand binding. 

In addition to the statistical results between ∆Gexp and Glide scores, the enrichment 

factor (EF) is another very valuable approach to measure the accuracy of a docking 

program; the higher the EF, the more accurate the docking model47. To evaluate the EF 

values, we obtained 508 drug-like molecules from the NCI database (Table 4.3) and docked 

these molecules along with GLUT1 inhibitors to all GLUT1 conformations. EF is the ratio 

between the percentage of active ligands in the particular subset and the percentage in the 

total database47. We obtained the highest EF values for the IOP conformation (Table 4.4), 

further confirming that IOP is the preferred conformation for ligand binding since it 

recognizes the largest number of active inhibitors. We calculated the EFs based on the top 

1%, 5%, or 10%; all three cases show that IOP has the best EFs. The OOP conformer and 

the PIO conformer also show good EF values, suggesting that ligands may be able to bind 

to these conformations as well. However, the partial outward open (POO) conformation 

had very low EF values. The EF for best case scenario, which all active molecules are 

identified in the top percentage poses, is 13.44. The EF of 10.45 in the IOP suggests that 
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this model is the most ideal one among all studied conformations as the EF is the closest 

to the ideal EF. 
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Figure 4. 5. Structures of GLUT1 inhibitors (30-44) used in docking studies. 
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Figure 4. 6. The superposition of the Glide generated docked poses and the native conformation 

of ligand in the crystal structure: A) MAL in 4ZWC, B) BGC in 4GBZ, C) BGC in 4ZW9, D) 5RE 

in 5EQG. Color code: Yellow, the ligand in the crystal structure; green, the ligand from Glide 

generated poses. The RMSD between two poses for MAL in 4ZWC, BGC in 4GBZ, BGC in 4ZW9, 

and 5RE in 5EQG is 0.14, 0.61, 0.06, and 1.62 Å, respectively. 
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Table 4. 1. Glide scores (Kcal/mol) of GLUT1 inhibitors against different conformation models 

of GLUT1: 5EQG (IOP); HM_4GBZ (POO); HM_4ZWC (OOP); and HM_4JA3 (PIO). 

Compd IC50 (uM)a ∆Gexp
b 5EQG HM_4GBZ HM_4ZWC HM_4JA3 

1 0.11 -9.49 -9.39 NAc -5.84 NAc 

2 0.267 -8.97 -10.61 -11.63 -11.11 -10.53 

3 0.14 -9.35 -11.54 -9.46 -10.26 -10.84 

4 0.11 -9.49 -9.53 -9.05 -8.88 -6.64 

5 0.006 -11.22 -9.39 -7.22 -7.71 -7.96 

6 0.004 -11.46 -9.24 -7.45 -9.11 -8.23 

7 0.003 -11.63 -9.45 -9.77 -10.23 -8.49 

8 0.008 -11.05 -9.68 -9.61 -10.16 -8.35 

9 0.087 -9.63 -9.43 -7.39 -8.75 -8.73 

10 0.002 -11.87 -9.24 -8.83 -8.10 -8.17 

11 0.004 -11.46 -10.62 -10.34 -9.01 -10.23 

12 0.032 -10.22 -10.30 -9.93 -8.74 -10.12 

13 0.005 -11.32 -10.96 -9.36 -9.18 -9.68 

14 0.026 -10.35 -10.38 -8.99 -9.10 -9.42 

15 0.006 -11.22 -9.49 -9.47 -9.17 -9.49 

16 0.003 -11.63 -11.47 -10.22 -9.26 -9.34 

17 0.005 -11.32 -9.34 -10.36 -9.51 -10.99 

18 0.007 -11.12 -10.29 -10.88 -9.02 -9.32 

19 0.0003 -12.99 -9.61 -10.91 -9.77 -10.78 

20 0.002 -11.87 -9.70 -9.71 -9.51 -10.44 

21 0.008 -11.05 -8.92 -10.95 -10.03 -9.78 

22 0.024 -10.39 -9.52 -9.12 -9.72 -11.13 

23 0.005 -11.32 -10.32 -10.24 -9.84 -10.00 

24 0.003 -11.63 -10.34 -10.94 -9.96 -9.68 

25 0.0005 -12.69 -11.37 -10.46 -9.04 -10.77 

26 0.002 -11.87 -7.42 -10.11 -9.39 -11.14 

27 0.014 -10.71 -10.82 -10.20 -10.56 -9.65 
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28 0.01 -10.91 -10.49 -9.20 -9.42 -9.88 

29 0.045 -10.02 -9.33 -10.25 -9.61 -9.26 

30 0.004 -11.46 -9.48 -10.02 -10.45 -10.28 

31 0.76 -8.35 -9.12 -4.47 -9.53 -8.30 

32 0.007 -11.12 -9.25 -9.83 -9.23 -10.18 

33 0.074 -9.73 -9.54 -5.26 -10.13 -10.32 

34 0.92 -8.23 -10.62 -9.99 -9.42 -10.60 

35 0.34 -8.82 -11.77 -12.23 -11.43 -12.81 

36 0.0009 -12.34 -9.02 -9.99 -9.18 -9.65 

37 0.003 -11.63 -9.70 -9.75 -9.53 -8.38 

38 0.007 -11.12 -8.89 -9.81 -8.92 -9.61 

39 0.007 -11.12 -10.36 -9.83 -8.64 -9.40 

40 0.003 -11.63 -9.45 -9.84 -10.10 -10.28 

41 0.007 -11.12 -10.09 -8.71 -10.13 -9.73 

42 0.009 -10.98 -11.28 -10.07 -10.32 -10.81 

43 0.005 -11.32 -10.58 -9.91 -10.01 -9.84 

44 0.0009 -12.34 -9.59 -9.20 -9.38 -10.89 
Note: a The IC50 were obtarined from Reference 39, and 40.b ΔGexp was calculated 
as RTlnIC50 wherese R: Universal gas constant (1.987 cal/mol.K), T: Temperature 
in Kelvin (298.15 K). c The ligand does not fit well to the generated Glide file. 

 

 

 

 

 

 

CONTINUED  
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Table 4. 2.The average of the mean errors between experimental free energy (∆Gexp) and 

predicted free energy for different models: 5EQG (IOP); HM_4GBZ (POO); HM_4ZWC (OOP); 

and HM_4JA3 (PIO). 

 5EQG (IOP) 4GBZ (POO) 4ZWC (OOP) 4JA3 (PIO) 

∆∆G -0.97 -1.37 -1.44 -1.16 

MAE 1.45 1.75 1.82 1.66 

RMSE 1.79 2.07 2.05 1.92 
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Table 4. 3. Glide scores of 508 drug-like molecules against the GLUT1 IOP conformation. 

NCS 
Title  

Glide 
Score 

NCS 
Title  

Glide 
Score 

NCS 
Title  

Glide 
Score 

NCS 
Title  

Glide 
Score 

451 -3.873 76604 -4.336 194897 -5.433 611435 -8.255 
1282 -6.413 76808 -7.643 195326 -6.453 611913 -10.207 
1439 -4.227 76925 -7.133 201533 -7.244 613729 -8.14 
1642 -5.464 77128 -5.198 202825 -5.252 615396 -7.67 
1971 -7.39 77739 -7.642 203330 -5.558 615397 -8.353 
3248 -2.655 79245 -8.839 204342 -6.704 617827 -4.404 
3581 -9.254 79575 -6.506 204799 -9.066 618430 -8.198 
3604 -6.474 81217 -5.357 205707 -7.787 618508 -9.099 
3609 -3.837 81336 -4.566 207116 -5.409 619691 -9.732 
4092 -2.982 81767 -6.761 208702 -6.595 620117 -6.249 
4863 -6.921 82222 -8.339 208881 -3.392 620148 -9.922 
5037 -3.623 86416 -7.947 211578 -8.428 620280 -8.225 
5317 -5.354 92983 -4.829 212090 -7.858 622374 -7.742 
5431 -3.497 93303 -7.837 212139 -6.878 622562 -7.489 
6846 -8.354 93438 -6.207 213630 -8.539 623439 -5.991 
7796 -9.607 93714 -5.258 215613 -6.592 623762 -7.567 
8218 -5.058 93929 -5.088 216752 -7.675 623898 -7.348 
8588 -8.165 95384 -5.466 217039 -3.418 626384 -8.544 
9430 -4.876 95570 -6.671 220094 -5.586 626940 -7.37 
9489 -4.749 95791 -6.404 220240 -4.614 630876 -7.396 

10080 -5.552 96341 -8.957 222625 -5.57 631647 -4.989 
10752 -8.41 96992 -7.229 222790 -4.028 633214 -5.674 
11429 -6.697 97507 -2.741 226089 -5.275 634581 -4.59 
13036 -8.21 98375 -5.546 229350 -4.7 634627 -7.156 
13141 -5.575 100941 -6.797 229647 -5.245 636507 -9.912 
13961 -4.936 102391 -7.71 231557 -4.931 636881 -7.444 
13997 -5.003 102541 -4.347 236249 -6.968 637401 -7.348 
14001 -6.007 103747 -4.501 241598 -7.575 641124 -7.748 
15330 -5.14 105534 -7.356 243021 -7.968 641190 -8.224 
15440 -6.291 106060 -8.192 244299 -2.431 641860 -7.262 
16766 -10.046 106310 -6.252 245089 -4.55 644223 -9.246 
16886 -4.84 107092 -6.443 245146 -7.174 645810 -7.249 
17233 -3.73 107109 -4.602 248531 -9.012 645901 -8.09 
17461 -5.956 107160 -8.707 249213 -4.935 646436 -7.012 
17682 -4.041 108078 -6.405 250686 -10.463 646652 -7.907 
17823 -4.747 108395 -7.277 251159 -6.049 647155 -8.86 
19082 -4.604 108611 -7.299 260419 -6.255 647621 -7.581 
19676 -5.691 109297 -6.869 264255 -9.231 648213 -7.361 
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19929 -5.156 110619 -6.644 264430 -4.989 648842 -9.067 
20654 -4.884 110651 -9.085 265436 -7.42 649595 -5.748 
21347 -7.813 110770 -7.359 267447 -6.956 650736 -7.849 
21468 -4.848 111712 -8.327 268719 -4.982 652037 -7.732 
21770 -6.202 111724 -5.616 270703 -6.266 652117 -7.327 
21941 -5.01 112430 -6.638 271266 -5.934 652910 -7.9 
22940 -8.785 113532 -5.241 276740 -8.007 652938 -9.281 
23086 -6.681 114477 -5.964 278073 -5.953 653492 -5.888 
23458 -7.639 114640 -6.082 283482 -7.285 653956 -7.227 
23538 -4.636 115165 -8.206 284220 -5.503 654111 -4.627 
23700 -4.658 115221 -4.203 284670 -6.757 655335 -7.327 
24991 -4.78 115615 -6.806 286671 -7.312 657952 -7.786 
25039 -6.275 115932 -6.911 286710 -7.136 657983 -7.574 
26460 -3.62 116803 -3.909 287491 -8.624 658812 -8.309 
26836 -7.015 117260 -6.192 287993 -4.439 659307 -8.055 
26960 -5.55 117379 -4.896 289365 -6.377 660842 -6.791 
27907 -8.106 118712 -7.416 290094 -10.025 661173 -6.658 
28401 -7.327 119498 -5.081 290494 -8.608 661954 -7.626 
29324 -7.836 119542 -5.498 291066 -5.726 662770 -5.732 
29874 -5.403 120511 -5.572 291572 -8.339 664213 -9.352 
30159 -6.362 122582 -7.64 293788 -4.928 665489 -8.854 
30215 -4.025 122619 -2.924 294379 -4.106 666377 -7.761 
32052 -8.323 123133 -3.17 294992 -8.329 666861 -7.5 
32568 -8.177 123278 -4.729 297929 -6.375 669315 -9.568 
33614 -7.738 123820 -6.011 299964 -9.223 671104 -9.276 
33632 -4.201 124206 -8.455 300236 -4.443 671327 -7.92 
33634 -5.652 124616 -5.677 300908 -5.744 671802 -8.209 
33698 -4.559 125017 -8.328 301466 -2.996 672556 -6.313 
35498 -6.365 125376 -5.984 305213 -7.513 675799 -8.283 
36819 -10.133 125563 -8.905 306131 -7.985 676446 -8.728 
37853 -5.397 125618 -7.725 306778 -5.384 677448 -9.409 
41519 -6.725 126880 -7.123 308800 -7.223 677792 -9.071 
41633 -6.033 128910 -4.525 312029 -6.553 679560 -5.866 
41814 -6.735 131082 -6.077 312610 -7.416 679577 -4.884 
42019 -5.812 131164 -5.144 319030 -7.34 683715 -4.869 
42597 -6.194 131287 -5.344 332690 -6.458 686789 -5.412 
42740 -5.45 132945 -6.831 338058 -7.571 687820 -8.18 
43063 -6.254 134178 -8.908 338186 -4.371 687853 -8.375 
43639 -4.168 135021 -7.466 338531 -8.441 688729 -7.174 
44348 -4.783 135066 -8.671 338574 -5.474 689594 -5.103 
45766 -4.564 135311 -5.919 338604 -5.329 690572 -5.547 
47429 -5.592 137412 -5.275 338623 -6.875 691569 -7.634 
48174 -5.181 137505 -4.964 338627 -6.405 691849 -8.709 

CONTINUED 
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49499 -8.107 139207 -8.346 344016 -8.089 692611 -5.82 
49745 -6.402 140053 -8.907 345395 -7.311 693633 -6.141 
51876 -6.03 140382 -5.726 346098 -6.434 696124 -9.281 
52216 -3.921 141876 -4.713 352267 -8.091 697931 -9.113 
52479 -6.426 142200 -7.269 355186 -10.336 698074 -7.522 
53077 -5.706 142555 -8.379 356130 -6.998 698559 -5.309 
53284 -5.223 143308 -7.863 356486 -6.496 699123 -6.562 
53466 -6.044 143989 -5.357 357566 -6.611 703459 -7.339 
53806 -5.63 145881 -5.164 362252 -4.929 703889 -8.367 
53880 -5.454 147640 -6.422 363847 -2.987 704117 -4.31 
54427 -9.253 148291 -8.393 364027 -6.257 708438 -5.699 
55495 -5.542 149692 -6.317 364095 -4.929 708967 -6.923 
56629 -6.838 150016 -4.771 364720 -7.067 709508 -6.795 
57381 -6.074 150158 -6.961 367101 -7.838 714085 -8.228 
57543 -3.072 151034 -6.601 368255 -8.255 714378 -7.249 
58322 -8.723 151087 -7.556 372636 -8.08 715654 -8.604 
58812 -3.608 151259 -5.509 372663 -3.917 716023 -4.277 
58894 -6.522 151736 -7.105 372778 -8.555 716062 -9.053 
59022 -4.885 152426 -7.784 374153 -2.617 719712 -7.447 
60443 -6.719 152647 -7.731 382808 -8.786 720995 -8.626 
60806 -6.769 154776 -6.229 382958 -10.624 724571 -6.661 
62525 -7.98 156773 -8.563 402506 -5.26 724869 -6.906 
62992 -4.386 158180 -6.024 403474 -6.841 725149 -9.189 
63031 -4.387 160062 -7.281 404215 -8.188 726399 -8.402 
63486 -7.476 160173 -4.926 404221 -4.446 726406 -9.176 
65372 -9.392 162174 -4.675 404935 -4.211 726719 -6.941 
65988 -4.171 162275 -5.077 406312 -4.306 727512 -9.435 
66471 -9.569 162289 -4.709 406401 -5.075 727978 -10.419 
66524 -4.754 163853 -4.545 406476 -3.607 728240 -10.543 
66596 -5.113 164081 -8.689 408503 -7.797 729188 -7.389 
67195 -3.594 167493 -4.489 408859 -5.866 730571 -7.933 
67458 -5.462 167911 -4.692 409231 -6.293 730774 -8.501 
67470 -7.888 169683 -7.57 409518 -6.651 731659 -8.504 
67854 -6.018 169879 -5.098 508388 -3.955 732842 -8.313 
68482 -5.439 171178 -4.717 511710 -4.255 733410 -7.218 
70306 -5.684 171545 -9.257 512733 -9.2 734148 -7.154 
70656 -4.039 171619 -4.324 515544 -6.457 740535 -7.664 
70958 -6.681 172291 -6.217 515547 -7.301 740617 -8.264 
71385 -2.858 172636 -7.434 516423 -6.185 743490 -7.926 
72069 -4.947 173085 -7.405 522167 -5.008 744263 -7.799 
72797 -8.747 173346 -4.103 523371 -4.576 744479 -4.436 
73945 -3.568 173353 -4.604 526972 -5.464 745068 -7.698 
74632 -4.639 173742 -3.931 606256 -9.268 746579 -7.658 

CONTINUED 
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75421 -4.902 179467 -11.576 608686 -7.499 748262 -8.274 
75952 -11.169 179618 -4.76 608833 -6.896 748543 -7.607 
76503 -6.905 185315 -6.97 610980 -7.464 748706 -8.022 
        

  

CONTINUED 
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Table 4. 4. The enrichment factors of docking scores for different conformations: The ideal 

enrichment factor (EF) in this case equals 13.44. 

 

Model EF (1%) EF (5%) EF (10%) 

5EQG 10.45 8.51 7.76 

4GBZ 4.24 3.30 4.63 

4ZWC 8.35 8.05 7.06 

4JA3 6.37 8.02 6.72 
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4.2.3. Binding Interaction of GLUT1 Inhibitors:  

As the validity of Glide dock was confirmed, the protein–ligand interactions 

for the docked poses could then be identified. The homology model of the OOP reveals 

that one of glucose substructures of maltose forms five H-bonds with four polar 

residues of GLUT1: Gln161 (2 H-bonds), Gln282, Gln283, and Asn317. In the OOC, 

β-glucose forms five H-bonds with Gln161, Gln282, Gln283, Asn317, and Trp388. In 

POO, β-glucose and α-glucose form seven H-bonds with residues: Gln283 (3 H-

bonds), Asn288 (2 H-bonds), Asn317, and Trp388. In the IOP conformation, the small 

molecules interact with Trp388. Our docking studies were in good agreement with the 

crystal structures of different conformations of GLUT1 (Figure 4.7). 

 Trp388 plays an important role in the access of GLUT1 between the OOP 

conformation and the IOP conformations32 48. Mutation of Trp388 with Leu (W388L) 

evidently reduced the rate of conformation interchange, consequently decreasing the 

glucose influx activity48. Therefore, an inhibitor that can bind with Trp388 is able to 

prevent the rotation of Trp388 into the binding site and inhibit glucose uptake. In 

addition, Trp412 and Phe379 play important roles for the glucose transport function 

of GLUT149 50. Therefore, Phe379, Trp388, and Trp412 have important roles in 

GLUT1 function and glucose uptake. We investigated the interacting residues for 

ligand binding in different conformations. The protein–ligand interactions between 

GLUT1 inhibitors and the four GLUT1 models are listed in Table 4.5. Table 4.5 shows 

that the majority of GLUT1 inhibitors form H-bonds with Trp388 and π–π stacking 

via residues Phe379 and Trp412 in the IOP conformation. The inhibitors are able to 

bind with Phe379, Trp388, and Trp412 once the GLUT1 is in the IOP conformation 
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because these residues are exposed to the IOP binding site (Figure 4.8). In the OOP 

and POO conformations, inhibitors do not interact with Trp388 because the indole ring 

of Trp388 in the OOP is unreachable4 32. In the PIO conformation, inhibitors have H-

bond interactions with Trp388, but are not able to interact with Phe379 and Trp412. 

To visualize the important binding residues that interact with ligands, we numerated 

the number of occurrences that such residues interacted with ligands and presented this 

frequency in Figure 4.9. Figure 4.9 shows that Trp388, Phe379, Glu380, and Trp412 

are responsible for ligand-binding to the IOP conformation. Finally, no ligand is well 

fit to the OOC conformation in the grid generated in Glide. 

 In addition, Phe291 and Glu380, which are highly accessible in the binding site 

in the IOP conformation (Figure 4.8), may be important residues for ligand 

interactions, as illustrated in Figure 7. Many GLUT1 inhibitors form H-bonds with 

Glu380 and π–π stacking interactions with Phe291. Moreover, some ligands have 

interactions with Phe26 (π–π stacking) and His160 (H-bonds) of GLUT1 (Table 4.5 

and Figure 4.9), suggesting a possible role for these two residues in GLUT1 binding. 

These residues may be future targets for site-directed mutagenesis to define their role 

in GLUT1 function and glucose uptake. In contrast, the number of ligand interactions 

with these residues is low in the OOP, POO, and PIO conformations. 
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Figure 4. 7. Interactions between crystal ligands and their conformation: The H-bond interactions 

are shown as green dotted lines. (A) Interaction between MAL and GLUT1 in the OOP. (B) 

Interaction between BGC and GLUT1 in the POO. (C) Interaction between BGC, GLC, and 

GLUT1 in the OOC. (D) Interaction between 5RE and GLUT1 in the IOP. 
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Figure 4. 8. Ligands interactions between 11, 19, 20, 25, and 37 and GLUT1: The H-bond 

interactions are shown as green dotted lines, and the π–π stacking interaction are shown as 

chocolate dotted lines. Ligands color code: 11: Carbons, gray; oxygen, red; nitrogen, blue; fluoro, 

cyan; 19: Carbons, yellow; oxygen, red; nitrogen, blue; fluoro, cyan; 20: Carbons, magenta; 

oxygen, red; nitrogen, blue; fluoro, cyan; 25: Carbons, orange; oxygen, red; nitrogen, blue; fluoro, 

cyan; 37: Carbons, tint; oxygen, red; nitrogen, blue; fluoro, cyan. Amino acids residues color codes: 

Carbons, green; oxygen, red; nitrogen, blue. 
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Figure 4. 9. Interacting residues of GLUT1 with inhibitors at different GLUT1 conformations. 
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Table 4. 5. Residues interaction with different GLUT1 inhibitors: 5EQG: Inward-open 

conformation; HM_4GBZ: Outward-partially occluded conformation; HM_4ZWC: 

Outward-open conformation; HM_4JA3: Inward-partially occluded conformation. NA: 

No interaction was found between the ligand and the GLUT1. 

Compd 5EQG HM_4GBZ HM_4ZWC HM_4JA3 

1 Thr137, His160, Gln282, 
Gln283, Trp388, Gly384 NAa Asn34, Gln283, 

Asn288, Asn415 NAa 

2 His160, Trp388 Gly157, Gln161 Asn317, 
Phe379, Glu380 

Asn288, 
Asn317, Asn411 

3 His160, Trp388 Phe291, Asn317 Gln161 Trp388 

4 Phe26, His160, Phe379, 
Trp388 Phe26, Phe291 NAa Phe26, Trp388 

5 Phe26, His160, Phe389 Phe26 NAa Trp412 
6 His160, Trp388 Phe291 NAa Trp388, Trp412 
7 His160, Phe379 Phe291 Gln161, Phe379 Trp388 
8 His160, Phe379 Phe291 Gln161, Phe379 Trp388 

9 Asn288, Trp388 Phe291 NAa Phe291, Trp388, 
Trp412 

10 His160, Phe389 Phe291 Asn34, Asn288 Trp388 

11 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Ser313 Gln37, Gln282, 

Gln283, Asn288 

Asn288, 
Asn317, 

Thr321, Trp388 
12 Glu380, Trp388, Trp412 Ser313 Gln37, Gln161 Tyr292, Trp388 

13 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Ser313 Gln161, Gln172 Tyr292, Trp388 

14 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Ser313 Gln161, Gln172 Asn288, 

Asn317, Trp388 

15 Phe379, Glu380, Trp388, 
Trp412 Ser313 Gln37 Trp388, Trp412 

16 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Ser313 Asn34, Gln37, 

Gln161, Tyr292 Asn288, Trp388 

17 Phe26, Phe379, Glu380, 
Trp388, Trp412 Ser313 Tyr292, Val418 Trp388, Asn415 

18 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Ser313 Gln172, Asn288 Tyr292, Trp388 

19 Phe26, Phe379, Glu380, 
Trp388, Trp412 Phe291, Ser313 Gln37 Tyr292, Trp388, 

Asn415 

20 Phe379, Glu380, Trp388, 
Trp412 Ser313 Gln37, Arg126 Trp388, Asn415 

21 Phe26, His160, Trp388, 
Phe389 Phe291 Asn34, Asn317 Asn288, 

Asn317, Trp388 

22 Phe26, Trp388 Ser313 Asn34, Asn317 Tyr292, Trp388, 
Asn415 
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23 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Ser313 Asn317 Tyr292, Trp388 

24 Glu380, Trp388 Phe26, Ser313 Gln37, Asn317 Asn288, Trp388 

25 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Ile287, Phe291 Gln37, Gln283 Asn317, Trp388 

26 Phe26, Phe379, Glu380, 
Trp388, Trp412 NAa Gln172, Asn288 Asn317, 

Trp388, Asn415 

27 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Thr310, Ser313 Asn317 Asn288, Trp388 

28 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Thr310, Ser313 Asn317 Tyr292, Trp388 

29 Phe26, Phe379, Glu380, 
Trp388, Trp412 Ser313 Gln37, Gln161, 

Asn317, Phe379 NAa 

30 His160, Phe389 Ser313 Asn34 Asn317 

31 Phe26, His160 Phe291 Gln161, 
Asn288, Phe379 Trp388, Trp412 

32 Phe26, His160, Trp388 Phe291 Gln37, Gln161, 
Asn288, Phe379 

Asn288, 
Asn317, Trp388 

33 His160, Trp388 Phe291 Gln37, Tyr292, 
Asn317 Asn317, Trp388 

34 Phe26, His160, Trp388, 
Phe389 Phe26 NAa Asn317, Trp388 

35 Phe379, Glu380, Trp388, 
Trp412 Ser313 Asn34, Gln37, 

Asn317 
Asn288, 

Asn317, Trp388 

36 Phe379, Glu380, Trp388 Ser313 Gln37 Asn288, 
Asn317, Trp388 

37 Phe26, Phe291, Phe379, 
Glu380, Trp388, Trp412 Phe291, Ser313 Gln37, Gln161, 

Phe379 Tyr292, Trp388 

38 Phe291, Phe379, 
Glu380, Trp388 Ser313 Asn34, Gln172 Tyr292, Phe379, 

Trp388 
39 His160, Gln283, Asn288 Ser313 Gln283 Ala407 

40 Ser80, Thr137, Asn288 NAa Asn34, Asn288, 
Asn317, Asn415 

Asn317, 
Glu380, Trp388 

41 Phe26, Thr137, His160 Phe26, Asn288 Asn34, Gln172 Asn317, Trp388 

42 Glu380, Trp388, Trp412 Ser313 Gln37 
Asn288, 
Asn317, 

Thr321, Trp388 

43 Phe379, Glu380, Trp388, 
Trp412 Ser313 Gln37 

Asn288, 
Asn317, 

Thr321, Trp388 

44 Phe26, Glu380, Trp388, 
Trp412 Ser313 Asn34 Asn317, 

Thr321, Trp388 
 aNA: No interaction were found between the ligand and the GLUT1.  
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The contact interaction map for the very potent compound 19 identifies residues 

that may be exposed selectively in the IOP conformation (Figure 4.10). In our docking 

study, the interactions surrounding inhibitors for the different conformations of GLUT1 

are dissimilar. The obvious distinction among the different GLUT1 conformations is the 

rotation of Trp388 around the binding site. In the IOP conformation, Trp388 is close to the 

ligands and more likely to interact and form H-bonds. In addition, Phe379 and Trp412 in 

the IOP conformation are readily accessible for ligand interactions. In contrast, Phe379, 

Trp388, and Trp412 in the OOP and POO conformations are away from the binding site 

and, thus, unable to participate in ligand binding interactions. Trp388 in the PIO 

conformation almost starts to drift away from the binding site whereas Phe379 and Trp412 

are far from the binding site. In our docking study, the contact interaction map in the IOP 

conformation showed that complex of transmembrane helixes (TMs) TM5, TM7, TM10, 

and TM11 surround the ligand while in the IPO conformation the ligand is mostly 

surrounded by TM7, TM10, and TM11. In contrast, the ligand is bounded by TM1, TM5, 

and TM7 in the OOP conformation and TM5, TM7, TM8, and TM10 in the OOC 

conformation (Figure 4.10). 

Moreover, the contact interaction of the IOP conformation reveals hydrophobic and 

polar residues in the binding site sharing hydrogen bonds and π–π stacking with the 

inhibitor. Furthermore, the TM10 is exposed in the active site and can interact with 

inhibitors for binding in the IOP conformation. This explains why inhibitors interact with 

Phe379, Trp388, and Trp412 mainly in IOP conformation, and this provides a rational 

clarification that the IOP conformation is favorable for productive binding interactions. 
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Figure 4. 10. Molecular contact map between 19 and GLUT1 in different conformations: 

The H-bond interactions are shown as green dotted lines. (A) The OOP conformation. (B) 

The POO conformation. (C) The IOP conformation. (D) The PIO conformation. 
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The electrostatic map of GLUT1 reveals that the most prominent difference between the 

various protein conformations lies in Trp388; the nitrogen atom of indole ring of Trp388 

is located toward the binding site and functions as an H-bond donor to an inhibitor in the 

IOP conformation. The carboxyl group of residue Glu380 serves as H-bond donor to the 

amide functional group of compound 19 (Figure 4.11) whereas these two H-bonds are 

absent in other conformations. The Trp388 in the PIO conformation mostly starts to flip 

out the binding site, and this makes Trp388 less likely to form H-bond with the ligands. 

However, the Trp388 in the OOP and POO conformations is distant and unlikely to interact 

with inhibitors. This suggests that the indole ring of Trp388 is important for IOP selective 

binding. In addition, in the IOP conformation, Phe291, Phe379, Glu380, and Trp412 play 

important roles in ligand binding by forming π–π stacking and favorable H-bond 

interactions with inhibitors. We conclude that inhibitors interact with Trp388 and Glu380 

via H-bonds, and with Phe291, Phe379, and Trp412 by π–π stacking in the IOP 

conformation. 
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Figure 4. 11. Electrostatic map between 19 and GLUT1 in different conformations: The 

H-bond interactions are shown as green dotted blue. (A) The OOP conformation. (B) The 

POO conformation. (C) The IOP conformation. (D) The PIO conformation. 
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4.2.4. QSAR Model of GLUT1 Inhibitors: 

To assess what properties of a ligand are required for potent binding to GLUT1, we applied 

QSAR analysis to the (1H-pyrazol-4-yl)quinoline inhibitors. We randomly divided 41 

inhibitors into a training set of 30 molecules and a test set of 11 inhibitors. We identified 

partition coefficient (logP) and the steric factor SMR (molecular refractivity, a description 

of the volume, or size of a compound) to be important for ligand binding (Equation 1). 

pIC50 = - 0.42*log P2 + 2.86 * log P - 1.47 * SMR + 18.79 (1) 

Equation 1 indicates that the inhibitory activity (pIC50, more potent compounds 

have smaller IC50s, larger –logIC50, i.e., larger pIC50 means more potent compound.) 

is negatively related to SMR and positively related to log P before it reaches an 

optimal logP (logP(opt) = 3.75. This suggests that decreasing the size of molecules 

while maintaining a logP close to 3.75 would likely improve Glut1 inhibitory 

potency. The Pearson's correlation (Pearson R) for training set (0.80) and test set 

(0.89) are high, and the R2 values are high for the training set (0.65) and test set 

(0.80) which Equation 1 results in a predictive linear relationship between the 

predicted pIC50 and the experimental pIC50 (Figure 4.12).  The mean absolute error 

(MAE) and the root-mean-square errors (RMSE) in training and test sets was less 

than two units (Table 4.6). Hence, the QSAR model should be useful for GLUT1 

inhibitor optimization.  
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Figure 4. 12. Plots of the predicted versus observed activities pIC50: A) Train set. B) Test 

Set. 
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Table 4. 6. The average magnitude of the errors of QSAR model. 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 Train Set Test Set 
Pearson R 0.80 0.89 

Correlation R2 0.65 0.80 
MAE 0.72 1.22 

RMSE 0.93 1.55 
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4.3. Conclusions: 

 In summary, protein–ligand dockings on different GLUT1 conformations suggest three 

significant outcomes: First, the docking scores suggested that the IOP conformation would 

be preferred for ligand binding. Besides, the MAE and RMSE for each conformation in 

comparison to experimental observations IC50 of ligands also confirm this conclusion. 

Second, enrichment factor (EF) calculation from docking studies further confirms that the 

Glide dock program is able to distinguish the real inhibitors from drug-like molecules with 

best results in the IOP conformation. Third, residues Trp388, Glu380, Phe379, and Trp412 

are important for the IOP conformation selective binding. Taken together, all these results 

support the conclusion that the IOP conformation is the most recognized conformation for 

ligand interaction and, thus, should be used for future molecule design targeting GLUT1.  



162 
 

 

4.4. Materials and Methods: 

 Only wild type (WT)-human GLUT1 (hGLUT1) inward-open (IOP) conformation 

has been resolved in X-ray crystal structures (PDB: 4PYP, 5EQG, 5EQH, and 5EQI)5 32. 

For other unavailable human model proteins, we used the following homology modeling 

method to build various types of conformations. Several atoms structures of GLUTs have 

been resolved with different conformational states and/or different subtypes. Bacterial 

GLUTs homologous such as the d-xylose:H1 symporter from Escherichia coli (XylE) in 

partial outward occluded (POO) conformation (PDB: 4GBY, 4GBZ, and 4GC0)43; and 

partial inward occluded (PIO) conformations (PDB: 4JA3)44; and the GLUT1 homologs of 

the lactose permease of Escherichia coli (LacY)51, and the glucose:H1 symporter from 

Staphylococcus epidermidis (GlcP)52. The hGLUT3 outward-open (OOP) and outward-

occluded (OOC) conformations were identified with X-ray structures with PDB IDs of 

4ZWC and 4ZW9, respectively4. The essential amino acids for the interacting with glucose 

are invariant between XylE and GLUT143. Therefore, the hGLUT3 and the XylE are 

GLUT1 homologs and they can be an appropriate template to build respective 

conformational states of hGLUT1.  

4.3.1. Homology Modeling and Preparation of Model Proteins: 

  We used five structures of several conformations for GLUT1 for docking studies. 

For the IOP conformation, we downloaded and utilized the X-ray crystal structures of 

hGLUT1 (PDB ID:5EQG), which bound to phenylalanine amide compound (5RE)32 from 

the RCSB Protein Data Bank at http://www.rcsb.org/pdb/. No hGLUT1 X-ray structures 

have been reported yet for the OOP, POO, OOC, and PIO conformations. Thus, homology 
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model techniques were employed. Strong homology was identified between hGLUT3 and 

hGLUT1, and XylE and hGLUT1 by ProBiS-CHARMMing53. Structural alignment 

between these three proteins using the Clustalo program54 (Version: 1.2.4) further 

confirmed the structural homology between them. The following protein templates were 

used to build different conformational states: hGLUT3 (PDB ID: 4ZW9, and 4ZWC)4 for 

the OOC and OOP conformations; XylE (PDB ID: 4GBZ, and 4JA3)43 44 for the POO and 

PIO conformations. The ligand (β-NG) was adopted from (PDB ID: 4PYP)5 as a ligand for 

4JA3 homology model. There are four regions of missing residues in the crystal structure 

of 4JA3: Region 1 (Lys265–Val275), region 2 (Phe304–Ala309), region 3 (Ile398–

Lys406), and region 4 (Trp434–Phe439). The missing residues were constructed by using 

loop modeler on MOE [55] within root mean square deviation (RMSD) limit = 0.5 Å. The 

template for region 1 and region 3 was selected from (PDB ID: 3TZY.A)56 and (PDB ID: 

3RE4.A)57, respectively. The templates for region 2 and region 4 were built by de novo 

method. The rebuilt residues that were missing and its surrounding residues underwent 

energy minimization to minimize steric repulsion. In addition, all these protein structures 

were subjected to automated structure preparation to fix issues found in crystallographic 

structure such as replacing missing protein sections, optimization of the hydrogen bonding 

network, and allowing protonation be assigned to charged residues and allowing the 

flipping side chains of Asn, Gln, His in MOE to maximize H-bond interactions. Also, they 

were subjected to energy minimization using the Amber14:EHT 58 force field in MOE, 

followed by protein preparation using the Protein Preparation Wizard in the Schrödinger 

software to allow the side-chain of residues of Asn and Gln to move to make the most 

favorable H-bond interactions. Then, they were subjected to energy minimization with 
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protein backbone by using the OPLS3 force field in the MacroModel module in the 

Maestro 11.259. The stereochemical quality of homology modeling was evaluated by the 

Ramachandran’s plot assessment. The Ramachandran’s plot assessment was measured 

Procheck60.  

4.3.2. Ligands Sources, Preparation, and Docking: 

 The small molecules (Figures 2–5) were built using MOE build panel and 

subjected to energy minimization using the MMFF94x force field in MOE using the MMFF 

force field partial charges. In addition, they were minimized by using the OPLS3 force 

field of the MacroModel program using the OPLS3 force field partial charges. All ligands 

were subject to pKa calculations using the Epik program in the Schrödinger software. The 

Epik calculations in the Maestro 11.2 showed that the pKa of all nitrogen atoms in these 

ligands are less than 7, suggesting that under the pH = 7 condition, all nitrogen shall remain 

deprotonated, i.e., neutral. A database of 260,071 ligands was taken from the National 

Cancer Institute database61 and further filtered by the logP (logP < 5), and molecular weight 

(MW < 500) set by the Lipinski’s rule of five (RO5)62. To expedite the docking and to 

define enrich factors, we randomly selected 508 drug-like molecules from this database 

after the filtration of RO5. These 508 molecules were minimized using the OPLS3 force 

field and the OPLS3 partial charges using the MacroModel program.  

Commonly used software for ligand-protein docking include the Surflex docking 

module in Sybyl63 64, and the Schrödinger Glide Dock program64 65. In this study for ligand 

docking to GLUT1, we used Glide Dock in the Maestro 11.2 with the different 

conformations of GLUT1 (5EQG, HM_4ZW9, HM_4ZWC, HM_4GBZ, and HM_4JA3) 

as target proteins. First, crystallographic water and 1-Oleoyl-R-glycerol (OLC) molecules 
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were deleted from 4ZW9, 4ZWC, and 4GBZ. Hydrogen atoms were added to both the 

protein and the ligand. Then, five grid files for 5EQG, 4ZW9, 4ZWC, 4GBZ, and 4JA3 

were created by the Glide Grid Generation panel [59] with the bound ligands as the centroid 

of the protein binding pocket. The site of the bound ligands in the crystal structure 5EQG 

was defined as the centroid; and for the homology models, all four homology models were 

structurally aligned to 5EQG and, thus, the 5EQG-bound ligand was adopted as bound 

ligand for those four homology models and used as a centroid to define binding pockets 

for those four homology models. Then, all GLUT1 inhibitors were docked with the 

precision and ligand sampling were set to extra-precision (XP) method to generate each of 

the five grid files. All other parameters were used as defaults. In addition, 508 drug-like 

molecules were also docked to the different conformations of GLUT1 (5EQG, 4ZW9, 

4ZWC, 4GBZ, and 4JA3). The binding affinity of the various conformation of 

GLUT1/ligand complexes was evaluated by the Glide scores. The protein/ligand 

interactions and contact interaction were created by using the Maestro 11.2. The 

electrostatic map was generated by using the MOE. The frequency of residues interacting 

with ligands was made using Excel. 

4.3.3. QSAR Model of GLUT1 Inhibitors: 

 To create the physicochemical factors, we constructed the 3D models of all 

molecules in MOE. The physicochemical parameters such as the logarithm of partition 

coefficient (logP), and structure molar refractivity (SMR) were calculated by using MOE. 

The activity data were established as pIC50 = - log IC50. Subsequently, all 

physicochemical parameters being assigned, all compounds were divided into a training 

set and a test set after all physicochemical parameters being generated. Correlations 



166 
 

between the physicochemical parameters and the pIC50 were calculated using the Partial 

Least Squares Fit (PLS) method66. To examine the QSAR models, the resulting QSAR 

models from the train set were employed to predict the activity data of the molecules in the 

test set. 
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Chapter 5 

Ligand-Based Design of GLUT1 Inhibitors as Potential Anti-tumor 

Agents 

ABSTRACT:  

Glucose transporters (GLUTs) regulate glucose uptake and are often overexpressed in 

several human tumors. To identify new chemotypes targeting GLUT1, we built a 

pharmacophore model and searched against an NCI compound database. Sixteen hit 

molecules with good docking scores were screened for GLUT1 inhibition and 

antiproliferative activities. From these, we identified that compounds 2, 5, 6 and 13 

inhibited the cell viability in a dose-dependent manner and that 2 and 6 are the most potent 

with less than 10 µM concentration in the HCT116 colon cancer cell line. Lead compound 

13 (NSC295720) was a GLUT1 inhibitor. Docking studies show that GLUT1 residues 

Phe291, Phe379, Glu380, Trp388, and Trp412 were important for inhibitor binding. 
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5.1. Introduction: 

Glucose is an important energy source for several biological functions, including cell 

proliferation, and motility.1-2  Glucose transporters (GLUTs) regulate cellular glucose 

uptake and help maintain proper glucose concentration in various tissues.3 The GLUTs are 

membrane proteins encoded by the solute carrier transporter family, SLC2, and SLC5 

genes.3-4  Cancer cells transport more glucose than normal cells due to their rapid growth 

and high rate of aerobic glycolysis (Warburg effect).5-7 Glucose transport 1 (GLUT1) is 

upregulated in many types of cancers such as breast, lung, prostate, and colon.8-11  In 

addition, stimulation of oncogenes such as KRAS, BRAF, c-Myc, and p53, and 

transcription factors such as hypoxia-inducible factor-1a (HIF-1) upregulate the GLUT1 

expression.9,12-15 

A specific antibody targeting GLUT1 reduced glucose uptake, induced apoptosis in lung 

and breast cancer cells, and improved the activity of anticancer drugs such as cisplatin, 

paclitaxel and gefitinib.16Glucose transport in the brain is facilitated by both GLUT1 and 

GLUT3.17-18In the brain, GLUT3 has greater affinity and higher capacity than GLUT1.17-

20Therefore, GLUT-1-selective ligands would minimize potential neurotoxicity. Several 

small molecule GLUT inhibitors including resveratrol, naringenin, phloretin, cytochalasin 

B, WZB117, STF-31, pyrazolopyrimidines, phenylalanine amides, and (1H-pyrazol-4-

yl)quinolone inhibit cell proliferation and induce apoptosis of cancer cells.21-28 Most of 

these inhibitors, however, are unlikely to have high selectivity for GLUT-1. 

GLUT1 transports substrates through the alternating access mechanism, which involves 

substantial conformational change across the cell membrane.29-30 GLUTs conformation 

changes from an outward-facing conformation (open to the extracellular) to an inward-
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facing conformation (open to the intracellular) to deliver glucose through the cell 

membrane passing through an intermediate state in which the GLUTs conformation is 

occluded.30 The substrate-free GLUT protein favors the outward-open conformation.30  

Once the substrate binds to the C domain of the GLUT1, the GLUT1 shifts to the inward-

open conformation to release glucose.30 Our docking study on different conformations of 

GLUT1 also confirmed that the inward-open conformation is the most favorable ligand 

binding site.31 

In this paper, we explored a lead generation technique for identification of GLUT1 

inhibitors by ligand-based pharmacophore modeling. We developed a 3D pharmacophore 

model that was formed from known GLUT1 inhibitors reported in the literature (Figure 

5.1).24,27-28 To identify potential hit molecules, we searched the generated pharmacophore 

model against a National Cancer Institute (NCI) database. Our results led to the 

identification of four compounds that inhibited glucose uptake and decreased growth of 

colon cancer cells in vitro. 
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Figure 5.1. GLUTs Selective Inhibitors Used to build a Pharmacophore Model. 
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5.2. Results and Dissection: 

We created a 3D pharmacophore model in MOE based on structures of known GLUT1 

inhibitors (Figure 5.1). The selection of these compounds to build a pharmacophore for 

potential GLUT1 inhibitors was based on their high potency and structural diversity. The 

MOE software Pharmacophore modeling module32 allowed the superposition of 

compounds b-d to compound a and thus generated a 3D pharmacophore model composed 

of one aromatic group (F1), one hydrophobic group (F2), an aromatic ring/hydrophobic 

(F3) , and one hydrogen bond donor (F4, Don) (Figure 5.2). Using this 3D pharmacophore 

model we performed a virtual screen of the NCI compound database. 1,469 compounds 

were found to satisfy the 3D pharmacophore and were reported as hits to identify novel 

GLUT inhibitors. Figure 2 showed the pharmacophore that was built based on compounds 

a-d (Figure 5.2). Hit molecules 6 and 13 were able to fit into three out of four 

pharmacophoric points (Figure 5.2). 

We then carried out docking studies of all 1,469 molecules that satisfied the 

pharmacophore model.  Those with good docking scores and availability from the NCI 

were considered as lead molecules for further testing.  Our previous study showed that the 

inward-open conformation of GLUT1 proteins is the most favorable conformation for 

ligand binding.31 The inward-open conformation crystal structures for GLUT1 are PDB 

ID: 4PYP, 5EQG, 5EQH, and 5EQI.24,30 We used 5EQH as a model protein because the 

bound ligand was one of the potent molecules used to build the pharmacophore model. 

From this docking of 1,469 NCI compounds, 16 top-ranking compounds were chosen as 

lead molecules with GLUT1 inhibition potential based on their glide docking scores and 

the availability from NCI. The glide docking scores against the inward-open GLUT1 are 
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listed in Table 1. All 16 hit molecules also had better Glide docking scores than glucose, 

the natural GLUT1 substrate. The structures of the 16 compounds are given in Figure 5.3.  

The validation of the glide docking method was performed by the pose selection method.33 

This is a standard method used by comparing the docked pose of a ligand with the cocrystal 

structure of the ligand. A pose with an RMSD < 2.0 Å is considered to be good.33  The 

superposition of the Glide-generated docked pose, and the native conformation in the co-

crystal structure (PDB ID: 5EQH) for compound 5RF (the ligand bound to 5EQH, Figure 

5.4) showed that the RMSD between these two poses is 1.34 Å. This indicates that the glide 

docking can successfully predict ligand-binding conformations. 

We also investigated ligand-protein interactions of the 16 top-ranking compounds to 

analyze their binding modes. Phe379, Trp388, and Trp412 play essential roles in GLUT1 

function and glucose uptake.34-36,24 Gln282, Gln283, Asn288, Phe291, Asn317, and Glu380 

are also important residues for glucose binding.31,37 Notably, our analysis showed that the 

16 top-ranking compounds were able to bind to these reported residues. Our glide docking 

results of the 16 top-ranking compounds against the inward-open GLUT1 conformation 

revealed that all compounds bound to the glucose binding site of GLUT1, and the most 

frequently observed interacting residues were Thr137, Gln282, Phe291, Phe379, Glu380, 

Trp388, and Trp412 for their role in providing H-bonds or π – π stacking interactions 

(Table 5.1). Hit compounds 2, 6, 13, and 5 were able to create π - π stacking interactions 

with Phe291, and Phe379, Trp388, and Trp412 and H-bonds with Thr137 of GLUT1 

(Figure 5.5). This suggests that Thr137 may be a significant residue for ligand binding. 

Taken together, the docking scores and ligand-protein interactions of the 16 top-ranking 

compounds suggest that these compounds may be potential GLUT1 inhibitors. 
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Figure 5.2. Pharmacophore model for GLUTs inhibitors. Color code: Cytochalasin B (a), 

magenta; 5RF (b), red; Compound c, green; Compound d, cyan; hit molecules NSC328095 

(6), orange; and NSC295720 (13), blue. Aro: aromatic rings; Don: H-bond donor; Hyd: 

hydrophobic groups. 
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Figure 5.3. Chemical structures of sixteen hit molecules. 

O
OO

S

H
NN

N
NH

O

OH

S

H
NN

N
NH

O

OH

OH

HN
N

O

NH

O

O

HO

N

Br

HN O
N

HO

HO

OH

O

NN

OH

S

H
NN

N
NH

O

N

N
H

S
O

O

N
N

N
N

O
N

H2N
S

O

O

N
N

N
N

O
N

N
N

N
N

O
N

Cl

O

O

N
H

S

N

O

HN
N

O

NH

O

O

HO

O

N
N N NH2

N
H

N
NN

NH2

N
N

N HN

NN
N

NH2

O

NH

O
N

H
N

S
O

O

O

O

O

O
N

N
N

OH

O OH

O

O
N

N
N S

N
N

O

NSC 657377 (1) NSC 657996 (2)

NSC 657374 (8)NSC 328095 (6)

NSC 314887 (14)

NH2

NSC 641409 (11)

NSC 641422 (15)

NSC 649554 (3)

NSC 295714 (9)

NSC 295720 (13)

NSC 295715 (10)

NSC 730702 (7)

NSC 281301 (4)

NSC 380503 (16)

NSC 32458 (5)

NCS 659680 (12)



185 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. The superposition of the Glide generated pose and the native ligand of the 

crystal structure (5EQH). The RMSD between these two conformations is 1.34 Å. 
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Figure 5.5. Ligands interactions between 2 (A), 6 (B), 13 (C), and 5 (D) and GLUT1: The 

H-bond interactions are shown as green dotted lines. 
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Table 5.1. Glide docking scores (kcal/mol) of hit molecules with NSC numbers, logP, and 

interacting residues of 5EQH. 

 

 

         NSC# (Comp#)       logP        XP GScore           Interacting residues 

657377 (1) 4.45 -7.54 Phe291, Phe379, Trp388, 
Trp412 

657996 (2) 4.03 -8.78 Ser80, Phe291, Phe379, 
Trp388, Trp413 

649554 (3) 4.53 -7.85 Glu380, Trp388, Trp412 
281301 (4) 0.75 -8.47 Phe291, Phe379, Trp388, 

Trp412 
32458 (5) 3.82 -9.48 Ser80, Thr137, Trp388, 

Asn411, Trp412 
328095 (6) 4.64 -8.14 Thr137, Gln282, Trp388, 

Trp412 
730702 (7) 3.37 -7.00 Phe379, Glu380, Trp388, 

Trp412 
657374 (8) 4.7 -7.85 Asn288, Glu380, Trp388, 

Trp412 
295714 (9) 3.04 -7.63 Phe291, Phe379, Trp388, 

Trp412 
295715 (10) 1.54 -6.66 Phe379, Trp388, Trp412 
641409 (11) 1.18 -7.46 Trp388, Trp412 
659680 (12) 2.31 -8.12 Phe379, Trp388, Trp412 
295720 (13) 3.71 -6.3 Phe291, Phe379, Trp388, 

Trp412 
314887 (14) 1.08 -7.08 Phe379, Trp388, Trp412 
641422 (15) 3.85 -7.14 Glu380, Trp388 
380503 (16) 4.27 -8.59 Thr137, Trp388, Asn411, 

Trp412 
          β-D-glucose             -5.96  

          α-D-glucose             -5.91  
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In order to evaluate the antiproliferative activities of the 16 potential lead compounds, we 

assessed the growth inhibition of these candidates in the highly malignant HCT116 colon 

cancer cell line38.  Compounds 2 and 6 were the most potent with IC50 values <10 µM 

followed by 13 with an IC50 value of 56 µM. Compounds 1, 3, 5, 10, and 16 had IC50 values 

ranging from 250 and 660 µM whereas the remaining compounds were inactive (Table 

5.2). Compounds 2, 5, 6 and 13 inhibited cell viability of the HCT116 colon cancer cell 

lines in a dose-dependent manner.   

We next determined whether the cell viability inhibition by lead compounds 2, 5, 6, and 13 

was mediated through inhibition of GLUT1. We tested GLUT1 specificity in the presence 

of mitochondrial electron transport inhibitor rotenone using methods published 

previously.39-41 Rotenone inhibits ATP production through mitochondrial respiration; 

therefore in co-incubations of the compounds with rotenone, cells would produce ATP only 

though glycolysis which is linked with glucose uptake. These data showed that 13 

significantly decreased ATP levels in the presence of rotenone (Figure 5.6), suggesting that 

this compound specifically inhibits glucose uptake, leading to reduced glycolysis. Taken 

together, these results indicate that 13 is a specific GLUT1 inhibitor.  
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Table 5.2.IC50s of 16 tested compounds against the HCT116 colon cancer cell lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NSC# IC50 (µM) NSC# IC50 (µM) 
657377 (1) 450 295714 (9) inactive 
657996 (2) 4.9 295715 (10) 660 
649554 (3) 560 641409 (11) inactive 
281301 (4) inactive 659680 (12) inactive 
32458 (5) 250 295720 (13) 56 
328095 (6) 9.1 314887 (14) inactive 
730702 (7) inactive 641422 (15) inactive 
657374 (8) inactive 380503 (16) 260 
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Figure 5.6. FET cells were treated with hit molecules 2, 5, 6 and 13 in the presence of 

rotenone (1 μM) for 1 hour and ATP level was measured by Cell Titer-Glo® Luminescent 

Cell Viability Assay Kit. The experiment was repeated twice. * P < 0.1. 
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5.3. Conclusion:  

Pharmacophore modeling and database searching identified 16 hit compounds. The ability 

to generate π - π stacking with Phe291, and Phe379, Trp388, and Trp412 and form H-bonds 

with Thr137 may be responsible for the binding of these hit molecules to GLUT1. Two of 

these inhibited the HCT116 colon cancer cell line at low micromolar concentrations. One 

compound (13) was a GLUT1 inhibitor. 
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5.4. Materials and Methods: 

5.4.1 Three-Dimensional (3D) Pharmacophore Model Design and Virtual 

screening:  

The Computational pharmacophore generation was carried out using Molecular 

Operating Environment (MOE).43 The 3D structures of the known GLUTs inhibitors from 

literature (Figure 1) were built and energy minimized using MMFF94X force field44 in 

MOE software based on the 5RH ligand in the crystal structure 5EQH. The 3D 

pharmacophore was generated by the flexible superimposition of the 3D model of GLUTs 

inhibitors, and identification of the 3D features that they shared. Then, the 3D 

pharmacophore model was applied in the design of novel GLUTs inhibitors according to 

the Pharmacophore Query module in MOE. A database of 260,071 molecules was 

downloaded from the National Cancer Institute (NCI),45 then it was filtered according to 

the Lipinski’s rule of five by the logP (logP< 5), and molecular weight (MW < 500)46, 

yielding 33,778 drug-like molecules.   

A pharmacophore search against this database of 33,778 molecules resulted in 

1,469 hit molecules that fit the pharmacophore model. To help narrow down the number 

of hit molecules that we will use for the biological test, we docked all these 1,469 molecules 

to the GLUT1 5EQH ligand binding site using the procedure established in our previous 

studies.47 48 In this study, Glide Dock49 in the Maestro 11.2 were performed for ligands 

docking against inward-open conformations of GLUT1 (PDB ID: 5EQH) which has been 

prepared using the Protein Preparation Wizard module followed by energy optimization 

using the MacroModel in the Schrödinger software suite with the OPLS force field. Then, 
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a grid file for was generated by the Glide Grid Generation panel with the bound ligand 

(5RF) as the centroid of the minimized protein. Then, all compounds were docked to the 

grid file with ligand sampling being set to extra-precision (XP) method, and all other 

parameters were used as defaults. The binding affinity of the various conformation of 

GLUT1/ligand complexes was evaluated by the Glide scores. The protein/ligand 

interactions was created by using the Pymol software.50 

5.4.2. Cell Viability Assay: 

Human colon cancer cell lines HCT116 and FET were maintained in McCoy’s 5A medium 

(Sigma, St Louis, MO, USA) with 10 ng/ml epidermal growth factor (EGF), 20 μg/ml 

insulin and 4 μg/ml transferrin. Cells were culture at 37°C in a humidified incubator with 

6% CO2.HCT116 cells were seeded into 96-well plates at a density of 6000 cells per well, 

and treated with compounds for 72 hours. Cells were stained for 2 hours with alamar blue 

reagent (Bio-rad). The OD at 570 nm and 630nm were read on an ELx808 Absorbance 

Microplate Reader (BioTek, Winooski, VT, USA). Cell viability was calculated as a ratio 

of OD values of drug-treated samples to those of controls.  

5.4.3. GLUT1 specificity assay: 

To test the specificity of GLUTs inhibitors, colon carcinoma cell line FET were seeded in 

96 plates at a density of 20000 cells per well. The cells were then cultured overnight in 

glucose free media. After16 hours, the cells were incubated with 0.1M glucose with or 

without compounds in the presence of 1 μM rotenone for 60 min. The Cell Titer-Glo® 

Luminescent Cell Viability Assay from Promega was then used to measure ATP levels. 

Statistical analyses were performed using Student’s t-test. 
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Chapter 6  

Summary 

 

PPARγ is an essential target of many pharmaceuticals that have produced billions 

of dollars (USD) for treating insulin resistance and type 2 diabetes, such as 

thiazolidinedione drugs (TZDs). PPARγ has a vital role in controlling adipogenic, 

lipogenic pathways, glucose homeostasis and insulin sensitivity, inflammation. PPARγ is 

overexpressed in numerous tumors, including breast, pancreatic, bladder, prostate, and 

colon. The LBD of PPARγ is a large T-shaped cavity (~ 1.300 Å), and it is mostly 

hydrophobic pocket. The LBD of PPARγ has two main ligand-binding 

sites: orthosteric and allosteric binding sites, each site having different properties and 

binding preferences. PPARγ antagonists improved glucose homeostasis, insulin resistance, 

no side effects of classical PPARγ agonists such as TZDs. The overexpression of PPARγ 

decreased survival of prostate cancer and increased metastases to the lungs and lymph 

nodes, and positively correlated with prostate cancer. Therefore, there is an urgent need to 

develop novel, potent PPARγ antagonists. On the other hands, The GLUT1 was the first 

characterized and identified glucose transporters. Cancer cells transport more glucose than 

normal cells due to their rapid growth and high rate of aerobic glycolysis (Warburg effect). 

The GLUT1 is upregulated in many types of cancers such as brain, breast, lung, kidney, 

ovary, prostate, and colon. GLUT1 transport glucose through alternating access, which 

involves substantial conformational change down its concentration gradient. GLUT1 

changes from an outward-open conformation (OOP), which opens to the extracellular to 

take up glucose, to an inward-open conformation (IOP), which allows the release of 
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glucose to the intracellular cytoplasm via partially outward-occluded (POO), outward-

occluded (OOC) and partially inward-occluded (PIO) conformations. Several small 

molecule GLUTs inhibitors and chemotypes have been described including resveratrol, 

naringenin, phloretin, cytochalasin B, WZB117, STF-31, pyrazolopyrimidines, 

phenylalanine amides, and (1H-pyrazol-4-yl)quinoline. Most of these inhibitors violate 

drug-like properties and could be toxic, so small molecules targeting GLUTs are still 

required as lead compounds for future drug discovery. 

In Chapter 2, The crystal structures of PPARγ complexed with antagonists revealed 

that antagonists can occupy the two binding sites, orthosteric pocket, and allosteric pocket. 

Docking studies PPARγ shows that the experimental binding affinity of PPARγ antagonists 

more correlated to allosteric binding site than the orthosteric binding site. In addition, the 

statistical parameters of docking scores at allosteric pocket better than orthosteric pocket. 

Therefore, the allosteric site looks like the most favorable binding site for PPARγ 

antagonists. Inspection of ligand/ PPARγ interactions at allosteric binding site shows that 

the PPARγ antagonists seems to require an interaction with residues Phe282, Arg288, and 

Lys367 more than agonists or partial agonists. This study improves the thoughtful of the 

PPARγ binding site, which assists in the design and optimization of more specific PPARγ 

antagonists. In future studies, we plan to run docking studies against the crystal structure 

of PPARα, PPARγ, PPARδ, estrogen receptor α (ERα), and estrogen receptor β (ERβ) 

bound to antagonists to which helps in the design and optimization of more specific 

inhibitors for the PPARγ. Besides, we will investigate the ligand protein interactions to 

define the most selective residues, which can be targeted by a molecule during the design 

and optimization of more specific inhibitors for the PPARγ. 
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In chapter 3, PPARγ is a novel and important target in prostate cancer. PPARγ 

antagonist decreased tumor size. The identification of hit compounds is an important step 

in the development of PPARγ antagonists. We used an integrated computational and 

experimental approach against the crystal structure of PPARγ, which is a PPARγ model 

that has two molar equivalents of a ligand binding at different sits. We then performed 

structure based virtual screening of small molecule libraries against the two binding sites 

followed by experimental testing to discover new hits of PPARγ antagonists. Compounds 

resulted from structure based virtual screening against the allosteric site are more potent 

than the orthosteric site. Structural analysis of the two binding sites of PPARγ showed that 

the allosteric site has more ligand protein interactions with the compounds. Arg288 and 

Lys367 would be PPARγ antagonists. This study improves the understanding of the PPARγ 

binding site, which supports in the design and optimization of more specific PPARγ 

antagonists. Next, we will effort on the design and synthesis and optimized of derivatives 

of selected hits to develop lead candidates as PPARγ antagonists for the treatment of 

prostate cancer and other solid tumors.  

In chapter 4, the protein–ligand dockings on different GLUT1 conformations 

suggest three significant outcomes: First, the docking scores suggested that the IOP 

conformation would be preferred for ligand binding. Besides, the MAE and RMSE for each 

conformation in comparison to experimental observations IC50 of ligands also confirm 

that the IOP conformation would be preferred for ligand binding. Second, enrichment 

factor (EF) calculation from docking studies is a method to validate the docking study, and 

it further confirms that the Glide dock program is able to distinguish the real inhibitors 

from drug-like molecules with best results in the IOP conformation. Third, residues 
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Trp388, Glu380, Phe379, and Trp412 are important for the IOP conformation selective 

binding. Taken together, all these results support the conclusion that the IOP conformation 

is the most recognized conformation for ligand interaction and, thus, it should be used for 

future molecule design targeting GLUT1. In future studies, we will run docking studies 

against other GLUTs isoforms such as GLUT2, GLUT3, and GLUT4 to help in the design 

and optimization of more specific inhibitors for the GLUT1. Besides, we will investigate 

the ligand protein interactions to define the most selective residues, which can be targeted 

by a molecule during the design and optimization of more specific inhibitors for the 

GLUT1. 

 In Chapter 5, Pharmacophore modeling and database searching identified 16 hit 

compounds. The ability to generate π - π stacking with Phe291, and Phe379, Trp388, and 

Trp412 and form H-bonds with Thr137 may be responsible for the binding of these hit 

molecules to GLUT1. NSC657996 and NSC328095 inhibited the HCT116 colon cancer 

cell line at low micromolar concentrations. Besides, NSC295720 was a GLUT1 inhibitor. 

Next, we will evaluate the NSC657996, NSC328095, and NSC295720 against a panel of 

GLUTs isoforms to investigate their selectivity. Future hit identification could involve 

fingerprint-based similarity searching.    
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Appendix 

Molecular Modeling Studies on the Binding Mode of the PD-1/PD-L1 

Complex Inhibitors 

1. Introduction: 

Immune checkpoints (ICPs) are paramount regulators of the immune system, and they 

can differentiate between the healthy and foreign cells and prevent activation of immune 

cells.1-3 Cancer cells can evade immune system control by overexpressing inhibitory ICPs.4-

7 There are several co-inhibitory ICPs such as T-lymphocyte-associated protein 4 (CTLA-

4), and programmed cell death protein 1 (PD-1) / programmed cell death ligand 1 (PD-L1), 

which inhibit T cell activation by different mechanisms.8-10 Several antibodies targeting 

CTLA-4 or PD-1/PD-L1 revealed encouraging clinical results.11-12 Monoclonal antibodies 

(mAbs) against PD-1 pathway show significant tumor treatment benefit, and they were 

considered a better option than mAbs targeting CTLA-4.13-15 Several successful mAbs 

targeting the PD1/PD-L1 pathway for treatment of various tumors have been approved. 

These approved mAbs included nivolumab and pembrolizumab.15-17 The activity of mAbs 

against PD1/PD-L1 checkpoints led to accelerated approval of nivolumab and 

pembrolizumab by regulatory bodies in 2014.5,14        

PD-1 is a type I transmembrane immune-inhibitory protein that is expressed on 

activated CD4+ and CD8+ T cells, natural killer T (NKT) cells, B cells, activated 

monocytes, and dendritic cells (DCs).18-19 PD-1 and its ligands control the activity and 

tolerance of T cells, and immune-mediated tissue damage.19-20 PD-1 has two ligands: PD-

L1 and PD-L2; PD-L1 is expressed broadly and upregulated on activated T cells, B cells, 



206 
 

myeloid, and dendritic cells, while PD-L2 is expressed only in activated dendritic cells and 

some macrophages.9,21  In normal conditions, PD-1/PD-Ls pathways play an essential 

function in maintaining immune homeostasis and avoiding autoimmunity by the inhibition 

of T cell activation.22-24 In cancer cells, the PD-1/PD-L1 interaction has a crucial role in 

tumor immune resistance.25-26 The binding of the PD-1/PD-L1 complex inhibits T-

lymphocyte proliferation, the release of cytokines, and induces apoptosis of T cells.27-28 

PD-L1 is overexpressed in several tumors such as lymphoma, melanoma, lung, breast 

cancer, glioblastoma, ovarian, kidney tumors, and bladder cancers.29-34 Blocking of the PD-

1/PD-L1 complex interaction would promote the reactivation and revival of exhausted T 

cell phenotype which would normalize and stimulate the antitumor response of T cells.28  

PD-1/PD-L1 complex inhibitors represent a new type of immunotherapy drugs which could 

afford new treatment for various kinds of cancers.35-37 There are four therapeutic mAbs 

against PD-1/PD-L1 immune checkpoint proteins (nivolumab and pembrolizumab 

targeting PD-1; atezolizumab and avelumab binding to PD-L1) have been approved by the 

US FDA. These mAbs are used to treat prepared against metastatic melanoma, non-small-

cell lung cancer (NSCLC), renal cell carcinoma, head and neck squamous cell cancer 

(HNSCC), and bladder cancer.       

However, the occurrence of immune-mediated adverse effects has been observed 

in some patients receiving the immune checkpoint inhibition (ICI) by mAbs. The side 

effects can be colitis, autoimmune hepatitis, endocrine or neurological disorders.38 A study 

shows that 44.4% of patients with pre-exiting AID experienced immune-related adverse 

event (irAE) whereas only 23.8% were observed with irAE in those without pre-existing 

AID.39 In addition, a rapid worsening of the disease upon treatment with ICIs have been 
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observed in approximately 5% of patients, a phenomenon called hyper-progressive disease 

(HPD) and it seems to be due to inhibition of both PD-1 and PD-L1.40,41   

Therefore, a small molecule inhibitor that binds to PD-L1 only would spare the 

function of PD-1 and may be an alternative therapeutic approach that may minimize the 

immune-related adverse effects.  Unfortunately, the development of small molecules 

targeting the PD-1/PD-L1 axis lags far behind the mAb development targeting this 

pathway.  This is due, in part, to insufficient structural information of the PD-1/PD-L1 

complex with small molecule inhibitors.  The crystal structure of the fully human PD-1/PD-

L1 complex (PDB: 4ZQK) was determined in 2015. This crystal structure suggests that 

there are several binding sites on the PD-1 and PD-L1 that can be targeted to develop small 

molecule inhibitors.[42] The crystal structures of PD-L1 complexed with atezolizumab 

(PDB ID: 3X8L) and durvalumab (PDB ID: 3X8M) were not available until 2017, and they 

defined the binding site and important residues of the PD-L1 interacting with the mAbs.43  

Recently, some new small molecules were identified as PD1/PD-L1 pathway inhibitors 

with significant inhibitory effects at subnanomolar concentrations.44-45 Besides, the crystal 

structures of PD-L1 complexed with small molecule inhibitors have been resolved showing 

that small molecules bind to PD-L1 instead of PD-1, and they inhibit the PD-1/PD-L1 

interaction by inducing PD-L1 dimerization through the PD-1 interacting surface site. The 

binding of small molecules to PD-L1 led to disassociation of the PD-1/PD-L1 complex.46-

48  

Here, we report the structural basis for PD-L1 interactions with the reported BMS 

inhibitors (Figures 7.1). The docking scores of BMS inhibitors showed that the docking 

scores in our study are very close to those experimentally observed biological activities. 
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The binding modes and protein-ligand interaction studies of the PD-L1/BMS inhibitors 

offer significant structural insight for the design and development of future new and 

selective inhibitors for the PD-L1/PD-1 complex. We identified residues Tyr56, Asp122, 

Lys124, Arg125, and Phe19 of PD-L1 as important binding residues for small molecule 

design as this residue is able to form H-bond interactions. Tyr56, and Asp122 appear to be 

two most vital residues for interaction with PD1/PD-L1 complex inhibitors.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



209 
 

O

O

O F

F N
H OH

COOH
O

O

O
NH

COOH
OH

O

O

O O

Cl

CN

N COOH

O

O

O
H
N COOH

OH

O

O

O O

F3C Cl
N

CN

HO
OH

O

O

O

O O

HN
Cl

CN

OH
O

OH

O

O

O O

HN
Cl

CN

NCH3HOOC

O

O

O O

CN
Cl

HN
COOH

OH
O

O

O O
N

CN

N
H O

O CN
O O

N
H

Cl
H
N

O

O

O

O O
N
H

Cl
COOH

O

O

O
N
H

O OH

N
O

N

CN

O

O

O O
N
H

ClCl
NH2

O
O

HO

O

O

O O
O

N COOH

1 (BMS-1001)
 2 (BMS-200)

3 (BMS-3029)

4 (BMS-1166) 5 (BMS-114) 6 (BMS-1197)

7 (BMS-1205) 8 (BMS-1220)

12 (BMS-1239)10 (BMS-1250) 11 (BMS-1305)

9 (BMS-2002)

13 (BMS-2010) 14 (BMS-3024)

CN

O

Cl

HO

OH
N

CN

C3H6NH2

COOH

N

CN

N

COOH

 

 

 

 

 

 

 

 

 

 



210 
 

O N OH

O

O
H
N OH

O

O N Y

N
H

H
N

O
O OCH3

OCH3

N
H

X

O N

O

Br N

O OH

O OCH3 O

O O

H3CO

F OCH3

N
H

COOH NH

O

N
H

OH

O OH

CN O

N
H

H
N

O

15 (BMS-16) 16 (BMS-82)

21 (BMS-1043)

18 (BMS-172)

19 (BMS-163)

17 (BMS-39)

22 (BMS-8) 23 (BMS-107) 24 (BMS-101)

25 (BMS-1016)

N
O

O O NH2

-OCH3

O

COOH

20 (BMS-202)

X

X = 
26 (BMS-1057): 2-NO2;
27 (BMS-1095): 2-F,5-CN;
28 (BMS-1108): 3-Me, 4-F;
29 (BMS-1082): 3-OCF3  

 

Figure 7. 1. Structures of the PD-1/PD-L1 complex inhibitors (1–14) used in docking 

studies. 
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2. Results and Discussion:  

2.1. Docking Scores and Validation 

To identify amino acids that are essential for small molecule binding, we carried 

out docking studies of 29 experimentally verified inhibitors of PD-L1/PD-1 complex 

(Figures 1 and 2). These 29 ligands were docked to two different PD-L1 model proteins 

(PDBIDs: 5NIU 48, and 5N2F 47). The PD-L1/ligand docking scores for these two models 

are listed in Table 7.1. The docking scores show that the Glide performance was well within 

the predicted range of the binding affinity (ΔGPRED) of PD-L1/PD-1 complex inhibitors. 

The comparisons of predicted docking scores to the experimental free energy of bindings, 

converted from the IC50s show that the docking scores of both models 5NIU and 5N2F 

are in good agreement with the experimentally observed data, with mean errors of 1.07 and 

0.91 kcal/mol, and the root-mean-square errors of 1.66, 1.51 kcal/mol for model proteins 

5NIU and 5N2F, respectively. The low standard deviations of 1.29 and 1.22 for model 

proteins 5NIU and 5N2F, respectively further confirm the validity of the Glide docking 

method. The more negative the docking score, the more favorable the interaction of the 

complex. To determine the protonation state of amino groups in compounds outlined in 

Figures 1 and 2, we carried out computational pKa calculations using EPik program. Table 

S1 shows that all compounds show pKa around 8 except BMS-1220 (8), which has a high 

pKa of 10.73. This suggests that the nitrogen atom on most ligands should not be 

protonated and thus remained neutral whereas BMS-1220 (8) was protonated. In addition 

to binding affinity, the ligand binding can also be evaluated by binding free energy.  

Herein we use a knowledge-based Moveable-Type (MT)-based approach49 to 

estimate the absolute free energy of binding of all 29 ligands using the docked poses 
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identified in the docking study for two model proteins. The MT-based free energy 

calculation has been successfully applied to engineering cellular retinoic acid binding 

protein II 50. Table 7.2 shows that the mean errors of predicted free energy of binding from 

the corresponding experimental values are 0.64, -0.68 kcal/mol, with standard deviation of 

1.68, 1.54; and RMSE of 1.77, 1.66 for model proteins 5NIU and 5N2F, respectively. The 

good agreement between predicted and the experimentally observed values not only proves 

the validity of the MT-based free energy calculation method, but also further validated the 

Glide-dock program because the generated docked poses can be used to accurately predict 

the binding affinity. 

There are other methods to validate docking methods.51-52 The pose selection is a 

standard method used whereby docking software is used to dock a ligand with a known 

conformation and orientation, typically from a co-crystal structure, into the binding site. 

When the docking software is able to generate a pose for the ligand that is very close to the 

native conformation in the crystal structure, the docking software is considered dependable 

when the root mean square deviation (RMSD) value of the superposition of a ligand 

between the docked pose and the native conformation is low (1.5 or 2 Å depending on 

ligand size).53 The superposition of the Glide-generated docked pose, and the native 

conformation in the co-crystal structure (PDB ID: 5NIU) for compound 1 (Figure 7.2) 

showed that the RMSD between these two poses is 1.04 Å. Therefore, the low RMSD value 

confirmed that glide dock is able successfully to find the native poses in crystal structures 

and can be reliably used to define the binding conformations of other ligands. 
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Table7. 1. The glide docking scores (unit, kcal/mol) of 29 ligands against PD-L1 proteins 

(5NIU and 5N2F). 

Compound IC50 (nM) ΔG(exp) 5NIU_Dock ΔΔG(5NIU) 5N2F_Dock ΔΔG(5N2F) 
BMS-1001(1, 5NIU) 2.25 -11.80 -11.69 -0.11 -11.60 -0.20 
BMS-200 (2, 5N2F) 80 -9.68 -12.06 2.38 -12.18 2.50 
BMS-3029 (3) 2350 -7.68 -12.35 4.68 -12.73 5.05 
BMS-1166 (4, 5NIX) 1.4 -12.08 -11.08 -1.00 -11.66 -0.42 
BMS-114 (5) 43 -10.05 -11.14 1.09 -10.42 0.37 
BMS-1197 (6) 1.85 -11.91 -11.15 -0.76 -12.10 0.18 
BMS-1205 (7) 2.71 -11.69 -12.14 0.46 -12.14 0.45 
BMS-1220 (8) 6.07 -11.21 -14.04 2.83 -10.58 -0.63 
BMS-2002 (9) 10 -10.91 -13.04 2.13 -11.63 0.71 
BMS-1250 (10) 1.19 -12.17 -12.11 -0.06 -12.64 0.46 
BMS-1305 (11) 0.92 -12.33 -11.35 -0.98 -11.34 -0.99 
BMS-1239 (12) 148.9 -9.31 -11.10 1.79 -11.19 1.88 
BMS-2010 (13) 50 -9.96 -12.00 2.04 -11.93 1.97 
BMS-3024 (14) 5.54 -11.26 -12.75 1.49 -11.53 0.27 
BMS-16 (15) 1945 -7.79 -9.31 1.52 -8.70 0.91 
BMS-82 (16) 3186 -7.50 -9.24 1.74 -9.12 1.62 
BMS-39 (17) 4184 -7.34 -8.26 0.92 -8.52 1.18 
BMS-172 (18) 107 -9.51 -8.54 -0.97 -9.30 -0.21 
BMS-163 (19) 93 -9.59 -10.12 0.53 -10.23 0.63 
BMS-202 (20, 5J89) 18 -10.56 -11.22 0.66 -10.34 -0.23 
BMS-1043 (21) 239.2 -9.03 -10.51 1.48 -11.33 2.29 
BMS-8 (22, 5J8O) 146 -9.32 -11.40 2.08 -10.25 0.92 
BMS-107 (23) 329 -8.84 -9.77 0.93 -9.97 1.12 
BMS-101 (24) 1076 -8.14 -8.35 0.21 -7.96 -0.19 
BMS-1016 (25) 4.55 -11.38 -11.69 0.31 -11.79 0.41 
BMS-1057 (26) 985.8 -8.19 -10.31 2.12 -9.66 1.46 
BMS-1095 (27) 81.25 -9.67 -9.86 0.18 -11.07 1.40 
BMS-1108 (28) 624.2 -8.46 -10.55 2.08 -9.57 1.11 
BMS-1082 (29) 828.4 -8.30 -9.66 1.37 -10.68 2.39 
Mean Error 

   
1.07 

 
0.91 

STDev 
   

1.29 
 

1.22 
RMSE 

   
1.66 

 
1.51 

 

     



214 
 

Table7. 2. The Moveable-Type-based binding free energy (unit, kcal/mol) of 29 ligands 

against PD-L1 proteins (5NIU and 5N2F), using docked poses from the Glide dock 

program. 

Title IC50 (nM) ΔG(exp) MT_5NIU ΔΔG(5NIU) MT_5N2F ΔΔG (5N2F) 
BMS-1001(1, 5NIU) 2.25 -11.80 -10.81 -0.98 -9.72 -2.08 
BMS-200 (2, 5N2F) 80 -9.68 -11.75 2.07 -9.00 -0.68 
BMS-3029 (3) 2350 -7.68 -9.94 2.26 -8.70 1.02 
BMS-1166 (4, 5NIX) 1.4 -12.08 -10.99 -1.09 -10.53 -1.55 
BMS-114 (5) 43 -10.05 -10.22 0.17 -8.41 -1.64 
BMS-1197 (6) 1.85 -11.91 -12.44 0.53 -10.68 -1.23 
BMS-1205 (7) 2.71 -11.69 -11.22 -0.47 -9.82 -1.87 
BMS-1220 (8) 6.07 -11.21 -12.14 0.93 -10.58 -0.63 
BMS-2002 (9) 10 -10.91 -12.56 1.65 -11.57 0.66 
BMS-1250 (10) 1.19 -12.17 -11.99 -0.19 -11.58 -0.59 
BMS-1305 (11) 0.92 -12.33 -12.29 -0.04 -9.98 -2.35 
BMS-1239 (12) 148.9 -9.31 -11.02 1.71 -9.55 0.24 
BMS-2010 (13) 50 -9.96 -11.65 1.69 -11.97 2.01 
BMS-3024 (14) 5.54 -11.26 -11.37 0.11 -11.84 0.57 
BMS-16 (15) 1945 -7.79 -9.25 1.46 -6.93 -0.86 
BMS-82 (16) 3186 -7.50 -8.02 0.52 -6.91 -0.59 
BMS-39 (17) 4184 -7.34 -8.59 1.26 -6.19 -1.14 
BMS-172 (18) 107 -9.51 -6.57 -2.94 -4.99 -4.52 
BMS-163 (19) 93 -9.59 -7.34 -2.25 -5.93 -3.67 
BMS-202 (20, 5J89) 18 -10.56 -8.89 -1.68 -9.92 -0.64 
BMS-1043 (21) 239.2 -9.03 -11.02 1.99 -9.32 0.29 
BMS-8 (22, 5J8O) 146 -9.32 -12.35 3.03 -8.94 -0.39 
BMS-107 (23) 329 -8.84 -7.73 -1.11 -7.52 -1.32 
BMS-101 (24) 1076 -8.14 -8.29 0.15 -6.98 -1.16 
BMS-1016 (25) 4.55 -11.38 -10.11 -1.27 -8.98 -2.40 
BMS-1057 (26) 985.8 -8.19 -11.84 3.64 -9.88 1.69 
BMS-1095 (27) 81.25 -9.67 -11.76 2.09 -9.97 0.30 
BMS-1108 (28) 624.2 -8.46 -10.35 1.89 -9.15 0.68 
BMS-1082 (29) 828.4 -8.30 -11.71 3.41 -10.29 2.00 
MAE 

   
0.64 

 
-0.68 

STDev 
   

1.68 
 

1.54 
RMSE 

   
1.77 

 
1.66 
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Figure 7. 2. The superposition of the glide-docked generated pose and its native 

conformation in 5NIU for ligand BMS-1001(1, 5NIU). The native confirmation is in 

yellow color, and the docked pose is in magenta color. 
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Binding Interactions of PD-L1/inhibitors 

After the validity of the Glide dock method was confirmed by aforementioned methods, 

we could confidently use the docked poses to identify PD-L1/inhibitors interactions. To 

design new molecules with desired potency, it is important for the designed molecules to 

maintain the proper interactions with essential residues in the binding pocket.  Thus, it is 

very important to identify critical binding residues for effective PD-L1 binding.  

The PD-L1/PD-1 complex inhibitors bind to PD-L1 through PD-1 interacting 

surface site inducing PD-L1 dimerization and disassociation of a PD-1/PD-L1 complex. In 

the crystal structure of 5NIU (PD-L1 dimer/BMS-1001 (1), the 2, 3-dihydro-1, 4-

benzodioxine fragment creates π – π stacking interaction with Tyr56, and the (2R)-2- 

amino-3-hydroxypropanoic acid moiety formed H-bonds with the carbonyl of Asp122, 

Tyr123, Lys124, and the main chain carbonyl oxygen of Phe19 (Fig. 7.3). Besides, the 3-

cyanobenzyl part creates π – π stacking interaction with Tyr123, and forms hydrogen bonds 

with Arg125. The absence of 3- cyanobenzyl group in inhibitor 3 is unable to H-bond with 

Arg125 and Phe19 (Fig. 7.3), resulting in a much weaker interaction. The IC50s for 

compounds 1 and 3 are 2.25 and 2350 nM, respectively. Our MT-based binding free energy 

calculations predicted the ΔGs of -10.81 and -9.94 kcal/mol, respectively, showing a 

weaker binding in compound 3.  

The PD-1/PD-L1 complex inhibitors were run in silico docking using the glide 

docking method to identify the binding mechanisms of these compounds. The 

protein/ligand interactions might vary due to the different structural nature of each ligand. 

To identify residues that are responsible for most ligand binding, we enumerated residues 

that form H-bonds, or electrostatic interactions or π-π stack interactions with 29 inhibitors. 
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Table 7.3 shows that residues Tyr56 and Asp122 are two most important residues for ligand 

binding. 

To evaluate the relative importance of active site residues in ligand binding, we 

enumerate all binding residues for all 29 ligands. Figure 7.4 shows that Tyr56 interacts 

with all 29 inhibitors and Asp122 forms H-bonds with 26 of those 29 compounds. In 

addition, Lys124, Arg125 and Phe19 are important residues for ligand binding as they 

appear in between 30% to 50% compounds binding. The positively charged nature of 

Lys124 and Arg125 suggests that a negatively charged carboxylate moiety is likely in PD-

L1 inhibitors. Please note that to avoid over-exaggeration of the contributions of binding 

residues, if a residue appears in both chain C and chain D, it is only counted as one. For 

instance, Tyr56 of chains C and D provide π-π stack interactions with the aromatic rings 

of ligands but only was counted as once for each entry for compounds 2, 5, 6, 7 and so on. 

The Arg125 looks to be important for ligand binding. The potency of inhibitors toward the 

PD-1/PD-L1 complex might be attributed to their ability to interact with Arg125. The 

majority of potent PD-1/PD-L1 complex inhibitors with IC50 of 100 nM or better tends to 

show interactions with Arg125, as observed in the potent compound 1.  

Though ligands tend to bind to the interface of dimer Chains C and D, they prefer 

the binding to one chain over the other; in this case, they show closer interactions with 

chain D residues as evidenced by Table 7.3 and Figure 7.3. The most frequent residues 

from chain C is Tyr56, which along with same residue from chain D, form two π-π stack 

interactions with two aromatic rings of inhibitors. This suggests that there should be two 

aromatic rings separating by 12 Å away for PD-L1 inhibitors to interact with Tyr56 from 

both chains. 
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The electrostatic map of PD-L1/ BMS-1001 (1, 5NIU, Figure 7.5) further confirms 

that Chain D plays a significant role in ligand binding whereas the role of chain C is much 

less because the latter has fewer interactions with the PD-L1 inhibitors. The phenol group 

of Tyr56 is exposed to the binding site generating π- π stacking with the inhibitors. The 

carboxyl group of Asp122 was positioned toward the ligand binding, having a high 

concentration of negative charge from the carboxylate group and served as an H-bond 

acceptor with compound 1. This high concentration of negative charge is visible as red 

regions in the plot of electrostatic potential (Figure 7.5). The PD-L1 binding sites have a 

high concentration of positive charge featuring Lys124 and Arg125 that bind compound 1. 

This high concentration of positive charge is visible as blue regions in the electrostatic 

potential map (Figure 6). This observation is supported by the high frequency of Lys124 

and Arg125 in the protein/ligand interaction map (Fig. 7.5). Therefore, future PD-L1 

inhibitor design should consider the residues Tyr56, Asp122, Lys124, Arg125 and Phe19, 

along with two aromatic rings. The importance of residue Tyr was already observed and 

reported.[46-48] The finding of Asp122, Lys124, Arg125 and Phe19, and two essential 

aromatic rings may provide helpful guideline for future PD-L1 inhibitor design.   
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Table7. 3. The ligand-protein interactions between the PD-1/PD-L1 complex inhibitors 

and the PD-L1 protein of 5NIU. 

Title IC50 (nM) Chain C Chain D 
BMS-1001(1, 5NIU) 2.25   Tyr56, Asp122, Lys124, Arg125, 

Phe19 
BMS-200 (2, 5N2F) 80 Tyr56 Tyr56, Ala121, Asp122 

BMS-3029 (3) 2350 Tyr56, Gln66 Tyr56, Asp122, Tyr123, Lys124 
BMS-1166 (4, 5NIX) 1.4 

 
Tyr56, Asp122, Arg125 

BMS-114 (5) 43 Tyr56 Tyr56, Asp122, Arg125 
BMS-1197 (6) 1.85 Tyr56 Tyr56, Asp122, Lys124, Arg125, 

Phe19 
BMS-1205 (7) 2.71 Tyr56, Gln66 Tyr56, Asp122, Lys124, Arg125 
BMS-1220 (8) 6.07 

 
Tyr56, Asp122, Lys124, Arg125 

BMS-2002 (9) 10 Tyr56 Tyr56, Ala121, Asp122, Tyr123, 
Lys124, Arg125, Phe19 

BMS-1250 (10) 1.19 Tyr56 Tyr56, Ala121, Asp122, Arg125, 
Ala18, Phe19 

BMS-1305 (11) 0.92 Tyr56 Tyr56, Asp122, Tyr123, Arg125 
BMS-1239 (12) 148.9   Tyr56, Asp122, Lys124 
BMS-2010 (13) 50   Tyr56, Asp122, Lys124, Arg125, 

Ala18 
BMS-3024 (14) 5.54 Gln66 Tyr56, Asp122, Arg125, Phe19 
BMS-16 (15) 1945 Tyr56, Asn63 Tyr56, Asp122 
BMS-82 (16) 3186 

 
Tyr56, Ala121, Phe19, Ala18 

BMS-39 (17) 4184 Tyr56 Tyr56, Asp122 
BMS-172 (18) 107 Tyr56 Tyr56, Ala121, Asp122, Tyr123 
BMS-163 (19) 93 Tyr56 Tyr56, Gly119, Ala121, Asp122, 

Tyr123 
BMS-202 (20, 5J89) 18 Tyr56 Tyr56, Ala121, Asp122 

BMS-1043 (21) 239.2   Tyr56, Ala121, Asp122, Tyr123, 
Lys124, Phe19 

BMS-8 (22, 5J8O) 146 Asn63 Tyr56, Lys124 
BMS-107 (23) 329   Tyr56, Asp122, Lys124 
BMS-101 (24) 1076 Gln66 Tyr56 
BMS-1016 (25) 4.55 Tyr56 Tyr56, Asp122, Arg125 
BMS-1057 (26) 985.8 Tyr56 Tyr56, Asp122, Lys124, Phe19 
BMS-1095 (27) 81.25 Tyr56 Tyr56, Ala121, Asp122, Lys124, 

Arg125, Phe19 
BMS-1108 (28) 624.2 Asn63 Tyr56, Asp122 
BMS-1082 (29) 828.4   Tyr56, Ala121, Asp122, Lys124, 

Phe19 
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Figure 7. 3. The binding orientation of compound 1 (left), and compound 3 (right) in the 

PD-L1 protein of 5NIU. The H-bonds is depicted in dark dotted line. Chain D is colored 

with green secondary structure and atoms whereas Chain C in cyan color.  
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Figure 7.4. Interacting residues of PD-L1 with all 29 different inhibitors.   
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Figure 7.5. Electrostatic surface of the binding pockets of the PD-L1 with BMS-1001 (1, 

5NIU). The hydrophobic region is depicted as green; H-bond acceptor, red; and H-bond 

donor, blue. Chain D is colored with magenta secondary structure whereas Chain C in 

orange color. Tyr56 of chain C is highlighted in cyan and Tyr56 of Chain D, green. The 

distance between two aromatic rings interacting with Tyr56 of chain C and chain D is 12.14 

Å. 
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3. Computational Methods: 

3.1 Preparation of Protein Structures: 

The X-ray crystal structures of the human wild type PD-L1/BMS-1001 (1, PDBID: 

5NIU) and the structure of PD-L1/BMS-200 (2, PDBID: 5N2F) were downloaded from 

the RCSB Protein Data Bank (https://www.rcsb.org/structure/). No missing residues were 

observed in these two crystal structures except a few residues with missing part of side 

chains. The missing side chains were regenerated during the Protein Preparation step in 

MOE to correct missing side chains and to optimize the hydrogen bonding network, and 

to allow protonation be assigned to charged residues and allowing the flipping side chains 

of Asn, Gln, and His in MOE to maximize H-bond interactions.57 1,2-ethanediol and the 

water molecules, due to not serving as a bridge between protein and ligands, were deleted 

in the protein preparation step. Subsequently, the X-ray crystal structure was subjected to 

energy minimization using the Amber14:EHT force field 58 in MOE, followed by protein 

preparation using the Protein Preparation Wizard in the Schrödinger software 59 to allow 

the flip of the side-chain of residues of Asn and Gln to maximize H-bond interactions. 

Then, they were subjected to energy minimization with protein backbone by using the 

OPLS3 force field in the MacroModel module in the Maestro before docking procedure. 

3.2 Preparation of Ligands and Molecular Docking: 

 We built 29 PD-1/PD-L1 complex inhibitors from different sources based on the crystal 

structure of 1 in 5NIU as a template using the MOE build panel and all model molecules 

were subjected to energy minimization using the MMFF94x force field partial charges in 

MOE.60  The minimized ligands were imported to Maestro in Schrödinger software suite 
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for proper treatment before docking. All inhibitors were minimized by the MacroModel 

module in the using the OPLS2005 force field.59 The pKa calculations of ligands were 

prepared by using the Epik program in the Schrödinger software.59 The Epik calculations 

calculated the pKa values of all nitrogen atoms in these ligands and if an amine has a pKa 

greater than 10, that amino group will be protonated. Otherwise, it would be treated as 

neutral. In our case, only compound BMS-1220 (8) has a pKa of 10.73, which is greater 

than 10 and thus should be protonated.  

To calculate the enrichment factor in order to evaluate the effectiveness of the docking 

program, we downloaded a database of 260,071 ligands from the National Cancer 

Institute (NCI) 61, and this database was converted to 3D structures, and ionic 

components were removed and the database was further filtered with the Lipinski’s rule 

of five 62, and then 261 molecules were randomly selected from this database to assess 

the enrichment factor and validate our docking study. The selected 261 molecules were 

subject to energy minimization using the MOE and MacroModel program. The combined 

database of 29 inhibitors along with 261 randomly drug-like molecules were docked to 

the PD-L1 binding pockets of model proteins 5NIU and 5N2F.  

The compounds were then subjected to energy minimization using the MacroModel 

module in the Maestro. We used Glide Dock in the Maestro 11.6 for the docking of 

inhibitors to the PD-L1 proteins.  Consequently, we generated a grid file for the crystal 

structures of 5NIU and 5N2F using the Glide Grid Generation protocol with the bound 

ligands as centroids of the protein binding pocket.  All 29 inhibitors were docked into the 

grid file, and we later ran docking for the 261 NCI drug-like molecules using the same 

grid files. During the docking process, the scaling factor for receptor Van der Waals for 
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the nonpolar atoms was set to 0.8 to allow for some flexibility of the receptor. Besides, 

all other parameters were used as defaults and the docking procedure established.63 The 

binding affinity of the PD-L1/ligand complexes was expressed in terms of docking 

scores. The output docking scores were defined as ΔGPRED. The output ΔGPRED was 

then related to the experimental ΔGEXP, which calculated from the experimental IC50 

(nM) using the following equation:  

Δ E𝑋𝑋𝑋𝑋(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑘𝑘⁄ ) =  𝑅𝑅𝑅𝑅 ln  (𝐼𝐼𝐼𝐼50 (𝑛𝑛𝑛𝑛) × 10−9)/1000    

Furthermore, we created an electrostatic map for the binding site of PD-L1 to estimate 

the electrostatically favored locations of H-bond donors, H-bond acceptors and 

hydrophobic interactions. The electrostatic map was made using the MOE program. 

3.3 Binding Free Energy Calculations Using the Moveable-Type (MT)-based 

Approach: 

After 29 inhibitors were docked to the 5NIU protein, the model protein was saved as pdb 

format and the 29 ligand each was saved separately in the mol2 file format. The saved 

protein and ligand files were fed as input files for the Movable-Type (MT) free energy 

calculation method, an in-house program developed by Prof. Kenneth Merz Jr. at 

Michigan State University and was generously given to us for complimentary use. The 

output data of the MT-based method is the absolute free energy of binding, which was 

used to compare with those experimentally observed values and were listed in Table 2. 

This method has been proved its reliability by previous publications. [49-50]  
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4. Conclusion: 

The prevalence of the PD-1/PD-L1 complex in several human cancer cells has made the 

PD-1/PD-L1 complex an attractive target for anticancer drug discovery. The positive 

results of mAb targeting the PD-1/PD-L1 complex in cancer treatment are boosting and 

inspiring the design and development of small molecules targeting PD-1/PD-L1 complex.  

Our studies on the protein/ligand dockings and structural analysis on the docked 

complexes have suggested that the Glide dock approach and the MT-based free energy 

calculation method are very dependable in terms of their predictability with low error 

comparing to those observed values. The low RMS deviations of the docked pose to the 

native conformation and the very good enrichment factor further confirm the 

effectiveness of the Glide dock program. The analyses of the protein/ligand interactions 

reveal that PD-L1 residues Tyr56, Asp122, Lys124, Arg125 and Phe19 may be very 

important for inhibitor design and that two aromatic rings may be expected in new PD-L1 

inhibitors. All these observations will be very useful in the design, development and 

discovery of the next generation of potent PD-1/PD-L1 complex inhibitors. 
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