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Abstract: One of the main objectives of many biological studies is to explore differential
gene expression profiles between samples. Genes are referred to as differentially expressed
(DE) if the read counts change across treatments or conditions systematically. Poisson and
negative binomial (NB) regressions are widely used methods for non-over-dispersed (NOD)
and over-dispersed (OD) count data respectively. However, in the presence of excessive
number of zeros, these methods need adjustments. In this paper, we consider a zero-
inflated Poisson mixed effects model (ZIPMM) and zero-inflated negative binomial mixed
effects model (ZINBMM) to address excessive zero counts in the NOD and OD RNA-seq data
respectively in the presence of random effects. We apply these methods to both simulated
and real RNA-seq datasets. The ZIPMM and ZINBMM perform better on both simulated and
real datasets.

Keywords: RNA-seq, differential expression, zero inflated Poisson mixed effect model, zero
inflated negative binomial mixed effect model, over-dispersed count data

1 Introduction

Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) play a fundamental role in carry-
ing genetic information in all living organisms on earth. RNA directly codes for amino acids
and acts as a messenger between DNA and ribosomes to make proteins while DNA stores ge-
netic information. RNA sequence unveils biological insights and characteristics of biological
subjects. RNA-sequencing, also termed as “whole transcriptome shotgun sequencing”, is a
high-throughput sequencing technology for extracting information on RNA content from the
sample by generating millions of short sequence reads. These reads are mapped or aligned
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56 M. Alam, N. Mahi, M. Begum

to a reference genome and the number of mapped reads within a gene is used as an approxi-
mate measure of gene expression (Oshlack et al., 2010). One of the key purposes of RNA-seq
experiments is to identify DE genes by comparing the expression measurements between two
or more treatment conditions. DE genes have great biological importance since variation in
gene expression levels may indicate a major source of evolutionary novelty. Specific types of
gene expression may be responsible for certain types of diseases for both animals and plants
and discriminate among diseased and healthy tissues in those species. Thus knowing DE
genes in diverse conditions can help scientists to infer about the association of genes with
certain diseases or conditions. Moreover, DE genes would facilitate developing the so called
personalized medicine guided by individuals genetic mark-up.

A simple and commonly used RNA-seq study includes two treatment conditions in a com-
pletely randomized design, for example, treated versus untreated cells. Identification of DE
genes unveils the complex functions of genes when cells respond to antithetical treatment
conditions. To the latest, a number of methods have been suggested in the literature to
detect DE genes from RNA-seq count data. Among these, binomial, Poisson, and negative
binomial (NB) are the three extensively used discrete probability distributions to model the
RNA-seq count data. When the number of read counts mapped to a given feature of in-
terest is relatively small to the total number of reads, Poisson approximation to binomial
distribution can be used (Kvam et al., 2012). In the past RNA-seq studies with a single
biological sample, Poisson models are considered as a good fit to the data (Marioni et al.,
2008; Bullard et al., 2010). A number of methods namely, Fisher’s exact test (Bloom et al.,
2009), Chi-square goodness-of-fit test (Marioni et al., 2008) and likelihood ratio test (LRT)
(Bullard et al., 2010) were proposed based on Poisson distribution. A Poisson mixture model
is used to identify DE genes if counts come from several distinct subpopulations (clusters)
(Balzergue et al.). A Poisson mixed effect model is a useful tool for identification of DE
genes (Blekhman et al., 2010) in the presence of fixed and random effects.

In the presence of biological replications, RNA-seq data typically violate the equality of
mean variance property for a Poisson model. If the observed variance exhibits lower value
than the mean counts for some genes, then those genes are referred to as under-dispersed.
Whereas if the observed variance is higher than the mean counts for some genes, then those
genes are referred to as over-dispersed (Anders and Huber, 2010). In such cases, Poisson
models are likely to produce high false positives. Some of the commonly used approaches
such as, Bayesian methods (Baggerly et al., 2004; Vêncio et al., 2004), generalized linear
models (Baggerly et al., 2003; Srivastava and Chen, 2010) including NB models (Anders and
Huber, 2010; Robinson and Smyth, 2007, 2008) assume that all gene counts are derived
from an over-dispersed distribution, and fail to address the fact that some genes might have
constant levels of transcription within treatment groups (Auer and Doerge, 2011; Oshlack
et al., 2010). Accordingly, the assumptions on the variations of each gene’s expression can
mislead the detection of a truly DE gene. Besides, excessive number of zero counts in the
data is another situation when usual methods may not work well. With excessive number
of zeros, standard Poisson or NB model is not a good fit to the count data. Zero inflated
models (Zhou et al., 2018; Zhang et al., 2017; Chen and Li, 2016; Choi et al., 2017) work
as effective tools for identifying DE genes from the pool of genes with excessive number of
zero counts.

In this study, we focus on the application of zero inflated Poisson mixed effects model
(ZIPMM) and zero inflated negative binomial mixed effects model (ZINBMM) to identify
DE genes from non-over-dispersed (NOD) and over-dispersed (OD) genes with excessive
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Zero-Inflated Models for RNA-Seq Count Data 57

number of zero counts respectively. The study also evaluates the performance of the models
on real and simulated datasets. We use a number of R packages to analyze these data
including Poisson-Seq (Li et al., 2011), GPseq (Srivastava and Chen, 2010) , edgeR (Robinson
and Smyth, 2007, 2008), DESeq (Anders and Huber, 2010), sSeq (Yu et al., 2013), NBPSeq
(Di et al., 2011), lme4 (Bates et al., 2014), and HTSDiff (Balzergue et al.). Most of these
packages are available in the Bioconductor web site: http://bioconductor.org (Gentleman
et al., 2004).

1.1 Data Description

In order to compare gene expression patterns and exon usage across sexes within and be-
tween species, Blekhman et al. (2010) used RNA-seq technology to extract transcript lev-
els in humans, chimpanzees, and rhesus macaques, using liver RNA samples from three
males and three females from each species. RNA from each sample were prepared for high-
throughput Illumina sequencing technology. Each sample was sequenced using two lanes of
the Genome-Analyzer II (GA2), producing a total of 36 lanes. After the preprocessing steps
of alignment, summarizing, and quality control, digital gene expression (DGE) count data
contain the number of reads in 36 columns extracted from 18 liver tissue samples each with
2 replications. The authors considered 6 samples from each of the three species namely hu-
man (HS), chimpanzee (PT), and rhesus macaque (RM). From each species, they collected
information on 3 males and 3 females. Details on samples, data collection and associated
protocols are available in method section as well as supplemental Tables S1 and S2 and
Figure S1 of Blekhman et al. (2010).

An illustration of the experimental design as given in the supplementary materials of
Blekhman et al. (2010) is reproduced below in Figure.1.

Figure 1: Graphical representation of the experimental design (Blekhman et al., 2010).

Rest of the paper is organized as follows: section 2 presents the methods for applying
appropriate statistical models to identify differentially expressed genes across sexes within
and between species in the presence of limited and excessive number of zeros. Section 3
presents results and discussion and section 4 concludes the paper.
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58 M. Alam, N. Mahi, M. Begum

2 Methods

The count matrix from (Blekhman et al., 2010) is arranged as follows: columns 1-12 contain
read counts on 3 males and 3 females with 2 replications from HS. Next 13-24 and 25-36
columns contain read counts from PT and RM respectively. Out of a total of 20,689 genes,
we exclude 2,803 genes having zero read counts in every cell. Based on over-dispersion test
(section 2.2), data are divided into two sets. We refer to these datasets (i) Poisson with NOD
genes and NB with OD genes.

We check the distribution of zero counts for each gene in the overall data set and in
OD and NOD data sets. We found that for a notable number of genes, the number of zero
counts was substantially high. Initially, we fit a Poisson mixed effects model (PMM) on NOD
data set and a negative binomial mixed effects model (NBMM) on OD data set by using
glmer function of R package lme4, but encountered frequent interruptions in fitting these
models. Existing literature suggests (Auer and Doerge, 2011; Mahi and Begum, 2016) that
standard Poisson and NB models are not viable methods for data with excessive number of
zeros. We adopted an empirical approach to check the candidacy for zero-inflated models
by examining the error rates in the presence of 1/3, 1/2, and 3/4 of zeros in the data. Both
models exhibit high frequency of errors when the proportions of zeros were 1/2 and 3/4.
When the proportion of zeros was 1/3 or less, the error rate was almost negligible for both
models. This leads us to split the data by setting a threshold of proportion of zeros as 1/3.
Genes containing zero counts more than 33.33% was considered as zero inflated data set
for the rest of the study. Finally, the data set was split up into four parts and we refer to
these as: Poisson data, NB data, zero inflated Poisson (ZIP) data, and zero inflated negative
binomial (ZINB) data.

2.1 Statistical Models for Identifying DE Genes

For each gene, data contain read counts from two replicates of males and females from
three species. Thus the individuals are nested within species. To identify DE genes with
respect to species, sex, and their interactions, we apply Poisson mixed effects model (PMM)
for NOD genes with limited number of zero counts, and zero-inflated Poisson mixed effects
model (ZIPMM) for genes with excessive number of zero counts. For OD data set, we apply
negative binomial mixed effects mdoel (NBMM) and zero-inflated negative binomial mixed
effects model (ZINBMM) based on limited and excessive number of zero counts respectively.
In all the models, we consider species and sex as fixed effects, and the variability due to
individuals as random effect. The zero inflated Poisson (ZIP) model can be expressed as:

Yi =

{
0, with probability πi + (1− πi)e−µi
k, with probability (1− πi)e−µi

,

where, k = 1, 2, 3, ... and π represents the probability of inflated zeros and µ is the mean
parameter. Similarly the zero inflated negative binomial (ZINB) model can be expressed as:

P (Yi = yi) =


πi + (1− πi)(1 + τµi)

− 1
τ ; y = 0

(1− πi)
Γ(yi + 1

τ )(τµi)
yi

Γ(yi + 1)Γ( 1
τ )(1 + τµi)yi+

1
τ

; y = 1, 2, 3, ...

where π is the probability of inflated zeros, µ is the mean, and τ is the dispersion parameter.
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We denote the count response for the gth gene of ith species, jth sex, kth individual in
lth replicate by Y ijklg (i = 1, 2, 3; j = 1, 2; k = 1, 2, 3; l = 1, 2). Y ijklg follows four separate
distributions under four distinct scenarios as given below:

Y ijklg ∼

{
Poisson(µijkg ), for NOD genes with limited zeros
NB(µijkg , τg), for OD genes with limited zeros

Y ijklg ∼

{
ZIP (µijkg , πijklg ), for NOD genes with excessive zeros
ZINB(µijkg , πijklg , τg), for OD genes with excessive zeros

Under each scenario a mixed model log(µ) can be expressed as:

log(µijkg ) = µg + θig + δjg + γk(i)g + (θδ)ijg (1)

Where, the superscript i indicates species with 1=HS, 2=PT, and 3=RM. Superscript j
indicates sex with 1= Male, and 2= Female; and superscript k(i) represents kth individual
nested within ith species. In the model for gth gene, µg is the overall gene expression across
all individuals, θig is the species specific fixed effect, δjg is the sex specific fixed effect, γk(i)g

is the per individual random effect, and (θδ)ijg is the sex-by-species interaction effect. The
following sets of hypothesis are tested:{

H0 : θig = 0, δjg 6= 0, (θδ)ijg = 0

H1 : θig 6= 0, δjg 6= 0, (θδ)ijg = 0{
H0 : θig 6= 0, δjg = 0, (θδ)ijg = 0

H1 : θig 6= 0, δjg 6= 0, (θδ)ijg = 0{
H0 : θig 6= 0, δjg 6= 0, (θδ)ijg = 0

H1 : θig 6= 0, δjg 6= 0, (θδ)ijg 6= 0

By the first set of hypotheses, we test whether a particular gene is DE across species (HS
versus PT, and HS versus RM). The second set of hypotheses allows us to detect DE genes
with respect to sex such as aggregate male versus aggregate female for all three species.
Finally, by the third set, we test DE with respect to sex-species interactions. Due to design
constraint, we test only the interactions: HS-Male versus PT-Female and HS-Male versus
RM-Female. We apply the same model and test the same hypotheses for all four types of our
data where we fit PMM, ZIPMM, NBMM, and ZINBMM models. For all the tests, the level of
significance is considered as 5%. Because we are testing thousands of genes, we take into
account the false discovery rate (FDR) which is the expected proportion of false positives
among the rejected null hypotheses. To control FDR, we compute Benjamini-Hochberg (BH)
(Benjamini and Hochberg, 1995) adjusted P-values. Normalization is another important
pre-processing step in RNA-seq data analysis while investigating DE. In order to produce
a comparable data across different treatment groups, we use trimmed mean of M-values
(TMM) (Robinson et al., 2010) as a normalization method in this study.

All computations are carried out under R environment. The package DCluster is used
for over dispersion test, lme4 for PMM and NBMM, glmmADMB for ZIPMM and ZINBMM
models, VennDiagram for drawing Venn diagrams, gplots and RcolorBrewer for heatmaps,
gamlss.dist, gamlss, and ROCR are considered for drawing receiver operating characteristic
(ROC) curves.

J Biomed Analytics, Vol. 1 No. 2 (2018), pp. 55–70
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We consider zero inflated models for DE genes identification with multiple treatment
conditions (3 species here) at a time. In order to evaluate the performance of these models,
we construct heatmaps for a subset of DE genes identified by the zero inflated models. Venn
diagrams are created to identify the common DE genes across species and sex. Finally,
performance of the zero inflated models are evaluated with a simulation study. Overall
computational work-flow for the data manipulation is presented pictorially in Figure 2.

Figure 2: Computational work-flow of the study.

2.2 Test for Over-dispersion

Poisson model is a natural choice for count response. However, read counts generated from
multiple biological replications tend to be over-dispersed. Over-dispersion arises when vari-
ance of count data exceeds the mean. In the presence of over-dispersion, Poisson model does
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not perform well for DE analysis (Di et al., 2011). In our test for over-dispersion, Poisson is
the null model against any other alternative model with over-dispersion. Following the no-
tations of Deans and Lawless (Dean and Lawless, 1989), we let Yi be the response from the
ith subject with covariates Xi. Then Yi is distributed as Poisson with mean µi = µi(Xi, β),
where β is a p-dimensional vector of unknown coefficients. We denote the possible extra-
Poisson variation by vi, in the presence of which the standard Poisson model becomes a
random or mixed effects Poisson model. Thus, for given Xi and vi, Yi ∼ Poisson(µivi),
where vi’s are continuous positive valued random variables that are independent and iden-
tically distributed with some finite mean E(vi) and variance V ar(vi) = τ . If we let E(vi)
to be 1 and V ar(Yi|Xi) = µi + τµ2

i , then the null hypothesis for testing over-dispersion
becomes, H0 : τ = 0. Failure to reject the null hypothesis leads to the Poisson model. In
this study we perform, Dean’s PB test (Collings and Margolin, 1985) for over-dispersion
using the R package DCluster for each gene. Rejection of H0 for a specific gene justifies the
application of a negative binomial model for detecting DE genes.

3 Results and Discussion

This section includes summary results of our analysis on the observed data. In the ex-
ploratory data analysis section, we observe the distribution of zeros on overall data as well
as for Poisson and negative binomial data, based on which further classification of data is
made. The next section presents summary statistics on DE genes obtained by using these
models. Venn diagrams illustrate overlapping genes across the species and sex-by-species
interactions. Since the main focus of this study is to adopt zero inflated models as an ap-
propriate approach for DE genes identification, the final section reveals the performance of
the zero inflated models. In particular, heatmaps for two sets of DE genes obtained by using
ZIPMM and ZINBMM are presented.

3.1 Exploratory Analysis of the Data

We exclude the genes with zero counts in all the 36 cells and obtain a set of 17,886 genes
for which number of zero counts ranges from 0 to 35. Figure 3(a) presents the distribution
of genes with respect to number of zero counts they contain. The histogram depicts that
most of the genes (more than 12,000) contain 0-5 zero counts. The number of genes for the
range of 8-30 zero counts is substantially lower while a remarkable number of genes contain
more than 30 zero counts. Dean’s PB test (Collings and Margolin, 1985) for overdispersion
generates NOD and OD datasets. The NOD data set consists of 5,444 genes and is referred
to as Poisson data set. The OD data set consists of 12,442 genes is referred to as negative
binomial dataset.

In Figure 3(b), the distribution of zero counts in Poisson data reveals that most of the
genes contain higher number of zero counts ranging from 15-35. In particular, more than
2,000 genes contain 30-35 zero counts. In Figure 3(c) it is evident that approximately
12,000 genes have zero counts ranging from 0 to 5. Therefore, there are fewer number
of genes that contain excessive number of zeros on negative binomial data. However, the
excessive number of zero counts leads to the classification of the data again and to the
application of appropriate models. Finally, four data sets namely Poisson, ZIP, NB, and ZINB
are created.

J Biomed Analytics, Vol. 1 No. 2 (2018), pp. 55–70
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(a) (b) (c)

Figure 3: (a) Distribution of zero counts on aggregated data. (b) Distribution of zero counts
on Poisson data. (c) Distribution of zero counts on negative binomial data

For each gene in Poisson data set, we fit a PMM. On the basis of BH adjusted P-values
(< 0.05), we identify whether the particular gene is DE or not. Finally, index sets of DE
genes for HS vs PT, HS vs RM, Male vs Female, HS male vs PT female, and HS male vs RM
female are obtained. We obtain similar sets of DE genes for each of the four data sets. Table
1 illustrates the summary of DE genes in our study produced by all models. Out of 17,886
genes 27.47% gens are DE between HS and PT, 34% genes are DE between HS and RM, and
10.49% genes are DE between aggregate Male and Female. Out of 4,441 zero inflated NOD
genes, ZIPMM model identifies 106 HS genes as DE with respect to PT. From a set 1,273
zero inflated OD genes, ZINBMM identifies 300 genes as DE between HS and PT. While
Compared with HS vs RM, the ZIPMM detects 196 genes as DE from a set of 4,441 and
ZINBMM finds 262 genes as DE from a total of 1,273 in ZINB set. The table also depicts that
out of all genes 14.68% are DE between HS male vs PT female and 13.09% are DE between
HS male vs RM female.

Table 1: Distribution of model-wise total number of genes and DE genes.

Number of DE genes

Model
Total number

of genes
HS vs

PT
HS vs
RM

M vs
F

HSM vs
PTF

HSM vs
RMF

PMM 1,003 203 369 100 82 87
ZIPMM 4,441 106 196 59 37 30
NBMM 11,169 4,305 5,254 1,580 2,370 2,138
ZINBMM 1,273 300 262 139 137 88

Total 17,886 4,914 6,081 1,877 2,626 2,343

Percentage 100% 27.47% 34% 10.49% 14.68% 13.09%

In order to identify the common DE genes across species and their combinations from
the overall data, as well as from the model specific data, we present Venn diagrams. Venn
diagrams allow us to visualize the number of overlapping DE genes with respect to two or
more classification traits and the specific number of DE genes in each trait. Figure 4(a)
presents the number of DE genes between HS and PT as well as between HS and RM for
aggregate data. The Venn diagram shows that 2,768 genes are commonly differentially
expressed for both PT and RM with respect to HS. On the other hand, 3,313 genes are only
DE between HS and RM and 2,146 genes are only DE between HS and PT. Figure 4(b)

www.jBiomedAnalytics.org

http://www.jBiomedAnalytics.org


Zero-Inflated Models for RNA-Seq Count Data 63

presents the number of DE genes between HS male, and PT female as well as between HS
male and RM female for aggregate data. The diagram shows that 819 genes are commonly
differentially expressed for both the groups HS male vs PT female, and HS male vs RM
female. On the other hand 1,807 genes are only DE between HS male and PT female, and
1,524 genes are only DE between HS male and RM female. In particular, as we consider
the application of ZIPMM and ZINBMM to model read counts data with excessive number
of zeros, we focus only on these two models for our further analysis. For simplicity, we
consider DE genes across species only.

(a) (b)

(c) (d)

Figure 4: Venn diagrams of DE genes with respect to (a) Human vs Chimpanzee and Human
vs Rhesus Macaque. (b) Sex-species interactions. (c) Human vs Chimpanzee and Human vs
Rhesus Macaque obtained from ZIPMM. (d) Human vs Chimpanzee and Human vs Rhesus
Macaque obtained from ZINBMM.

Figure 4(c) shows the number of DE genes between HS and PT as well as between HS
and RM for the zero inflated Poisson data set. The Venn diagram reveals that only 49 genes
are commonly DE for both PT and RM when compared against HS. On the other hand, 147
genes between HS and RM, and 57 genes between HS and PT are DE. Figure 4(d) represents
the number of DE genes between HS and PT as well as between HS and RM from the zero
inflated negative binomial data set. Only 63 genes are commonly DE for both PT and RM
when compared against HS. On the other hand, 199 genes are only DE between HS and RM
and 237 genes are only DE between HS and PT.

A heatmap is a pictorial representation of the data where the individual values contained
in a data matrix are expressed as colors. To construct heatmaps, we consider only 49 and
63 DE genes common in HS versus PT and HS versus RM obtained by ZIPMM and ZINBMM
respectively. We consider these portions of DE genes obtained by the aforesaid models as an
illustration. For both the heatmaps below, we consider log(mean counts of RM/mean counts
of HS) and log(mean counts of PT/mean counts of HS) for each of the genes.

The heatmaps in Figure 5(a) and Figure 5(b) are constructed with the DE genes obtained
by ZIPMM and ZINBMM respectively. In both of the heatmaps, left side indicates comparison

J Biomed Analytics, Vol. 1 No. 2 (2018), pp. 55–70
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(a) (b)

Figure 5: Heatmap of the DE genes with respect to Human vs Chimpanzee and Human vs
Rhesus Macaque obtained from (a) ZIPMM and (b) ZINBMM. The numbers specified in the
right side of the heatmaps are gene IDs.

between PT and HS and right side for the comparison of RM and HS. Inside the heatmaps,
red color in the left represents PT is more prominent to be DE and green color represents HS
is more prominent to be DE, while black color indicates those genes are not DE with respect
to HS and PT. Similar comparison are made in the right side for RM and HS. Red color in
the right side express dominance of RM and green color represents dominance of HS genes
to be differentiable. Substantially smaller portions of black color in the heatmaps indicate
misclassification by the ZIPMM and ZINBMM are relatively small. Overall, the heatmaps for
DE genes obtained by using ZIPMM and ZINBMM illustrate good performance of the models
for identifying DE genes across species when the data contain excessive number of zeros.

3.2 Simulation Study on the Performance of ZIPMM and ZINBMM

An efficient practice of simulating RNA-seq read counts is to empirically estimate the simu-
lation parameters from a real RNA-seq data and generate read counts using these values. In
our simulation study, we consider 49 genes that were found commonly DE in HS versus PT,
and HS versus RM comparisons by ZIPMM as the true DE genes. These genes are a part of
the non-over-dispersed zero inflated data. For each gene we estimate the probability of zero
inflation, π and the mean parameter µ by using the method of moments (MM) technique.
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Thus, µ̂ = ȳ +
S2

ȳ
− 1 and π̂ =

S2 − ȳ
ȳ2 + S2 − ȳ

, where, ȳ and S2 are the species-specific mean

and variance respectively. By keeping counts for PT and RM as usual, we take four fold
changes of HS data to create DE data set with respect to species. For each of the DE genes,
we simulate 10 genes and thus we have a set of 490 DE genes. We create another set of 490
genes where all of them are non-DE. Finally, we have a set of 980 genes out of which first
490 are DE and the remaining are non-DE.

Similarly as a base ZINB sample, we consider 63 common DE genes found in HS versus
PT, and HS versus RM comparisons by ZINBMM. These DE genes are extracted from a set
of over-dispersed zero inflated gene set. For each gene we estimate the probability of zero
inflation π, the over-dispersion and mean parameters τ and λ respectively. Also, we use
species specific average of π̂s obtained from all 63 genes as an estimate of the probability of
zero inflation. The other two parameters are estimated by using the following MM estima-

tors: µ̂ =
ȳ

1− π̂
and τ̂ =

ȳ − (S2/ȳ)− 1

λ̂
− 1, where ȳ and S2 are the species-specific mean

and variance respectively. Similar to the ZIPMM simulation, we keep counts for PT and RM
as it is and take four fold changes for HS data to create DE data set with respect to species.
According to the same principle as before , we generate 1,260 genes where the first 630 are
DE and the rest are non-DE.

Hundred data sets are generated for each of these two simulation schemes. ZIPMM is
applied to the first scheme and ZINBMM to the second. In each case, we calculate Area
under the curve (AUC), the average area under a receiver operating characteristic curve
(ROC) to see if our proposed zero inflated models can identify the true DE genes. We also
calculate true positive rate (TPR) and false positive rate (FPR).

3.3 Simulation Result

We evaluate the performance of ZIPMM and ZINBMM based on the efficiency of ranking
true DE genes. To compare DE genes under the simulation set up and three scenarios:
HS versus PT, HS versus RM and overall Male versus female, we compute TPR, FPR, and
the AUC under each scenario. Table 2 presents the average AUC values, average TPR, and
average FPR along with their corresponding standard errors obtained from the two models.
Average AUC and TPR values indicate better performance of ZIPMM for identifying DE genes
with respect to HS and PT, while ZINBMM outperforms ZIPMM with respect to HS vs RM.
FPR is reasonably low (less than 6%) in identifying DE genes across species and sex based
on ZIPMM. However, FPR is substantially high (more than 16%) in all the cases for the
ZINBMM. Standard errors for AUC, TPR, and FPR are low for both models. However, none
of the models perform well for detecting DE genes across males versus female overall.

The ROC curves present TPR against FPR. Figure 6(a) and 6(b) illustrate that at 0.0%
FPR, the ZIPMM identifies more than 75% DE genes across HS versus PT, and about 60%
DE genes across HS versus RM correctly. In addition we see that while FPR increases up to
10%, the TPR remains at a constant level of approximately 80% and 60% respectively for
HS versus PT and for HS versus RM. The area under the curve for HS versus PT is bigger
than that of HS versus RM which indicates that the model works better for HS versus PT
for detection of true DE genes. Figure 6(c) and 6(d) depict that ZINBMM performs quite
similarly in detecting true DE gens for both HS versus PT, and HS versus RM. The ROC curves
for HS versus PT also show that as the FPR increases up to 10%, the TPR also increases for
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Table 2: Model-wise average AUC, average TPR, and average FPR (standard error within
parenthesis).

ZIPMM ZINBMM

DE type AUC TPR FPR AUC TPR FPR

HS vs
PT

0.793
(0.014)

0.758
(0.015)

0.048
(0.010)

0.754
(0.018)

0.663
(0.018)

0.163
(0.018)

HS vs
RM

0.643
(0.017)

0.613
(0.018)

0.047
(0.009)

0.715
(0.017)

0.652
(0.017)

0.162
(0.017)

M vs
F

0.551
(0.020)

0.112
(0.014)

0.053
(0.011)

0.469
(0.017)

0.124
(0.013)

0.166
(0.015)

both cases. Finally, it is clearly evident from the ROC curves that ZIPMM performs better
than ZINBMM for identifying truly DE genes.

4 Conclusion

Poisson and negative binomial regression models are widely used methods for non-over-
dispersed and over-dispersed count data respectively. However, in the presence of excessive
number of zeros in the count data, these methods tend to perform poor. We applied zero-
inflated Poisson and negative binomial models in the presence excessive zero counts in the
RNA-seq data for detecting DE genes across sexes and within and between species. In or-
der to include variations due individuals within each species these models are adapted as
mixed-effects models for both non-over-dispersed and over-dispersed count data. We apply
the zero inflated models to both simulated and real RNA-seq data set and examine their
performances. Since a single model is not adequate to capture all the underlying features of
the data, we split the entire data based on their underlying characteristics.

The current study implements a four-step approach to detect DE genes based on RNA-
Seq count data. The first step deals with the test of over-dispersion. This test generates two
sets of genes: OD and NOD genes. In the second step, we examine number of zero counts
in each part. Based on the number of zeros, we divide both OD and NOD data sets into two
groups with limited number of zeros and with excessive number of zeros. We consider genes
with more than 33.33% zero counts as zero inflated on empirical basis of our data. Then
all the genes are tested for differential expression. Poisson type models are used for testing
NOD genes. For OD genes, we apply negative binomial models. In particular to address
data with excessive zero counts we apply zero inflated Poisson mixed model (ZIPMM) for
non-over-dispersed genes and zero inflated negative binomial mixed model (ZINBMM) for
over-dispersed genes.

In order to assess performance of the zero inflated models, we check heatmaps of the DE
genes for the real data. Relatively small portions of black color represent that the misiden-
tification rates of DE genes are relatively small for both ZIPMM and ZINBMM models. ROC
curves and AUC derived from the simulated data indicate that both ZIPMM and ZINBMM
perform satisfactorily to identify DE genes across species. However, overall performance of
ZIPMM is better than ZINBMM. In case of ZIPMM, FPR is less than 5% whereas for ZINBMM
it is fairly large (greater than 16%). These results are consistent with Blekhman et al. (2010).
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(a) (b)

(c) (d)

Figure 6: ROC curves with respect to (a) Human vs Chimpanzee obtained from ZIPMM.
(b) Human vs Rhesus Macaque obtained from ZIPMM. (c) Human vs Chimpanzee obtained
from ZINBMM. (d) Human vs Rhesus Macaque obtained from ZINBMM

However, they only considered two species as the two treatment conditions in their model.
In our study, we considered three species as three treatment conditions which is relatively a
complex situation for differential expression analysis.

Genes containing more than 33.33% zero read counts are considered as zero inflated
which is merely empirical for our data. Theoretical basis for this cut point is not justified.
ZIPMM and ZINBMM count data simulation and model execution become quite time inten-
sive due to the consideration of species, sex and individuals as covariate effects. To the
current date in RNA-seq experiments, none of the methods work distinctively better under
all experimental conditions. Apart from the limitations listed above, zero-inflated models
perform better under a mixture of NOD and OD genes with excessive number of zeros. Thus
zero-inflated models serve as valuable tools for analyzing RNA-seq data for complex study
design and in the presense of excessive number of zero counts.
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