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Abstract 

Nicholas A. Hein, Ph.D. 

University of Nebraska, 2019 

Supervisor: Christopher Wichman, Ph.D. 

Bounded data often give rise to uncorrectable skew and heteroscedasticity. Bounded 

data are a relatively frequent occurrence in clinical and research settings. For example, 

in neuropsychology, most neurocognitive tests are bounded, and subjects are repeatedly 

measured over time. The statistician needs to choose a model that accounts for the 

correlated nature of the repeated measures. The Beta distribution is a natural choice for 

modeling bounded data. Currently, generalized linear mixed models (GLMM) and 

generalized estimating equations (GEE) are two methods that can be used to model 

Beta distributed data with repeated measures. However, GLMMs and GEEs have 

limitations, i.e., GLMMs require numerical integration and GEEs are not based on a joint 

likelihood making model selection more ambiguous. Therefore, we present two 

alternative models (LNMVB and SLMVB) that are based on a joint likelihood and do not 

require numerical integration for the estimation of the model parameters. We compare 

our proposed models to the Beta GLMM and the Beta GEE using simulated data and a 

real dataset from the National NeuroAIDS Tissue Consortium. Through simulation, we 

found the LNMVB and the Beta GEE were the only models that produced unbiased 

estimates of the location parameter for all scenarios considered. The LNMVB tended to 

have better control of the Type I error rate compared to the Beta GEE, especially for 

smaller sample sizes (i.e., 𝑁 ≤ 30). The coverage probabilities for both the LNMVB and 

the Beta GEE tended towards 95% as sample size increased with the LNMVB generally 

closer to the desired 95% coverage probability. Lastly, the Beta GEE was the only model 
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that consistently had a mean bias near zero when estimating the correlation parameter. 

Based on simulated data, we conclude that the LNMVB is preferred for analyzing small 

sample (i.e., ≤ 30), repeatedly-measured proportional data. Either the LNMVB or the 

Beta GEE is sufficient to analyze large sample (i.e., ≥ 50), correlated Beta distributed 

data. Furthermore, if the correlation is the parameter of interest, the Beta GEE is the 

preferred model. 
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1. Introductory Material 

1.1. General Introduction 

1.1.1. Introduction 

Today’s research results in extensive amounts of data being collected in a 

magnitude of fields, e.g., medical research, economics, manufacturing, sports sciences, 

social sciences, etc. For a statistician, the measured response, not the field, 

characterizes the data. Additionally, the response dictates what distributional 

assumptions are appropriate when modeling the data. Responses that are bounded on 

the closed unit interval [0,1] are often referred to as proportions. The Beta distribution is 

one distribution that is useful for modeling proportions. 

Another defining characteristic of the data is the study design or how the data is 

collected. A single outcome/response may be recorded for each unit of interest, such as, 

subject, patient, household, etc. along with characteristics of the study unit, e.g., gender, 

age, location, treatment status, etc. The data arising from this study design is commonly 

termed as cross-sectional data. However, it is not uncommon for more than one 

observation to be recorded for each unit of study. The response of interest could be 

observed and recorded sequentially through time; this study is referred to as a 

longitudinal study design. Alternatively, the response could be recorded under different 

conditions, which is commonly referred to as a repeated-measures design. For brevity, 

we will refer to a repeated-measures design as both a repeated-measures design and a 

longitudinal study design.  

Repeatedly measured, proportional data in the biomedical field is quite common: 

oxygen saturation levels as measured by pulse oximetry; the forced expiratory volume in 
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one second and the forced vital capacity ratio as measured by spirometer; percentage of 

knee torque of injured limb compared to knee torque of uninjured limb; etc. Additionally, 

in neuropsychology, proportional responses that are often repeatedly measured include 

score as a percentage on the Clinical Dementia Rating, the Boston Naming Test, and 

Differential Ability Scales. Outside of healthcare disciplines, economics uses proportion 

and percentage metrics that are often measured over time such as percent of gross 

domestic product (GDP), percent employed/unemployed, stock market capitalization to 

GDP, etc.    

Often, a practitioner is interested in situations where the response can be 

modeled as a function of exogenous variables. Such analysis requires an understanding 

of the mechanism that generated the data such as sampling design or study design. It is 

vital that the statistical methodology used to analyze the data reflects the study design 

so valid conclusions and inferences can be made. In repeated-measures designs, 

dependence exists between the responses within the same unit of study. A practitioner 

needs to apply a method that takes into account the dependence in statistical analyses. 

When analyzing dependent proportion data, three different frameworks exist. For 

n-repeated measures, a practitioner may choose from marginal models (Beta 

Generalized Estimating Equations) or subject-specific models (Beta Generalized Linear 

Mixed Models). It should be noted that a practitioner could choose a normal marginal 

model, Linear Mixed Model, or repeated-measures ANOVA; however, predictions using 

these models may lie outside the closed interval [0,1].1 When there are only two-

repeated measures, for example, pre- and post-measurements, a practitioner may 

choose from the aforementioned Beta models or bivariate Beta models.  

A marginal model is one where the mean response modeled is conditioned only 

on the covariates. Marginal models do not specify the full joint distribution of the data. 
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Marginal models define a mean function, a variance function, and a dependence 

structure between related observations.1 If the conditional mean is correctly specified, 

Generalized Estimating Equations (GEEs) as proposed by Liang and Zeger2 yield 

consistent estimators of the parameters.3 The Beta GEE has a population-averaged 

interpretation of the response on the transformed scale of the regression coefficients. 

The source of dependence is not made explicit in the marginal model. Instead, the 

dependence is treated as a nuisance parameter.  

In a generalized linear mixed model (GLMM), dependence is imposed through an 

unobserved heterogeneity, i.e., random effects, in the conditional mean specification. 

Adding random effects to the Beta regression model (Section 1.2.3) yields the Beta 

GLMM.4 Parameter estimates are obtained by maximizing the marginal likelihood which 

is obtained by integrating out the random effects from the likelihood function.1 It is 

standard practice to assume that the random effects are distributed multivariate normal 

with mean 𝟎 and variance 𝚺; however, other distributions are possible for the random 

effects.5 Due to the non-linear transformation of the link function, the Beta GLMM 

parameters only have a subject-specific interpretation, i.e., a given individual’s response 

on the transformed scale for a unit within-subject change in the corresponding 

parameter.1 

The bivariate Beta is an extension to the Beta regression model presented in 

Section 1.3.3. The bivariate Beta can be constructed using Gamma random variables 

with shared parameters6 or combing univariate marginal Beta distributions using 

copulas.7-9 For the discussion on copulas, this dissertation will focus on the copulas for 

bivariate distributions defined by Sarmanov7 and proposed multivariate extension by 

Lee8. Bivariate distributions created using Sarmanov7 copulas are referred to as the 

Sarmanov family of bivariate distributions. There are examples in the literature of each 
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method (through construction and through copulas) or extensions of the methods being 

used to fit bivariate proportional data.9-13 The bivariate Beta either through construction 

or copulas allows for the parameters to be estimated using the method of maximum 

likelihood on the joint likelihood. However, research concerning the bivariate beta 

regression models has recently decreased, possibly associated with the implementation 

of the Beta GLMM and the Beta GEE in current statistical software.    

Each of the three methodologies to analyze longitudinal proportional data are not 

without their limitations. In the GEE method, the dependence is specified through a 

working correlation, as defined by Pearson14, whose parameters are estimated by the 

methods of moments.3 This could result in a misspecification of the correlation structure. 

However, the estimates are robust against misspecification by using the empirical 

variance estimator.1,15 Shults and colleagues16 have demonstrated that the GEE method 

may provide infeasible estimates (𝜌 can exceed 1) for the correlation parameter when 

using the empirical variance estimator. Additionally, since the GEE method does not rely 

on maximum likelihood, the likelihood ratio (LR) test, Akaike information criterion (AIC), 

Bayesian information criterion (BIC), etc. are not available to help with model selection. 

However, Pan17 has developed and advocated for using the quasi-likelihood information 

criterion (QIC) in choosing a working correlation and for selecting covariates. The QIC is 

not without limitations; Hin and Wang18 note that any attempt to select the true 

correlation structure is distorted if the mean response is incorrectly specified. 

GLMMs may appear to have a distinct advantage over marginal models. GLMMs 

are based on likelihoods, thereby allowing for model selection that uses likelihood 

criteria. However, the random effects need to be marginalized out before the method of 

maximum likelihood can be applied.1 Assuming the random effects are multivariate 

normal, there is no closed form expression (i.e., an expression that can be evaluated in 
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a finite number of operations) for the integral.19 Fitzmaurice et al1 and Tuerlinckx et al19 

summarize the methods that can be used to approximate the integral and their 

respective limitations. Two methods (i.e., penalized quasi-likelihood and marginalized 

quasi-likelihood) produce biased estimates under certain conditions.1 Additionally, the 

target of inference of a marginal model appears obtainable from a GLMM by averaging 

over the distribution of unobserved heterogeneity. However, Fitzmaurice and colleagues1 

have shown this not to be true for non-linear link functions. Fitzmaurice and colleagues1 

also note that any misspecification of the GLMM can yield biased estimates of the 

implied marginal means.  

It appears that the bivariate Beta may overcome some of the limitations of both the 

GEE and GLMM methods; however, the bivariate Beta is limited to two repeated 

measures. It is the goal of this dissertation to address this limitation of the bivariate Beta. 

Specifically, the bivariate Beta will be extended to n-repeated measures. 

1.1.2. Dissertation aims 

Using the construction proposed by Libby and Novick6 and the methodology of 

Sarmanov7 and Lee,8 two closed-form expressions for the multivariate Beta will be 

constructed. The following is a brief explanation of how each method can be used to 

create a bivariate Beta distribution. In this dissertation these methods are extended to a 

multivariate Beta distribution. For clarity, the term multivariate Beta is in reference to the 

joint distribution and does not imply the simultaneous observation and analysis of many 

variables at once. 

Libby and Novick6 developed a closed form expression by transforming Gamma 

random variables. Specifically, Libby and Novick6 let 𝑌 =  and 𝑌 = , where 

𝑋 ~𝐺𝑎𝑚𝑚𝑎(𝛼 , 𝛽 ) for 𝑖 = 1, 2, and 3. By letting 𝛽 = 𝛽  for all 𝑖, 𝑗 marginal moments are 
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easily calculated and have simple closed forms. For 𝑛-time points, 𝑛 + 1 parameters 

need to be estimated for an intercept-only model. However, there is no closed form for 

the correlation, and a structure cannot be imposed. The multivariate Beta based on the 

Libby and Novick6 construction will be referred to as the Libby and Novick Multivariate 

Beta (LNMVB).  

The general framework of the Sarmanov7 bivariate distribution for (𝑥 , 𝑥 ) with 

specified marginal 𝑓 (𝑥 ) and 𝑓 (𝑥 ) is given by 

𝑓( , )(𝑥 , 𝑥 ) = 𝑓 (𝑥 )𝑓 (𝑥 )[1 + 𝜔𝜙 (𝑥 )𝜙 (𝑥 )] 

where 𝜙 (𝑡) is called the mixing function. The mixing function must be a bounded non-

constant function such that  

𝜙 (𝑡)𝑓 (𝑡 )𝑑𝑡 = 0 

Additionally, 𝜔 determines the correlation, and the following condition must be satisfied 

1 + 𝜔𝜙 (𝑥 )𝜙 (𝑥 ) > 0. 

Lee8 proposed the mixing function 𝜙 (𝑡) = 𝑡 − 𝜇  which leads to a bivariate Beta with 

marginal Beta distributions. The multivariate Beta based on this methodology will be 

referred to as the Sarmanov-Lee Multivariate Beta (SLMVB). The SLMVB has closed 

form moments and correlations. For 𝑛-time points, 2𝑛 + ∑  parameters must be 

estimated for an intercept-only model. Imposing a correlation structure can reduce the 

number of parameters that must be estimated. For example, a compound symmetry 

(CS) or auto-regressive(1)  (AR(1)) structure requires 2𝑛 + 1 parameters to be estimated 

for an intercept-only model. 

Aim1: Develop two closed form, 𝑛-time point, multivariate Beta models (𝑛 > 2). 
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a) Using the construction proposed by Libby and Novick6 a multivariate Beta will be 

constructed. 

b) Using the methodology of Sarmanov7 and Lee8 a multivariate Beta will be 

developed using Lee’s8 proposed extension to the Sarmanov family of bivariate 

distributions. 

c) LNMVB (aim 1a) and SLMVB (aim 1b) will be re-parametrized using the method 

by Paolino20 and Ferrari and Cribari-Neto.21  

d) The constraint, 𝛽 = 𝛽  for all 𝑖, 𝑗 will be imposed on the LNMVB allowing for an 

unstructured correlation structure. 

e) Under the SLMVB, the 𝜔′𝑠 will be constrained, such that the correlation structure 

is either CS or AR(1). 

Aim 2: Establish the efficiency, Type I and Type II error rates for the models developed 

in Aim 1. 

a) Multivariate Beta data will be simulated with CS and AR(1) correlation structures 

using an algorithm developed by Vorechovsky.22 

b) Using the simulated data, bias for parameter estimates, root mean square 

deviation, power, type I error, and coverage probabilities will be calculated for the 

models developed in Aim 1.  

Aim3: Compare the performance of the proposed model to current analytical options. 

a) Each simulated dataset will be fit using the proposed multivariate Beta models, a 

Beta GEE and a Beta GLMM.  

b) The performance of each model paradigm will be analyzed and compared by 

examining bias for parameter estimates, root mean square deviation, power, type 

I error, and coverage probabilities.  
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Aim 4: The proposed multivariate Beta models will be used to analyze clinical repeated-

measures data from the field of neuropsychology. 

1.2. Motivating Dataset 

We present the dataset of a motivating cohort study that is analyzed in this 

dissertation. The National NeuroAIDS Tissue Consortium (NNTC) was established in 

1998 to collect neuromedical, neuropsychological, and psychiatric data of patients 

(including men, women, and minorities) with the human immunodeficiency virus (HIV) 

and without HIV prior to death.23 Additionally, ante- and post-mortem biological samples 

(i.e., blood, urine, and cerebrospinal fluid) were collected.23 The consortium’s goals 

include the establishment of a network of brain banks and other system tissues in a 

standardized fashion to support scientific studies of NeuroAIDS disorders.23 The NNTC 

project is funded under the U24 grant mechanism from the National Institute of Mental 

Health and the National Institute of Neurological Disorders and Stroke. 

Our analysis focused on neuropsychological performance measures. An 

approximately 2- to 3-hour battery of neuropsychological tests is used consortium-

wide.24 The neuropsychological measures were selected for their sensitivity to HIV 

associated impairments.24 For participants too ill to complete the full battery of tests, the 

order of the tests is prioritized to ensure that a briefer battery consisting of representative 

tests from each domain is administered.24 Additionally, tests were modified to 

accommodate participants with sensory limitations, e.g., blindness.24 Raw test scores 

from each assessment were uploaded to the Data Coordinating Center for storage and 

processing.24  

We analyzed the Hopkins Verbal Learning Test-Revised (HVLT-R) delayed recall 

scaled score of African American women participants. The HVLT-R contains 12 nouns, 
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four words each from one of three semantic categories to be learned over the course of 

three learning trials.26 Twenty to 25 minutes after completion of the three learning trials, 

a delayed recall trial and recognition recall trial are completed.26 The delayed recall 

requires the free recall of any word remembered during the three learning trials.26 To 

minimize practice effects that may arise in cohort studies, six alternate forms of the 

HVLT-R are utilized.24 The HVLT-R delayed test scores were processed, converting raw 

scores to scaled scores, and then T-scores were calculated based on the scaled 

scores.24 T-scores are demographically-correct scores based on existing test norms.24 

We chose to analyze scales scores25 to allow for a possible demographic by visit 

occurrence interaction. 

1.3. Literature Review 

1.3.1. Introduction 

In this section, an introduction to the Beta regression model, a review of the 

existing methods for constructing multivariate Beta distributions, applications of the 

techniques, proposed extensions of the methods are presented, and a brief review of the 

Beta Marginal Model and Beta GLMM. Two general methods can be used to create 

multivariate Beta distributions. A multivariate Beta distribution can be constructed using 

random variables with shared parameter(s) or by combining univariate Beta distributions 

with copulas. Section 1.3.2 will briefly describe the notation used in subsequent sections. 

Section 1.3.3 will describe the parameterization of the Beta regression for independent 

observations. Section 1.3.4 will focus on constructing multivariate Beta distributions 

through random variables with shared parameters while Section 1.3.5 will focus on 

multivariate Beta distributions using copulas. In both sections, models using the 

constructed bivariate Beta distribution will be highlighted along with the proposed 



10 

 

multivariate extension, when applicable. In Section 1.3.6 and 1.3.7 the Beta Marginal 

Model and Beta GLMM, respectively, will be briefly discussed.  

It should be noted that the Dirichlet density is a multivariate generalization of the 

Beta distribution.27 However, the Dirichlet distribution is limited to the lower dimensional 

simplex, i.e., the random variables sum to 1. Therefore, it is not an appropriate 

distribution to model data where each repeated measure can take on values in the open 

unit interval. Therefore, no additional time will be spent exploring the Dirichlet 

distribution. 

1.3.2. Notation 

The following is a brief description of the notation that will be used henceforth. A 

capital letter will represent a random variable, and a realization of that random variable 

will be the lower case letter. Boldface random variables or realizations of the random 

variables will represent the respective vectors or matrices. A capital boldface 𝑹 will be 

reserved for the set of real numbers. The probability density function (pdf) of 𝑋 and 

cumulative density function (cdf) 𝑋 will be represented by 𝑓 (𝑥) and 𝐹 (𝑥), respectively. 

If 𝑨 is an 𝑛 ×  𝑛 matrix with entries 𝑎  for 𝑖, 𝑗 = 1, … , 𝑛, then 𝑡𝑟(𝐴) = ∑ 𝑎 , i.e., the 

sum of the elements of the main diagonal. Lastly, if 𝑥 = 𝑎 + 𝑏𝑖, where 𝑎, 𝑏 ∈ 𝑹 and 𝑖 is an 

imaginary number, then 𝑅𝑒(𝑥) = 𝑎. 

1.3.3. Beta regression for independent responses 

For cross-sectional proportion data, a mean-precision parameterization Beta-

regression model has been developed by Paolino20 and Ferrari and Cribari-Neto.21 The 

density of the Beta distribution is given by 

𝑓(𝑦; 𝛼, 𝛽) =
( )

( ) ( )
𝑦 (1 − 𝑦) , 0 < 𝑦 < 1    (1.1) 
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where 𝛼, 𝛽 > 0 and Γ(∙) is the gamma function. The mean and variance of 𝑦 are, 

respectively 

𝐸(𝑦) =          (1.2) 

and 

𝑉𝑎𝑟(𝑦) =
( ) ( )

.       (1.3) 

Paolino20 and Ferrari and Cribari-Neta21 proposed re-parameterizing (1.1) in terms of its 

mean and dispersion by letting 𝜇 =  and 𝜙 = 𝛼 + 𝛽. This re-parameterization allows 

for an easier interpretation of the model parameters. It follows from equations (1.2) and 

(1.3) that 

𝐸(𝑦) = 𝜇  

and  

𝑉𝑎𝑟(𝑦) =
( )

  

where 𝑉(𝜇) = 𝜇(1 − 𝜇). Therefore the density in equation (1.1) can be expressed as 

𝑓(𝑦; 𝜇, 𝜙) =
( )

( ) (( ) )
𝑦 (1 − 𝑦)( ) , 0 < 𝑦 < 1   (1.4) 

where 0 < 𝜇 < 1 and 𝜙 > 0.  

Let 𝑦 , … , 𝑦  be independent random variables that follow the density in equation 

(1.4) with mean 𝜇  and unknown precision 𝜙. Ferrari and Cribari-Neta21 obtained a 

regression model using the framework of McCullagh and Nelder.28 Specifically, Ferrari 

and Cribari-Neta21 assumed that the mean of 𝑦  could be written as  

𝑔(𝜇 ) = ∑ 𝑥 𝛽 = 𝜂        
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where 𝛽 = 𝛽 , … , 𝛽  is a vector of unknown regression parameters and 𝑥 , … , 𝑥  are 

observations on 𝑝 covariates (𝑝 < 𝑛), which are assumed fixed and known. Additionally, 

𝑔(∙) is strictly monotonic and twice differentiable link function that maps (0,1) into 𝑹. 

Ferrari and Cribari-Neta21 used the logit link, which leads to β being interpreted as 

changes in the log odds of success. Ferrari and Cribari-Neta21 treated 𝜙 as a nuisance 

parameter. 

1.3.4. Multivariate Beta distribution through construction 

The multivariate Beta can be constructed using a variable-in-common method or 

using matrices.27,29 The focus of this dissertation will be on the multivariate Beta 

constructed using the variable-in-common technique. The multivariate Beta constructed 

through matrices is not suitable for repeated measures as explained below. It is, 

however, presented for completeness. The multivariate Beta constructed using matrices 

will be referred to as matrix-variate Beta. 

The matrix-variate Beta has been defined and studied by many authors30-34; 

Gupta29 attempts to clarify the definitions. The random variable 𝑈 with pdf given in 

equation (1.1) where 𝑎 > 0 and 𝑏 > 0, is said to have a Beta type I distribution with 

parameters (𝑎, 𝑏).35 The random variable 𝑉 with pdf, 

𝑓 (𝑣) =
( )

( ) ( )
𝑣 (1 + 𝑣) ( ),    𝑣 > 0     (1.5) 

where 𝑎 > 0 and 𝑏 > 0, is said to have a Beta type II distribution with parameters 

(𝑎, 𝑏).35 It can be shown that (1.5) can be obtained from (1.1) using the transformation 

𝑉 = 𝑈 (1 − 𝑈)⁄ . Therefore, equation (1.5) is referred to as the inverted Beta distribution 

by some authors.35 The matrix-variate generalizations of (1.1) and (1.5) are referred to 
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as the matrix-variate Beta type I and matrix-variate Beta type II distributions, 

respectively.29,35  

Let 𝐴 and 𝐵 be independent 𝑝 × 𝑝 symmetric positive definite matrices having a 

Wishart density 𝑊 (𝑞, Σ) and 𝑊 (𝑛, Σ), respectively, where 𝑛 = 𝑁 − (𝑞 + 1). Then the 

matrix 𝑈 = (𝐴 + 𝐵) 𝐴(𝐴 + 𝐵)  and 𝑉 = 𝐴𝐵  are distributed as matrix-variate Beta 

type I and matrix-variate Beta type II, respectively, with parameters  and .36 The 

matrix-variate Beta type I is denoted as 𝑈~𝐵 , , if its pdf is given by 

𝛽
𝑞

2
,
𝑛

2
det(𝑈) ( )/ det 𝐼 − 𝑈

( )/
,     0 < 𝑈 < 𝐼  

where 𝑞 > 𝑝 − 1, 𝑛 > 𝑝 − 1, and 𝛽 ,  is the multivariate Beta function given by 

 𝛽 (𝑎, 𝑏) = ∫ det(𝐴) ( )
det 𝐼 − 𝐴

( )
𝑑𝐴 

with 𝑅𝑒(𝑎) > (𝑝 − 1) and 𝑅𝑒(𝑏) > (𝑝 − 1).29,36 Similarly, the matrix-variate Beta type II 

is denoted as 𝑉~𝐵 , , if its pdf is given by 

𝛽
𝑞

2
,
𝑛

2
det(𝑉) ( )/ det 𝐼 + 𝑉

( )/
,    𝑉 > 0 

where 𝑞 > 𝑝 − 1 and 𝑛 > 𝑝 − 1.36 As in the univariate case, the matrix-variate Beta type 

II can be obtained by transforming the matrix-variate Beta type I, i.e., 𝑈 = 𝐼 + 𝑉 𝑉.35 

The distributions of 𝑡𝑟𝑈 and 𝑡𝑟𝑉 play an important role in hypothesis testing when 

using a multivariate linear model. Specifically, 𝑡𝑟𝑈 and 𝑡𝑟𝑉 appear as the null distribution 

in a one-way MANOVA model for testing whether all means are equal.36 However the 

matrix-variate Beta distributions apply only to symmetric matrices, if the interest is in a 
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vector of responses, i.e., repeated measures, the matrix-variate Betas are 

inappropriate.6 Therefore, a multivariate Beta is needed for repeated measures. 

Using shared parameters, the multivariate Beta can be constructed from Gamma 

random variables, Beta random variables, Dirichlet random variables, or using order 

statistics from the Uniform distribution.27 Libby and Novick6 were the first to construct a 

multivariate Beta using Gamma random variables with shared parameters.   

Let 𝑋 , … , 𝑋  be distributed as independent Gamma random variables with 

parameters 𝛼  and 𝛽 , 𝑖 = 0, … , 𝑛. Using the transformation 𝑌 = 𝑋  and 𝑌 =  for 𝑖 =

1, … , 𝑛, Libby and Novick6 derive the joint density of 𝑦 , … , 𝑦  as 

𝑃(𝑦 , … , 𝑦 ) =
∑

∏ ( )
 
∏

∑
∑

,    0 < 𝑦 < 1   (1.6) 

where 𝜆 = , 0 < 𝑦 < 1, and Γ(∙) is the gamma function. Libby and Novick6 describe the 

density in equation (1.6) as a generalized multivariate Beta of the first kind. Any marginal 

multivariate distribution of equation (1.6) will still be a multivariate generalized Beta of 

the first kind.6 The univariate marginal distribution of equation (1.6) is given by 

 𝑃(𝑦 ) =
( )

( ) ( )
 ,    0 < 𝑦 < 1    (1.7) 

which Libby and Novick6 refer to as a generalized Beta distribution with scale parameter 

𝜆 . Furthermore, it should be clear that density (1.7) is the univariate form of density 

(1.6). Libby and Novick6 justify the naming convention by re-expressing the density in 

equation (1.1) as 

 𝑃(𝑦) =
( )

( ) ( )
,    0 < 𝑦 < 1      
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and noting a type I Beta is a generalized Beta with parameters 𝛼, 𝛽, and 𝜆 = 1.  

Both Jones37 and Olkin and Liu38 obtained the density in equation (1.6) 

independently. Jones37 obtains the density (1.6) starting from a multivariate F 

distribution. While Olkin and Liu38 obtain density (1.6) using similar construction 

schemes to that of Libby and Novick.6 It should be noted that the construction of the 

bivariate case of equation (1.6) with 𝜆 = 1 is often credited to Olkin and Liu.38 For clarity, 

the bivariate case of equation (1.6) with 𝜆 = 1 will be referred to as the Olkin and Liu38 

bivariate Beta. 

The tth moment of the generalized Beta distribution equation (1.7), i.e., the 

univariate marginal of the generalized multivariate Beta is 

𝐸(𝑦 ) = ∑
( ) ( )

( ) ( )
 
( )

.6 

As previously stated, when 𝜆 = 1 the generalized Beta is the standard Beta. The 

moments of the standard Beta have a closed form and do not require an iterative 

method to calculate the numerical value of the moment.6 

Jones37, Olkin and Liu38, and Nagar and colleagues39 calculated the expected 

correlation for the Olkin and Liu38 bivariate Beta. The expected correlation requires the 

evaluation of a generalized Gauss hypergeometric function, which has no closed 

form.38,40 Through construction, it is clear that the random variables of the Olkin and Liu38 

bivariate Beta have a positive correlation in [0,1].27 However, using simulations, Gianola 

and collegues40 have demonstrated the inadequacy of the Pearson14 correlation statistic 

in measuring association in random variables generated from the Olkin and Liu38 

bivariate Beta. Furthermore, Jones37, Olkin and Liu38, and Nagar et al. 39 expressions for 

the expected correlation of the Olkin and Liu38 bivariate Beta are not in agreement. 
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Specifically, the parameters of the generalized Gauss hypergeometric function do not 

match.  

Regardless of these limitations, multiple authors have used Libby and Novick’s6 

construction or variations to the construction to model bivariate correlated data bounded 

on the interval [0,1]. Libby and Novick6 present an example of fitting utilities with their 

generalized Beta distribution. However, the model was limited to the bivariate case and 

parameters had to be estimated using a Monte-Carlo iterative procedure due to the 

complexity of the first and second partial derivatives of the joint pdf. Other 

researchers10,11,41-43 have modified the Olkin and Liu38 bivariate Beta and have fit their 

proposed model to various datasets. Adell and collegues10 fit a zero-inflated bivariate 

Beta for retinal image id in lambs. Adell et al10 re-parameterized the Olkin and Liu38 

bivariate Beta using the parameterization proposed by Paolino20 and Ferrari and Cribari-

Neta.21  Nadarajah11,43  added additional parameters to the Olkin and Liu38 bivariate Beta 

creating two additional distributions and fit the model11 to drought data. However, the 

normalizing constant of the joint distribution of one of Nadarajah’s11 extension requires 

the evaluation of the Gauss hypergeometric function.11 And the other extension by 

Nadarajah43 is constrained to the lower dimensional simplex. Arnold and Ng41 

constructed bivariate Beta distributions by using additional Gamma random variables in 

the construction. Specifically, Arnold and Ng41 used five independent Gamma random 

variables for construction, where three of the Gamma random variables had shared 

parameters. The model was evaluated using a simulation study and an eight-parameter 

construction for the bivariate case was proposed.41 The Olkin and Liu38 bivariate Beta is 

a particular case of the five parameter construction proposed by Arnold and Ng.41 Arnold 

and Ng41 five parameter construction allows for negative correlations, but the joint 

density does not have a closed form. Arnold and Ng41 proposed a modified maximum 
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likelihood to fit their model, while Crackel and Flegal44 fit the model under a Bayesian 

framework. Lastly, Gupta42 used the construction proposed by Libby and Novick6 using 

non-central Gamma random variables limited to the bivariate case. Again, the joint pdf 

proposed by Gupta42 does not have a closed form due to the inclusion of the Gauss 

hypergeometric function. 

 Using shared parameters, researchers27,45 have proposed alternatives to using 

Gamma random variables for the construction of a multivariate Beta distribution. 

Nadarajah and Kotz45 created three different bivariate Beta distributions starting from 

independent Beta random variables. However, two of the bivariate distributions are 

limited to the lower dimensional simplex, and the third does not have a closed form.45 

Alternatively, Olkin and Trikalinos27 construct a bivariate Beta distribution using three 

independent Dirichlet random variables that allows for correlation over the range [−1,1]. 

Unfortunately, the joint pdf does not have a closed form.27 However, they were able to 

estimate the parameters using methods of moments. Olkin and Trikalinos27 also provide 

a construction for a bivariate Beta distribution using order statistics from a Uniform 

distribution on [0,1]; they have not followed this line of inquiry, but note it may lead to 

some novel results. 

1.3.5. Multivariate Beta distribution using copulas 

The structure of dependence between n-related outcomes can be defined in 

terms of their joint (i.e., multivariate) distribution.9,46 Additionally, the joint distribution 

uniquely defines all lower dimensional marginal distributions and conditional 

distributions.46 One possible way to obtain the joint distribution of known marginal 

distributions is through the use of copulas.9 A copula is a function which joins univariate 

marginal distributions to form a multivariate distribution.47 Sklar48 was the first to use the 
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terminology copula in the theorem that bears his name; however, the use of copula 

functions predates the use of the term.47  

The mapping 𝐶: [0,1] → [0,1] is called a copula according to Nelson49 if 

(i) for every 𝒖 ∈ [0,1] , 𝐶(𝒖) = 0 if at least one coordinate of 𝒖 is 0, and 𝐶(𝒖) =

𝑢  if all coordinates of 𝒖 are 1 except 𝑢 . 

(ii) 𝐶 is 𝑛-increasing, i.e. for every 𝒂, 𝒃 ∈ [0,1]  such that 𝑎 ≤ 𝑏  for every 𝑖, and  

𝑉 ([𝒂, 𝒃]) ≥ 0, where [𝒂, 𝒃] = [𝑎 , 𝑏 ] × [𝑎 , 𝑏 ] × … × [𝑎 , 𝑏 ] and 𝑉 ([𝒂, 𝒃]) = ∑(𝒄)𝐶(𝒄). 

The sum is over the vertices 𝒄 of [𝒂, 𝒃] and 𝑠𝑔𝑛(𝒄) = 1 if 𝑐 = 𝑎  for an even number of 

𝑖′𝑠 and −1 if 𝑐 = 𝑎  for an odd number of 𝑖′𝑠. 

Sklar’s48 theorem can now be stated. 

Sklar’s48 theorem states that a joint distribution can be expressed using its 

univariate marginal distributions and multivariate dependence structure. The multivariate 

dependence structure is referred to as a copula.46,47,50 Specifically, Sklar’s48 theorem 

states if we assume a 𝑛-dimensional random vector 𝑿 with marginal cumulative 

distribution functions 𝐹 , … , 𝐹  with domain 𝑹  then the joint distribution 𝐹𝑿 can be 

written as a function of its marginal distributions, 

 𝐹𝑿 = 𝐶𝑿 𝐹 (𝑥 ), … , 𝐹 (𝑥 )  

where 𝐶𝑿 is a copula as defined above. If the marginal distributions are continuous, then 

the copula function will be unique.46,49,50 Copula construction is not constrained to 

continuous distributions.46,49 Additionally, the marginal distributions are not required to be 

a common distribution (e.g., the marginal distributions could be a combination of 

Gaussian and Gamma distributions).50 An important consequence of Sklar’s48 theorem is 
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that every joint distribution can be decomposed as a product of its marginal densities 

and its copula density50,51, i.e. 

 𝑓𝑿(𝒙) = 𝑓 (𝑥 ) … 𝑓 (𝑥 ) ∙ 𝑐𝑿(𝑢 , … , 𝑢 ). 

Unfortunately, there is no general or canonical way to formulate the copula and 

determine the associations amongst dependent outcomes.50 However, the parametric 

form of copulas can be grouped into families.50 Some significant copula families in 

statistical modeling are the elliptical, Archimedean, and Farlie-Gumbel-Morgenstern 

(FGM) copulas family.47,50 The Sarmanov7 family of bivariate distributions is another 

family of copulas that until recently has been largely ignored.52 The focus of this 

dissertation will be on the extension of the Sarmanov7 family of bivariate distributions; 

however, the elliptical, Archimedean, and FGM family of copulas will be briefly reviewed 

for comparison. 

Elliptical copulas arise from elliptical distributions, e.g., Gaussian, Student-t etc.50 

Elliptical copulas can be extended to an arbitrary number of dimensions; however, a 𝑛-

dimensional elliptical copula would require a minimum of  
( )

 parameters.50 An 

additional drawback to the elliptical copulas is that the dependence is restricted to radial 

symmetry and they do not necessarily exist in closed form.50 

Archimedean copulas allow for a more flexible dependence structure, i.e., 

different upper and lower tail behavior and Archimedean copulas often have a closed 

form.50 However, marginal distributions are exchangeable using Archimedean copulas, 

which is usually not practical for dimensions greater than two.50 A mapping 𝐹: 𝑹 → 𝑹 is 

called exchangeable, if 

𝐹(𝑥 , … , 𝑥 ) = 𝐹 𝑥 ( ), … , 𝑥 ( )  
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holds for every 𝒙 ∈ 𝑹  and all permutations 𝜋 ∈ 𝑆 , where 𝑆  is a permutation of 

{1, … , 𝑛}.53 This limitation does not exclude Archimedean copulas from being used in 

higher dimensional cases; however, Archimedean copulas are most often applied in the 

bivariate case.50 Additionally, the dependence is often governed by one parameter.49 

The Archimedean copula can be expressed as 

𝐶𝑿(𝑢 , … , 𝑢 ) = 𝜓 𝜓(𝑢 ) + ⋯ + 𝜓(𝑢 )  

where 𝜓 is the generator function.50 Archimedean copulas are often described in terms 

of their generator function, e.g., Clayton, Frank, Gumbel being some of the most 

commonly used.50  

The FGM family has been studied extensively for bivariate model building.52 The 

bivariate FGM family is given by 

𝑓( , )(𝑥 , 𝑥 ) = 𝑓 (𝑥 )𝑓 (𝑥 ) 1 + 𝛼 1 − 2𝐹 (𝑥 ) 1 − 2𝐹 (𝑥 ) .  (1.8) 

where |𝛼| ≤ 1.52 The FGM family is a fairly straightforward way to introduce dependence; 

however, the correlation coefficients are limited to the interval − . .8 Additionally, the 

marginal distributions generally do not match the univariate distributions that were used 

to construct the joint distribution.52 That is ∫ 𝑓( , )(𝑥 , 𝑥 ) 𝑑𝑥 ≠ 𝑓 (𝑥 ); however, the 

bivariate exponential distribution does produce exponential marginal distributions.52 It is 

clear from equation (1.8) that a bivariate Beta would not produce Beta marginal 

distributions.  

The Sarmanov7 family of bivariate distributions is one such family where the 

marginal distributions match the univariate distributions used in construction.8 The 

Sarmanov7 bivariate copula remained relatively unnoticed until Lee8 published a paper in 

1996 that focused on the bivariate Beta distribution using the Sarmanov7 family of 

bivariate distributions.52 It should be noted that Danaher54 was able to obtain a bivariate 
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Beta-Binomial distribution using canonical expansion such that the bivariate Beta 

matches that of Lee.8 

The Sarmanov7 family of bivariate distributions is defined in Section 1.1.2 along 

with Lee’s8 proposed mixing function. Lee8 proved that the range of the correlation 

coefficients for the Sarmanov7 family of bivariate distributions is a function of the 

marginal distributions and mixing function. Specifically, the correlation is bounded by 

|𝜌| ≤ |𝜔| 𝐸[𝜙 (𝑋 )]𝐸[𝜙 (𝑋 )].8 

Shubina and Lee55 calculated the upper and lower correlation bounds for equal Beta 

marginal distributions, i.e., 𝑋 ~𝐵𝑒𝑡𝑎(𝑎, 𝑏) for 𝑖 = 1 and 2, as  

 𝑢𝑝𝑝𝑒𝑟 = 𝜎 max
∈[ , ]

( ; , ); ,

( )
 

and 

𝑙𝑜𝑤𝑒𝑟 = −𝜎 max
∈ ,

( ; , ); , ( ; , ); ,

( )
  

where 𝑓  is the pdf of the Beta distribution with parameters 𝑎, 𝑏 and 𝐹  is the inverse to 

the Beta cdf with parameters 𝑎, 𝑏. Furthermore, Shubina and Lee55 showed for 

symmetric equal Beta marginal distributions (i.e. 𝑋 ~𝐵𝑒𝑡𝑎(𝑎, 𝑎) for 𝑖 = 1,2) as 𝑎 → ∞, 𝑋

→ 𝑁 ,  and thus the correlation range tends to ± . Alternatively, for symmetric 

equal Beta marginal distributions, as 𝑎 → 0 the correlation range tends to ±1.55 

Lee8 further extended the Sarmanov7 family of bivariate distributions to the 

multivariate case. Assume that 𝑓 (𝑥 ) for 𝑖 = 1, … , 𝑛 are univariate pdfs with supports 

defined on 𝐴 ⊆ 𝑹 for 𝑖 = 1, … , 𝑛 and let 𝜙 (𝑡), 𝑖 = 1, … , 𝑛 be a set of bounded 

nonconstant functions such that ∫ 𝜙 (𝑡)𝑓 (𝑡 )𝑑𝑡 = 0 for all 1 ≤ 𝑖 ≤ 𝑛. Then, the 

function 
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𝑓𝑿(𝒙) = ∏ 𝑓 (𝑥 ) {1 + 𝑅(𝑥 , … , 𝑥 ; 𝜙 , … , 𝜙 , Ω )}  

is a multivariate joint density with specified marginal distributions 𝑓 (𝑥 ), 𝑖 = 1, … , 𝑛, 

where 

 𝑅(𝑥 , … , 𝑥 ; 𝜙 , … , 𝜙 , Ω ) = ∑ ∑ 𝜔 , 𝜙 𝑥 𝜙 𝑥 +

∑ ∑ ∑ 𝜔 , , 𝜙 𝑥 𝜙 𝑥 𝜙 𝑥 + ⋯ + 𝜔 , ,…, ∏ 𝜙 (𝑥 )  

     (1.9) 

and Ω = 𝜔 , , 𝜔 , , , … , 𝜔 , ,…, . The set of real numbers Ω  is chosen such that 1 +

𝑅(𝑥 , … , 𝑥 ; 𝜙 , … , 𝜙 , Ω ) ≥ 0 holds for all 𝑥 ∈ 𝑹, 𝑖 = 1, … , 𝑛.8 It is clear from equation 

(1.9) that higher order effects are included in the joint distribution. Prentice56 has 

demonstrated for a multivariate Beta-binomial model using a canonical construction that 

the higher effects are required for the model to be sufficiently flexible.  

Lee’s8 1996 paper help rediscover the Sarmanov7 family of bivariate distributions. 

However, there appear to be limited applications of the Sarmanov7 family of bivariate 

distributions in the literature, particularly when the marginal distributions are Beta 

distributions. Chen and colleagues57 used the Sarmanov7 Lee8 bivariate Beta as a prior 

in a Bayesian meta-analysis of adverse events in clinical trials. Danaher and Hardie58 fit 

a Sarmanov7 bivariate Beta-binomial model to two different data sets, purchasing bacon 

and eggs and purchasing two magazine subscriptions. Additionally, Danaher and 

Hardie58 described the relationship between the Sarmanov7 family of bivariate 

distributions and the canonical expansion model. The canonical expansion model with 

marginal Beta-binomial distributions was used to model media exposure.54 Shoukri and 

colleagues59 used the Sarmanov7 family of bivariate distributions with Beta-binomial 

marginal distributions to model high blood pressure among family members. 

Furthermore, Shoukri and colleagues60 developed hypotheses tests for the Sarmanov7 
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family of bivariate distributions with Beta-binomial marginal distributions. Lastly, Gianola 

and colleagues40 proposed a new measure of association based on logarithmic 

(Kullback-Leibler) and relative distances between distributions and compared their 

measure to Pearson’s14 correlation coefficient with different joint distributions, in 

particular, the Sarmanov7 Lee8 bivariate Beta. Additionally, there is no literature beyond 

Lee’s8 own description of the Sarmanov7 family of bivariate distributions being extended 

to n-dimensions. 

1.3.6. The Beta Marginal Model 

Section 1.2.4 and Section 1.2.5 described two different multivariate approaches 

for handling the correlation among sampling units; however, two other modeling 

approaches are often utilized, i.e., marginal models and mixed effects models.1 For 

responses that are assumed to follow the Beta distribution, the choice of a marginal 

model or a mixed effects model leads to different interpretations of the regression 

parameters.1 A marginal model has a population-average interpretation of the parameter 

estimates while the mixed effects models have a subject-specific interpretation of the 

regression coefficients.1 These different interpretations are the result of the assumptions 

about the source of within-subject associations.1 The following is a brief description of 

the marginal model and the method of GEE for parameter estimates. 

We begin our discussion of the marginal model by introducing notation that will 

be used for both the marginal model and the mixed effects model. We first assume that 

there are 𝑁 subjects measured repeatedly. Let 𝑌  denote the response for the 𝑗  

measurement on the 𝑖  subject. Furthermore, we assume that there are 𝑛  repeated 

measures for the 𝑖  subject. Therefore, the responses for the 𝑖  subject can be 

grouped into an 𝑛 × 1 vector, i.e., 𝒀 = 𝑌 , … , 𝑌  for 𝑖 = 1, … , 𝑁. We assume that the 
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vector of responses, 𝒀 , are independent of one another but the repeated measures on 

the same subject are correlated. Associated with each response 𝑌  is a known 𝑝 × 1 

vector of explanatory covariates, i.e., 𝑿 = 𝑋 , … , 𝑋  for 𝑖 = 1, … , 𝑁; 𝑗 = 1, … , 𝑛 . We 

can group the vectors of covariates into an 𝑛 × 𝑝 matrix of covariates 

𝑿 =

𝑿
⋮

𝑿
=

𝑋 … 𝑋

⋮ ⋱ ⋮
𝑋 … 𝑋

, 𝑖 = 1, … , 𝑁. 

Lastly, 𝜷 = 𝛽 , … , 𝛽  is a 𝑝 × 1 vector of unknown parameters.  

Marginal models do not specify the full joint distribution of the data.61 Marginal 

models separately model the mean response and the within-subject associations among 

responses.1,3,61 In marginal models, the goal is to make inferences about the conditional 

mean.1 The within-subject associations are treated as a nuisance parameter(s) that must 

be estimated to make correct inferences about changes in the population mean 

response.1,3 Marginal models have a three-part specification: 

1. The conditional expectation of each response, i.e., 𝐸 𝑌 𝑋 = 𝜇 , is 

assumed to depend on a vector of explanatory covariates via a known link 

function 

𝑔 𝜇 = 𝜂 = 𝑋 ′𝛽. 

2. The conditional variance of each response given the covariates is assumed to 

depend on the mean according to 

𝑣𝑎𝑟 𝑌 𝑋 = 𝜙𝜈(𝜇 ), 

where 𝜈(𝜇 ) is a variance function, and 𝜙 is a scale parameter. 
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3. The conditional within-subject associations given the covariates are assumed 

to be a function of additional parameters, 𝛼, which also depends on the 

means.1  

Therefore, given specifications (2) and (3) the corresponding covariance matrix can be 

constructed as 

𝑽 = 𝑨 𝐶𝑜𝑟𝑟(𝒀 )𝑨 , 

where 𝑨  is a diagonal matrix with 𝜙𝜈(𝜇 ) along the diagonal and 𝐶𝑜𝑟𝑟(𝒀 ) is a 

correlation matrix which is a function of the 𝛼′𝑠.1 If the conditional mean is correctly 

specified, the method of GEE2 yields a consistent estimator 𝛽 of 𝛽 by solving the score 

equation ∑ 𝑫 𝑽 (𝒀 − 𝝁 ) = 0 where 𝑫 =
𝝁

𝜷
.1,3,61 Under the GEE methodology, 𝑽  is 

often referred to as the working covariance matrix.1,61 Specifically, 𝑽  approximates the 

true underlying covariance matrix for 𝒀 ; however, 𝑽 = 𝐶𝑜𝑣(𝒀 ) if the variance and 

within-subject associations are correctly specified.1  

The score equations have no closed form solution; therefore, an iterative 

algorithm is required.1,61 The GEE methodology uses the following iterative two-stage 

estimation algorithm: 

1. Given the current estimates of 𝜙, 𝛼, and 𝑽  an updated estimate of 𝛽 is 

obtained as a solution to the above-defined score equation. 

2. Given the current estimate of 𝛽, updated estimates of 𝜙 and 𝛼 are calculated 

using standardized residuals.1,2 

The two-stage procedure iterates between steps 1 and 2 until a convergence criterion is 

reached.1,2 Once convergence is achieved, 𝛽 is a consistent estimator of 𝛽 and with 

large samples the estimator of the  
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𝑐𝑜𝑣 𝛽 = ∑ 𝐷 𝑉 𝐷 ∑ 𝐷 𝑉 (𝑌 − 𝜇 )(𝑌 − 𝜇 ) 𝑉 𝐷 ∑ 𝐷 𝑉 𝐷   

yields correct standard errors.1 However, limitations of this method have been 

shown16,18, and we refer the reader back to Section 1.1.1 for a description of the 

limitations. 

For responses that follow the Beta distribution, it is convenient to assume the 

logit, log , for the link function 𝑔(∙); however, other link functions can be 

considered.61 The variance function is often specified as 𝑣𝑎𝑟 𝑌 𝑋 = 𝜙𝜇 1 − 𝜇 .61 

For repeated measures data, CS, auto-regressive, or unstructured associations are most 

commonly considered.1,61 It should be emphasized, that no distributional assumptions 

are required for the GEE approach.1 However, a distribution function from the 

exponential family usually suggests the form of the conditional mean and conditional 

variance of 𝒀 .3 

1.3.7. The Beta Generalized Linear Mixed Model 

The marginal model does not make explicit the source of within-subject 

association in the observed data.3 Marginal models do not require the joint distribution to 

be fully specified; it was sufficient to define the marginal means, variances, and pairwise 

associations for estimation and prediction using the GEE approach.1 Separately 

specifying the marginal means and covariance ensure that the prediction for the 

marginal means does not rely on the assumed model for the covariance.1  

An alternative approach for accounting for the within-subject associations is 

inducing correlation through an unobserved heterogeneity, i.e., random effects, in the 

conditional mean specification.1,3 GLMMs is a family of models that incorporates random 

effects into the conditional mean. GLMMs allow a subset of regression coefficients to 
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vary randomly from one individual to another according to some distribution.1 The 

random effects can be thought of as accounting for the heterogeneity among individuals 

due to unmeasured variables.1 In general, random effects are assumed multivariate 

normal for mathematical and computational convenience; however, alternative 

distributions are possible.1,61 In a repeated-measures design, the random effects are 

most commonly scalar (i.e., random intercept) or a bivariate vector (i.e., random 

intercept and random slope).61 GLMMs assume that responses for any particular 

individual are conditionally independent observations from a distribution belonging to the 

exponential family.1 Specifically, the observations are independent given the random 

effects.1 

GLMM can be formulated using a three-part specification: 

1. The conditional distribution of each 𝑌  given a 𝑞 × 1 vector of random effects, 

𝑏 , belong to the exponential family of distributions. Additionally, 𝑉𝑎𝑟 𝑌 𝑏 =

𝜈 𝐸 𝑌 𝑏 𝜙, where 𝜈(∙) is a known variance function of the conditional mean, 

𝐸 𝑌 𝑏  and the 𝑌 ’s are conditionally independent given the random effects. 

2. The conditional mean is assumed to depend on fixed and random effects via 

the linear predictor 

 𝜂 = 𝑋 𝛽 + 𝑍 𝑏 , 

 with 

 𝑔 𝐸 𝑌 𝑏 = 𝜂 = 𝑋 𝛽 + 𝑍 𝑏  

 for some link function, 𝑔(∙). 
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3. The random effects are assumed to have some probability distribution, ℎ. 

Additionally, the random effects, 𝑏 , are assumed to be independent of the 

covariates, 𝑋 .1 

Therefore, the conditional likelihood of 𝒀  given 𝑿  can be expressed in the form 𝑙 =

∫ 𝑓(𝒀 |𝑿 , 𝑏 = 𝑏)ℎ(𝑏)𝑑𝑏 where 𝑓(𝒀 |𝑿 , 𝑏 = 𝑏) = ∏ 𝑓(𝑌 |𝒙 , 𝑏 = 𝑏).3 Assuming that 

ℎ is a multivariate normal density, some technique (e.g. adaptive Gaussian quadrature, 

quasi-likelihood, etc.) must be employed before evaluating 𝑙 .1,3,61  

Adding random effects to equation (1.4) yields the Beta GLMM given by 

log = 𝑥 𝛽 + 𝑧 𝑏 , with 𝑏 ~𝑁(0, 𝐺) 

where 𝐺 denotes the positive definitie covariance matrix of the random effects.61 In the 

Beta GLMM, the regression parameters have only a subject-specific interpretation 

because of the non-linear link function.1,61 Specifically, 

 𝑙𝑜𝑔𝑖𝑡 𝐸 𝑌 𝑏 = 𝑥 𝛽 + 𝑧 𝑏 , 

but 

 𝑙𝑜𝑔𝑖𝑡 𝐸 𝑌 ≠ 𝑥 𝛽.61 

The subject-specific interpretation can be regarded as the mean difference in outcome 

on the logit scale between an individual with said covariate and the same individual 

supposed not to have said covariate.1,61 

 It should be clear that there are multiple methods that can be used to analyze 

correlated proportional data. Each method has its limitations. In the next section, we 

propose two multivariate Beta densities that can be fit using the maximum likelihood 
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method, thereby overcoming the limitations of the Beta GEE and Beta GLMM, in this 

regard. 

2. Methodological Contributions 

2.1. Introduction 

Sections 1.2.4 and 1.2.5 briefly described the development of multivariate Beta 

densities through construction and copulas, respectively. Until now, methodology for 

fitting multivariate Beta densities (as described in Sections 1.2.4 and 1.2.5) was limited 

to the bivariate case. This chapter provides the methodology for constructing and fitting 

multivariate Beta densities to 𝑛-repeated measures. Specifically, in Section 2.3 we used 

Libby and Novick’s6 technique to construct a multivariate Beta density. Furthermore, we 

derived the score equations, the Hessian matrix, and expected pairwise correlation for 

the LNMVB. Similarly, in Section 2.4 we used Lee’s8 proposed multivariate Beta and 

derived the score equations, the Hessian matrix and the correlation structure. Prior to 

the development of the multivariate Beta densities in Sections 2.3 and 2.4, we describe 

the notation used throughout the chapter in Section 2.2.  

2.2. Notation 

We first assumed that there are 𝑁 subjects measured repeatedly. Let 𝑌  denote 

the response for the 𝑗  measurement on the 𝑖  subject. Additionally, 𝑌 ∈ (0,1) for all 

𝑖, 𝑗. We assumed a balanced design, i.e., there are 𝑛 repeated measures for every 

subject. Therefore, the responses for the 𝑖  subject were grouped into an 𝑛 × 1 vector, 

i.e., 𝒀 = (𝑌 , … , 𝑌 )  for 𝑖 = 1, … , 𝑁. We assumed that the vector of responses, 𝒀 , are 

independent of one another but the repeated measures on the same subject are 

correlated. Associated with each response 𝑌  is a known 𝑝 × 1 vector of explanatory 
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covariates, i.e., 𝑿 = 𝑋 , … , 𝑋  for 𝑖 = 1, … , 𝑁; 𝑗 = 1, … , 𝑛. We grouped the vectors 

of covariates into an 𝑛 × 𝑝 matrix of covariates 

𝑿 =
𝑿

⋮
𝑿

=

𝑋 … 𝑋

⋮ ⋱ ⋮
𝑋 … 𝑋

, 𝑖 = 1, … , 𝑁. 

Lastly, 𝜷 = 𝛽 , … , 𝛽  is a 𝑝 × 1 vector of unknown regression parameters.  

2.3. Libby and Novick Multivariate Beta (LNMVB) 

The construction of the LNMVB began by letting 𝑋 , 𝑋 , … , 𝑋  be distributed as 

independent gamma random variables with parameters 𝛼  and 𝛽 , for 𝑖 = 0, … , 𝑛. The 

joint pdf of 𝑋 , … , 𝑋  is given by 

 𝑓 ,…, (𝑥 , … , 𝑥 ) = ∏
( )

𝑥 𝑒 ,     (2.1) 

 𝛼 , 𝛽 , 𝑥 > 0 for 𝑖 = 0, … , 𝑛.  

By transforming the variables in the joint pdf (2.1) and marginalizing out 𝑌  we arrived at 

the joint pdf described by Libby and Novick.6 Specifically, let 𝑌 = 𝑋  and 𝑌 =  for 

𝑖 = 1, … , 𝑛. Then the joint pdf of 𝑌 , … , 𝑌  is given by 

 𝑓 ,…, (𝑦 , … , 𝑦 ) =
( )

𝑦 𝑒 𝑦 ∏
( )

𝑒 (1 − 𝑦 )  

  = 𝑦
∑

𝑒
∑

( )
∏

( )
(1 − 𝑦 )  

  =
∑

∑

∑
𝑦

∑
𝑒

∑
 × 

   
∑

∏ ( )

∏ ( )

∑
∑

,   
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𝛼 , 𝛽 > 0 ∀ 𝑖, 𝑦 ≥ 0, and 𝑦 ∈ (0,1) for 𝑖 = 1, … , 𝑛.  

Marginalizing out 𝑌  leads to 

 𝑓 ,…, (𝑦 , … , 𝑦 ) =
∑

∏ ( )

∏ ( )

∑
∑

, 

 𝛼 , 𝛽 > 0 for 𝑖 = 0, … , 𝑛 and 𝑦 ∈ (0,1) for 𝑖 = 1, … , 𝑛.  

Since  

 
∑

∑

∑
𝑦

∑
𝑒

∑
 

is a gamma random variable with parameters ∑ 𝛼  and 𝛽 + ∑ 𝛽 . Setting 

𝛽 = 1 for 𝑖 = 0, … , 𝑛 (which allowed the pdf to be re-parameterized) results in the joint 

pdf  

 𝑓 ,…, (𝑦 , … , 𝑦 ) =
∑

∏ ( )

∏

∑
∑

,      (2.2) 

𝛼 > 0 and 𝑦 ∈ (0,1) for 𝑖 = 1, … , 𝑛.        

The joint pdf (2.2) will be referred to as the LNMVB distribution. The univariate marginal 

pdf of (2.2) is as follows: 

 𝑓 (𝑦 ) =
( )

( ) ( )
 

  =
( )

( ) ( )
𝑦 (1 − 𝑦 )  ,      (2.3) 

 𝛼 , 𝛼 > 0 𝑎𝑛𝑑 𝑦 ∈ (0,1).   
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Thus, the marginal pdf of the LNMVB distribution as expressed by pdf (2.3) is Beta 

distributed with parameters 𝛼  and 𝛼 . Since the LNMVB distribution has Beta distributed 

marginal distributions, we re-parametrized the pdf (2.2) in terms of the marginal means. 

From pdf (2.3), 𝜇 =  and therefore, 𝛼 =  for 𝑖 = 1, … , 𝑛. Thus, pdf (2.2) can be 

expressed as  

 𝑓 ,…, (𝑦 , … , 𝑦 ) =
∑

( ) ∏

∏

∑
∑

,   (2.4) 

𝛼 > 0 and 𝜇 , 𝑦 ∈ (0,1) for 𝑖 = 1, … , 𝑛.       

 Using the notation of Section 2.2 and the joint pdf (2.4) the likelihood can written 

as follows: 

 𝐿(𝛼 , 𝝁; 𝒀) = ∏

⎩
⎪
⎨

⎪
⎧

∑

( ) ∏

∏

∑

∑

⎭
⎪
⎬

⎪
⎫

,   (2.5) 

where 𝝁 =

𝜇 ⋯ 𝜇
⋮ ⋱ ⋮

𝜇 ⋯ 𝜇
 and 𝒀 = (𝒀 , … , 𝒀 )′. To add regression parameters to the 

likelihood (2.5), link functions were required to guarantee the regression parameters 

map to the domain of their respective parameter. The regression model was obtained by 

assuming that the mean of 𝑦  can be written as 

 𝑔 𝜇 = 𝜂 = ∑ 𝑥 𝛽 , for 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝑛  

and the shared parameter can be written as 

 ℎ(𝛼 ) = 𝜉 = 𝛽 , for 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝑛 



33 

 

where 𝛽  is a nuisance parameter (𝛽 ∈ 𝑹),  𝜷 = 𝛽 , … , 𝛽  is a vector of unknown 

regression parameters such that 𝜷 ∈ 𝑹  and 𝒙  are observations on 𝑝 covariates (𝑝 <

𝑁), which are assumed known and fixed. 𝑔(∙) and ℎ(∙) are link functions that are strictly 

monotonic and twice differentiable. Furthermore 𝑔(∙) maps (0,1) onto 𝑹 and ℎ(∙) maps 

(0, ∞) onto 𝑹.   

 Several link functions were possible for 𝑔(∙). Three commonly used link functions 

that map (0,1) onto 𝑹 are the logit link, the probit link, and the complementary log-log 

link. For further details and comparisons of the three link functions, see McCullagh and 

Nelder28 (Section 4.3.1). We used the logit link function (i.e., 𝑔(𝜇) = log ) for 

computational simplicity. For ℎ(∙) we used the log link, i.e., ℎ(𝛼 ) = log(𝛼 ). Using the 

logit link and log link, 𝜇  and 𝛼  can be expressed as 

 𝜇 =
𝒙 𝜷

𝒙 𝜷
 and 𝛼 = 𝑒 , respectively. 

Including regression parameters into the likelihood (2.5) using the aforementioned link 

functions results in the following likelihood: 

 𝐿(𝛽 , 𝜷; 𝑿, 𝒀) = ∏

⎩
⎪⎪
⎨

⎪⎪
⎧

∑
𝒙 𝜷

∏
𝒙 𝜷

∏

⎣
⎢
⎢
⎢
⎡

𝒙 𝜷

⎦
⎥
⎥
⎥
⎤

∑

∑
𝒙 𝜷

⎭
⎪⎪
⎬

⎪⎪
⎫

  

and log-likelihood 

𝑙(𝛽 , 𝜷; 𝑿, 𝒀) =  ∑ 𝑙𝑜𝑔Γ 𝑒 + ∑ 𝑒 𝒙 𝜷 − 𝑙𝑜𝑔Γ 𝑒 −

∑ 𝑙𝑜𝑔Γ 𝑒 𝒙 𝜷 − 𝑒 𝒙 𝜷 − 1 log + 2 log 1 − 𝑦 −
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𝑒 + ∑ 𝑒 𝒙 𝜷 𝑙𝑜𝑔 1 + ∑      

   (2.6) 

Taking partial derivatives of the log-likelihood (2.6) with respect to 𝛽  (𝑖 = 0, … , 𝑝) leads 

to the score equations, denoted 𝑈  for 𝑖 = 0, … , 𝑝. 

𝑈 = = ∑ 𝜓 𝑒 + ∑ 𝑒 𝒙 𝜷 𝑒 + ∑ 𝑒 𝒙 𝜷 − 𝜓 𝑒 𝑒 −

∑ 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷 − 𝑒 𝒙 𝜷 log − 𝑒 +

∑ 𝑒 𝒙 𝜷 𝑙𝑜𝑔 1 + ∑   

and 

𝑈 = = ∑ 𝜓 𝑒 + ∑ 𝑒 𝒙 𝜷 ∑ 𝑒 𝒙 𝜷 𝑥  −

∑ 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷𝑥 − 𝑒 𝒙 𝜷𝑥 log −

∑ 𝑒 𝒙 𝜷 𝑥 𝑙𝑜𝑔 1 + ∑ ,  

for 𝑘 = 1, … , 𝑝 and 𝜓(∙) is the digamma function. 

The maximum likelihood estimator (MLE) for the regression parameters can be 

found by setting the score equations equal to zero and solving for the respective 

regression parameter. Unfortunately, there is no closed form expression for the MLEs of 

the regression parameters. Therefore, we used an iterative procedure, i.e., the quasi-

Newton-Raphson algorithm.62  

The problem can formally be defined as follows: 

given 𝑈: 𝑹 → 𝑹 ,  find 𝛽∗ ∈ 𝑹  such that 𝑈(𝛽∗) = 0  (2.7) 
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where 𝑈 is assumed to be continuously differentiable. The Newton-Raphson method for 

problem (2.7) is derived by finding the root of an affine approximation to 𝑈 at the current 

iterate 𝛽 .62 Specifically, we can express 𝑈 at a perturbation 𝑝 of 𝛽  as 

 𝑈(𝛽 + 𝑠) = 𝑈(𝛽 ) + ∫ ∇𝑈(𝑡) 𝑑𝑡      (2.8) 

where ∇𝑈(𝑡) = ∇ 𝑙(𝑡) is referred to as the Hessian matrix of the log-likelihood whose 

entries are  

∇ 𝑙(𝑡) =
( )

, 0 ≤ 𝑖, 𝑗 ≤ 𝑝. 

Using ∇𝑈(𝑡) 𝑠 to approximate the integral in (2.8) gives the affine approximation to 𝑈 at 

a perturbation 𝑠 of 𝛽 .62 Setting the affine approximation to 𝑈 at a perturbation 𝑠 of 𝛽  

and solving leads to the Newton-Raphson iteration  

 ∇𝑈(𝛽 ) 𝑠 = −𝑈(𝛽 ), 

 𝛽 = 𝛽 + 𝑠.62         (2.9) 

Since 𝛽  is not expected to equal 𝛽∗, but only a better estimate than 𝛽 , (2.9) can be 

made into an algorithm by applying it iteratively from a starting value,62 i.e., at each 

iteration 𝑖, solve 

 ∇𝑈 𝛽( ) 𝑠( ) = −𝑈 𝛽( ) ,   

𝛽( ) = 𝛽( ) + 𝑠( ). 

Furthermore, additional steps to the Newton-Raphson algorithm can be included to 

ensure global convergence, i.e., the algorithm will converge to a local minimum 

regardless of the starting value.62 Therefore the quasi-Newton-Raphson algorithm62 is as 

follows: 

 At each iteration (i): 
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1. Compute 𝑈(𝛽( )) and decide whether to stop or continue. Stop if 

max 𝑈 𝛽( ) < 𝑡𝑜𝑙  or 
( ) ( )

| |
< 𝑡𝑜𝑙 , where 𝑡𝑜𝑙  is the specified 

tolerance, commonly 10 . 

2. Approximate ∇𝑈 𝛽( )  using finite differences. 

3. Estimate condition number of ∇𝑈 𝛽( )  using algorithm proposed by Cline and 

colleagues.63 If the Hessian is ill-conditioned (nearly singular), perturb it, i.e., 

∇𝑈 𝛽( ) = ∇𝑈 𝛽( ) + (𝑝 + 1)𝑚𝑎𝑐ℎ𝑒𝑝𝑠 ∇𝑈 𝛽( ) 𝐼  

where 𝑚𝑎𝑐ℎ𝑒𝑝𝑠 is the smallest number 𝜏 such that 1 + 𝜏 > 1. 

4. Solve ∇𝑈 𝛽( ) 𝑠( ) = −𝑈 𝛽( ) . 

5. Decide whether to take a Newton step, 𝛽( ) = 𝛽( ) + 𝑠( ), or use cubic 

backtracking to choose 𝛽( ). 

The quasi-Newton-Raphson algorithm62 was implemented in R64 version 3.4.2 using 

package nleqslv.65 The initial values of the regression parameters were set such that 

they correspond to their respective means on the data scale. We used finite differences 

to estimate the Hessian matrix; however, for completeness the Hessian matrix can be 

calculated as follows: 

= ∑ 𝜓 𝑒 + ∑ 𝑒 𝒙 𝜷 𝑒 + ∑ 𝑒 𝒙 𝜷 + 𝜓 𝑒 +

∑ 𝑒 𝒙 𝜷 𝑒 + ∑ 𝑒 𝒙 𝜷 − 𝜓 𝑒 𝑒 − 𝜓 𝑒 𝑒 −

∑ 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷 + 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷 −

𝑒 𝒙 𝜷 log − 𝑒 + ∑ 𝑒 𝒙 𝜷 𝑙𝑜𝑔 1 + ∑ ,  



37 

 

= ∑ 𝜓 𝑒 + ∑ 𝑒 𝒙 𝜷 𝑒 + ∑ 𝑒 𝒙 𝜷 ∑ 𝑒 𝒙 𝜷 𝑥 +

𝜓 𝑒 + ∑ 𝑒 𝒙 𝜷 ∑ 𝑒 𝒙 𝜷 𝑥 −

∑ 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷 𝑥 + 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷𝑥 −

𝑒 𝒙 𝜷𝑥 log − ∑ 𝑒 𝒙 𝜷𝑥 𝑙𝑜𝑔 1 + ∑ ,  

for 𝑘 = 1, … , 𝑝,  

= ∑ 𝜓 𝑒 + ∑ 𝑒 𝒙 𝜷 ∑ 𝑒 𝒙 𝜷 𝑥  + 𝜓 𝑒 +

∑ 𝑒 𝒙 𝜷 ∑ 𝑒 𝒙 𝜷 𝑥 − ∑ 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷𝑥 +

𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷𝑥 − 𝑒 𝒙 𝜷𝑥 log −

∑ 𝑒 𝒙 𝜷 𝑥 𝑙𝑜𝑔 1 + ∑ ,  

for 𝑘 = 1, … , 𝑝, and 

= ∑ 𝜓 𝑒 + ∑ 𝑒 𝒙 𝜷 ∑ 𝑒 𝒙 𝜷 𝑥 ∑ 𝑒 𝒙 𝜷 𝑥 +

𝜓 𝑒 + ∑ 𝑒 𝒙 𝜷 ∑ 𝑒 𝒙 𝜷 𝑥 𝑥 −

∑ 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷 𝑥 𝑥 + 𝜓 𝑒 𝒙 𝜷 𝑒 𝒙 𝜷𝑥 𝑥 −

𝑒 𝒙 𝜷𝑥 𝑥 log − ∑ 𝑒 𝒙 𝜷 𝑥 𝑥 𝑙𝑜𝑔 1 +

∑   

for 𝑘 = 1, … 𝑝, 𝑟 = 0, … , 𝑝, such that 𝑘 ≠ 𝑟, 𝜓(∙) is the digamma function, and 𝜓 (∙) is the 

trigamma function. 
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The negation of the Hessian matrix is referred to as the Fisher information matrix. 

We used the inverse of the observed Fisher information matrix as variance-covariance 

estimates (denoted 𝚺) of the regression parameters.  

Lastly, pairwise correlations were calculated as 

[ ] [ ] [ ]
,    for 𝑖 = 1, … , 𝑛 − 1. 

The 𝐸[𝑌 ] = 𝜇 =
𝜷

𝜷
 and 𝜎 =  where 𝛼 = 𝑒 . The 𝐸[𝑌 𝑌 ] requires the 

calculation of a double integral. Specifically, 

 𝐸[𝑌 𝑌 ] = ∫ ∫ 𝑦 𝑦 𝑓 , (𝑦 , 𝑦 )𝑑𝑦 𝑑𝑦  

where 

 𝑓 , (𝑦 , 𝑦 ) =
( )

. 

The double integral was numerically estimated using the “TwoD” algorithm, that is 

Gauss-Konrod with (3,7)-nodes on 2D rectangles implemented in R64 package pracma.66 

Using simulations, Olkin and Liu38 were able to obtain pairwise correlations ranging from 

zero to one. 

 An alternative to constructing a joint pdf to model repeated measures data is 

inducing correlation on univariate marginal distributions through copulas. Lee’s8 

proposed multivariate copula is a flexible copula allowing for negative correlation. 

However, this flexibility comes at the expense of requiring additional parameters for 

model fitting. Section 2.4 focuses on re-parametrizing Lee’s8 proposed multivariate 

copula and reducing the number of parameters required.  
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2.4. Sarmanov-Lee Multivariate Beta (SLMVB) 

Lee8 proposed a multivariate extension to Sarmanov’s7 bivariate family of 

distributions. Lee’s8 multivariate extension is as follows: 

ℎ ,…, (𝑥 , … , 𝑥 ) = ∏ 𝑓 (𝑥 ) 1 + 𝑅 ,…, , (𝑥 , … , 𝑥 )   (2.10) 

where 𝑓 (𝑥 ), … , 𝑓 (𝑥 ) are specified marginal distributions and 

𝑅 ,…, , (𝑥 , … , 𝑥 )

= 𝜔 , 𝜙 𝑥 𝜙 𝑥

+ 𝜔 , , 𝜙 𝑥 𝜙 𝑥 𝜙 𝑥 + ⋯

+ 𝜔 ,…, 𝜙 (𝑥 ) 

with Ω = {𝜔 , , 𝜔 , , , … , 𝜔 ,…, } such that 1 + 𝑅 ,…, , (𝑥 , … , 𝑥 ) ≥ 0 holds for all 

𝑥 ∈ support of 𝑓  for 𝑖 = 1, … , 𝑛. 

The multivariate Beta can be specified by letting the marginal distributions of the joint pdf 

(2.10) be specified as Beta distributions, namely 

 𝑓 (𝑥 ) =
( )

( ) ( )
𝑥 (1 − 𝑥 )        (2.11) 

𝛼 , 𝛽 > 0 and 𝑥 ∈ (0,1) for 𝑖 = 1, … , 𝑛.  

Additionally, the mixing functions, 𝜙 , are defined using Lee’s8 proposed mixing function 

for the bivariate case, i.e.  

𝜙 𝑥 = 𝑥 − 𝜇 ,    for 𝑗 = 1, … , 𝑛 
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where 𝜇 =  such that 𝛼 , 𝛽  are the parameters from the respective marginal Beta 

distributions.  

We re-parameterized the 𝜔’s in terms of correlation parameters, e.g.,  𝜔 , =
,  

and 𝜔 , , =
, ,  where 𝜌 ,  is the correlation between the 𝑖  and 𝑗  marginal 

distribution and 𝜌 , ,  and 𝜎 , 𝜎 , 𝜎  is the correlation and standard deviations, 

respectively, between the 𝑖 , 𝑗 , and 𝑘  marginal distributions. Derivations of this re-

parameterization of the 𝜔′𝑠 were limited to a tri-variate distribution for simplicity; 

however, all formulas presented are easily extended to an 𝑛-variate distribution. The 

following are the derivations of the re-parameterization of the 𝜔’s. 

Define ℎ , , (𝑥 , 𝑥 , 𝑥 ) using equation (2.10) with common marginal 

distributions and the proposed mixing functions, then 

𝐸[𝑋 𝑋 |𝑋 ] = ∫ ∫ 𝑓 (𝑥 )𝑓 (𝑥 )[1 + 𝜔 , (𝑥 − 𝜇 )(𝑥 − 𝜇 ) + 𝜔 , (𝑥 − 𝜇 )(𝑥 −

𝜇 ) + 𝜔 , (𝑥 − 𝜇 )(𝑥 − 𝜇 ) + 𝜔 , , (𝑥 − 𝜇 )(𝑥 − 𝜇 )(𝑥 − 𝜇 )𝑥𝑦𝑑𝑥𝑑𝑦  

= 𝜇 𝜇 + 𝜔 , 𝜎 𝜎 + 𝜔 , 𝜎 𝜇 (𝑥 − 𝜇 ) + 𝜔 , 𝜇 𝜎 (𝑥 − 𝜇 ) +

𝜔 , , 𝜎 𝜎 (𝑥 − 𝜇 ). 

𝐸 𝐸[𝑋 𝑋 |𝑋 ] = 𝐸[𝑋 𝑋 ] = 𝜇 𝜇 + 𝜔 , 𝜎 𝜎 .  

Furthermore, it can be shown that 

𝐸 𝑋 𝑋 = 𝜇 𝜇 + 𝜔 , 𝜎 𝜎 ,    for 𝑖 ≠ 𝑗.     (2.12) 

The univariate expected values for 𝑋  is 

𝐸[𝑋 |𝑋 𝑋 ] = ∫ 𝑓 (𝑥 )[1 + 𝜔 , (𝑥 − 𝜇 )(𝑥 − 𝜇 ) + 𝜔 , (𝑥 − 𝜇 )(𝑥 − 𝜇 ) +

𝜔 , (𝑥 − 𝜇 )(𝑥 − 𝜇 ) + 𝜔 , , (𝑥 − 𝜇 )(𝑥 − 𝜇 )(𝑥 − 𝜇 )𝑥𝑑𝑥  
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= 𝜇 + 𝜔 , 𝜎 (𝑥 − 𝜇 ) + 𝜔 , 𝜎 (𝑥 − 𝜇 ) + 𝜔 , 𝜇 (𝑥 − 𝜇 )(𝑥 − 𝜇 ) +

𝜔 , , 𝜎 (𝑥 − 𝜇 )(𝑥 − 𝜇 ). 

𝐸 𝐸[𝑋 |𝑋 𝑋 ] = 𝐸[𝑋 ] = 𝜇 . 

Which can be generalized to any 𝑋  

𝐸[𝑋 ] = 𝜇 .         (2.13) 

Therefore, 

𝜌 , =
[ ] [ ] [ ]

= 𝜔 , 𝜎 𝜎 . 

Thus, 

𝜔 , = , .           

Using equations (2.12) and (2.13)  

𝜔 , =
,  for 𝑖 ≠ 𝑗.       (2.14) 

The correlation of three marginal distributions can be calculated as follows: 

 𝜌 , =
[( )( )( )]

  

  =
[ ] [ ] [ ] [ ]

  

= 𝜇 𝜇 𝜇 + 𝜔 , 𝜎 𝜎 𝜇 + 𝜔 , 𝜎 𝜇 𝜎 + 𝜔 , 𝜇 𝜎 𝜎 + 𝜔 , , 𝜎 𝜎 𝜎 −

𝜇 𝜇 + 𝜔 , 𝜎 𝜎 𝜇 − 𝜇 𝜇 + 𝜔 , 𝜎 𝜎 𝜇 − 𝜇 𝜇 + 𝜔 , 𝜎 𝜎 𝜇 +

2𝜇 𝜇 𝜇 /𝜎 𝜎 𝜎   

 = 𝜔 , , 𝜎 𝜎 𝜎  

using 
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𝐸[𝑋 𝑋 𝑋 ] = ∫ ∫ ∫ 𝑓 (𝑥 )𝑓 (𝑥 )𝑓 (𝑥 )[1 + 𝜔 , (𝑥 − 𝜇 )(𝑥 − 𝜇 ) +

𝜔 , (𝑥 − 𝜇 )(𝑥 − 𝜇 ) + 𝜔 , (𝑥 − 𝜇 )(𝑥 − 𝜇 ) + 𝜔 , , (𝑥 − 𝜇 )(𝑥 −

𝜇 )(𝑥 − 𝜇 )𝑥𝑦𝑧𝑑𝑥𝑑𝑦𝑑𝑧  

  = 𝜇 𝜇 𝜇 + 𝜔 , 𝜎 𝜎 𝜇 + 𝜔 , 𝜎 𝜇 𝜎 + 𝜔 , 𝜇 𝜎 𝜎 + 𝜔 , , 𝜎 𝜎 𝜎 . 

Therefore, 

𝜔 , , = , ,   

which can be generalized to  

 𝜔 , , =
, ,   for 𝑖 ≠ 𝑗 ≠ 𝑘.      (2.15)  

Equation (2.15) requires the use of higher-order correlations, i.e., the correlation 

between three or more variables. Wang and Zheng67 proposed a multivariate correlation 

coefficient (MCC) that we used to express higher-order correlations in terms of pairwise 

Pearson’s14 correlation coefficients. Specifically, let the entries of matrix 𝑀 be the 

pairwise Pearson’s14 correlation coefficients, i.e., 

 𝑀 =

𝜌 ⋯ 𝜌
⋮ ⋱ ⋮

𝜌 ⋯ 𝜌
=

1 ⋯ 𝜌
⋮ ⋱ ⋮

𝜌 ⋯ 1
 

then 

 𝜌 ,…, = 1 − det (𝑀). 

In the bivariate case, the MCC reduces to Pearson’s14 correlation coefficient. 

Additionally, the pairwise correlations must be restricted to [0,1] for the MCC ∈ [0,1]. 

Letting pairwise correlations be negative produces infeasible MCCs, i.e., MCC ∉ [−1,1].  
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Using the parameterization proposed by Ferrari and Cribari-Neto21 (i.e., 𝜇 =

 and 𝜙 = 𝛼 + 𝛽 ) and re-parametrizing the 𝜔’s in terms of (2.14) and (2.15) leads to 

the SLMVB:  

𝑓 ,…, (𝑥 , … , 𝑥 ) = ∏
( )

( ) ( )
𝑥 (1 − 𝑥 ) ( )

⎩
⎪
⎨

⎪
⎧

1 +

∑ ∑ ,
+

∑ ∑ ∑ , ,
+ ⋯ +

𝜌 ,…, ∏

⎭
⎪
⎬

⎪
⎫

,        (2.16) 

 𝑥 , 𝜇 ∈ (0,1), 𝜌 ∈ [0,1], and 𝜙 ≥ 0 for 𝑖 = 1, … , 𝑛.     

For our purposes, we limited the SLMVB to 4 repeated measures for brevity. By 

imposing a correlation structure we were able to re-express 𝜌 , , … , 𝜌 , , , … , 𝜌 ,…,  in 

terms of a single parameter, 𝜌 using Wang and Zheng’s67 MCC. Restricting the 

correlation to a CS structure leads to the follow parameterizations of the correlation 

variables:  

 𝜌 , = 𝜌 , = 𝜌 , = 𝜌 , = 𝜌 , = 𝜌 , = 𝜌 

 𝜌 , , = 𝜌 , , = 𝜌 , , = 𝜌 , , = (3𝜌 − 2𝜌 )  

 𝜌 , , , = (6𝜌 − 8𝜌 + 3𝜌 )  
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Furthermore, if we impose an AR(1) correlation structure, the correlations can be 

expressed as follows: 

 𝜌 , = 𝜌| | 

 𝜌 , , = 𝜌 , , = (2𝜌 − 𝜌 ) , 𝜌 , , = 𝜌 , , = (𝜌 + 𝜌 − 𝜌 )   

 𝜌 , , , = (3𝜌 − 3𝜌 + 𝜌 )  

Thus, using the joint distribution (2.16), either correlation structure (CS or AR(1)), and 

the notation of Section 2.2 the likelihood can be written as follows: 

𝐿(𝝁, 𝝓, 𝜌; 𝒀) = ∏

⎣
⎢
⎢
⎢
⎡

∏ 𝑦 1 − 𝑦

⎩
⎪
⎨

⎪
⎧

1 +

∑ ∑ ,
+

∑ ∑ ∑ , ,
+ ⋯ +

𝜌 ,…, ∏

⎭
⎪
⎬

⎪
⎫

⎦
⎥
⎥
⎥
⎤

, 

where 𝝁 =

𝜇 ⋯ 𝜇
⋮ ⋱ ⋮

𝜇 ⋯ 𝜇
, 𝝓 = (𝜙 , … , 𝜙 )′, and 𝒀 = (𝒀 , … , 𝒀 )′.  

Similar to the LNMVB, link functions were required to guarantee the regression 

parameters map to the domain of their respective parameter. Therefore, the regression 

model is obtained by assuming that the mean of 𝑦  can be expressed as 

 𝑔 𝜇 = 𝜂 = ∑ 𝑥 𝛽 , for 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝑛 
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and the precision parameter can be written as 

 ℎ 𝜙 = 𝜉 = 𝛽 , for 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝑛. 

As with the LNMVB we let 𝑔(∙) be the logit-link function and ℎ(∙) be the log-link function. 

The log-likelihood of the SLMVB with regression parameters and specified link functions 

can be expressed as: 

𝑙 𝜷, 𝜷 ; 𝑿, 𝒀 = ∑

⎣
⎢
⎢
⎢
⎡

∑ 𝑙𝑜𝑔Γ 𝑒 − 𝑙𝑜𝑔Γ
𝒙 𝜷

𝒙 𝜷
− 𝑙𝑜𝑔Γ

𝒙 𝜷
+

𝒙 𝜷

𝒙 𝜷
− 1 log 𝑦 +

𝒙 𝜷
− 1 log 1 − 𝑦 + log

⎩
⎪
⎨

⎪
⎧

1 +

𝜌 ,

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

+ ⋯ +

𝜌 ,

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

+

𝜌 , ,

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

+ ⋯ +
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𝜌 , ,

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

+

𝜌 , , ,

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎝

⎜
⎛

𝒙 𝜷

𝒙 𝜷

𝒙 𝜷
𝒙 𝜷

⎠

⎟
⎞

⎭
⎪
⎬

⎪
⎫

where 𝜷 = 𝛽 , … , 𝛽  and 𝜷 = 𝛽 , … , 𝛽  and 𝜌 is defined using either the CS 

or AR(1) structure.  

 Due to the complexity of the log-likelihood, we limited the derivations of the score 

equations and the Hessian matrix to the model that was fit under simulations (Section 3) 

and the clinical data (Section 4). In both Section 3 and Section 4 we fit a treatment by 

time interaction model with two treatments and four repeated measures. Therefore, 𝜷 =

(𝛽 , … , 𝛽 )  and 𝜷 = (𝛽 , … , 𝛽 )  with 𝜂 = 𝛽 + 𝛽 𝑥 , … , 𝜂 = 𝛽 + 𝛽 𝑥  being the 

regression parameters for each repeated measure such that 𝑥  for 𝑖 = 1, … , 𝑁 and 𝑗 =

1, … ,4 is an indicator variable for treatment group. Furthermore, 𝜉 = 𝛽 , … , 𝜉 = 𝛽  for 

𝑖 = 1, … , 𝑁 are the nuisance parameters for the precision of each repeated-measure. 

The score equations for the treatment by time interaction model are as follows: 

𝑈 = = ∑ −𝜓 +

𝜓 + log + ; 

for 𝑘 = 1, … ,4 

where 
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𝑅 = 1 + 𝜌 ,

⎝

⎜
⎛

⎠

⎟
⎞

⎝

⎜
⎛

⎠

⎟
⎞

+ ⋯ +

𝜌 ,

⎝

⎜
⎛

⎠

⎟
⎞

⎝

⎜
⎛

⎠

⎟
⎞

+

𝜌 , ,

⎝

⎜
⎛

⎠

⎟
⎞

⎝

⎜
⎛

⎠

⎟
⎞

⎝

⎜
⎛

⎠

⎟
⎞

+

⋯ +

𝜌 , ,

⎝

⎜
⎛

⎠

⎟
⎞

⎝

⎜
⎛

⎠

⎟
⎞

⎝

⎜
⎛

⎠

⎟
⎞

+

𝜌 , , ,

⎝

⎜
⎛

⎠

⎟
⎞

⎝

⎜
⎛

⎠

⎟
⎞

⎝

⎜
⎛

⎠

⎟
⎞

 ×

⎝

⎜
⎛

⎠

⎟
⎞

,   

 

⎝

⎜
⎛

⎠

⎟
⎞

= ,    (2.17) 

and 𝜓(∙) is the digamma function. Note that by substituting (2.17) into 𝑅 for the 

appropriate terms and dropping terms that do not contain 𝛽  yields  . 
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𝑈 = = ∑ −𝜓 𝑥 +

𝜓 𝑥 + log 𝑥 +

;  for 𝑘 = 1, … ,4,  

where 𝑅 was previously defined, and   

⎝

⎜
⎛

⎠

⎟
⎞

= 𝑥   

was used to derive  as previously described. 

𝑈 = = ∑ 𝜓 𝑒 𝑒 − 𝜓 −

𝜓 + log(𝑦 ) +

log(1 − 𝑦 ) + ;  for 𝑘 = 1, … ,4,  

and  

 

⎝

⎜
⎛

⎠

⎟
⎞

   

  =

⎝

⎜
⎛

⎠

⎟
⎞
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was used to derive  using the aforementioned procedure. 

The MLE for the parameters (excluding the correlation parameter) were found by 

setting the score equations equal to zero and solving for the respective parameter. As 

with the LNMVB, there is no closed form solution for the MLEs. Before using the quasi-

Newton-Raphson algorithm62 (Section 2.3) to estimate the MLEs of the parameters, the 

correlation parameter was estimated using Methods of Moments.68 Specifically, 𝜌 , , , =

1 − det (𝑀) is solved for 𝜌 where 𝜌 , , ,  is defined using either the CS or AR(1) structure 

and 𝑀 is the correlation matrix of the data. 𝜌 is replaced by 𝜌 in the score equations and 

the 𝛽’s are estimated using the quasi-Newton-Raphson algorithm.62 Similar to the 

estimation procedure of the LNMVB, the Hessian matrix was estimated using finite 

differences. The analytic entries of the Hessian matrix are given for completeness.  

= ∑ 𝜓 − 𝜓 +

𝜓 − 𝜓 +

log + ; for 𝑘 = 1, … ,4,  

where 𝜓(∙) is the digamma function, 𝜓 (∙) is the trigamma function, 𝑅 and  are 

previously defined (see score equations),  

⎝

⎜
⎛

⎠

⎟
⎞

= ,   (2.18) 
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and  can be calculated by substituting (2.18) into 𝑅 for the appropriate terms and 

dropping terms that do not contain 𝛽 . 

= 𝑥 ; for 𝑘 = 1, … ,4,  

= ∑ 𝜓 +

𝜓 − 𝜓 −

𝜓 + ; for 𝑘 = 1, … ,4,  

where  is previously defined, 

⎝

⎜
⎛

⎠

⎟
⎞

= 𝑒 , 

and  can be calculated using the aforementioned procedure.  

= ;  for 𝑟 ≠ 𝑘, 𝑟 ≠ 𝑘 + 4; 𝑟 ≠ 𝜙 , 

where  can be calculated by substituting  into  for the appropriate terms and 

dropping terms that do not contain 𝛽 . 
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= ∑ 𝜓 − 𝜓 𝑥 +

𝜓 − 𝜓 +

log 𝑥 + ; for 𝑘 = 1, … ,4, 

where  was calculated for the score equations and = . 

= 𝑥 ;  for 𝑘 = 1, … ,4. 

= 𝑥 ; for 𝑘 = 1, … 4. 

= 𝑥 ; for 𝑟 ≠ 𝑘, 𝑟 ≠ 𝑘 + 4; 𝑟 ≠ 𝜙 . 

= ∑ 𝜓 +

𝜓 − 𝜓 −

𝜓 + log + ; for 𝑘 = 1, … ,4,   

⎝

⎜
⎛

⎠

⎟
⎞

= ,   

and  can be calculated as previously described. 

= 𝑥 ; for 𝑘 = 1, … ,4. 
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= ∑

⎣
⎢
⎢
⎡
𝑒 𝜓 𝑒 𝑒 + 𝜓 𝑒 −

𝜓 +

𝜓 − 𝜓 +

𝜓 + log(𝑦 ) + log(1 −

𝑦 ) +

⎦
⎥
⎥
⎤
; for 𝑘 = 1, … ,4, 

⎝

⎜
⎛

⎠

⎟
⎞

=

,   

and  can be determined using formerly described procedure. 

= ;  for 𝑟 ≠ 𝑘, 𝑟 ≠ 𝑘 + 4; 𝑟 ≠ 𝜙 , 

where  can be calculated by substituting  into  for the appropriate terms 

and dropping terms that do not contain 𝛽 . Similar to the LNMVB regression model, we 

used the inverse of the observed Fisher information matrix as variance-covariance 

estimates of the regression parameters. 
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 Due to the complexity of the copula, determining the maximum obtainable 

correlation can be established using linear programming. Specifically, we can maximize 

the objective function, 𝜌, with the following constraints:  

 1 + 𝑅 ,…, , (𝑥 , … , 𝑥 ) ≥ 0 

 𝑥 ∈ (0,1) 

 𝑎 , 𝑏 > 0, 𝜌 ≥ 0; for 𝑖 = 1, … , 𝑛. 

In the function 𝑅 ,…, , (𝑥 , … , 𝑥 ), the 𝜔′𝑠 are parametrized in terms of 𝜌 using 

equations (2.14) and (2.15), 𝜇 = , and 𝜎 =
( ) ( )

. Under these 

constraints, both the CS and AR(1) structures have a correlation range of [0,1]. The 

maximum correlation can be obtained either as 𝛼 , 𝛽 → 0 or 𝛼 , 𝛽 → ∞ for 𝑖 = 1, … , 𝑛 

using both correlation structures. Unfortunately, negative correlations were not possible 

because of the restriction imposed by the MCC. The above described linear 

programming problem was implemented in R64 using package NLOPTR69 using the 

Improved Stochastic Ranking Evolution Strategy algorithm. 

 In this Section, we have developed two models for Beta distributed repeated 

measures data whose regression parameters can be estimated using the maximum 

likelihood estimation method. We established that both the LNMVB and the SLMVB are 

limited to positive correlations. However, the SLMVB’s likelihood is more complicated 

than the likelihood of the LNMVB, and the SLMVB requires additional parameters 

compared to the LNMVB. In the next Section, we determined the performance of these 

two models and compared their performance to the alternatives, i.e., the Beta GLMM 

and the Beta GEE.  
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3. Simulation Study 

3.1. Introduction 

Simulations were completed to establish and compare the performance of our 

proposed models (i.e., LNMVB and SLMVB) to the Beta GEE and the Beta GLMM in the 

case of correlated outcomes. We studied the effects of varying sample sizes, the 

strength of correlation amongst repeated measures, the correlation structure, location 

parameter, and the number of treatment groups. The type I error, power, 95% coverage 

probabilities, the percent samples for which convergence was reached, mean bias of the 

location and correlation parameters, and root mean squared deviation (RMSD) were 

used to quantify the behavior of the methods.  

3.2. Design of simulation study 

Two types of simulations were performed; we examined a single group (i.e., time 

effect only) and we examined two groups (i.e., a treatment by time interaction). We begin 

by describing the single group simulation. Assuming a balanced design with subjects 

being measured at evenly spaced fixed intervals, we generated data for 𝑁 = 15, 30, 50, 

and 100 subjects, using the following model: 

log = 𝛽 + 𝛽 ∗ 𝑡𝑖𝑚𝑒 + 𝛽 ∗ 𝑡𝑖𝑚𝑒 + 𝛽 ∗ 𝑡𝑖𝑚𝑒    (3.1a) 

𝑌 ~𝐵𝑒𝑡𝑎(𝜇 , 𝜙)        (3.1b) 

for subjects 𝑖 = 1, … , 𝑁 and measurements 𝑗 = 1, … ,4 such that the Beta density (3.1b) 

was parameterized using the form in (1.4). We allowed the mean to vary among subjects 

and measurements while holding the standard deviation fixed at 0.01. The parameter 𝛽  

was varied by simulation such that 𝜇 = 0.05, 0.3, or 0.5 (for brevity; see limitations for 

𝜇 → 1) for 𝑖 = 1, … , 𝑁. The parameters 𝛽  and 𝛽  were set to zero to keep the first three 
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repeated measures stationary and the parameter 𝛽  was adjusted for desired effect size 

(adapting Cohen’s70 definition of effect size for repeated-measures) to establish type I 

error and power. Effect sizes ranged from 0 to 1 using an interval of 0.1. Measurements 

on the same subject were correlated. We varied the strength of correlation according to 

Cohen’s70 recommendation, i.e., small = 0.1, medium = 0.3, and large = 0.5. 

Additionally, we used two different correlation structures, AR(1) and CS.  

For the two group simulation, we modified equation (3.1a) to include a treatment 

group. Specifically, 

 log = 𝛽 + 𝛽 ∗ 𝑡𝑖𝑚𝑒 + 𝛽 ∗ 𝑡𝑖𝑚𝑒 + 𝛽 ∗ 𝑡𝑖𝑚𝑒 + 𝛽 ∗ 𝑡𝑟𝑡 + 𝛽 ∗ 𝑡𝑟𝑡 ∗

𝑡𝑖𝑚𝑒 + 𝛽 ∗ 𝑡𝑟𝑡 ∗ 𝑡𝑖𝑚𝑒 + 𝛽 ∗ 𝑡𝑟𝑡 ∗ 𝑡𝑖𝑚𝑒     (3.2) 

for subjects 𝑖 = 1, … , 𝑁 and measurements 𝑗 = 1, … ,4 where 𝑁 = 12, 30, 50, and 100 

equally distributed across the two treatment groups (𝑡𝑟𝑡 = 0 or 1). The parameter 𝛽  

was defined as described above, the parameters 𝛽 , … , 𝛽  were set to 0 (i.e., stationary 

means across repeated measures and treatment groups), and the parameter 𝛽  was 

adjusted for desired effect sizes (between groups) as previously described. One 

thousand replicates were performed using all possible combinations of the parameters 

(see Table 3.1). 

Table 3.1  Simulation parameters. 

# of 
treatment 

groups 
Correlation 
structures 

Stationary 
mu 𝝆 

Effect 
sizes Total N 

1 AR(1), CS 0.05, 0.3, 0.5 0.1, 0.3, 0.5 0, 0.1, …, 1 15, 30, 50, 100 
2 AR(1), CS 0.05, 0.3, 0.5 0.1, 0.3, 0.5 0, 0.1, …, 1 12, 30, 50, 100  

3.3. Simulation of data 

To generate dependent data, correlated Gaussian data were transformed to Beta 

distributed data. First, a target correlation structure was specified in matrix form such 
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that the entries of the matrix are 𝜌  for 𝑖, 𝑗 = 1, … ,4. Using the Nataf model,22 the 

correlation coefficient  𝜌  of each pair (𝑖, 𝑗) of the Beta random variables were adjusted 

to form the correlation coefficient 𝜌  of a pair of Gaussian random variables. Using a 

non-linear solver (package nleqslv65), for each 𝜌  the following equation was solved: 

∫ ∫ 𝜑 𝐻 , 𝐻 , 𝜌 𝑑𝐻 𝑑𝐻 − 𝜌 = 0; for 𝑖, 𝑗 = 1, … 4 

where the values of the Beta random variables 𝐻 , 𝐻  (with means 𝜇 , 𝜇  and standard 

deviations 𝜎 , 𝜎 ) are expressed in terms of standard Gaussian variables, i.e., 𝐻 =

𝐺 [Φ 𝐻 ] such that 𝐺 (∙) is the inverse Beta density, Φ(∙) is the standard Normal 

cumulative density function, and 𝜑(∙) is the standard bivariate Normal density.22 Next, a 

Cholesky factorization was performed on the correlation matrix, 𝑪 = 𝑺𝑺′,  whose entries 

are 𝜌 . Furthermore, 4𝑁 independent standard Normal random variables were 

generated, denoted 𝒀, such that 𝒀 is a matrix with 𝑁 rows and 4 columns. Dependent 

data, 𝒀′, were generated using the Cholesky factorization and standard Normal random 

variables, i.e., 𝒀 = 𝑺𝒀.71 Lastly, 𝒀  were transformed to Beta random variables using 

𝑌 = 𝐺 [Φ 𝑌 ′ ] for 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … ,4. Data were generated separately for 

each treatment group. 

3.4. Model fitting 

Model fitting was performed using R64 version 3.3 on a Linux high performance 

computer. Results were then compiled using R64 version 3.4.2 on a Windows 10 PC. 

Algorithms and R64 packages used to fit the LNMVB and SLMVB are described in detail 

in Section 2.3 and 2.4, respectively. The R64 package geeM72 was used to fit the Beta 

GEE and the R64 package GLMMadaptive73 was used to fit the Beta GLMM. The link 

function, inverse link function, inverse link function derivative, and variance function were 
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user specified for the Beta GEE. These functions were established assuming a logit link 

function for the mean response. Default settings were used for the geem and 

mixed_model procedures from the package geeM72 and GLMMadaptive73, respectively. 

By default the geem procedure calculates robust standard errors and the mixed_model 

procedure uses 11 quadrature points to estimate the integral during model estimation. 

Additionally, a user defined family was specified for the mixed_model procedure. For the 

user defined family, the Beta density was parameterized using equation (1.4), and a logit 

link and log link were used for the parameters 𝜇 and 𝜙, respectively. 

3.5. Metrics 

Type I error and power are established using the F-test. Specifically, the F-

statistic is calculated as: 

𝐹 =
𝑳𝜷 𝑳𝚺𝑳 (𝑳𝜷)

, 

where 𝜷 is a vector of the estimated regression parameters, 𝚺 is the estimated variance-

covariance matrix, 𝑳 is a contrast that corresponds to the appropriate hypothesis, and 𝑑𝑓 

are the degrees of freedom. Under the model framework (3.1a),  

 𝑳 =
0 1
0 0
0 0

     
0 0
1 0
0 1

 

which corresponds to the null  hypothesis 𝛽 = 𝛽 = 𝛽 = 0, i.e., there is no time effect. 

For the model (3.2) 

   𝑳 =
0 0
0 0
0 0

     
0 0
0 0
0 0

     
0 1
0 0
0 0

     
0 0
1 0
0 1

 

which tests the hypothesis 𝛽 = 𝛽 = 𝛽 = 0, i.e., there is no 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑥 𝑡𝑖𝑚𝑒 

interaction. The F-statistic was then compared to the F-distribution with 3 numerator 
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degrees of freedom (i.e., number of repeated measures minus one times number of 

groups minus one (if more than one group)) and (𝑁 − 𝐺)(𝑗 − 1) denominator degrees of 

freedom where 𝑁 is the number of subjects, 𝐺 is the number of groups, and 𝑗 is the 

number of repeated measurements per subject. Type I error is the percent of F-tests < 

𝛼-level when the effect size is zero. Similarly, power is the percent of F-tests < 𝛼-level 

for the respective effect size. If 𝚺 was singular, then we considered the F-test > 𝛼-level. 

 Coverage probabilities and mean length of confidence intervals were calculated 

using Wald-type confidence intervals. Confidence intervals were constructed for each 

group’s 𝜇  (𝑗 = 1, … ,4) as follows:   

𝑳 𝜷 ± 𝑡 , 𝑳 𝚺𝑳 ′ ,  

for 𝑘 = 1, … ,4 (one treatment group) or 𝑘 = 1, … ,8 (two treatment groups)  

where 𝑡  is the 100𝑝  percentile of the standard t distribution with 𝑑𝑓 = (𝑁 − 𝐺)(𝑗 − 1) 

degrees of freedom and 𝐿  is the contrast for the respective 𝜇 . The confidence intervals 

were then back transformed to the data scale using the inverse logit function. The 

coverage probabilities are the percent of expected 𝜇’s that are within their respective 

confidence intervals. If 𝚺 was singular, then we considered that the confidence interval 

did not cover the expected 𝜇(𝑠) for that replicate. Furthermore, percentage of missing 

standard errors (SEs) were calculated. 

 Bias and RMSD were calculated on the data scale. When calculating the bias 

and RMSD of the location parameter, metrics were calculated separately for each group 

and time point. Mean bias was calculated as 

 
∑

,  
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where 𝜃  is the estimated parameter and 𝜃  is the expected value for the ith replicate. 

RMSD was estimated as 

 
∑

. 

Both the LNMVB and GLMM required additional calculations to estimate 𝜃 when 

calculating the bias of the correlation. Estimated pairwise correlations were calculated 

for the LNMVB as described in Section 2.3. The parameter estimate, 𝜃, was then 

estimated as the average of these pairwise estimated correlations. According to 

Nakagawa and colleagues74 the correlation of a GLMM can be estimated as 

 𝜌 =  

where 𝜎  is the variance of the random effect and 𝜎  is the variance of the model errors. 

Assuming the errors are Beta distributed and the Beta density is parametrized using 

equation (1.4), then using the delta method 𝜎  is calculated as 

 
( )

1 −
( ) ( )

 

such that 𝜇 and 𝜙 are back transformed to the data scale using the inverse logit function 

and exponential function, respectively. 

 We assumed an 𝛼-level of 0.05 for all statistical tests. When reporting results we 

focused on small (i.e., 0.2), medium (i.e., 0.5), and large (i.e., 0.8) effect sizes. Full 

results (excluding bias of correlation parameter) for one group with AR(1) correlation 

structure are reported in Appendix A. Full results (excluding bias of correlation 

parameter) for two groups with AR(1) correlation structure are reported in Appendix B. 

Results are not reported for bias of correlation parameter in appendices because 

Section 3.6 sufficiently describes in detail said results. For the two-group simulation, 
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results are reported only for the group with non-stationary location parameter in 

Appendix B. There appeared to be little difference in the pattern of results between the 

groups in the two-group simulation. For brevity, results for CS correlation structure are 

not included in the appendices since the correlation structure did not appear to have a 

substantial impact on the results. Full results can be obtained by contacting the author. 

For convenience and to aid in explanation, Figures A.1 through A.3 of Appendix A are 

reported in text of Section 3.6.1 as Figures 3.1 through 3.3.  

3.6. Results 

3.6.1. One group: 𝜇 = 0.05, AR(1) correlation 

[refer to Figures A.1 through A.12] 
 

When the stationary mean was 0.05, and the correlation was 0.1, the LNMVB had 

a Type I error rate near 5% across all the sample sizes (see Figure 3.1 or Figure A.1). 

The Beta GLMM had an inflated Type I error when the sample size was 𝑁 = 15 (i.e., 

7.4%); however, for the sample sizes 𝑁 = 30, 50, and 100 the Type I error and power 

curves were similar to those of the LNMVB though slightly inflated in comparison (Figure 

3.1 or Figure A.1). The Beta GEE did not achieve nominal Type I error and had a Type I 

error rate > 10% when the sample size was small, i.e., 𝑁 = 15 (Figure 3.1 or Figure 

A.1). The SLMVB models never achieved nominal Type I error. For the sample size 𝑁 =

15, the SLMVBs’ Type I error was > 20% and increased as 𝑁 increased for both the 

SLMVB CS and SLMVB AR1 (Figure 3.1 or Figure A.1).  

For the correlations 𝜌 = 0.3 and 0.5, both the Beta GLMM and Beta GEE had 

inflated Type I error rates when the sample size was small (i.e., 𝑁 ≤ 30). However, as 

the sample size increased, the Type I error rate approached 5% with the Beta GEE Type 

I error rate being more inflated than that of the Beta GLMM. When 𝜌 = 0.5, neither the 
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Beta GLMM or Beta GEE achieved a nominal Type I error rate. The LNMVB had a Type 

I error rate < 5% across all sample sizes for 𝜌 = 0.3 or 0.5, and the SLMVB models had 

highly inflated Type I error rates displaying the same trend as when the correlation was 

0.1. 

 

 

Figure 3.1  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.1.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out 
of 1000 replicates. Effect size 0 represents the Type I error. SLMVB 
models did not converge for all replicates; estimates of the power may 
be biased. 
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When the strength of correlation was 0.1, 0.3, or 0.5, the LNMVB, Beta GLMM, 

and Beta GEE displayed similar coverage probabilities (see Figure 3.2 or Figure A.2 for 

coverage probabilities when the correlation was small). Specifically, when the sample 

size 𝑁 was small, the coverage probabilities were slightly < 95% and as 𝑁 → 100 the 

coverage probabilities approached 95%. For the SLMVB models, the coverage 

probabilities were < 90% for all combinations of correlations and sample sizes (Figure 

3.2 or Figure A.2 excludes data points whose coverage probabilities were < 90%).  

The mean bias and the RMSD of the location parameter were near zero for the 

LNMVB, Beta GLMM, and Beta GEE across all correlations and sample sizes, while the 

SLMVB models had a mean bias and RMSD of the location parameter further from zero 

than the other three models. In many cases, the mean bias of the location parameter of 

the SLMVB models were > 0.02 which is at least 2 standard deviations from the mean. 

In Figure 3.3 (small correlation), the increased bias is most evident when the sample 

size was 𝑁 = 15. Figure A.4 of Appendix A (RMSD, small correlation) displays the same 

general pattern as Figure 3.3 or Figure A.3; however, the scales between the mean bias 

and the RMSD are different.  

The Beta GEE’s mean bias of the correlation parameter was consistently near 

zero, while the Beta GLMM slightly overestimated the correlation parameter when 𝜌 =

0.1 and underestimated the correlation parameter when the correlation was 𝜌 = 0.3 or 

0.5. The SLMVB models overestimated the correlation parameter with the amount of 

overestimation decreasing as 𝜌 increased. The correlation parameter was not able to be 

estimated under the LNMVB model since the integral could not be approximated.  
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Figure 3.2 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 
𝜌 = 0.1. 

If Hessian matrix was singular, we considered effected estimates to 
not contain the true parameter value.  
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Figure 3.3  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.1. 
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To summarize, the LNMVB had Type I error rates near or below 5%, coverage 

probabilities that approached 95% as the sample size 𝑁 increased, and unbiased 

estimation of the location parameter. However, the correlation parameter could not be 

estimated. The SLMVB models had markedly inflated Type I error rates, coverage 

probabilities < 90%, and biased estimates of the location and correlation parameters. 

Furthermore, the SLMVB models had convergence issues that worsened as the strength 

of correlation increased. The Beta GLMM performed similarly to the LNMVB, except the 

Beta GLMM had an inflated Type I error rate under certain conditions, and the Beta 

GLMM was better able to estimate the correlation parameter. Lastly, the Beta GEE had 

mean bias near zero for both the location and correlation parameter and coverage 

probabilities that approached 95% as sample size increased. However, the Beta GEE 

had the most inflation of the Type I error rate when compared to the LNMVB and Beta 

GLMM. 

3.6.2. One group: 𝜇 = 0.3, AR(1) correlation 

[refer to Figures A.13 though A.24] 
 

With a stationary mean of 0.3, the Beta GLMM had a Type I error rate between 

5% and 8.1% for all correlations and sample sizes with the Type I error decreasing as 

the sample size increased. The SLMVB models had inflated Type I error rates that 

increased as sample size increased, regardless of the strength of the correlation. 

Additionally, the power of the SLMVB models was the lowest of all the models. The Beta 

GEE had an inflated Type I error rate across all the correlations and the sample sizes, 

with the amount of inflation decreasing as the sample size increased. For example, 

when the sample size was 𝑁 = 15, the Beta GEE had a Type I error rate > 10% that 

decreased to ≈ 6.5% across all correlations. The LNMVB’s Type I error decreased as 

the sample size 𝑁 increased. The power curves of the LNMVB model were similar to 
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that of the Beta GLMM. For correlations 0.1 and 0.3, the LNMVB’s Type I error was 

slightly inflated compared to the Beta GLMM, and for correlation 0.5 the Beta GLMM’s 

Type I error was slightly inflated compared to the LNMVB. 

The Beta GLMM and SLMVB models consistently had coverage probabilities <

90%. The Beta GEE tended to underestimate the 95% coverage probabilities. The 

amount of underestimation tended to decrease as the sample size 𝑁 increased. 

Specifically, for 𝑁 = 15, the minimum coverage probability across repeated measures 

was approximately 91%, and for 𝑁 = 100 the minimum coverage probability across 

repeated measures was about 93%. The LNMVB tended to overestimate coverage 

probabilities for the small and the medium correlations, regardless of the sample size. 

For 𝜌 = 0.5 the LNMVB coverage probabilities were similar to that of the Beta GEE 

coverage probabilities, i.e., a slight underestimation that approached 95% as the sample 

size increased. 

The LNMVB and Beta GEE had both a mean bias and a RMSD of the location 

parameter near zero for all correlations and sample sizes. The Beta GLMM 

overestimated the true value of the location parameter often by 0.02 or more (i.e., by 2 or 

more standard deviations). The SLMVB models mean bias of the location parameter 

was near zero for correlations 𝜌 = 0.1 and 0.3; however, for the correlation 𝜌 = 0.5 and 

the sample sizes ≤ 30 the SLMVB models produced biased estimates of the location 

parameter. Furthermore, unbiased estimates of the location parameter did not always 

result in a RMSD near 0. In the cases of biased estimates under the SLMVB models, the 

bias was < 0.02. 

Only the Beta GEE’s estimates of the correlation parameter were consistently 

near the true value. The SLMVB models’ mean bias of the correlation parameter 

approached 0 as 𝑁 increased with the SLMVB CS model slightly underestimating the 
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true value for the sample size 𝑁 = 100. The Beta GLMM significantly overestimated the 

correlation parameter, and the LNMVB did not produce valid estimates. 

In summary, the LNMVB had Type I error rates that approached the nominal 

Type I error rate (but never reached 5%) as the sample size increased. Additionally, the 

mean bias and the RMSD of the location parameter were near zero; however, the 

LNMVB was not able to estimate the correlation parameter. The SLMVB models had 

Type I error rates that increased as 𝑁 increased; however, this did not result in an 

increase in power. The coverage probabilities were consistently < 90% with some 

estimates of the location and correlation parameters being biased. Again, the SLMVB 

models had convergence issues that worsened as the strength of the correlation 

increased. The Beta GLMM had Type I error rates near 5% as the sample size 

increased; however, estimates of the location and correlation parameters were 

significantly biased, and the coverage probabilities were < 90%. The Beta GLMM had 

100% model convergence; however, there were issues with the estimation of the 

Hessian matrix. The Beta GEE had an inflated Type I error rate whose amount of 

inflation decreased as the sample size 𝑁 increased, but never reached 5%. The 

coverage probabilities approached 95% as 𝑁 increased with coverage probabilities 

tending to be slightly < 95%. However, the mean bias and the RMSD of the location and 

the correlation parameters were invariably near zero. 

3.6.3. One group: 𝜇 = 0.5, AR(1) correlation 

[refer to Figures A.25 through A.36] 
 

With a stationary mean of 0.5 and a correlation of 0.1, neither the LNMVB, Beta 

GLMM, nor Beta GEE was able to achieve the nominal 5% Type I error rate. The Beta 

GLMM had the least inflated Type I error rate of the three models. The Beta GLMM and 
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Beta GEE had Type I error rates > 10% that decreased to 6.1% and 7%, respectively, as 

the sample size increased. The LNMVB Type I error rate was consistently near 10% 

regardless of the sample size. As 𝜌 increased, the LNMVB was closest of the three 

models to the nominal 5% Type I error rate for the smaller sample sizes; however, for 

the larger sample sizes the Beta GLMM and Beta GEE had the lowest Type I error rates 

with the Beta GLMM tending to be less inflated than that of the Beta GEE. The SLMVB 

models had inflated Type I error rates that increased as the sample size increased; 

however, this did not necessarily coincide with an increase in power. The Beta GLMM 

also experienced a reduction in power for larger effect sizes when 𝜌 = 0.3 or 0.5 due to 

convergence issues.   

The LNMVB had coverage probabilities > 95% for all the correlations and the 

sample sizes with the amount of overestimation decreasing as the correlation increased. 

Neither the SLMVB AR(1) or CS reached 90% coverage regardless of the simulation 

scenario. Rarely did the Beta GLMM have coverage probabilities > 90%. For the Beta 

GEE, the coverage probabilities approached 95% as 𝑁 increased with a minimum 

coverage probability near 91%. 

The mean bias of the location parameter was near 0 under the LNMVB modeling 

framework. For the SLMVB models, an increase in the correlation caused an 

overestimation of the location parameter on average with the overestimation 

approaching 0.006 (i.e., 3/5th of a standard deviation) for 𝜌 = 0.5. The Beta GLMM 

tended to slightly overestimate the value of the location parameter when 𝜌 = 0.1 or 0.3 

and scarcely underestimate when 𝜌 = 0.5 (up to 1/10th of a standard deviation in either 

direction). The Beta GEE produced unbiased estimates of the location parameter on 

average across all the correlations and the sample sizes. The RMSD correlated with the 
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mean bias results of the location parameters, i.e., biased estimates were associated with 

increases in RMSD. 

The Beta GEE was the only model that was able to estimate the true value of the 

correlation parameter consistently. The SLMVB models correctly estimated the 

correlation parameter as 𝑁 and or 𝜌 increased with the SLMVB CS being less biased 

than the SLMVB AR(1) on average. The Beta GLMM had extremely biased estimates (≈

0.5), and the LNMVB did not produce estimates across all combinations of correlations 

and sample sizes. 

 In conclusion, the LNMVB tended to have the lowest Type I error rates for the 

smaller sample sizes, while the Beta GLMM and Beta GEE had Type I error rates 

closest to nominal for the larger sample sizes. The Beta GLMM and SLMVB models had 

the least power, primarily as the correlation increased which appeared to be related to 

convergence issues. The LNMVB and Beta GEE were the only models able to produce 

unbiased estimates of the location parameter. The Beta GEE was the single model able 

to provide unbiased estimates of the correlation parameter consistently; however, the 

SLMVB models did produce unbiased estimates of the correlation parameter as the 

sample size and or the correlation increased. Furthermore, the Beta GEE had coverage 

probabilities closet to the desired 95%; while the LNMVB tended to have coverage 

probabilities > 95% that approached 95% as the strength of the correlation increased. 

The Beta GLMM and SLMVB models generally had coverage probabilities < 90%.  

3.6.4. One group: 𝜇 = 0.05, CS correlation 

The LNMVB had a Type I error rate slightly less than nominal (i.e., ≈ 4%) when 

the correlation was 0.1, had a Type I error rate near 2% when 𝜌 = 0.3, and approached a 

Type I error rate of 0% when 𝜌 = 0.5. Under the LNMVB model, there was a noticeable 
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decrease in power, as expected, for Type I error rates < 3%. The SLMVB models Type I 

error rate ranged between 10% and 70% across all the correlations and the sample 

sizes, thereby artificially inflating the power. Both the Beta GLMM and Beta GEE 

approached a Type I error rate of 5% as the sample size increased; however, the Type I 

error rate of the Beta GEE was more inflated compared to the Beta GLMM, e.g., at 𝜌 =

0.1, 𝑁 = 15 the Beta GEE had a Type I error of 13.2%, and the Beta GLMM had a Type I 

error of 5.7%. 

The coverage probabilities of the LNMVB, Beta GLMM, and Beta GEE were 

similar across all combinations of parameters, except in one scenario (𝜌 = 0.5, 𝑁 = 100) 

were the Beta GLMM had noticeably lower coverage than the LNMVB and Beta GEE. All 

three aforementioned models had coverage probabilities < 95% when the sample size 

was small (𝑁 = 15 or 30) and approached 95% coverage as the sample size increased 

(excluding the previously mentioned exception for the Beta GLMM). The SLMVB models 

had coverage probabilities < 90% for all combinations of parameters. 

The mean bias of the location parameter was near zero when estimated by the 

LNMVB, Beta GEE, and Beta GLMM. The SLMVB produced biased estimates of the 

location parameter, with the mean bias > 0.06 (i.e., > 6 standard deviations) under 

certain conditions. Not surprisingly, the results for the RMSD of the location parameter 

were similar to that of the results for the mean bias of the location parameter. 

Specifically, the LNMVB, Beta GLMM, and Beta GEE had RMSD of the location 

parameter near zero, and the SLMVB had increased RMSD of the location parameter 

(e.g., > 0.15 for large effect size when 𝜌 = 0.5, 𝑁 = 100). 

Only the Beta GEE was able to produce unbiased estimates of the correlation 

parameter regularly. The Beta GLMM produced slightly biased estimates of the 

correlation parameter with the bias being approximately 0.05 units greater than the true 
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value. Lastly, the SLMVB CS came close to producing unbiased estimates of the 

correlation parameter as the sample size approached 100.  

The LNMVB, Beta GLMM, and Beta GEE had similar performance as measured 

by coverage probabilities, mean bias and RMSD of the location parameter. The Type I 

error and power curves differed between the three models. The LNMVB tended to have 

Type I error closet to nominal with an emphasis to underestimate Type I error as the 

correlation increased. The Beta GLMM approached a Type I error rate of 5% as the 

sample size increased to 𝑁 = 50 and 100, while it required a sample size of 𝑁 = 100 for 

the Beta GEE. However, both the Beta GLMM and Beta GEE Type I error rates were 

more inflated compared to the LNMVB with the Beta GEE having the most inflated Type 

I error rates of the three models. Furthermore, the Beta GEE was the only model whose 

mean bias of the correlation parameter was near zero across all scenarios. Both SLMVB 

models estimates of the location and correlation parameters were biased, Type I error 

rates were inflated, and had convergence issues that worsened as 𝜌 increased. 

3.6.5. One group: 𝜇 = 0.3, CS correlation 

The LNMVB Type I error rate was 8.6% when the sample size was small (i.e., 

𝑁 = 15) and approached 6.6% as sample size increased for correlation 0.1. The LNMVB 

had a Type I error near nominal (4.6% to 5.8%) when 𝜌 = 0.3. When the correlation was 

0.5, the LNMVB Type I error rate was < 5% for all sample sizes. The SLMVB models 

had greatly inflated Type I error rates across all combinations of parameters, excluding 

𝜌 = 0.5. Additionally, the SLMVB models’ power was significantly less than the other 

three models for medium and large correlations. The Beta GEE had inflated Type I error 

rates (> 10% when 𝑁 = 15) that approached ≈ 6% as the sample size 𝑁 approached 

100. There was no pattern to the Beta GLMM’s Type I error rates (i.e., the Type I error 
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did not monotonically decrease as the sample size increased). However, the Beta 

GLMM’s Type I error rates were consistently between the Type I error rates of the 

LNMVB and Beta GEE. 

Only the LNMVB and Beta GEE had coverage probabilities > 90% across all 

scenarios. The LNMVB tended to have coverage probabilities slightly above 95% (when 

𝜌 = 0.1) that decreased to slightly below 95% as 𝜌 increased to 0.5. Whereas the Beta 

GEE tended to have coverage probabilities < 95% at the smaller sample sizes (i.e., 𝑁 =

15 and 30) and coverage probabilities near 95% at the remaining sample sizes (i.e., 𝑁 =

50 and 100) regardless of the correlation. Rarely did the remaining models (SLMVB and 

Beta GLMM) have coverage probabilities > 90%. 

Furthermore, only the LNMVB and Beta GEE were able to produce unbiased 

estimates of the location parameter. On average, the Beta GLMM overestimated the true 

value of the location parameter (by as much as 0.02 or 2 standard deviations), and the 

SLMVB both overestimated and underestimated the value of the location parameter 

depending on the correlation and sample size. As expected, the LNMVB and Beta GEE 

had RMSD of the location parameter consistently near zero. Amongst the Beta GLMM 

and SLMVB models, no model consistently had a RMSD of the location parameter 

nearer to zero.  

The mean bias of the correlation parameter was repeatedly near zero when 

estimated by the Beta GEE. Under the SLMVB models, estimates of the correlation 

parameter became unbiased as the sample size 𝑁 approached 100 with the SLMVB CS 

producing less biased estimates, on average than the SLMVB AR(1). Neither the 

LNMVB nor Beta GLMM was able to yield unbiased estimates of the correlation 

parameter. 
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The LNMVB’s Type I error rate decreased as the correlation increased, with 

small correlations being inflated and medium and large correlations being at or below 

nominal. The SLMVB models tended to have highly inflated Type I error rates that did 

not always correspond to an increase in power. The Beta GEE had Type I error rates >

10% when 𝑁 was small and approached (but never reached) 5% when 𝑁 was large. The 

Beta GLMM did not present a clear pattern to its Type I error rates; however its Type I 

error rates tended to fall between that of the LNMVB and Beta GEE Type I error rates. 

The LNMVB and the Beta GEE were the only models able to produce unbiased 

estimates of the location parameter, and the Beta GEE was the lone model able to 

produce unbiased estimates of the correlation parameter. Additionally, only the LNMVB 

and Beta GEE had coverage probabilities > 90% across all simulations. For small and 

medium correlations, the LNMVB tended to have coverage probabilities closer to 95% 

than those of the Beta GEE; however, for large correlations the opposite was true. 

3.6.6. One group: 𝜇 = 0.5, CS correlation 

The LNMVB, Beta GLMM, and Beta GEE had inflated Type I error rates that 

converged towards 5% as the sample size increased regardless of the strength of the 

correlation. When 𝜌 = 0.1, the Beta GLMM showed the least amount of inflation of its 

Type I error rate, followed by either the LNMVB or Beta GEE depending on sample size. 

Specifically, the LNMVB had less inflated Type I error rates for smaller sample sizes 

compared to the Beta GEE. As the correlation increased, the performance of the LNMVB 

and Beta GEE improved, and the performance of the Beta GLMM worsened as 

measured by Type I error and power. For 𝜌 = 0.3 and 0.5 the LNMVB had the least 

inflated Type I error rates for smaller sample sizes (i.e., 𝑁 ≤ 30) and there was very little 

difference in Type I error rates between the LNMVB, Beta GLMM, and Beta GEE when 

𝑁 ≥ 50. However, the Beta GLMM did have convergence issues that markedly 
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decreased its power. The SLMVB models had inflated Type I error rates that increased 

as the sample size increased for small and medium correlations. For large correlations, 

the SLMVB had flat power curves that corresponded to low convergence rates. 

The LNMVB and Beta GEE consistently had coverage probabilities > 90% 

whereas it was rare for the remaining models to have coverage probabilities > 90%. 

Only for 𝜌 = 0.1 did the Beta GLMM have coverage probabilities > 90%. The LNMVB 

coverage probabilities were usually > 97% when 𝜌 = 0.1 and approached 95% as the 

strength of the correlation increased; sample size had virtually no effect on the coverage 

probabilities of the LNMVB model. The Beta GEE had coverage probabilities < 95% that 

approached 95% as the sample size increased. 

The LNMVB, Beta GLMM, and Beta GEE tended to give unbiased estimates of 

the location parameter, with the Beta GLMM showing some slight bias for a few 

scenarios (< 0.001 or 1/10th of a standard deviation). The SLMVB models’ estimates of 

the location parameter were biased with neither the SLMVB CS nor the SLMVB AR(1) 

consistently performing better than the other. The SLMVB models had the most 

pronounced bias of the location parameter when the correlation was 0.5 with an 

approximate bias of 0.01 or 1 standard deviation. The LNMVB and Beta GEE tended to 

have the lowest RMSD when estimating the location parameter, and the Beta GLMM 

generally had the highest RMSD when estimating the location parameter. 

As has been the trend, the Beta GEE was the only model that was able to 

produce unbiased estimates of the correlation parameter across all correlation values 

and sample sizes. The SLMVB models correctly estimated the correlation parameter as 

𝑁 increased with the SLMVB CS being less biased than the SLMVB AR(1). Neither the 

LNMVB nor Beta GLMM was able to produce estimates of the correlation parameter 

near the true value. 
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To summarize, the strength of the correlation and the sample size determined 

whether the LNMVB, Beta GLMM, or Beta GEE had the lowest Type I error rate 

amongst the three. Generally, the LNMVB was the preferred choice for small sample 

sizes as determined by the Type I error. For the larger sample sizes (i.e., 𝑁 ≥ 50) there 

was little difference in the Type I error rates of the three models; however, the Beta 

GLMM had convergence issues that caused a decrease in power. The SLMVB models 

had inflated Type I error rates when 𝜌 = 0.1 or 0.3 and substantial convergence issues 

when 𝜌 = 0.5. The LNMVB and Beta GEE had the lowest mean bias and RMSD when 

estimating the location parameter, and the Beta GEE was the only model whose 

estimates of the correlation parameter where near the true value. Additionally, the 

LNMVB and Beta GEE were the sole models with coverage probabilities > 90%. The 

Beta GEE behaved as expected, with coverage probabilities approaching 95% as 

sample size increased; however, the LNMVB had coverage probabilities that 

approached 95% as the correlation increased and was largely unaffected by the sample 

size. 

3.6.7. Two groups: 𝜇 = 0.05, AR(1) correlation 

[refer to Figures B.1 through B.12] 
 

When 𝜌 = 0.1 the LNMVB and Beta GLMM had similar power curves across all 

sample sizes. Both models had Type I error rates near 5% for the sample sizes 𝑁 ≥ 30 

and inflated (< 10%) for the sample size 𝑁 = 12. The Beta GEE had noticeably higher 

Type I error rates than the LNMVB and Beta GLMM for the sample sizes 𝑁 = 12 and 30; 

however, for the sample sizes 𝑁 ≥ 50, the power curve of the Beta GEE was almost 

identical to that of the LNMVB and Beta GLMM. When 𝜌 = 0.3, the LNMVB had Type I 

error rates between 2.8% and 7.1% and when 𝜌 = 0.5 the Type I error rates were < 4%. 

When 𝜌 = 0.3 or 0.5 both the Beta GLMM and Beta GEE had inflated Type I error rates 
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across all sample sizes (excluding 𝜌 = 0.3 with 𝑁 = 100) with the Beta GEE having 

larger Type I error rates than the Beta GLMM. The Beta GLMM had Type I error rates 

that ranged between 6.3% and 10.6% while the Beta GEE rates varied between 6.7% 

and 22.3% (excluding 𝜌 = 0.3 with 𝑁 = 100). The SLMVB models had markedly inflated 

Type I error rates, i.e., > 20% and convergence issues that increased as strength of 

correlation increased. 

The LNMVB and Beta GLMM were the only models whose coverage probabilities 

were > 90% for the sample size 𝑁 = 12. Additionally, both models coverage probabilities 

approached 95% as the sample size increased. For the sample sizes 𝑁 = 30, 50, and 

100 the Beta GEE had coverage probabilities > 90%. The Beta GEE coverage 

probabilities converged to 95% as 𝑁 approached 100, tending to require larger sample 

sizes than the LNMVB or Beta GLMM to achieve 95% coverage. The SLMVB models 

never had coverage probabilities > 90%. 

The LNMVB, Beta GLMM, and Beta GEE estimates of the location parameter 

were unbiased. The SLMVB models’ estimates of the location parameter were rarely 

unbiased; the bias was > 0.04 (or 4 standard deviations) at times. The SLMVB AR(1) 

tended to produce less biased estimates of the location parameter than the SLMVB CS. 

The RMSD of the estimates of the location parameters were near zero for the 

LNMVB, Beta GLMM, and Beta GEE. The SLMVB AR(1) tended to have lower RMSD 

when estimating the location parameter than the SLMVB CS; however, rarely did either 

model produced metrics near zero. 

Estimates of the correlation parameter were unbiased when estimated by the 

Beta GEE. The Beta GLMM and SLMVB models estimates of the correlation parameter 

were slightly biased. The SLMVB AR(1) always overestimated the true correlation. Both 
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the Beta GLMM and SLMVB CS over and underestimated the true correlation dependent 

upon the true correlation value and sample size. The LNMVB was unable to produce 

valid estimates of the correlation parameter. 

In summary, the LNMVB tended to have Type I error rates nearest the nominal 

5%, while the SLMVB models Type I error rates were the most inflated. The Beta GLMM 

and Beta GEE Type I error rate approached 5% as the sample size 𝑁 increased; 

however, in all but one scenario the Type I error rate remained > 5%. Estimates of the 

location parameter were unbiased under the LNMVB, Beta GLMM, and Beta GEE 

models and biased under the SLMVB models. Additionally, the LNMVB and Beta GLMM 

had coverage probabilities nearest the expected 95%. However, the Beta GEE model 

was the only model whose estimates of the correlation parameter were unbiased.  

3.6.8. Two groups: 𝜇 = 0.3, AR(1) correlation 

[refer to Figures B.13 through B.24] 
 

The LNMVB never achieved the nominal Type I error rate, with a typical Type I 

error rate near or slightly higher than 8%. Additionally, the LNMVB Type I error rates 

decreased as the sample size and or correlation increased. Both the Beta GLMM and 

Beta GEE had inflated Type I error rates that approached ≈ 6% as the sample size 

increased. The Beta GEE had a significantly inflated Type I error rate for the smaller 

sample sizes, i.e., near 20%, for the sample size 𝑁 = 12 compared to the LNMVB and 

Beta GLMM whose rates were near 10%. The SLMVB models tended to have Type I 

error rates above 20%. Power curves among the LNMVB, Beta GLMM, and Beta GEE 

tended to be similar for the sample sizes 𝑁 = 30, 50, and 100, while the power of the 

SLMVB models were generally inflated. Furthermore, the SLMVB had worsening 

convergence issues as 𝜌 increased. 
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The LNMVB was the only model who had coverage probabilities > 90% across 

all scenarios. Additionally, the LNMVB behaved as expected, with coverage probabilities 

approaching 95% as the sample size increased. The Beta GEE displayed similar 

behavior, i.e., coverage probabilities that approached 95% as the sample size increased; 

however, the coverage probabilities of the Beta GEE tended to be < 95%. The Beta 

GLMM rarely had coverage probabilities > 90% and the SLMVB never had coverage 

probabilities > 90%. 

The LNMVB and Beta GEE estimates of the location parameter were unbiased 

across all the correlations and the sample sizes. The Beta GLMM estimates of the 

location parameter were biased, showing the least bias when 𝜌 = 0.5 and 𝑁 = 100. The 

Beta GLMM estimates of the location parameter were the most biased when 𝜌 = 0.1 with 

bias > 0.02 (or 2 standard deviations). The SLMVB AR(1) estimates of the location 

parameter were unbiased at 𝜌 = 0.1, slightly biased at 𝜌 = 0.3, and biased at 𝜌 = 0.5. 

The SLMVB CS estimates of the location parameter were similar to that of the SLMVB 

AR(1); however, the SLMVB CS estimates were more biased. 

The RMSD of the estimates of the location parameter were consistently near 

zero when estimated by the LNMVB and Beta GEE. The SLMVB models and Beta 

GLMM tended to have RMSD for estimates of the location parameter > 0.02 with no 

model persistently outperforming the other two models.  

The Beta GEE’s estimates of the correlation parameter were consistently 

unbiased, and the SLMVB models estimates of the correlation parameter became 

unbiased as the correlation and or the sample size increased. The Beta GLMM never 

produced unbiased estimates of the correlation parameter while the LNMVB was unable 

to calculate the correlation parameter. 
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To summarize, none of the models were able to achieve Type I error rates of 5%; 

however, there were two cases where the LNMVB had a Type I error rate of 5.3%. When 

considering the LNMVB and Beta GEE (the only models whose estimates of the location 

parameter were unbiased), the LNMVB had lower Type I error rates for the sample size 

𝑁 = 12 while the Beta GEE had lower Type I error rates for the sample sizes 𝑁 = 50 and 

100 when 𝜌 = 0.1 or 0.3. When 𝜌 = 0.5, the LNMVB Type I error rate was always lower 

than that of the Beta GEE. Furthermore, the LNMVB had coverage probabilities that 

were nearer to 95% than that of the Beta GEE across all the correlations and the sample 

sizes. However, the Beta GEE was the only model where the estimates of the correlation 

parameter were unbiased among all scenarios. 

3.6.9. Two groups: 𝜇 = 0.5, AR(1) correlation 

[refer to Figures B.25 through B.36] 
 

The LNMVB, Beta GLMM, and Beta GEE had Type I error rates that were 

inflated regardless of the correlation and or the sample size. The Type I error on these 

three models all decreased as the sample size 𝑁 increased. Of the three models, the 

LNMVB had the least inflated Type I error rates for the sample size 𝑁 = 12. For the 

remaining sample sizes (𝑁 = 30, 50, and 100), in general, the Beta GLMM had the 

lowest Type I error rate, followed by the Beta GEE, and lastly the LNMVB. However, the 

Beta GLMM had convergence issues that worsened as 𝜌 increased that caused a 

reduction in power. The SLMVB models had Type I error rates that were significantly 

inflated when 𝜌 = 0.1 or 0.3. When 𝜌 = 0.5 the SLMVB CS had Type I error rates < 5% 

for the sample sizes 𝑁 ≤ 30 and Type I error rates > 5% for the sample sizes 𝑁 ≥ 50. 

Whereas the SLMVB AR(1) had a Type I error rate < 5% for the sample size 𝑁 = 12 that 

increased as 𝑁 increased with a maximum Type I error rate > 20% when 𝑁 = 100. 
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The LNMVB was the only model whose coverage probabilities were > 90% for 

the sample size 𝑁 = 12 across all correlations. Specifically, the LNMVB tended to have 

coverage probabilities between 96% and 97%. The Beta GEE had coverage probabilities 

near 95% for the sample size 𝑁 = 100; otherwise, the coverage probabilities decreased 

as the sample size decreased. There were instances where the Beta GLMM had 

coverage probabilities between 90% and 95% (𝑁 ≥ 50 with 𝜌 = 0.1 and 𝑁 = 100 with 

𝜌 = 0.3); however, the Beta GLMM commonly had coverage probabilities < 90%. The 

SLMVB models coverage probabilities were always < 90%. 

The LNMVB and Beta GEE estimates of the location parameter were unbiased. 

The Beta GLMM estimates of the location parameter were unbiased except for the 

smaller sample sizes, i.e., 𝑁 = 12 and 30, with a maximum mean bias of 0.002 (1/5th of a 

standard deviation). The SLMVB models’ estimates of the location parameter were 

slightly biased across all scenarios with the SLMVB AR(1) being less biased than the 

SLMVB CS. The LNMVB and Beta GEE consistently had the lowest RMSD of the 

location parameter with the Beta GLMM having similar RMSD except at the smaller 

sample sizes. The SLMVB models had the highest RMSD of the location parameter 

across all scenarios, with a maximum RMSD > 0.04.  

The estimates of the correlation parameter were unbiased when estimated by the 

Beta GEE. Additionally, the SLMVB models produced unbiased estimates of the 

correlation parameter at the larger sample sizes, i.e., 𝑁 = 50 and 100. Neither the 

LNMVB or Beta GLMM estimates of the correlation parameter were unbiased. The Beta 

GLMM overestimated the true value of the correlation parameter by > 0.4 under all 

scenarios, and the LNMVB was unable to estimate the correlation parameter. 

In conclusion, the LNMVB, Beta GLMM, and Beta GEE were the models with 

unbiased estimators of the location parameter. None of these three models were able to 
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control the Type I error rate. The LNMVB had the lowest Type I error rate for the small 

sample size (𝑁 = 12) while the Beta GLMM tended to have the lowest Type I error for 

the remaining sample sizes (𝑁 = 30, 50, and 100). However, the Beta GLMM had 

convergence issues that affected its power. Furthermore, only the LNMVB had coverage 

probabilities > 90% for all scenarios with a tendency to have coverage probabilities 

between 96% and 97%. The Beta GEE approached the desired 95% coverage 

probability as the sample size increased to 𝑁 = 100 and the Beta GLMM rarely had 

coverage probabilities above 90%. The Beta GEE was the only model that produced 

unbiased estimates of the correlation parameter across all correlations and sample 

sizes. 

3.6.10. Two groups: 𝜇 = 0.05, CS correlation 

When 𝜌 = 0.1 the LNMVB had the best control of the Type I error rate (near 5%), 

with slight inflation when the sample size 𝑁 = 12 (i.e., 6.9%). For 𝜌 = 0.3 and 0.5 the 

LNMVB Type I error rate was always < 4% which caused a decrease in power. Both the 

Beta GLMM and Beta GEE had inflated Type I error rates that approached 5% as the 

sample size increased. However, the Beta GEE had Type I error rates near 20% for the 

sample size 𝑁 = 12, regardless of the correlation. The SLMVB tended to have Type I 

error rates > 20% which did not necessarily equate to inflated power at larger effect 

sizes likely caused by convergence issues. 

The LNMVB and Beta GLMM had similar coverage probabilities across 

simulations with the coverage probabilities of the Beta GEE tending to be less than that 

of the LNMVB or Beta GLMM. The LNMVB and Beta GLMM were the only models who 

had coverage probabilities > 90% for the sample size 𝑁 = 12. Additionally, their 

coverage probabilities converged to 95% as the sample size increased. For the sample 
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size 𝑁 = 100, the coverage probabilities of the LNMVB, Beta GLMM, and Beta GEE 

were nearly identical. The SLMVB coverage probabilities were always below 90%. 

The LNMVB, Beta GLMM, and Beta GEE estimates of the location parameter 

were unbiased with the mean bias near 0 for all simulations. The SLMVB models 

overestimated the true value of the location parameter with mean biases typically > 0.02 

(i.e., 2 standard deviations) and reaching a maximum of > 0.06 (i.e., 6 standard 

deviations). The RMSD of the location parameter was as expected, with the LNMVB, 

Beta GLMM, and Beta GEE having RMSD near 0 while the RMSD for the SLMVB 

models were generally > 0.10. 

The Beta GEE was the only model whose estimates of the correlation parameter 

were consistently near the true value with a slight emphasis to underestimate, primarily 

when the sample size was smaller. The Beta GLMM overestimated the correlation 

parameter by 0.05 across all correlations and sample sizes. Of the remaining models, 

only the SLMVB CS had estimates of the correlation parameter that was near the true 

value; however, this occurred as both correlation and sample size increased. 

In summary, the LNMVB, Beta GLMM, and Beta GEE estimates of the location 

parameter were unbiased while the SLMVB overestimated the true value of the location 

parameter. The LNMVB was the only model that could consistently control the Type I 

error rate; however, the rate was often below 5% causing a loss of power. Both the 

LNMVB and Beta GLMM had similar coverage probabilities that converged to 95% as 

the sample size increased, with the Beta GEE tending to have coverage probabilities 

less than the LNMVB or Beta GLMM. Lastly, both the Beta GLMM and Beta GEE had 

acceptable estimates of the correlation parameter, with the Beta GEE having estimates 

nearer the true value. 
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3.6.11. Two groups: 𝜇 = 0.3, CS correlation 

When 𝜌 = 0.1, none of the models were able to control the Type I error rate. The 

Beta GLMM was nearest the desired Type I error rate of 5%, especially as the sample 

size increased, followed by the Beta GEE (except for the sample size 𝑁 = 12). When 

compared to the Beta GLMM and Beta GEE excluding the sample size 𝑁 = 12, the 

LNMVB had the least control of the Type I error rate (with Type I error rates between 

7.1% and 12%) when 𝜌 = 0.1. The SLMVB models Type I error rate increased from 

approximately 20% to 40% as the sample size increased when 𝜌 = 0.1. When 𝜌 = 0.3 

the power curves of the LNMVB and Beta GLMM were virtually indistinguishable with a 

Type I error rate of approximately 9% for the sample size 𝑁 = 12, converging to ≈ 6% 

for the sample size 𝑁 = 100. The Beta GEE Type I error rate remained inflated (i.e., >

20% when 𝑁 = 12 and 7% when 𝑁 = 100) for 𝜌 = 0.3. Again, the SLMVB models Type I 

error rate increased as the sample size increased when 𝜌 = 0.3. For 𝜌 = 0.5 the LNMVB 

Type I error rate decreased from 4% to 3% as the sample size increased. Both the Beta 

GLMM and Beta GEE had inflated Type I error rate that approached 5.3% and 6.3%, 

respectively, as the sample size increased, with the Beta GLMM always nearer to the 

nominal 5% than that of the Beta GEE. Lastly, the SLMVB Type I error rates increased 

from < 2% to > 10% as the sample size increased. 

The LNMVB coverage probabilities approached 95% as the sample size 

increased and was the only model with coverage probabilities > 90% for the sample size 

𝑁 = 12. The Beta GEE had coverage probabilities near 95% when the sample size 𝑁 =

100; however, the coverage probabilities at the medium sample sizes (𝑁 = 30 and 50) 

were < 95% and < 90% for the sample size 𝑁 = 12. When 𝜌 = 0.5 the Beta GLMM 

behaved as expected with coverage probabilities converging to 95% as the sample size 
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increased; otherwise the coverage probabilities tended to stay below 90%. The SLMVB 

models never had coverage probabilities > 90%. 

The mean bias of the estimates of the location parameter was near zero for the 

LNMVB and Beta GEE across all scenarios. The Beta GLMM produced unbiased 

estimates of the location parameter only when 𝜌 = 0.5 and 𝑁 = 50 or 100, with a 

maximum bias of 0.015 or approximately 1.5 standard deviations whereas the SLMVB 

model estimates became more biased as the correlation increased corresponding to 

decreased model convergence. The values of RMSD of the location parameter 

correlated with the values of the mean bias of the location parameter, i.e., when the 

mean bias of the location parameter was near zero so was the RMSD of the location 

parameter. 

The Beta GEE estimates of the correlation parameter were unbiased for all 

correlations and sample sizes. The SLMVB CS produced unbiased estimates of the 

correlation parameter as 𝑁 increased for all correlations. The remaining models’ 

estimates of the correlation parameter were biased. 

To summarize, only the LNMVB and Beta GEE estimates of the location 

parameter were unbiased. The Correlation and the sample size determined which model 

(LNMVB or Beta GEE) had better control of the Type I error rate with the Beta GEE 

having better control when 𝜌 = 0.1 (excluding 𝑁 = 12), the LNMVB when 𝜌 = 0.3 or 0.5; 

however, when 𝜌 = 0.5 the LNMVB had Type I error rates below nominal. The LNMVB 

had coverage probabilities that approached 95% as the sample size increased and was 

the only model with coverage probabilities > 90% for the sample size 𝑁 = 12. The Beta 

GEE coverage probabilities also converged to 95%; however, the coverage probabilities 

of the Beta GEE tended to be less than that of the LNMVB. Lastly, the Beta GEE was 
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the only model able to estimate the true value of the correlation parameter across all 

scenarios. 

3.6.12. Two groups: 𝜇 = 0.5, CS correlation 

The SLMVB models Type I error and power were significantly inflated when 𝜌 =

0.1 or 0.3 and were never above 5% when 𝜌 = 0.5. Therefore, we will limit the discussion 

of Type I error and power to the LNMVB, Beta GLMM, and Beta GEE. The LNMVB had 

the best control of the Type I error for the sample size 𝑁 = 12 with a Type I error of 

13.6% when 𝜌 = 0.1 decreasing to 7.8% when 𝜌 = 0.5. The Beta GLMM and Beta GEE 

had Type I errors around 20% for the sample size 𝑁 = 12. We will further limit our 

discussion to the sample sizes 𝑁 = 30, 50, and 100. When 𝜌 = 0.1, the Beta GLMM had 

the most control of the Type I error rate with values between 5.4% and 6.9%, followed by 

the Beta GEE with rates between 6.4% and 8.1%, and lastly by the LNMVB with rates 

between 8.9% and 9.4%. When 𝜌 = 0.3, the sample size dictated which model had the 

most control of the Type I error rate. Furthermore, the Beta GLMM was the only model 

able to achieve the nominal 5% Type I error rate. When 𝜌 = 0.5 and 𝑁 = 30, 50, the 

LNMVB had the lowest Type I error rates with rates of 7.8% and 5.8%, respectively. Both 

the Beta GLMM and Beta GEE had Type I error rates > 10% for 𝑁 = 30. At 𝑁 = 100, the 

Type I error rates were 6.5%, 6.7%, and 5.5% for the LNMVB, Beta Gee, and Beta 

GLMM, respectively. However, the Beta GLMM experienced convergence issues that 

affected its power. 

The LNMVB was the only model whose coverage probabilities were > 90% for all 

scenarios. Specifically, the coverage probabilities tended to be > 95% at the small and 

the medium correlations (i.e., 𝜌 = 0.1 or 0.3) and near 95% when the correlation was 

large. The Beta GEE coverage probabilities were > 90% but < 95% when 𝑁 = 30, 50, or 
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100 and < 90% for the sample size 𝑁 = 12. Rarely were the coverage probabilities of 

the Beta GLMM > 90% and the SLMVB models coverage probabilities were never >

90%.  

The LNMVB, Beta GLMM, and Beta GEE estimates of the location parameter 

were near the true value on average, with the Beta GLMM showing a slight bias (< 0.001 

or 1/10th of a standard deviation) in a few scenarios. The SLMVB models mean bias of 

the location parameter diverged from zero as the strength of the correlation increased. 

The LNMVB and Beta GEE estimates of the location parameter had the lowest RMSD. 

When the sample size was 𝑁 = 50 or 100, the RMSD of the Beta GLMM matched that of 

the LNMVB and Beta GEE; however when the sample size 𝑁 = 12 or 30, the Beta 

GLMM RMSD of the location parameter were higher than that of the LNMVB and Beta 

GEE. Lastly, the SLMVB tended to have the highest RMSD for estimates of the location 

parameter. 

The Beta GEE estimates of the correlation parameter were unbiased. Estimates 

of the correlation parameter using the SLMVB models became unbiased as the sample 

size increased, with the SLMVB CS estimates being less biased than the SLMVB AR(1) 

estimates. The LNMVB was unable to estimate the correlation parameter, and the Beta 

GLMM estimates were significantly biased, i.e., > 0.5. 

In conclusion, the SLMVB models’ estimates of the location parameter were 

biased, and the SLMVB models were unable to control the Type I error rates. The 

LNMVB, Beta GLMM, and Beta GEE produced unbiased estimates of the location 

parameter; however, when examining RMSD of the location parameter, the Beta GLMM 

performed worse than the LNMVB and Beta GEE. Additionally, none of these three 

models were able to control the Type I error rates properly (excluding one scenario for 

the Beta GLMM). The Beta GLMM had the lowest Type I error rates when the correlation 
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was small, and the LNMVB had the lowest rates when the correlation was large. When 

the strength of the correlation was medium, no model had consistently lower Type I error 

rates than the others. Furthermore, the Beta GLMM had convergence issues for the 

medium and the high correlations. The LNMVB and Beta GEE had coverage 

probabilities closet to the expected 95% compared to the other three models whose 

coverage probabilities remained < 90%. Additionally, the LNMVB was the only model 

with coverage probabilities > 90% when the sample size was 𝑁 = 12.  Lastly, the Beta 

GEE was the only model whose estimates of the correlation parameter were unbiased. 

3.7. Summary 

3.7.1. One group 

The LNMVB and Beta GEE were the only models whose estimates of the 

location parameter were unbiased across all scenarios. The Beta GLMM estimates of 

the location parameter were the most biased when 𝜇 = 0.3, and the SLMVB models’ 

estimates of the location parameter were rarely unbiased. Therefore, we will limit the 

discussion to the LNMVB and Beta GEE. The RMSD of the estimates of the location 

parameter were nearly identical and near zero for both the LNMVB and Beta GEE. In 

general, the LNMVB had Type I error rates that were closer to nominal compared to the 

Beta GEE. This was most pronounced at the smaller sample sizes (i.e., 𝑁 = 15 and 30) 

where the Type I error rates of the Beta GEE were often > 10%. However, there were 

instances where the LNMVB had Type I error rates < 5% which were often associated 

with a decrease in power. For 𝜇 = 0.05 the coverage probabilities of the LNMVB and 

Beta GEE were similar, with both models’ coverage probabilities approaching 95% as 

the sample size 𝑁 approached 100. When 𝜇 = 0.3 the LNMVB tended to have coverage 

probabilities closer to 95% for smaller the sample sizes (i.e., 𝑁 ≤ 30) compared to the 
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Beta GEE. At 𝑁 ≥ 50, the LNMVB tended slightly overestimate the coverage 

probabilities. Furthermore, when 𝜇 = 0.5 the LNMVB tended to have coverage 

probabilities > 97% for small correlations that converged to 95% as strength of 

correlation increased; whereas the Beta GEE had coverage probabilities that converged 

to 95% as sample size increased regardless of the correlation. Lastly, the Beta GEE’s 

estimates of the correlation parameter where near the true value on average; as 

opposed to the LNMVB, which was unable to estimate the correlation parameter. 

3.7.2. Two groups 

As in the single group case, we will limit our discussion to models whose 

estimators of the location parameter were unbiased across all scenarios, i.e., the 

LNMVB and Beta GEE. Again, the RMSD of the estimates of the location parameter 

were similar and near zero for both models. When 𝜇 = 0.05 the LNMVB was generally 

able to control the Type I error rate while the Beta GEE was unable to control the Type I 

error rate. For 𝜇 = 0.3 both the LNMVB and Beta GEE had inflated Type I error rates that 

tended towards 5% as the sample size 𝑁 increased with the LNMVB tending to nominal 

at a faster rate, in general. When 𝜇 = 0.5 and the sample size was 𝑁 = 30, 50, or 100 the 

Beta GEE usually had a lower Type I error rate than the LNMVB; however, for the 

sample size 𝑁 = 12 the LNMVB had better control of the Type I error rate. Neither model 

had a Type I error rate of 5% when 𝜇 = 0.5. Furthermore, both models coverage 

probabilities tended to approach 95% as sample size increased. However, the LNVMB 

coverage probabilities were closer to the desired 95% than that of the Beta GEE. 

Additionally, the Beta GEE had coverage probabilities < 90% for the small sample size, 

while the LNMVB coverage probabilities were always > 90%. However, there were 

instances such that the coverage probabilities of the LNMVB were > 95% (generally 

when 𝜇 = 0.5 and 𝜌 = 0.1). Lastly, the Beta GEE produced unbiased estimates of the 
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correlation parameter as opposed to the LNMVB which was unable to estimate the 

correlation parameter. 

4. Data Analysis, National NeuroAIDS Tissue Consortium 

4.1. Participants 

The 35 study participants were derived from the NNTC database, a longitudinal 

observational study that includes biannual neurologic, neuropsychologic, and psychiatric 

examinations of participants with HIV and without HIV. As of November 1, 2018, 3,150 

participants have enrolled in the NNTC study.24 For details of the NNTC study and 

inclusion criteria see Section 1.2 and Morgello et al.23 We restricted the 3,150 

participants to African American females with complete neuropsychological exam data 

(specifically, the HVLT-R delayed scaled score) for visits 0, 1, 2, and 3; which resulted in 

35 participants (see Figure 4.1). Study participants were then dichotomized into < 12 

years of education (𝑁 = 17) and ≥ 12 years of education (𝑁 = 18). We required the 

amount of education to remain constant during the 4 study visits for the 35 participants. 

Therefore, the inclusion/exclusion criteria and dichotomization of education resulted in a 

small sample fairly balanced design that we were able to analyze using a two-way 

interaction model. 



90 

 

 

 The patient characteristics between education groups (< 12 years and ≥ 12 

years) were reasonably balanced (Table 4.1). The average time between visits was 

slightly more than 6 months, regardless of education group and or visit number. The 

minimum baseline visit for each education group occurred in 1999. The < 12 years of 

education group had a longer time span of recruitment with the last baseline visit 

occurring in 2015, compared to the ≥ 12 years of education group whose last baseline 

visit occurred in 2010. The mean age was 40.6 years and 48.3 years for the < 12 years 

of education group and ≥ 12 years of education group, respectively. 

 

Figure 4.1 Schematic summary of inclusion/exclusion criteria of NNTC data. 
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Table 4.1 Patient characteristics. 

  
< 12 years of 

education 
> 12 years of 

education 
  (n = 17) (n =18) 
Mean age (SD), years 40.6 (7.5) 48.3 (8.9) 
Minimum baseline visit, year 1999 1999 
Maximum baseline visit, year 2015 2010 
Mean time between visit 0 & 1 (SD), days 186 (30) 190 (18) 
Mean time between visit 1 & 2 (SD), days 196 (38) 194 (29) 
Mean time between visit 2 & 3 (SD), days 190 (27) 183 (40) 

 

4.2. Methods 

Prior to analyzing the NNTC data, the responses (HVLT-R delayed scaled score) 

were converted to proportions. The minimum and maximum theoretical HVLT-R delayed 

scaled score is 0 and 19, respectively. Therefore, HVLT-R delayed scaled score 

(denoted 𝑦′) can be computed as  

𝑦 =
   

  . 

This conversion bounded 𝑦′ on the open interval (0,1) since no individual scores were on 

the lower or upper bound. 

 We then considered the following covariates when analyzing the NNTC data: 

education group, visit number, and education group by visit number interaction. The 

following model was fitted under each paradigm (i.e., LNMVB, SLMVB, Beta GLMM, and 

Beta GEE) 

log = 𝛽 + 𝛽 ∗ 𝑣𝑖𝑠𝑖𝑡 + 𝛽 ∗ 𝑣𝑖𝑠𝑖𝑡 + 𝛽 ∗ 𝑣𝑖𝑠𝑖𝑡 + 𝛽 ∗ 𝑒𝑑𝑢𝑐 + 𝛽 ∗

𝑒𝑑𝑢𝑐 ∗ 𝑣𝑖𝑠𝑖𝑡 + 𝛽 ∗ 𝑒𝑑𝑢𝑐 ∗ 𝑣𝑖𝑠𝑖𝑡 + 𝛽 ∗ 𝑒𝑑𝑢𝑐 ∗ 𝑣𝑖𝑠𝑖𝑡   

𝑌 ~𝐵𝑒𝑡𝑎(𝜇 , 𝜙)  
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for participants 𝑖 = 1, … ,35, visits 𝑗 = 0, 1, 2 and 3, and such that 𝐵𝑒𝑡𝑎(𝜇 , 𝜙) is 

parameterized as density (1.4). For the Beta GEE, we assumed an AR(1) correlation 

structure. Details of the model fitting procedures can be found in Section 2.3, Section 

2.4, and Section 3.4 for the LNMVB, SLNMVB, and Beta GLMM and Beta GEE, 

respectively. All analyses were performed using R64 version 3.4.2 on a Windows 10 PC. 

We report coefficients, standard errors, Wald type confidence intervals, and p-

values for all parameters and models in Section 4.3 and Appendix C. Additionally, 

expected means (calculated from model parameters) for each cell of the interaction are 

plotted along with cell means calculated using the data. Overall significance of the 

education group by visit number interaction is reported using the F-test described in 

Section 3.5. Lastly, correlation is reported for each model and compared to the empirical 

correlation of the data. 

4.3. Results 

The SLMVB AR(1) and GEE model did not converge; however, the estimates of 

the GEE model are comparable to those of the LNMVB and GLMM. Therefore, we will 

limit the reporting of results to the LNMVB, SLMVB CS, GLMM, and GEE. Refer to 

Appendix C for results of the SLMVB AR(1) model. 

From Figure 4.2, the interaction between education and visit number is significant 

under the modeling framework of the GLMM and GEE (p-values 0.0308 and 0.0173, 

respectively). The LNMVB and SLMVB CS F-test p-values for the education by visit 

number interaction is non-significant (p-values 0.0776 and 0.0920, respectively) even 

though the mean profiles suggest an interaction (Figure 4.2). However, this is not 

unexpected based on the simulation results. From the simulation results, for sample size 

𝑁 = 12 and 30 and AR(1) correlation structure with 𝜌 = 0.5, the GLMM and GEE had the 
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most inflated Type I error rates amongst the four models with the GEE being more 

inflated than that of the GLMM. Therefore, the significant F-tests under the GLMM and 

GEE could be a symptom of the inflated Type I error rate. 

 

 

Figure 4.2 Mean profiles plots of NNTC data using LNMVB, SLMVB CS, GLMM, 
and GEE models.  
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Model estimates, standard errors, and 95% confidence intervals between the 

LNMVB, SLMVB CS, GLMM, and GEE models were varied (Table 4.2). Using the same 

aforementioned simulation results, the SLMVB CS and Beta GLMM showed a slight 

emphasis to overestimate the location parameters. This overestimation can be seen in 

the mean profile plots (Figure 4.2) and could possibly explain the varied estimates 

between models. However, statistical significance of parameter estimates was 

consistent among the four models. 

Table 4.2 Model estimates (LNMVB, SLMVB CS, GLMM, and GEE) of the NNTC 
data. 

    Estimate SE 95% CI 
P-

Value Converged 

LNMVB Yes 

Intercept -0.953 0.140 (-1.231, -0.674) 0.000 

Visit 1 0.211 0.163 (-0.112,  0.534) 0.198 

Visit 2 -0.019 0.171 (-0.358,  0.319) 0.910 

Visit 3 0.020 0.169 (-0.316,  0.356) 0.906 

Educ 0.196 0.185 (-0.171,  0.564) 0.292 

Visit 1*Educ -0.471 0.229 (-0.925, -0.016) 0.043 

Visit 2*Educ 0.041 0.228 (-0.411,  0.493) 0.858 

  Visit 3*Educ -0.325 0.235 (-0.791,  0.141) 0.169   

SLMVB CS Yes 

Intercept -1.171 0.143 (-1.454, -0.888) 0.000 
Visit 1 0.176 0.172 (-0.165,  0.518) 0.308 
Visit 2 -0.048 0.183 (-0.412,  0.316) 0.794 
Visit 3 -0.050 0.178 (-0.404,  0.304) 0.778 
Educ 0.363 0.197 (-0.028,  0.754) 0.068 
Visit 1*Educ -0.483 0.234 (-0.947, -0.020) 0.041 
Visit 2*Educ 0.024 0.244 (-0.459,  0.508) 0.920 
Visit 3*Educ -0.297 0.245 (-0.782,  0.189) 0.229   

GLMM Yes 

Intercept -1.021 0.166 (-1.351, -0.692) 0.000 

Visit 1 0.169 0.142 (-0.114,  0.451) 0.238 

Visit 2 -0.033 0.144 (-0.318,  0.252) 0.819 

Visit 3 0.001 0.143 (-0.283,  0.285) 0.994 

Educ 0.291 0.230 (-0.166,  0.748) 0.209 

Visit 1*Educ -0.433 0.197 (-0.824, -0.042) 0.030 

Visit 2*Educ 0.05 0.196 (-0.339,  0.439) 0.798 

  Visit 3*Educ -0.357 0.200 (-0.754,  0.039) 0.077   
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GEE No 

Intercept -0.967 0.136 (-1.237, -0.697) 0.000 

Visit 1 0.136 0.116 (-0.095,  0.366) 0.246 

Visit 2 -0.031 0.132 (-0.294,  0.231) 0.814 

Visit 3 0.000 0.16 (-0.317,  0.317) 1.000 

Educ 0.287 0.208 (-0.126,  0.700) 0.171 

Visit 1*Educ -0.368 0.159 (-0.684, -0.051) 0.023 

Visit 2*Educ 0.044 0.169 (-0.291,  0.380) 0.794 

  Visit 3*Educ -0.305 0.221 (-0.744,  0.134) 0.171   

 

Pairwise correlations calculated using the data are displayed in Table 4.3. The 

data generally follows an AR(1) correlation structure, with 𝜌 ≈ 0.7. The mean pairwise 

correlation coefficients under the LNMVB model was 0.300. The SLMVB model with CS 

specified correlation structure estimate of 𝜌 was 0.657. The GLMM model with random 

intercept has an exchangeable correlation structure whose value was estimated to be 

0.881. Lastly, we specified an AR(1) correlation structure for the GEE model whose 

estimate was 0.710.  

Table 4.3 Empirical pairwise correlation estimates of the NNTC data. 

  Visit 0 Visit 1 Visit 2 Visit 3 

Visit 0 1 0.683 0.728 0.456 
Visit 1   1 0.746 0.524 
Visit 2   1 0.591 
Visit 3       1 

 

5. General Conclusions, Limitations and Future Research 

5.1. Introduction 

This dissertation makes a contribution to the statistical methodology for the 

analysis of repeatedly-measured proportional data (applicable to the medical field, 

economics, social sciences, etc.) as well as provides R64 code for the application of the 
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proposed methods (see Appendix D). The focus was on the limitations of existing 

methods, and two alternative methods were introduced. This chapter provides a general 

discussion of our findings, lists some limitations to our proposed methods, and 

suggestions for areas of future research. 

5.2. Conclusions 

Methods for the analysis of correlated proportional data have been presented 

and described in detail. Applications of the methods in this dissertation have been 

specific to neuropsychological data; however, these proposed methods can be applied 

to other fields of research producing data with similar characteristics. Specifically, in 

Chapter 1 we described the current models available to handle repeatedly-measured 

proportional data and their shortcomings, e.g., joint likelihood Beta models are limited to 

two repeated measures, marginal models do not use full joint likelihood, GLMMs require 

numerical estimation of integrals, etc. In Chapter 2 we proposed two classes of models 

(the LNMVB and the SLMVB) to address the limitations of the models currently 

available. Both the LNMVB and the SLMVB are based on a full joint likelihood with no 

limit on the number of repeated measures that the models can handle and are 

parameterized such that the parameters have a marginal interpretation. Furthermore, the 

maximum likelihood estimates can be calculated using an iterative procedure that does 

not involve integrals. Therefore, the LR test, AIC, BIC, etc. can be used for model 

selection.  

To study the performance of the models in Chapter 1 and our proposed models 

in Chapter 2, a simulation study was conducted in Chapter 3. Four conclusions can be 

drawn from the simulation study. First, the LNMVB and Beta GEE were the only models 

that produced unbiased estimates of the location parameter for all scenarios simulated. 

Generally, the location parameter and inference about the location primary is of primary 
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importance to the investigator; therefore, further conclusions will be limited to the 

LNMVB and Beta GEE. Second, the LNMVB tended to have better control of the Type I 

error rate, which was especially evident for the smaller sample sizes. Third, both the 

LNMVB and Beta GEE coverage probabilities tended towards 95% as the sample size 

increased; however, the LNMVB had coverage probabilities closer to 95% than that of 

the Beta GEE which was most pronounced when the sample size was small. Lastly, the 

Beta GEE was the only model whose mean bias of the correlation parameter was 

consistently near zero for all simulation scenarios. These four conclusions imply that the 

LNMVB is preferred for analyzing small sample (i.e., ≤ 30) repeatedly-measured 

proportional data and either the LNMVB or Beta GEE works well for analyzing large 

sample (i.e., ≥ 50) correlated Beta distributed data. Furthermore, if the correlation is the 

parameter of interest and or the location estimates approach the upper bound, then the 

Beta GEE is the preferred model. 

Chapter 4 compares the estimates of the LNMVB, SLMVB, Beta GLMM, and 

Beta GEE using neuropsychological data. Sample size was < 20 per group. The SLMVB 

AR(1) model and Beta GEE model did not converge. However, estimates of the Beta 

GEE model were similar to those of the LNMVB and GLMM models. Mean profile plots 

revealed that the Beta GEE had the least bias in estimating the means of the location 

parameters when compared to the empirical means. Additionally, the Beta GEE had the 

most significant p-value for the F-test of the interaction. Furthermore, the Beta GLMM 

produced a significant F-test, while the LNMVB and SLMVB CS did not produce a  

significant F-test.  However, it is unclear if these significant F-tests are a result of a 

possible inflation of the Type I error rates as shown in the simulations. Lastly, the Beta 

GEE and SLMVB models estimates of the correlation were closet to the empirical 

estimates.  
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5.3. Limitations 

The majority of the limitations are a result of the simulation study and the 

constraints that are inherent in any simulation study. As with any simulation study, the 

results cannot be generalized and are limited to the scenarios and or parameters tested. 

Our simulation study was a balanced design, which often is not the case when analyzing 

real data. Furthermore, we limited ourselves to three location parameters (𝜇 = 0.05, 0.3, 

and 0.5) assuming that the models would have a symmetric behavior on either side of 

𝜇 = 0.5 and that there would be a pattern to how the models behaved as we moved the 

location parameter away from 0.5 towards either 0 or 1. This behavior was verified under 

the two-way interaction model with AR(1) correlation structure; however, the LNMVB 

results are not symmetric but are predictable (see below). To quantify Type I error and 

power, the effect size was used as a scale which was calculated as the difference of 

means divided by the standard deviation. We fixed the standard deviation at 0.01 and 

adjusted the mean accordingly. It remains unclear how different standard deviations 

would affect the results. Additionally, these models do not have theoretical power 

calculations, so we relied on the empirical results. Our models were limited to a two-way 

interaction model and including additional covariates could alter the results. Moreover, 

we only used an AR(1) and CS correlation structure with small, medium, and large 

correlations, one or two treatment groups, and fixed sample sizes.  

For the simulation study, it was necessary to generate correlated Beta distributed 

data. Current simulations procedures of correlated Beta distributed data are limited to 

two repeated measures or 𝑛-repeated measures with stationary means. Therefore, 

correlated normally distributed data were transformed to be Beta distributed. This 

transformation added in an extra layer of uncertainty to the simulation. Additionally, the 
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data were simulated at the marginal level (i.e., marginal means and correlations) thereby 

possibly favoring the GEE model. 

The SLMVB had singular Hessian matrices and convergence issues. It is likely 

that these convergence issues caused bias in the estimation of the location parameter 

and under coverage of the confidence intervals. Increasing the number of iterations may 

alleviate some of the convergence issues; however, the log likelihood of the copula was 

complicated, and non-convergence may have been caused by the precision of the 

floating numbers determined by the operating system. If the latter were the cause of 

non-convergence, no amount of increase in the number of iterations in the quasi-

Newton-Raphson process would help the model converge. Additionally, the Hessian 

matrices were estimated using numerical methods. Using second derivatives of the log 

likelihood could have made the Hessian matrices non-singular; however, this was not a 

feasible option due to the complexity of the second derivatives. Lastly, it remains unclear 

the importance that the higher order correlations play in parameter estimation and 

whether they affected the convergence of the SLMVB models. Therefore, under the 

scenarios tested, the true performance of the SLMVB models cannot be determined.  

It should be noted, that the Beta GLMM had some minor convergence issues that 

appeared to affect the power of the model for larger effect sizes for a limited number of 

scenarios. It seems that the default initial values of the dispersion parameter were the 

cause of the non-convergence. That would suggest that manually setting the initial value 

of the dispersion parameter of the Beta GLMM would solve the convergence issues; 

unfortunately, the initial value tends to be data specific.  

Furthermore, with the LNMVB we were unable to calculate the correlation. The 

calculation of the correlation requires the evaluation of a double integral or a generalized 

Gauss hypergeometric function both of which require numerical methods to solve. The 
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Gauss hypergeometric function can be estimated using an iterative procedure; however, 

the computational cost of evaluating this function can be high due to the number of 

iterations required for the desired accuracy. Therefore, we opted for the double integral 

that can be solved using the R package pracma.66 During testing of the simulation, this 

package performed well. Unfortunately, during the implementation of the full simulation, 

the double integral was unable to be estimated. However, Gianola and collegues40 have 

demonstrated that the Pearson14 correlation statistic does not adequately measure the 

association for the LNMVB when there are two repeated measures. Additionally, the 

LNMVB did not display symmetric results as the location parameter moved away from 

0.5. Specifically, the LNMVB was not able to handle overdispersion as the location 

parameter, 𝜇, approached 1. There was a mean-variance relationship that systematically 

affected the estimation of the parameters as 𝜇 → 1 and or the variance increased such 

that 𝜇 → 1 for some 𝑖, 𝑗. This behavior was an effect of the variance being a function of 

both the mean and the shared parameter, 𝛼 . Clearly, if we assume that 𝜇 → 1 then 

𝛼 → 0 by equation (1.2) which implies that 𝜎 → 0 by equation (1.3). However, if 𝜇 ≪ 1 

then the parameter space of 𝛼  is not constrained. Thus, this limitation will only present 

itself if there is over-inflation on the upper boundary.    

5.4. Future Research  

Future research should be focused in two areas: 1) the performance of the 

models with unbalanced data and 2) the handling of observations that are either zero or 

one.  

First, our simulation assumed a balanced design which often is not the case. 

Therefore, future research should establish the performance of these models with 
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unbalanced data. Unbalanced data could consist of repeated measures not being 

equally spaced, missing observations, or a combination of the two.  

Second, the data were Beta distributed with no observations on the boundary. 

There are two options to handle zero/one observations; either perform a transformation 

on the data or use a zero/one inflated model. Additionally, multiple transformations can 

be applied. It would be of interest to determine how the various strategies perform. 

Regarding model interpretability, the transformation tends to be the models that are 

easiest to describe to non-statistical researchers as opposed to zero/one inflated 

models. Therefore, it is prudent to determine whether transformations to the data bias 

the results. 
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Appendix A: One Group Simulation Results 

 

Figure A.1  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.1.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure A.2 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.1. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  
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Figure A.3  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.1. 
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Figure A.4 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.1. 
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Figure A.5  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.3.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure A.6 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.3. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  
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Figure A.7  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.3. 
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Figure A.8 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.3. 
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Figure A.9  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.5.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure A.10 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.5. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  
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Figure A.11  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.5. 
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Figure A.12 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.5. 
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Figure A.13  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.1.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure A.14 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.1. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  
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Figure A.15  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.1. 
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Figure A.16 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.1. 
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Figure A.17  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.3.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure A.18 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.3. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  
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Figure A.19  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.3. 
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Figure A.20 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.3. 
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Figure A.21  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.5.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure A.22 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.5. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  

 



132 

 

 

Figure A.23  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.5. 
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Figure A.24 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.5. 
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Figure A.25  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.1.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. Beta GLMM 
and SLMVB models did not converge for all replicates; estimates of the 
power may be biased. 
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Figure A.26 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.1. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  
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Figure A.27  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.1. 
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Figure A.28 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.1. 
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Figure A.29  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.3.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. The Beta 
GLMM and SLMVB models did not converge for all replicates; estimates 
of the power may be biased. 
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Figure A.30 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.3. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  
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Figure A.31  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.3. 
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Figure A.32 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.3. 
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Figure A.33  Empirical power for the time effect of one group, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.5.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. The Beta 
GLMM and SLMVB models did not converge for all replicates; estimates 
of the power may be biased. 
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Figure A.34 Coverage probabilities of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.5. 

If Hessian matrix was singular, we considered effected estimates to not 
contain the true parameter value.  
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Figure A.35  Mean bias of the location estimate for one group, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.5. 
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Figure A.36 Root mean squared deviation of the location estimate for one group, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.5. 
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Figure A.37 Summary of Type I error for one group simulations using 1000 replicates 
with AR(1) correlation structure. 
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Figure A.38 Summary of coverage probabilities for one group simulations using 1000 
replicates with AR(1) correlation structure.  

Average coverage probabilities are the mean of the coverage probabilities 
of the 4 repeated-measures. Small, medium, and large represent the 
effect sizes. 
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Figure A.39 Summary of bias of location parameter for one group simulations using 
1000 replicates with AR(1) correlation structure.  

Maximum bias is the bias that is furthest from zero of the 4 repeated-
measures. Small, medium, and large represent the effect sizes. 
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Figure A.40 Summary of model convergence for one group simulations using 1000 
replicates with AR(1) correlation structure.  
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Appendix B: Two Group Simulation Results 

 

Figure B.1  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.05 with AR(1) correlation 
structure, 𝜌 = 0.1.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure B.2 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.1. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.3  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.1. 

Group with non-stationary location parameter displayed.  
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Figure B.4 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.05 with AR(1) correlation 
structure, 𝜌 = 0.1. 

Group with non-stationary location parameter displayed.  
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Figure B.5  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.05 with AR(1) correlation 
structure, 𝜌 = 0.3.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure B.6 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.3. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.7  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.3. 

Group with non-stationary location parameter displayed.  
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Figure B.8 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.05 with AR(1) correlation 
structure, 𝜌 = 0.3. 

Group with non-stationary location parameter displayed.  
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Figure B.9  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.05 with AR(1) correlation 
structure, 𝜌 = 0.5.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure B.10 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 =
0.5. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.11  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.05 with AR(1) correlation structure, 𝜌 = 0.5. 

Group with non-stationary location parameter displayed.  
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Figure B.12 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.05 with AR(1) correlation 
structure, 𝜌 = 0.5. 

Group with non-stationary location parameter displayed.  
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Figure B.13  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 
𝜌 = 0.1.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure B.14 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.1. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.15  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.1. 

Group with non-stationary location parameter displayed.  
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Figure B.16 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 
𝜌 = 0.1. 

Group with non-stationary location parameter displayed.  
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Figure B.17  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 
𝜌 = 0.3.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 

 



167 

 

 

Figure B.18 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.3. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.19  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.3. 

Group with non-stationary location parameter displayed.  
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Figure B.20 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 
𝜌 = 0.3. 

Group with non-stationary location parameter displayed.  
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Figure B.21  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 
𝜌 = 0.5.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB models 
did not converge for all replicates; estimates of the power may be biased. 
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Figure B.22 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 =
0.5. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.23  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.3 with AR(1) correlation structure, 𝜌 = 0.5. 

Group with non-stationary location parameter displayed.  
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Figure B.24 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.3 with AR(1) correlation structure, 
𝜌 = 0.5. 

Group with non-stationary location parameter displayed.  
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Figure B.25  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 
𝜌 = 0.1.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB and 
Beta GLMM models did not converge for all replicates; estimates of the 
power may be biased. 
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Figure B.26 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.1. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.27  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.1. 

Group with non-stationary location parameter displayed.  

 



177 

 

 

Figure B.28 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 
𝜌 = 0.1. 

Group with non-stationary location parameter displayed.  
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Figure B.29  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 
𝜌 = 0.3.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB and 
Beta GLMM models did not converge for all replicates; estimates of the 
power may be biased. 
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Figure B.30 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.3. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.31  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.3. 

Group with non-stationary location parameter displayed.  
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Figure B.32 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 
𝜌 = 0.3. 

Group with non-stationary location parameter displayed.  
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Figure B.33  Empirical power for the overall treatment x time effect for two groups, 
1000 replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 
𝜌 = 0.5.  

Empirical power is calculated as the percentage of F-tests ≤ 0.05 out of 
1000 replicates. Effect size 0 represents the Type I error. SLMVB and 
Beta GLMM models did not converge for all replicates; estimates of the 
power may be biased. 



183 

 

 

Figure B.34 Coverage probabilities of the location estimate for two groups, 1000 
replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 =
0.5. 

Group with non-stationary location parameter displayed. If Hessian matrix 
was singular, we considered effected estimates to not contain the true 
parameter value.  
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Figure B.35  Mean bias of the location estimate for two groups, 1000 replicates 
simulated around 𝜇 = 0.5 with AR(1) correlation structure, 𝜌 = 0.5. 

Group with non-stationary location parameter displayed.  
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Figure B.36 Root mean squared deviation of the location estimate for two groups, 
1000 replicates simulated around 𝜇 = 0.5 with AR(1) correlation structure, 
𝜌 = 0.5. 

Group with non-stationary location parameter displayed.  
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Figure B.37 Summary of Type I error for two group simulations using 1000 replicates 
with AR(1) correlation structure. 
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Figure B.38 Summary of coverage probabilities for two group simulations using 1000 
replicates with AR(1) correlation structure.  

Average coverage probabilities are the mean of the coverage probabilities 
of the 4 repeated-measures. Small, medium, and large represent the 
effect sizes. 
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Figure B.39 Summary of bias of location parameter for two group simulations using 
1000 replicates with AR(1) correlation structure.  

Maximum bias is the bias that is furthest from zero of the 4 repeated-
measures. Small, medium, and large represent the effect sizes. 
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Figure B.40 Summary of model convergence for two group simulations using 1000 
replicates with AR(1) correlation structure.  
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Appendix C: NNTC Results, SLMVB AR(1) Model 

 

Figure C.1 Mean profiles plots of NNTC data using SLMVB AR(1) model.  

 

  



191 

 

Table C.1 SLMVB AR(1) model estimates of the NNTC data. 

    Estimate SE 95% C.I. P-Value 

SLMVB AR(1) 

Intercept -345.609 -- (--, --) -- 
Visit 1 164.953 -- (--,  --) -- 
Visit 2 344.033 -- (--, --) -- 
Visit 3 344.138 -- (--, --) -- 
Educ 345.116 -- (--, --) -- 
Visit 1*Educ -165.150 -- (--, --) -- 
Visit 2*Educ -344.231 -- (--, --) -- 
Visit 3*Educ -344.748 -- (--, --) -- 

  Correlation 0.712       
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Appendix D: R Code 

Below is a sample of the R code that implements the simulation. A one group (AR(1) 

correlation structure) and two group (CS correlation structure) simulation example was 

provided. The entire simulation can be performed by simulating all combinations of Table 

3.1. 

 

 

 



193 

 

The following is the R code that implements the compiling of results. 
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The following produces the summary plots, i.e., heat maps 
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R Code used to analyze NNTC data 
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Maximum attainable correlation under SLMVB framework 

 

 


	Beta Regression Models for Repeated-Measures Data Analysis
	Recommended Citation

	Microsoft Word - Dissertation_Final_DigitalCommons

