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PROSTAGLANDINS AND KIDNEY FUNCTION: A 

COMPARISON BETWEEN THE CORTICAL AND INNER 

MEDULLARY COLLECTING DUCT ON 

PROSTAGLANDIN PRODUCTION 

Dane Wilson, M.S. 

University of Nebraska Medical Center, 2019 

Advisor: Erika Boesen, PhD 

Prostaglandins are paracrine and autocrine signaling molecules that play important roles through 

various physiological and pathophysiological functions in the human body including the 

inflammatory response, control of blood pressure, and water and salt homeostasis in the kidney. 

Prostaglandins have been shown to have great influence on kidney function. In particular, 

prostaglandin E2 influences the function of the collecting duct, primarily decreasing vasopressin-

stimulated collecting duct water permeability. The aim of this study was to see how various 

treatments to cells, as well as different growth times, impacted prostaglandin production between 

two different collecting duct cell lines, one arising from the cortical collecting duct and the other 

arising from the inner medullary collecting duct. This was accomplished by growing and 

culturing the cells on 6-well plates, collecting the cell media and measuring prostaglandin 

accumulation via Enzyme-linked immunosorbent assay (ELISA) kits. Results showed that longer 

growth times decreased prostaglandin E2 and F2α accumulation in both cell lines. The effect of 

dDAVP, a vasopressin analog, increased prostaglandin accumulation in the inner medullary 

collecting duct cells, and increased PGF2α while having virtually no effect on PGE2 in the cortical 

collecting duct cells. The addition of a cyclooxygenase-1 and cyclooxygenase-2 inhibitor 

significantly decreased prostaglandin accumulation in both cell lines. Finally, changing the 

osmolarity of the media by adding sodium chloride (NaCl) increased prostaglandin accumulation 
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in both cell lines. Prostaglandin synthesis has relevant clinical implications, as non-steroidal anti-

inflammatory drugs, a common over-the-counter group of pain medications, inhibit 

cyclooxygenase, an enzyme involved in the biosynthesis of prostaglandins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

 
 

TABLE OF CONTENTS 

 
ACKNOWLEDGMENTS………………………………………………………………………….i 

ABSTRACT……………………………………………………………………………………….ii 

TABLE OF CONTENTS………………………………………………………………………….iv 

LIST OF FIGURES……………………………………………………………………………….vi 

LIST OF ABBREVIATIONS…………………………………………………………………….vii 

CHAPTER 1: INTRODUCTION………………………………………………………………….1 

Overview of prostaglandins……………………………………………………………….1 

Kidney basics – the anatomy and physiology of the kidneys……………………………..8 

Renal blood flow…………………………………………………………………………..8 

Renal corpuscle anatomy and function……………………………………………………9 

Prostaglandins and their effects on renal blood flow and ultrafiltration of blood………...9 

Prostaglandins and renin release…………………………………………………………10 

Nephron tubule anatomy and function…………………………………………………...10 

Prostaglandins and their effects on the nephron tubule………………………………….13 

Collecting duct anatomy and function…………………………………………………...13 

Prostaglandins and their effects on the collecting duct………………………………….15 

Differences between the cortical and inner medullary collecting duct…………………..17 

Cell lines…………………………………………………………………………………17 

Aim of the study and hypothesis…………………………………………………………18 

CHAPTER 2: MATERIALS AND METHODS…………………………………………………20 

 Cell Culture………………………………………………………………………………20 

 Time course experiments………………………………………………………………...20 



v 
 

 
 

 Treatment experiments…………………………………………………………………...20 

 Sample Collection………………………………………………………………………..22 

Measuring prostaglandin synthesis and prostaglandin E metabolite production utilizing 

Enzyme-linked immunosorbent assay (ELISA) kits……………………………………..22 

Statistical Analysis……………………………………………………………………….23 

CHAPTER 3: RESULTS…………………………………………………………………………24 

 Effect of cell growth on prostaglandin production………………………………………24 

 Effect of dDAVP on prostaglandin production………………………………………….28 

Effect of COX-1 (SC-560) and COX-2 (NS-398) inhibition on prostaglandin 

production………………………………………………………………………………..30 

 Effect of extracellular osmolality changes on prostaglandin production………………...33 

CHAPTER 4: DISCUSSION……………………………………………………………………..35 

BIBLIOGRAPHY………………………………………………………………………………...44 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

 
 

LIST OF FIGURES 

Figure 1: Biosynthetic pathway of prostanoids (Ricciotti, 2011)………………………………….2 

Figure 2: Localization and physiological function of EP receptors and cyclooxygenases (COX-

1/COX-2) throughout the nephron (Modified from Nasrallah, 2014 as source material)…………6 

Figure 3: Renal functions, possible signaling pathways, and renal distributions of prostaglandin 

receptors (Modified from Li, 2018)………………………………………………………………..7 

Figure 4: Aquaporin distribution within the nephron (Tamma, 2011)…………………………...11 

Figure 5: Proposed diuretic effects of PGE2 along the kidney nephron and interstitium (Olesen, 

2013)……………………………………………………………………………………………...16 

Figure 6: Photographed images of cultured mIMCD3 and mpkCCD cells at a subconfluent (24 

hours) and confluent (72 hours) growth…………………………………………………………..25 

Figure 7: Effect of growth time on PGE2 (a), PGEM (b), and PGF2α (c) production……………27 

Figure 8: Effect of dDAVP on PGE2 (a), PGEM (b), and PGF2α (c) production………………...29 

Figure 9: Effect of COX-1 (a-c) and COX-2 (d-f) inhibition on PGE2 (a,d), PGEM (b,e), and 

PGF2α (c,f) production……………………………………………………………………………32 

Figure 10: Effect of NaCl on PGE2 (a) and PGEM (b) production………………………………34 

 

 

 

 

 

 

 



vii 
 

 
 

LIST OF ABBREVIATIONS 

AVP  Arginine vasopressin 

COX-1   Cyclooxygenase-1 

COX-2  Cyclooxygenase-2 

dDAVP  1-deamino-8-D-arginine vasopressin 

EP1  Prostaglandin E2 receptor 1 

EP2  Prostaglandin E2 receptor 2 

EP3  Prostaglandin E2 receptor 3 

EP4  Prostaglandin E2 receptor 4 

FP  Prostaglandin F2α receptor 

IP  Prostaglandin I2 receptor 

mIMCD3 mouse Inner Medullary Collecting Duct 3 cell 

mpkCCD murine immortalized cortical collecting duct cell  

PG  Prostaglandin 

PGE2  Prostaglandin E2 

PGF2α  Prostaglandin F2α 

PGI2  Prostaglandin I2 

PLA  Phospholipase A 



1 
 

 
 

CHAPTER 1: INTRODUCTION 

Overview of prostaglandins 

Biosynthesis 

Prostaglandins are lipid structures derived from arachidonic acid that are formed when 

arachidonic acid is released from the plasma membrane by phospholipases with subsequent 

peroxidase activity by a class of cyclooxygenase (COX-1 and COX-2) enzymes forming 

prostaglandin H2 (Ricciotti, 2011). Tissue specific synthase enzymes subsequently form the more 

stable and biologically active prostaglandins such as prostaglandin E2 (Li, 2018). There are four 

biologically active prostaglandins generated in vivo: prostaglandins: D2 (PGD2), E2 (PGE2), I2 

(PGI2), and F2α (PGF2α). Thromboxane A2 (TxA2), a prostanoid, is also produced via a similar 

mechanism, as shown below in Figure 1 (Ricciotti, 2011). Upon being synthesized, 

prostaglandins then bind to a specific G-protein coupled receptor to exert its particular effect. As 

seen below in Figure 1, prostaglandins have effects on several tissues throughout the body. 
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Figure 1: Biosynthetic pathway of prostanoids (Ricciotti, 2011) 

The role of Phospholipase A in the biosynthesis of prostaglandins 

Phospholipase A (PLA) comprises a family of enzymes which play a key role in the 

production of prostaglandins. One of the isoforms of PLA is cytosolic PLA (cPLA). The primary 

function of cPLA is the liberation of arachidonic acid from membrane phospholipids. cPLA 

activity depends on an increase in intracellular calcium as calcium binds to the enzyme at its C2 

domain, facilitating the translocation of the enzyme to intracellular phospholipid membranes. 

Once bound to the phospholipid membrane, many other enzymes can help to regulate the activity 

of cPLA through phosphorylation (Casale, 2018). 
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Enzymatic Regulation 

The biological effects of prostaglandins can be regulated at the enzymatic reaction of 

cPLA. One isoform, cPLA2, is regulated by intracellular calcium levels. Calcium binding to the 

C2 domain activates the enzyme, creating a conformational shift in the C2 domain, which is 

critical for proper orientation to bind to the phospholipid membrane. Once localized to the 

membrane, a catalytic domain catalyzes the hydrolysis, freeing arachidonic acid. The enzyme can 

be further activated by lipid second messengers such as phosphatidylinositol 4,5-bisphosphate 

(PIP2) or by enzymes such as mitogen-activated protein kinase (MAPK) through phosphorylation 

(Dennis, 2011). 

The role of cyclooxygenase in the biosynthesis of prostaglandins 

Cyclooxygenase (COX) catalyzes the conversion of arachidonic acid to prostaglandin H2, 

a precursor to the biologically active prostaglandins. This is the rate-limiting step in the formation 

of prostaglandins. The conversion from arachidonic acid to PGH2 occurs in two steps; the 

cyclooxygenase reaction forms the unstable PGG2; PGG2 is immediately converted into PGH2 in 

a peroxidase reaction (Zarghi, 2011).  

There are two main isoforms of COX: COX-1 and COX-2. COX-1 is expressed 

constitutively in many tissues (Zarghi, 2011). In the kidney, it is expressed in the afferent and 

efferent arterioles, medullary interstitial cells, and the cortical and medullary collecting ducts 

(Komhoff, 1997). Prostaglandins produced by COX-1 mediate more regulatory functions, such as 

regulation of renal blood flow (Zarghi, 2011). In contrast, COX-2 is not detected in most tissues, 

but has been detected predominantly in medullary interstitial cells and cells associated with the 

macula densa, with less distribution in the collecting duct (Hao, 2008). Its expression is rapidly 

induced by various stimuli such as proinflammatory cytokines and disorders of water-electrolyte 

homeostasis (Zarghi, 2011). 
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Various studies have been conducted to elucidate similarities and differences in function 

between the two isoforms. Contributing to these differences is that COX-1 and COX-2 have been 

demonstrated to utilize arachidonic acid generated by different phospholipases (Reddy, 1997; 

Langenbach, 1999). In addition, studies have indicated that the two isoforms may have different 

cellular localizations (Morita, 1995). COX-1 is commonly referred to as the “housekeeping” 

isoform, where COX-2 is commonly referred to as the “inducible” isoform, however COX-1 has 

been shown to be inducible under certain conditions, and COX-2 is constitutively expressed in 

certain tissues within the brain and kidney (Langenbach, 1999). Harris, et al. (1994) utilized 

various techniques to determine that COX-2 expression was localized to the macula densa, and 

that the level of COX-2 expression increased threefold when the rats were chronically sodium 

restricted. In addition, intrarenal COX-2 was shown to be upregulated during chronic angiotensin 

II infusion in cultured inner medullary collecting duct cells (Gonzalez, 2014). The authors also 

observed that COX-2 inhibition additionally decreased glomerular filtration and renal blood flow 

with angiotensin II infusion in anesthetized rats (Gonzalez, 2014). Within the renal medulla, 

COX-2 expression is regulated by dietary salt intake, and inhibition of COX-2 within the medulla 

has been shown to lead to sodium-sensitive hypertension in rats (Zewde, 2004). These findings 

note its importance in the regulation of blood volume and pressure. 

Langenbach et al. (1999) found COX-1 deficient mice to be surprisingly healthy, with no 

gastric or kidney pathologies, however these mice did show impairment in platelet aggregation. 

COX-2 deficient mice had several noted pathologies; with regard to the kidney, COX-2 null mice 

had smaller kidneys, reduced glomeruli which were also poorly developed, and atrophied renal 

tubules.  

Prostaglandin production and receptor distribution 

As previously mentioned, prostaglandins primarily work in an autocrine or paracrine 

manner. In vivo, prostaglandins are rapidly degraded, limiting their effect to the immediate 
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vicinity of their site of synthesis (Hao, 2008). Various kidney cells produce prostaglandins: 

tubular epithelial cells, renal medullary interstitial cells, and cells of the glomeruli (Dunn, 1977). 

The main sites of prostaglandin synthesis occurs in the medullary tissue of the kidney, established 

by medullary slices or isolated cell preps (Bonvalet, 1987). In order for prostaglandins to exert 

local effects, they must bind to their receptor locally. Prostaglandin receptors are expressed 

throughout various parts of the kidney. PGE2 and PGF2α have long been recognized as major 

renal prostaglandins (Dunn, 1977). More so recently, the emergence of the importance of 

prostacyclin, PGI2 has been noted (Kim, 2008). All renal cell types can synthesize PGE2, but the 

highest production is seen in the glomeruli and collecting ducts (Nasrallah, 2014); it is also the 

major prostaglandin synthesized in the renal medulla (Kim, 2008). PGI2 is predominantly 

synthesized in the endothelial and epithelial cells of the glomerulus. Although PGF2α can be 

detected in the kidney, the enzymes catalyzing the biosynthesis of PGF2α remain poorly defined 

(Hao, 2008). 

The most abundant prostaglandin receptors in the kidney are those for PGE2 (Kim, 2008). 

Four prostaglandin E (EP) receptor subtypes have been identified, and are highly expressed 

throughout the kidney (Breyer, 1996). Collecting ducts express all EP receptors, however, EP2 is 

only expressed in the cortical segment of the collecting duct (Nasrallah, 2014; Katsuyama, 1995). 

The medullary thick ascending limb (mTAL) expresses high levels of EP3 receptor mRNA. In 

addition, the glomeruli express the EP2 receptor and high levels of EP4 receptor mRNA (Kim, 

2008; Nasrallah, 2014).  Other expression sites of the EP receptors as well as COX-1 and COX-2 

are shown in Figure 2 below. 

Nephron Segment/Region Prostaglandin E2 receptor or COX 

localization 

Afferent Arteriole EP2/EP4 – vasodilators 

EP1/EP3 - vasoconstrictors 
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Glomerulus COX-1, COX-2, EP1, EP3, EP4 

Proximal Tubule COX-1, COX-2, EP1, EP4 - transport 

Thick Ascending Limb COX-2, EP3, EP4 - transport 

Macula Densa COX-2, EP3, EP4 – renin, transport 

Distal Tubule EP3, EP4 - transport 

Collecting Duct COX-1, COX-2, EP1, EP3, EP4 - transport 

Medullary Interstitial Cells COX-1, COX-2 

Vasa Recta EP2, EP4 - vasodilators 

Figure 2: Localization and physiological function of EP receptors and cyclooxygenases (COX-

1/COX-2) throughout the nephron (Modified from Nasrallah, 2014 as source material) 

 

The receptors are cell surface G-protein coupled receptors, thereby primarily influencing 

the action of adenylate cyclase which subsequently affects intracellular cyclic adenosine 3'5'-

monophosphate (cAMP) levels. Each EP receptor not only selectively binds PGE2, but also 

preferentially couples to different signal transduction pathways as shown in Figure 3 below 

(Modified from Li, 2018). 

EP2 and EP4 activate Gs, which stimulates intracellular cAMP levels (Nasrallah, 2014). 

EP1 is coupled to Gq, which mobilizes intracellular calcium via phospholipase C and activates 

Protein Kinase C. EP3 activates Gi, which inhibits cAMP formation but increases intracellular 

calcium levels via phospholipase C (Breyer, 1996; Nasrallah, 2014). 

 As evident, PGE2 exerts its effects through various signaling pathways, and the effect of 

PGE2 can have opposite effects, depending on which receptor it binds to. For example, PGE2 is a 

vasodilator in some vascular beds, however, it can also result in vasoconstriction (Breyer, 1996). 

This is also evident as seen from Figure 2 above: PGE2 binding to its EP2 or EP4 receptor 

vasodilates the afferent arteriole whereas binding to EP1 or EP3 receptor results in 

vasoconstriction of the afferent arteriole (Nasrallah, 2014). The IP receptor, distributed 

throughout the renal cortex and medulla, binds PGI2, and increases intracellular cAMP levels 
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(Kim, 2008). PGF2α binds to its FP receptor which is coupled to Gq, mobilizing intracellular 

calcium and activating Protein Kinase C. At present, there is little evidence for DP receptor 

(PGD2) expression in the kidney (Hao, 2008). Below is a summary of renal functions, possible 

signaling pathways, and renal distributions of prostaglandin receptors (Modified from Li, 2018). 

Because multiple prostaglandins can be synthesized from COX, and because these prostaglandins 

can interact with different receptors that can vary in their signaling pathways, the biological 

effects of COX-derived prostaglandins are diverse and complex (Hao, 2008). 

Prostaglandin 

receptors 

Renal function Signaling pathways Expression 

sites 

EP1 Hemodynamics, 

transport, renin release 

Gq-Ca2+ CD, MG, P, 

PT, V 

EP2 Hemodynamics, 

transport, renin release 

Gs-cAMP IC, MD, P, V, 

CD 

EP3 Transport, 

vasoconstriction 

Gi-cAMP DT, CD, MD, 

V 

EP4 Hemodynamics, 

transport, renin release, 

vasodilation 

Gs-cAMP P, CD, MG, 

MD, DT, PT, 

V 

IP Hemodynamics, 

vasodilation, transport, 

renin release 

Gs-cAMP MG, MD, DT, 

CD, PT, P, V 

FP Transport, 

hemodynamics 

Gq-Ca2+ CD, DT, P 

Figure 3: Renal functions, possible signaling pathways, and renal distributions of prostaglandin 

receptors (Modified from Li, 2018) 

 

 

Abbreviations: CD: Collecting duct, MG: Mesangial Cells, P: Podocytes, PT: Proximal 

Tubule, DT: Distal Tubule, V: Vasculature, IC: Interstitial Cells, MD: Macula Densa 
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Kidney basics - the anatomy and physiology of the kidneys  

 The kidneys, located on either side of the lower vertebral column near the posterior 

abdominal wall, are traditionally known for their role in excreting wastes from the body. While 

this is a vital function that they carry out, the kidneys also perform a wide array of other functions 

that are essential to our overall health. Some of those functions are, but not limited to, hormone 

secretion, blood pressure maintenance, and regulation of: water and electrolyte balance, plasma 

osmolality, acid-base balance, and red blood cell production (Eaton, 2013). These functions allow 

the kidney to produce diluted or concentrated urine, depending on the body’s water needs. The 

functional units of the kidney, the nephron, consists of two parts: the renal corpuscle, which is 

involved in the ultrafiltration of the blood across the walls of the glomerular capillaries within, 

and the tubular system, which is lined by epithelial cells involved in the reabsorption and 

secretion process (Eaton, 2013).  

Prostaglandins have been shown to impact several of these functions and are of high 

relevance to overall renal function. Prostaglandins have important physiological and 

pathophysiological effects on salt and water handling, intrarenal hemodynamics, renin release, 

inflammation and injury (Hao, 2008; Imig, 2015; Nasrallah, 2014).  

Renal blood flow 

Renal blood flow is about 1L/min, constituting roughly 20% of the resting cardiac output 

(Eaton, 2013). Blood enters the kidney through the renal artery. After several divisions into 

smaller arteries, a series of afferent arterioles are formed, leading to the glomerulus. Leaving the 

glomerulus is the efferent arteriole. The efferent arterioles branch several times, forming the 

peritubular capillaries. These capillaries intermingle with the tubular segments of the nephron, 

where reabsorption and secretion occurs. These capillaries feed into venules, which ultimately 

lead to the formation of the renal vein, which leaves the kidney. Not all efferent arterioles merge 
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to form peritubular capillaries; some form parallel arrangement vessels, called vasa recta, which 

carry out similar functions to peritubular capillaries. Various substances can leave the capillaries 

to be secreted into the tubular system or be reabsorbed from the tubular system and enter the 

capillaries. Renal blood flow follows the same hemodynamic principles as blood flow throughout 

the body. Renal blood flow is a ratio of the change in pressure between the renal artery and renal 

vein over the total vascular resistance (Eaton, 2013).  

Renal corpuscle anatomy and function 

The ultrafiltration of blood occurs across the walls of the glomerulus, a tuft of 

interconnected capillaries. The glomerulus is surrounded by a hollow sphere, the Bowman’s 

capsule. These two structures collectively comprise the renal corpuscle. Two arterioles penetrate 

the Bowman’s capsule at the vascular pole. The afferent arteriole brings blood to the glomerular 

capillaries. The efferent arteriole drains blood away from the glomerulus. As the blood passes 

through the glomerular capillaries, it undergoes filtration, wherein large proteins and cells are 

retained in the blood, whereas water and solutes freely pass into the Bowman’s space, the space 

within the Bowman’s capsule. Whatever contents enter the Bowman’s space will eventually pass 

into the tubular system of the nephron (Eaton, 2013). The kidneys filter roughly 180 liters of 

blood each day in an average 70 kg human and the rate at which the kidney filters the blood is 

known as the glomerular filtration rate (Pitts, 1968). 

Prostaglandins and their effects on renal blood flow and the ultrafiltration of blood 

COX-derived prostaglandins play a critical role in modulating renal blood flow and 

glomerular filtration (Hao, 2008). PGI2 and PGE2 are primarily vasodilatory, preferentially 

vasodilating the afferent arteriole (Kim, 2008; Edwards, 1985). Vasodilation relaxes vascular 

smooth muscle cells, decreasing resistance to blood flow in the afferent arteriole, thus increasing 

renal blood flow and glomerular filtration rate under conditions associated with decreased 
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effective circulating volume (Kim, 2008). Examples of states associated with decreased 

circulating blood volume include congestive heart failure and cirrhosis (Hao, 2008). Afferent 

arteriole vasodilation is cAMP-dependent: both PGI2 and PGE2 bind to their receptors, IP2 and 

EP2/EP4 respectively, which stimulates intracellular cAMP accumulation (Kim, 2008; Nasrallah, 

2014). cAMP inhibits myosin light chain kinase, resulting in vasodilation (Klabunde, 2012). 

The vasodilatory role of these prostaglandins in healthy individuals has little importance 

in renal hemodynamics (Dibona, 1986). Thus, under conditions of decreased renal perfusion, the 

production of renal prostaglandins serves as an important compensatory mechanism (Kim, 2008).  

Prostaglandins and renin release 

Renal prostaglandins can stimulate or inhibit the release of renin. PGI2 and PGE2 

stimulate the secretion of renin, while PGF2α inhibits its release (Kim, 2008; Dunn, 1977). PGE2 

and PGI2 increases in renin secretion is cAMP-mediated; cAMP activates Protein Kinase A, 

which phosphorylates renin vesicles, leading to the release of renin into the circulation. Renin 

release activates the renin-angiotensin-aldosterone system (RAAS). Through RAAS signaling, a 

potent systemic vasoconstrictor, angiotensin II, is formed. Angiotensin II constricts the 

glomerular efferent arteriole, increasing intraglomerular pressure, impacting renal blood flow and 

maintaining the glomerular filtration rate (Hao, 2008). In addition, through renin regulation, 

prostaglandins influence sodium and water reabsorption primarily in the distal segments of the 

nephron. Angiotensin II stimulates the release of aldosterone from the adrenal cortex which acts 

to increase sodium and water reabsorption and potassium secretion in the distal tubule. 

Nephron tubule anatomy and function 

 As the blood is filtered at the glomerulus, water, solutes and other various substances 

pass the glomerular filtration barrier, and enter into Bowman’s space. The now called filtrate then 

passes into the nephron tubule. Throughout different parts of the tubule, the filtrate will be 
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modified via two primary processes: reabsorption and secretion. Reabsorption is the process 

where water and various solutes are removed from the tubular fluid and are reabsorbed back into 

the bloodstream. In contrast, secretion is the movement of substances back into the tubular fluid 

from the epithelial cells of the tubule or from the blood. 

The first part of the tubule is the proximal convoluted tubule. This is the site of the 

majority of water and solute reabsorption. As shown in Figure 4 below, aquaporin 1 is 

constitutively expressed in the epithelium of the proximal tubule as well as the thin descending 

limb of the loop of Henle which allows for water reabsorption in these segments (Tamma, 2011; 

Kwon, 2001). 

Figure 4: Aquaporin distribution within the nephron (Tamma, 2011) 

After entering the proximal tubule, the filtrate enters the loop of Henle. The loop of 

Henle begins as a descending component, diving down into the medullary tissue of the kidney; it 

then makes a hairpin turn as the ascending limb and ascends back towards the cortex. The 

ascending limb typically has a thin and thick component. The descending limb is highly 

permeable to water due to the abundance of aquaporin 1 water channels (Kwon, 2001; Tamma, 
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2011), but impermeable to sodium due to a lack of sodium channels (Kokko, 1970). In contrast, 

the ascending limb is permeable to sodium, due to the presence of various sodium transporters 

such as the sodium-potassium-2 chloride cotransporter 2 (NKCC2) and the sodium-hydrogen 

exchanger (Greger, 1985). The primary function of the thick ascending limb is to reabsorb large 

amounts of remaining sodium chloride therefore diluting the tubular fluid just prior to entering 

the next segment, the distal convoluted tubule (Ares, 2011). The ascending limb is impermeable 

to water due to the absence of aquaporin water channels. The NKCC2 in the medullary thick 

ascending limb of the loop of Henle plays a role in countercurrent multiplication in the outer 

medulla, which is one of the two important factors in establishing the medullary osmotic gradient. 

The thick ascending limb reabsorbs 25-30% of the sodium chloride filtered by the glomeruli in a 

process mediated by NKCC2 (Ares, 2011). As a result, the medullary interstitium becomes 

hypertonic, whereas the tubular fluid becomes hypotonic. The hypertonic interstitium will then 

attract water, which the descending limb of the loop of Henle is permeable to (Chou, 1999). This 

is the basis of countercurrent multiplication within the loop of Henle. 

Following the loop of Henle is the distal convoluted tubule, which is involved in sodium 

and chloride reabsorption via sodium-chloride cotransporters (McCormick, 2015). The final 

segment of the nephron tubule is the collecting duct. The collecting duct collects filtrate from 

multiple nearby nephron tubules and is the final site of regulation of the volume and composition 

of urine. The collecting duct will be further discussed in more detail later.  

As indicated, substances such as ions, glucose, amino acids, water and urea can be 

reabsorbed or secreted along the various components of the nephron depending on the body’s 

needs. The substances that are filtered and not reabsorbed through any segment of the nephron 

tubule, or that which is secreted and not later reabsorbed, will become a part of the final 

composition of urine which will be excreted from the body. Various hormones also play a role in 

the urinary concentrating mechanism and ultimately are critical to body fluid and electrolyte 
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homeostasis. The kidney’s ability to reabsorb or excrete water to maintain body fluid osmolality 

is critical to the health of every cell in the body. 

Prostaglandins and their effects on the nephron tubule 

PGE2 inhibits salt and water reabsorption through a variety of methods. One of those 

occurs at the thick ascending limb of the loop of Henle; PGE2 decreases sodium reabsorption, 

thereby promoting salt excretion, via inhibition of the NKCC2 (Ares, 2011). EP3 receptor mRNA 

is expressed highly in the medullary thick ascending limb (Breyer, 1998). PGE2 binds to the EP3 

receptor, causing decreases in intracellular cAMP via Gi; through the cAMP regulatory element, 

expression of the transporter decreases (Shankar, 2003). 20-Hydroxyeicosatetraenoic acid (20-

HETE), a cytochrome P450 derived metabolite of arachidonic acid, inhibits sodium reabsorption 

by the thick ascending limb. However, it is not known whether NKCC2 is the primary target 

since these lipid mediators may also inhibit Na+-K+-ATPase activity (Ares, 2011). 

Collecting duct anatomy and function 

The final segment of the nephron tubule is the collecting duct. The collecting duct 

receives filtrate from many surrounding nephrons. Any substance within the tubular fluid not 

reabsorbed by the collecting duct will be a part of the final urine composition. There are two main 

cell types present in the collecting duct: intercalated and principal cells. Intercalated cells help 

with acid-base regulation whereas the principal cells are involved in the final makeup of the urine 

volume and composition, and thus are important in water and salt regulation within the collecting 

duct (Eaton, 2013). The collecting duct mediates the final stages of regulation of urine volume 

and composition, and carries out the important role of maintaining a constant water balance for 

the body. Around 5% of the sodium filtered load is reabsorbed in the collecting duct (Garty, 

1997). Water imbalances or urinary concentrating defects can have adverse effects on the body. 

Diabetes insipidus is a disorder that arises from a failure to maintain water balance, and the 
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patient produces large volumes of urine. These increases in dilute urine production can increase 

plasma osmolality, leading to a potentially fatal condition, hypernatremia (Moeller, 2012).  

The renal cortical-medullary interstitial osmotic gradient and the regulation of water 

permeability of the collecting duct are key to forming a more concentrated or dilute urine as 

needed to control water balance. Water permeability of the collecting duct is regulated by 

vasopressin, secreted by the posterior pituitary gland, leading to increased water reabsorption. 

Principal cells contain multiple different isoforms of aquaporin water channels. Aquaporin 2 is 

the only aquaporin sensitive to vasopressin (Verkman, 2008). When released, vasopressin binds 

to its vasopressin-2 receptor within the collecting duct, promoting the shuttling of aquaporin 2 

water channels from subapical vesicles into the apical membrane. The vasopressin 2 receptor is a 

G-protein coupled receptor and stimulates the increase of intracellular cAMP levels. Once 

phosphorylated by protein kinase A, the sub-apically aquaporin 2 vesicles are shuttled to the 

apical membrane, allowing for passive reabsorption of water. Water will pass transcellularly 

through the principal cell and exit the basolateral membrane via aquaporin 3 and 4 water 

channels. Water molecules are then able to move into the hyperosmotic interstitium, established 

by the medullary osmotic gradient, and enter into the bloodstream through nearby capillaries. 

Defective or dysregulated aquaporin 2 targeting and synthesis underlies a variety of clinical 

conditions such as nephrogenic diabetes insipidus, resulting in loss of body water, or the serious 

complication of water retention that can occur in heart disease (Moeller, 2012). 

The formation of a concentrated urine requires the presence of the medullary interstitial 

osmotic gradient, and water reabsorption via aquaporin 2 in the collecting duct. Earlier, it was 

mentioned that there are two important factors in establishing the medullary osmotic gradient. 

Countercurrent multiplication in the outer medulla was previously discussed. The other factor is 

the accumulation of urea in the medullary interstitium by way of the collecting duct. Urea is 

passively reabsorbed via urea transporters within the inner medullary collecting duct and will 
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accumulate within the medullary interstitium. Urea reabsorption primarily occurs through the 

urea transporter A1 (UT-A1), which is expressed in inner medullary collecting duct epithelial 

cells (Chen, 2013).  

Prostaglandins and their effects on the collecting duct 

 PGE2 is known to influence the trafficking of aquaporin 2 in the principal cells of the 

collecting duct. It can do so by binding to one of its four receptors, EP 1-4, all of which are 

expressed in the collecting duct. EP2 is only expressed in the cortical segment of the collecting 

duct (Katsuyama, 1995), whereas EP1, 3, and 4 are expressed along the entire collecting duct 

(Nasrallah, 2014). As the EP receptors are coupled to different signal transduction pathways, they 

can evoke opposite effects on aquaporin 2 trafficking, depending on which receptor PGE2 binds 

to.  

The EP3 receptor is most recognized for its diuretic role opposing vasopressin (Nasrallah, 

2014; Olesen, 2013); it mediates the inhibition of vasopressin-stimulated water permeability by 

PGE2 in the collecting duct (Breyer, 1998). As shown below in Figure 7, within the cortical 

collecting duct, EP3 reduces intracellular cAMP levels, which reduces aquaporin 2 water channel 

vesicle transport to the apical membrane. EP1 binds Gq, and through the action of protein kinase 

C, increases the endocytosis of aquaporin 2. Both of these reduce water reabsorption, although 

the mechanisms are different. Within the inner medullary collecting duct, EP3 similarly reduces 

aquaporin 2 transport to the apical membrane (Olesen, 2013). PGE2 may also exert a diuretic 

effect by binding to EP2 within the papillary interstitial cells. Binding to EP2 increases 

hyaluronan synthesis in the interstitial cells, which has a high capacity to bind water, thereby 

inhibiting water flow (Olesen, 2013; Rugheimer, 2009).  

Nadler et al. (1992) also found that PGE2 and agonists of EP1 and EP3 inhibit 

vasopressin-mediated water and urea permeability of the collecting duct in rat terminal inner 
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medullary collecting ducts. Rouch et al. (2000) discovered similar findings, in that PGE2 inhibits 

water and urea permeability in the rat inner medullary collecting duct via post-cAMP dependent 

events.  

Earlier it was discussed that PGE2, through its EP3 receptor, inhibited NKCC2 in the 

medullary thick ascending limb of the loop of Henle. This is also shown in Figure 7 below. 

Sodium reabsorption in this part of the nephron is important in countercurrent multiplication, 

which helps establish the medullary interstitial osmotic gradient. With less sodium reabsorption, 

the medullary osmotic gradient is diminished, resulting in less drive for water reabsorption to 

occur in the collecting duct. 

 

Figure 5: Proposed diuretic effects of PGE2 along the kidney nephron and interstitium (Olesen, 

2013) 

 

In contrast, PGE2 binding to EP2 or EP4 increases aquaporin 2 phosphorylation and 

transport to the apical membrane. The effects of EP2 are mediated through an increase in cAMP, 

however, the mechanism of aquaporin 2 transport to the apical membrane via the effects of EP4 

are unknown (Olesen, 2013). 
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Differences between the cortical and inner medullary collecting duct 

 The collecting duct extends from the outermost parts of the renal cortex, down to the 

deepest parts of the renal medulla. Along the length of the collecting duct, there are differences in 

tubular fluid and surrounding interstitial tissue osmolarities. When forming a hypo-osmotic or 

more dilute urine, tubular fluid osmolarity can decrease to as low as 50 mOsm/L. Under the 

influence of vasopressin, in the formation of a hyper-osmotic or more concentrated urine, tubular 

fluid osmolarity can increase to as high as 1200 mOsm/L. Vasopressin increases the permeability 

of the collecting duct to water along the entire length of the collecting duct; it also increases the 

permeability to urea within the inner medullary collecting duct. Urea reabsorption contributes 

greatly to the high osmolarity within the inner medulla. As the collecting duct descends further 

down into the medulla, the magnitude of the medullary interstitial osmotic gradient increases, 

favoring even more water reabsorption. The medullary osmotic gradient is established by 

countercurrent multiplication in the loop of Henle and urea deposition within the medulla, and 

maintained by countercurrent exchange in the vasa recta. As evident, vasopressin regulation of 

water permeability in the collecting duct dictates the formation of a more dilute or heavily 

concentrated urine. Another important difference is vasopressin 2 receptor mRNA distribution; 

the distribution is of greater intensity in the renal medullary collecting duct compared to the 

cortical collecting duct (Mutig, 2007).  

Cell lines 

The cell lines, mpkCCD and mIMCD3 cells, utilized in this study arise from different 

parts of the collecting duct. The mpkCCD cells are mouse cortical collecting duct cells whereas 

the mIMCD3 cells are mouse inner medullary collecting duct cells, specifically being derived 

from the terminal one third of the IMCD (Valkova, 2006). Therefore, they experience different 

environments of tubular fluid and surrounding interstitial osmolarity. mpkCCD cells 

endogenously express aquaporin 2 water channels, and expression is upregulated in the presence 
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of vasopressin. mIMCD3 cells do not express aquaporin 2. The endogenous aquaporin 2 

expression in mpkCCD cells shows vasopressin-regulated phosphorylation of aquaporin 2 

vesicles, increasing intracellular trafficking to the apical membrane, hence, a widely used 

collecting duct cell model. mIMCD3 cells have been shown to be an effective cell line for 

studying cellular adaptation to osmotic stress. They are readily able to adapt to grow in 

hypertonic mediums up to 910 mOsmol/kg H20, an environment that is lethal to most other cells 

(Rauchman, 1993). Hypertonic stress results in water escaping from the cell, and to compensate 

for the volume loss, they take up inorganic ions. In addition, they adapt to increases in osmotic 

pressure by accumulating organic osmolytes such as sorbitol and betaine (Valkova, 2006). 

mpkCCD cells have been shown to produce prostaglandins with PGE2 and PGF2α being 

the major prostaglandins produced (Kortenoeven, 2011). EP1, EP4 and FP receptors could be 

detected by RT-PCR in the same study. In mIMCD3 cells, mRNA expression of each of the 4 EP 

receptors was determined using RT-PCR. EP1 was detected at relatively high levels, with lower 

levels of EP4 and EP3, and no detection of EP2 (Elberg, 2012). This is consistent with reports of 

EP2 only being present in the cortical collecting duct (Katsuyama, 1995). There are currently no 

reported studies comparing prostaglandin production in mIMCD3 cells.  

Aim of the study and hypothesis 

A comparison of PGE2 and PGF2α production between the two cell lines will be carried 

out, while studying different variables, such as cell growth and treatments with various 

substances, such as COX inhibitors or changes in osmolarity. Due to the differences in the 

location of these cells within the collecting duct, expression profile differences of vasopressin 2 

receptor mRNA along the collecting duct, varying degrees of prostaglandin production and 

receptor expression, as well as extracellular and tubular fluid osmolarity differences that these 

cells are exposed to, I hypothesize that these two cell lines will respond differently in terms of 
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prostaglandin production in the presence of the different, and that cell growth time will be 

directly related to prostaglandin production. 
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CHAPTER 2: MATERIALS AND METHODS 

Cell Culture 

The mpkCCD (murine immortalized cortical collecting duct) cells, kindly provided by 

Dr. Knepper, NIH, and the mIMCD3 (mouse inner medullary collecting duct 3) cells, purchased 

from ATCC, were utilized in this study. The mpkCCD cells were cultured as previously described 

(Hasler, 2002) in modified DMEM/F-12 medium with the addition of the following supplements: 

2 mM L-glutamine, 20 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 50 nM 

dexamethasone, 10 ng/mL epidermal growth factor,  1 nM tri-iodothyronine, and 2% fetal bovine 

serum (FBS). mIMCD3 cells were cultured in DMEM/F-12 with 10% FBS. T-75 flasks and 6-

well plates were seeded to grow the cells with each subsequent passage of cell collection. Cells 

were cultured at 37 °C, with 5% CO2. 

Time Course Experiments 

A time course experiment was carried out to see how different growth times affected 

prostaglandin production. mIMCD3 and mpkCCD cells were seeded at 50,000 cells/well in 6-

well plates and grew in their respective complete media. One plate from each cell line grew in 

complete medium for 24 hours that, at this point, was switched over to serum and hormone (SH) -

free media (complete media minus dexamethasone, epidermal growth factor, tri-iodothyronine, 

and FBS for mpkCCD cells and DMEM/F12 without FBS for mIMCD3 cells). Another plate of 

cells grew in the medium for 72 hours, prior to switching to SH-free media. Following the time 

interval, the cells were washed with 2 mL DPBS, and then exactly 2 mL SH-free medium was 

added to each well. Cells were then incubated for a further 48 hours at 37 °C and then the media 

and cell lysates were collected, as described below. 

Treatment Experiments 
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Various treatments to the cells were carried out to compare their effects on prostaglandin 

production by the two cell lines. Five 6-well plates of each cell line were seeded at 50,000 

cells/well. Cells crew in cultured complete medium for 72 hours, at which point, the medium was 

exchanged for 2 mL SH-free medium, and the treatment was added. Cells remained in SH-free 

medium plus treatment or vehicle for 48 hours (except where indicated) and then media and cell 

lysates collected as described below. Treatments included: 1-deamino-8-D-arginine vasopressin 

(dDAVP, a vasopressin analog), SC-560 (a cell-permeable selective inhibitor of COX-1), NS-398 

(a cell-permeable selective inhibitor of COX-2), and sodium chloride (NaCl). In each case, three 

wells received the experimental treatment while the other three wells received the corresponding 

vehicle. The final concentrations of treatments were determined through prior literature utilizing 

these treatments. 

 dDAVP: 2 μL of stock solution, dissolved in 0.9% sterile saline (Sigma-Aldrich, St. 

Louis, MO) was added to each 2 mL of treated cell medium for a final concentration of 1 

nM. 2 μL was re-added at 24 hours to replenish dDAVP (the media was not removed)  

 SC-560 (a selective COX-1 inhibitor): SC-560 (Sigma-Aldrich, St. Louis, MO) was 

added to treated cells to give a final concentration of 100 nM (Flores, 2012). For the 

control wells, an equivalent volume of vehicle (5 μL DMSO) was added. SC-560 

displays 700-fold selectivity for COX-1 over COX-2, and the IC50 for COX-1 is 9 nM, 

and 6.3 μM for COX-2. 

 NS-398 (a selective COX-2 inhibitor): NS-398 (Sigma-Aldrich) was added to treated 

cells for a final concentration of 5 μM. An equivalent volume of vehicle was added (5 μL 

DMSO). The dose chosen was based on a study of mIMCD3 cells by Rocha, et al. 

(2001). The IC50 for COX-2 is 3.8 μM and COX-1 activity is unaffected up to 

concentrations of 100 μM. 
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 NaCl/Osmolarity: One plate of each cell line was seeded and collected at 48 hours of 

treatment. 4.5 mg of NaCl was added per 1 mL of SH-free media to increase media 

osmolality. A 0.22 μM syringe filter was used to sterilize the media. Exactly 2 mL of the 

sterilized SH-free media with NaCl was added to the treated wells. Exactly 2 mL of SH-

free media was added to the control wells. The remainder of the sterilized media with 

NaCl and a 1 mL aliquot of SH free media was saved and the osmolality was determined 

using a vapor pressure osmometer (Wescor, Logan, UT). 

Sample Collection 

The media in each well of the 6-well plates was collected, centrifuged at 10,000 g for 5 

minutes at 4 °C to remove debris and the supernatant was stored at -80 °C for later analysis. Cells 

were then washed briefly in chilled DPBS, then with protease and phosphatase inhibitors added 

(1 mM phenylmethylsulfonyl fluoride, 2 μM leupeptin, 2 μM pepstatin, 0.1% aprotinin, 5 μL 2-

mercaptoethanol (BME), and 50 μL phosphatase inhibitors) were subjected to lysis in 200 μL M-

PER mammalian protein extraction reagent (Thermo Scientific, Rockford, IL). The cells were 

detached with a cell scraper and placed into Eppendorf tubes. The lysates were centrifuged at 

10,000 g for 5 minutes at 4 °C and the supernatant was collected. A protein assay to measure 

protein concentration of the lysate was then done (Bradford method, Bio-Rad protein assay kit, 

Bio-Rad Laboratories, Hercules, CA). Lysates were stored at -80 °C for later analysis. 

Measuring Prostaglandin E2 and F2α, and Prostaglandin E Metabolite Production Utilizing 

Enzyme-linked Immunosorbent Assay (ELISA) kits 

 Mouse-specific ELISA kits (Cayman Chemicals, Ann Arbor, MI) were used to determine 

prostaglandin concentrations in cell culture media. Culture media samples were assayed for PGE2 

and PGF2α without further purification according to the manufacturers’ instructions. For PGEM 

determination, all samples and standards underwent derivatization for 20 hours at 37 °C 
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according to the manufacturers’ instructions prior to assay. Results are calculated as total pg per 2 

mL culture media, normalized to total cell protein per well, determined from all lysates via 

Bradford assay as described above. The average percentage changes in treatment vs. control 

groups were also calculated.  

Statistical Analysis 

 All data are represented as mean ± SEM for n (indicating number of wells) as indicated. 

Statistical analysis was performed using Graph Prism (v.6). Results of the time course 

experiments were compared between the two cell lines by two-way analysis of variance 

(ANOVA), testing for main effects of growth time (PGrowth), cell line (PLine), and the interaction 

between the two (PGrowth*Line). Results of the treatment experiments were compared between the 

two cell lines by two-way analysis of variance (ANOVA), testing for main effects of treatment 

(PTreatment), cell line (PLine), and the interaction between the two (PTreatment*Line). The percentage 

changes in prostaglandin production with different treatments were compared between cell lines 

by Students’ unpaired t-test. P < 0.05 was considered statistically significant, and was determined 

by post-hoc Bonferroni test 
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CHAPTER 3: RESULTS 

Effect of cell growth on prostaglandin production  

It has been previously reported that prostaglandin production is affected by cell growth 

time in culture. Hammarström (1977) determined maximal prostaglandin E2 concentrations in 

fibroblast cells were obtained between 6 and 18 hours following a media change, and that 

prostaglandin concentrations decreased with later times. In addition, Jiang et al. (2004) reported 

that mechanically wounding endothelial cell monolayers stimulated rapid COX-2 activity, leading 

to increased prostaglandin production, and that COX-2 activity decreased in more confluent cells. 

Prostaglandin accumulation in SH-free media was determined over a 48 h period following 

growth in complete media of 24 h to reflect an early, sub-confluent time point and 72 h 

representing 80-90% confluency. Photographed images of cultured mIMCD3 and mpkCCD cells 

at a subconfluent and confluent growth were taken (Figure 6). 
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Figure 6: Photographed images of cultured mIMCD3 cells at a subconfluent (24 h) (a) and 

confluent (72 h) (b) growth; for mpkCCD cells at a subconfluent (c) and confluent (d) growth. 

 

Figure 7a shows that PGE2 accumulation was significantly affected by prior growth time 

independently of cell line (PGrowth < 0.0001), with both lines showing a reduction in accumulation 

with increased confluency. There was also a significant difference in PGE2 accumulation between 

cell lines independently of growth time (PLine < 0.0001), with higher accumulation observed in 

mIMCD3 compared to mpkCCD cells. The two cell lines also displayed differences in PGE2 

accumulation with different periods of growth (PG*L <0.0001), but mIMCD3 cells still displayed 
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increased PGE2 accumulation compared to mpkCCD cells at both 24 and 72 h (P < 0.05 by 

Bonferroni post hoc test). 

Similar to PGE2, mIMCD3 cells displayed greater accumulation of PGEM in the media 

compared with mpkCCD cells (PLine < 0.0001; Fig 7b) at both time points. There was no overall 

significant effect of growth time on PGEM accumulation (PGrowth = 0.3). However, the two cell 

lines displayed a difference in the effect of growth time (PG*L < 0.01), with mIMCD3 cells 

showing an increase in PGEM accumulation with longer growth time (P<0.05), whereas there 

was no significant difference between 24 and 72 h in mpkCCD cells by post hoc testing. 

PGF2α accumulation significantly decreased with growth time independently of cell line 

(PGrowth < 0.0001; Fig 7c). The mpkCCD cells displayed increased PGF2α accumulation compared 

to mIMCD3 cells overall (PLine < 0.0001). However, the change in PGF2α accumulation with 

growth time significantly differed between cell lines (PG*L = 0.0096), with accumulation being 

significantly different between cell lines at 24 h (P < 0.05 by Bonferroni post-hoc test) but not at 

72 h. 
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Figure 7: Effect of growth time on PGE2 (a), PGEM (b), and PGF2α (c) production. P values were 

determined by two-way ANOVA, testing for effects of cell line (PLine), growth time (PGrowth), and 

the interaction between the two (PG*L). *P < 0.05 determined by post-hoc Bonferroni test. Data 

presented are mean ± SEM for n=6 per cell line, per time.  

 



28 
 

 
 

Effect of dDAVP on prostaglandin production 

It has been previously reported that vasopressin augments PGE2 synthesis, resulting in a 

negative feedback loop to limit vasopressin’s antidiuretic effect (Bisordi, 1980). Zusman et al. 

(1977) determined that vasopressin stimulates prostaglandin synthesis in a dose-dependent 

manner, while Kirschenbaum et al. (1982) and Beck et al. (1981) determined both a dDAVP and 

vasopressin dose-dependent increase in biosynthesis and release of all of the prostaglandins, with 

the major effect being on PGE2. The effect of dDAVP, a vasopressin analog, on prostaglandin 

production was thus assessed. 

mIMCD3 cells showed significantly greater PGE2 accumulation compared to mpkCCD 

cells, independently of treatment (PLine < 0.001; Fig 8a). While there was no significant effect of 

dDAVP treatment when taking both cell lines into account (PTreatment = 0.3), the two lines 

responded differently (PT*L< 0.05), with mIMCD3 cells showing an approximately 20% increase 

in PGE2 accumulation in response to dDAVP (P < 0.05), whereas mpkCCD cells did not. 

Likewise, mIMCD3 cells showed significantly greater PGEM accumulation compared to 

mpkCCD cells, independently of treatment (PLine < 0.0001; Fig 8b). There was a significant effect 

of dDAVP treatment when taking both cell lines into account (PTreatment = 0.0025); the two cell 

lines did respond differently (PT*L = 0.0027), with mIMCD3 cells showing a statistically 

significant 15% increase in PGEM accumulation in response to dDAVP (P <0.05), whereas 

mpkCCD cells did not. 

dDAVP-treated cells showed increased PGF2α compared to control cells in each cell line 

(Fig 8c). mIMCD3 cells showed significantly greater PGE2 accumulation compared to mpkCCD 

cells, independently of treatment (PLine < 0.0001). There was a significant effect of dDAVP 

treatment when taking both cell lines into account (PTreatment < 0.05). The effect of dDAVP to 

increase PGF2α production did not differ between cell lines (PT*L = 0.8). 
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Figure 8: Effect of dDAVP on PGE2 (a), PGEM (b), and PGF2α (c) production. P values were 

determined by two-way ANOVA, testing for effects of cell line (PLine), treatment (PTreatment), and 

the interaction between the two (PT*L). *P < 0.05 determined by post-hoc Bonferroni test. Data 

presented are mean ± SEM for n=3 per cell line, per treatment.  



30 
 

 
 

Effect of COX-1 (SC-560) and COX-2 (NS-398) inhibition on prostaglandin production 

Ferguson et al. (1999) reports that COX-2 is the major contributor to the pool of PGE2 

synthesized by the cortical collecting duct. From the study, when COX enzyme activity was 

measured in murine M-1 cortical collecting duct cells, both indomethacin (a COX-1 and -2 

inhibitor) and the specific COX-2 inhibitor NS-398 effectively blocked PGE2 synthesis, 

demonstrating that COX-2 is the major contributor to PGE2 synthesis. Other studies have 

concluded that hyperosmolar conditions, conditions such as what inner medullary collecting duct 

cells are exposed to, have led to increased COX-2 expression, while inhibiting COX abolished 

PGE2 production (Zhang, 1995).  

The individual effects of COX-1 and COX-2 inhibition on mpkCCD and mIMCD3 cell 

prostaglandin production was tested. The addition of a COX-1 or COX-2 inhibitor to both cell 

lines showed a statistically significant decrease of both PGE2 and PGF2α accumulation in the 

media (P <0.05) compared to the control groups (Fig 9 a, c, d, f). 

PGE2 levels were higher in mIMCD3 cells compared to mpkCCD cells with a COX-1 

inhibitor (Fig 9a). PGE2 accumulation by SC-560-treated mpkCCD cells is suppressed to 

approximately 22% of that seen in vehicle control cells whereas mIMCD3 cells treated with SC-

560 is suppressed to approximately 28% of that seen in vehicle control cells (PTreatment and PLine < 

0.0001). Similarly, PGE2 accumulation was greater in both the treated and control groups of 

mIMCD3 cells with a COX-2 inhibitor (Fig. 9d). There was similar inhibition of PGE2 

accumulation in the media; NS-398-treated mpkCCD cells was suppressed to approximately 25% 

of that seen in vehicle control cells whereas mIMCD3 cells treated with NS-398 is suppressed to 

approximately 20% of that seen in vehicle control cells (PTreatment and PLine < 0.0001). 

PGEM accumulation was significantly greater in the mIMCD3 cells compared to 

mpkCCD cells (PLine < 0.0001), in both the treated and control cells, and in the presence of both a 



31 
 

 
 

COX-1 and COX-2 inhibitor (Fig. 9 b, e). Treated mIMCD3 cells paradoxically showed an 

increase in PGEM accumulation compared to untreated cells; there was a 28% increase in PGEM 

accumulation with a COX-1 inhibitor present and a 16% increase with a COX-2 inhibitor, both of 

which were statistically significant (P < 0.05). 

As stated above, PGF2α levels were significantly decreased with the addition of a COX-1 

or COX-2 inhibitor in both cell lines (Fig. 9 c, f). PGF2α levels in SC-560-treated mpkCCD cells 

is suppressed to approximately 10% of that seen in vehicle control cells whereas mIMCD3 cells 

treated with SC-560 is suppressed to approximately 34% of that seen in vehicle control cells 

(PTreatment < 0.0001). There was not a statistically significant difference in PGF2α production 

between the two cell lines (PLine = 0.1068). Just as with a COX-1 inhibitor, mpkCCD cells treated 

with a COX-2 inhibitor showed a greater reduction in PGF2α accumulation compared to 

mIMCD3 treated cells; NS-398-treated mpkCCD cells was suppressed to approximately 10% of 

that seen in vehicle control cells whereas mIMCD3 cells treated with NS-398 is suppressed to 

approximately 27% of that seen in vehicle control cells (PTreatment < 0.0001; PLine = 0.0192). 
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Figure 9: Effect of 0.1 µM SC-560 (COX-1) (a-c) and 5 µM NS-398 (COX-2) (d-f) inhibition on 

PGE2 (a, d), PGEM (b, e), and PGF2α (c, f) production. P values were determined by two-way 

ANOVA, testing for effects of cell line (PLine), treatment (PTreatment), and the interaction between 

the two (PT*L). *P < 0.05 determined by post-hoc Bonferroni test, and indicates statistical 

significance compared to the vehicle treatment in the same cell line. Data presented are mean ± 

SEM for n=3 per cell line, per treatment. 



33 
 

 
 

Effect of extracellular osmolality on prostaglandin production 

Several studies have confirmed hyperosmolarity-stimulated PGE2 biosynthesis as a 

protective mechanism against hyperosmolarity-induced cell damage. Zusman et al. (1980) 

determined a hyperosmolar environment stimulated PGE2 synthesis by increasing arachidonic 

acid release whereas Danon et al. (1978) concluded there was a concentration-dependent increase 

in PGE2 and PGF2α output by rat renal papillae when the NaCl concentration was increased 

above 300 mOsm/L.  

To test the effect of osmolarity on prostaglandin production, culture media osmolality 

was increased by addition of 4.5 mg of NaCl per 1 mL of serum and hormone-free media, and the 

accumulation of prostaglandins compared to levels detected in cells cultured in parallel in normal 

serum and hormone-free media. The osmolality measured in mpkCCD normal culture media was 

326 mOsmol/kg H2O and 468 mOsmol/kg H2O in the NaCl-supplemented media. The osmolality 

measured in mIMCD3 normal culture media was 291.5 mOsmol/kg H2O and 435 mOsmol/kg 

H2O in the NaCl-supplemented media. 

Cells of both lines treated with NaCl showed a significant increase in PGE2 production 

(Fig. 10a), with this effect not being significantly different between cell lines (PT*L = 0.28; 

PTreatment < 0.05). As seen in the other experiments presented, mpkCCD cells did not demonstrate 

much PGEM accumulation, whether they were treated with NaCl or not, while mIMCD3 cells 

showed significantly greater PGEM accumulation compared to mpkCCD cells, independently of 

treatment (PLine < 0.0001 Fig. 10b), and showed a statistically significant increase in response to 

NaCl-supplementation (P <0.05). PGF2α was also increased by NaCl-supplementation in both 

mpkCCD and mIMCD3 cells, however the concentrations produced were too high to accurately 

measure when media was assayed undiluted (data not shown). 
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Figure 10: Effect of NaCl on PGE2 (a) and PGEM (b) production. P values were determined by 

two-way ANOVA, testing for effects of cell line (PLine), treatment (PTreatment), and the interaction 

between the two (PT*L). *P < 0.05 determined by post-hoc Bonferroni test. Data presented are 

mean ± SEM for n=3 per cell line, per treatment.  
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CHAPTER 4: DISCUSSION 

The collecting duct is the terminal segment of the nephron tubule that is involved in the 

fine-tuning of urine volume and composition, creating a more dilute or more concentrated urine, 

based on the body’s water needs. The collecting duct extends from the outer renal cortex, down to 

the deepest parts of the renal medulla. The water permeability of the collecting duct is regulated 

by the hormone vasopressin. In the short term, vasopressin stimulates the shuttling of aquaporin 2 

water channels to the apical membrane, allowing passive water movement to move from the 

nephron tubular lumen and into the surrounding interstitium; long term, vasopressin enhances 

aquaporin 2 gene expression (Kuo, 2018). Prostaglandins, primarily PGE2, is a known negative 

regulator of collecting duct water and urea permeability. Through various signaling pathways, 

depending on which particular receptor PGE2 binds to, collecting duct water permeability can be 

decreased either by increased endocytosis of aquaporin 2 vesicles, or a decrease in aquaporin 2 

trafficking to the apical membrane as a result of decreased intracellular cAMP levels.  

The cell lines utilized come from different areas of the collecting duct. mpkCCD cells are 

cortical collecting duct cells whereas mIMCD3 cells are inner medullary collecting duct cells. 

These cells are exposed to different extracellular osmolarities. As demonstrated, they also differ 

in prostaglandin production, both as a result of different cell growth confluency and various 

treatment agents. There were general findings of the study. A general finding was that mIMCD3 

cells made more PGE2 than mpkCCD cells, but the amount of PGF2α was more similar between 

the two cell lines. Additionally, as a general trend, PGEM levels did not change all that much 

between vehicle and treated cells of each cell line and between subconfluent and confluent cells 

for each cell line. Finally, subconfluent cells showed more prostaglandin production compared to 

confluent cells in both cell lines. 

 PGE2 and PGF2α accumulation decreased as cells approached confluency 
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Based on the experimental results, PGE2 and PGF2α production was relatively high while 

cell density was low, with production declining as cultures approached confluency at 72 h. It is 

likely that as the cells reach confluency, they reach a stable, basal level of prostaglandin 

synthesis. The confluent growth time is likely more reflective of normal collecting duct 

epithelium as a large sheet of in-contact, monolayer cells. A decrease in prostaglandin production 

with increased growth time is consistent with the findings of Hammarström (1977). In this study, 

maximal prostaglandin production occurred prior to 24 hours and that prostaglandin 

concentration decreased with later times. However, fibroblasts were utilized in that study, rather 

than epithelial cells from the kidney. Contrary to this, the subconfluent growth time is likely more 

reflective of injury and repair of epithelium. Previous reports have indicated increased COX-2 

activity with mechanically wounded cells, leading to increased prostaglandin production (Jiang, 

2004). While the cells in this study were not mechanically wounded, the loss of a solid monolayer 

and direct contact with one another may have similarly stimulated COX-2 expression, leading to 

the very high prostaglandin concentrations seen at 24 hours. 

When comparing the cell lines, PGE2 accumulation was much lower in the mpkCCD 

cells at both 24 and 72 hours, compared to mIMCD3 cells. PGE2 is the major cyclooxygenated 

metabolite of arachidonic acid produced in the kidney and is synthesized at high rates throughout 

the nephron and collecting duct system (Li, 2018). This result is likely due to the fact that its main 

sites of synthesis include the medullary collecting duct and, to a lesser extent, the cortical 

collecting duct (Bonvalet, 1987). PGF2α has roughly the same distribution along the collecting 

duct, however, the rate of synthesis is nearly 20-fold lower compared to PGE2 (Bonvalet, 1987). 

Interestingly, PGF2α accumulation was significantly greater than PGE2 accumulation in each cell 

line, at both 24 h and 72 h. One plausible reason for this is that some of the PGE2 was probably 

converted to PGF2α as it can be synthesized directly from PGE2 via a reductase reaction (Dozier, 

2008). 

https://febs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=HAMMARSTR%C3%96M%2C+Sven
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  PGEM was measured to see if the observed decrease in prostaglandin production at a 

confluent time growth was a result of metabolism. While there was an increase in PGEM from 24 

to 72 hours in mIMCD3 cells, the increase does not account for the huge reduction seen in PGE2 

seen at 72 hours compared to 24 hours (approximately 25% of what was produced by cells 

allowed to grow for 24 hours; Fig. 7a). Most cultured cells that produce prostaglandin E2 

generally do not contain the enzymes required for PGE2 metabolism, likely explaining this result 

in that most PGE2 was not metabolized into its metabolites. There wasn’t low PGEM observed at 

24h growth and high PGEM at 72h growth, suggesting that production of PGE2 is truly lower in 

confluent cells rather than the decrease reflecting increased metabolism. An assay to measure 

PGF2αM should be included as a future step to observe the effects that cell confluency has on 

PGF2αM, and see how that compares in the two cell lines. 

PGE2 accumulation increased with dDAVP treatment in mIMCD3 cells while not having a 

significant effect in mpkCCD cells. PGF2α accumulation increased with dDAVP treatment 

in both cell lines 

Vasopressin has important physiological roles. In vivo, vasopressin is released in 

response to an increase in blood osmolarity or a decrease in blood volume. In the collecting duct, 

vasopressin binds to its vasopressin 2 receptor (V2R), which initiates a Gs-cAMP-Protein Kinase 

A mediated trafficking of aquaporin 2 water channels to insert into the apical membrane. As a 

result, water passively flows through the water channels, and enters the surrounding interstitium 

via aquaporin 3 and 4, where it is returned to the blood. PGE2 is known for its diuretic role, 

opposing vasopressin-mediated water permeability of the collecting duct. This occurs through 

PGE2 binding to its EP3 receptor, which decreases intracellular cAMP levels, or binding to its 

EP1 receptor, which activates Gq and Protein Kinase C, which increases the endocytosis of 

aquaporin 2 vesicles. PGF2α primarily signals through Gq-Protein Kinase C, and therefore likely 

impacts aquaporin 2 trafficking in a similar manner as PGE2 and EP1. 
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A V2R agonist, dDAVP, was used to compare the responses of the two cell lines to 

vasopressin stimulation. Based on the experimental results, there was an increased accumulation 

of prostaglandins and PGEM in the dDAVP-treated mIMCD3 cells, while dDAVP did not have a 

significant effect on PGE2 accumulation in mpkCCD cells. However, PGF2α similarly increased 

with dDAVP treatment in the mpkCCD cells. 

It is generally known that vasopressin augments PGE2 synthesis and that prostaglandins 

antagonize the hydro-osmotic effects of vasopressin in the collecting duct (Bonvalet, 1987), and 

that the inhibition of endogenous prostaglandin synthesis by COX inhibitors enhances the 

response to vasopressin (Bisordi, 1980). Several studies have demonstrated this finding: Zusman 

et al. (1977) proposed that vasopressin stimulates prostaglandin synthesis in a dose-dependent 

manner by activating phospholipase enzymes, thus increasing the amount of arachidonic acid 

availability in the toad urinary bladder. Kirschenbaum et al. (1982) and Beck et al. (1981 

determined a dDAVP and vasopressin dose-dependent increase in biosynthesis and release of all 

of the prostaglandins, with the major effect being on PGE2 in rabbit cortical collecting tubular 

cells. From these studies, it is concluded that, since prostaglandins antagonize the effect of 

vasopressin-mediated water permeability, by stimulating prostaglandin production, a negative 

feedback loop is completed, thereby limiting vasopressin’s antidiuretic effect (Bisordi, 1980). 

dDAVP had a much greater impact on PGE2 production in mIMCD3 cells compared to 

mpkCCD cells. It is likely that these cells are more responsive to vasopressin - vasopressin 2 

receptor mRNA increases in intensity in the renal medullary collecting duct compared to the 

cortical collecting duct (Mutig, 2007). Due to decreased vasopressin 2 receptor mRNA 

expression, mpkCCD cells are possibly less responsive to vasopressin. As a result, there is less 

prostaglandin production via the negative feedback loop to suppress vasopressin’s antidiuretic 

effect.  
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Another possible explanation that dDAVP had little effect on PGE2 production was that 

the concentration of dDAVP was not high enough. However Kortenoeven et al. (2011) utilized 

the same concentration of 1 nM dDAVP to maximally induce aquaporin 2 expression in their 

study. They determined that dDAVP-treated mpkCCD cells did stimulate both sufficient levels of 

PGE2 and PGF2α production compared to control mpkCCD cells. However, they utilized different 

culturing and incubation times, culturing the cells for 8 days and treating the cells with 1nM 

dDAVP for 96 hours to maximally induce aquaporin 2 expression. Their model also more 

accurately reflects in vivo conditions, using a semipermeable filter to create an apical and 

basolateral surface. Repeating this experiment with higher concentrations of dDAVP to see if this 

would result in increased PGE2 accumulation in the mpkCCD cells or not is a potential next step, 

as well as utilizing their model of mpkCCD cell incubation with dDAVP.  

PGE2 and PGF2a accumulation significantly decreased with COX-1 and COX-2 inhibitor 

treatment in both mIMCD3 and mpkCCD cells. 

The biosynthetic pathway of prostaglandins involves the conversion of arachidonic acid 

to prostaglandin H2, catalyzed by cyclooxygenase-1 and -2 (COX-1 and COX-2) enzymes. This is 

the rate-limiting step in prostaglandin synthesis. Therefore, the presence of COX-1 and COX-2 

inhibitors would expect to greatly reduce prostaglandin production. In the kidney, COX-1 is 

constitutively expressed in the collecting duct, localized to both the cortical and medullary 

segments (Hao, 2008). COX-1 has also been determined to be present in the medullary interstitial 

cells (Nasrallah, 2014). The expression of COX-2 is much more unclear and conflicting in most 

studies. It has been reported to have varying amounts of expression within the collecting duct. 

Kortenoeven et al. (2011) report strong COX-2 expression in the collecting duct in three studies, 

and absence of it was suggested in three other studies. They also report that increased COX-2 

levels have been detected in collecting ducts of animals that were dehydrated or subjected to a 
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chronic NaCl load, noting its inducible expression under stress conditions. It is, however, highly 

expressed in renal medullary interstitial cells (Hao, 2008; Kortenoeven, 2011). 

Based on the experimental results, as expected, mpkCCD and mIMCD3 cells treated with 

either a COX-1 or COX-2 inhibitor greatly reduced prostaglandin accumulation. Both COX-1 

(SC-560) and COX-2 (NS-398) inhibition resulted in similar decreases of PGE2 accumulation in 

both cell lines. In mIMCD3 cells, PGE2 accumulation was more reduced in the presence of a 

COX-2 inhibitor compared to a COX-1 inhibitor (28% vs. 20%). In mpkCCD cells, the presence 

of a COX-1 inhibitor reduced PGE2 accumulation to 22% of that compared to vehicle control 

cells, and 25% with a COX-2 inhibitor. Due to the similarity in reduction of PGE2 accumulation 

in the media with a COX-1 and COX-2 inhibitor in both cells, it is difficult to report what enzyme 

contributes more to PGE2 synthesis in these cells. Ferguson et al. (1999) reports that COX-2 is the 

major contributor to the pool of PGE2 synthesized by the cortical collecting duct. From the study, 

when COX enzyme activity was measured in their murine M-1 cortical collecting duct cells, both 

indomethacin (COX-1 and -2 inhibitor) and the specific COX-2 inhibitor NS-398 effectively 

blocked PGE2 synthesis, demonstrating that COX-2 is the major contributor to the pool of PGE2 

synthesized by the cortical collecting duct. However, they did utilize a different cortical cell line, 

which may contribute to their results. 

For PGF2α, while both COX-1 and COX-2 inhibitors reduced accumulation in the media 

in both cell lines, the reduction was greater in the mpkCCD cells, for both COX-1 and COX-2 

inhibition. SC-560 and NS-398 treated mpkCCD cells suppressed PGF2α accumulation to 10% of 

that seen in the vehicle control cells, whereas treated mIMCD3 cells with SC-560 and NS-398 

suppressed PGF2α accumulation to 34% and 27% of that seen in vehicle treated cells, 

respectively. Again, these percentages are too close to confidently say which enzyme contributes 

more to PGF2α production, and this would need to be run again to determine which enzyme has a 

greater effect on prostaglandin production. Interestingly, there was a paradoxical increase in 
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PGEM accumulation in the mIMCD3 cells, in both the COX-1 and COX-2 inhibitor treated cells; 

however, there was very little PGEM accumulation in the mpkCCD cells, with both COX-1 and 

COX-2 inhibition as well as in the control cells. 

PGE2 and PGF2α accumulation significantly increased with NaCl treatment in both 

mIMCD3 and mpkCCD cells. 

The osmolarity of the tubular fluid as well as the surrounding interstitium varies along the 

length of the collecting duct. These cell lines are located in different regions of the collecting 

duct, and are thus exposed to the different osmolarities. In the formation of a concentrated urine, 

under the influence of vasopressin, the deepest parts of the interstitial medullary region as well as 

the tubular fluid within the nephron, can be exposed to osmolarities up to 1200 mOsm/L. Thus, 

the cells in this area must be able to function with significant increases in osmolarity. In a state of 

dehydration, the interstitial osmolality can increase several fold, and if prolonged, lead to cellular 

distress (Price, 2011). In the formation of a dilute urine, osmolarities of the tubular fluid can be as 

low as 50 mOsm/L, with a medullary interstitium osmolarity of 600 mOsm/L. The cortical 

collecting duct tubular fluid and surrounding interstitium usually has an osmolarity around 300 

mOsm/L.  

Based on the experimental results, PGE2 and PGF2α levels were significantly increased in 

NaCl-treated cells of both lines. PGF2α concentration levels produced were too high to accurately 

measure when media was assayed undiluted in both cell lines. The result of a surge in 

prostaglandin production in the presence of NaCl is most likely a stress-protective mechanism, 

which is explained below. When comparing the two cell lines, PGE2 was much greater in the 

mpkCCD-treated cells. This could be due to the idea that these cells are not as adaptable to such 

increases in osmolarity as the mIMCD3 cells are, and this protective mechanism was further 

enhanced. Levels of PGF2α as a result of the addition of NaCl is something that needs to be 

determined. 
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  Several studies have confirmed hyperosmolarity stimulated PGE2 biosynthesis as a 

protective mechanism against hyperosmolarity-induced cell damage. In align with this, a well-

noted phenomenon in clinical medicine is that certain COX-inhibitory drugs can cause necrosis of 

the renal papilla (Delmas, 1995; Eknoyan, 1994).  Zusman et al. (1980) determined a 

hyperosmolar environment stimulated PGE2 biosynthesis by increasing arachidonic acid release 

in rabbit medullary interstitial cells. Via a similar mechanism of increasing arachidonic acid 

mobilization from tissue lipids, Danon et al. (1978) concluded that there was a concentration-

dependent increase in PGE2 and PGF2α output by rat renal papillae when the NaCl concentration 

was increased above 300 mOsm/L. Outside of the kidney, PGE2 production by 

lipopolysaccharide-stimulated rat Kupffer cells was increased if exposed to a medium osmolarity 

above 305 mOsm/L, whereas a hypo-osmotic medium (255 mOsm/L) diminished PGE2 

formation. In this study involving the rat liver macrophages, the hyperosmolarity lead to COX-2 

induction and inhibiting COX with indomethacin and specifically COX-2 with NS-398, abolished 

PGE2 production (Zhang, 1995). In another relevant study, it was determined that hypertonicity 

increased COX-2 activity, leading to PGE2-mediated inactivation of the pro-apoptotic protein, 

BAD, conferring a hyperosmolarity-induced prostaglandin production protective mechanism 

(Price, 2011). Several other studies have conferred a cytoprotective role of COX-2 in the osmotic 

response (Yang, 2000). 

  There are obvious limitations to this study. First and foremost, due to the lack of time, 

these experiments were only completed once. To verify these results and to ensure the results 

were not by random chance, these exact experiments should be run again, possibly three times, to 

gather stronger and more firm conclusions. In addition, the sample size utilized was low, which 

reduces the power of a study and increases the margin of error. With such a low sample size, it is 

difficult to discern whether these are the expected results in all of the experiments, or if the results 

would differ with a larger sample size. In alignment with the lack of available time, some of the 
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prostaglandins accumulation data needs to be repeated with diluted samples, as the concentration 

levels produced were too high to be accurately measured when media was assayed undiluted. 

With that said, this leads us to some potential future directions. Re-running these experiments is 

also a future direction, as well as trying different treatment concentrations, to see if there is a 

dose-dependent response. Another future direction would be to look at other prostaglandins, as 

the kidneys synthesize more than just PGE2 and PGF2α. In addition, comparing expression levels 

of various enzymes, such as COX, between the two cell lines, by western blot is warranted. 

 Overall, the models used to study the collecting duct were appropriate for this study. 

There are many differences between the two cell lines that have been mentioned. These 

differences are primarily due to their differences in their location within the collecting duct. As a 

result, the two cell lines responded differently in prostaglandin production in response to various 

treatments. 
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