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Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, 

the fourth leading cause of cancer-related deaths in the USA with over 40,000 deaths per 

year. Unlike other major cancer types, the progress in dealing with PDAC is plodding, 

attributed mainly to the asymptomatic nature of the disease, the late diagnosis and the 

ineffectiveness of current therapies.  A better understanding of the biology of the disease 

could permit the discovery of novel diagnostic and therapeutic tools. With that in mind, we 

present this dissertation that investigates the tumor-stromal interaction underlined by 

genetic alterations and inflammation. PDAC develop as a consequence of the 

accumulation of genetic mutations like Kras. Oncogenic Kras is known to propagate 

inflammatory signals such as CXCR2. PDAC is known for the prominent desmoplasia that 

enables therapy resistance and tumor dissemination, which is mainly mediated through 

cancer-associated fibroblasts (CAFs). Little is known about the connection between 

oncogenic Kras, CXCR2 signaling and CAFs. In this study, we show that CAFs can 

produce CXCR2 ligands and can respond to CXCR2 signaling. We indicated that through 

paracrine factors such as CXCL8 and FGF-2, CAFs support the survival of the aggressive 

PDAC cells and enable means for progression. We demonstrate that oncogenic Kras is 

associated with a subset of CAFs with a prominent secretory function mediated through 

CXCR2 signaling. Lastly, we exhibit a differential role of CXCR2 in PDAC that was 

dependent on genetic mutations, which may indicate a temporal context of CXCR2 roles 

in PDAC. Together, CAFs, as well as CXCR2, could still be worthy targets in PDAC in the 
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right context. Further studies that investigate the progression and timely roles of CAFs 

and CXCR2 are warranted.              
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SIGNIFICANCE OF THE STUDY 
 

Pancreatic cancers (PC), particularly pancreatic ductal adenocarcinoma 

(PDAC), have a very poor prognosis that often leads to deaths. The major 

challenge in dealing with the disease is that it is presented at a very advanced 

stage often when PDAC has already disseminated to other organs. PDAC is also 

characterized by high recurrence rates and frequent resistance to conventional 

therapies. Finding screening and diagnostic tools that can detect the disease early 

when it is still manageable, and developing new therapeutic approaches to deal 

with advanced stages PDAC are two cornerstones in successfully dealing with this 

malignancy. This starts by understanding the dense and complex tumor 

microenvironment of the disease, determining the major players in tumor initiation 

and progression, and identifying the crucial checkpoints that determine the tumor’s 

fate. Cancer-associated fibroblasts (CAFs) present with abundance in PDAC. 

They are known to excessively produce extracellular matrix (ECM) proteins as well 

as many paracrine factors. By interacting with malignant cells and other cells in the 

tumor microenvironment, CAFs have been implicated in tumor growth, 

immunosuppression, therapy resistance, and invasion. This study presents an 

effort to understand the role of CAFs in PDAC and their role in promoting tumor 

progression, dissemination, or lack thereof via their paracrine interactions. The 

finding from this study will help in adding to the current knowledge of the molecular 

and histological features of PDAC, thus, aids in classifying and stratifying PDAC, 

which will allow more precise new targeted therapy approaches.             
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OVERVIEW OF THE PANCREAS: ANATOMY AND PHYSIOLOGY 
 

Anatomy and function: 
 

The pancreas is a retroperitoneal organ of both gastrointestinal and endocrine 

systems. It is located in the posterior portion of the upper abdomen behind the 

stomach. Pancreas divides into the head (right), body (middle) and tail (left). It 

weighs around 100 g and extends to 14-25 cm long. Exocrine pancreas, ~95% of 

organ mass, secrets digestive enzymes to the duodenum through the pancreatic 

duct at the hepatopancreatic ampulla, through which the common bile duct from 

the liver and gallbladder also enters the duodenum. The valve of the sphincter of 

Oddi, not only regulates the flow of bile and pancreatic juice into the duodenum 

but also prevents the reflux of intestinal contents into the pancreatic duct. 

Endocrine pancreas, comprised of islets, secretes insulin, glucagon, somatostatin, 

and pancreatic polypeptide into the blood. The junction of the head and body is 

referred to as the neck. The neck is thinner than the adjacent portions of the head 

and body of the pancreas. Posterior to the neck, run major blood vessels such as 

the superior mesenteric artery, superior mesenteric‐portal vein, inferior vena cava, 

and aorta, which limits the option for a wide surgical margin during pancreatectomy 

(Horan 2009, Longnecker, Gorelick et al. 2018).      

Histology: 
 

The two distinct functions of the pancreas are modulated by two discrete 

histologic components. The endocrine pancreas that secrets hormones, including 

insulin, into the bloodstream is defined as the spherical or ellipsoid structures 
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known as pancreatic islets (islets of Langerhans; dispersed throughout the 

exocrine pancreas). The islets contain alpha (α) cells, beta (β) cells, gamma (γ) 

cells, delta (δ) cells, epsilon (ε) cells, and pancreatic polypeptide cells. On the other 

hand, a network of tubules composed of acinar and duct cells that synthesize, 

secrete, and carry digestive enzymes into the intestine makes up the exocrine 

pancreas. Acinar cells contain zymogen granules, the storage compartment for 

pancreatic digestive enzymes. Acinar cells arrange in clusters, like grapes, at the 

ends of a branching duct system. Duct, composed of epithelial cells, make up the 

branching ductal system that collects acinar juices to the gastrointestinal system 

via the pancreatic duct (Longnecker, Gorelick et al. 2018).       
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PANCREATIC CANCER 
 

Epidemiology 
 

When compared to other major human malignancies, PC has a lower 

incidence; yet, the disease remains one of the deadliest types (Lowenfels and 

Maisonneuve 2006). PC currently ranks as the fourth leading cause of cancer-

related death in the United States of America. PC is expected to take over as the 

second leading cause of cancer-related deaths by 2030 (Siegel, Miller et al. 2018). 

For the past few years, the American Cancer Society estimated an average of over 

50,000 new cases and over 40,000 deaths of PC in both sexes combined. PC is 

more common in older people and slightly has a higher incidence in males. The 

overall five-year survival rate for PC is 8%. Around 20% of PC patients present 

with localized tumors for which surgical resection can improve the survival rate to 

32%. Nonetheless, most of the PC cases present clinically at distant metastasis 

stage with only a three-percent survival rate (Siegel, Miller et al. 2018). The overall 

five-year survival for all cancers combined has improved from 49% in 1977 to 69% 

in 2014. In comparison, the survival rate for PC only improved from 3% to 9% 

(Siegel, Miller et al. 2018). This poor improvement in patient survival can explain 

why the PC is expected to become the second leading cause of cancer-related 

deaths after another decade. Furthermore, the disease has a high rate for 

recurrence, even for those who undergo surgical resection (Network 2016), as well 

as a high chance of developing resistance to conventional therapy (Hidalgo 2010). 

The challenges that remain as obstacles in properly improving PC survival rates 
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include the late presentation and the lack of early detection tools, and high rates 

of distant metastasis, recurrence, and therapy resistance.       

Risk factors 
 

There is not yet any described definitive cause for the occurrence of PC. 

Many factors have been identified as risk factors for PC, including smoking, 

obesity, physical inactivity, genetic predisposition, diabetes, and certain diets 

(Lowenfels and Maisonneuve 2006, Raimondi, Maisonneuve et al. 2009).   

Based on descriptive epidemiology, factors like ages, gender or 

geographical location can impact the rate of PC occurrence. PC is common in older 

people. The median age of diagnosis of PC is 72 years. Only about less than 10% 

of patients develop PC are under 50 (Raimondi, Maisonneuve et al. 2009). The 

American Cancer Society reports the comparatively highest number of deaths 

10,594 (males) and 9,076 (females) in the age group of 60-79 years in comparison 

to other age groups (Siegel, Miller et al. 2018). Moreover, PC presents with higher 

occurrence in males than in females (Lowenfels and Maisonneuve 2006, 

Raimondi, Maisonneuve et al. 2009). Race as well can play a role. African-

Americans have a higher tendency to get PC than white-Americans.  Even so, 

countries and locations closer to the equator such as Egypt and Zimbabwe have 

lower rates of PC than northern countries such as Finland and Iceland (Raimondi, 

Maisonneuve et al. 2009).  

Environmental factors such as smoking and specific diets may increase the 

risk of PC. Exposure to tobacco smoke is associated with about 25% of PC cases 
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(Lowenfels and Maisonneuve 2006, Raimondi, Maisonneuve et al. 2009). 

Cigarettes-smokers have around 75% higher risk of PC than non-smokers, and 

this increased risk persists for at least ten years after smoking cessation (Ilic and 

Ilic 2016). Furthermore, increased body-mass-index, both general and abdominal 

obesity, and increased caloric consumption have been linked to the risk of PC 

(Lowenfels and Maisonneuve 2006, Aune, Greenwood et al. 2011).  

Certain people have a predisposition for PC. Around 10% of PC cases are 

linked to germline mutations. Certain familial syndromes, such as, Peutz-Jeghers 

syndrome, familial atypical mole-multiple melanoma, cystic fibrosis and Li-

Fraumeni syndrome are also linked to increased rate of PC (Raimondi, 

Maisonneuve et al. 2009). Furthermore, preexisting diseases, such as diabetes 

and pancreatitis, are linked with increased risk of PC (Lowenfels and Maisonneuve 

2006, Raimondi, Maisonneuve et al. 2009).      

Histological classification of pancreatic cancer  
 

As the pancreas is divided histologically and functionally into the endocrine 

and exocrine pancreas, PCs are often classified as such. Endocrine PCs are far 

less common than exocrine malignancies and often milder. The survival time of 

patients with endocrine PC is normally two years longer than those diagnosed with 

exocrine PC (Fesinmeyer 2005). Endocrine tumors are relatively rare, arise in the 

islet cells and are referred to as islet cell or pancreatic neuroendocrine tumors. 

Their nomenclature is based on the hormone they overproduce. They are sub-

classified into insulinoma, glucagonoma, somatostatinoma or nonfunctional islet 

cell tumors. The endocrine pancreatic tumors often overproduce normally 
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occurring substances, such as, insulin and glucagon; exocrine PC tumors are often 

harsher. Some exocrine malignancies may block pancreatic duct causing jaundice 

and cachexia (Fesinmeyer 2005). Since the vast majority of PCs are exocrine 

tumors, we will dedicate the next part to discussing exocrine tumors.  

Malignancies of the exocrine pancreas 
 

As described, the exocrine pancreas is mainly made of clusters of acinar 

cells that secrete digestive enzymes into the branching duct made of ductal 

epithelial cells (Longnecker, Gorelick et al. 2018). The vast majority of exocrine 

PCs are ductal adenocarcinomas (Hruban and Fukushima 2007). Less common 

types of exocrine tumors include cystic tumors that cause a cyst or fluid-filled sac 

in the pancreas and cancer of the acinar cells. According to World Health 

Organization and International Agency for Research on Cancer (Bosman, Carneiro 

et al. 2010), exocrine pancreas malignancies can be classified as follows: PDAC 

(75% cases), serous cystadenoma, mucinous cystadenocarcinoma, intra-ductal 

papillary-mucinous carcinoma, and acinar cell carcinoma. PDAC can be further 

divided into differentiated and poorly differentiated. Other rare forms of exocrine 

PCs include pancreatoblastoma that affects children and solid pseudopapillary 

tumors, a rare low-grade neoplasm that mainly affects younger women and has a 

very good prognosis (Fesinmeyer 2005, Bosman, Carneiro et al. 2010).  Because 

PDAC is the most frequent exocrine tumors with the poorest prognosis, we will 

mainly focus on discussing PDAC in this dissertation.   
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PANCREATIC DUCTAL ADENOCARCINOMA (PDAC) 
 

Overview 
 

The cellular phenotype of the PDAC malignant cells is similar to ductal 

epithelial cells of the exocrine pancreas (Kloppel, Lingenthal et al. 1985, Hruban, 

Adsay et al. 2001); however, the exact origin is still debated. PDAC may arise from 

a poorly differentiated ductal cell, a dedifferentiated acinar or islet cell, or a 

progenitor or stem cell (Li, Lee et al. 2009). PDAC account for 85-90% of all 

pancreatic neoplasms and is very virulent in nature (Hruban and Fukushima 2007). 

PDAC can block the pancreatic duct, which results in jaundice and cachexia 

(Modolell, Guarner et al. 1999, Porta, Fabregat et al. 2005). At the time of 

diagnosis, 52% of the patients present with a disease that has already 

metastasized to other organs (Siegel, Miller et al. 2018). PDAC tumors are often 

firm, but poorly defined in structure with a tendency to invade nearby tissues. 

Anatomically, 65% of PDAC tumors arise in the head; whereas, around 25% occur 

in the body and tail. It is common for the tumors in the head to invade the common 

bile duct or the main pancreatic duct and produce stenosis.  In contrast, tumors of 

the pancreatic body and tail obstruct the main pancreatic duct only (Hruban and 

Fukushima 2007). Histologically, PDAC is featured with the presence of a dense 

stromal response known as desmoplasia. Under the microscope, PDAC lesions 

imitate the appearance of normal pancreatic ducts embedded inside a thick stroma 

(Figure 1.1). The desmoplastic stroma in PDAC is known to be composed of 

fibroblasts, stellate cells, endothelial and immune cells (Kloppel, Lingenthal et al. 

1985, Hruban, Adsay et al. 2001). The large amount of fibrous stroma explains the 
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firm consistency of PDAC tumors. PDAC, similar to many other malignancies, does 

not arise in isolation. The disease progresses over a long period with the 

contribution of many factors, including, progressive genetic alterations in the 

malignant cells, as well as contribution from other host cells in the tumor 

microenvironment. In the next few sections, we will discuss how PDAC progresses, 

the genetic alterations to allow this progression and the contribution of 

inflammation and stroma in this disease.  

PDAC precursor lesions 
 

The end stage invasive PDAC results from the development of pre-

cancerous precursor lesions in the pancreas (Hruban, Wilentz et al. 2000, Hruban, 

Maitra et al. 2007, Hruban, Brune et al. 2008). Example of these precursor lesions 

includes intra-ductal papillary mucinous neoplasm (IPMN) and mucinous cystic 

neoplasm (MCN). The most described precursor lesion type is termed pancreatic 

intra-epithelial neoplasia (PanIN) (Hruban, Maitra et al. 2007). PanINs are 

microscopic (around ½ cm) neoplastic proliferation in the pancreatic ducts that 

develop into three histologically distinct stages (PAnIN1-3), before becoming a full-

blown invasive PDAC. PanIN1 lesions are composed of columnar epithelial cells 

with basally oriented nuclei and abundant mucin production and can be either flat 

(PanIN1A) or papillary (PanIN1B) (Hruban, Brune et al. 2008). PanIN-2 are mostly 

papillary with some nuclear abnormalities including loss of nuclear polarity, nuclear 

crowding, and variations in size, hyperchromasia and nuclear pseudostratification 

(Hruban, Brune et al. 2008). PanIN-3 lesions show the highest form of dysplasia 

and are architecturally complex with marked cytological abnormalities, 
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cirbriforming, budding off of epithelial cells and luminal necrosis (Hruban, Brune et 

al. 2008). Progression from PanIN-1 to PanIN-3 stage occur in stepwise and is 

accompanied by the onset of various mutations (Hansel, Kern et al. 2003, Hruban, 

Maitra et al. 2007, Hruban, Brune et al. 2008). 

Genetic alterations in PDAC 
 

Molecular and genetic analysis of PDAC indicated that most of the 

mutations found in the invasive stages are also present in precursor lesions 

(Feldmann, Beaty et al. 2007). Such a thing suggests that these lesions occur in 

conjunction with the accumulation of genetic mutations.  

 The signature genetic events of PDAC lesions include mutations of Kras, 

CDKN2A, TP53, BRCA2, and Smad4/DPC4, among many others (Kern, Schutte 

et al. 1995, Hansel, Kern et al. 2003, Löhr, Klöppel et al. 2005, Hruban and Adsay 

2009).  With the progression of PanINs to higher grades, the number of genetic 

alteration increase. Activating mutations in the Kras oncogene are detected very 

early in tumor progression (Feldmann, Beaty et al. 2007).  Other notable events 

include mutations of CDKN2A, TP53, and SMAD4 that happen as a result of the 

loss of heterozygosity at chromosome 9q, 17p and 18q respectively (Siegel and 

Massagué 2003, Maitra and Hruban 2008). As the focus of this thesis is to 

elucidate the role of the CAFs in conjunction with the paracrine signaling in PDAC 

development and progression, we will only discuss the details of Kras and SMAD4 

mutations.  
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 Activating Kras mutations (will be referred to henceforth as oncogenic Kras), 

are among the earliest genetic events and are found in nearly 95% of PDAC cases 

(Feldmann, Beaty et al. 2007). Kras is a member of the RAS family, small GTPases 

with 21-30kDa in size. These RAS proteins reverse between a GTP-bound on-

state and GDP-bound off-state. Kras is the only RAS protein that has been 

reported to mutate in PDAC. A point mutation in this protein results in constitutive 

activation of RAS leading to persistent downstream signaling. The predominant 

version occurs at position G12; but activating mutations at other positions have 

been identified as well (Löhr, Klöppel et al. 2005, Feldmann, Beaty et al. 2007). 

Oncogenic Kras allows the malignant cells in PDAC to attain more survival, 

proliferation, cytoskeletal remodeling and motility (Bryant, Mancias et al. 2014). 

Oncogenic Kras is associated with increase tumor-supporting inflammatory 

response such as CXCR2 signaling (Ling, Kang et al. 2012, Baumgart, Chen et al. 

2014, Purohit, Varney et al. 2016). During the course of this thesis, we will discuss 

how oncogenic Kras and CXCR2 can play a role in CAFs orientation and function 

in PDAC. 

Smad4, also known as DPC4 (deleted in pancreatic cancer 4), is a member 

of Smad proteins that mediate signal transduction for a variety of pathways in 

which transforming growth factor beta (TGF-β) pathway is the most relevant 

(Blobe, Schiemann et al. 2000, Massagué 2012). TGF-β, a multifunctional 

cytokine, often found in in the extracellular matrix and is produced by 

macrophages, lymphocytes, fibroblasts, epithelial cells, and platelets.  TGF-β is 

vital in prenatal and postnatal development, organ maintenance and homeostasis, 
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and wound healing (Blobe, Schiemann et al. 2000, Massagué 2012). Intact TGF-

β/Smad4 signaling works as a tumor suppressor by blocking cell cycle progression, 

inducing apoptosis of epithelial cells, and maintaining genomic integrity and tissue 

hemostasis (Liu, Pouponnot et al. 1997, Massagué 2008, Ahmed, Bradshaw et al. 

2017). Smad4 inactivation results in ligand accumulation that signal in tumor cells 

(in a Smad-independent manner) as well as in stromal cells (Zhang 2009).  Loss 

of Smad4 activates non-smad TGF-β pathways including Erk MAPK and JNK/p38 

MAPK pathways that play an essential role in epithelial-mesenchymal transition 

(EMT). Besides, TGF-β mediates EMT, cytoskeletal organization and motility via 

Rho-like GTPases, RhoA and Rac (Masamune, Kikuta et al. 2003, Massagué 

2008). In fibroblasts, TGF-β is known to induce activation and EMC deposition 

Furthermore, sustained TGF-β inhibits the synthesis of Matrix Metalloproteinases 

(MMPs), thus, inhibiting degradation of newly synthesized ECM (Shek, Fmj et al. 

2002). In PDAC, elevated TGF-β levels are found in both plasma and tumor 

tissues. The role of TGF-β in regulating EMT and tumor stiffness could explain how 

high TGF-β expression and the loss of Smad4 correlate with metastasis and poor 

survival in PDAC (Tascilar, Skinner et al. 2001, Tang, Katuri et al. 2005, Blackford, 

Serrano et al. 2009, Singh, Srinivasan et al. 2012, Xia, Wu et al. 2014).  

Tumor microenvironment of PDAC 
 

Mutations associated with malignancies often enable tumor cells to have 

sustained signals for growth; however, these events are not enough to maintain 

the tumor’s overall autonomous survival. Several kinds of normal host cells are 

recruited and oriented by malignant cells to support tumor growth and progression 
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(Hanahan and Weinberg 2000, Hanahan and Weinberg 2011). One of the 

hallmarks of PDAC is the presence of dense desmoplasia in the tumor 

microenvironment of this disease.  Desmoplasia in PDAC account for 80-90% of 

the overall tumor mass and can be defined as the exuberant proliferation of stromal 

cells, abundant production of ECM with increased collagen deposition (Chu, 

Kimmelman et al. 2007, Kleeff, Beckhove et al. 2007). This desmoplastic reaction 

has been implicated in resistance to chemotherapy and radiotherapy and can be 

attributed to the hypovascularity often observed in PDAC. The stromal 

compartment in PDAC is composed of multiple cell types including fibroblasts, 

immune cells, endothelial cells, and ECM proteins. It has been demonstrated that 

cancer stroma plays an active and dynamic role in tumor growth, invasion, and 

metastasis (McAllister and Weinberg 2010).  

Inflammation in PDAC 
 

It has been established that both innate and adaptive immune cells present 

at sites of many tumors including PDAC (Chu, Kimmelman et al. 2007, Kleeff, 

Beckhove et al. 2007). There is more evidence now that support the notion of the 

tumor supporting-inflammation in regard to the presence of immune cells at the 

tumor site. Inflammation can contribute to cancer progression by supplying several 

molecules to enable sustained tumor growth, prevent tumor eradication, facilitate 

angiogenesis, and promote invasion and metastasis (DeNardo and Coussens 

2007, Grivennikov, Greten et al. 2010, Qian and Pollard 2010). 
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Paracrine factors derived from malignant cells and stromal cells orchestrate 

the recruitment and the orientation of the different components of the tumor 

microenvironment to facilitate tumor progression (Pietras and Östman 2010, 

Matsuo, Takeyama et al. 2012). CXCR2, a chemokine receptor, axis plays a key 

role during PDAC initiation and progression.  CXCR2 and its ligands are linked to 

increased tumor cell proliferation, pro-tumor immunosuppression and resistance 

to therapy (Chan, Hsu et al. 2016, Purohit, Varney et al. 2016, Steele, Karim et al. 

2016).  

 In this dissertation, we discuss the contribution of paracrine interaction 

between malignant cells and CAFs in tumor progression or lack thereof.  
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CXCR2 SIGNALING 
 

Overview 
 

Chemotactic cytokines, i.e., chemokines, are small secreted molecules that 

are either homeostatic or inflammatory. They are known to play roles in multiple 

cellular processes such as leukocyte migration, embryogenesis, angiogenesis, 

and hematopoiesis. Homeostatic chemokines have a constitutive expression in 

specific cell types and tissues to maintain tissue homeostasis and development. 

In contrast, inflammatory chemokines are inducible and up-regulated by 

inflammatory stimuli (Vandercappellen, Van Damme et al. 2008). Structurally, 

based on the position of the conserved N-terminal cysteine residues, they are 

classified into four families: C, CC, CXC, and CX3C. Chemokine receptors are 

members of the seven-transmembrane G-protein coupled receptor family. CXCR2 

is the receptor for a group of inflammatory and angiogenic chemokines referred to 

as Glutamic acid-Leucine-Arginine (ELR)+  CXC chemokines that include CXCL1-

3, 5-7, and 8 that also interacts with CXCR1(Strieter, Burdick et al. 2006, Lazennec 

and Richmond 2010). Several studies have reported that CXCR2 and its ligands 

play an important role in regulating tumor growth, angiogenesis, and metastasis in 

PDAC and many other tumors (Strieter, Burdick et al. 2006, Singh, Sadanandam 

et al. 2007, Wang, Wu et al. 2013, Purohit, Varney et al. 2016). To understand the 

role of CXCR2 in PDAC, we will first discuss the role of CXCR2 during 

physiological inflammation.    

CXCR2 signaling during inflammation 
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CXCR2 is known to mediate many processes during inflammation. CXCR2 

is mainly expressed on several cell types such as neutrophils (Bajrami, Zhu et al. 

2016), monocytes (Moser, Barella et al. 1993, Patel, Charlton et al. 2001, Murdoch 

2004), mast cells (Maltby, Khazaie et al. 2009, Wynn and Barron 2010), and 

endothelial cells (Li, Cheng et al. 2011). Ligation of CXCR2 to its chemokines 

induces calcium release, activates Ras/MAPK and PI3K signaling cascades, and 

results in many immune responses including directed neutrophil migration (Wu, 

Wang et al. 2011).  Neutrophils represent the largest component of the innate 

immune system. Neutrophils homeostasis is maintained by balancing their release 

from bone marrow and their clearance from circulation. CXCL12, a chemokine that 

works through CXCR4, has an antagonistic effect to CXCR2. CXCR4 activity 

enhances hematopoietic cells retention in the bone marrow. Loss or decreased 

activity of CXCR4 results in mobilization of neutrophil to the blood (Eash, 

Greenbaum et al. 2010).  CXCR2 signaling mediates neutrophil migration from 

blood circulation to the inflamed tissue. During an inflammatory response, 

neutrophils are one of the first responders. As the first line of host defense against 

infection, neutrophils travel to sites of infection to then control the bacterial burden; 

however, prolonged and excessive neutrophil infiltration can cause tissue damage. 

Recent reports described that that neutrophil recruitment during inflammation 

occurs in two phases. The early phase is mediated by short-lived signals, whereas 

the amplification phase is mediated through leukotriene-B4 and CXCR2 

chemokines (Grivennikov, Greten et al. 2010, de Oliveira, Rosowski et al. 2016). 

Tissue remodeling is a crucial step to maintain the structural and functional 
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integrity of the inflamed tissue. Following the inflammation clearance, many 

processes occur including re-epithelialization, neovascularization (angiogenesis) 

and scarring of the collapsed tissue (Devalaraja, Nanney et al. 2000, Midwood, 

Williams et al. 2004). Angiogenesis, the formation of new capillary blood vessels, 

is essential to provide a supply of nutrients and oxygen to the newly generated 

tissues. CXCR2 signaling has a key role in the process of angiogenesis. 

Endothelial cells, which form the inner lining of blood vessels, constitutively 

express CXCR2 and respond to chemokine stimulation.  CXCL8 was reported to 

directly enhances endothelial cell proliferation, survival, and their expression of 

metalloproteases; thus, regulating angiogenesis (Strieter, Polverini et al. 1995, 

Strieter, Burdick et al. 2006, Matsuo, Raimondo et al. 2009).    

CXCR2 expression and signaling in PDAC 
 

More compelling evidence for the adverse role of CXCR2 signaling in PDAC 

is now available. Both PDAC and the normal pancreas express CXCR2, but PDAC 

is more responsive. Oncogenic Kras in PDAC occurs very early, often as soon as 

the inception of the PanINs (Feldmann, Beaty et al. 2007). The upregulation of 

CXCR2 signaling in PDAC has been reported to be directly linked to oncogenic 

Kras (Purohit, Varney et al. 2016). The genetically engineered mouse model 

(GEMM; Pdx1-cre;LSL-Kras(G12D) known as KC mouse model) of PDAC exhibited 

a progressive increase in the expression of CXCR2 and its ligands in the malignant 

ductal cells (Purohit, Varney et al. 2016).  Oncogenic KRAS-CXCR2 axis created 

a feed-forward loop that contributed to tumor progression by supporting tumor cell 

growth. Furthermore, CXCR2 chemokines have been linked with increasing 
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migration potentials of malignant cells as well as facilitating resistance to 

chemotherapy by the induction of cancer stem cells (CSCs) (Chan, Hsu et al. 2016, 

Purohit, Varney et al. 2016).    

CXCR2 signaling can additionally aid in the tumor progression, not only by 

promoting autonomous aggression characteristic in malignant cells but also 

through other cells in the tumor microenvironment (Strieter, Burdick et al. 2006, 

Highfill, Cui et al. 2014). We have discussed the role of CXCR2 signaling during 

inflammation depicted as facilitating migration of innate immune cells and inducing 

angiogenesis. Such features can be utilized adversely by malignant tumors by 

enabling recruitment of immunosuppressive cells such as myeloid-derived 

suppressor cells (MDSCs) and facilitating tumor invasion through stimulating 

angiogenesis (Highfill, Cui et al. 2014, Ramachandran, Condamine et al. 2016).    

MDSCs, a heterogeneous population of immature myeloid cells, induce 

immunosuppression by causing defective T cell function (Fujimura, Mahnke et al. 

2010). They classify into granulocytic-MDSCs (G-MDSCs; mouse: CD11b+Ly6G+; 

human: CD11b+ CD15+) and monocytic (M-MDSCs; mouse: CD11b+Ly6C+; 

human: CD11b+ CD14+) (Ostrand-Rosenberg and Sinha 2009, Goedegebuure, 

B. Mitchem et al. 2011). In cancer patients, MDSCs have marked a systemic 

expansion in the spleen, lymph nodes, and blood circulation, as well as at the 

tumor sites (Gabrilovich and Nagaraj 2009).  These MDSCs can cause 

immunosuppression at the tumor site by the production of nitric oxide synthase 

(iNOS) and arginase 1 that suppress the proliferation and activation of T cells 

(Nagaraj and Gabrilovich 2008, Gabrilovich and Nagaraj 2009, Fujimura, Mahnke 
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et al. 2010, Goedegebuure, B. Mitchem et al. 2011). MDSCs can also suppress T 

cells function in antigen-specific fashion via reactive oxygen species (ROS) 

(Nagaraj and Gabrilovich 2008). Moreover, MDSCs promote the recruitment of T 

regulatory lymphocytes (Tregs) to the tumor sites and blocking the entry of effector 

T cells (Nagaraj and Gabrilovich 2008, Gabrilovich and Nagaraj 2009, Fujimura, 

Mahnke et al. 2010, Goedegebuure, B. Mitchem et al. 2011).  

CXCR2 axis has been implicated in the recruitment and expansion of 

MDSCs. A report demonstrated that MDSCs reduction in tumor site was 

accompanied with reduced CXCL5 protein expression (Weiss, Back et al. 2009). 

Another report also indicated that CXCL1, 2 and 5 are responsible for the G-

MDSCs recruitment to the primary tumors (Toh, Wang et al. 2011). Furthermore, 

colon cancer model exhibited high levels of CXCR2 ligands and the loss of CXCR2 

diminished the G-MDSCs infiltration (Katoh, Wang et al. 2013). In PDAC, MDSCs 

were shown to be present as early as the PanIN lesions and found further 

increased infiltration in PDAC (Clark, Hingorani et al. 2007).   Using GEMM of 

PDAC with both oncogenic Kras and p53 mutations, inhibiting CXCR2 reduced 

MDSCs recruitment and improved response to immunotherapy (Steele, Karim et 

al. 2016). Kumar et al. demonstrated that CAFs aid in recruiting MDSCs by 

producing chemokines including CXCL1, 2 and 5 (Kumar, Donthireddy et al. 2017).  

CXCR2 axis has been as well adversely implicated in enhancing 

angiogenesis in many cancer types including lung, melanoma, and pancreas 

(Matsuo, Ochi et al. 2009, Matsuo, Raimondo et al. 2009, Singh, Varney et al. 

2009).  The adverse role of CXCR2 in cancer has made it a hot target for inhibition. 
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Multiple attempts to study the effect of CXCR2 inhibition have been completed. It 

was reported that inhibiting CXCR2 suppressed inflammation-driven 

tumorigenesis in skin and intestine cancer models (Jamieson, Clarke et al. 2012). 

In addition, using small interfering RNA, inhibiting CXCR1 and CXCR2 reduced 

melanoma tumor growth and invasion (Singh, Sadanandam et al. 2010). For 

PDAC, the pelleted supernatants from PDAC cell lines were injected into rat 

corneal micropocket model, where blocking CXCR2 exhibited reduced 

angiogenesis compared to supernatant injection alone (Wente, Keane et al. 2006). 

Using Kras+Tgfbr2KO mice with conditional pancreas epithelium-TGF-β receptor 

type II (Tgfbr2) knockout and Kras activation, inhibition of CXCR2 disrupted the 

tumor-stromal interactions and improved mice survival by lowering the expression 

of connective tissue growth factor (Ctgf) that promotes fibrosis and tumor 

progression (Ijichi 2011). In another PDAC model, Steele et al. examined the effect 

of CXCR2 inhibition in KPC (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre) that 

carries both pancreas-specific p53 mutation and oncogenic Kras. They concluded 

that inhibiting CXCR2 suppresses metastasis, augments immunotherapy, and 

improves survival by reducing MDSCs infiltration (Steele 2016). Furthermore, our 

laboratory has generated a syngeneic CXCR2 knockout (Cxcr2-/-) model using KC-

derived cells.  The CXCR2 stromal ablation caused no change to the tumor size 

although it halted cancer cell proliferation and increased their apoptosis; it also 

decreased the recruitment of MDSCs and increased the induction of cytotoxic T 

lymphocytes re-orienting the tumor’s immune status towards an anti-tumor 

immune response. On the other hand, depletion of CXCR2 increased fibrotic 
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reaction within the primary tumor increased liver metastasis and increased the 

abundance of tumor-associated macrophages (TAMs). The increased fibrosis 

reveals a potential undescribed role of CXCR2 signaling in regulating CAFs in 

PDAC (Purohit 2015).      
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CANCER-ASSOCIATED FIBROBLASTS  
 

Overview 
 

PDAC is one of the leading causes of cancer-related deaths in the United 

States. The late diagnosis, often after the disease has disseminated, and the 

limited efficacy of the chemotherapy for advanced disease are the major 

challenges in PDAC. Moreover, resistance to therapy and recurrence are frequent, 

even for patients diagnosed with localized tumors (Siegel, Miller et al. 2018).  

PDAC is highlighted with a dense and firm desmoplasia composed of ECM 

deposition and infiltrating leukocytes, endothelial cells and CAFs (Kleeff, Beckhove 

et al. 2007). Desmoplasia is implicated in PDAC development, progression, 

dissemination as well as therapy resistance (Apte, Park et al. 2004, Moir, Mann et 

al. 2015, Kalluri 2016). Resolving desmoplasia has been attempted through 

digesting ECM, targeting CAFs or inhibiting desmoplasia-associated pathways 

(Olive, Jacobetz et al. 2009, Provenzano, Cuevas et al. 2012, Özdemir, 

Pentcheva-Hoang et al. 2014, Rhim, Oberstein et al. 2014). Some of these 

attempts produced accelerated tumor progression and worsened prognosis 

(Özdemir, Pentcheva-Hoang et al. 2014, Rhim, Oberstein et al. 2014), which 

implies that there is more to desmoplasia than we currently know.  

CAFs are the major contributor to desmoplasia, and they produce ECM and 

multiple soluble factors that contribute to tumor progression (Apte and Wilson 

2004, Omary, Lugea et al. 2007, Moir, Mann et al. 2015). Although CAFs are often 

treated as a single entity, they are vastly heterogeneous by origin. There is an 
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agreement that CAFs have a mesodermal origin, but their molecular definition is 

still debatable. Currently, CAFs represent cells present in the tumor 

microenvironment that are not tumor cells, leukocytes, endothelial, or epithelial 

cells and that carry fibroblastic features such as the expression of fibroblast-

specific protein 1 (FSP-1) (Öhlund, Elyada et al. 2014).  

In PDAC, pancreatic stellate cells (PSCs) are the most studied CAFs 

subtype. Stellate cells, referring to their star-like shape, are found in several organs 

including the kidneys, lungs, intestines, spleen, uterus, and skin; but, they are 

mainly described in liver and pancreas (Omary, Lugea et al. 2007, Apte, Wilson et 

al. 2013, Öhlund, Elyada et al. 2014, Moir, Mann et al. 2015). PSCs are found in 

the periacinar, perivascular or periductal regions of the exocrine pancreas.  In 

normal conditions, PSCs are usually in the quiescent state with long cytoplasmic 

extensions and vitamin-A storing fat droplets. PSCs express many markers 

including intermediate filament proteins desmin, and Glial fibrillary acidic protein 

(GFAP) that along with Vitamin-A storing droplet can distinguish them from normal 

fibroblast (Omary, Lugea et al. 2007, Apte, Wilson et al. 2013).  PSCs markers 

also characterize several other cell types such as desmin that is seen in 

monocytes, GFAP of astrocytes, vimentin that also characterizes leukocytes and 

endothelial cells, and Nestin of neuroepithelial stem cells (Omary, Lugea et al. 

2007). Activation of PSCs occurs as a result of milieu changes such as pancreatic 

injury or in response to secreted factors such as platelet-derived growth factor 

(PDGF) and TGF-β (Omary, Lugea et al. 2007, Apte, Wilson et al. 2013, Moir, 

Mann et al. 2015).  When activated, PSCs assume the myofibroblast-like, 
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phenotype by upregulating α-smooth muscle actin (αSMA) and collagen I, and 

losing their vitamin A-storing fat droplets in addition to increased nucleus size, 

prominent ECM production, and increased cell proliferation and migration 

potentials (Omary, Lugea et al. 2007, Erkan, Adler et al. 2012, Apte, Wilson et al. 

2013, Moir, Mann et al. 2015). Additional reports indicated that activated PSCs 

express fibroblast-activation protein α (FAP) (Bachem, Schünemann et al. 2005, 

Apte, Wilson et al. 2013, Moir, Mann et al. 2015).  Activated PSCs play essential 

roles in pancreatic repair following injury and acute inflammation via modulating 

ECM production and tissue remodeling (Omary, Lugea et al. 2007, Apte, Wilson 

et al. 2013). Following the secession of the pancreatic assault, activated PSCs 

revert into quiescence or undergo apoptosis. Repeated assaults and chronic 

pancreatic inflammation cause sustained PSCs activation, which increases the risk 

of fibrosis and cancer (Omary, Lugea et al. 2007, Apte, Pirola et al. 2015).  

Tissue-resident fibroblasts can also contribute to CAFs population (Öhlund, 

Elyada et al. 2014). A subset of normal fibroblasts was found to express the 

glycoprotein Thy-1 was able to differentiate into CAFs after treatment with TGF-β. 

Genetic mutations such as inactivation of p53 and PTEN has been frequently 

observed in stromal cells and can also turn them into CAFs (Xing, Saidou et al. 

2010). Moreover, CAFs can arise by transdifferentiating through EMT or 

endothelial to mesenchymal transition (Xing, Saidou et al. 2010, Öhlund, Elyada 

et al. 2014), but more direct sources of CAFs include bone marrow-derived 

fibrocytes, mesenchymal stem cells, and adipocytes (Xing, Saidou et al. 2010, 

Öhlund, Elyada et al. 2014).  These diverse origins of CAFs can explain the 
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absence of consensus on a molecular definition. Nonetheless, multiple markers 

have been widely used to distinguish CAFs including PDGF-receptor-β (PDGFR-

β), αSMA and FAP (Bachem, Schünemann et al. 2005, Apte, Wilson et al. 2013, 

Moir, Mann et al. 2015). These markers are not uniformly expressed in all CAFs 

(Öhlund, Elyada et al. 2014), which can be due to the presence of CAFs 

concurrently at multiple differentiation stages or because of the diverse origins of 

CAFs. The coexistence of multiple subsets of CAFs could explain the diverse roles 

and abilities they carry out to promote tumorigenesis and progression and could 

explain why targeting CAFs using a single marker, such as αSMA, can have an 

adverse outcome (Özdemir, Pentcheva-Hoang et al. 2014). CAFs have been 

described to be versatile and to have a wide range of roles in cancer (Omary, 

Lugea et al. 2007). It is not clear however if all the roles can be carried out by all 

CAFs or the versatility is due to CAFs diversity. A better understanding of different 

CAFs subsets could greatly impact our ability to target desmoplasia safely. In this 

section, we will discuss the functional heterogeneity of CAFs and how the 

abundance of specific subsets can influence tumor progression or lack thereof.   

Role of CAFs in PDAC  
 

PDAC develops as a result of a progressive accumulation of genetic 

alterations in multiple oncogenes and tumor suppressor genes. Oncogenic Kras 

occur very early preceding PDAC precursors. The late events of inactivating tumor 

suppressors such as p53 and Smad4 allow progression to invasive PDAC (Maitra 

and Hruban 2008, Hidalgo 2010, Vincent, Herman et al. 2011). Although mutations 

are essential for the malignancy, they do not render them autonomous. Numerous 
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survival, growth, and invasion cues are obtained through cellular and molecular 

interactions with other components in the tumor microenvironment. CAFs have 

been implicated in multiple hallmarks of cancer including sustained proliferative 

signaling, tumor-promoting inflammation, and invasion and metastasis (Kleeff, 

Beckhove et al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 2015). In some 

cancers, the accumulation of CAFs and ECM changes were observed prior to 

tumor formation, which indicates that CAFs recruitment is essential for tumor 

development and maybe a prerequisite (DeFilippis, Chang et al. 2012, Sasaki, 

Baba et al. 2014, Ghosh, Vierkant et al. 2017).  The most notable adverse 

contribution of CAFs to the tumor is acting both physically and biochemically to 

hinder drug delivery and impose resistance. CAFs produce ECM molecules such 

as collagen, fibronectin, and hyaluronan (Bachem, Schünemann et al. 2005, 

Nikitovic, Tzardi et al. 2015). The increased deposition of such molecules 

physically impairs drug delivery to the tumor (Jacobetz, Chan et al. 2012, 

Provenzano and Hingorani 2013). Inhibiting the Hedgehog (HH) pathway, a major 

promotor of desmoplasia, and using enzymatic digestion of desmoplasia facilitated 

drug delivery and increased the intratumoral concentration of the chemotherapy 

agent (Olive, Jacobetz et al. 2009, Provenzano, Cuevas et al. 2012). Moreover, 

factors secreted by CAFs such as hepatocyte growth factor (HGF), interleukin (IL)-

6 and CXCL8 have been implicated in therapy resistance either by activating 

resistance-associated pathways or inducing stemness in tumor cells (Omary, 

Lugea et al. 2007, Garrido-Laguna, Uson et al. 2011, Straussman, Morikawa et al. 

2012, Chan, Hsu et al. 2016, Su, Chen et al. 2018).  
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CAFs are also tied to PDAC metastasis. Increased tumor stiffness as a 

result of increased ECM depositions, can increase tumor cells contractility, thus 

allowing tumor cell detachment and invasion (Ahmadzadeh, Webster et al. 2017). 

Biochemically, CAFs can play a role in up-regulating EMT that endows tumor cells 

with more migratory and invasion potentials. Tumor cells co-cultured with CAFs 

had a fibroblast-like appearance, increased migration and expressed 

mesenchymal markers Vimentin, Snail-1 and Zeb  (Kikuta, Masamune et al. 2010). 

One proposed mechanism for CAFs-induced EMT involves TGF-β that is highly 

produced by myofibroblasts (Shek, Benyon et al. 2002, Shek, Fmj et al. 2002).  

CAFs involvement in PDAC also extends to tumor growth, proliferation and 

nourishment as well as immunosuppression and immune evasion (Apte, Wilson et 

al. 2013, Moir, Mann et al. 2015, Bynigeri, Jakkampudi et al. 2017). But, is targeting 

desmoplasia or CAFs a solution for resolving PDAC aggressiveness? There are 

conflicting reports on usefulness of targeting CAFs. Olive et al. observed increased 

vascularization, and improved drug delivery as well as decreased αSMA cells and 

improved the overall survival of the test mice in response to an inhibitor that targets 

the HH pathway (Olive, Jacobetz et al. 2009). The drug, however, when put into 

the test in a clinical trial rendered a decreased survival. Ozdemir et al. developed 

a mice model that is depleted of αSMA cells. This model demonstrated an 

accelerated PDAC with reduced survival, undifferentiated tumors, increased 

chemotherapy resistance, stemness, and immunosuppression (Özdemir, 

Pentcheva-Hoang et al. 2014).  Rhim et al. targeted desmoplasia by inhibiting the 

HH pathway. In this model, PDAC exhibited tumors with undifferentiated histology, 
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increased vascularity and proliferation, and reduced survival and myofibroblast 

infiltration (Rhim, Oberstein et al. 2014). Together, these independent experiments 

demonstrate that inhibiting myofibroblasts results in aggressive PDAC with intense 

immunosuppression, heightened proliferation, tumor stemness, and therapy 

resistance.  

We have discussed the heterogeneity of CAFs based on their origin; 

however, it is not clear if they present with functional diversity within the tumor and 

if their origin impacts their function. Ohlund et al. described a distinct subset of 

CAFs in PDAC with a secretory function that is different from the typical 

myofibroblast CAFs (Ohlund, Handly-Santana et al. 2017). These newly described 

CAFs are characterized with increased secretion of inflammatory mediators, 

particularly IL-6, and decreased expression of αSMA in addition to their ability to 

promote tumor cells proliferation (Ohlund, Handly-Santana et al. 2017).  Thus, 

CAFs heterogeneity in PDAC can explain why particularly targeting myofibroblasts 

can render a more adverse outcome. It is not clear at this point if other functional 

subsets, other than myofibroblasts and secretory CAFs, present. In the next 

sections, we will discuss the contexts by which myofibroblasts or secretory CAFs 

develop and their impact on the tumor outcome.  

Myofibroblast CAFs 
 

Overview 
 

For long, CAFs and myofibroblasts were considered synonymous in the 

context of cancer and often used interchangeably. We know now that is not 
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accurate. Besides cancer, myofibroblasts are often described in the context of 

wound healing, in which quiescent fibrotic cells get activated to undertake tissue 

repair and remodeling. Cancers are often referred to as “wounds that do not heal” 

(Dvorak 1986). Looking into the wound healing process can provide insights into 

the dynamics of CAFs activity in cancer.  

Wound healing 
 

Tissue injury causes plasma leakage from local blood vessels. Shortly after, 

extravasated plasma initiates wound sealing by forming a clot of fibrin, fibronectin, 

and platelets to trap the blood inside. The sealant clot acts as a provisional scaffold 

for the migration of inflammatory cells recruited through factors secreted from the 

damaged tissue cells as well as the platelets. Inflammatory cells clear debris, 

infectious agents and degrade the clot. Next, activated fibroblasts form granulation 

tissue by depositing ECM molecules such as collagen, glycosaminoglycans, and 

fibronectin. Fibroblasts also enable vascularization by recruiting and modulating 

endothelial cells. Finally, before they disappear, fibroblasts remodel the 

granulation tissue allowing few blood vessels and dispersed fibrocytes in the dense 

collagenous scar that replaced the collapsed tissue (Dvorak 1986, Midwood, 

Williams et al. 2004). As it appears, wound healing is a very coordinated process. 

First platelets modulate, provisionally, sealing the wound and recruiting 

inflammatory cells. Next, neutrophils then macrophages clean the mess before 

allowing fibroblasts to generate the permanent sealant. Cytokines and chemokines 

coordinate the timely recruitment and activation of different cells. 
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Interestingly, ECM deposition and remodeling by fibroblasts occurs after the 

secession of inflammation (Midwood, Williams et al. 2004). Inflammation during 

wound healing, in particular neutrophils and macrophages, happens in two phases. 

Neutrophils are among the first responders, recruited mainly through CXCR1/2, to 

clear the infectious aggressors (Wu, Wang et al. 2011, de Oliveira, Rosowski et al. 

2016). Classically activated macrophages (M1) are known pro-inflammatory cells 

that ingest and degrade tissue debris, pathogens, retired neutrophils, and ECM 

scaffold to set the stage for tissue repair. Alternatively activated macrophages (M2; 

the pro-repair and the anti-inflammatory counterparts of M1) produce cytokines 

that dampen the inflammation including IL-10 and TGF-β (Wynn and Barron 2010, 

Xue, Sharma et al. 2015, Wynn and Vannella 2016). The latter is known to activate 

myofibroblasts and induce ECM deposition and remodeling (Midwood, Williams et 

al. 2004, Omary, Lugea et al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 

2015), the last step in tissue repair. Fibroblasts in wound healing are mainly 

described as myofibroblasts that are responsible for ECM deposition and 

remodeling, but it is not clear if other subsets of fibroblasts present with distinct 

roles similar to those found in cancer that amplifies inflammation. 

The context of myofibroblasts in PDAC  
 

Several secreted mediators, such as PDGF and TGF-β, are considered to 

have ties to the development of myofibroblasts from quiescent fibrotic cells 

(Omary, Lugea et al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 2015). TGF-

β typically signals through the Smad pathway.  Smad4, also known as DPC4, 

which is commonly inactivated in PDAC (Ahmed, Bradshaw et al. 2017). TGF-β, 
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produced by macrophages, lymphocytes, fibroblasts, epithelial cells, and platelets 

(Blobe, Schiemann et al. 2000, Massagué 2012), is essential in prenatal and 

postnatal development, organ maintenance and homeostasis, and wound healing 

(Blobe, Schiemann et al. 2000, Massagué 2012). Intact TGF-β/Smad4 signaling 

works as a tumor suppressor (Blobe, Schiemann et al. 2000, Massagué 2008, 

Massagué 2012); however, Smad4 inactivation results in ligand accumulation that 

signal in tumor cells through Smad-independent pathways to mediate EMT, 

cytoskeletal organization and motility (Massagué 2008, Ahmed, Bradshaw et al. 

2017). In fibroblasts, TGF-β is known to induce activation and ECM deposition, 

inhibit MMPs synthesis causing stiffness (Shek, Fmj et al. 2002). In PDAC, 

elevated TGF-β levels regulates EMT and tumor stiffness, and correlates with 

metastasis and poor survival (Liu, Pouponnot et al. 1997, Tascilar, Skinner et al. 

2001, Tang, Katuri et al. 2005, Massagué 2008, Blackford, Serrano et al. 2009, 

Zhang 2009, Singh, Srinivasan et al. 2012, Xia, Wu et al. 2014, Ahmed, Bradshaw 

et al. 2017).  

Another molecule that has been linked to myofibroblasts is PDGF. Many 

reports tie PDGF to fibroblasts activation and ECM synthesis along with TGF-β; 

however, the effect of PDGF is not the same as TGF-β (Omary, Lugea et al. 2007, 

Apte, Wilson et al. 2013). Besides enhancing the proliferation of activated 

fibroblasts, PDGF plays a significant role in blood vessel formation and 

maintenance (Forsberg, Valyi-Nagy et al. 1993, Crawford, Kasman et al. 2009). 

PDGF is mainly secreted by activated platelets but can also be produced by other 
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cells such as macrophages and endothelial cells (Forsberg, Valyi-Nagy et al. 1993, 

Crawford, Kasman et al. 2009, Hammer, Sizemore et al. 2017).  

HH molecules, including sonic (SHH), Indian and desert-HH, are 

morphogens that play a crucial role in embryologic growth and tissue 

morphogenesis. SHH is implicated in wound healing and repair (Kayed, Kleeff et 

al. 2006, Le, Kleinerman et al. 2008). In cancer, SHH is highly implicated in 

desmoplasia and disrupting HH pathway was shown to reduce myofibroblasts 

(αSMA+ cells), reduce ECM deposition and enhance angiogenesis and drug 

delivery (Bailey, Swanson et al. 2008, Bailey, Mohr et al. 2009, Olive, Jacobetz et 

al. 2009, Tian, Callahan et al. 2009, Smelkinson 2017) (Rhim, Oberstein et al. 

2014). Several other molecules have been linked to fibroblasts activation; 

however, there is not enough evidence to connect them to a certain CAFs subset. 

 In summary, several molecules, including TGF-β, PDGF and SHH, 

cooperate to establish and maintain desmoplasia by promoting myofibroblasts-

phenotype in CAFs. The abundance of myofibroblasts is associated with ECM 

synthesis and deposition, tumor stiffness, EMT augmentation, and invasion and 

metastasis.  

Secretory CAFs 
 

Overview 
 

Ohlund et al. identified the presence of two distinct phenotypes of CAFs in 

PDAC. The typical myofibroblasts (αSMA high) with high ECM synthesis were 

found adjacent to the tumor cells. The other phenotype that they referred to as 
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inflammatory CAFs (αSMA low) found at a distance from tumor cells and had a 

lower ECM expression and a higher expression of inflammatory mediators, in 

particular, IL-6. Inflammatory CAFs possessed the ability to induce tumor cell 

proliferation (Ohlund, Handly-Santana et al. 2017).  

It is established that CAFs secreted several paracrine factors to modulate 

both inflammatory and fibrotic processes (Omary, Lugea et al. 2007, Moir, Mann 

et al. 2015).  This, however, was attributed to the plasticity and versatility of CAFs 

and to their ability to carry out multiple roles at the same time. The notion of 

specialized CAFs subsets is fairly recent and largely understudied. Nonetheless, 

several reports have pointed, without directly concluding, towards the ability of 

CAFs to be secretory in certain contexts. We will first discuss the relationship 

between inflammation and CAFs.  

CAFs and inflammation 
 

Extensive studies of pancreatic inflammation shown that CAFs express 

several paracrine factors and their receptors, which modulates inflammatory and 

fibrotic processes. Inflammation and fibroblasts activity are closely linked. In 

pancreatitis, for instance, damage in pancreatic tissues proceeds a succession of 

events including interstitial edema, parenchymal cells necrosis, trypsin activation, 

inflammatory cell infiltration, and lastly the activation and proliferation of PSCs 

(Omary, Lugea et al. 2007). The activated PSCs are often found in areas rich in 

cytokines, growth factors, and reactive oxygen species such as near necrotic 

tissues (Omary, Lugea et al. 2007). The excessive ECM deposition and 
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remodeling that follows PSCs activation is likely a late step in the tissue repair 

process similar to that seen in wound healing.  

 CAFs actively contribute to inflammation by producing several cytokines 

and chemokines. Besides PDGF and TGF-β that are well recognized in their 

fibrogenic roles, CAFs secrete several factors including IL-1β, IL-4, IL-6, IL-8, IL-

13, vascular endothelial growth factor (VEGF) and many others (Omary, Lugea et 

al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 2015).   These factors 

contribute to cancer progression by providing means for inflammation, 

immunosuppression, tumor cells proliferation, angiogenesis, and chemotherapy 

resistance (Apte, Wilson et al. 2013, Moir, Mann et al. 2015).  

As we discussed in wound healing, activated fibroblasts only proceed to 

ECM deposition after the secession of inflammation, which may suggest that 

inflammation acts as a checkpoint that regulates fibroblasts differentiation into 

myofibroblasts. This is also similar to the activated PSCs during pancreatitis 

(Omary, Lugea et al. 2007). It is not clear though if a secretory (or inflammatory) 

phenotype present during these processes.   

The context of secretory CAFs   
 

Ohlund et al. described the secretory (inflammatory) CAFs as they develop 

when they do not have adjacency to the tumor cells (Ohlund, Handly-Santana et 

al. 2017). This may implicate far-reaching paracrine factors such as chemokines. 

There is not enough evidence though to conclude on the exact mechanism by 

which secretory CAFs develop (Ohlund, Handly-Santana et al. 2017). We will next 
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discuss a few reports that have indicated secretory functions in CAFs, and we will 

aim to identify the common denominator that can explain the development of the 

secretory CAFs.  

Chan et al. treated CAFs of breast cancer and PDAC with the maximum-

tolerated dose of chemotherapy (Chan, Hsu et al. 2016). The treatment caused 

CAFs to undergo senescence, activate transcription factors such as the nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the signal 

transducer and activator of transcription 1 (STAT1), and highly express a group of 

chemokines that signal through the chemokine receptor CXCR1/2 axis (Chan, Hsu 

et al. 2016). These secreted factors enhanced tumor cell proliferation and 

stemness, angiogenesis, recruitment of MDSCs, and rendered larger tumors 

(Chan, Hsu et al. 2016).  Senescence often happens in response to the 

accumulation of somatic mutations, oxidative stress, telomere dysfunction and 

shortening, loss of immune surveillance, and chronic inflammation in response to 

inflammatory mediators such as IL-1β, IL-6, and IL-8 (Campisi and d'Adda di 

Fagagna 2007, Acosta, O'Loghlen et al. 2008, Kuilman, Michaloglou et al. 2010). 

Senescence in CAFs has been reported on multiple occasions to impact 

tumorigenicity and tumor cells behaviors (Collado, Gil et al. 2005, Cichowski and 

Hahn 2008, Hinds and Pietruska 2017). Senescent fibroblasts promoted 

proliferation and altered epithelial cell differentiation in breast cancer (Parrinello 

2005). Bavic et al. showed that senescent CAFs of prostate cancer promote 

proliferation of tumor cells through paracrine signaling (Bavik, Coleman et al. 

2006). Wang et al. reported that senescent CAFs upregulate CXCL8 and enhance 
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tumor cells migration and invasion (Wang, Notta et al. 2017). Lastly, the induction 

of CAFs senescence generates a non-fibrogenic myofibroblast phenotype with 

lower ECM synthesis (Mellone, Hanley et al. 2016). Although it seems convincing, 

senescence cannot account for it all. According to Ohlund et al., tumor cells also 

promoted the proliferation of the secretory phenotype indicating that they are not 

senescent (Ohlund, Handly-Santana et al. 2017). 

Nonetheless, one common feature of senescent cells is that they activate 

transcription factors, such as NF-κB and STAT1, that upregulate several paracrine 

including IL-1β, IL-6, CXCL8, and VEGF (Salminen, Kauppinen et al. 2012, Chan, 

Hsu et al. 2016, Korc 2016, Lesina, Wormann et al. 2016). NF-κB, in particular, 

has been under a lot of scrutinies in inflammatory diseases and cancers (Korc 

2016, 2017). NF-κB is highly associated with inflammation. Inflammation triggers 

NF-κB activation, which in turn further amplifies inflammation. Acute inflammation 

triggered by several factors including cytokines, chemokines, pathogen-associated 

molecular patterns, and damage-associated molecular patterns (DAMPs) 

(DiDonato, Mercurio et al. 2012). A recent report by Su et al. indicated that 

complement components could signal through the G protein-coupled receptor 77 

(GPR77) on CAFs of breast and lung cancers to activate NF-κB, which result in 

upregulation of IL-6 and CXCL8 that promote stemness in tumor cells and cause 

chemotherapy resistance (Su, Chen et al. 2018).  Although the authors could not 

observe a downregulation in the αSMA or the ECM production, they identified this 

secretory subset of CAFs using GPR77 and cluster of differentiation 10 (CD10) as 

surface markers (Su, Chen et al. 2018). CD10 is a small metalloprotease that is 
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also known as common acute lymphoblastic leukemia antigen (CALLA), where it 

used as a prognostic marker (Maguer-Satta, Besancon et al. 2011). CD10+ 

stromal cells have been identified in several cancers including colorectal cancer 

(Ogawa, Iwaya et al. 2002), breast cancer (Iwaya, Ogawa et al. 2002), gastric 

cancer (Huang 2005), and PDAC (Ikenaga, Ohuchida et al. 2010). In PDAC, 

CD10+ CAFs promoted tumor cells growth and invasion and was associated with 

reduced survival and nodal metastasis (Ikenaga, Ohuchida et al. 2010). It is not 

clear at this point if CD10 is uniformly expressed in all secretory CAFs or not.  

CXCL8, also known as IL-8, is a chemokine that signals via CXCR1/2 axis 

along with a group of angiogenic chemokines including CXCL1-3 and CXCL5-8, 

known as ELR+ chemokines referencing the conserved amino acids motif of Glu-

Leu-Arg. ELR+ chemokines are known chemoattractant of myeloid cells such as 

neutrophils and MDSCs (Vandercappellen, Van Damme et al. 2008, Zlotnik and 

Yoshie 2012). For that, CXCR2 axis is often considered pro-tumorigenic in many 

cancers (Bizzarri, Beccari et al. 2006, Strieter, Burdick et al. 2006). In PDAC 

CXCR2 axis is involved in MDSCs recruitment, angiogenesis, tumor cells 

proliferation and migration. Upregulation of CXCR2-axis in PDAC is associated 

with tumor-supporting inflammation, immunosuppression, angiogenesis and tumor 

growth. This has made CXCR2 a hot target for PDAC therapy (Vandercappellen, 

Van Damme et al. 2008, Chao, Furth et al. 2016, Purohit, Varney et al. 2016). The 

CXCR2 axis adverse role in PDAC was more apparent in line with the oncogenic 

Kras mutation (Purohit 2015, Purohit, Varney et al. 2016).  Purohit et al. generated 

a syngeneic Cxcr2-/- model using PDAC cells with oncogenic Kras.  This stromal 
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ablation of CXCR2 inhibited tumor growth, reduced immunosuppression by 

lowering infiltration of MDSCs, reduced angiogenesis, but also increased the 

fibrotic reaction in the primary tumor and increased metastasis. The increased 

fibrosis in response to CXCR2 inhibition suggests that CXCR2 axis may play a role 

in regulating CAFs (Purohit 2015). It is known that CAFs secrete CXCL8 (Omary, 

Lugea et al. 2007); but, little is known about the role of CXCR2 in CAFs. Few 

reports have linked CXCR2 to the stromal compartment in PDAC. Inhibiting 

CXCR2 in the genetically engineered PDAC mouse model that carries oncogenic 

Kras mutation and TGF-β receptor knockout disrupted the tumor-stromal 

interactions and improved mice survival (Ijichi, Chytil et al. 2011). Steele et al. used 

a mouse model with oncogenic Kras and p53 mutations and concluded that 

CXCR2 is abundant in the stromal regions and that inhibiting CXCR2 suppresses 

metastasis, and improves survival by reducing MDSCs infiltration, although the 

author did not elaborate on the effect of CXCR2 inhibition on CAFs (Steele, Karim 

et al. 2016).  

The proposed role of CXCR2 axis in CAFs goes along with what Ohlund et 

al. reported that the secretory CAFs develop at a distance from tumor cells 

(Ohlund, Handly-Santana et al. 2017). ELR+, as well as other chemokines, are 

considered far-reaching compared to other cytokines such as TGF-β. Chemokines 

make gradients to recruit target cells from distant locations such as the circulation 

or the bone marrow, whereas the effect of cytokines is often local. CXCR2 axis is 

also known to activate NF-κB, and the sustained CXCR2 signaling was even 

implicated in the induction of senescence (Acosta, O'Loghlen et al. 2008, Acosta, 
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O'Loghlen et al. 2008, Acosta and Gil 2009, Cavalli, Biavasco et al. 2014, Lesina, 

Wormann et al. 2016). Overall, we believe that secretory CAFs develop in the 

context of inflammation. Inflammatory mediators such as ELR+ chemokines and 

DAMPs activate inflammatory pathways including NF-κB and STAT1 and render 

CAFs secretory.    

The proposed role secretory CAFs in PDAC  
 

Secretory CAFs produce several paracrine factors including interleukins, 

chemokines and growth factors such as VEGF (Omary, Lugea et al. 2007, Moir, 

Mann et al. 2015).  The factors with more consensus include IL-6 and CXCL8, 

among other ELR+ chemokines. The secreted factors produced by CAFs have 

been implicated in multiple pro-tumorigenic events including tumor cells 

proliferation and migration, stemness, immunosuppression, chemotherapy 

resistance, and invasion; however, some of these events lack consensus. The 

roles of IL-6 and CXCL8 in cancer is often associated with increased tumor cells 

proliferation, recruitment of MDSCs, angiogenesis, tumor cells stemness (Singh, 

Varney et al. 2009, Purohit 2015, Chan, Hsu et al. 2016, Purohit, Varney et al. 

2016, Steele, Karim et al. 2016, Su, Chen et al. 2018). Thus, we expect to find out 

that tumors with abundance in secretory CAFs to be bigger in volume due to 

proliferation cues and vascularity, immunosuppressive due to MDSCs infiltration, 

and resistant to chemotherapy with enhanced undifferentiated histology as a result 

of stemness. On the other hand, the abundance of myofibroblast will likely result 

in increased stiffness, hypoxia, induction of EMT, infiltration of macrophages and 

metastasis. Such characteristics observed with stromal CXCR2 deletion.    
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CONCLUSION 
 

PDAC remains one of the most challenging human malignancies due to its 

late detection and low effectiveness of current therapies. The characteristic 

complex tumor microenvironment and the dense desmoplastic reaction in PDAC 

contribute to tumorigenicity and tumor progression. CAFs represent a major 

component in PDAC tumor microenvironment and contribute to tumor progression 

and dissemination. Based on the information available in the literature, we 

discussed the role of genetic alterations in PDAC development, the impact of 

inflammation and secreted mediators on tumor progression, the CAFs 

heterogeneity effect on tumor outcome. We gathered thus far, oncogenic Kras 

derives tumorigenesis and contribute inflammation by upregulating CXCR2 axis. 

CXCR2 signaling promotes tumor growth, immunosuppression, and angiogenesis. 

There are at least two functional entities within the CAFs population. 

Myofibroblasts, the typical CAFs are characterized by enhanced ECM production 

and the expression of αSMA; whereas, the secretory CAFs propagates 

inflammation by secreting mediators such as IL-6 and ELR+ chemokines. We 

believe that oncogenic Kras-CXCR2 axis promotes the secretory CAFs and that 

the abundance of certain CAFs subtype could impact the tumor outcome.  
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HYPOTHESIS AND SPECIFIC AIMS  
 

PDAC remains one of the most challenging human malignancies due to its 

late detection and low effectiveness of current therapies. The characteristic 

complex tumor microenvironment and the dense desmoplastic reaction in PDAC 

contribute to tumorigenicity and tumor progression. CAFs represent a major 

component in PDAC tumor microenvironment and contribute to tumor progression 

and dissemination. Based on the information available in the literature, we 

discussed the role of genetic alterations in PDAC development, the impact of 

inflammation and secreted mediators on tumor progression, the CAFs 

heterogeneity effect on tumor outcome. We gathered thus far, oncogenic Kras 

derives tumorigenesis and contribute inflammation by upregulating CXCR2 axis. 

CXCR2 signaling promotes tumor growth, immunosuppression, and angiogenesis. 

There are at least two functional entities within the CAFs population. 

Myofibroblasts, the typical CAFs are characterized by enhanced ECM production 

and the expression of αSMA; whereas, the secretory CAFs propagates 

inflammation by secreting mediators such as IL-6 and ELR+ chemokines. We 

believe that oncogenic Kras-CXCR2 axis promotes the secretory CAFs and that 

the abundance of certain CAFs subtype could impact the tumor outcome.  

Based on that, our central hypothesis for this project is that: oncogenic Kras-

CXCR2 axis modulates the CAFs function and activity and thus impacts PDAC 

outcome.  

 Specific Aims 
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To test our hypothesis, I pursued the following specific aims. 

Specific Aim 1: Define the role of oncogenic Kras-CXCR2 axis in CAFs function and 

activity in PDAC. 

Specific Aim 2: Evaluate the CXCR2-dependent role of CAFs in PDAC. 
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Figure 1.1: Stromal infiltration in human PDAC 

Microscopic images that show the extent of CAFs infiltration in human PDAC 

sections stained with H&E (left) or the CAFs marker FAP (right).
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Figure 1.2: Depiction of the hypothesized CXCR2-dependent role of CAFs 
in PDAC. 

Oncogenic Kras-CXCR2 axis modulates the CAFs function and activity and thus 

impacts PDAC outcome. 
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CHAPTER II: MATERIALS AND METHODS 
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CELL LINE CULTURES  
 

Cell lines and culture conditions 

Murine cell lines 

PDAC murine cells Panc02 cells and UN-KC-6141 cell line (referred to in 

this study as KC), and the immortalized mouse pancreatic stellate cells (ImPSC),  

were a kind gift from Dr. Surinder K. Batra’s laboratory at UNMC. Panc02 were 

maintained in Roswell Park Memorial Institute Medium (RPMI) (HyClone®, GE Life 

Sciences, UT), and KC along with ImPSC cells were maintained in Dulbecco’s 

Modified Eagle Medium (DMEM) (HyClone®, Thermo Scientific, UT). These media 

were supplemented with 5% fetal bovine serum (FBS) (Atlanta Biologicals, GA), L-

glutamine (MediaTech, VA), twofold vitamin solution (MediaTech) and gentamycin 

(Gibco, Life Technologies, NY). 

Human cell lines 

CAF cell lines: Immortalized human CAF cell line (10-32 PC Puro, a kind 

gift from Dr. Surinder K. Batra’s laboratory at UNMC) was maintained in RPMI 

media supplemented with 5% FBS, L-Glutamine, twofold vitamin solution, 

gentamycin and 5 μg/mL of puromycin Dihydrochloride (Herndon, VA). Normal 

human fibroblast, BJ cell line, was obtained from ATCC was maintained in Eagle's 

Minimum Essential Medium (EMEM; Cellgro, Herndon, VA) supplemented with 

10% FBS, streptomycin, and penicillin.  Immortalized human CAFs (CAF; a kind 

gift from Dr. Surinder K. Batra’s laboratory at UNMC) was derived from the 

pancreatic tumor tissues. The pancreatic tumor was minced, and fibroblasts were 
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isolated by differential trypsinization, which was subsequently immortalized using 

hTERT. It was then maintained in EMEM supplemented with 10% FBS, 

streptomycin, and penicillin.   

HPNE and HPNE-Kras: Immortalized human pancreatic duct-derived cell 

lines that express exogenous KRAS(G12D) (HPNE-Kras) or normally express 

wildtype Kras (HPNE) (Campbell, Groehler et al. 2007) were maintained in special 

media consisted of three parts DMEM (HyClone®, Thermo Scientific, UT) and one 

part in M3:5 growth medium (INCELL, San Antonio, TX) supplemented with 5% 

FBS, L-glutamine, twofold vitamin solution and gentamycin. 

PDAC human cell lines: HPAF was maintained in RPMI 1640 supplemented 

with 5% FBS, L-glutamine, twofold vitamin solution and gentamycin. HPAF-CD11 

were in DMEM supplemented with 10% FBS, L-glutamine, twofold vitamin solution 

and gentamycin. The previously described CD18/HPAF cell lines that was either 

transfected with KRAS(G12D) knockdown vector (CD18/HPAF-Kras KD) or control 

vector (CD18/HPAF-scram) (Rachagani, Senapati et al. 2011) were maintained in 

DMEM  supplemented with 5% FBS, L-Glutamine, twofold vitamin solution, 

Gentamycin and 5 μg/mL of puromycin Dihydrochloride. 

Generation of conditioned media 
 

Cells were cultured in their respective complete media for 24h at density of 

1x105 cells per well in a six-well plate, then media was removed, cells washed with 

Hanks’s balanced salt solution (HBSS, Cellgro, Herndon, VA) and the media was 

changed to serum-free media for 24h or 72h.  
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Generation of ECM from CAFs 
 

We used the methods established by (Mizuguchi, Utoguchi et al. 1997). 

Briefly, we seeded CAFs cell (1x105 cells) onto six-well plate and culture them with 

complete media. After the CAFs cell reach confluence (~24 hours later), we 

removed the media and washed the cells once with PBS, and then added 1ml of 

the aqueous solution of 0.02N ammonia to the cells, and incubated them at room 

temperature for 10 min to lyse the cells. We removed any remaining cellular debris 

from the culture plate by gentle pipetting and washed the resulting lysate over ten 

times HBSS. 

Co-culture using conditioned media and treatment with exogenous 
chemokines and inhibitor 
 

Cells were seeded at a density of 1x105 cells/well using six-well plates and 

maintained in complete media for 24h. Complete media was replaced with serum-

free media, diluted conditioned media, or respective treatment and incubated for 

the respective time. 

 Co-culture using CAF monolayer or ECM 
 

To generate CAF monolayer, 1x106 cells of CAFs were seeded in the six-

well plate and incubated with complete media for 24 hours. Pancreatic cancer cells 

at a density of 1x105 were then seeded onto the CAFs monolayer or the CAFs 

ECM and co-cultured in complete media. After a 24-hour incubation, complete 

media was changed to serum-free media (day 0) and incubated for an additional 
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72h (day 4). We counted the number of tumor cell and calculated the differences 

between Day 0 and Day 4.  
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ANIMAL MODEL AND DETAILS OF IN VIVO STUDIES 
 

Study approval 
 

Mice were maintained under specific pathogen-free conditions. All 

procedures performed were in accordance with institutional guidelines and 

approved by the University of Nebraska Medical Center Institutional Animal Care 

and Use Committee (IACUC).  

Syngeneic mouse models 
 

We utilized two models of a syngeneic immunocompetent mouse model to 

study the effect of Kras mutation and stromal CXCR2 signaling on the tumor. Two 

different murine PC cell lines Panc02-GLUC-GFP (wildtype Kras; contains a single 

nucleotide polymorphism in Kras gene from TAT to TAC at codon 32) (Wang, 

Zhang et al. 2012) and KRAS-PDAC-GFP (oncogenic Kras) (Purohit, Varney et al. 

2016), were inoculated orthotopically in the pancreas of 6-8 weeks old CXCR2+/+ 

(Wildtype) and CXCR2-/- (knockout) mice. Mice were sacrificed after 4-6 weeks as 

previously described (Purohit 2015). A part of the tumor was fixed in 10% formalin 

and processed for histological analysis. 
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REAGENTS AND ANTIBODIES 
 

CXCR2 inhibitors SCH-479833 and SCH-527123, obtained from Schering-

Plough Research Institute, and prepared by dissolving in 20% hydroxypropyl-β-

cyclodextrin (HPβCD; Acros Chemical St. Louis, MO). Exogenous human CXCL8 

and exogenous murine CXCL1 were obtained from (R & D Systems, Minneapolis, 

MN, USA). A list of all the antibodies used for the present study is available in Table 

2.1. 

GENE EXPRESSION ANALYSIS 
 

RNA isolation 
 

Total RNA was isolated from cells and homogenized tissues using the 

standard Trizol (Invitrogen, Carlsbad, CA) protocol. Briefly, cells were lysed with 1 

ml of Trizol followed by adding 0.2 ml of chloroform and vigorous shaking. After 2-

3 min incubation, the mixture was separated by centrifugation at 12,000 g for 15 

min. The aqueous phase was then transferred and mixed with 750 µl of 

isopropanol and incubated in the rotator for 10 min. Tubes were then centrifuged 

at 12,000 g for 10 min, and the supernatant was discarded. The pellet was washed 

with 75% ethanol, air dried and eluted in DEPC-treated water.    

PCR analysis 
 

Reverse Transcription was performed with 1μg RNA using iScript™ 

Reverse Transcription Supermix for qRT-PCR (BIO-RAD, Hercules, CA, USA). 

Regular PCR reactions were performed using Fast Start Taq dNTPack (Roche 
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Diagnostics, IN, USA). Quantitative real-time PCR reactions were performed using 

iTaq Universal SYBR Green Supermix (BIO-RAD, Hercules, CA, USA) using the 

CFX Connect™ Real-Time PCR Detection System (BIO-RAD). Primer sets used 

for the study are listed in Table 2.2. For regular PCR, amplified cDNA was resolved 

on EtBr containing 2% agarose gels. For real-time PCR mean Ct values of the 

target genes were normalized to mean Ct values of one or more the housekeeping 

control genes (Ribosomal protein large 13 A (RPL13A), β Actin, Peptidylprolyl 

Isomerase A (PPIA) and Hypoxanthine phosphoribosyltransferase 1 (HPRT1)); [-

ΔCt = Ct (housekeeping gene) – Ct (target gene)]. The ratio of mRNA expression 

of target genes versus the housekeeping gene was defined as 2(-ΔCt). Melting 

curve analysis was performed to check the specificity of the amplified product. 

Gene expression microarray 
 

 PDAC cell lines HPAF and HPAF-CD11 were cultured alone or on CAF 

monolayer. Next, nucleic acid was collected for cDNA microarray analysis using a 

set of two 10K chips (Compugn/Sigma Genosys) that interrogate the full 18+ 

Compugen Human oligonucleotide at DNA Microarray core facility (UNMC).  The 

library contains 18,861 oligos representing 17,260 unique genes. Raw fluorescent 

intensity values were collected to determine gene expression levels. Flagged 

artifacts and negative controls were removed from the series. The data was then 

normalized, and the channels (Cy3 and Cy5) were background subtracted. The 

normalized and background subtracted values were log2 transformed. The fold-

change was calculated between the Cy3 and Cy5 channels. Emphasis was placed 

on genes demonstrating greater than 2 fold-change in expression between the two 
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channels. A list of 169 chemokines and cytokines identified by the 

KEGG_CHEMOKINE_SIGNALING_PATHWAY and 

BIOCARTA_CYTOKINE_PATHWAY were identified in the dataset and used for 

differential expression where indicated. Cluster 3.0 was used to median-center the 

genes prior to heat map generation in Java TreeView. 
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PROTEIN ANALYSIS 
 

Protein isolation 
 

The total protein was isolated by lysing cells with RIPA buffer, and the 

protein concentrations were determined using BCA kit (Pierce™ BCA Protein 

Assay Kit (Thermo Scientific, Rockford, IL, USA). 

Western blot analysis 
 

Protein samples (40 μg or 25 μg) were electrophoresed on 10% sodium 

dodecyl sulfate (SDS) polyacrylamide gels and transferred onto Immobilon-p 

Transfer membrane (Millipore, Billerica, Massachusetts, USA). Membranes were 

blocked with 3% BSA in PBS for 1 hour at room temperature. Membranes were 

probed with respective specific primary antibodies (according to dilutions in Table 

2.1) overnight at 4˚C. Membranes were washed with tween 20 tris-buffered saline 

(TTBS) buffer, three times and probed with respective secondary antibodies. 

Following washing with TTBS buffer membranes were visualized using Luminata 

Forte Western HRP Substrate Kit (Millipore, Billerica, MA). 

Enzyme-linked immunosorbent assay (ELISA) 
 

Murine CXCL1,2,5 and 7 
  

Murine cells were seeded at 1x105 density in a six-well plate then treated 

with respective treatment for the respective time points. The supernatants of 

cultured cells were collected for ELISA. ELISA assays for mCXCL1, mCXCL2, 

mCXCL5, and mCXCL7 were performed using a duoset kit (R & D Systems, 
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Minneapolis, MN, USA) according to the manufacturer’s protocol using Bio-Tek 

plate reader (Winooski, VT). Briefly, plate preparation was done by diluting the 

capture antibody to the working concentration with PBS and using it to coat the 96-

well microplate with 100 μl per well that was then incubated overnight at room 

temperature. Next day, the coated microplate was washed three times with wash 

buffer (~400 µl) per well then dried by aspirating the liquid and blotting inverted 

against paper towels. Plates were then blocked by adding 300 μl of the reagent 

diluent to each well followed by 1h incubation. After another course of three-time 

washing, 100 µl of each sample or standard (diluted with sample diluent) was 

added to the respective well and incubated for 2h at room temperature.  Wells were 

then washed three times with PBS and a 100 µl of the detection antibody working 

dilution was added per well for 2h followed by three-time washing and adding of 

the Streptavidin-HRP (100 µl) per well for 20 min in the dark. Lastly, the wells were 

washed three times then 100 μl of the substrate was added to each well for 20 min 

in the dark and reaction was stopped by adding 50 μl of the stop solution to each 

well. Optical density was determined at 450 nm wavelength.  

Human CXCL8 and FGF-2 
 

Human cells were seeded according to their respective experiment and 

supernatants were taken for ELISA analysis. 

 CXCL8 levels in culture supernatants were determined using an ELISA kit 

paired antibody purchased from Pierce Inc. (Woburn, MA), according to 

manufacturer instructions. Briefly, 100 µl of the primary monoclonal antibody 
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against CXCL8 (2 µg/ml) was coated in Immulon plates in each well. After 1h of 

incubation at 37oC, the plates were washed and blocked for 1h with blocking buffer 

(4 % BSA in PBS). After washing the plates four times, 50 µl culture supernatants 

or standards at different concentrations (recombinant CXCL8 protein, Endogen 

Inc. Woburn, MA) and 50 µl of biotinylated CXCL8 Ab was added to each well. 

After 2h of incubation, the plates were washed, and the immunoreactivity 

determined using the avidin-HRP-TMB detection system (Dako Labs. Denmark). 

The reactions were stopped by addition of 50 µl of 0.18 N H2SO4 and absorbance 

determined using an ELISA microtiter plate reader (Bio-Tek Instruments Inc. 

Winooski, VT) at 450 nm. A curve of the absorbance versus the concentration of 

CXCL8 in the standard wells was plotted. By comparing the absorbance of the 

samples to the standard curve, we determined the concentration of CXCL8 in the 

unknown samples. 

For analyzing levels of FGF-2, we used direct ELISA. Samples and different 

concentrations of recombinant FGF-2 protein (for standard curve) was coated onto 

ELISA plate overnight. Following washing and blocking non-specific activity, 100 

µl of anti-FGF-2 antibody (R & D System, Minneapolis MN) was added into each 

well. Following two hours of incubation, samples were incubated with biotinylated 

secondary antibody and immunoreactivity was determined using avidin-HRP-TMB 

detection system. A curve of the absorbance versus the concentration of FGF-2 in 

the standard wells was plotted. By comparing the absorbance of the samples to 

the standard curve, we determined the concentration of FGF-2 in the unknown 

samples. 
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Immunofluorescence (IF) 
 

Cells were cultured on four-well chamber slides and treated according to 

their respective experiment. After ceasing the treatment, cells were washed three 

times with PBS and fixed using 4% paraformaldehyde, then again washed with 

PBS for three times.  Cells were then blocked with antibody diluent (BD 

Biosciences) or blocking buffer (PBS with 3% BSA and 0.1% Saponin) for 

cytoplasmic targets.  Cells were probed with the respective antibody (according to 

Table 2.1) at 4˚C overnight. The next day, slides were stained with the respective 

antibody and counterstained with the nucleic staining 4, 6 diamidino-2-

phenylindole (DAPI). Finally, slides were mounted with Vectashield® mounting 

medium (Vector Laboratories, Burlingame, CA, USA) and observed under a 

fluorescent microscope. 

Immunohistochemistry (IHC) 
 

Sections of 4μm thick from formalin-fixed, paraffin-embedded tissues were 

deparaffinized with xylene and rehydrated by incubating with decreasing ethanol 

concentrations. Antigen retrieval was performed using sodium citrate buffer (pH = 

6.0) and microwaving for 10 minutes. Endogenous peroxidase was blocked by 

incubating with 3% hydrogen peroxide in methanol for 30 minutes. After blocking 

non-specific binding by incubating with serum, slides were probed with primary 

antibody (Table 2.1) overnight at 4ºC. Slides were washed, and the appropriate 

secondary antibodies were added. Immunoreactivity was detected using the ABC 

Elite Kit and 3, 3 diaminobenzidine substrate kit (DAB) from (Vector Laboratories, 
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Burlingame, CA) according to the manufacturer standard protocols. A reddish 

brown precipitate indicated positive staining. Nuclei were counterstained with 

hematoxylin. Quantitation was done by counting positive cells in five independent 

areas at x400. 

  



62 
 

IN VITRO CELL-BASED ASSAYS 
 

In vitro cell proliferation assay: 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) 
 

Cells were seeded at appropriate densities in 96-well plates and were 

allowed to adhere overnight. Cells were washed with HBSS and were incubated 

with serum-free media alone or with other treatments (conditioned media, CXCR2 

inhibitors, exogenous CXCR2 ligands) for 72 hours. Cell viability was determined 

by MTT assay as previously described (Li et al., 2001). Briefly, 50 µl of the MTT 

reagent (Thermo Fisher Scientific, Fair Lawn, NJ) was added to each well and 

incubated for 2-4h. Media and MTT were removed and replaced by 100 µl of 

dimethyl sulfoxide (DMSO; Thermo Fisher Scientific, Fair Lawn, NJ) 

The formula calculated percent inhibition of cell growth: [100 - (A/B) x 100], 

where ‘A’ and ‘B’ are the absorbance of the treated and Control group, respectively. 

Percentage of cell growth was calculated by the formula: [(A/B) x 100], where ‘A’ 

and ‘B’ are the absorbance of treatment and control group respectively. 
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STATISTICAL ANALYSIS  
 

The statistical analysis was performed using Prism 7 (GraphPad) software. 

Statistical method and sample size (n; the number of replicates) are indicated in 

the figure legends. Statistical significance was defined as p<0.05. Error bars on 

figures show standard error of the mean (SEM). Two-tailed Student's t-test, 

ANOVA and Posthoc comparisons using Mann-Whitney tests with a Bonferroni 

adjustment were performed when appropriate as indicated in figure legends.  
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Figure 2.1: Mouse models 

Syngeneic mouse models: C57BL/6 mice (wildtype or Cxcr2-/-) orthotopically 

transplanted with PDAC murine cells KC (oncogenic Kras) or Panc02 (wildtype 

Kras).     
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Table 2. 1: List of antibodies  

 

 

  

Species 
reactivity in 
this paper  

Antibody  Supplier  Catalogue 
number  

Host 
species  

Dilution  
IHC/IF 
(WB)   

Mouse/Human CXCR2 Gift from Dr. Strieter Goat 1:1000 
Mouse/Human αSMA ThermoFisher MA5-11547 Mouse 1:250 (1:500) 
Mouse/Human FAP Abcam ab207178 Rabbit 1:1000 
Mouse/Human CD10 Abcam ab951 Mouse 1:50 
Mouse/Human p50 Biolegend 616701 Mouse 1:100 
Mouse/Human HSP70 Santacruz sc-32239  (1:250) 
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Table 2. 2: List of primers 

 

  

Gene Temp. (oC) Species Sequence 
Cxcl1  55˚ Murine Forward 5’-TCGCTTCTCTGTGCAGCGCT-3’ 

Reverse 5’- GTGGTTGACACTTAGTGGTCT C-3’ 
Cxcl2  57˚ Murine Forward 5’-AGTGAACTGCGCTGTCAATG-3’  

Reverse 5’-TTCAGGGTCAAGGCAAACTT-3’  
Cxcl3  68˚ Murine Forward 5’-GCAAGTCCAGCTGAGCCGGGA-3’  

Reverse 5’-GACACCGTTGGGATGGATCGCTTT-3’  
Cxcl5  68˚ Murine Forward 5’-ATGGCGCCGCTGGCATTTCT-3’  

Reverse 5’-CGCAGCTCCGTTGCGGCTAT-3’  
Cxcl7  57˚ Murine Forward 5’-CTCAGACCTTACATCGTCCTGC-3’  

Reverse 5’-AGCGCAACAAGGATCGTCCTGC-3’  
Ccl5  56˚ Murine Forward 5’-GCTGCTTTGCCTACCTCTCC-3’  

Reverse 5’-TCGAGTGACAAACACGACTGC-3’  
Ccl3  56˚ Murine Forward 5’-TTCTCTGTACCATGACACTCTGC-3’  

Reverse 5’-CGTGGAATCTTCCGGCTGTAG-3’  
Ccl2  56˚ Murine Forward 5’-TTAAAAACCTGGATCGGAACCAA-3’  

Reverse 5’-GCATTAGCTTCAGATTTACGGGT-3’  
IL1  56˚ Murine Forward 5’-GCAACTGTTCCTGAACTCAACT-3’ 

Reverse 5’-ATCTTTTGGGGTCCGTCAACT-3’ 
IL4 56˚ Murine Forward 5’-GGTCTCAACCCCCAGCTAGT-3’ 

Reverse 5’-GCCGATGATCTCTCTCAAGTGAT-3’ 
IL6 55˚ Murine Forward 5’-CCTCTGGTCTTCTGGAGTACC-3’  

Reverse 5’-ACTCCTTCTGTGACTCCAGC-3’  
IL10 57˚ Murine Forward 5’-GCTCTTACTGACTGGCATGAG-3’  

Reverse 5’-CGCAGCTCTAGGAGCATGTG-3’  
IL12  57˚ Murine Forward 5’-TGGGTTTGCCATCGTTTTGCTG-3’  

Reverse 5’-ACAGGTGAGGTTCACTGTTTCT-3’  
IL13 55˚ Murine Forward 5’-CCTGGCTCTTGCTTGCCTT-3’ 

Reverse 5’-GGTCTTGTGTGATGTTGCTCA-3’ 
IL17 55˚ Murine Forward 5’-TTTAACTCCCTTGGCGCAAAA-3’ 

Reverse 5’-CTTTCCCTCCGCATTGACAC-3’ 
IFN-γ  57˚ Murine Forward 5’-ATGAACGCTACACACTGCATC-3’  

Reverse 5’-CCATCCTTTTGCCAGTTCCTC-3’  
TNF-α  57˚ Murine Forward 5’-CCCTCACACTCAGATCATCTTCT-3’  

Reverse 5’-GCTACGACGTGGGCTACAG-3’  
Rpl13a  58˚ Murine Forward 5’-ACTCTGGAGGAGAAACGGAAGG-3’  

Reverse 5’-CAGGCATGAGGCAAACAGTC-3’  
Actin β 57˚ Murine Forward 5’-GGCTGTATTCCCCTCCATCG-3’ 

Reverse 5’-CCAGTTGGTAACAATGCCATGT-3’ 
PPIA 57˚ Murine Forward 5’-TGTGCCAGGGTGGTGACTTT-3’ 

Reverse 5’-CGTTTGTGTTTGGTCCAGCAT-3’ 
HPRT 57˚ Murine Forward 5’-CCTAAGATGAGCGCAAGTTGAA -3’ 

Reverse 5’-CCACAGGACTAGAACACCTGCTAA-3’ 
Acta2 (αSMA) 56˚ Murine Forward 5’-CCCAGACATCAGGGAGTAATGG-3’ 

Reverse 5’-TCTATCGGATACTTCAGCGTCA-3’ 
COL1A1 (Collagen I)  56˚ Murine Forward 5’-GCCCGAACCCCAAGGAAAAGAAGC-3’ 

Reverse 5’-CTGGGAGGCCTCGGTGGACATTAG-3’ 
COL4A1 (Collagen IV) 55˚ Murine Forward 5’-TCCGGGAGAGATTGGTTTCC-3’ 

Reverse 5’-CTGGCCTATAAGCCCTGGT-3’ 



68 
 

 

 

 

 

 

 

CHAPTER III: CAFS ENHANCE SURVIVAL AND PROGRESSION OF THE 
AGGRESSIVE PANCREATIC TUMOR VIA FGF-2 AND CXCL8  

 

 

 

 

 

This chapter in part is derived from:  

Awaji M, Futakuchi, M, Heavican T, Iqbal J, and Singh RK. Cancer-associated 
fibroblasts enhance survival and progression of the aggressive pancreatic tumor 
via FGF-2 and CXCL8. Cancer Microenvironment., 2019 (In press). 
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ABSTRACT 
 

 PDAC remains one of the most challenging human cancers. Desmoplasia 

is predominant in this disease exhibiting a strong stromal reaction with an 

abundance of the CAFs. We aimed in this study to investigate the reciprocal 

interaction between the tumor cells and the CAFs and its effect on tumor cells 

survival. We hypothesized that the survival of pancreatic cancer cell with 

aggressive phenotype is modulated by the interactions between malignant 

pancreatic tumor cells and surrounding CAFs. To examine this, we utilized co-

culture methods where tumor cells with different malignant potentials, HPAF (low) 

HPAF-CD11 (moderate/high) co-cultured with CAFs. CAFs-conditioned media 

increased the growth of HPAF-CD11 but not HPAF cells and increased CXCL8 

levels highly in HPAF-CD11 and slightly in HPAF. The growth stimulatory effect 

and elevated CXCL8 level caused by CAFs-conditioned media were diminished by 

neutralizing the fibroblast growth factor-2 (FGF-2). Also, conditioned media of 

HPAF-CD11 increased CAFs cell number whereas that of HPAF did not, and these 

effects were suppressed by neutralizing CXCL8.  Furthermore, data from gene 

expression microarray study exhibited different expression profiles between HPAF 

and HPAF-CD11 when co-culture with CAFs. A significant increase in CXCL8 and 

FGF-2 expression was observed with HPAF-CD11/CAFs co-culture and to a lower 

extent with HPAF/CAFs co-culture. Together, these data demonstrate a paracrine 

bi-directional interaction between pancreatic tumor cells and the CAFs through 

CXCL8 and FGF-2 that helps the tumor growth. Future in-depth study of these 
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pathways will assist in obtaining diagnostic and therapeutic tools for pancreatic 

ductal adenocarcinoma.  
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INTRODUCTION 
 

PDAC is the most common type of pancreatic cancers, the fourth leading 

cause of cancer deaths in the United States (Siegel, Miller et al. 2018). The 

increased incidence of the disease, as well as the cellular and molecular 

complexity of the tumor, makes it very challenging to manage. A chance of cure 

exists for only a minority of the patients, those with locally limited and surgically 

resectable tumors (Warshaw and Fernandez-del Castillo 1992). At the time of 

diagnosis, the majority of PDAC patients present at advanced stages beyond 

surgical resection. Studying the complex cellular and molecular interaction 

between malignant cells and other cells in the tumor microenvironment can shed 

more light on how the diseases initiate progresses and spreads.  

Desmoplasia is of particular predominance in PDAC exhibiting a strong 

stromal reaction (Kuniyasu, Abbruzzese et al. 2001, Iacobuzio-Donahue, Ryu et 

al. 2002, Watanabe, Hasebe et al. 2003). A consistently low ratio of the infiltrating 

adenocarcinoma component relative to this abundant desmoplastic response is 

unique to PDAC, in contrast to infiltrating carcinomas in other organ or tissue types 

(Seymour, Hruban et al. 1994, Kalluri 2016). Typically, these invasive pancreatic 

tumors are composed of infiltrating adenocarcinoma surrounded by a 

predominance of dense fibrous (or desmoplastic) stroma (Kloppel, Lingenthal et 

al. 1985), which itself contains proliferating CAFs, small endothelial-lined vessels, 

inflammatory cells, and trapped residual atrophic parenchymal components of the 

organ invaded (Ryu, Jones et al. 2001). CAFs, represent the fibrotic component of 

the tumor microenvironment, are derived from cells of multiple origins including 
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tissue resident fibroblasts, bone marrow-derived mesenchymal cells, fibrocytes, 

and PSCs (Öhlund, Elyada et al. 2014).  PSCs, in particular, have gained much 

attention more than other subsets of CAFs. PSCs, similar to other stellate cells 

found in other organs such as in liver, kidneys, and lungs, are known to modulate 

physiological functions by storing vitamin-A at their quiescent state and tissue 

maintenance and repair at the activated state (Omary, Lugea et al. 2007, Apte, 

Wilson et al. 2013, Apte, Pirola et al. 2015, Moir, Mann et al. 2015). In PDAC,   

activated PSCs have been described to be involved in tumorigenesis, therapy 

resistance, and metastasis (Xu, Vonlaufen et al. 2010, Lonardo, Frias-Aldeguer et 

al. 2012, McCarroll, Naim et al. 2014, Moir, Mann et al. 2015, Zambirinis, Levie et 

al. 2015). Interactions between the malignant cells and surrounding stromal CAFs 

have been suggested to play a critical role in tumor invasion and progression 

(Grey, Schor et al. 1989, Camps, Chang et al. 1990). Once tumor cells have spread 

to different microenvironment, their subsequent growth will depend on the 

compatibility of the “seed” with the “soil” that they encounter in the 

microenvironment (Paget 1889, Hart 1982), which depend on the molecular 

interactions between cancer cells and the stromal cells in the different 

microenvironment (Chambers, Groom et al. 2002, Fidler, Yano et al. 2002). 

Invasive cancers do not exist in isolation; rather, they arise from and intimately 

interact with non-neoplastic host cells (Maehara, Matsumoto et al. 2001, Qian, 

Mizumoto et al. 2003).  

For long, CAFs have been regarded for their role in the formation of 

desmoplasia, by producing excessive amounts of ECM proteins (Apte and Wilson 



73 
 

2004). Desmoplasia aids in acquiring resistance to current chemotherapy 

treatments (Olive, Jacobetz et al. 2009, Jacobetz, Chan et al. 2012, Provenzano, 

Cuevas et al. 2012). Nonetheless, recent literature describes a vast network of 

CAFs interactions beyond the desmoplasia formation. Through their network of 

secreted factors, such as cytokine, chemokines and growth factors, CAFs can 

interact with the multiple components in the tumor microenvironment to modulate 

tumor progression in different malignancies (De Wever and Mareel 2003, Micke 

and tman 2004, Cheng, Bhowmick et al. 2005, Paulsson and Micke 2014).  

FGF-2 is a member of the FGF family that control multiple cellular 

processes including proliferation, differentiation, survival, and motility (Basilico and 

Moscatelli 1992). In the context of cancer, FGF-2 has been shown to promote 

tumor progression (Polnaszek, Kwabi-Addo et al. 2003).  Enhanced FGF-2 protein 

levels have been shown to correlate with shorter postoperative survival of patients 

with PDAC (Kleeff, Kothari et al. 2004). Furthermore, FGF-2 was linked to PDAC 

invasion via its activity in PSCs (Coleman, Chioni et al. 2014).  

A member of the CXC chemokine family, CXCL8 signals through CXCR1 

and CXCR2 chemokine receptors. These chemokines are known for their role in 

inflammation by recruiting inflammatory cells and inducing angiogenesis. In 

malignant tumors, sustained CXCL8 signaling is associated with 

immunosuppression, angiogenesis, and tumor growth; thus, essential to the 

progression of PDAC (Saintigny, Massarelli et al. 2012, Liu, Li et al. 2016, Purohit, 

Varney et al. 2016). There is evidence that CXCL8 and FGF-2 are involved in 

tumor-stromal interaction (Giri and Ittmann 2001, Coleman, Chioni et al. 2014). 



74 
 

We hypothesized that the aggressive phenotype of PDAC depends on their 

interaction with CAFs, which involves FGF-2 and CXCL8. To test this hypothesis, 

we examined the effect of CAFs on pancreatic tumor cells with different malignant 

potential, HPAF (low) and HPAF-CD11 (moderate/high). HPAF-CD11 is derived 

from the parent cell line HPAF, where both cells show well-differentiation features 

and mutations in both Kras and TP53 (Kim, Kern et al. 1989, Egami, Takiyama et 

al. 1990, Batra, Metzgar et al. 1991, Wang, Knezetic et al. 1996, Ding, Fehsenfeld 

et al. 2000). We demonstrated that the aggressive phenotype of PDAC has a 

stronger bi-directional interaction with CAFs through paracrine factors such as 

FGF-2 and CXCL8. 
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RESULTS 
 

Aggressive pancreatic tumor cell survived following co-culture with 
fibroblasts in the absence of serum 
 

 We examined the growth of HPAF and HPAF-CD11 cells in the presence 

or absence of serum-containing media when cultured with or without fibroblasts. 

Both HPAF and HPAF-CD11 cells showed serum dependency irrespective of their 

aggressive differential phenotype when cultured in the absence of fibroblasts 

(Figure 3.1A and 3.1B). Further, the growth of HPAF cells was inhibited following 

co-culture with fibroblasts (BJ cells monolayer) in the presence of or absence of 

serum (Figure 3.1C) as compared to HPAF cells cultured alone. The level of 

inhibition of HPAF cells growth following co-culture with fibroblasts was similar to 

that observed when HPAF cells alone were cultured in the absence of serum 

(Figure 3.1A). In contrast, we observed an increased survival and growth of 

HPAF-CD11 cells following co-culture with fibroblasts (BJ cells monolayer). 

Interestingly the growth of HPAF-CD11 cells was enhanced in following co-culture 

with fibroblasts in the absence of serum (Figure 3.1D). 

Survival of tumor cells is mediated by CAFs conditioned media 
 

  To evaluate whether the survival of HPAF-CD11 cells on the 

fibroblasts monolayer was mediated by the direct contact or paracrine factors, 

HPAF and HPAF-CD11 cells were incubated with CAF-conditioned media or ECM 

generated from CAFs, and the increase in cell number was quantitated. No 

increase in the cell number was observed in HPAF cells in response to CAFs 

conditioned media, and further inhibition was detected with ECM culture (Figure 
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3.2A). We observed a significant increase in the number of HPAF-CD11 cells 

following co-culture with both CAFs conditioned media and CAFs ECM (Figure 

2B). The increase in HPAF-CD11 cells cultured with CAFs conditioned media was 

greater than that observed in response to ECM but less than that observed with 

serum containing media (Figure 3.2B). Next, we examined the dose-dependence 

of CAFs-conditioned media on the growth of HPAF-CD11 cell (Figure 3.2C) and 

demonstrated that increasing concentrations of CAFs conditioned media 

increased the growth of HPAF-CD11 cells. Together, we perceive that CAFs-

derived paracrine factors contribute to the survival of the aggressive PDAC cells.   

CAFs promote tumor cell survival via FGF-2  
 

 To determine the putative growth factors present in CAFs conditioned media, we 

examined the effect of the neutralizing antibodies of FGF-2 and CXCL8, which have been 

shown to be involved in the tumor-stromal interaction (Giri and Ittmann 2001, Coleman, 

Chioni et al. 2014), on the survival of HPAF-CD11 cells.  Anti-FGF-2 antibody treatment 

significantly abrogated the increase of cell number of HPAF-CD11 following culture with 

CAFs conditioned media (Figure 3.3A), while anti-CXCL8 antibody treatment did not 

(Figure 3.3B). To confirm that FGF-2 is produced by CAFs, we performed ELISA on the 

CAF supernatant collected in serum-free media or complete media (Figure 3.3C). These 

results indicate that FGF-2 but not CXCL8 in the CAFs conditioned media was involved in 

the survival of HPAF-CD11. 

FGF-2 secreted by CAF induces CXCL8 production in tumor cells 
 

CXCL8 and other CXC chemokines that signal through CXCR1/2 axis are 

known to be expressed in PDAC cells (Le, Shi et al. 2000, Takamori, Oades et al. 
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2000, Frick, Rubie et al. 2008). Autocrine and paracrine signaling through 

CXCR1/2 axis plays a vital role in the progression of PDAC by promoting tumor 

cells growth, angiogenesis, immunosuppression and chemotherapy resistance 

(Strieter, Burdick et al. 2006, Highfill, Cui et al. 2014, Chan, Hsu et al. 2016, 

Purohit, Varney et al. 2016). To examine the involvement of FGF-2 in the CXCL8 

production by PDAC cells, we determined CXCL8 production in HPAF and HPAF-

CD11 cell after treatment with CAFs-conditioned media using ELISA. Our data 

shows that HPAF-CD11 produce more CXCL8 than their HPAF counterparts by 

comparing CXCL8 levels produced in serum-free media treatment as well as in 

response to CAFs-conditioned media treatment (Figure 3.4A-B). By comparing 

the CXCL8 production in each cell in response to CAFs-conditioned media, we 

show that CAFs-conditioned media increased CXCL8 level in both HPAF and 

HPAF-CD11 cells, and neutralizing FGF-2 has lowered the CXCL8 inducing effect 

of the CAFs-conditioned media (Figure 3.4C and 3.4D).  

Effect of tumor cell conditioned media on the survival of CAFs  
 

Next, we examined the effect of the conditioned media from PDAC cells with 

different aggressiveness on the survival of CAFs. CAFs were incubated with the 

conditioned media of HPAF or and HPAF-CD11 for 1, 2, and 3 days, and the 

increase in cell number was quantitated. We observed a significant increase in the 

number of CAFs following co-culture with conditioned media of HPAF-CD11 cell at 

each time point but not with that of HPAF (Figure 3.5A). To determine the putative 

growth factors present in the conditioned media of HPAF-CD11, we examined the 

effect of the neutralizing antibodies of CXCL8 (Figure 3.5B). Anti-CXCL8 antibody 
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treatment significantly abrogated the increase of cell number of CAFs following 

culture with HPAF-CD11 conditioned media. These results indicate that CXCL8 

was involved in the survival of CAFs by the conditioned media of PDAC cells. 

Aggressiveness-dependent gene expression of tumor cells when co-
cultured with CAFs  
 

 Finally, we used gene expression microarray to explore the expressional 

differences between HPAF and HPAF-CD11 cells upon their co-cultured with CAF. 

Distinct gene expression profiles were observed for HPAF and HPAF-CD11 when 

compared alone or in co-culture. More focused look into the expression profile of 

paracrine factors revealed that CAFs are the major contributor of many cytokines 

and chemokines (Figure 3.6A). Comparing HPAF/CAF co-culture to HPAF-

CD11/CAF co-culture revealed upregulation of motility supporting gene ELMO1 in 

HPAF-CD11 co-culture, whereas, mainly cytokines and chemokines were 

upregulated in the HPAF co-culture (Figure 3.6A). Targeted look into CXCL8 and 

FGF-2 expression exhibited that CAFs are the leading producer of CXCL8 and that 

CXCL8 was upregulated in the co-culture condition compared to tumor cells 

cultured alone for both HPAF and HPAF-CD11 (Figure 3.6B). For FGF-2, only 

HPAF-CD11 co-culture exhibited significance upregulation of the gene compared 

to the tumor cells cultured alone (Figure 3.6B). Together, these data demonstrate 

the versatility of CAFs and their ability to support tumor cells in an aggressive-

dependent manner.       
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DISCUSSION 
 

PDAC, one of the most malignant tumors, is often characterized by an 

abundant desmoplastic stroma. CAFs, which constitute a primary stromal 

compartment in PDAC, have been shown to promote the invasive growth of 

several cancer types such as breast, prostate, and lung (Tuxhorn, Ayala et al. 

2002, Micke and tman 2004). CAFs are often only associated with excess 

extracellular matrix production; thus, their contribution to desmoplasia (Apte and 

Wilson 2004). Recent studies have addressed the role of CAFs in pancreatic tumor 

aggressiveness. Non-irradiated CAFs significantly increased the invasive ability of 

pancreatic cancer cells and the invasiveness was further accelerated when they 

were co-cultured with irradiated CAFs (Ohuchida, Mizumoto et al. 2004). Nitric 

Oxide released by CAFs has been shown to lead to the upregulation of IL-1β in 

pancreatic carcinoma cells, leading to the induction of chemotherapy resistance in 

these tumor cells (Muerkoster, Wegehenkel et al. 2004). CAFs can produce many 

paracrine factors including chemokines, cytokines and growth factor, which allow 

interaction and subsequent modulation of other cells in the tumor 

microenvironment (Öhlund, Elyada et al. 2014). This secretory role of CAFs 

remained under-investigated. In the present study, we demonstrated that 

pancreatic tumors with more aggressive phenotype could interact with CAFs more 

than non-aggressive cells. These data underscored the importance of the 

interaction with CAFs in the exertion of the malignant potential of the pancreatic 

tumor. 

FGF-2 is expressed in pancreas cancer (Yamanaka, Friess et al. 1993), as well 
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as in many other malignant neoplasms (Feng, Wang et al. 1997, Relf, LeJeune et 

al. 1997). FGFs bind to a family of transmembrane tyrosine kinase receptors 

(FGFRs 1-4), and FGFR-1 and FGFR-4 are potent receptors for FGF-2 (Ornitz, Xu 

et al. 1996). A member of the CXC chemokine family, CXCL8, its production has 

been correlated with tumor growth, immunosuppression, resistance to 

chemotherapy, angiogenesis, and increased metastatic potential of PDAC 

(Saintigny, Massarelli et al. 2012, Liu, Li et al. 2016).   

In the current study, we demonstrate a bi-directional interaction between tumor 

cells and CAFs that creates a feedforward loop to promote the survival of the tumor 

cells in PDAC. The said interaction was more obvious with HPAF-CD11 cells that 

acquire more PDAC aggressive features. Culturing tumor cells on top of CAFs 

monolayer proved that the interaction between malignant cells and CAFs could 

promote survival and growth of PDAC cells. Nonetheless, culturing tumor cells in 

CAFs-derived conditioned media demonstrated that the survival stimulation effect 

of CAFs on malignant cells is mediated through paracrine factors rather than direct 

interaction. The use of neutralizing antibodies demonstrated that FGF-2 is the 

putative factor that stimulates malignant cells survival; whereas, it is clear that 

FGF-2 was present in CAFs-conditioned media, the difference in the expression of 

the appropriate FGF-2 receptors is possibly responsible for the difference between 

HPAF and HPAF-CD11.  Moreover, CXCL8 has been shown to enhance 

endothelial cell proliferation and to regulate angiogenesis (Li, Dubey et al. 2003, 

Waugh and Wilson 2008). In this study, we show that CAFs-conditioned media 

increased CXCL8 production by HPAF-CD11. Subsequently, CXCL8 may induce 
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angiogenesis necessary for further tumor progression. On the other hand, HPAF 

cells that carry less aggressive potential produce less CXCL8. Therefore, the 

CXCL8 level induced by CAFs-conditioned media may be one of the determinants 

for malignant potential. Recently, CXCL8 has been shown to be produced by 

prostatic epithelial cells of benign prostatic hyperplasia which consists of slow but 

progressive growth of both epithelial and stromal cell and can act as a paracrine 

inducer of FGF-2 production by prostatic stromal cells in vitro (Giri and Ittmann 

2001). In our study, conditioned media of the more aggressive PDAC cells, HPAF-

CD11, stimulated and maintained the survival of CAFs through the secretion of 

CXCL8. Therefore, pancreatic tumor cell-derived CXCL8, released as a 

consequence of FGF-2 stimulation, may act on CAFs to stimulate further FGF-2 

production. On the other hand, we have shown that CAFs derived FGF-2 can serve 

as a paracrine inducer of CXCL8 production by pancreatic tumor cells.  

Looking into the differential gene expression profiles of HPAF and HPAF-CD11 

upon their co-culture with CAFs can reveal the extent of CAFs contribution to tumor 

progression. CAFs appear to have a high baseline of several cytokines and 

chemokines including CXCL8. An interesting observation is that HPAF-CD11 

cell/CAFs co-culture upregulates ELMO1 gene that has been associated with 

motility (Grimsley, Kinchen et al. 2003, Sanui 2003). If we put this together with the 

ability of CXCL8 to induce angiogenesis, we can assume that CAFs can contribute 

to tumor cells spread to other organs.   

In conclusion, interactions between pancreatic tumor cells and CAFs promote 

the survival of tumor cells with aggressive potentials and promote CXCL8 
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production. CXCL8, released as a consequence of FGF-2 stimulation, act on CAFs 

to stimulate further FGF-2 production. Thus, such bi-directional interactions 

between pancreatic tumor cells and CAFs help the tumor growth in different 

microenvironments, which leads to the pancreatic tumor progression and spread. 
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Figure 3.1: Fibroblasts promote the survival of aggressive pancreatic tumor 
cell 

(A) Light microscope images of HPAF cells cultured in complete media or serum-

free media.  (B) Light microscope images of HPAF-CD11 cells cultured in complete 

media or serum-free media. (C) Light microscope images of HPAF cells cultured 

on top of fibroblasts (BJ) monolayer with complete media, or serum-free media. 

(D) Light microscope images of HPAF-CD11 cells cultured on top of fibroblasts 

(BJ) monolayer with complete media, or serum-free media.  
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Figure 3.2: CAFs promotes the survival of tumor cells through paracrine 
contact 

(A and B) Survival of HPAF cells (A) and HPAF-CD11 (B) following their culture 

with CAFs-ECM, CAFs-conditioned media, or complete media as compared to 

serum-free media. (C) Survival of HPAF-CD11 cells in increasing amounts of 

CAFs- conditioned media to serum-free media. (n=3), student’s t-test. *p<0.05, 

**p<0.01, ***p<0.001  
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Figure 3.3: Effects of CAFs conditioned media on the survival of HPAF-
CD11 is mediated by FGF-2 

(A) Number increase of HPAF-CD11 in response to CAFs-conditioned media +/- 

FGF-2 neutralizing antibody as compared to serum-free media. (B) Number 

increase of HPAF-CD11 in response to CAFs-conditioned media +/- CXCL8 

neutralizing antibody as compared to serum-free media.  (C) FGF-2 

concentrations, evaluated by ELISA, in the supernatant of CAF incubated in 

serum-free media or complete media.    (n=3), student’s t-test. *p<0.05, **p<0.01, 

***p<0.001  
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Figure 3.4: FGF-2 in the CAFs conditioned media promotes the CXCL8 
production of pancreatic tumor cells 

(A) CXCL8 concentration, evaluated by ELISA, in the supernatant of HPAF cells 

and (B) HPAF-CD11 after treatment with serum-free media or CAFs-conditioned 

media. (C) CXCL8 concentration, evaluated by ELISA, in the supernatant of HPAF 

cells after treatment with CAFs-conditioned media +/- FGF-2 neutralizing. (D) 

CXCL8 concentration, evaluated by ELISA, in the supernatant of HPAF-CD11 cells 

after treatment with CAFs-conditioned media +/- FGF-2 neutralizing. (n=3), 

student’s t-test. *p<0.05, **p<0.01, ***p<0.001 
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Figure 3.5: Effect of tumor cell conditioned media on the survival of CAFs  

(A) Survival, increase in cell number, of CAFs incubated with the conditioned 

media of HPAF or and HPAF-CD11 for 1, 2, and 3 days, and the increase in cell 

number was quantitated. (B)  Net growth, determined by the increase in cell 

number, of CAFs in HPAF-CD11 conditioned media +/- CXCL8 neutralizing 

antibody. (n=3), student’s t-test. *p<0.05, **p<0.01, ***p<0.001 
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Figure 3.6: Differential gene expression of tumor cells cultured with CAFs    

(A) Heat map of gene expression of HPAF and HPAF-CD11 cultured alone or with 

CAFs determined using gene expression microarray. Heat maps show chemokines 

and cytokine with > 2-fold increase. (B)  Expression of CXCL8, represented as 

normalized signal intensity, in HPAF and HPAF-CD11 cultured alone or with CAFs 

determined using gene expression microarray.  (C)  Expression of FGF-2, 

represented as normalized signal intensity, in HPAF and HPAF-CD11 cultured 

alone or with CAFs determined using gene expression microarray.  
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CHAPTER IV: CXCR2 SIGNALING ACTIVATES NF-KB AND PROMOTES 
SECRETORY CAFS   
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ABSTRACT 
 

Due to its late detection and low success of current therapies, PDAC 

remains one of the most challenging malignancies. Desmoplasia and tumor-

supporting inflammation are hallmarks of PDAC. In addition to the autonomous 

aggressiveness feature of PC malignant cells, host tumor microenvironment 

contribute greatly to tumor progression and spread. CAFs, a major component of 

the tumor microenvironment in PDAC, are implicated in facilitating therapy 

resistance and metastasis. Recent reports emphasized the concurrence of 

multiple subtypes of CAFs that carry out different roles. CXCR2 is a chemokine 

receptor that is known for its role during inflammation and its adverse role in PDAC. 

Oncogenic Kras upregulates CXCR2 and its ligands and; thus, contribute to tumor 

proliferation, immunosuppression, therapy resistance by stemness induction. The 

deletion of CXCR2 in a PDAC syngeneic mouse model, render fibrosis revealing 

a potential undescribed role of CXCR2 in regulating CAFs. We hypothesize that 

CXCR2 regulates CAFs function in PDAC and contribute to CAFs heterogeneity.  

Using co-culture methods, gene and protein expression methods, we 

demonstrated that PDAC tumor cells with oncogenic Kras express more CXCR2 

ligands. CXCR2 ligands derived from PDAC cells inhibited CAFs growth, 

decreased the expression of the myofibroblasts-associated markers including 

αSMA and collagen I, and increased the expression of immunosuppressive 

cytokines and tumor-promoting chemokines including IL-4, IL-10, IL-13 and 

CXCL7 through the activation of NFκB. Together, we demonstrate that sustained 
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signaling through CXCR2 activates NFκB and induces a secretory phenotype of 

CAFs in PDAC that upregulates pro-tumor factors.   
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INTRODUCTION 
 

Pancreatic cancer, one of deadliest human cancers, is the fourth leading 

cause of cancer-related deaths in the USA (Siegel, Miller et al. 2018). The lack of 

both early detection tools and viable treatment options made pancreatic cancer a 

very stubborn and one of the deadliest human malignancies (Warshaw and 

Fernandez-del Castillo 1992, Hidalgo 2010). Making progress in dealing with the 

disease starts by understanding the complex cellular and molecular interactions 

and identifying the checkpoints that are crucial for the disease initiation, 

progression and spread. PDAC is the most common and most aggressive subtype 

of pancreatic cancers (Fesinmeyer 2005, Bosman, Carneiro et al. 2010). PDAC 

develops progressively as a result of accumulating genetic and epigenetic 

alterations (Hruban and Fukushima 2007, Hruban and Adsay 2009). Oncogenic 

Kras often develops very early before the inception of the full-blown disease. 

Premalignant lesions, known as PanIN, develop with the Kras mutation and not 

until other mutations such as the p53 and the Smad4 inactivation, the disease 

transforms into a blunt PDAC (Hruban and Fukushima 2007). Oncogenic Kras is 

tightly linked to inflammatory signals that contribute to tumor growth and 

immunosuppression; thus, enabling disease progression (Grivennikov, Greten et 

al. 2010, Baumgart, Chen et al. 2014, Hamada, Masamune et al. 2014). The 

disease is additionally characterized by a dense and complex desmoplastic tumor 

microenvironment composed of ECM deposition, fibrotic cells, endothelial cells, 

and immune cells (Chu, Kimmelman et al. 2007, Kleeff, Beckhove et al. 2007). 

Inflammatory signals such as cytokines and chemokines secreted by the malignant 
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cells and other components of the tumor microenvironment contribute to the 

tumorigenicity and progression of PDAC (Grivennikov, Greten et al. 2010, 

Baumgart, Chen et al. 2014, Hamada, Masamune et al. 2014). One of the major 

inflammatory signals in PDAC is CXCR2 that has strong ties to the prominent 

oncogenic Kras (Baumgart, Chen et al. 2014, Purohit, Varney et al. 2016).  

 CAFs represent a major component of PDAC tumor microenvironment 

(Chu, Kimmelman et al. 2007, Kleeff, Beckhove et al. 2007). CAFs are fibrotic cells 

of multiple origins including PSCs, resident fibroblasts, bone marrow-derived 

mesenchymal stem cells, fibrocytes and others (Öhlund, Elyada et al. 2014). In 

response to external cues, quiescent fibrotic cells get activated and when this 

activation occurs in the context of cancer, they become CAFs (Omary, Lugea et 

al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 2015). CAFs have been 

associated with supporting tumor in all the stages from initiation to spread (Omary, 

Lugea et al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 2015). Myofibroblasts, 

activated fibrotic cells with extensive ECM synthesis, have long been used as a 

synonym for CAFs in the context of cancer (Omary, Lugea et al. 2007, Apte, Wilson 

et al. 2013, Moir, Mann et al. 2015). More recent reports indicate the coexistence 

of multiple functional subsets of CAFs (Ohlund, Handly-Santana et al. 2017, Su, 

Chen et al. 2018). The typical myofibroblasts are characterized by upregulation of 

αSMA and ECM molecules such as collagen I (Omary, Lugea et al. 2007, Apte, 

Wilson et al. 2013, Moir, Mann et al. 2015). The other subset referred to as 

inflammatory or secretory CAFs develops through paracrine signaling and tend to 

have low expression of αSMA and high expression of inflammatory mediators 
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(Ohlund, Handly-Santana et al. 2017). This functional heterogeneity could explain 

the versatility of CAFs and the failure of targeting desmoplasia to resolve PDAC 

(Özdemir, Pentcheva-Hoang et al. 2014, Rhim, Oberstein et al. 2014).         

 Chemokines are small secreted molecules that are renowned for their role 

in inflammation (Ransohoff 2009, Griffith, Sokol et al. 2014, Roy, Evans et al. 2014, 

Hughes and Nibbs 2018). Based on the position of the conserved N-terminal 

cysteine residues, they are classified into four families: C, CC, CXC, and CX3C. 

Chemokine receptors are G-protein coupled receptor molecules (Ransohoff 2009, 

Griffith, Sokol et al. 2014, Roy, Evans et al. 2014, Hughes and Nibbs 2018). 

CXCR2 is the receptor for multiple chemokines that include a group of angiogenic 

chemokines referred to as ELR+ CXC chemokines that include CXCL1-3, 5-7, and 

8 that also interacts with CXCR1 (Bizzarri, Beccari et al. 2006, Strieter, Burdick et 

al. 2006). CXCR2 signaling helps in recruiting granulocytes to the site of 

inflammation and also enable angiogenesis (Bizzarri, Beccari et al. 2006, Strieter, 

Burdick et al. 2006, Bajrami, Zhu et al. 2016, Zhang, Guo et al. 2018). These 

features in the context of cancer can be considered adverse. The chemoattracting 

ability of CXCR2 signaling allows recruitment of immunosuppressive cells such as 

neutrophils and MDSCs (Highfill, Cui et al. 2014, Kumar, Donthireddy et al. 2017), 

and the angiogenic feature of CXCR2 enables easy access for tumor growth and 

spread (Waugh and Wilson 2008, Matsuo, Raimondo et al. 2009, Singh, Varney 

et al. 2009). Furthermore, CXCR2 signaling can directly contribute to tumor growth 

by promoting malignant cells proliferation (Waugh and Wilson 2008, Purohit, 

Varney et al. 2016).  Our group has demonstrated the presence of an association 
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between the occurrence of oncogenic Kras and the progressive upregulation of 

CXCR2 axis in PDAC (Purohit 2015, Purohit, Varney et al. 2016). In-vitro inhibition 

of CXCR2 was able to reduce tumor cells proliferation, migration, and anchorage 

(Purohit 2015, Purohit, Varney et al. 2016). Several attempts to assess if CXCR2 

inhibition can be utilized as a target for PDAC treatment. Inhibiting CXCR2 

disrupted tumor to stromal interaction and improved the survival in Kras+Tgfbr2KO 

PDAC mouse model (Ijichi, Chytil et al. 2011).  In KPC (LSL-KrasG12D/+; LSL-

Trp53R172H/+; Pdx1-Cre) mice, the global CXCR2 inhibition suppressed metastasis, 

but the loss of CXCR2 in epithelial cells only was not able to inhibit metastasis 

(Steele, Karim et al. 2016). Our group generated a syngeneic mouse model with a 

global CXCR2 knockout (Cxcr2-/-) transplanted with cells from Pdx1-Cre; KrasG12D 

(KC) mouse. In this model, CXCR2 deletion played tumoritoxic and tumoristatic 

roles by halting the proliferation of tumor cells and enhancing their apoptosis, 

suppressing angiogenesis, and inducing an anti-tumor immune response. 

Nonetheless, the deletion of CXCR2 also increased the induction of fibrosis and 

increased metastasis (Purohit 2015).   Taken together, we believe that CXCR2 

signaling in the CAFs inhibits the myofibroblast phenotype and induces a 

phenotype with a secretory function.  In the present study, we demonstrate that 

CXCR2 signaling interaction in CAFs causes them to assume a phenotype that is 

characterized with lower expression of αSMA and ECM proteins, and higher 

expression of pro-tumorigenic secreted factors including immunosuppressive 

cytokines and tumor-supporting chemokines. We demonstrate that this phenotype 

is mediated through activating NF-κB transcription factor activity.   
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RESULTS 
 

Kras-dependent paracrine inter-talk between CAFs and PDAC cells 
 

In the beginning, we sought to find out if there is a paracrine inter-talk 

between tumor cells and CAFs. We utilized unidirectional coculture techniques for 

this purpose. The proliferation of PDAC cells was measured following treatment 

with conditioned media collected from the CAFs ImPSC (murine) or 10-32 PC Puro 

(human). Relative to the treatment with serum-free media, ImPSC promoted the 

growth of tumor cells with activated oncogenic Kras (KC) while inhibiting cells with 

wildtype Kras (Panc02) (Figure 4.1A). Similarly, the conditioned media of human 

CAFs cell line 10-32 PC Puro enhanced the growth of CD18/HPAF-Scr that 

possesses oncogenic Kras and has a control vector while inhibited the growth of 

BxPC3 cells (with wildtype Kras) as well as CD18/HPAF-Kras kd (with oncogenic 

Kras knockdown) (Figure 4.1B).   Next, we decided to investigate if the Kras-

dependent differential response present also in CAFs treated with PDAC cells 

conditioned media. Conditioned media of PDAC cells carrying oncogenic Kras 

mutation (KC) inhibited the growth of ImPSC cells contrary to wildtype cells 

(Panc02) that enhanced CAFs growth (Figure 4.1C); and similarly, BxPC3 cells 

and CD18/HPAF-Kras kd cells conditioned media promoted the growth of 10-32 

PC Puro CAFs, when the CD18/HPAF-Scr has inhibited their growth (Figure 

4.1D). 

 To confirm this observation, we utilized immortalized human pancreatic 

duct-derived cell lines that express exogenous Kras(G12D) (HPNE-Kras) or normally 
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express wildtype Kras (HPNE). The conditioned media of 10-32 PC Puro cells 

enhanced the growth of HPNE-Kras; whereas, HPNE-Kras conditioned media 

inhibited the growth of 10-32 PC Puro cells while HPNE conditioned media 

promoted it (Figure 4.2). Together, the observations we described here indicate 

the presence of Kras-dependent response orchestrated through paracrine factors 

secreted by tumor cells and stromal cells, which could be involved in tumor 

progression.  

PDAC cells paracrine factors promote phenotype alterations in CAFs 
 

When activated, fibrotic cells assume the myofibroblast phenotype that 

exhibits increased ECM synthesis and is characterized by the expression of αSMA 

as a marker. In cancer, myofibroblast was used synonymously to CAFs for many 

years (Omary, Lugea et al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 2015). 

We decided next to investigate if the PDAC cells-derived paracrine factors have 

any effect on the expression of myofibroblasts markers. ImPSC cells were treated 

with conditioned media of KC cells that carry oncogenic Kras mutation,  then the 

expression of αSMA, Collagen I, and Collagen IV was examined.   KC conditioned 

media downregulated the mRNA expression of αSMA (Acta2) and the ECM 

proteins Collagen I (Col1A1) and Collagen IV (Col4A1) (Figure 4.3A).  Protein 

levels of αSMA determined by immunofluorescence and western blot showed that 

conditioned media of KC cells had decreased the expression of αSMA in ImPSC 

(Figure 4.3B). We gather from this that oncogenic Kras promotes the secretion of 

paracrine factors that can alter CAFs away from their typical myofibroblast 

phenotype. 
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PDAC cells paracrine factors induce secretion of pro-tumor cytokines and 
chemokines in CAFs  
 

Ohlund et al. described the presence of a CAFs phenotype with a higher 

secretory function and a lower fibrotic function that arises through paracrine 

signaling (Ohlund, Handly-Santana et al. 2017). To determine if the Kras promoted 

CAFs phenotype alterations, we assessed the expression of multiple cytokines and 

chemokines. We analyzed the mRNA levels of multiple cytokines and chemokines 

in ImPSC cells treated with conditioned media of KC cells in comparison to serum-

free media control. The analysis of mRNA levels indicated several changes in the 

expression of multiple cytokines (Figure 4.4A). Notably, IL6 expression was 

downregulated contrary to expectations (Figure 4.4B). Nonetheless, the most 

significant changes observed as upregulation of cytokines that are considered pro-

tumorigenic by promoting immunosuppressive conditions in cancer (Matsuo, 

Takeyama et al. 2012, Suzuki, Leland et al. 2015) including IL4, IL10, and IL13 

(Figure 4.4C). Additionally, CXCR2 chemokines are known to play an adverse role 

in PDAC mainly by promoting tumorigenesis, immunosuppression and 

angiogenesis (Strieter, Burdick et al. 2006, Highfill, Cui et al. 2014, Purohit, Varney 

et al. 2016). Analysis of CXCR2 chemokines revealed enhanced mRNA 

expression of CXCL2 and CXCL7 in response to the KC conditioned media 

treatment (Figure 4.5A-B). Analysis of the levels of chemokines in the supernatant 

of ImPSC cells showed that CAFs express baseline high levels of CXCL1 and 

CXCL5, moderate levels of CXCL2 and lower levels of CXCL7. Treating CAFs with 

conditioned media of KC cells did not increase CXCL1 or CXCL5 but slightly 

increased CXCL2 and significantly increased CXCL7 (Figure 4.5C). Taken 
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together, we demonstrate that the activation of oncogenic Kras in PDAC promotes 

the secretion of paracrine factors that contribute to modulating CAFs by altering 

them into a phenotype with more secretory function and lower fibrogenic features.                 

CXCR2 signaling in CAFs promotes the secretory phenotype in CAFs 
 

The paracrine factors CXCL1-3 and CXCL5-8 signal through CXCR2 

chemokine receptor (Bizzarri, Beccari et al. 2006, Strieter, Burdick et al. 2006). 

Our group has previously demonstrated the presence of a link between the 

activation of oncogenic Kras and the upregulation of CXCR2 axis in PDAC 

(Purohit, Varney et al. 2016). The stromal ablation of CXCR2 increased the fibrotic 

reaction in the syngeneic KC mouse model of PDAC suggesting a role of CXCR2 

signaling in regulating the fibrotic component in PDAC (Purohit 2015). Thus, we 

decided to investigate if CXCR2 signaling is involved in the CAFs phenotype 

alterations.  First, we confirmed that our CAF cell lines express CXCR2 using 

immunofluorescence (Figure 4.6A); then we used ELISA to measure CXCR2 

ligands concentrations in the conditioned media of PDAC cells. KC conditioned 

media expressed more CXCL1, CXCL5 and CXCL7 than Panc02 (Figure 4.6B), 

and CD18/HPAF-Scr produced more CXCL8 than both BxPC3 (Figure 4.6C). We 

treated ImPSC cells with conditioned media of KC cells in the presence or absence 

of CXCR2 pharmacological inhibitors. Blocking CXCR2 reduced the inhibitory 

effect of KC conditioned media and increased the growth stimulatory effect of 

Panc02 (Figure 4.7A).  Recombinant CXCL1 exhibited a dose-dependent 

inhibition in the growth of ImPSC cells similar to growth inhibition induced by 

treating 10-32 PC Puro cells with a recombinant CXCL8 that was reduced with 
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CXCR2 inhibitor (Figure 4.7B). Lastly, ImPSC cells treated with recombinant 

CXCL1 downregulated Acta2 (SMA) and Col1A1 (Collagen I) and upregulated IL4, 

IL13 (Figure 4.7C) and CXCL7 (Figure 4.7D).  Hereby, we provided evidence that 

signaling through CXCR2 is involved in altering CAFs towards the secretory 

phenotype. 

CXCR2 signaling in CAFs activates NF-κB  
 

NF-κB is a transcription factor that has strong ties to both inflammation and 

cancer (DiDonato, Mercurio et al. 2012). Furthermore, oncogenic Kras and CXCR2 

have been reported to contribute to tumor progression through NF-κB (Richmond 

2002, Ling, Kang et al. 2012, Walana, Wang et al. 2018). Lastly, a new report 

described that NF-κB activation gives rise to a secretory subset of CAFs in breast 

and lung cancers that express GPR77 and CD10, which could be new markers for 

the secretory CAFs (Su, Chen et al. 2018).  So, to investigate the involvement of 

the CXCR2 signaling in CAFs in NF-κB activation and CD10 expression. ImPSC 

cells treated with KC conditioned media and 10-32 PC Puro cells treated with 

CXCL8 showed increase NF-κB nuclear translocation, an indication of increased 

NF-κB activity. Blocking CXCR2 was able to reduce this NF-κB activity (Figure 

4.8A). CD10 expression in ImPSC cells was not changed in response to KC 

conditioned media; whereas, 10-32 PC puro cells had low expression of CD10 that 

was slightly increased after CXCL8 treatment (Figure 4.8B). Collectively, we 

demonstrate that CXCR2 signaling in CAFs of PDAC causes activation of NF-κB 

that causes CAFs to assume a secretory phenotype.    
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DISCUSSION 
 

PDAC, one of the most malignant tumors, is characterized by both tumor-

supporting inflammation and abundant desmoplastic reaction (Chu, Kimmelman et 

al. 2007, Kleeff, Beckhove et al. 2007, Grivennikov, Greten et al. 2010, Baumgart, 

Chen et al. 2014, Hamada, Masamune et al. 2014). Oncogenic Kras that occur 

early during PDAC progression is associated with inflammatory signals such as 

CXCR2 (Baumgart, Chen et al. 2014, Purohit, Varney et al. 2016). CXCR2 

signaling in many cancer, including PDAC, has been proven adverse by 

contributing to tumor growth, immunosuppression, angiogenesis and 

chemotherapy resistance (Waugh and Wilson 2008, Matsuo, Raimondo et al. 

2009, Singh, Varney et al. 2009, Highfill, Cui et al. 2014, Chan, Hsu et al. 2016, 

Purohit, Varney et al. 2016, Kumar, Donthireddy et al. 2017, Su, Chen et al. 2018). 

CAFs are the major contributors to desmoplasia in many cancers including PDAC 

(Apte, Wilson et al. 2013, Gore and Korc 2014, Moir, Mann et al. 2015, McCarthy, 

El-Ashry et al. 2018). Desmoplasia adds to tumorigenicity by supporting therapy 

hindrance and resistance, and metastasis (Olive, Jacobetz et al. 2009, Pandol, 

Edderkaoui et al. 2009, Bynigeri, Jakkampudi et al. 2017). CAFs for long have 

been regarded as myofibroblasts characterized by expression of αSMA and ECM 

proteins (Apte, Wilson et al. 2013, Moir, Mann et al. 2015). Although CAFs have 

been known to secrete several paracrine factors, including CXCR2 ligands 

(Omary, Lugea et al. 2007, Apte, Wilson et al. 2013, Chan, Hsu et al. 2016), it is 

only recently that this secretory function gained enough attention. Recent reports 

described distinct CAFs subsets with a specialized secretory function (Ohlund, 
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Handly-Santana et al. 2017, Su, Chen et al. 2018). Several studies suggested the 

presence of a relationship between CXCR2 signaling and stromal activity (Ijichi, 

Chytil et al. 2011, Steele, Karim et al. 2016). Our group has demonstrated that 

stromal ablation of CXCR2 enhances fibrosis (Purohit 2015). The secretory CAFs 

phenotype was described to develop when there is no adjacency to the tumor cells 

(Ohlund, Handly-Santana et al. 2017), which suggests the involvement of far-

reaching paracrine molecules such as CXCR2 ligands. The purpose of the present 

study was to determine the role of oncogenic Kras-CXCR2 axis in CAFs activity 

and function in PDAC.            

 Our data indicate a growth stimulatory effect of CAFs-derived paracrine 

factor on PDAC cells with oncogenic Kras but not PDAC cells with wildtype Kras. 

On the other hand, PDAC cells-derived paracrine factors stimulated CAFs growth 

when the cells had wildtype Kras and inhibited CAFs growth when the cells had 

oncogenic Kras mutation. This Kras-dependent response was shown to extend 

beyond tumor cells proliferation to alter the expression of myofibroblast CAFs-

associated proteins, including αSMA and ECM synthesis and to upregulates pro-

tumor cytokines and chemokines. By investigating the putative mechanisms by 

which these CAFs phenotype alterations occurred, we determined that CXCR2 

signaling in CAFs is involved. Blocking CXCR2 ameliorated the inhibitory effect of 

the oncogenic Kras tumor cells paracrine factors and further enhanced the 

stimulatory effect of wildtype cells. Furthermore, recombinant CXCR2 ligands 

treatment altered the expressions profile in CAFs to reduce myofibroblasts 

markers and to upregulate pro-tumor paracrine factors.  Lastly, we determined that 
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the CXCR2-induced secretory function in CAFs is mediated through NF-κB 

activation. We also confirmed that the secretory phenotype express CD10, a 

marker that has been recently linked to secretory CAFs in breast and lung cancers 

(Su, Chen et al. 2018).  

It is known that CAFs population is heterogeneous by cell origins (Öhlund, 

Elyada et al. 2014); however, functional heterogeneity is rather a recent concept. 

Myofibroblast is the typical CAFs phenotype; but, there is more attention now to 

subsets of CAFs with a specialized secretory function (Ohlund, Handly-Santana et 

al. 2017, Su, Chen et al. 2018). Albeit, the notion of secretory roles of CAFs is not 

new. It is known that CAFs express many receptors and secrete many paracrine 

factors; however, this was mainly attributed to CAFs versatility rather than 

specialized functional subsets (Omary, Lugea et al. 2007, Apte, Wilson et al. 2013, 

Moir, Mann et al. 2015). Looking into literature, we can find some reports that have 

described what it seems to be an abundant secretory function in CAFs. 

Chemotherapy treatment of CAFs of breast cancer and PDAC induced 

senescence and activated inflammatory transcription factors including NF-κB and 

STAT1, which resulted in upregulation of CXCR2 ligands that induced 

chemotherapy resistance by promoting cancer stemness (Chan, Hsu et al. 2016). 

Senescent CAFs have been reported to assume secretory functions. For example, 

senescent CAFs were reported to produce inflammatory mediators such as CXCL8 

and IL-6, which contributed to tumor growth, tumor cells migration, and epithelial 

differentiation alteration (Parrinello 2005, Lawrenson, Grun et al. 2010, Wang, 

Notta et al. 2017). Both oncogenic Kras and CXCR2 have links to senescence, 
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which is mediated through activation of inflammatory transcription factors such as 

NF-κB (Acosta, O'Loghlen et al. 2008, Acosta, O'Loghlen et al. 2008, Vizioli, 

Santos et al. 2014, Lesina, Wormann et al. 2016).    

 Markers such αSMA, FAP, and PDGFR have been utilized to identify CAFs 

(Omary, Lugea et al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 2015). 

Nonetheless, targeting CAFs using αSMA depletion rendered an adverse outcome 

by accelerating tumor progression as a result of enhanced therapy resistance and 

immunosuppression (Özdemir, Pentcheva-Hoang et al. 2014, Rhim, Oberstein et 

al. 2014). Based on our current knowledge, we believe that the adverse outcome 

was a consequence of increasing the abundance of the secretory CAFs. Taken 

together, it is clear that the markers that have been heavily utilized are likely not 

uniformly expressed on CAFs but it is not clear if this because of CAFs origin or 

functional heterogeneity. We are warranted to dive into the CAFs biology and attain 

better markers that allow targeting CAFs safely. There is not much we know about 

putative markers for the secretory CAFs. In PDAC, the secretory CAFs were 

described to express FAP and to have a low expression of αSMA (Ohlund, Handly-

Santana et al. 2017). The secretory CAFs described in breast, and lung cancer 

had a similar expression of αSMA, FAP, and PDGFR to the other CAFs; however, 

they were identified using other surface markers such as GPR77 and CD10 (Su, 

Chen et al. 2018). CD10, a small metalloprotease, is known as a prognostic marker 

in hematological malignancies (Maguer-Satta, Besancon et al. 2011). In solid 

tumors, CD10 is considered a prognostic marker in certain tumors including 

melanoma, breast, and lung cancers (Shipp, Tarr et al. 1991, Carrel, Zografos et 
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al. 1993, Chu and Arber 2000, Iwaya, Ogawa et al. 2002). Stromal cells that 

express CD10 have been identified in several cancers including colorectal cancer, 

breast cancer, gastric cancer, and PDAC (Iwaya, Ogawa et al. 2002, Ogawa, 

Iwaya et al. 2002, Huang 2005, Ikenaga, Ohuchida et al. 2010). In PDAC, CD10+ 

CAFs promoted tumor cells growth and was associated with reduced survival and 

nodal metastasis (Ikenaga, Ohuchida et al. 2010). It is not clear; however, if all the 

CD10+ CAFs carry out a secretory function or if all the secretory CAFs express 

CD10.  

 In conclusion, we report in this study that the sustained CXCR2 signaling in 

CAFs of PDAC promotes activation of NF-kB and produces a secretory phenotype 

characterized by the production of pro-tumor paracrine mediator, low fibrogenic 

potentials, and expression of CD10. These findings add to our current knowledge 

about CAFs heterogeneity. Further studies are needed to fully characterize CAFs 

and determine if the abundance of specific subsets of CAFs is associated with 

certain cancer outcomes.    
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Figure 4.1: Kras status of PDAC cells determines the growth response in 
tumor cells and CAFs    

(A) The proliferation of murine PDAC cell lines (KC and Panc02) treated with 

conditioned media of the CAFs cell line (ImPSC) relative to serum-free media 

treatment. (B) The proliferation of human PDAC cell lines treated with conditioned 

media of the CAFs cell line (10-32 PC Puro) relative to serum-free media 

treatment. (C) The proliferation of ImPSC cells treated with conditioned media of 

PDAC cell lines relative to serum-free media treatment. (D) The proliferation of the 

human CAFs cell line (10-32 PC Puro) treated with conditioned media of PDAC 

cell lines relative to serum-free media treatment. Data are presented as mean ± 

SEM. Statistical analysis was performed using Student's t-test or two-way ANOVA 

when appropriate. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. 
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Figure 4.2: Kras-dependent differential proliferation response  

(A) The proliferation of immortalized human pancreatic ductal cell lines treated with 

conditioned media of the CAFs cell line (10-32 PC Puro) relative to serum-free 

media treatment. (B) The proliferation of the human CAFs cell line (10-32 PC Puro) 

treated with conditioned media of pancreatic ductal cell lines relative to serum-free 

media treatment. Data are presented as mean ± SEM. Statistical analysis was 

performed using Student's t-test. *p ≤ 0.05, **p ≤ 0.01. 
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Figure 4.3: Paracrine factors of PDAC cells downregulates myofibroblasts 
markers  

(A) Expression, determined by qPCR, of Acta2 (αSMA), Col1A1 (Collagen I) and 

Col4A1 (Collagen IV) in ImPSC cells treated with KC conditioned media relative to 

serum-free media treatment. (B) Representative microscopic image of αSMA 

expression, determined by IF, in ImPSC cells treated with KC conditioned media 

or serum-free media. Data are presented as mean ± SEM. Statistical analysis was 

performed using Student's t-test. *p ≤ 0.05, **p ≤ 0.01. Scale bar = 50µm. 
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Figure 4.4: PDAC cells-derived factors promote the secretion of 
immunosuppressive cytokines from CAFs  

(A) Expression, determined by qPCR, of selected cytokines in ImPSC cells treated 

with KC conditioned media relative to serum-free media treatment. (B) Expression, 

determined by qPCR, of IL6 in ImPSC cells treated with KC conditioned media 

relative to serum-free media treatment. (C) Expression, determined by qPCR, of 

IL4, IL10, and IL13 in ImPSC cells treated with KC conditioned media relative to 

serum-free media treatment. Data are presented as mean ± SEM. Statistical 

analysis was performed using Student's t-test. *p ≤ 0.05, **p ≤ 0.01.  

 

  



120 
 

  



121 
 

Figure 4.5: PDAC paracrine factors enhances production of CXCR2 ligands  

(A) Expression, determined by qPCR, of CXCL1, CXCL2, and CXCL5 in ImPSC 

cells treated with KC conditioned media relative to serum-free media treatment. 

(B) Expression of CXCL7, determined by qPCR, and concentration of CXCL7, 

determined by ELISA in ImPSC cells treated with KC conditioned media compared 

to serum-free media treatment. (C) The concentration of CXCL1, CXCL2, CXCL5, 

and CXCL7, as determined by ELISA, in the supernatant of ImPSC cells treated 

with KC conditioned media or serum-free media for 24, 48, or 72h. Data are 

presented as mean ± SEM. Statistical analysis was performed using Student's t-

test or two-way ANOVA when appropriate. *p ≤ 0.05, **p ≤ 0.01.  
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Figure 4.6: Higher expression of CXCR2 ligands in PDAC cells with 
oncogenic Kras  

(A) Representative microscopic image of CXCR2 expression, determined by IF, in 

ImPSC and 10-32 PC Puro CAFs. (B) The concentration of CXCL1, CXCL2, 

CXCL5, and CXCL7, as determined by ELISA, in the conditioned media of KC and 

Panc02 cells. (C) The concentration of CXCL8, as determined by ELISA, in the 

conditioned media of CD18/HPAF scr and BxPC3 cells. Data are presented as 

mean ± SEM. Statistical analysis was performed using Student's t-test. *p ≤ 0.05, 

**p ≤ 0.01. Scale bar = 50µm. 
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Figure 4.7: CXCR2 signaling in CAFs induces a secretory phenotype 

(A) The proliferation of ImPSC cells treated with conditioned media of PDAC cell 

lines ± CXCR2 inhibitors relative to serum-free media treatment. (B) The 

proliferation of the ImPSC cells treated with increasing concentrations of 

recombinant CXCL1 and the proliferation of 10-32 PC Puro cells treated with 

recombinant CXCL8 ± CXCR2 inhibitors relative to serum-free media treatment. 

Data are presented as mean ± SEM. (C) Expression, determined by qPCR, of 

Acta2, Col1A1, IL4 and IL13 in ImPSC cells treated with recombinant CXCL1 

relative to serum-free media treatment. (D) Expression of CXCL7, determined by 

qPCR, and concentration of CXCL7, determined by ELISA in ImPSC cells treated 

with recombinant CXCL1 compared to serum-free media treatment. Statistical 

analysis was performed using Student's t-test or two-way ANOVA when 

appropriate. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. 
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Figure 4.8: CXCR2 signaling induces secretory CAFs via activating NF-kB  

(A) Representative immunofluorescence image of p50 in 10-32 PC Puro cells 

treated with recombinant CXCL8 or serum-free media. (B) Representative 

immunofluorescence image of CD10 in ImPSC cells treated with KC conditioned 

media or serum-free media. Scale bar = 50µm. 
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ABSTRACT 
 

PDAC is a very ferocious and challenging malignancy with a characteristic of 

predominant desmoplasia.  CAFs, ECM deposition, and infiltrating immune and 

endothelial cells make up the complex tumor microenvironment of PDAC. CAFs 

are known for their role in ECM deposition and remodeling, which creates firm 

tumors that hinders chemotherapy and modulates metastasis. Recently, a 

specialized subset of CAFs was described to have an association with amplifying 

inflammation. We aimed to investigate if the abundance of a certain subset of 

CAFs is associated with certain cancer outcome. To examine this, we utilized 

syngeneic mouse models of PDAC. Our results demonstrate that oncogenic Kras 

associated with the abundance of the secretory CAFs and immune infiltration; 

whereas, myofibroblasts were associated with increased fibrosis. Inhibition of 

CXCR2 was beneficial in tumors abundant in myofibroblast CAFs. Together, we 

demonstrate the functional heterogeneity of CAFs in PDAC and that CAFs 

orientation impacts the tumor outcome.     
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INTRODUCTION 
 

 PDAC is one of the most virulent solid tumors in human due to its frequent 

spread, late diagnosis, and therapy resistance (Siegel, Miller et al. 2018). 

Accumulation of genetic mutations, including early events such as oncogenic Kras 

activation and late events including the inactivation of tumor suppressors such as 

p53 and Smad4, contribute to tumor initiation and progression (Hansel, Kern et al. 

2003, Hruban and Fukushima 2007, Hruban, Maitra et al. 2007, Hruban and Adsay 

2009). Nonetheless, more tumor progression cues also produced as a result of 

cross-talk between tumor cells and other host cells in the tumor microenvironment 

that include CAFs, immune cells and endothelial cells (Chu, Kimmelman et al. 

2007, Kleeff, Beckhove et al. 2007). CAFs population consists of fibrotic cells of 

different origins including PSCs, tissue-resident fibroblasts, bone marrow-derived 

mesenchymal cells, and fibrocytes (Öhlund, Elyada et al. 2014). As CAFs, these 

cells contribute to tumor progression and spread by modulating ECM synthesis 

and remodeling as well as the secretion of several paracrine factors (Omary, 

Lugea et al. 2007, Apte, Wilson et al. 2013, Moir, Mann et al. 2015). Recently, 

more attention has been directed towards CAFs functional heterogeneity. 

Myofibroblast CAFs are the typical phenotype that is known to produce ECM 

molecules contributing to tumor stiffness, hypoxia and impairing chemotherapy 

delivery (Olive, Jacobetz et al. 2009, Apte, Wilson et al. 2013, Moir, Mann et al. 

2015). The recently reported secretory CAF phenotype is characterized by a low 

expression of αSMA and increased secretion of inflammatory and pro-tumor 

mediators (Ohlund, Handly-Santana et al. 2017, Su, Chen et al. 2018). The CAFs 
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secreted factors enhance tumor growth, immunosuppression, and chemotherapy 

resistance by the induction of stemness (Chan, Hsu et al. 2016, Su, Chen et al. 

2018).  

 In the previous chapter, we described how oncogenic Kras and CXCR2 

signaling contribute to the secretory CAFs orientation. In this section, we aimed to 

assess the impact of PDAC mutations and CXCR2 inhibition on CAFs orientation 

and the overall tumor outcome. To achieve this, we utilized syngeneic PDAC 

mouse models orthotopically transplanted with KC cells (oncogenic Kras) (Purohit 

2015) or Panc02 (contains a single nucleotide polymorphism in Kras gene from 

TAT to TAC at codon 32 and Smad4 inactivation mutation) (Wang, Zhang et al. 

2012). To assess the effect of CXCR2 inhibition, the syngeneic models were 

performed in mice with Cxcr2-/- or CXCR2-wildtype genotypes.            
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RESULTS 
 

Genetic mutations in PDAC determine CAFs orientation and abundance  
 

We have determined thus far that oncogenic Kras upregulates CXCR2 axis, 

which in turn controls CAFs orientation and activity. To investigate if the PDAC 

mutations can exhibit differential CAFs distribution and abundance in-vivo, we 

utilized syngeneic mouse models transplanted with KC cells that carry oncogenic 

Kras (Torres, Rachagani et al. 2013) or Panc02 that carry wildtype Kras (Wang, 

Zhang et al. 2012). Histological assessment of KC tumor exhibited well-

differentiated tumors with abundant duct formation, low to moderate infiltration of 

CAFs, and a high inflammatory infiltration, in particular, polymorph nuclear cells 

that are likely neutrophils or MDSCs (Figure 5.1A). Panc02 tumors were 

undifferentiated with no to little duct formation, and a high infiltration of CAFs 

(Figure 5.1B). To assess CAFs orientation, we used immunohistochemistry 

technique to stain for αSMA and CD10. In KC tumor, few αSMA+ cells were found 

often between ducts and at the tumor margins; interestingly, CD10 staining was 

localized to the αSMA areas but also stained much more area where αSMA was 

negative (Figure 5.1C). This indicates that αSMA+ CAFs are also likely CD10+, 

which may represent the myofibroblast population; whereas, CD10+ CAFs that are 

negative for αSMA staining represent secretory CAFs. Lastly, CAFs distribution in 

Panc02 tumors indicated that both αSMA and CD10 staining were localized to the 

same areas suggesting that CAFs in Panc02 tumors are likely assumed the 

myofibroblast phenotype (Figure 5.1D). Together, we show that Kras status of 

PDAC can affect CAFs phenotypes orientation and abundance.  
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CXCR2 inhibition renders different impact based on PDAC mutations  
 

Our interest in investigating CAFs of PDAC was as a result to the 

observation that inhibiting CXCR2 in the syngeneic KC mouse model rendered 

increased fibrosis revealing a potential role of CXCR2 in regulating CAFs (Purohit 

2015). In this section, we aimed to investigate the effect of the stromal CXCR2 

deletion in the context of PDAC mutations. We utilized the syngeneic PDAC model 

of KC and Panc02 that were implanted in Cxcr2-/- or wildtype. From our previous 

study (Purohit 2015), we concluded that CXCR2 deletion caused tumoristatic and 

tumoritoxic effects by halting proliferation and increasing apoptosis of tumor cells, 

lowering MDSCs infiltration, and decreasing angiogenesis. Our focus here was to 

assess the impact of CXCR2 deletion on CAFs and if it is linked to other changes 

in the context of oncogenic Kras. In KC tumors, deletion of CXCR2 did not exhibit 

alteration to the differentiation stage of the tumor cells; however, the major 

observation was the increase of fibrotic reaction (Figure 5.2A). The increased 

fibrotic reaction in the KC model was associated with increased αSMA+ cells that 

were also localized to the same area as CD10+ CAFs suggesting a diminished 

secretory CAFs repertoire (Figure 5.2B). CXCR2 knockout in Panc02 implanted 

mice seemed to have a more prominent anti-tumor effect. In addition to increasing 

the tumor cells apoptosis, the decreased vascularization was more noticeable in 

these tumors. Moreover, CXCR2 stromal deletion appears to ameliorate the 

aggressiveness of the tumor cells in Panc02 tumors, which was presented as 

increased ducts formation indicating a transformation from undifferentiated to 

poorly-differentiated tumor (Figure 5.2C). Finally, similar to CXCR2-wildtype 
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tumors, both αSMA and CD10 staining localized to the same areas of the sections, 

and there was no noticeable change to fibrotic reaction or the abundance of CAFs 

(Figure 5.2C). Collectively, we demonstrate a mutation-dependent histological 

difference in PDAC and show that CXCR2 plays a role in both tumors and stromal 

compartments.                  
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DISCUSSION 
 

 Both the tumor-supporting inflammation and the dense desmoplasia are 

typical characteristics of PDAC (Chu, Kimmelman et al. 2007, Kleeff, Beckhove et 

al. 2007, Grivennikov, Greten et al. 2010, Baumgart, Chen et al. 2014, Hamada, 

Masamune et al. 2014). CAFs are now considered a player in both hallmarks by 

assuming distinct functional phenotypes. Myofibroblasts produce ECM causing 

tumor stiffness and hypoxia; thus, promoting therapy hindrance and contributing 

to metastasis (Olive, Jacobetz et al. 2009, Pandol, Edderkaoui et al. 2009, 

Bynigeri, Jakkampudi et al. 2017). Secretory CAFs secrete paracrine mediators 

and modulate inflammation, immunosuppression, and chemotherapy resistance 

(Waugh and Wilson 2008, Matsuo, Raimondo et al. 2009, Singh, Varney et al. 

2009, Highfill, Cui et al. 2014, Chan, Hsu et al. 2016, Purohit, Varney et al. 2016, 

Kumar, Donthireddy et al. 2017, Su, Chen et al. 2018). In this section, we used 

syngeneic mouse models to assess the involvement of PDAC mutations and the 

involvement of CXCR2 in tumors’ histological features. PDAC tumors with only 

oncogenic Kras mutation presented well-differentiated histological features, with 

increased polymorph nuclear cells infiltration and abundance of secretory CAFs. 

Disrupting stromal CXCR2 signaling, caused an abundance of myofibroblast 

CAFs, which was associated with the increased fibrotic reaction. On the other 

hand, the tumors with wildtype Kras and Smad4 inactivating mutation presented 

undifferentiated tumors with an abundance of CAFs that were mostly 

myofibroblasts. CXCR2 deletion in these tumors produced a more pronounced 
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anti-tumor effect by forming poorly-differentiated tumors with decreased 

angiogenesis.  

Targeting CAFs as well as targeting CXCR2 has been attempted before, 

which exhibited beneficial outcomes in some cases and adverse outcomes in 

others cases. Targeting CAFs or desmoplasia improved chemotherapy delivery in 

some instances and accelerated tumor progression in other cases (Olive, Jacobetz 

et al. 2009, Özdemir, Pentcheva-Hoang et al. 2014, Rhim, Oberstein et al. 2014). 

Inhibiting CXCR2 in the context of Kras mutation alone, increased the fibrosis and 

metastasis (Purohit 2015); whereas, CXCR2 inhibition in the context of other 

mutations, such as p53 or Tgfbr2, rendered beneficial outcomes (Ijichi, Chytil et al. 

2011, Steele, Karim et al. 2016). Our data demonstrated that the pronounced anti-

tumor effects of CXCR2 deletion were observed in tumors generated using Panc02 

cells that carry a wildtype Kras and a Smad4 mutation (Wang, Zhang et al. 2012). 

Oncogenic Kras mutation occurs early during PDAC pathogenesis; whereas, 

mutations of the tumor suppressors are often late events (Hruban and Fukushima 

2007). This observation could suggest a temporal context for the beneficial or 

adverse outcomes of CXCR2 inhibition, in which inhibiting CXCR2 in early PDAC 

could render accelerated disease and inhibiting CXCR2 in late stages could tame 

the disease.         

 In conclusion, we report in this study that CXCR2 signaling plays a role in 

regulating the CAFs of PDAC; thus, affecting the tumor outcome. Further studies 

are required to characterize CAFs subsets and identify better markers than 

currently available. Furthermore, there is a need for better understating for the 
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temporal and mutation context of CXCR2 roles in PDAC. We have witnessed that 

both targeting CAFs and targeting CXCR2 could have context-dependent 

outcomes. Both could still be good potential targets for treating PDAC, pending 

better understanding.     
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Figure 5.1: Kras-dependent CAFs distribution in-vivo  

(A) Representative image with H&E staining of tumors derived from KC implanted 

syngeneic mouse models showing the well-differentiated histology (left) and the 

abundant polymorph nuclear cells infiltration (right). (B) Representative image with 

H&E staining of tumors derived from Panc02 implanted syngeneic mouse models 

showing the undifferentiated histology (left) and the abundant CAFs infiltration 

(right). (C) Representative immunohistochemistry images of tumors derived from 

KC implanted syngeneic mouse models showing αSMA staining (left) and CD10 

staining (right). (D) Representative immunohistochemistry images of tumors 

derived from Panc02 implanted syngeneic mouse models showing αSMA staining 

(left) and CD10 staining (right). Scale bar = 100µm. 
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Figure 5.2: CXCR2 inhibition affects stromal activity in-vivo  

(A) Representative immunohistochemistry images with H&E or Masson’s 

trichrome staining of tumors derived from KC implanted syngeneic mouse models. 

(B) Representative immunohistochemistry images of tumors derived from KC 

implanted syngeneic mouse models showing αSMA or CD10 staining. (C) 

Representative immunohistochemistry images with H&E or Masson’s trichrome 

staining of tumors derived from Panc02 implanted syngeneic mouse models. (D) 

Representative immunohistochemistry images of tumors derived from KC 

implanted syngeneic mouse models showing αSMA or CD10 staining. Scale bar = 

100µm. 
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CHAPTER VI: MAJOR CONCLUSIONS AND FUTURE DIRECTIONS  
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INTRODUCTION 
 

Pancreatic cancers, in general, rank the fourth in leading causes of cancer 

deaths in the United States (Siegel, Miller et al. 2018). PDAC is the most common 

subtype of pancreatic cancers, and one of the most virulent human cancers. The 

lack of early screening tools and the asymptomatic nature of the disease cause 

the late detection that is often at the metastatic stage. A small proportion of PDAC 

patients are diagnosed with a localized tumor. At such stage, surgical resection 

may provide a cure for the disease. Patient diagnosed with advanced stages miss 

the chance for effective therapeutic options. The virulence of PDAC comes from 

its frequent dissemination, resistance to conventional therapy, and the high 

recurrence rates even for those patients who underwent surgical resection 

(Hidalgo 2010). There is an urgent need to develop screening and early detection 

options as well as to develop effective therapies for advanced PDAC. 

Understanding the complex tumor-stromal and stromal-stromal interactions, 

underlined with understanding the driving genetic alterations can aid in the quest 

for developing both detection tool and therapeutic potentials. Our effort in this study 

aimed to investigate the relationship between oncogenic Kras mutation, CXCR2 

signaling, and CAFs. We also sought to examine the role of CAFs in PDAC in light 

of CXCR2 signaling CAFs heterogeneity.  

 The adverse role of CAFs in PDAC as enablers of therapy resistance and 

metastasis is established (Olive, Jacobetz et al. 2009, Xing, Saidou et al. 2010, 

Apte, Wilson et al. 2013, Moir, Mann et al. 2015, Su, Chen et al. 2018). CAFs 

functional heterogeneity has gained momentum recently. Myofibroblast CAFs, the 



144 
 

typical phenotype, develop in response to factors including TGF-β, PDGF and 

SHH, and contribute to desmoplasia by promoting ECM deposition (Shek, Fmj et 

al. 2002, Omary, Lugea et al. 2007, Bailey, Swanson et al. 2008). The recently 

described secretory CAFs are thought to develop in the context of inflammation 

through paracrine stimulation (Ohlund, Handly-Santana et al. 2017, Su, Chen et 

al. 2018). CAFs-secreted paracrine factors promote tumor virulence (Polnaszek, 

Kwabi-Addo et al. 2003, Chan, Hsu et al. 2016). This dissertation summarizes the 

putative role of oncogenic Kras-driven inflammation, in particular, CXCR2 

signaling, in CAFs orientation and function, and explains how CXCR2 ligands and 

other paracrine factors such as FGF-2 shape up the tumor cells behavior and 

affects the overall tumor outcome. The first section of this chapter is a summary of 

the major findings and conclusions of this dissertation. The next section presents 

the future directions for this project by discussing the uninvestigated questions and 

suggestions of experiments to answer them.  
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MAJOR CONCLUSIONS 
 

The role of FGF-2 and CXCL8 in tumor-CAFs interaction 
 

I. Both CAFs and PDAC cells express FGF-2 and CXCL8. 

II. Direct co-culture showed that CAFs increased the growth of the 

aggressive PDAC cells but inhibited the non-aggressive cells. 

III. FGF-2 secreted by CAFs induced the growth stimulatory effect and the 

secretion of CXCL8 in the aggressive PDAC cells.  

IV. CXCL8 produced by PDAC cells modulated CAFs growth and induced 

secretion of FGF-2 to create a feedforward loop.  

V. Gene expression of PDAC-CAFs co-culture indicated that CAFs produce 

the bulk of the pro-tumor cytokines and chemokines. 

VI. The co-culture of CAFs with PDAC cells increased the expression of 

FGF-2 and CXCL8.  

VII. In addition to the pro-tumor cytokines and chemokines, CAFs co-culture 

with the aggressive PDAC cells indicated that CAFs promote tumor 

progression by upregulating genes such as ELMO1 that promotes tumor 

cells motility and invasion.  

The role of oncogenic Kras in regulating CAFs 
 

I. CAFs paracrine factors promote the growth of PDAC cells with oncogenic 

Kras. 

II. Paracrine factors secreted from PDAC cells with oncogenic Kras inhibits 

the growth of CAFs. 
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III. Oncogenic Kras-driven PDAC secreted factors alter myofibroblast 

markers. 

IV. PDAC factors, in the context of oncogenic Kras, promote secretory 

function in CAFs portrayed as the secretion of CXCR2 ligands and pro-

tumor cytokines.  

The role of CXCR2 signaling in regulating CAFs function 
 

I. PDAC cells with oncogenic Kras produce more CXCR2 ligands. 

II. CXCR2 signaling induces an inhibitory effect on CAFs proliferation. 

III. CXCR2 signaling in CAFs promotes phenotypic changes to CAFs by 

downregulating myofibroblast markers. 

IV. In response to CXCR2 signaling, CAFs assume a secretory function by 

secreting CXCR2 ligands and pro-tumor immunosuppressive cytokines. 

V. The CXCR2-induced secretory CAF phenotype is mediated through NF-

κB activation. 

VI. The secretory CAFs express CD10. 

CAFs phenotypes distribution in PDAC 
 

I. CD10 is expressed on myofibroblast in addition to αSMA; whereas; 

secretory CAFs only express CD10. 

II. PDAC tissues displayed expression of both myofibroblasts and 

secretory CAFs. 

III. Wildtype Kras tumors mostly presented myofibroblast phenotype (CD10 

and αSMA present at the same location most of the time). 
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IV. In oncogenic Kras tumors, there is more secretory CAFs (more CD10 

staining than αSMA staining). 

V. CXCR2 inhibition in oncogenic Kras produced phenotype change to 

mostly myofibroblast and increased fibrosis. 

VI. CXCR2 inhibition in wildtype Kras PDAC mouse models yielded less 

aggressive tumors.  

The big picture 

Based on our observations as well as findings from the literature, we compiled the 

following conclusions: 

I. CAFs are recruited from different origins and express different markers. 

II. CAFs display functional heterogeneity as myofibroblast or secretory 

phenotypes. 

III. Myofibroblasts develop in response to fibrogenic factors such as TGF-

β, PDGF and SHH.  

IV. Myofibroblast CAFs produced ECM and promote tumor stiffness, 

hypoxia, chemotherapy hindrance and EMT, factors that enable 

invasion. 

V. Secretory CAFs develop in the context of inflammation, in response to 

mediators such as CXCR2 ligands and DAMPs. 

VI. Producing pro-tumor mediators such as CXCR2 ligands and IL-6, 

secretory CAFs enable tumor growth, immunosuppression, vascularity, 

and stemness-induced therapy resistance (Figure 6.1).   
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VII. Oncogenic Kras that occur early in PDAC development is highly linked 

to inflammation; thus, expected to display an abundance of secretory 

CAFs in early stages. 

VIII. Mutations in tumor suppressors such as p53 and Smad4 are often late 

events and are linked to the increased desmoplastic reaction. 

IX. The increased desmoplasia and the inactivation of the tumor 

suppressors could be the tipping point for invasive PDAC. 
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FUTURE DIRECTIONS 
 

With what we currently know, based both on the current study and the 

literature, about the CXCR2-dependent role of CAFs in PDAC, there still many 

unanswered questions. In this section, we will discuss the major unanswered 

question and their potential future direction. 

CAFs origin and CAFs functional role 
 

CAFs compartment develops from fibrotic cells of different origins, including 

PSCs, tissue-resident fibroblasts, bone marrow-derived mesenchymal stem cells 

and fibrocytes (Öhlund, Elyada et al. 2014). Multiple markers, including αSMA, 

FAP, and PDGFR, have been heavily utilized to distinguish CAFs from other cells; 

however, these markers are not uniformly expressed on CAFs (Öhlund, Elyada et 

al. 2014). It is not clear if the lack of uniform expression is due to origin disparities, 

functional heterogeneity, differentiation stage, or a combination of multiple factors. 

We know that secretory CAFs in PDAC have low expression of αSMA (Ohlund, 

Handly-Santana et al. 2017); however, that is not the case in other cancer. The 

αSMA expression in the secretory CAFs of breast and lung cancers was not 

different; whereas, markers such as CD10 and GPR77 were used (Su, Chen et al. 

2018). We showed that secretory CAFs express CD10, but so are myofibroblasts. 

CAFs compartment in PDAC is maybe different in term of the origins of cells 

compared to other cancer types. Stellate cells were reported in multiple organs, 

but, are mostly described in the context of the liver and the pancreas (Omary, 

Lugea et al. 2007, Apte, Wilson et al. 2013, Öhlund, Elyada et al. 2014, Moir, Mann 
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et al. 2015). Recently, a subset of CAFs in breast cancer was described as bone 

marrow-derived mesenchymal cells reported to have low expression of PDGFR 

and to be functionally important for tumor growth and angiogenesis (Raz, Cohen 

et al. 2018). This suggests that CAFs origin may be involved in functional 

heterogeneity.  In addition to the involvement of CAFs origin or lack thereof, it is 

not clear if the distinct functional subsets of CAFs are the yield of disparities in 

differentiation stage, or it is just a dynamic process in response to milieu changes, 

and whether they are able to switch into one another remains unknown. It is not 

clear also if other functional subsets present. There is a need for a better 

characterization of CAFs marker based on their origin and differentiation stages 

and cross-referenced to their functional roles. Single-cell RNA-seq and other gene 

expression and the functional assays can be utilized to achieve this goal.      

Temporal context of CAFs functional heterogeneity 
 

There is a great similarity between cancer and wound healing process. 

Cancers are often referred to as “wounds that do not heal” (Dvorak 1986). As 

discussed before, wound healing occur as a coordinated process of inflammatory 

response followed by tissue repair and remodeling. Fibrogenic activity in the 

wound healing process is a late event that happens after the secession of the 

inflammatory response (Dvorak 1986, Midwood, Williams et al. 2004). Similarly, 

PDAC is associated with early pro-tumor inflammation that often happen in the 

context of oncogenic Kras and a late pronounced desmoplasia prior to the 

emergence of invasive PDAC that occur after inactivation of tumor suppressors 

including p53 and Smad4 (Hruban, Offerhaus et al. 1998, Hruban, Wilentz et al. 
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2000, Purohit, Varney et al. 2016). This temporal context of genetic alterations 

alongside the transformation from inflammation to desmoplasia suggests a timely 

CAFs phenotype conversion. We know that targeting CAFs have been attempted 

before with opposing outcomes (Olive, Jacobetz et al. 2009, Özdemir, Pentcheva-

Hoang et al. 2014). It is possible that targeting the right subset of CAFs in the right 

time could yield a beneficial result. Materials required to achieve this purpose 

include PDAC progression models with inducible mutations.            

CXCR2 in the context of PDAC mutations and progression 
 

Similar to targeting desmoplasia, inhibiting CXCR2 produced opposing 

outcomes (Ijichi, Chytil et al. 2011, Purohit 2015, Steele, Karim et al. 2016), which 

may involve mutation and/or progression context. With only oncogenic Kras 

mutation, CXCR2 deletion was adverse; whereas, the beneficial outcome was 

observed when CXCR2 was inhibited in the context of tumor suppressors’ 

mutations (Ijichi, Chytil et al. 2011, Purohit 2015, Steele, Karim et al. 2016). Thus, 

CXCR2 could have opposing roles and targeting CXCR2 in the right context can 

produce advantageous effects. We can utilize PDAC progression models.        
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Figure 6.1: CAFs distribution affects the tumor outcome 

Tumors abundant in myofibroblasts are characterized by increased ECM 

deposition that contributes to hypoxia and tumor stiffness, increased EMT, and a 

tendency for metastasis. The abundance of secretory CAFs contributes to tumor 

growth as a result of vascularization and proliferation cues, promotes 

immunosuppression by recruiting MDSCs, and enhances chemotherapy 

resistance by increasing stemness. 
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