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RED PANDA: A NOVEL METHOD FOR DETECTING VARIATION IN 

SINGLE-CELL RNA SEQUENCING 

Adam Cornish, Ph.D. 
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Supervisor: Chittibabu Guda, Ph.D. 

Single-cell sequencing enables the rapid acquisition of genomic and transcriptomic data 

from individual cells to better understand genetic diseases, such as cancer or 

autoimmune disorders, which are often affected by changes in rare cells. Currently, no 

existing software is aimed at identifying single nucleotide variations or micro (1-50bp) 

insertions and deletions in single-cell RNA sequencing (scRNA-seq) data. However, 

generating high quality data is vital to the study of the aforementioned diseases, among 

others. Our goal is to create such a tool and use in-house sequencing to validate its 

effectiveness. Our software, Red Panda, employs the unique information found in 

scRNA-seq data to more accurately identify variants in ways not possible with software 

designed for bulk sequencing. We intentionally isolate variants based on three different 

classes: homozygous-looking, heterozygous, and bimodally-distributed heterozygous, 

the last of which can only be identified in scRNA-seq. To properly validate the results 

from this method, variants were called on: scRNA-seq and exome sequencing jointly 

performed on human articular chondrocytes, scRNA-seq from mouse embryonic 

fibroblasts (MEFs), and simulated data stemming from the MEF alignments. The 

chondrocyte exome sequencing was used to validate the chondrocyte scRNA-seq results. 

For Red Panda, on average, 913 variants were shared with the exome and had a Positive 
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Predictive Value (PPV) of 45.0%. Other tools—FreeBayes, GATK HaplotypeCaller, 

GATK UnifiedGenotyper, and Platypus—ranged from 65-705 variants and 5.8%-31.7% 

PPV. Sanger sequencing was performed on a subset of the variants identified in the 

MEFs, and simulated data was generated to assess the sensitivity of each tools. From the 

latter, Red Panda had the highest sensitivity at 72.44%. The other tools ranged from 

18.22% to 39.09%. We show that our method provides a novel and improved mechanism 

to identify variants in scRNA-seq as compared to currently-existing software. 
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INTRODUCTION 

 

Single-cell sequencing 

 Single-cell sequencing (SCS) is a relatively new technique that saw its first use in 

20111. Since its introduction, it has been used to investigate the heterogeneity of different 

cancers2–4, determine copy number variation in enhanced detail5,6, and better characterize 

circulating tumor cells using differential expression analysis7–10. Multiple recent studies 

using SCS have also shown that tumors are genetically diverse and produce subclones 

that contribute to the pathogenicity of the disease by conferring chemotherapy resistance 

and metastatic capabilities to the tumor11–13. Application of this new technology is not 

limited to cancer research; it has proven very useful in areas such as characterizing 

somatic mutations in neurons14, identifying rare intestinal cell types15, and 

discriminating cell types in healthy tissues15–17. 

Regarding the exact methodology, SCS itself is composed of three steps: 1.) cell 

capture, 2.) RNA or DNA library preparation, and 3.) sequencing of those libraries. The 

different technologies used at each step can greatly influence the type and quality of 

data generated. Our study captured cells with the C1 Fluidigm System, which uses a 

microfluidic circuit design (Integrated Fluidics Circuit, or IFC) to accurately capture 

single cells into 96 or 800 different reaction chambers18. These cells were then lysed and 

had their mRNA isolated, converted into cDNA, amplified, and prepared for sequencing 

using the Smart-seq2 protocol19. This library preparation method is unique in that it 

amplifies the entire transcript, as opposed to just the 3’ end. Following this, the cDNA is 

https://paperpile.com/c/mxuu76/Lg7UX
https://paperpile.com/c/mxuu76/Pq2qf+E68sa+My04c
https://paperpile.com/c/mxuu76/2fgZ+va4U
https://paperpile.com/c/mxuu76/RI9b7+7oA60+AgXl7+z77oU
https://paperpile.com/c/mxuu76/OIMDC+6tWoY+CMG98
https://paperpile.com/c/mxuu76/GgnxZ
https://paperpile.com/c/mxuu76/hztOy
https://paperpile.com/c/mxuu76/hztOy+jYGtY+UsTCo
https://paperpile.com/c/mxuu76/Iyfj0
https://paperpile.com/c/mxuu76/BNBbJ
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sequenced using standard Illumina protocol on the NextSeq500 or a similar instrument 

to generate short reads that can be used in downstream analyses. 

 

Variant detection in SCS 

Single Nucleotide Variants (SNVs) and micro (1-50bp) insertions and deletions 

(indels) can have a large impact on human disease20–22 and are typically identified using 

exome sequencing or whole genome sequencing (WGS)23. In these datasets where of 

millions of cells are sequenced—otherwise referred to as bulk sequencing—, reads are 

aligned to a reference genome, and variations are identified by one of a number of 

different tools, such as FreeBayes24, GATK-HaplotypeCaller25, GATK-

UnifiedGenotyper26, or Platypus27. 

The ability to accurately assess the presence of SNVs and indels in an individual 

without having to perform both exome sequencing and RNA sequencing would be a 

great boon to researchers. Further, as some studies rely on obtaining data from rare cell 

types, it is important that it be possible to identify mutations and characterize gene 

expression in the same cell. While it is possible to sequence both DNA and RNA from 

the same cell as described by Macaulay et al.28, this technique is one that the typical lab 

or core facility will not be able to perform due to the custom procedures and chemistry 

involved. Further, the method developed by Macaulay et al. makes it impossible to 

accurately identify variants28–30. Instead investigators are limited to using standard 

reagent kits, such as the extant SMARTer Ultra Low RNA Kit by Clontech for Illumina 

Sequencing, to obtain material of high enough quality to identify variants. 

https://paperpile.com/c/mxuu76/nxnZk+c0TMI+YoOFk
https://paperpile.com/c/mxuu76/QclG
https://paperpile.com/c/mxuu76/1yHTL
https://paperpile.com/c/mxuu76/Q2av
https://paperpile.com/c/mxuu76/QYH8g
https://paperpile.com/c/mxuu76/hLvND
https://paperpile.com/c/mxuu76/mVeb9
https://paperpile.com/c/mxuu76/mVeb9+vkse0+TM6Nn
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In addition to the aforementioned types of studies performed in SCS (copy 

number variation detection, differential expression analysis, rare cell identification, etc.), 

effort has been made to apply standard bulk sequencing bioinformatic methods to 

identify variants in SCS datasets14,31, and while this is feasible, it does not take advantage 

of the unique nature of the data produced by the SCS platform. Further, it has been 

necessary to rely on tools that were designed for Next Generation Sequencing (NGS) 

data derived from genomic DNA instead of data generated from mRNA.  

This study introduces a novel method, Red Panda, that is designed to identify 

variants in single-cell RNA sequencing (scRNA-seq) and tests how it compares to 

currently-available variant callers. These tools are those that have previously been 

determined by our group to be the most accurate32. They are FreeBayes24, 

HaplotypeCaller found in the Genome Analysis Toolkit (GATK) package25, Platypus27, 

and UnifiedGenotyper as found in the GATK package26. FreeBayes is a Bayesian 

statistical framework capable of modeling multiallelic loci regardless of copy number. 

GATK HaplotypeCaller (GATK-HC) uses a De Bruijn-like graph to reassemble regions 

of the genome that show evidence of significant variation. GATK UnifiedGenotyper uses 

a Bayesian genotype likelihood model to estimate the most likely genotypes and allele 

frequency. Platypus uses local realignment of reads and local reassembly to accurately 

identify variants in a genome. All four tools infer information about changes in 

sequencing data when compared to a reference genome. 

These tools were originally developed for calling variants using bulk DNA 

sequencing data, but can also identify variants in bulk mRNA-seq data (e.g., The Broad 

https://paperpile.com/c/mxuu76/GgnxZ+5Dzuw
https://paperpile.com/c/mxuu76/3yPpA
https://paperpile.com/c/mxuu76/1yHTL
https://paperpile.com/c/mxuu76/Q2av
https://paperpile.com/c/mxuu76/hLvND
https://paperpile.com/c/mxuu76/QYH8g
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Institute has put together a Best Practices guide using GATK HaplotypeCaller33); 

however, ultimately this is software that was not designed for the unique case of 

scRNA-seq data . Ideally variant calling would be performed on data derived from 

genomic DNA from single cells as these would suit such software better as well as 

provide more comprehensive results, but there exist too many problems with these data 

to make this approach viable, namely: amplifying genomic DNA by any method leads to 

allelic dropout; coverage nonuniformity reduces the probability of identifying variants 

in useful areas of the genome, such as exons; and False Positive (FP) amplification errors 

are very common34. While it is certainly possible to utilize these programs on data 

derived from single-cell genomic sequencing, the aforementioned problems ultimately 

make variant calling untenable. For this reason developing a method that can utilize the 

higher quality scRNA-seq data to perform variant calling is necessary, as it does not 

suffer the same shortcomings. Once such a strategy has been implemented, it will also 

have the benefit of allowing us to investigate allele-specific expression, which play a role 

in understanding different cell processes and how it correlates with diseases35,36. 

Currently all bioinformatic tools used for variant identification in mRNA-seq 

data treat variants within a transcript as independent events because they assume the 

sample is composed of source material from millions of cells. This approach works well 

for bulk sequencing but loses its power when used in scRNA-seq. To address this, our 

method, Red Panda, employs the unique information found in scRNA-seq data to more 

accurately identify variants in ways not possible with software designed for bulk 

sequencing. The fact that transcripts represented by scRNA-seq reads necessarily only 

https://paperpile.com/c/mxuu76/DXCez
https://paperpile.com/c/mxuu76/NlruL
https://paperpile.com/c/mxuu76/VJooT+b4atj
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originate from the chromosomes present in a single cell is important. Where applicable, 

this fact is used to decide what is and is not a heterozygous variant. For example, if 20% 

of the transcripts in a cell originate from the maternal chromosome and 80% originate 

from the paternal, then every heterozygous variant in the expressed transcript will be 

represented by reads in the scRNA-seq data at a reference allele to alternate allele ratio 

of either 1:4 or 4:1. This is because the expressed transcripts must have been derived 

from either the maternal or maternal chromosomes in one cell. These types of 

heterozygous variants are termed bimodally-distributed heterozygous. As part of the 

process of identifying this class of variant, Red Panda creates three different classes: 

homozygous-looking, bimodally-distributed heterozygous, and non-bimodally-

distributed heterozygous. This partitioning strategy, as well as treating bimodally-

distributed variants differently, grants an advantage compared to currently available 

tools.  

 

Datasets 

In order to properly test Red Panda, a number of datasets were used and/or 

generated. To be useful in a testing environment, test data needed to satisfy the 

following criteria:  

1. Bulk genomic sequencing data must pair with scRNA-seq data generated from 

Smart-seq libraries. 

2. The tissue used to generate these libraries must be isogenic. 

3. The sequencing data must be of high quality. 
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4. The data must be from a well-annotated genome, specifically either human or 

mouse. 

5. The data must be from healthy tissue to ensure as few variables as possible be 

introduced to the software testing environment.  

 The first criterion was especially important because the bulk sequencing data 

will be used to corroborate the findings from the scRNA-seq data. 

 To ensure high quality data was available for algorithm development, the 

Genomics Core Facility at UNMC performed sequencing using the Smart-seq2 protocol 

for single cells on human articular chondrocytes. In addition to RNA from 30 cells being 

sequenced, exome sequencing data were also generated from these chondrocytes using 

traditional exome sequencing. Ultimately, data from 22 cells were used after eliminating 

poor quality data from eight of the cells. Additionally, 55 normal mouse embryonic 

fibroblasts (MEFs) have been sequenced for additional validation using the Smart-seq2 

protocol. 

 

Validation 

To confirm the existence or nonexistence of variants identified by Red Panda as 

well as the four bulk sequencing variant callers (FreeBayes, GATK HaplotypeCaller, 

GATK UnifiedGenotyper, and Platypus), Sanger sequencing was used attempt to verify 

the existence of 40 randomly identified variants: 20 unique to Red Panda and 20 

identified by all five variant callers. Simulated data was also generated from the MEF 

sequencing to accurately predict the sensitivity of each variant caller. 
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Statistics 

 Sensitivity and specificity are the metrics most often used to determine how 

accurate data collection is or how accurate bioinformatic tools are. Sensitivity measures 

the proportion of True Positives present in the measured dataset from the total that 

should exist, and specificity measures the proportion of True Negatives that are 

correctly measured as such. In this dataset: 

● A True Positive (TP) is a variant that truly exists as compared to the reference 

genome and is identified as such. 

● A True Negative (TN) is a position on the genome that is correctly identified as 

not differing from the reference genome. 

● A False Positive (FP) is a position on the genome that is incorrectly identified as a 

variant when compared to the reference. 

● A False Negative (FN) is a variant that truly exists but is incorrectly identified as 

not differing from the reference genome. 

For our purposes, specificity (TN/(TN+FP)) and its derivatives such as False 

Positive Rate (1-specificity), were not calculated for the exome and single-cell RNA 

sequencing results due to how many True Negatives exist in the dataset as compared to 

the number of False Positives: often the number of True Negatives in these datasets are 

in the millions as opposed to the hundreds or thousands of False Positives. Instead, True 

Positive Rate (TPR) and Positive Predictive Value (PPV) are focused on in these 

analyses, as those numbers are more meaningful when using the results from the 
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scRNA-seq and exome sequencing. However, sensitivity is calculated using the 

simulated results from the MEF sequencing. 

 

Software distribution 

 To ensure ease of access to and adoption of this tool, it shall be published via 

GitHub as a stand-alone package where the source code will also be made available. The 

stand-alone package will be a binary that any Linux-based system can run in 

conjunction with the Genome Analysis Toolkit.  

 

Hypothesis 

Modern variant calling software, designed for bulk sequencing, cannot take 

advantage of the information found only in scRNA-seq. Our method, Red Panda, 

efficiently utilizes this unique information resulting in greater accuracy, opening up 

more ways to analyze scRNA-seq data as it was previously not possible to use SNVs and 

micro indels to investigate diseases at the cellular level. 
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CHAPTER 1: ALGORITHM DEVELOPMENT OF RED PANDA 

 

Introduction 

Proper development of the software required a dataset that satisfied a number of 

criteria for testing purposes. The sequencing data needed to: 

1. Be isogenic for both a bulk genomic sequencing sample and also a 

scRNA-seq sample. 

2. Be high quality 

3. Belong to an organism with a well-annotated genome 

4. Come from a healthy sample individual 

The data obtained from Borel et al. 2015 was the testing dataset employed to 

assess the algorithm because, upon first inspection, it fit all four criteria. There are 163 

cells from the UCF1014 cell line and 40 cells from the TN2A cell line on which variant 

calling was performed, and there is WGS from both cell lines. 

The largest challenge when identifying SNVs in any NGS data is reducing the 

number of False Positives while maximizing the number of True Positives. The novel 

method outlined here utilizes the uniqueness of the scRNA-seq data to classify variants: 

all heterozygous variants in a given isoform can be pooled together into an expected 

bimodally-distributed pattern to determine which variants in the isoform are real. This 

strategy results in sorting variants into three different classes: homozygous-looking, 

heterozygous and not bimodally-distributed, and bimodally-distributed heterozygous. 
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This partitioning strategy and treatment of bimodally-distributed variants grants an 

advantage compared to currently available tools.  

Normally, by necessity, variant callers look at each SNV or indel as independent 

events: they scan the alignment files for discrepancies between the reference genome 

and the reads aligned to the reference genome. If there is a difference between the two, 

then multiple statistical measures are calculated for that location. The particular method 

depends on the tool, e.g., GATK HaplotypeCaller performs a de novo assembly of the 

reads at the location in question and then uses Hidden Markov Models to determine the 

haplotype of the variant at that position. If the results of those statistical tests meet 

certain cutoff criteria, then that location, whether it is an SNV or an indel, is reported as 

a potential variant and the variant caller moves on to the next position. While this works 

very well for bulk sequencing datasets, improvements are possible through utilizing the 

extra information specifically obtained from SCS data. 

Red Panda utilizes the unique information found in scRNA-seq data to more 

accurately identify variants. We capitalize on the fact that, because data come from a 

single cell, transcripts represented by the scRNA-seq reads necessarily only come from 

the two chromosomes present (or more, if there is aneuploidy), and we factor that into 

our decision-making process when establishing what is and is not a variant. In a diploid 

cell, one would expect transcripts to originate from two chromosomes, and thus, any 

heterozygous variant present in a transcript as seen in the sequencing data will be 

represented in a fraction consistent with the fraction of transcripts coming from a 

specific chromosome. For instance Figure 1 shows that if 30% of the transcripts in a cell 
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originate from the maternal chromosome and 70% from the paternal chromosome, then 

reads in the scRNA-seq data will represent every heterozygous variant present in that 

transcript at either a 7:3 ratio (reference:alternate allele) or a 3:7 ratio. This type of 

variant is considered to be bimodally-distributed heterozygous. Using this concept of 

read distributions, Red Panda can accurately remove False Positives—often artefacts 

from the library preparation, sequencing, or alignment—that modern variant callers 

would not remove, as well as pick up variants supported by a low fraction of reads.  

With this concept, we were able to provide a novel and improved method for 

identifying variants in datasets generated in a rapidly-evolving technology. However, to 

accurately develop this algorithm, an appropriate dataset is needed for testing. 

 

Primary fibroblast data analysis 

To properly evaluate the development of our algorithm, an appropriate dataset is 

needed for testing. Ideally, this is NGS data generated from a single sample but by two 

different methods: bulk sequencing of genomic DNA and scRNA-seq of many 

individual cells. Such a dataset has been acquired through the European Genome 

Archive and is described below. 

In 2015, Borel et al. performed a study to test the differential allelic distribution in 

human primary fibroblasts31. Their interest lay in whether alleles were expressed 

uniformly or preferentially. To determine the pattern of allelic expression, the 

researchers sequenced 203 cells using scRNA-seq from two human primary fibroblast 

cell lines, TN2A and UCF1014. Figure 2 shows a schematic detailing the full sequencing  

https://paperpile.com/c/mxuu76/5Dzuw
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Figure 1. Finding a bimodal distribution. Any variant (green box) that fits into the expected 

distribution of reads stays. Any that do not are removed: here the variant existing at a fraction of 

0.5 (red box) would be removed. 
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Figure 2. UCF1014 and TN2A sequencing strategy. Bulk WGS is paired with scRNA-seq for the 

two primary fibroblast cell lines. The library prep for the single cells was performed using the 

original Smart-seq protocol. 
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strategy for sample preparation. The amplification kit used to generate the cDNAs of the 

transcripts was the SMARTer Ultra Low RNA Kit for Illumina Sequencing (Clontech). 

This is crucial because, while many other kits create transcripts of only the 3’ ends, this 

kit generates cDNAs of the full transcripts, and for our study the ability to look at the 

entire transcript for variants—not just the 3’ end—is necessary. This amplified cDNA 

was turned into a proper mRNA-seq library using the Nextera XT DNA Kit, following 

which the cells were multiplexed with 12 or 16 samples per lane and sequenced on a 

HiSeq 2000. 

In addition to the above, bulk WGS was performed for both the TN2A and 

UCF1014 cell lines. Genomic DNA was harvested the same day as the single cells using 

the QIAGEN kit, followed by library prep using the Illumina TruSeq DNA Kit. Two 

lanes on the HiSeq 2000 were allotted for genomic DNA of the UCF1014 cell line and 

three lanes were used for the TN2A cell line.  

Validation requires both genomic DNA and scRNA-seq data from the same 

source. Variant calling of genomic NGS data, especially whole genome (as opposed to 

whole exome), is a very well-established practice and can determine True Positives, 

False Positives, True Negatives, and False Negatives when identifying putative SNVs in 

the scRNA-seq dataset. Also, while Borel et al. did perform variant calling on this data, it 

was determined that the methods used to perform these analyses were outdated and we 

opted to generate our own list using modern methods. Specifically, the Best Practices 

outlined by the Broad Institute to identify variants in RNA-seq data37 was followed, and 

the bcbio-nextgen pipeline, which implements the Best Practices outlined by the Broad 

https://paperpile.com/c/mxuu76/Hdog
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Institute, was used to identify genomic variants38. We are uniquely qualified to assess 

the quality of the type of bioinformatic analysis used due to previous work we have 

published on assessing the quality of various variant calling pipelines32. It is important 

to perform variant identification correctly, since these are the data used during software 

development. The goal of this experiment was to compare any variants identified in the 

scRNA-seq data by Red Panda and the other four variant callers to those found in the 

dataset derived from the WGS results. Any SNVs that are present in both datasets are 

True Positives; SNVs found in the genomic dataset and not the scRNA-seq dataset 

(assuming appropriate read coverage in the scRNA-seq dataset) will be considered False 

Negatives; SNVs found in the scRNA-seq dataset and not the genomic dataset will be 

considered False Positives; and SNVs not found in either dataset will be classified as 

True Negatives.  

The bcbio-nextgen version (v.) 1.0.3 pipeline was used for variant calling to align 

reads and identify variants in the bulk genome data. Reads were aligned to the human 

genome v. 38 (hg38) using BWA MEM v. 0.7.15. Following this, three variant callers 

were used to identify SNVs and indels: FreeBayes (v. 1.1.0)24, GATK HaplotypeCaller (v. 

3.7.0)25, and Platypus (v. 0.8.1)27. Only variants identified by at least two out of the three 

algorithms were kept as this has been shown to work well39. Following this, MultiQC v. 

1.0.dev040 was run to aggregate QC statistics from bcbio-nextgen, samtools v. 1.441, 

bcftools v. 1.4, and FastQC v. 0.11.542. Table 1 displays the number of reads, coverage, 

mapping rates, number of SNVs identified, and the average number of SNVs per gene 

for the genomic DNA. Of particular note are the mean number of heterozygous variants 

https://paperpile.com/c/mxuu76/kQPh
https://paperpile.com/c/mxuu76/3yPpA
https://paperpile.com/c/mxuu76/1yHTL
https://paperpile.com/c/mxuu76/Q2av
https://paperpile.com/c/mxuu76/hLvND
https://paperpile.com/c/mxuu76/KURV
https://paperpile.com/c/mxuu76/IMY6
https://paperpile.com/c/mxuu76/sueJ
https://paperpile.com/c/mxuu76/0UbK
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Sample Reads Coverage 

Map 

Rate 

hetVariants 

found in genes 

Mean hetVariants 

found per gene 

UCF1014 8,460,80,874 27.9x 98.9% 105,779 5.32 

TN2A 14,40,893,964 47.5x 99.0% 110,412 5.56 

Table 1. Genomic sequencing statistics for UCF1014 and TN2A. Sequencing and analysis 

statistics of the WGS from the two cell lines, UCF1014 and TN2A, to show that the quality is 

appropriate as well as that there are enough hetVariants per gene to evaluate the concept unique 

to Red Panda. 
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(hetVariants) found per gene. For Red Panda to work, it was necessary that there be 

enough heterozygous variants available in a gene to establish a bimodal distribution in 

the first place. With ~5-6 hetVariants per gene—this number naturally increases or 

decreases with the length of the gene—it was determined that there were enough to 

continue with development of our software. 

Once the genomic data had been analyzed, testing began on the scRNA-seq data, 

specifically the TN2A cells, for quality. Testing the number of reads aligning outside of 

exons found that the number was unexpectedly high: 41.70%. To determine if this was a 

normal number, ten samples from each of six other datasets were investigated43–48. Three 

datasets using cancer samples and three datasets using non-cancer samples (i.e., normal) 

were chosen. Additionally, because the human fibroblast samples used version 1 of the 

Smart-seq protocol, we checked the alignment rates of reads outside exons in Smart-

seq249 to check its performance. As can be seen in Figure 3, Smart-seq2 did perform 

better. This matches expectations, as Picelli et al. proved that the newer protocol 

produces longer and more complete transcripts49. 

Due to the degree to which Smart-seq2 outperforms Smart-seq, it was 

determined that it would not be appropriate to develop software using the fibroblast 

data since it was generated using the inferior capture kit. Instead, data were generated 

in-house using the Smart-seq2 protocol. 

Articular chondrocyte sequencing 

Since it was determined that Smart-seq2 produced higher quality data, in-house 

sequencing was performed in collaboration with Dr. Andrew Dudley and his graduate  

https://paperpile.com/c/mxuu76/bPn9+LUY9+9uHR+BR3T+QOYj+1qps
https://paperpile.com/c/mxuu76/jIQC
https://paperpile.com/c/mxuu76/jIQC
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Figure 3. Average fraction of reads aligned outside exons using two versions of Smart-seq 

protocols. Here, v1 refers to version 1 of the Smart-seq protocol and v2 refers to Smart-seq2. Both 

samples using the Smart-seq2 protocol contain a lower fraction of reads outside exons than the 

other samples. 
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student Krishna Sarma. This dataset met all of the four previously-mentioned criteria for 

testing the software. The sequencing strategy employed for this sample can be seen in 

Figure 4. 

 Krishna Sarma processed the articular chondrocytes harvested from a female 

patient of Caucasian origin undergoing total knee replacement, who provided informed 

consent prior to the study. Beau S. Konigsberg (orthopedic surgeon), Dillon R. Ellis 

(Clinical research associate), and Dana M. Schwarz (Research nurse coordinator) (IRB 

#691-13-EP) at UNMC approved this tissue for use. Human articular chondrocytes were 

specifically chosen because they are the only cell type present in the cartilage of the 

human knee and because they are locked in G050. This means that during software 

development aberrations in isoform expression would be minimized due to the absence 

of different cell types and cells in different phases of their cell cycle. 

Cells were extracted from shavings of articular cartilage through sequential 

digestion in .2% Pronase (Roche) for 2 hours followed by overnight digestion in .2% 

collagenase (Gibco), all while shaking at 37°C. Cell suspensions were passed through 

70μM cell strainers (BD Falcon) and centrifuged at 500xG for 10 minutes to recover 

chondrocytes. The cells were subsequently embedded in three-dimensional alginate 

bead cultures at a final concentration of about 75 million cells per mL. The cultures were 

maintained in DMEM/F12 (1:1) media supplemented with 1% penicillin-streptomycin-

glutamine (Invitrogen, 10378-016), Amphotericin B (Gibco, 15290026), insulin-

transferrin-sodium selenite (Sigma, I2771), 50μg/mL Vitamin C, 10ng/mL FGF2, and 

10ng/mL TGF-bb3 (PeproTech®, 100-36E) and maintained at 37°C in a 5% CO2  

https://paperpile.com/c/mxuu76/Y5NX
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Figure 4. Human articular chondrocyte sequencing strategy. Exome sequencing was paired with 

scRNA-seq from the primary tissue culture of human articular chondrocytes. The library prep for 

the single cells was performed using the updated Smart-seq2 protocol. 
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atmosphere for 14 days. The day before single-cell capture, cells were lysed using 

Trizol® reagent (Life Technologies) according to the manufacturer’s protocol. These cells 

were split into two groups for DNA and RNA extraction. 

 

Exome sequencing 

Krishna Sarma performed the cell prep and DNA extraction on cells harvested 

the same day as the single-cell capture. Genomic DNA was extracted using the QIAGEN 

DNA extraction kit using the manufacturer's instructions. The UNMC Sequencing Core 

Facility performed DNA prep. Due to the low amount of DNA (80ng) captured by the 

QIAGEN kit, instead of the normal 10 PCR amplification cycles, 12 were performed 

prior to library preparation to obtain enough DNA. Therefter, the Agilent SureSelect 

Clinical Research Exome V2 kit was used to capture coding regions on the genome and 

generate a library. Notably, the Clinical Research Exome V2 kit used does not include 5’-

UTR and 3’-UTR regions which limits what can be compared between the exome and 

the scRNA-seq data, the latter of which will naturally have coverage in those regions. 

The exome library was sequenced on two lanes of the NextSeq500 using 75 base pair 

paired-end sequencing.  

The bcbio-nextgen v. 1.0.3 pipeline was used for germline variant calling to align 

reads and identify variants in the bulk exome data. For this analysis, the pipeline was 

run on human genome v. 38 (hg38). The aligner BWA MEM v. 0.7.15 was used to align 

reads to the human genome. Results of this can be found in Table 2. Following this, 

three variant callers were used to identify SNVs and indels: FreeBayes (v. 1.1.0), GATK  
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Total 

Reads 

Paired 

Reads 

PCR 

Duplicate Alignment Coverage On-target rate 

182M 111M (61%) 38.3% 98.7% 74.67x 55% 

Table 2. Human articular chondrocyte exome sequencing statistics. Sequencing and 

analysis statistics of the exome data from the human articular chondrocytes. 
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HaplotypeCaller (v. 3.7.0), and Platypus (v. 0.8.1). After variant calling, only those 

identified by at least two out of the three algorithms were kept. MultiQC v. 1.0.dev0 was 

run to aggregate QC statistics from bcbio-nextgen, samtools v. 1.4, bcftools v. 1.4, and 

FastQC v. 0.11.5.  

 The output of the exome sequencing resulted in good coverage of the coding 

exons, however the percentage of reads that were PCR duplicates was particularly high, 

likely due to the low amount of starting DNA. Normally 200ng of DNA is used during 

library preparation, but only 80ng could be extracted which required two extra cycles of 

PCR amplification. The ratio of homozygous to heterozygous variants is in line with 

what one would expect from this type of sequencing32,51,52, however the numbers were 

high since, originally, variants within 100bp of the coding exon boundary were 

included. This means that variants were identified in the intronic regions as well as the 

exonic region, but since this dataset is being used to compare against scRNA-seq, only 

variants found within exons were included. This led to numbers more in line with what 

is expected from exome sequencing as seen in the second row in Table 332. 

 

Single-cell RNA sequencing 

The UNMC Sequencing Core Facility performed capture and sequencing. For 

single-cell capture, 735 cells were loaded on to a 10-17 μm Fluidigm C1 Single-Cell Auto 

Prep IFC (with 96 wells), and the cell-loading script was performed using the 

manufacturer's instructions. Each of the 96 capture sites were inspected under a confocal 

microscope to remove sites containing dead cells as identified by the LIVE/DEAD Cell  

https://paperpile.com/c/mxuu76/3yPpA+cjJb+WozX
https://paperpile.com/c/mxuu76/3yPpA
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Bed file 

contains 100bp 

± coding exons 

Total 

Variants 

Homozygous 

Variants 

Heterozygous 

Variants Ratio SNVs indels 

Yes 85,128 33,856 45,769 0.74 79,627 5,504 

No 20,315 7,777 12,538 0.62 20,057 258 

Table 3. Human articular chondrocyte exome variant calling statistics. Variant analysis statistics 

of the exome data from the human articular chondrocytes using the ensemble approach where 

2/3 variant caller tools had to agree to call a variant. 

 



25 
 

 

Viability Assay and to remove capture sites containing more than one cell. Cells that 

were not identified as either alive or dead by the LIVE/DEAD assay were retained for 

RNA sequencing.  

Following capture, reverse transcription and cDNA amplification were 

performed in the C1 system using the Clontech SMARTer Ultra Low Input RNA Kit for 

Sequencing v3 which was done according to the manufacturer's instructions. Only 27 

Single-cell cDNA libraries were obtained at a concentration of 0.09 to 0.55 ng/μl. Three 

libraries were below a concentration of 0.08 ng/μl which may have been dying cells and 

did not have a LIVE/DEAD staining. They have ‚NC‛ attached to their sample name 

signifying ‚No Color‛. The majority of failed cells on the capture plate were either a 

single dead cell (37) or a combination of live and dead cells (17) as seen in Table 4 and 

Figure 5. Amplification was performed using the Nextera XT DNA Sample Preparation 

Kit and the Nextera XT DNA Sample Preparation Index Kit (Illumina) was used for 

indexing. After quantification using an Agilent Bioanalyzer, sequencing was performed 

on two lanes of the NextSeq500 using 150 base pair paired-end sequencing. 

 The bcbio-nextgen v. 1.0.3 pipeline was used for RNA-seq to align reads and 

perform transcript quantification for each of the cells. For this analysis, the pipeline was 

run twice, once on human genome v. 19 (hg19) and once on human genome v. 38 (hg38). 

For hg19 STAR v. 2.5.3a was used to align reads to the human genome; however, hisat2 

v. 2.0.5 was used to align reads to hg38 due to its ability to correctly handle the alt alleles 

present in that version of the human genome. Following this, MultiQC v. 1.0.dev0 was 

run to aggregate QC statistics from bcbio-nextgen, samtools v. 1.4, QualiMap v. 2.2.2a53,  

https://paperpile.com/c/mxuu76/V2To
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Live 

Cells 

Dead 

Cells 

No Color 

(NC) 

Live and 

Dead >1 Live >1 Dead Empty 

27 37 3 17 2 3 7 

Table 4. Summary of the cells captured on the C1. 



27 
 

 

 

a 

 

b 

 

c 

 

d 

 

Figure 5. Four capture sites on the C1 chip. Here we see (a) one cell stained as LIVE, (b) one 

cell stained as DEAD, (c) three cells: two stained as LIVE, and one as DEAD, (d) cell debris, one 

cell stained as LIVE and one stained as DEAD. The latter three illustrate the type of difficulties 

present when trying to capture the articular chondrocytes. 
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and FastQCv. 0.11.5. In addition to performing this type of analysis on each cell 

individually, it was also performed on two bulk samples: one in which all 30 cells were 

pooled together, and also a smaller pool of 26 cells where four (A3-C1NC, C10-C64, D12-

C72, and H7-C46) were removed for quality reasons. Full alignment statistics can be 

found in Table 5. Once alignments had been performed, the genomic origin of the reads 

in each cell was assessed. Any cells that had more than 30% of their reads originating 

from outside exons are considered poor quality and will not be considered for further 

analysis. This results in excluding the cells A3-C1NC, C10-C64, D12-C72, and H7-C46 as 

seen in Figure 6. Since this is paired-end sequencing, the insert size of each fragment 

was also calculated to see if there were any outliers. As seen in Figure 7, the cells A3-

C1NC, C10-C64, D12-C72, and G2-C38NC all have significantly smaller insert sizes than 

the rest of the cells. Interestingly, three of these are the same as those cells that have 

reads whose origin is largely intronic or intergenic. 

To further assess the quality of the cells that were sequenced, the expression of 

the transcripts needed to be assessed. As these cells are all of the same type and in the 

same stage of the cell cycle, their expression profiles should be highly correlative. To 

generate raw counts of genes expressed in each cell, htseq v. 0.6.154 was run using 

default parameters. Normalized quantification was then performed using sailfish v. 

0.10.155. Following this, custom scripts were used to generate a matrix containing the 

expression counts generated by htseq for each gene in each cell and the two pooled 

sample groups. In total there were 33 columns, one for the gene name, 30 for each cell, 

one for the high quality data of cells (pooled26), and one for the total batch 

https://paperpile.com/c/mxuu76/60Ql
https://paperpile.com/c/mxuu76/vX9M
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Sample Name Reads % Dup rRNA pct 5'-3' bias % GC 

A3-C1NC 9.80 M 24.8% 3.8% 4.24 49% 

A7-C6 11.04 M 25.3% 0.6% 1.18 47% 

A8-C5 9.69 M 16.9% 0.7% 1.12 46% 

B1-C9 9.50 M 16.9% 0.6% 1.15 47% 

B12-C60 7.24 M 22.5% 0.9% 1.32 47% 

B3-C7 14.80 M 15.4% 0.4% 1.21 46% 

B6-C57 11.47 M 24.0% 0.6% 1.20 46% 

B7-C12 11.62 M 19.4% 0.5% 1.14 45% 

B8-C11 8.10 M 24.3% 1.7% 1.28 47% 

C10-C64 11.76 M 17.2% 2.8% 2.66 46% 

C11-C65 7.80 M 19.8% 0.4% 1.20 47% 

C12-C66 0.08 M 1.5% 0.7% 1.32 53% 

C5-C62 10.55 M 19.4% 0.3% 1.22 46% 

C8-C17 16.34 M 25.7% 0.5% 1.14 46% 

D11-C71 10.37 M 22.3% 0.4% 1.14 47% 

D12-C72 6.79 M 20.6% 5.4% 3.24 47% 

E1-C25 9.89 M 23.1% 0.5% 1.13 46% 

E11-C77 9.59 M 26.7% 0.6% 1.14 46% 

E2-C26 7.84 M 19.7% 0.6% 1.13 45% 

E4-C75 7.06 M 18.3% 3.0% 1.38 48% 

E5-C74 5.86 M 17.1% 0.4% 1.13 47% 

F2-C32 9.33 M 18.9% 0.3% 1.18 46% 

F3-C33 9.96 M 16.7% 0.5% 1.10 46% 

G1-C37 10.75 M 17.7% 0.3% 1.19 45% 

G2-C38NC 7.65 M 27.2% 0.7% 7.60 50% 

G5-C86 7.65 M 17.2% 0.4% 1.20 46% 

G8-C41 13.05 M 21.0% 0.6% 1.10 46% 

H4-C93NC 8.57 M 19.2% 0.3% 1.12 47% 

H6-C91 7.12 M 17.1% 0.5% 1.14 46% 

H7-C46 5.43 M 17.8% 15.1% 1.76 52% 

Table 5. Alignment statistics for the 30 cells captured on the C1. 
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Figure 6. The genomic origin of reads found in each cell. Here one can see what percentage of 

reads originate from exons (blue), introns (black) or intergenic space (green). The cells A3-C1NC, 

C10-C64, D12-C72, and H7-C46 have significantly more reads originating outside the exonic 

region than other samples. 
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Figure 7. The average insert size for each paired read for each cell. The average insert size of the 

pair-end fragment is calculated from the alignment. The cells A3-C1NC, C10-C64, D12-C72, and 

G2-C38NC have significantly smaller average insert sizes than other samples. 
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of cells (pooled30) as seen in Figure 8. Here, pooled26 contains all cells excluding the 

four that have been previously identified as low quality due to genomic origin of the 

reads present: A3-C1NC, C10-C64, D12-C72, and H7-C46. Using this matrix as input, 

cormat56 was used in R to generate a Pearson's correlation coefficient for all pairwise 

comparisons between the cells as well the two pooled samples. Following this, ggplot257 

was used generate a heat map of these comparisons. 

 From the correlation data, one can clearly see the four poor quality cells not 

correlating to the rest of the batch as well as identify three other cells that do not 

correlate well based on their expression patterns: H4-C93NC, G2-C38NC, and E4-C75. 

All three (0.31, 0.39, and 0.35) are well below the median of 0.785 for all 30 cells. Because 

these three do not correlate well with the rest of the samples, they will not be used for 

further analysis. Unsurprisingly, all three cells that did not have a LIVE/DEAD stain, 

labeled as NC, have now been removed for quality reasons. 

 Scatter plots were generated for all five of the samples that did not correlate with 

the rest of the cells and one sample that did correlate well with the rest of the cells, and 

they can be seen in Figure 9. From these it is clear that the expression profile of the cell 

that has a high correlation coefficient, E2-C26, is much more tightly clustered along the 

diagonal than the other samples. 

The last method for removing low quality samples was to check the total read 

count. Confidence Intervals (CI) were originally used to determine if there were enough 

reads in a sample for it to be kept, and those intervals can be seen in Table 6. Instead of 

arbitrarily removing sample C12-C66 because it had too few reads (80k vs. millions for  

https://paperpile.com/c/mxuu76/BSOl
https://paperpile.com/c/mxuu76/6eW7
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Figure 8. Expression correlation between articular chondrocytes. Pearson Correlation 

Coefficient calculated for every possible comparison of cells to each other and the two batches of 

cells. The darker the color red, the higher the correlation between each cell. One can clearly see 

the four poor quality cells not correlating to the rest of the batch as well as identify three other 

cells that do not correlate well based on their expression patterns: H4-C93NC, G2-C38NC, and 

E4-C75. 
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a 
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c 

 

d 

 
e 

 

f 

 
Figure 9. Scatter plots generated based on expression. Five cells with low correlation and one 

cell with high correlation as compared to the total batch. (a) A3-C1NC, R = 0.31 (b) C10-C64, 

R=0.19 (c) D12-C72, R=0.34 (d) E4-C75, R=0.35 (e) H7.C46, R=0.13 (f) E2-C26, R=0.88 
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 n Mean 

Std 

Dev. Confidence CI 

Samples 

outside CI 

# above 

upper-bound 

Confidence intervals for reads generated per sample. 

95% CI 30 9.22 3.01 2.41 9.22 (7.26–

11.19) 

12 5 

99% CI 30 9.22 3.01 3.17 9.22 (6.64–

11.81) 

5 3 

Confidence intervals for reads mapped per sample. 

95% CI 30 7.37 3.25 3.17 7.37 (4.96–

9.78) 

11 5 

99% CI 30 7.37 3.25 2.41 7.37 (4.20–

10.54) 

8 3 

Table 6. Confidence intervals for number of reads. Confidence intervals for reads generated per 

sample and reads mapped per sample. This data was used to determine if a statistical cutoff 

based on confidence intervals could be calculated. 
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the other samples), confidence intervals were used for the total number of reads 

generated per sample and total number of reads mapped per sample. 

Unfortunately it does not make a lot of sense to use confidence intervals here 

since they imply that a sample falling outside the CI is an aberration in the population of 

data and should be discarded; however that is inappropriate logic since more 

sequencing data per sample is good thing even though those samples fall outside the CI. 

Given that, it makes sense to use 500k reads as a lower-bound cutoff since that is what 

one aims for in experiments using the Smart-Seq2 protocol58. This cutoff only removes 

sample C12-C66 as it is the only one that has fewer than 500k reads. All of the above 

filtering and QC steps have removed eight cells as seen in Table 7, leaving us with 22 

cells of high quality data. 

After establishing which samples to remove due to quality reasons, it became 

necessary to prove that there exist transcripts that support the model that spawned our 

algorithm. Such a proof of concept exists in Figure 10 where four variants were found in 

the scRNA-seq data, but only three in the exome data. In cell A7-C6, gene CWC22, there 

are two heterozygous variants and one homozygous variant. In the scRNA-seq two of 

the heterozygous variants support each other when you add their fraction of reads 

together (0.2 and 0.8 together add up to 1 as one would expect). However, there is 

another putative heterozygous variant where 53% of the reads contribute to its existence, 

but since this doesn’t fit what is expected (i.e., either 20% or 80%), it would be discarded. 

Corroborating this is the fact that no such variant exists in the exome data. Also seen is 

the homozygous variant in both the scRNA-seq data and the exome. 

https://paperpile.com/c/mxuu76/Qyp2


37 
 

 

 

Sample Name 
Reason for removal 

A3-C1NC Too many reads outside exon; Poor correlation coefficient 

C10-C64 Too many reads outside exon; Poor correlation coefficient 

C12-C66 Number of reads < 500k 

D12-C72 Too many reads outside exon; Poor correlation coefficient 

E4-C75 Poor correlation coefficient 

G2-C38NC Poor correlation coefficient 

H4-C93NC Poor correlation coefficient 

H7-C46 Too many reads outside exon; Poor correlation coefficient 

Table 7. Reasons for removing eight samples from further analysis.  
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a 

 

b 

 

Figure 10. Proof of concept data in articular chondrocytes. An example of the variations, from 

gene CWC22, that we find in the scRNA-seq data as compared to the exome. The main area of 

interest is the coverage track (the gray histograms). Red corresponds to T and blue corresponds 

to a C. When there are two colors, the top color corresponds to the alternate allele. (a) Two 

hetSNVs found in the cell A7-C6 have reads supporting them at percentages of 80% (left) and 

20% (right). The same hetSNVs are found in the exome data at 50%. There is also a homozygous 

variant (middle) seen in both. (b) One hetSNV found in the same gene at 53% in the cell A7-C6 is 

absent in the exome sequencing. This is expected as it does not fit the existing biomodal 

distribution at 80% or 20%. 
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Algorithm Development 

 

Logic 

With an established dataset in hand, algorithm development commenced. The 

basic workflow can be found in Figure 11. For each cell, it is first determined which 

transcripts are expressed. This is done using the quantification numbers provided by 

running sailfish v. 0.10.1 to filter out transcripts with a Transcripts Per Million (TPM) 

value < 1. Once a list of expressed transcripts is established, samtools mpileup v1.4 is 

used to generate a list of every possible variant contained within the provided alignment 

file for this cell.  

This list is then broken down into two lists containing variants that are likely 

heterozygous or likely homozygous. Heterozygous variants are first filtered to exclude 

those where, proportionally, few reads support their existence: 

1. Remove variants where the fraction of reads supporting them is <20% and 

read depth is <20x. 

2. Remove variants where the fraction of reads supporting them is <10% and 

read depth is <40x. 

3. Remove variants where the fraction of reads supporting them is <5%.  

Then, the remaining are checked to see if a potential bimodal distribution exists where 

the fraction assigned to each mode adds up to 1, and if such a distribution does exist, 

remove all heterozygous variants that do not fit, assuming a tolerance of 5%. For 

example, if heterozygous variants are expected to be either 30% or 70%, anything falling  
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Figure 11. A simple schematic of the logic used in Red Panda. For every cell, every expressed 

isoform is identified with sailfish. All putative variants are then identified in each isoform and 

split into a homozygous-looking VCF file and a heterozygous VCF file. The latter is then filtered 

using Red Panda if the variants are bimodally-distributed or GATK-HC if they are not. 

Homozygous-looking variants are filtered by Red Panda using quality cutoffs. These three sets of 

variants are then combined into a single VCF file. 
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in the range of 25%-35% and 65%-75% would be allowed. If a bimodal distribution does 

not exist, then all heterozygous variants that have sufficient read support are written to 

a file that will later be evaluated by GATK HaplotypeCaller. Similarly, all variants that 

look to be homozygous are added to this sample’s file that will later be assessed. This 

software is used because, as was established in our previous work, it is the best variant 

caller available32 and it makes sense to use it in scenarios where the unique information 

afforded to us by single-cell sequencing was no longer available. Specifically, in scRNA-

seq those scenarios are heterozygous variants that do not have enough supporting 

variants to determine an appropriate bimodal distribution. 

 The final list of variants that is presented to the user contains those that: are 

heterozygous and fit a bimodal distribution, are heterozygous and did not fit a bimodal 

distribution but were supported by GATK HaplotypeCaller, and those that appeared to 

be homozygous and had a read depth of at least 10x. 

 It should be noted that this method of taking advantage of the fraction of reads 

supporting a heterozygous allele is also used to identify insertions and deletions. This is 

especially important because indels are frequently disruptive while also being 

notoriously difficult to accurately identify in sequencing data due to the length of the 

typical next generation sequencing read as well as problems with short read aligners 

being consistent in their alignment of reads to the reference genome59–64. 

https://paperpile.com/c/mxuu76/3yPpA
https://paperpile.com/c/mxuu76/hyRn+LgXg+FT7k+IZkn+7Yoj+wpgl
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Results 

 All putative variants were generated for each of the 22 samples using samtools 

mpileup and the number of variants per sample ranged from 415,888 for B8-C11 to 

1,398,345 for B3-C7 as seen in Figure 12a. To get more realistic numbers in line with 

what is used in other methods, a minimum depth cutoff of 10x was used as can be seen 

in Figure 12b. The number of variants per sample now ranges from 6,239 for E5-C74 to 

15,737 for C8-C17. As expected, the largest bin is the 10x-14x bin due to the relatively 

low amount of sequencing performed for each sample. 

After the total putative variants are identified and filtered by depth, in the 

instance of a bimodal distribution, variants are removed or kept based on whether they 

fit said distribution. Figure 13 shows that when a bimodal distribution existed for a 

transcript, on average 7.96%, or ~215, of the total putative variants heterozygous variants 

in that transcript were kept. However, in the instance where there was not a bimodal 

distribution present for a transcript and there was sufficient read support, variants were 

filtered using HaplotypeCaller. On average, 34.89% of the variants checked at this stage 

were kept after being evaluated as seen in Figure 14. 

After all heterozygous variants were identified, both those identified by Red 

Panda and those filtered by GATK HaplotypeCaller, they were combined with the 

homozygous-looking variants into a final VCF file. Table 8 shows that, on average, there 

were 1,369 variants per cell, of which 69.78% were homozygous-looking and  
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a 

 

b 

 

Figure 12. Putative variants per Sample. (a) Total Putative Variants per Sample. There is a 

very large number of putative variants per sample generated by samtools mpileup. These 

numbers are before any filtering has taken place. (b) Number of Putative Variants per Sample 

at Differing Depths. This is to see what proportion of putative variants exist at different depths. 
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Figure 13. Variants fitting or failing a bimodal distribution. On average 7.96% of variants were 

kept per cell. That’s an average of 215 variants. It is unclear why B8-C11 has so few variants 

compared to other cells despite having a high read count. 
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Figure 14. Variants not fitting a bimodal distribution. These variants were found in isoforms 

that did not contain an obvious bimodal distribution and need to be filtered with GATK 

HaplotypeCaller (HC). On average 34.89% of variants were kept after being evaluated. It is 

unclear why B8-C11 has so few variants compared to other cells despite having a high read 

count. 
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 Total 

Percent of total variants that are homozygous 69.78% 

Percent of total variants that are heterozygous 30.22% 

Percent of heterozygous variants that are not bimodally-distributed 77.17% 

Percent of heterozygous variants that are bimodally-distributed 22.83% 

Total Variants 1369.5 

Table 8. Summary table of variants identified by Red Panda. Percent of variants that are 

homozygous-looking, heterozygous, heterozygous and not bimodally-distributed, heterozygous 

and bimodally-distributed are calculated. Average total number of variants in the final VCF file is 

also shown. 
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30.22% were heterozygous. Of the latter group, 22.83% on average were bimodally-

distributed variants. 

After initial algorithm development, it was determined that a more deliberate 

approach should be taken to determine whether a variant is being correctly classified as 

heterozygous or homozygous. In the first iteration, variants were considered 

heterozygous if one of the following criteria held true where AF = allele frequency, DP = 

depth of the sequencing at this location, and C = the cutoff fraction at which this variant 

is no longer considered heterozygous: 

1. DP < 20 and AF < C where C = 0.85 

2. 21 <= DP < 40 and AF < C where C = 0.90 

3. DP >= 40 and AF < C where C = 0.95 

 To ensure that this Method, termed Method A, was the most accurate, ten total 

strategies—Methods A-J—were created and compared: for each cell, all variants that 

were identified by a certain method as heterozygous in the cell were cross-referenced 

with that location in the exome. Assuming there was proper coverage in the exome to 

come to an accurate conclusion, that method was then scored for that location. 

 Methods A-J largely follow the same logic where different bins, composed of two 

cutoffs are used. The cutoffs are for depth and allele frequency at that location. The 

general idea is that, as the depth at a location increases, it is more certain that the variant 

at this spot is either homozygous or heterozygous. The methods are as follows: 

Method A: three bins 

1. DP < 20 and AF < C where C = 0.85 
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2. 21 <= DP < 40 and AF < C where C = 0.90 

3. DP >= 40 and AF < C where C = 0.95 

Method B: three bins, with the cutoff fractions reversed  

1. DP < 20 and AF < C where C = 0.95 

2. 21 <= DP < 40 and AF < C where C = 0.90 

3. DP >= 40 and AF < C where C = 0.85 

Method C: three bins with laxer cutoffs for C 

1. DP < 20 and AF < C where C = 0.90 

2. 21 <= DP < 40 and AF < C where C = 0.933 

3. DP >= 40 and AF < C where C = 0.967 

Method D: three bins with laxer cutoffs for C, and the fractions reversed  

1. DP < 20 and AF < C where C = 0.967 

2. 21 <= DP < 40 and AF < C where C = 0.933 

3. DP >= 40 and AF < C where C = 0.90 

Method E: six bins 

1. DP < 20 and AF < C where C = 0.8 

2. 21 <= DP < 40 and AF < C where C = 0.84 

3. 41 <= DP < 60 and AF < C where C = 0.88 

4. 61 <= DP < 80 and AF < C where C = 0.92 

5. 81 <= DP < 100 and AF < C where C = 0.94 

6. DP > 100 and AF < C where C = 0.96 

Method F: six bins; reversed fractions 
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1. DP < 20 and AF < C where C = 0.96 

2. 21 <= DP < 40 and AF < C where C = 0.94 

3. 41 <= DP < 60 and AF < C where C = 0.92 

4. 61 <= DP < 80 and AF < C where C = 0.88 

5. 81 <= DP < 100 and AF < C where C = 0.84 

6. DP > 100 and AF < C where C = 0.80 

Method G: six bins with laxer cutoffs 

1. DP < 20 and AF < C where C = 0.900 

2. 21 <= DP < 40 and AF < C where C = 0.915 

3. 41 <= DP < 60 and AF < C where C = 0.930 

4. 61 <= DP < 80 and AF < C where C = 0.945 

5. 81 <= DP < 100 and AF < C where C = 0.960 

6. DP > 100 and AF < C where C = 0.975 

Method H: six bins with laxer cutoffs; reversed fractions 

1. DP < 20 and AF < C where C = 0.975 

2. 21 <= DP < 40 and AF < C where C = 0.960 

3. 41 <= DP < 60 and AF < C where C = 0.945 

4. 61 <= DP < 80 and AF < C where C = 0.930 

5. 81 <= DP < 100 and AF < C where C = 0.915 

6. DP > 100 and AF < C where C = 0.900 

Method I: 10 bins 

1. DP < 10 and AF < C where C = 0.80 
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2. 11 <= DP < 20 and AF < C where C = 0.82 

3. 21 <= DP < 30 and AF < C where C = 0.84 

4. 31 <= DP < 40 and AF < C where C = 0.86 

5. 41 <= DP < 50 and AF < C where C = 0.88 

6. 51 <= DP < 60 and AF < C where C = 0.90 

7. 61 <= DP < 70 and AF < C where C = 0.92 

8. 71 <= DP < 80 and AF < C where C = 0.94 

9. 81 <= DP < 90 and AF < C where C = 0.96 

10. DP > 90 and AF < C where C = 0.98 

Method J: 10 bins 

1. DP < 10 and AF < C where C = 0.80 

2. 11 <= DP < 20 and AF < C where C = 0.82 

3. 21 <= DP < 30 and AF < C where C = 0.84 

4. 31 <= DP < 40 and AF < C where C = 0.86 

5. 41 <= DP < 50 and AF < C where C = 0.88 

6. 51 <= DP < 60 and AF < C where C = 0.90 

7. 61 <= DP < 70 and AF < C where C = 0.92 

8. 71 <= DP < 80 and AF < C where C = 0.94 

9. 81 <= DP < 90 and AF < C where C = 0.96 

10. DP > 90 and AF < C where C = 0.98 

 Figure 15 shows that Method C identifies the highest number of variants 

correctly identified as heterozygous, but it has one of the lowest total percent of variants  
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Figure 15. Different methods for determining if a variant is heterozygous. Ten different 

methods were written to determine if a variant is considered heterozygous by only looking at the 

scRNA-seq data. This graph is an average across all 22 cells of the percentage and counts of 

correctly identified heterozygous variants by each method. 
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identified correctly. Interestingly the original method used, Method A, is among the best 

performers, but Method E will be used as it slightly outperformed everything else. 
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CHAPTER 2: VALIDATION USING SIMULATED AND EXPERIMENTAL 

DATA 

 

Introduction 

To determine the effectiveness of Red Panda, we tested the method using both 

simulated and experimentally-generated datasets. Our results are compared to those 

from four currently available variant calling tools: FreeBayes, Genome Analysis Toolkit 

HaplotypeCaller, Genome Analysis Toolkit UnifiedGenotyper, and Platypus. It is 

important to compare these tools because, in addition to being popular in the 

bioinformatics community, their performance has been assessed in bulk sequencing 

settings32,65,66, but not in single-cell sequencing.  

The first dataset used is the human articular chondrocyte single-cell RNA 

sequencing described previously. To ensure consistency of comparisons, all tools are 

given identical inputs: alignment files which are uniformly generated using the scRNA-

seq data from the articular chondrocytes. All variant calling software is then run using 

their recommended settings. These variant calling data from each cell are compared to 

the results from the human articular chondrocyte exome sequencing to determine its 

veracity. To abrogate any False Negatives, the variant calls are restricted to those 

locations that have sufficient supporting alignments from the scRNA-seq datasets as 

well as the exome sequencing data. Once these regions have been identified, all variants 

are compared to the exome sequencing variant calling results to assess the Positive 

Predictive Value (PPV) of Red Panda as well as the other variant calling tools. 

https://paperpile.com/c/mxuu76/3Hqt+uFGl+3yPpA
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The second dataset is generated from MEFs. These cells are isolated using the C1 

Fluidigm 96-well chip and have libraries generated using version three of the SMARTer 

Ultra Low RNA Kit for Illumina Sequencing in the same manner as the articular 

chondrocytes. Alignment and variant calling is performed the same as with the first 

dataset; however validation is performed differently as this data will not be paired with 

exomic bulk sequencing. Sanger sequencing was used to verify the existence of 40 

randomly identified variants: 20 unique to Red Panda and 20 identified by all five 

variant callers. Simulated data was also generated from the MEF sequencing to 

accurately predict the sensitivity of each variant caller.  

 

Comparing variant callers using human articular chondrocyte data 

Alignment file preparation 

For four of the five variant calling pipelines, alignments are prepared by running 

hisat2 version 2.1.0 using human genome version hg38 as the reference. The exception to 

this is Platypus which used BWA MEM v. 07.1767 due to its requirements for alignment 

files. Hisat2 is specifically designed for aligning RNA-seq reads and will split reads 

across exons to ensure the highest-quality alignments. Unfortunately this results in very 

large fragments that Platypus cannot process. Instead, BWA MEM, another high quality 

alignment tool, was used in a manner that generated alignments that Platypus could 

process.  

Alignment is followed by running the Genome Analysis Toolkit version 3.8.0 

module, SplitNTrim + ReassignMappingQuality. This method of alignment preparation 

https://paperpile.com/c/mxuu76/oDsk
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ensures that the highest quality alignment files are generated when trying to identify 

variants, and thus, that the only deficiencies identified are due to the variant caller itself 

instead of other processing steps. Specifically, reads spanning exon-intron junctions 

have overhanging regions clipped to remove any intronic sequence if they have been 

incorrectly aligned. Lastly, for every tool, a bed file containing the regions of probes 

pulled down by the SureSelect Clinical Research Kit V2 was used to limit the location of 

where variants could be identified to ensure proper overlap of the single-cell data and 

the exome data. 

 

FreeBayes 

FreeBayes is Bayesian statistical framework capable of identifying, in a reference 

genome, small variations including SNVs, indels, multi-nucleotide variants (MNVs), and 

composite insertion and substitution events so long as these events are shorter than the 

length of the sequencing read belonging to the alignment. Version 1.1.0.46 was used to 

generate Variant Call Format (VCF) files containing all variants present in the alignment 

file for each cell. FreeBayes was run using the following arguments in addition to default 

parameters: 

● --min-alternate-fraction 0.01 

● --targets SureSelect_Clinical_Research_Exome_v2.bed 

● --no-partial-observations 
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GATK HaplotypeCaller 

GATK HaplotypeCaller uses a De Bruijn-like graph to perform local de novo 

assembly of regions of the genome that show evidence of significant variation, including 

SNVs, MNVs, and indels. This has the advantage of more accurately identifying more 

complex variation in a sample such as indels, and, importantly for our study, splice 

junctions. However these benefits come at the expense of increased computation time68. 

Version 3.8-0-ge9d806836 was used to generate VCF files containing all variants present 

in the alignment file for each cell. GATK HaplotypeCaller was run using the following 

arguments in addition to default parameters: 

● --filter_reads_with_N_cigar 

● --standard_min_confidence_threshold_for_calling 4.0 

● --dbsnp dbsnp-150.vcf.gz 

● -L SureSelect_Clinical_Research_Exome_v2.bed 

 

GATK UnifiedGenotyper 

 GATK UnifiedGenotyper uses a Bayesian genotype likelihood model to estimate 

the most likely genotypes (SNVs, MNVs, and indels) and allele frequency. GATK 

UnifiedGenotyper also benefits from not assuming ploidy for the organism being 

analyzed which is not the case for GATK HaplotypeCaller68. Version 3.8-0-ge9d806836 

was used to generate VCF files containing all variants present in the alignment file for 

https://paperpile.com/c/mxuu76/JH4K
https://paperpile.com/c/mxuu76/JH4K
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each cell. GATK UnifiedGenotyper was run using the following arguments in addition 

to default parameters: 

● --filter_reads_with_N_cigar 

● --standard_min_confidence_threshold_for_calling 4.0 

● --dbsnp dbsnp-150.vcf.gz 

● -L SureSelect_Clinical_Research_Exome_v2.bed 

● --geontype_likelihoods_model BOTH 

 

Platypus  

Platypus uses local realignment of reads and local reassembly to accurately 

identify variants--SNVs, MNVs, indels, and long-range insertions and deletions--in a 

genome. Version 0.8.1.1 was used to generate VCF files containing all variants present in 

the alignment file for each cell. Platypus was run using the following arguments in 

addition to default parameters: 

● --regions=SureSelect_Clinical_Research_Exome_v2.bed 

● --filterDuplicates=0 

 

Comparison of all tools’ results with the exome data 

Comparisons are performed by looking at the data produced by each tool for 

each cell; one VCF file is created per cell per tool, totaling 110 files (22 cells×5 tools). 

Statistical metrics are then calculated to evaluate each tool using the exome variant 

analysis results as the reference against which these 110 files are compared. This process 
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involves calculating the intersection of regions in the genome that are common between 

the SureSelect Clinical Research Exome V2 library preparation kit and only the 

transcripts that are expressed in the cell being analyzed. This is needed because the 

scRNA-seq is a subset of the exome data, and not limiting the search space to those 

regions corresponding to genes expressed in this cell leads to the erroneous 

identification of thousands of False Negatives. All of these regions of interest are 

contained in a bed file in a format that can be seen in Table 9. The intersection of the 

exome bed file and the expression bed file for that cell is created using bedtools69 and 

results in a file that only contains regions common to both files as seen in Figure 16. 

As an example, a new bed file that is the intersection between the exome bed file 

and the transcripts expressed in cell G1-C37 (named here: exome_G1-C37.bed, or the 

bounded exome bed file) is created. Following this, five new VCF files are generated, 

one per tool (these are bounded VCF files as they are restricted by the boundaries of the 

exome + transcripts bed file):  

1. Variants identified by FreeBayes (FreeBayes_G1-C37.vcf) that fall into the regions 

contained in exome_G1-C37.bed produce a file containing variants found only in 

the intersected regions: FreeBayes_exome_G1-C37.vcf.  

2. Variants identified by GATK HaplotypeCaller (GATK_HaplotypeCaller_G1-

C37.vcf) that fall into the regions contained in exome_G1-C37.bed produce a file 

containing variants found only in the intersected regions: 

GATK_HaplotypeCaller_exome_G1-C37.vcf 

 

https://paperpile.com/c/mxuu76/vblE
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Chromosome 
Chromosome start location Chromosome end location 

chr1 14211 15031 

chr1 61724 62229 

... ... ... 

chrY 56874614 56876385 

Table 9. The bed file format. These files contain the regions that will be analyzed for variants in 

each cell. 
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Figure 16. Intersection example of exome and expression bed files. The resulting file containing 

the purple regions is what is used to determine concordance of variants found exome and those 

found in the cell. 
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3. Variants identified by GATK_UnifiedGenotyper (GATK_UnifiedGenotyper_G1-

C37.vcf) that fall into the regions contained in exome_G1-C37.bed produce a file 

containing variants found only in the intersected regions: 

GATK_UnifiedGenotyper_exome_G1-C37.vcf 

4. Variants identified by Platypus (Platypus_G1-C37.vcf) that fall into the regions 

contained in exome_G1-C37.bed produce a file containing variants found only in 

the intersected regions > Platypus_exome_G1-C37.vcf 

5. Variants identified by Red Panda (Red_Panda_G1-C37.vcf) that fall into the 

regions contained in exome_G1-C37.bed produce a file containing variants found 

only in the intersected regions: Red_Panda_exome_G1-C37.vcf 

Once these files are created, PPV (specificity and False Positive Rate are not 

calculated as the number of True Negatives is so large that it results in values so close 

together that they cannot be meaningfully distinguished) can be calculated for each tool: 

● Positive Predictive Value: (TP)/(TP + FP) where: 

a. TP = number variants in both the tool’s bounded VCF file (e.g., 

Red_Pand_exome_G1-C-37.vcf) AND the exome VCF file that only 

contains variants found in the intersected bed file (e.g., exome_G1-

C37.bed) 

b. FP = number of variants in the tool’s bounded VCF file that are not also in 

the bounded exome VCF file. 

 In addition to the PPV statistics, the total number of variants—SNVs and 

indels—produced by each tool in each cell was intersected with the variants found in the 
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exome as can be found in Figure 17. Specifically, only those regions that were supported 

by read data in both the exome and the single-cell data were compared. 

 It is immediately apparent that Red Panda finds more variants than every other 

tool. On average, Red Panda identifies 913 variants per cell that are in accordance with 

the exome whereas FreeBayes identifies 65, GATK HaplotypeCaller identifies 705, 

GATK UnifiedGenotyper identifies 222, and Platypus identifies 386. 

The overlap between the tools was also assessed by creating UpSet70 plots (a 

method of showing intersection between datasets) between each tool for each cell as 

seen in Figure 18. There is consistent overlap between the tools, even for FreeBayes and 

GATK UnifiedGenotyper which typically did not identify as many variants as the other 

tools. Of note is the fact that while Red Panda shares significant overlap with the other 

tools, it also identifies a large number of unique variants. This is expected given that Red 

Panda consistently identified more variants than every other tool. 

To assess the effectiveness of these software with regards to heterozygous 

variant identification, the same analysis was performed using just the heterozygous 

SNVs and indels in each sample. This posed a new problem as it is difficult to determine 

what is heterozygous and what is homozygous in scRNA-seq data. This is because 

transcription does not always occur from both chromosomes at the same time, but rather 

can happen in a burst fashion resulting in only monoallelic expression being seen71,72. 

Given this, it is possible that what might look like a homozygous variant in the 

sequencing data, might actually be heterozygous. To handle this, the method created for 

Red Panda—Method E from the Algorithm section of Chapter 1—was utilized to  

https://paperpile.com/c/mxuu76/itda
https://paperpile.com/c/mxuu76/wyEt+7bLg
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Figure 17. Total variants in concordance with the exome. The total number of variants in 

concordance with the exome for every cell as identified by each tool. Each cell had variants 

identified by FreeBayes, Red Panda, GATK HaplotypeCaller, Platypus, and GATK 

UnifiedGenotyper, after which they were compared to the exome sequencing data to determine 

their veracity. Red Panda is characterized by three box plots: 1, 2, and all. Red Panda_1 contains 

variants exclusive to Red Panda logic: homozygous-looking variants and bimodally-distributed 

heterozygous variants. Red Panda_2 contains non-bimodally-distributed heterozygous variants 

that are called by GATK-HaplotypeCaller. Red Panda_all is a superset of the two. Comparisons 

were performed using T-tests: ns = not significant, * is p < 0.05, ** is p < 0.01, *** is p < 0.001, and 

**** is p < 0.0001.  
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Intersection of Variants for each tool in cell G1-C37

 
Figure 18. UpSet plots of the overlap between each tool. The overlap of the variants identified 

by each tool can be seen for the cell G1-C37. Red Panda identifies the most variants as well as the 

most unique variants in concordance with the exome. Each column of the X-axis shows the 

overlap between each tool represented by a filled-in dot. For example, the first column indicates 

that GATK-HC and Red Panda shared 552 variants, the second shows that there were 213 

variants unique to Red Panda, the third column indicates that there were 120 variants shared 

between Platypus, GATK-HC, and Red Panda, and so on. 
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determine whether something was homozygous-looking or heterozygous. This variant 

is then cross-referenced with the exome sequencing data to confirm that it is, in fact, 

heterozygous. Method E utilizes metadata found in the VCF files to identify AF (Allele 

Frequency = # alt alleles/(# alt alleles + # ref alleles)) and DP (depth of the sequencing at 

this location). In this method, C = cutoff fraction at which this variant is no longer 

considered heterozygous (i.e., if AF > C, it is considered homozygous). If a variant fits 

one of these six criteria then it is considered heterozygous for our comparisons: 

1. DP < 20 and AF < C where C = 0.8 

2. 21 <= DP < 40 and AF < C where C = 0.84 

3. 41 <= DP < 60 and AF < C where C = 0.88 

4. 61 <= DP < 80 and AF < C where C = 0.92 

5. 81 <= DP < 100 and AF < C where C = 0.94 

6. DP > 100 and AF < C where C = 0.96 

The five tools had their variants filtered so that heterozygous variants were split 

out into separate files for further analysis. Method E was used to determine whether 

something was heterozygous for Platypus and Red Panda as they contained appropriate 

metadata to calculate DP and AF. For FreeBayes, GATK UnifiedGenotyper, and GATK 

HaplotypeCaller, there is no metadata available in the VCF file for how many reads 

supported the alternate allele vs. the reference allele. Instead for FreeBayes and GATK 

UnifiedGenotyper, the AF field provided in the variant’s metadata (not to be confused 

with the AF value used in Method E) was used to determine the fraction of reads that 

support the alternate allele. Unfortunately, this is not a perfect comparison since this 
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value is calculated after reads are filtered out by the variant caller from the alignment 

(typically reads that are low quality or have poor mapping scores are removed), whereas 

the fractions calculated by Method E are performed before reads are filtered. For GATK 

HaplotypeCaller, the MLEAF (Maximum Likelihood Expectation for the Allele 

Frequency) value was used which attempts to approximate the original proportion of 

the allele in the context of a diploid organism73. For this data, MLEAF is either 0.5 

(heterozygous variant) or 1.0 (homozygous); the former is used to filter variants into the 

file containing heterozygous-looking variants.  

Once an accurate method has been developed for identifying how to determine 

what a heterozygous variant is, the effectiveness of these software with regards to 

heterozygous variant identification was performed. Figure 19 shows the total number of 

heterozygous SNVs and indels in concordance with the exome for each tool and each 

cell. While the improvement is not as drastic as compared the total number of variants in 

agreement with the exome data, Red Panda still improves on the other methods. On 

average Red Panda identifies 154 variants in agreement with the exome, 31 for 

FreeBayes, 136 for GATK HaplotypeCaller, 118 for GATK UnifiedGenotyper, and 36 for 

Platypus. 

After identifying the total number of variants found per cell per tool that agreed 

with the exome, PPV and False Discovery Rate (FDR) are calculated. As seen in Table 10 

and Figure 20, Red Panda has the highest average PPV of any of the other tools. This 

shows that, compared to the variant calling software traditionally used for bulk 

sequencing, Red Panda correctly identifies a variant more consistently. Despite  

https://paperpile.com/c/mxuu76/lpFC
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Figure 19. Total heterozygous variants in concordance with the exome. The total number of 

heterozygous variants in concordance with the exome for every cell as identified by each tool. 

Each cell had variants identified by FreeBayes, Red Panda, GATK HaplotypeCaller, Platypus, 

and GATK UnifiedGenotyper, after which they were compared to the exome sequencing data to 

determine their veracity and then selected for comparison if they were heterozygous-looking. 

Red Panda consistently identifies more variants in concordance with the exome than every other 

tool. Red Panda is characterized by three box plots: 1, 2, and all. Red Panda_1 contains 

bimodally-distributed heterozygous variants. Red Panda_2 contains non-bimodally-distributed 

heterozygous variants. Red Panda_all is a superset of the two. Comparisons were performed 

using T-tests: ns = not significant, * is p < 0.05, ** is p < 0.01, *** is p < 0.001, and **** is p < 0.0001. 
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Algorithm Average PPV (%)  Average FDR (%) 

FreeBayes 8.69% ± 0.35% 91.31% ± 0.35% 

GATK- HaplotypeCaller 31.67% ± 2.08% 68.33% ± 2.08% 

GATK-UnifiedGenotyper 5.84% ± 0.45% 94.16% ± 0.45% 

Platypus 6.95% ± 0.49% 93.05% ± 0.49% 

Red Panda 44.96% ± 3.15% 55.04% ± 3.15% 

Table 10. PPV and FDR for each tool. The average PPV and FDR with standard deviations for 

each tool using the exome as reference. 
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this, PPV is still low compared to traditional datasets32,74. For all of the comparisons in 

Figures 17, 19 and 20, with the exception of Red Panda and GATK-HC heterozygous 

variant calls, the differences between the results for Red Panda and the other software 

was statistically significant when assessed with T-tests. 

https://paperpile.com/c/mxuu76/lnpM+3yPpA
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Figure 20. The average PPV calculated for each tool. Red Panda has the highest average PPV 

than other tools indicating that it has far fewer False Positives. Comparisons were performed 

using T-tests: ns = not significant, * is p < 0.05, ** is p < 0.01, *** is p < 0.001, and **** is p < 0.0001. 



71 
 

 

Mouse Embryonic Fibroblasts sequencing 

After the development of Red Panda was finished, further testing needed to be 

performed on other datasets to ensure that this software works as a generalized tool and 

is not specifically tailored to the conditions found in human articular chondrocytes. The 

data that is being used to perform additional tests on Red Panda is generated from 

single-cell RNA sequencing on Mouse Embryonic Fibroblasts (MEFs).  

The MEFs used for sequencing are generated in collaboration with Dr. Kishor 

Bhakat and his graduate student Shrabasti Roychoudhury, the full sequencing strategy 

of which can be seen in Figure 21. Their study involves investigating the effect the gene 

Ape1—also known as Apex1—has at the cellular level when it is mutated in a specific 

way. Ape1’s function is to repair apurinic/apyrimidinic (AP) sites—DNA lesions—in 

mammalian cells75. Two MEF samples have been generated: one normal/wild-type and 

one mutated. The mutated sample has had two amino acids altered in the gene Ape1. 

Lysine 6 and Lysine 7 are both converted to Alanine to remove its ability to be acetylated 

at those sites76,77. The mutated sample—also designated ‚Ape1K6A,K7A‛ and the normal 

sample, designated ‚Ape1K/K‛—was modified using the Easi-CRISPR78 system to induce 

these mutations. Both of these samples, Ape1K,K and Ape1K6A,K7A, had single cells isolated 

on the Fluidigm C1 system and had RNA sequenced on a NextSeq500. 

Following sequencing, variant calling is performed on both sets of samples using 

the same tools used with the articular chondrocytes—FreeBayes, GATK Haplotype 

Caller, GATK Unified Genotyper, Platypus, and Red Panda—but for the purposes of this 

study, focus is placed solely on the normal Ape1K,K sample. This is because it is the only  

https://paperpile.com/c/mxuu76/c3xw
https://paperpile.com/c/mxuu76/sFcD+erPW
https://paperpile.com/c/mxuu76/JCnL
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Figure 21. The sequencing strategy for the MEFs. Two groups of MEFs are sequenced, one WT 

and one mutated. The WT cells have variant calling performed on them with five variant callers 

as with the articular chondrocytes. Validation is performed by Sanger sequencing on 40 variants. 
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sample that will have Sanger sequencing79 and simulation used to confirm the existence 

of variants identified. The Ape1K6A/K7A mutation will likely lead to an accumulation of 

spurious mutations throughout the genome but only at the single-cell level, hence these 

results are not appropriate for validation studies. That is, the increase in mutations 

would not necessarily lead to an increase in mutations shared across all of the cells, but 

rather only mutations found in single cells. If this hypothesis is correct, then it would not 

be possible to identify cell-specific mutations via Sanger sequencing. 

Results from variant calling by the five different software packages are compared 

in a number of ways: total number of variants identified by each tool, total number of 

homozygous-looking variants identified, and total number of heterozygous variants 

identified. The distinction between heterozygous variants and homozygous-looking 

variants is an important one in this analysis as has been mentioned previously. Variants 

will either have a fraction of reads that supports an unambiguously heterozygous 

variant, or they will have a fraction of reads that, in a single cell, appears to be a 

homozygous variant, but could potentially be heterozygous. This is due to the stochastic 

nature of RNA transcription leading to allele-specific expression80–82. This pattern of 

expressing RNA from a single chromosome—otherwise known as monoallelic 

expression—can lead to a heterozygous variant looking like a homozygous variant71,83. 

Due to this ambiguity, variation in the genome that has full read coverage supporting an 

alternate allele is hereafter termed ‚homozygous-looking‛ rather than ‚homozygous‛. 

In addition to the total number of variants identified, variant overlap between 

cells is assessed. As these cells are isogenic, each cell should share a large portion of their 

https://paperpile.com/c/mxuu76/D9SA
https://paperpile.com/c/mxuu76/M1De+oE1g+YPfs
https://paperpile.com/c/mxuu76/wyEt+veNu
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variants with the other cells sequenced. This overlap is evaluated with the assumption 

that a high overlap identified by a variant caller is an indicator of that software 

performed well. 

The final way these five tools are compared is using the results of Sanger 

sequencing validation as well as simulated variants inserted into the normal MEF 

alignment files. Sanger validation is performed on a set of 20 random variants identified 

by all variant callers, and on a set of 20 random variants identified exclusively by Red 

Panda. The first group is meant to assess the accuracy of all the tools taken as a whole. 

The second is to address whether the Red Panda-specific variants are reliable. One 

requirement of the variants being checked is that they are identified in at least two cells. 

 

Single-cell RNA sequencing 

Shrabasti Roychoudhury performed cell prep and DNA extraction for these 

samples. This data came from MEFs that were harvested from embryos at E13.5. Cells 

were extracted using previously standardized methods84. After isolation, cells were 

cultured in Dulbecco’s modified Eagle medium (DMEM) medium containing 10% FBS 

and 1% Penicillin and Streptomycin at 37°C in a 5% CO2 atmosphere for 2 days. On the 

day of single-cell capture, cells were trypsinized (0.05% Trypsin-EDTA solution), 

counted and resuspended in media at 105 cells/mL concentration.  

The UNMC Sequencing Core Facility performed cell capture and sequencing. 

Cells were loaded on to a 17-25 μm Fluidigm C1 Single-Cell Auto Prep IFC (with 96 

wells), and the cell-loading script was performed using the manufacturer's instructions. 

https://paperpile.com/c/mxuu76/IvRE
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Each of the 96 capture sites were inspected under a confocal microscope to remove sites 

containing dead cells as identified by the LIVE/DEAD Cell Viability Assay and also to 

remove capture sites containing more than one cell. Only cells that were labeled as LIVE 

were kept for sequencing. Total DNA was isolated from the remaining MEF cells for 

Sanger validation purposes.  

Following capture, reverse transcription and cDNA amplification were 

performed in the C1 system using the Clontech SMARTer Ultra Low Input RNA Kit for 

Sequencing v3 which was done according to the manufacturer's instructions. Only 56 

Ape1K6,K7 and 55 Ape1K6A,K7A single-cell cDNA libraries were obtained at a concentration 

of 0.09 to 0.55 ng/μl. The majority of failed cells on the capture plate were dead cells. 

Amplification was performed using the Nextera XT DNA Sample Preparation Kit, and 

the Nextera XT DNA Sample Preparation Index Kit (Illumina) was used for indexing. 

After quantification using an Agilent Bioanalyzer, sequencing was performed on two 

lanes each of the NextSeq500 for the 56 normal cells and 55 mutated cells. Paired-end 

reads totaling 150 base pairs were generated. 

 

scRNA-seq processing and QC 

 As mentioned above, only the normal MEFs are used for software testing 

purposes. Given this, all following QC metrics and processing steps will be exclusive to 

that dataset. 

The bcbio-nextgen v. 1.0.3 pipeline85 was used to process the RNA-seq data by 

way of generating Quality Control (QC) checks, alignments to a reference genome, and 

https://paperpile.com/c/mxuu76/JrVy
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expression values for genes in each cell. For this analysis, the pipeline was run on the 

mouse genome v. 10 (mm10) and its annotation was acquired from Ensembl, release 93. 

MultiQC v. 1.0.dev0 was run to aggregate QC statistics from bcbio-nextgen, samtools v. 

1.4, QualiMap v. 2.2.2a53, and FastQCv. 0.11.5. The aligner hisat2 v. 2.1.0 was used to 

align reads to the reference genome, and sailfish v. 0.10.1 was used generate expression 

values. 

The QC metrics aggregated by MultiQC were used to determine if it was 

immediately apparent that any of the cells had failed sequencing. Quality scores along 

the length of the read are a good way of determining if there was a systematic problem 

with the library prep or sequence generation. As seen in Figure 22, the quality scores for 

every sample appeared to be high with the exception of a slight dip at the end of the 

reads. This dip is expected with Illumina sequencing and it was trimmed off using 

fqtrim v. 0.9.7—this software was also used to trim adapter sequences common to RNA-

seq—using default parameters. This trimming resulted in an average length of 139bp for 

the normal samples.  

Sequencing metrics looked good for all cells with each producing around 5 

million reads on average as seen in Table 11. One exception to this is Cell 07 which only 

produced 70,000 reads. This cell was removed from the final analysis due to the low 

number of reads attributed to it. 

To further assess the quality of the cells that were sequenced, the origin of the 

reads was checked to assess whether the reads are from exonic regions. As this is RNA-

seq, the majority of reads should be derived from these regions, and if they are not, then  

https://paperpile.com/c/mxuu76/V2To
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Figure 22. Mean quality scores for reads sequenced from each MEF. The quality score graph 

generated by FastQC shows the mean quality scores for each normal MEF were generated across 

the length of the sequenced read. 
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Sample 
Reads % Dup rRNA pct 5'-3' bias % GC 

Normal MEFs 5.35 M 40% 1.13% 1.09 46% 

Table 11. Average alignment statistics for the MEFs. Average alignment statistics for the 56 

normal cells captured on the C1. 
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there was likely something wrong with the cell upon capture (most likely that the cell 

was in the process of dying). Any cell that had < 60% of the reads coming from exons 

were removed. Using this filter, as can be seen in Figure 23, only one cell was removed: 

cell C47.  

The last quality control metric employed was checking the Pearson correlation 

coefficient calculated by comparing the expression profile of all of the cells. To generate 

these coefficients, a matrix was created where each column to a cell and its expression 

values for every possible isoform found in the mouse Ensemble 93 database. The value 

in each cell of the matrix is the expression of the isoform measured by TPM as calculated 

by sailfish for that particular cell. As these MEFs are from the same population of cells, it 

is expected that they all contain similar expression patterns. Any cells that are largely 

deviating from entire the group are likely to be in an altered state that may affect the 

downstream analyses. As seen in Figures 24, only one cell of the 56 sequenced falls into 

this category and is already being removed due to having a low read count: cell C07. 

There does exist a block of cells seen at the bottom of the heat map that clusters together, 

but as they still show significant similarity with a large number of cells, they are 

retained. 

 

Comparing variant callers using MEF data 

Alignment file preparation 

For four of the five variant calling pipelines, alignments are prepared by running  
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Qualimap RNAseq: Genomic Origin

 
Figure 23. The genomic origin of reads found in each MEF. Here one can see what percentage 

of reads originate from exons (blue), introns (black) or intergenic space (green). The cell C47 in 

the normal group is the only cell to have significantly more reads originating outside the exonic 

region than other samples. 
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Figure 24. Expression correlation between MEF. Pearson Correlation Coefficient calculated for 

every possible comparison of cells to each other for the normal MEFs. The darker the color red, 

the higher the correlation between each cell. Only one cell fails to correlate will with any of the 

other cells: C07. The bottom block of cells significantly correlates with a high number of cells and 

they are therefore retained. 
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hisat2 version 2.1.0 using mouse genome version mm10 as the reference. The exception 

to this is for the variant caller Platypus which used BWA MEM v. 07.1767. Hisat2 is 

specifically designed for aligning RNA-seq reads and will split reads across exons to 

ensure the highest-quality alignments. Unfortunately this results in very large fragments 

that Platypus cannot process. Instead, BWA MEM, another high quality alignment tool, 

was used in a manner that generated alignments that Platypus could process.  

Alignment is followed by running the Genome Analysis Toolkit version 3.8.0 

module, SplitNTrim + ReassignMappingQuality. This method of alignment preparation 

ensures that the highest quality alignment files are generated when trying to identify 

variants, and thus, that the only deficiencies identified are due to the variant caller itself 

instead of other processing steps. Specifically, reads aligned around exon junctions have 

overhanging regions clipped to remove any intronic sequence if that intronic sequence is 

spurious. Lastly, for every tool, a bed file containing the regions of coding exons in the 

Ensembl 93 mouse database was used to limit the location of where variants could be 

identified. The file ref-transcripts.bed contains all of those locations. 

 

FreeBayes 

FreeBayes is Bayesian statistical framework capable of identifying, in a reference 

genome, small variations including SNVs, indels, MNVs, and composite insertion and 

substitution events so long as these events are shorter than the length of the sequencing 

read belonging to the alignment. Version 1.1.0.46 was used to generate VCF files 

https://paperpile.com/c/mxuu76/oDsk


83 
 

 

containing all variants present in the alignment file for each cell. FreeBayes was run 

using the following arguments in addition to default parameters: 

● --min-alternate-fraction 0.01 

● --targets ref-transcripts.bed 

● --no-partial-observations 

 

GATK HaplotypeCaller 

GATK HaplotypeCaller uses a De Bruijn-like graph to perform local de-novo 

assembly of regions of the genome that show evidence of significant variation, including 

SNVs, MNVs, and indels. This has the advantage of more accurately identifying more 

complex variation in a sample such as indels, and, importantly for our study, splice 

junctions. However these benefits come at the expense of increased computation time68. 

Version 4.0.7.0 was used to generate VCF files containing all variants present in the 

alignment file for each cell. GATK HaplotypeCaller was run using the following 

arguments in addition to default parameters: 

● --filter_reads_with_N_cigar 

● --standard_min_confidence_threshold_for_calling 4.0 

● --dbsnp dbsnp-20130912.vcf.gz 

● -L ref-transcripts.bed 

https://paperpile.com/c/mxuu76/JH4K
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GATK UnifiedGenotyper 

 GATK Unified Genotyper uses a Bayesian genotype likelihood model to 

estimate the most likely genotypes (SNVs, MNVs, and indels) and allele frequency. 

GATK UnifiedGenotyper also benefits from not assuming ploidy for the organism being 

analyzed which is not the case for GATK HaplotypeCaller68. Version 3.8-0-ge9d806836 

was used to generate VCF files containing all variants present in the alignment file for 

each cell. This version is different from the GATK HaplotypeCaller version as GATK 

version 4 does not contain GATK UnifiedGenotyper. GATK UnifiedGenotyper was run 

using the following arguments in addition to default parameters: 

● --filter_reads_with_N_cigar 

● --standard_min_confidence_threshold_for_calling 4.0 

● --dbsnp dbsnp-20130912.vcf.gz 

● -L ref-transcripts.bed 

● --geontype_likelihoods_model BOTH 

 

Platypus  

Platypus uses local realignment of reads and local reassembly to accurately 

identify variants--SNVs, MNVs, indels, and long-range insertions and deletions--in a 

genome. Version 0.8.1.1 was used to generate VCF files containing all variants present in 

the alignment file for each cell. Platypus was run using the following arguments in 

addition to default parameters: 

https://paperpile.com/c/mxuu76/JH4K
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● --regions=ref-transcripts.modified.bed 

● --filterDuplicates=0 

 Also, because Platypus does not work on large read fragments and is using the 

BWA MEM-aligned files, the ref-transcripts.bed file had to be modified to include entire 

gene regions as well as modifying other functional elements such as lncRNA 

annotations. 

 

Comparison of all tools using raw counts and cell-to-cell comparisons 

After VCF files were generated for each cell by all five tools, they were then 

compared by looking at the total number of variants identified as well as the percentage 

of variants identified by each tool that are shared between each of the cells.  

The average number of variants identified can be seen in Table 12. FreeBayes 

identifies the highest average number of variants per cell followed Red Panda, then 

GATK HaplotypeCaller, GATK UnifiedGenotyper, and Platypus. This is unexpected 

based on the results from the human articular chondrocyte data where FreeBayes had 

the fewest number of variants shared between the scRNA-seq results and the exome. 

One explanation from this is that FreeBayes may identify a high number of variants, but 

the majority of those are False Positives. This idea is supported by the PPV numbers as 

seen in Figure 20.  

After the total variant numbers were calculated, comparisons between cells were 

performed. To test the initial hypothesis that any two cells should share a high number 

of variants, only data produced by Red Panda from cells C02 (353 total variants) and C06  
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 FreeBayes 

GATK 

HaplotypeCaller 

GATK 

Unified 

Genotyper Platypus 

Red 

Panda 

Average # of 

variants 
567.22 423.93 387.82 315.42 510.02 

Standard 

deviation 
161.16 124.44 106.80 107.16 143.26 

 

Table 12. Average variant count and standard deviation for each tool. For this analysis, the total 

number of variants identified by each tool after filtering steps is reported.  
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(593 total variants) were compared. This measurement was performed by taking the list 

of variants in cell C02 and checking to see if there was sufficient sequencing coverage 

(20x coverage) and variant match at the corresponding location for each variant in cell 

C06. Variants satisfying both criteria were then added to the list of common variants 

between the two cells; however, if it is not found in C06’s VCF file it is added to a list 

containing variants that are present in C02 but not C06. Using these two lists it is 

possible to calculate the percentage of overlap between the two cells.  

The resulting percentage of overlap between C02 and C06 was 20.1%. This makes 

sense as it is difficult to do a one-to-one comparison of locations between the two cells, 

even after we’ve guaranteed there are sufficient reads covering that location. As 

mentioned previously, monoallelic expression makes it impossible to say for sure that a 

variant is not shared based on scRNA-seq data. One way to help combat this hurdle is 

by only looking at homozygous-looking variants. Heterozygous variants have the 

disadvantage of having increased ambiguity, but homozygous-looking ones are more 

likely to show up in both cells even when factoring in the idea that the list of 

homozygous-looking variants will contain heterozygous variants that are the result of 

monoallelic expression. 

To test this, variants that are homozygous-looking in both C02 and C06 are 

compared. This results in a much higher percentage of overlap than identified 

previously: 80.3% were found to be shared which is what is expected from cells that 

should be isogenic. Additionally, the fact that it’s not 100% is also expected: variants that 

look homozygous may actually be heterozygous.  
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After doing this initial analysis, the comparison was expanded to analyzing the 

percentage of pairwise overlap between six cells for all five tools: C02 vs. [C04, C06, C08, 

C14, and C40]. This was done for all variants in those cells as well as those that are only 

homozygous-looking. As seen in Figure 25, Platypus and Red Panda perform well in the 

latter category, and Red Panda fared well over Platypus in four out of five comparisons. 

But barring one comparison for Platypus (C02 vs C04), all of the tools performed poorly 

(under 25%) when looking at all variants. 

This minimal comparison of variant overlap resulted in more questions than 

answers which prompted a full reassessment of the variants identified by each tool. To 

ensure as close of a one-to-one comparison between the human articular chondrocyte 

data and the MEF data as possible, the MEF variant calling was originally restricted to 

coding exons, which resulted in poor overlap of variants across cells. However, this 

restriction precludes a large portion of the genome that contains functionally important 

elements such as the untranslated regions (UTR) of genes. With this in mind, variant 

reporting and pairwise comparisons were re-run without the restriction of only keeping 

those in coding exons. 

This led to new results for the average number of variants reported by each tool 

as seen in Table 13. Red Panda identifies the highest number of variants of all the tools. 

Assuming we can extrapolate from the PPV results from the articular chondrocyte data, 

this also means that Red Panda is identifying the highest number of True Positives as 

well. One thing to note is that the numbers for Platypus did not change as its pipeline 

had already been modified include these regions. This was necessary because Platypus  
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Figure 25. Comparison of variants between Cell C02 and five other cells [C04, C06, C08, C14, 

and C40]. Pairwise comparisons between C02 and five other cells was performed for every 

variant caller after filtering was performed on the variants. Here we can see Platypus and Red 

Panda performing well for homozygous-looking variants and every other tool performing poorly 

when looking at all variants.  
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 FreeBayes GATK-HC GATK-UG Platypus Red Panda 

Average # of 

variants 
865.87 611.15 574.73 315.42 1071.83 

Standard 

deviation 
235.36 195.17 170.59 107.16 372.67 

Table 13. Average variant count and standard deviation for each tool after filtering steps were 

removed. For this analysis, the total number of variants identified by each tool now includes all 

areas of the genome. 
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will not run if it has to process reads spanning large regions such as exon-intron 

junctions. This restriction meant that the original analysis could not be limited to just 

coding exons for Platypus. 

After removing the restriction on where in the genome variant calling can occur, 

the same pairwise comparison as described previously was performed for all 3,025 (55 

cells * 55 cells) possible comparisons. Additionally, three groups of variants were 

assessed instead of two: percentage of overlap for heterozygous variants was also added 

to assess how each software handles these types of variants. Custom scripts and the R 

package ggplot2 were used to generate these comparisons. 

To visualize this analysis, a heat map was generated showing the fraction of 

overlap between each cell. A hypothetical scenario is illustrated in Figure 26. Higher 

overlap leads to a redder color and low overlap leads to a bluish-green color. As we can 

see in Figure 27 and Figure 28, each tool, especially Red Panda and FreeBayes, performs 

well when only the homozygous-looking variants are being compared, but they all 

suffer when assessing purely heterozygous variants.  

Interesting to note is the fact that while GATK HaplotypeCaller and GATK 

UnifiedGenotyper both have a good fraction of overlap among the homozygous-looking 

variants, it does not appear to affect the overall fraction of variants identified by these 

tools because the heat maps look almost identical for both the ‚Heterozygous‛ and ‚All 

Variants‛ maps. This is because homozygous-looking variants do not contribute much 

to the total list as seen in Table 14. Also important is that Red Panda performs extremely 

well for homozygous-looking variants, but is average for heterozygous variants. This is 
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Figure 26. Example of comparisons made between cells. In this example heat map, three cells 

are being compared. There is one variant in common between cells A→B and B→C but none in 

common between A→C.  
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Figure 27. The fraction of overlap in variants for every cell using FreeBayes, GATK HC, and 

GATK UG. The fraction of overlap for (a-c) FreeBayes, (d-f) GATK-HaplotypeCaller, and (g-i) 

GATK-UnifiedGenotyper when comparing (a, d, g) all variants, (b, e, h) homozygous-looking 

variants, and (c, f, i) heterozygous variants. Each box in the matrix is a comparison between two 

cells. 



94 
 

 

 

 

 
Figure 28. The fraction of overlap in variants for every cell using Platypus and Red Panda. The 

fraction of overlap for (a-c) Platypus and (d-f) Red Panda when comparing (a, d) all variants, (b, 

e) homozygous-looking variants, and (c, f) heterozygous variants. Each box in the matrix is a 

comparison between two cells. 
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Tool All variants Homozygous variants Heterozygous variants 

FreeBayes 85.70 35.22 50.48 

GATK-HC 72.06 6.66 65.40 

GATK-UG 58.72 11.35 47.37 

Platypus 28.83 19.90 8.93 

Red Panda 171.34 115.39 55.95 

Table 14. Average number of variants overlapping for pairwise comparisons between cells.  



96 
 

 

due to the fact that, while Red Panda confers an advantage to identifying heterozygous 

variants, the majority of those identified are not bimodally-distributed and are thus 

actually picked up by GATK HaplotypeCaller as seen in Figure 19. 

To better visualize the distribution of the fraction of overlap of variants as well as 

the total variants overlapping in the pairwise comparison, violin plots were created for 

all three classes of variants (Figure 29), and all comparisons between Red Panda and the 

other tools were statistically significant. These show that there tends to be a tight 

distribution of values for every tool in each class with the exception of Red Panda and its 

ability to identify homozygous-looking variants. The total number of homozygous-

looking variants has a wide distribution, but the distribution of the fraction of variants 

in this class is tight and very close to 1. It follows that the same trend can be seen in total 

variants shared in these comparisons since homozygous-looking variants make up the 

largest proportion of those identified by Red Panda to be overlapping between two cells 

as can be seen in Table 14. 

In Figure 29 it is clear that Red Panda performs the best both at identifying raw 

numbers of variants shared between cells as well as fractions of variants shared. This is 

an important distinction because, as can be seen with FreeBayes, it’s possible to have a 

large number of variants shared while also having a small fraction of the total variants 

possible be shared. As a hypothetical example, there may be 200 variants out of 1000 

possible shared between two cells. This results in a large number of variants shared 

(200), but a small fraction (0.2) of total possible variants shared. This pattern indicates 

that there are a lot of potential False Positives in the FreeBayes results which fits with  
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Figure 29. Violin plots for variants shared between cells. Violin plots showing the fraction (left) 

and quantitative (right) overlap for (a, b) all variants, (c, d) homozygous-looking variants, and (e, 

f) heterozygous variants shared in every pairwise cell comparison. Comparisons were performed 

using T-tests: ns = not significant, * is p < 0.05, ** is p < 0.01, *** is p < 0.001, and **** is p < 0.0001. 
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what was seen in the articular chondrocyte sequencing. 

As we saw in the heat maps, it is clear that the highest fraction of variants shared 

pairwise between two cells comes from the homozygous-looking class. This is made 

very evident where, again, Red Panda has the highest number of variants and the 

highest fraction of variants shared. However, it is clear that it is the homozygous-

looking class that is contributing most to the total shared between cells for Red Panda. 

This is significant as it was originally thought that Red Panda would perform the best 

among the heterozygous variants, rather than the homozygous-looking variants. 

As for the other tools, it appears that despite performing the worst at identifying 

shared homozygous-looking variants GATK HaplotypeCaller performs the best with 

heterozygous variants. This is useful as it proves that using GATK HaplotypeCaller was 

a good choice as the supplemental variant caller for Red Panda when it cannot use its 

unique bimodal distribution model. Lastly, it’s interesting to note that it is rare for any 

tool to have more than 100 heterozygous variants shared between cells. This is likely due 

to the stochastic nature of allele-specific expression. 

 

Comparing variant callers using simulated data 

To accurately assess the sensitivity of each variant calling tool in a controlled 

environment, simulated data was generated against which we can compare the results 

from the five different variant callers. This simulation consists of ~1,000 variants 

generated per cell. They are created by programmatically inserting variants into the 

alignments generated from the normal MEFs. The list of simulated variants consists of 
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650 homozygous variants and 350 heterozygous variants, roughly 70 of which are 

bimodally-distributed. These numbers are used because they are close to the proportions 

seen in the variants corroborated by the exome sequencing in the articular chondrocyte 

data, and while these proportions do not match those expected based on bulk 

sequencing experiments86–88, they do match what is expected from scRNA-seq data31.  

Once this simulated list is created, the variants are inserted into the original 

alignment files for each cell. These new alignment files are used as input for the variant 

calling pipelines described above for the MEF sequencing data. Once a new list of 

variants has been generated by each of the five tools, the results will exclusively be 

compared against the list of simulated variants. For this analysis, all other locations 

identified in the standard variant calling process are not considered as they are due to 

normal variation in that cell and not part of the simulated set. 

To generate the new alignment files containing the simulated variants, a number 

of important steps have to performed, as illustrated in Figure 30. To ensure variants 

could be identified by each tool, a read depth cutoff of 20 was used for locations where 

variants could be inserted. This was achieved using the coverage module from the 

bamtools package89. This list of potential insertion locations was then used as the source 

of the locations of the ~1,000 simulated random variants. For the 650 homozygous and 

280 heterozygous variants, the locations were not restricted except that they must 

originate from this list.  

The bimodally-distributed heterozygous variants had a number of extra 

parameters that determined their placement. It was required that they originate from 

https://paperpile.com/c/mxuu76/S7HN+dx7I+4JJB
https://paperpile.com/c/mxuu76/gneq
https://paperpile.com/c/mxuu76/gneq
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Figure 30. Workflow for inserting simulated variants. To assess each tool, ~1,000 simulated 

variants (650 homozygous, 280 heterozygous, and ~70 bimodally-distributed heterozygous) were 

inserted into the alignments for each cell. Standard variant calling was then performed using 

each tool, and these results were compared to the list of known variants to assess their 

performance.  
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genes that were considered to be expressed ( TPM > 1) and that they have a minimum of 

two of variants placed in the expressed gene. From the MEF sequence data, an average 

of ~3 (a range of about 2–5) variants per gene was observed; this results in roughly 23 

genes containing bimodally-distributed variants: 70/3 = 23.33. Thus, to simulate this class 

of variation, 23 expressed genes were randomly chosen wherein 2, 3, 4, or 5 variants 

were randomly inserted into the gene, but only if there were more than 250bp of viable 

locations where a variant could be inserted. That is, a gene was only in consideration to 

have bimodally-distributed variants added to it if more than 250bp of its sequence had 

sequencing depth of at least 20 reads. 

After ~1,000 locations had been chosen, a new alignment file was created 

containing the simulated variants. Additionally, a VCF file containing all of the variants 

was generated for ease of comparison in the downstream analysis. 

This type of custom simulation was necessary because, while there are a number 

of methods available to imitate read counts and expression profiles90–96, there currently 

exist no tools to generate scRNA-seq reads in silico. Were such a tool available, raw reads 

with built-in variation would have been generated, from which accuracy metrics for the 

variant calling tools could have been calculated. However, since this was not possible, 

random variants were inserted into the alignments already generated in the MEF 

analysis. This has the benefit of recreating a more realistic simulation environment 

because all of the artefacts and flaws inherent to scRNA-seq are maintained. One 

downside however, is that it disallows us from calculating any accuracy statistics 

requiring False Positive numbers. Since real scRNA-seq data is being used, it already 

https://paperpile.com/c/mxuu76/qaA7+3gkA+N0NB+dseO+Cdud+jTVa+Pcs7


102 
 

 

contains variation inherent to the MEFs. It follows that the variant callers will pick up 

this possibly-real variation that would then be classified as a False Positive because it is 

not contained in our list of ~1,000 simulated variants for that cell.  

Due to this limitation, sensitivity is the main metric by which each tool is 

measured, and it was calculated for each tool across every cell. These numbers were 

then plotted using a violin plot to assess the distribution of True Positives identified by 

each variant caller. Figure 31 (boxplots for the raw number of True Positives) and Figure 

32 (the aforementioned violin plots for sensitivity) show that for homozygous variants 

and bimodally-distributed heterozygous variants, Red Panda consistently performs 

better than the other four tools, and its results are statistically significantly different than 

the results from every other tool when compared using T-tests. For heterozygous 

variants taken as a whole, FreeBayes performs the best of the tools. It is unsurprising 

then that Red Panda does not perform as well in this category because it uses GATK 

HaplotypeCaller (shown to accurately identify few heterozygous variants in this 

simulation) to validate heterozygous variants that do not follow a bimodal distribution. 

In this instance, GATK HaplotypeCaller and GATK UnifiedGenotyper perform poorly 

because they both utilize a feature where all samples are considered simultaneously. 

This results in poorer performance on samples that are more genetically diverse, or put 

another way, single cells that have private mutations. And for our simulation, the 

mutations being tested are unique to each cell. Red Panda does not suffer from this 

limitation as it explicitly directs GATK-HC to call variants at specific locations one at a  
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Figure 31. Raw counts of True Positives for each tool. The box plots of the raw number of True 

Positives show how well each tool is at identifying variants in the simulation for: all variants, all 

homozygous-looking variants, all heterozygous variants, and all bimodally-distributed 

heterozygous variants. Due to advantages gained in identifying homozygous and bimodally-

distributed variants, Red Panda identifies the highest number of True Positives. Comparisons 

were performed using T-tests: ns = not significant, * is p < 0.05, ** is p < 0.01, *** is p < 0.001, and 

**** is p < 0.0001. 
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Figure 32. Sensitivity for identifying simulated variants for each tool. The violin plots of the 

sensitivity, calculated for each cell using each class of simulated variants are shown: (a) all 

variants, (b) homozygous variants, (c) all heterozygous variants, and (d) bimodally-distributed 

variants. Comparisons were performed using T-tests: ns = not significant, * is p < 0.05, ** is p < 

0.01, *** is p < 0.001, and **** is p < 0.0001. 
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time rather than jointly. However, as seen in the results in Figure 29f, this can result in 

lowered sensitivity for samples that are genetically similar. 

 

Evaluation of Red Panda by Sanger confirmation on MEFs 

 To complement the simulated data, Sanger sequencing was performed on 40 

variants: 20 that were identified by all five software and 20 that were only identified by 

Red Panda. These variants were pulled from the VCF files generated for cell C14 as seen 

in Figure 33, and cross-referenced with the other 54 cells to make sure that at least one 

other cell contained the variant. This low number—a minimum of two cells sharing the 

same variant—was necessary because it was rare for variants to be present in more than 

two cells when pulling from the list that were identified by all five variant callers as seen 

in Table 15. This table shows a breakdown of the number of variants identified by each 

tool that were common to: at least 2, 5, 10, 22 (50%), and 41 (75%) of the cells. Ideally, a 

minimum of 20 variants unique to each tool would have been chosen for Sanger 

sequencing, but it was outside the scope of this project to do so.  

 

Primer Design  

Primers (see Appendix A) were designed to amplify specific target regions 

containing 39 SNVs and one indel. To generate sequence fragments for primer design, 

900bp sequences upstream and downstream of the variant were obtained from the 

mouse genome mm10 using samtools faidx. This resulted in an 1800bp fragment that 

was searched for primers using Primer3Plus. The parameters in Table 16 were used to  
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Intersection of variants for each tool in cell C14 

 
Figure 33. The overlap in the number of variants identified in the cell C14. Here we can see 

that there is a sizeable (69 variants) overlap between all the tools that identified variants in this 

cell. Red Panda identifies the most variants unique to a specific variant caller (295). It is from 

these two populations that variants are chosen for confirmation via Sanger sequencing. 
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Present in: FreeBayes GATK-HC GATK-UG Platypus Red Panda 

Intersection of 

all tools 

>= 2/55 cells 2922 2463 1991 2947 3159† 96* 

>= 5/55 cells 970 894 693 324 1051 18 

>= 10/55 cells 416 398 309 161 565 0 

>= 23/55 of cells 129 122 84 66 257 0 

>= 42/55 of cells 38 24 27 22 98 0 

 

Table 15. Breakdown by tool of variants present in more than one cell. The number of cells in 

which a variant was found was broken down into five groups: presence in at least 2, 5, 10, 23, or 

42 of cells. Additionally, the variants identified by all tools were checked for their presence in the 

five groups listed above. The variants submitted for Sanger sequencing were drawn from the two 

groups labeled with a cross (†) and an asterisk (*). 
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Parameters used to design primers on Primer3Plus 

Product Size Range 401-700* 

Min primer 18 

Opt primer* 20 

Max primer 27 

Primer Tm Min 57 

Primer Tm Opt 60* 

Primer Tm Max 63 

Max Tm difference 100 

Primer GC% Min 20 

Primer GC% Opt 50* 

Primer GC% Max 80 

Concentration of monovalent cations 50 

Concentration of divalent cations 0 

Annealing Oligo Concentration 50 

Concentration of dNTPs 0 

Max Self Complementarity 4* 

Max #Ns 0 

Max Poly-X 5 

CG Clamp 1* 

Max 3' Self Complementarity 3 

Max 3' Stability 9 

Pair Max Repeat Mispriming 24 

Pair Max Template Mispriming 24 

 

Table 16. Parameters used to design the primers used for PCR and Sanger. Parameters with a * 

were changed from their defaults to ensure good sequencing. 
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design the primers. In total, 38 primer pairs were created as seen in Appendix A and 

were named based on the range of sequence that was searched by Primer3Plus. Only 38 

pairs were needed as two variants could be validated by the primer pair for 

‚chr8:85260471-85262071‛ and two variants can be validated by the primer pair for 

‚chr19:60770223-60771823‛. 

 

PCR Amplification 

Shrabasti Roychoudhury and Suravi Pramanik performed the PCR amplification. 

For the first round of sequencing, the PCR reaction was performed using GoTaq Hot 

start polymerase following the manufacturer’s protocol with an annealing temperature 

(Tm) of 50°C. After amplification, PCR products were run on 1.5% agarose gel and 

visualized in Kodak gel doc and specific DNA bands were recovered using QIAquick 

Gel Extraction Kit. Purified DNA products paired with their forward primer in 0.2 mL 

PCR 8 tube-strips were then submitted to Genewiz for Sanger sequencing. 

Additional amplification and second sequencing pass was performed on the 18 

fragments containing variants specific to Red Panda due to the poor quality as seen in 

Table 17. To attempt to increase the quality of the PCR reactions, a Tm 55°C was used, 

followed by running the PCR products on 2% agarose gel. Each fragment was added to 

two 0.2 mL PCR 8 tube-strips wherein one tube contained the forward primer and one 

tube contained the reverse primer resulting in 36 total products to be submitted to 

Genewiz for Sanger sequencing. This increased the likelihood of obtaining usable 

sequence. 
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Number Hom/Het Variant Location Variant Validated by Sanger Cells supported by 

1 Het chr1 43954701 T→G N 2 

2 Hom chr1 181176175 C→T N 2 

3 Het chr2 3328501 G→T N 2 

4 Het chr2 22940605 G→C  2 

5 Het chr2 33246775 A→G N 2 

6 Het chr2 39195366 A→G N 2 

7 Het chr3 19133919 A→G N 2 

8 Het chr4 43977653 A→G N 2 

9 Het chr8 36567823 T→C N 2 

10 Het chr8 71359979 A→G N 2 

11 Het chr6 83802489 G→T N 2 

12 Het chr9 44742670 C→A N 2 

13 Het chr10 112926193 T→C N 2 

14 Hom chr11 73175960 A→G N 2 

15 Het chr13 75771943 G→T  2 

16 Het chr13 90105223 T→C N 2 

17 Het chr16 49868008 C→T N 2 

18 Hom chr16 58466497 G→A N 2 

19 Het chr17 12683939 A→G N 2 

20 Het chr18 43321798 T→C N 2 

Table 17. Validation of variants identified by all five variant callers. Blue indicates that the 

sequence was of good quality at the position of the variant. Yellow indicates mediocre quality at 

the position of the variant. Red indicates bad quality at the position of the variant. Dark grey 

indicates that there was no sequence available at the location of the variant. 
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Number Hom/Het Variant Location Variant Validated by Sanger Cells supported by 

1 Het chr2 120515974 T→C N 2 

2 Het chr3 19133919 A→G N 2 

3 Hom chr3 95734876 T→C  38 

4 Het chr4 130165817 T→C N 2 

5 Hom chr4 132833055 C→G  9 

6 Hom chr5 104435120 C→G  2 

7 Hom chr7 27205154 TA→T  2 

8 Hom chr7 27205568 A→G  4 

9 Het chr8 85261271 A→C  2 

10 Het chr8 85261288 G→A  2 

11 Hom chr10 40251185 G→A N 2 

12 Hom chr11 72777865 C→A  2 

13 Hom chr12 54783425 T→C  2 

14 Het chr13 31630905 A→G N 2 

15 Het chr14 54542219 T→C  2 

16 Het chr16 52270742 C→A N 2 

17 Hom chr16 94468834 C→T Y 34 

18 Het chr19 60771023 C→A  2 

19 Het chr19 60771042 G→T  2 

20 Hom chrX 101404519 C→A N 2 

Table 18. First sequencing pass: Validation of variants only identified by Red Panda. Blue 

indicates that the sequence was of good quality at the position of the variant. Yellow indicates 

mediocre quality at the position of the variant. Red indicates bad quality at the position of the 

variant. Dark grey indicates that there was no sequence available at the location of the variant. 
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Results for first sequencing pass 

 As seen in Table 17 and Table 18, good quality sequence was only produced in  

12 out of 38 samples, but enough valid sequence was generated by 26 (all those except 

dark grey color) to validate the presence of their corresponding variant. Out of 26, only 

one variant, which was exclusively identified by Red Panda, was validated by Sanger 

sequencing. The most likely reason for this is that the variants being validated are part of 

a small fraction of the total number of cells (frequently the variant was supported by 

only 2/55 cells). The only variant confirmed by Sanger was supported by 34 cells.  

 

Results for second sequencing pass 

 Sequence was obtained for 15 of the 20 variants being validated. Table 19 shows 

that three out of the 15 variants identified by Red Panda were confirmed to exist 

including the one confirmed in the first pass. In all three instances, the variants were 

found in nine or more cells and were homozygous. It is possible that these confirmed 

variants were identified because they were homozygous, but a likelier explanation is 

variants identified in more cells are confirmed to be representative of the entire cellular 

population and thus are able to be seen in the Sanger sequencing. It is unclear then 

whether the variants identified by each tool in a low number of cells are in fact False 

Positives because they may be private mutations to a very small subset of cells. 



113 
 

 

  

Number Hom/Het Variant Location Variant Validated by Sanger Cells supported by 

1 Het chr2 120515974 T→C N 2 

2 Het chr3 19133919 A→G N 2 

3 Hom chr3 95734876 T→C Y 38 

4 Het chr4 130165817 T→C N 2 

5 Hom chr4 132833055 C→G Y 9 

6 Hom chr5 104435120 C→G N 2 

7 Hom chr7 27205154 TA→T  2 

8 Hom chr7 27205568 A→G N 4 

9 Het chr8 85261271 A→C N 2 

10 Het chr8 85261288 G→A  2 

11 Hom chr10 40251185 G→A N 2 

12 Hom chr11 72777865 C→A  2 

13 Hom chr12 54783425 T→C  2 

14 Het chr13 31630905 A→G N 2 

15 Het chr14 54542219 T→C  2 

16 Het chr16 52270742 C→A N 2 

17 Hom chr16 94468834 C→T Y 34 

18 Het chr19 60771023 C→A N 2 

19 Het chr19 60771042 G→T N 2 

20 Hom chrX 101404519 C→A N 2 

Table 19. Second sequencing pass: Validation of variants only identified by Red Panda. Blue 

indicates that the sequence was of good quality at the position of the variant. Yellow indicates 

mediocre quality at the position of the variant. Red indicates bad quality at the position of the 

variant. Dark grey indicates that there was no sequence available at the location of the variant. 
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CHAPTER 3: DISTRIBUTION OF RED PANDA 

 

Introduction 

Adoption, distribution, and ease-of-use is necessary for any bioinformatic 

application. Given that, the popular source code repository GitHub97 is used to 

distribute Red Panda. This is done under the MIT License98, one of the most permissive 

Free Use licenses available, to ensure easy adoption by any end-user. It states that: 

‚Permission is hereby granted, free of charge, to any person obtaining a copy of this 

software and associated documentation files (the "Software"), to deal in the Software 

without restriction, including without limitation the rights to use, copy, modify, merge, 

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons 

to whom the Software is furnished to do so‛. Additionally, Read the Docs99 is used to 

create documentation on how to run Red Panda. 

 

Distribution and function 

Red Panda, written almost entirely in the Perl programming language, relies on a 

number of different tools to function. The ‘Statistics::Basic’ Perl package is needed to 

perform basic statistics within the main Red Panda Perl script. The tool mpileup found 

in the samtools package41 is required to generate a list of every variant in a sample. 

GATK HaplotypeCaller25 is necessary to check variants that do not fit the expected 

bimodal distribution; however it is possible to use any standard variant caller for this 

step. Based on the above results, we recommend GATK HaplotypeCaller or FreeBayes. 

https://paperpile.com/c/mxuu76/OYcN
https://paperpile.com/c/mxuu76/4wFK
https://paperpile.com/c/mxuu76/sMqX
https://paperpile.com/c/mxuu76/sueJ
https://paperpile.com/c/mxuu76/Q2av
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Bedtools100, vcf-sort found in the vcftools package101, and Picard Tools102 are all necessary 

to manipulate the different types of files used during the variant calling process. 

As these tools are all supported by different institutions under different licenses, 

Red Panda does not come prepackaged with them. Instead a script is provided that 

assists the user in acquiring each tool, with the only exception being the Statistics::Basic 

package. As this is a Perl package the user will need to install this independently via 

CPAN103.  

https://paperpile.com/c/mxuu76/7yeQ
https://paperpile.com/c/mxuu76/M5jL
https://paperpile.com/c/mxuu76/15if
https://paperpile.com/c/mxuu76/kyYK
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DISCUSSION  

 

Variant calling on human articular chondrocytes 

Red Panda performs better than software designed for bulk NGS data and 

proves that scRNA-seq offers unique information on a small number of variants which 

Red Panda takes advantage of.  

Using the exome data as a reference for comparisons, Red Panda’s superior 

performance is well evidenced. There is consistent overlap in the results between the 

tools. Furthermore, while Red Panda shares a significant number of variants with those 

identified by other tools, it also identifies the most unique variants. Because of this, Red 

Panda provides both the highest PPV (45%) of any of the tools as well as the highest 

number of variants in concordance with the exome (913 on average). In comparison, on 

average FreeBayes identifies 65 variants, GATK HaplotypeCaller 705, GATK 

UnifiedGenotyper 222, and Platypus 386.  

Unexpectedly, this superiority is not entirely from the heterozygous variants 

found in each sample. Instead, it appears that Red Panda gains an advantage against 

other tools by intentionally separating homozygous-looking variants from those variants 

that are heterozygous and then processing them differently. From the heterozygous 

data, on average Red Panda identifies 154 variants in agreement with the exome as 

compared to 31 for FreeBayes, 136 for GATK HaplotypeCaller, 118 for GATK 

UnifiedGenotyper, and 36 for Platypus.  
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PPV was used as the main metric to determine how well each tool performed 

because calculating sensitivity provides results that are difficult to interpret due to the 

extremely high number of True Negatives identified in variant analysis. Red Panda’s 

average PPV was the highest at 45% followed by GATK-HC with 32%. The rest of the 

tools all had a PPV of <10%. Despite having the highest PPV of any of the tools, 45% is 

still far lower than what we would expect in a variant calling experiment using bulk 

sequencing32. This is likely due to much higher quality sequencing that is acquired in 

traditional NGS.  

  

Variant calling on mouse embryonic fibroblasts 

 As with the articular chondrocyte results, Red Panda performs better than the 

four bulk variant callers assessed with the MEF results. After VCF files were generated 

for each cell by all five tools, the files were compared by looking at the total number of 

variants identified by each tool as well as the percentage shared in every pairwise 

comparison of each cell.  

Red Panda identifies, on average, the highest number of variants per cell, 

surpassing all of the other tools: 1,071 on average by Red Panda, 865 by FreeBayes, 611 

by GATK HaplotypeCaller, 574 by GATK UnifiedGenotyper, and 315 by Platypus. 

Assuming we can extrapolate from the PPV results from the articular chondrocyte data, 

this also means that Red Panda is identifying the highest number of True Positives as 

well. Surprisingly, FreeBayes identifies the second highest number of variants of the 

four tools. This is unexpected due to the results from the human articular chondrocyte 

https://paperpile.com/c/mxuu76/3yPpA


118 
 

 

data where FreeBayes had the fewest number of variants shared between the scRNA-seq 

results and the exome. One explanation from this is that while FreeBayes identifies a 

high number of variants, the majority of those are False Positives. This idea is supported 

by the PPV numbers seen in Figure 20 for FreeBayes.  

Since a paired exome to which we could compare our scRNA-seq results was not 

generated for MEFs, every possible pairwise comparison between each cell for every 

tool was performed instead to attempt to assess the quality of the variant calls. The 

MEFs sequenced are presumed isogenic, so the variants identified in each cell should 

theoretically exist in every other cell. Given this, these pairwise comparisons helped 

assess whether each variant caller performed well based on the consistency of their calls 

or if they performed poorly, randomly identifying variants in each cell. Comparisons 

were split up into three groups: total variants, exclusively homozygous-looking variants, 

and exclusively heterozygous variants. 

These comparisons showed that each tool, especially Red Panda and FreeBayes, 

performs reasonably well when only the homozygous-looking variants are being 

compared, but they all suffer when assessing purely heterozygous variants. However it 

is important to note that, while GATK HaplotypeCaller and GATK UnifiedGenotyper 

both have a good fraction of overlap among homozygous-looking variants, it does not 

appear to affect the overall fraction of variants identified by these tools. This is because, 

for these two tools, homozygous-looking variants do not contribute much to the total list 

of variants shared. Also important is that Red Panda performs extremely well for 

homozygous-looking variants, but is average for heterozygous variants when compared 
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to the other tools. This is due to the fact that, while Red Panda, in principle, confers an 

algorithmic advantage to identifying heterozygous variants, the monoallelic nature of 

gene expression and uneven sequencing coverage depth may preclude the tool from 

realizing its full potential. Due to this caveat, the majority of the heterozygous variants 

identified are actually picked up by GATK HaplotypeCaller since most of these are 

unsupported by a bimodal distribution as seen in Figure 19. 

When looking at both the raw number of variants overlapping and the fraction of 

variants overlapping in these pairwise comparisons, Red Panda performs the best at 

both. This is important because, as is the case with FreeBayes, it is possible to have a 

large number of variants shared, but also have a small fraction of the total variants 

possible be shared. This indicates that there are potentially a lot of potential False 

Positives in the data generated by FreeBayes which fits with what was seen in the 

articular chondrocyte data.  

It is clear that the tools with the highest fraction of variants shared pairwise 

between two cells comes from the homozygous-looking class. This makes sense as it is 

less likely that allelic dropout will occur in this class as a result of allele-specific 

expression making for a more stable population of variants in the scRNA-seq data. 

Tying into this is the fact that it is rare for any tool to have more than 100 heterozygous 

variants shared between two cells. This is likely due to the stochastic nature of allele-

specific expression. 

Lastly, due to the results from the Sanger sequencing, it is difficult to say with 

certainty whether these tools were ineffective at identifying variation in scRNA-seq data 
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or if there was simply not enough DNA from the cells containing the variant to be 

picked up in the Sanger sequencing. Out of forty variants tested, only three were 

confirmed to exist, all of which were exclusively identified by Red Panda. However, this 

is likely due to these variants having been found in a larger proportion of cells than 

those variants being tested from the group that were identified by all five variant callers. 

Ideally Sanger validation would have been performed for locations supported by all five 

tools and found in more than 10 cells, but no such variants existed to be tested.  

It is clearly possible to detect significant variation at the single-cell level, but due 

to the challenges in proving its existence with corroborative orthogonal sequencing it is 

difficult to know with certainty what software performs the best. Instead, we must rely 

on paired genomic sequencing as done with the human articular chondrocytes and 

simulated data to assess quality. 

 

Evaluation using simulated data 

Ideally, orthogonal sequencing would be able to validate variants that only 

appear in a small population of cells, but in the absence of such data, simulations can 

provide valuable insight. For our purposes, this involves inserting random variation 

distributed throughout the transcriptome and then using that as a master list of True 

Positives against which each tool can be measured. After adding ~1,000 simulated 

variants to the alignments from the MEFs, we were able to evaluate how well FreeBayes, 

GATK-HC, GATK-UG, Platypus, and Red Panda performed. Based on these results, Red 

Panda proves its advantage in identifying bimodally-distributed variants as well as 
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homozygous variants, a class of variant that saw other tools struggle in comparison. 

When assessing total heterozygous variants, FreeBayes is superior to the other tools. 

This is counterintuitive to what was seen in the results from the human articular 

chondrocyte experiment where FreeBayes identified very few variants in concordance 

with the list obtained from exome sequencing. 

 Both GATK-HC and GATK-UG perform similarly in the simulation with the 

latter consistently performing slightly better than the former. However, it is because of 

this similarity in results that might offer an explanation for why FreeBayes seemingly 

performs so poorly in the chondrocyte data. When variants were called in the exome to 

generate a master list against which the variants from the scRNA-seq data could be 

compared, variants were only retained if they were identified by at least two of the 

following three tools: FreeBayes, GATK-HC, and Platypus. However, if the variants in 

this master list were consistently only supported by the latter two, then it follows that 

variants identified by FreeBayes in the scRNA-seq experiment would be filtered out and 

make it appear as though FreeBayes identified a low number of True Positives as seen in 

Figures 17-20. 

The simulated data seems to indicate that FreeBayes has good sensitivity, but 

identifies a large set of variants different from both GATK-HC and Platypus. This is 

corroborated by data in Figure 33. Given this, in order to improve the accuracy of Red 

Panda, it might be wise to switch to only using FreeBayes or using a combination of both 

FreeBayes and GATK-HC to evaluate heterozygous variants that do not follow a 

bimodal distribution. For example, when searching for variants that are assumed to be 
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private to a small number of cells—e.g., tumor cells—Red Panda could switch to using 

FreeBayes under the hood and then switch to using GATK-HC in situations where 

variants are expected to be shared across the majority of cells. 

 

When to use Red Panda 

Red Panda consistently performs better than other variant callers based on a 

number of metrics. Whenever it is necessary to analyze variation specific to a single 

cell—for example, looking at clonal tumor cell populations—, Red Panda will likely 

provide the best results. However, there are instances where using a different variant 

caller makes sense. Specifically, one should use GATK HaplotypeCaller for variant 

calling when it is preferred to pool together the reads from all of the cells. As seen in 

Figure 29e-f, this allows for greater sensitivity in identifying heterozygous variants. 

After identifying this specific class of variant, results can be pooled with those generated 

by Red Panda. 

Lastly, it is important to note that the advantages conferred by Red Panda are 

currently limited to scRNA-seq generated by library-preparation methods that generate 

cDNA from full length transcripts such as Smart-seq2 and Holo-seq104, although the 

latter has not been tested.  

 

Final remarks 

Based on the human articular chondrocyte and MEF data, Red Panda can 

provide a distinct advantage over other available software. However, this improvement 

https://paperpile.com/c/mxuu76/Gxcq
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is not entirely from the heterozygous variants as expected. Instead, Red Panda gains its 

major advantage in predicting homozygous-looking variants over other tools by 

intentionally separating heterozygous variants from variants that are homozygous-

looking and then processing them differently. Due to the unique nature of scRNA-seq 

data, one must treat heterozygous variants with special consideration. Red Panda does 

provide a custom approach to this class of variant, but the number of variants that are 

specific to its method of dealing with bimodally-distributed heterozygous variants is, as 

seen in Figure 19, limited. 

From these results it is clear that due to the inherent nature of RNA expression 

patterns in single cells, it is difficult to assess what variants exist in the genome with the 

same accuracy that we can with standard exome or WGS. Despite this, Red Panda 

provides a novel method of identifying variants in scRNA-seq and performs this 

function better than variant callers designed for bulk NGS datasets in certain categories. 

Future work includes creating a select dataset of genes that show consistent biallelic 

expression and testing the performance of Red Panda on this dataset. 
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APPENDIX A: SANGER SEQUENCING 

Sequencing primers 

# Primer name Forward primer Reverse primer Variant location Expected length 

1 

chr1:43954201-

43955201 

TGGATTCACTAT

GGCAGCAA 

GGTCACAATGGA

GAGCAGGT chr1:43954701 510* 

2 

chr1:181175375-

181176975 

TGCTGACTCCGA

TCTGTCAC 

CATTCAAACTGG

TGCTGTGG chr1:181176175 484 

3 

chr2:3327701-

3329301 

CAGCAAGTGGA

ACAAAGTGG 

TCTAGCAAGGTG

GGTGAAGC chr2:3328501 606 

4 

chr2:22939805-

22941405 

TGCTTCATGTGC

AGAAAACC 

GATTCAAGGGA

GGGTGTGAG chr2:22940605 690 

5 

chr2:33245975-

33247575 

TGCTCAGTTCTC

AGGTGCTG 

CCTATTGGCAGC

GACTTCTC chr2:33246775 585 

6 

chr2:39194566-

39196166 

TAGCAGATTCCC

TCGCCTAC 

TGGTGTGGTTTTT

GAACAGC chr2:39195366 495 

7 

chr3:19133119-

19134719 

TGAGGCTGGAG

GAGAAAATG 

AGAATGAGGAT

GTGGCTTGG chr3:19133919 619 

8 

chr4:43976853-

43978453 

TTTCCCACAGGG

CACTTTAC 

CAGAATCCTCAA

AGCCCAAG chr4:43977653 676 

9 

chr6:83801689-

83803289 

AGCAGGCACAG

AACTCCTTC 

TATAACCAGAGC

CGGGTGAG chr6:83802489 691 

10 

chr8:36567023-

36568623 

AAGCAAGGATG

GAAACGATG 

ACTCACCCACCA

ACAGGAAG chr8:36567823 520 

11 

chr8:71359179-

71360779_7 

AGGAGGCTGTTG

TTCCAGTG 

GCCCATGTCCAG

GTTACAAG chr8:71359979 549 

12 

chr9:44741870-

44743470 

CTATCCCAGTCC

CCTTCCTC 

CACCTCCCTCTC

TGTCCTTG chr9:44742670 461 

13 

chr10:112925393-

112926993 

TCCCTTTCATGTT

TCCCAAG 

ATCTCTCATGGC

TCCCTCTG chr10:112926193 607 

14 

chr11:73175160-

73176760 

TTACCCAATCCA

GCAAAAGc 

CTCATTCTCAAA

GCGGGAAG chr11:73175960 690 

15 

chr13:75771143-

75772743 

GTTGGTGTGTGT

TTGCTTGG 

ATGCTTCCCTTTT

CAACTGG chr13:75771943 515 

16 

chr13:90104423-

90106023 

CCCAAAGGTGGT

ATTTGTGG 

TTCAAGCACGAT

GTCAAAGC chr13:90105223 473 

17 

chr16:49867208-

49868808 

AAACTGTGGTCA

TCCCTTGC 

AACACGAGTGC

CAGACTCAC chr16:49868008 455 

18 

chr16:58465697-

58467297 

GGTCTCAGCTCT

GCTCATCC 

ACTTGGGTCAGT

TGGGATTG chr16:58466497 407 
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19 

chr17:12683139-

12684739 

AGGCACCACGG

AGTTAGATG 

CAGCAAGGAGG

AGGAGACAG chr17:12683939 428 

20 

chr18:43320998-

43322598 

AGCAATAACTTG

GCGTTTGG 

CTGTAATTCTGC

GCCTCCTC chr18:43321798 506 

 

Table. Primers for variants identified by all five variant callers 
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# Primer name Forward primer Reverse primer Variant location Expected length 

1 

chr2:120515174-

120516774 

GAAAGAGAAATG

GCGCAGTC 

TCAGAACAACAA

GCGACAGG chr2:120515974 602 

2 

chr3:19133119-

19134719 

TCTGTCTTGTGCG

GAAAATG 

CCACGGATGTGTT

CAAAGTG chr3:19133919 598 

3 

chr3:95734076-

95735676 

CTTCCTTTCCACA

GCAGGAC 

TGCCTATCCACAA

CCTCCTC chr3:95734876 611 

4 

chr4:130165017-

130166617 

TAGGAGGGTGATG

AGGTTGG 

TGCGATCCAGAT

GTTGAGAC chr4:130165817 658 

5 

chr4:132832255-

132833855 

GGCAATGTCTGAG

GCTTCTC 

TCAGGAAGATGA

GGCAGGAG chr4:132833055 523 

6 

chr5:104434320-

104435920 

GAAAGTTCTGCCG

AGACAGC 

TGAAAATACCGG

GAAACCTG chr5:104435120 688 

7 

chr7:27204354-

27205954 

TATGTGGTTGCTG

GGAATTG 

GGTGTGGAATAT

GGGCTGTC chr7:27205154 485 

8 

chr7:27204354-

27205954_2 

GGACAGCCCATAT

TCCACAC 

AGCACAGCGGTC

AGGTAGAC chr7:27205568 689 

9 

chr8:85260471-

85262071 

TTCATAGATTGGC

CCCTCAG 

TTTCCAGAAGAC

CTGGGTTC chr8:85261271 559 

10 

chr10:40250385-

40251985 

AGCTCACTCTGGC

CTTGAAC 

CTTCATTTGGGCG

ATAGGAC chr10:40251185 628 

11 

chr11:72777065-

72778665 

GGCAGGTGGATTT

CTGTGAG 

GCTGGTACTTGGA

GCAGGAC chr11:72777865 540 

12 

chr12:54782625-

54784225 

GTCTCGCTGGTCC

TTGAGAG 

TGGACTGCTGGG

ATTAAAGG chr12:54783425 525 

13 

chr13:31630105-

31631705 

ACTGCAACGGACT

CACACTG 

GGCACCTGTATCC

GAAGAAG chr13:31630905 429 

14 

chr14:54541419-

54543019 

GTTCTGCCTCCAC

TCAGCTC 

GCTGGCCCCTAA

ACTCTTTC chr14:54542219 428 

15 

chr16:52269942-

52271542 

TTCCTCTCCTGGG

AAAAGTG 

TGCCCTGTGTCAT

CTACCAC chr16:52270742 465 

16 

chr16:94468034-

94469634 

GCTCTCAGCCTCC

TCAGTTC 

CAGGGACACCAC

AGACAATG chr16:94468834 680 

17 

chr19:60770223-

60771823 

CTCCCGAATGTCC

TGAGTTC 

CTGCAAAATACA

GGGGAAGG chr19:60771023 662 

18 

chrX:101403719-

101405319 

CTACATCTCCAGC

CCCTGTC 

TCCCCATCTTACC

TTTGTGG chrX:101404519 600 

Table. Primers for variants only identified by Red Panda 
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Summary of the quality for the first round of sequencing 

Primer Name QS CRL Failure Reason 

1-SR_chr1_43954201-43955201 50 458 Poor Quality 

2-SR_chr1_181175375-181176975 54 427  

3-SR_chr2_3327701-3329301 56 555  

4-SR_chr2_22939805-22941405 38 385 Poor Quality 

5-SR_chr2_33245975-33247575 57 532  

6-SR_chr2_39194566-39196166 53 446 Poor Quality 

7-SR_chr3_19133119-19134719 32 244 Poor Quality 

8-SR_chr4_43976853-43978453 37 529 Poor Quality 

9-SR_chr6_83801689-83803289 54 643  

10-SR_chr8_36567023-36568623 40 439 Early Termination 

11-SR_chr8_71359179-71360779_7 56 495  

12-SR_chr9_44741870-44743470 41 402 Non-specific 

13-SR_chr10_112925393-112926993 54 527 
Homopolymeric or Repetitive 

Region 

14-SR_chr11_73175160-73176760 57 637  

15-SR_chr13_75771143-75772743 11 1 No Priming 

16-SR_chr13_90104423-90106023 51 422 Early Termination 

17-SR_chr16_49867208-49868808 52 395  

18-SR_chr16_58465697-58467297 56 356  

19-SR_chr17_12683139-12684739 53 377  

20-SR_chr18_43320998-43322598 57 453  

21-SR_chr2_120515174-120516774_1_F 44 528 Poor Quality 

22-SR_chr3_19133119-19134719_1_F 43 528 Poor Quality 

23-SR_chr3_95734076-95735676_7_F 23 215 Poor Quality 

24-SR_chr4_130165017-130166617_2_F 49 482 Poor Quality 

25-SR_chr4_132832255-132833855_7_F 18 14 Poor Quality 

26-SR_chr5_104434320-104435920_F 34 220 Poor Quality 

27-SR_chr7_27204354-27205954_7_F 13 11 No Priming 

28-SR_chr7_27204354-27205954_F 25 99 Poor Quality 

30-SR_chr8_85260471-85262071_F 20 17 Early Termination 
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31-SR_chr10_40250385-40251985_8_F 55 567  

32-SR_chr11_72777065-72778665_5_F 44 269 High Background 

33-SR_chr12_54782625-54784225_1_F 24 235 Poor Quality 

34-SR_chr13_31630105-31631705_F 43 303 Early Termination 

35-SR_chr14_54541419-54543019_1_F 41 374 Poor Quality 

36-SR_chr16_52269942-52271542_F 55 422 Poor Quality 

37-SR_chr16_94468034-94469634_3_F 26 507 
Homopolymeric or Repetitive 

Region 

38-SR_chr19_60770223-60771823_F 33 366 
Homopolymeric or Repetitive 

Region 

40-SR_chrX_101403719-101405319_6_F 57 551  

Table. Sequencing results from first round of Sanger sequencing 
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Summary of the quality for the second round of sequencing 

Primer Name QS CRL Failure Reason 

SR-21-F_chr2_120515174-120516774_1_F 45 532 Non-specific 

SR-21-R_chr2_120515174-120516774_1_R 44 538 Non-specific 

SR-22-F_chr3_19133119-19134719_1_F 56 545  

SR-22-R_chr3_19133119-19134719_1_R 54 545 Poor Quality 

SR-23-F_chr3_95734076-95735676_7_F 18 70 Non-specific 

SR-23-R_chr3_95734076-95735676_7_R 31 330 Non-specific 

SR-24-F_chr4_130165017-130166617_2_F 14 11 Poor Quality 

SR-24-R_chr4_130165017-130166617_2_R 50 600  

SR-25-F_chr4_132832255-132833855_7_F 38 338 Non-specific 

SR-25-R_chr4_132832255-132833855_7_R 39 420 Poor Quality 

SR-26-F_chr5_104434320-104435920_F 19 43 Non-specific 

SR-26-R_chr5_104434320-104435920_R 31 220 Poor Quality 

SR-27-F_chr7_27204354-27205954_7_F 12 24 No Priming 

SR-27-R_chr7_27204354-27205954_7_R 13 1 Poor Quality 

SR-28-F_chr7_27204354-27205954_F 51 631  

SR-28-R_chr7_27204354-27205954_R 50 627  

SR-30-F_chr8_85260471-85262071_F 22 77 Non-specific 

SR-30-R_chr8_85260471-85262071_R 15 28 Poor Quality 

SR-31-F_chr10_40250385-40251985_8_F 52 554  

SR-31-R_chr10_40250385-40251985_8_R 21 82 Non-specific 

SR-32-F_chr11_72777065-72778665_5_F 28 197 Non-specific 

SR-32-R_chr11_72777065-72778665_5_R 23 84 Non-specific 

SR-33-F_chr12_54782625-54784225_1_F 11 1 No Priming 

SR-33-R_chr12_54782625-54784225_1_R 17 72 Poor Quality 

SR-34-F_chr13_31630105-31631705_F 38 259 Early Termination 

SR-34-R_chr13_31630105-31631705_R 24 132 Non-specific 

SR-35-F_chr14_54541419-54543019_1_F 15 32 Poor Quality 

SR-35-R_chr14_54541419-54543019_1_R 13 1 Poor Quality 
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SR-36-F_chr16_52269942-52271542_F 55 404  

SR-36-R_chr16_52269942-52271542_R 53 412 Poor Quality 

SR-37-F_chr16_94468034-94469634_3_F 21 221 Poor Quality 

SR-37-R_chr16_94468034-94469634_3_R 39 434 Non-specific 

SR-38-F_chr19_60770223-60771823_F 23 320 Poor Quality 

SR-38-R_chr19_60770223-60771823_R 30 321 Non-specific 

SR-40-F_chrX_101403719-101405319_6_F 56 545  

SR-40-R_chrX_101403719-101405319_6_R 56 544  

Table. Sequencing results from second round of Sanger sequencing 
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Sequence from the first round of Sanger sequencing 

Sanger sequence for sample 1-SR_chr1_43954201-43955201: 

NNNNNNNNNGNNTAGANCCTTCNTGTGGAACCATCCTAAAACTAGTCTACACTCCAAGCTAA

GCTTTAGTATATACTTTTCACTTGCCCTGATGGTTCTCTGTATCATCTCTGACCATCCATGTCCT

TGTGTGTGGGTTAGCATTGACTTCTGGGGAACTTCTGACCTAAGCCTAACTGCTTACTCTGTGA

AACAAAGGAATGTAGTCATTGGATTTGAGTGGTGGGAGAGGAAAGCAATGAGAAGGTGACTG

AGAAACTGTATTGTGTGATCTTTAAAAAGGAGTGGGAGGATAAATTTTAATGCCTATTTCTCC

TTCCCAACAGAGCCTGTGTTGATTCAAATGAGAATGGGGACTTGAGTAAATGTGCCGTATTGA

GAAACTACAAAGAGGCCCAAGAGTACAGTTCTTTTGGCACAGCTGAGATGCTGAATTACTCTG

TGAACATTTATGACGATGGGAACCTGCTCTCCATTGTGACCA 

 

Sanger sequence for sample 2-SR_chr1_181175375-181176975: 

NNNNNNNNNNNNNNNTGGGANANGACCACTGCCTTCCTGGCTTTTCCCTCCCTGCGACCCCCA

CAATGGGAAGACCCCTCAGTACAAGCCTCTCTCTTCTCTCAGGATCCCGAGGGGCATATGATC

ATGGTGAATGCTATGGACTTGGCTTGGCCTCAAGGGCAAGTTGTACCAGATTTTTGTTGTTGTT

GTTCATCAGGATACATTGGAGTTAATTCCACTTTTCCTTCCAAGAGCTGTGGTCACCCTGGTTA

TCTCCTATTGGAAAACATGGATTTCAAGGGAGACTGGTTAGACCCAGCAATTATGGAGTTGAA

AACACCATGAACATCAATCAGGCTTATGTTAGATATAGGGTCTTCAAAATGACAAGTCACTTT

TTTTCCATAAAGGAAACATTCCCGTAAACTAAAAGGGGAGGGAGAGGGAAAGACTGTCCACA

GCANNNNTTTGAATGA 

 

Sanger sequence for sample 3-SR_chr2_3327701-3329301: 

NNNNNNNNNNNNNNNTCNAANCTTGGGANGAAAAGTTTTGCTATCCCACTCACCTCCTAAAT

TCCACAATGACTTCCAGACAGAGTGGATTAGTAAAGTCCTGACAGCTCCACTCCCAGCCAGAA

AGACCCATCACTGTCTTGTCTGTCCTCGTGCCACATGTCAGCTAAGTACTGCTGTAATAAGTTC

TGGCTTAGGTTTTGTTTTTAGAGTTGTTAGCTTTGATTTTTGTTTGTTTTTGGTGCTGGGGATCA

AGCCAGGGATAGTATGTGCTGGTAAGCACATATTCTGCCATAGAGCTCTGCCCCTAATGTACT

CTTGATAGATGTTATATATTACAAGGAAACTGATGATGCGCAGGGAGAGAATTCTTATGAAAC

AACCTTATCAGGCTTTTGTTCTGTATCAATTAAGCCTTTCTCCCAAGCCTGCCTTGATGCTTAC

CTACAAAGAAAGCCAAATTACCACAAAGTAAAAATGACATGCCGCTCTGAAGGCAGTGTACT

GCTTAACATTTAGTGTCTCTCTCTCTCTCCGTTGCAACTGAGGACTTTCTTCAGTTGCTTCACCC

ACCTTTGCTAGAA 

 

Sanger sequence for sample 4-SR_chr2_22939805-22941405: 

NNNNNNNNNNNNNATTTCANCTTATTGATGGGCAATTTTTATTGGCAAAGTTTTTCGGAAAAC

TTTTTAAATGTAATTAAACCAGTGTCATTATAGTCCTATAAATTCTAATCGAGGTATCCTGATG

GTTATATGTGGTATTGTTTACACTGTTAATGCCCACATGTAAAGCCATTACACAAATAAATAA

TCAACGTTAAAATTCAAGTGGTTTGTCTTTGTTTCACCATAGGATTAAAGGTCAGAGAATTTTG

AAGTCTGTACTATTTAAATCCACATTAGTTATACTTTAACAATATCCAAATTTTTCATATAGGA

GCATAGTTTATTATAAAAGACTAGATAAAATTTAGACAACAGGTTATTTACAAATGAAGAAA

ACATTTTGCTTCAAAAAGGAAATGCATAATAAAGAGCTATCNGATTGCTAATGNCATAGTACT

TCGAAAGTAGGANAAGATAANGGNTATCTGGAGTCNGTGTTNTTGGNGAACNNNGGTCTTNN

GTTTTTGNGAT 

 

Sanger sequence for sample 5-SR_chr2_33245975-33247575: 
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NNNNNNNNCTNGCGCTNNNANATGTATGTCTCATTGTCTAAGGACAGAACAGGCATTGTAGC

CCTGATTTCAAAAACAGTCCTTGGCACTGCCTGGATTTTCCCAGAATGTCCTCAAGCTCATCTC

TCACATAGGGGCTCCTGGCCTTCTCTCCTTGAGCCCCACCTCCCCTCAGACTGTTGCACTTCCC

CTCTCAGGACGGCTCAGCATCCCTCCGTACAGTTACCCCTCAGCCTGCACCTCCTGTGCCTTAG

TCTCTGGCTGCTCACTGGAAGTCAAGTCCTCTTCTCCCTGCTCCCCTGGCCTCTCCTTTTCTGCC

ACACAGAGCTTTATTTCTGGCACAATTCGTTGGCCTCTGGGCAGGAAACAGTCTGGGCTCAGG

TCCTGGCTGAGAAGGGAAGGCCAGGCCAGAAGCCACAGAGGCAGCGGCATAGACCTGTATTC

AGTTCTGCACCTTCCATTCATACTTTAGCCTCCACAGAATTTTAACCTCTACACAAACAGTACC

CTGCTTTGCCAGAGACACCCCACTGGAGAGAAGTCGCTGCCCAATAGGANN 

 

Sanger sequence for sample 6-SR_chr2_39194566-39196166: 

NNNNNNNNNCNGNNNNNTCTCCCACAAGATTACTCTGTATAATACATAGCCCTTGTTTAGTAG

AGGGATCCAAATATTCTTTTTCAGGCTTACAAAGTCCAATACATTCATTCACTCTCTCTTTCCT

TCACAAGTCTAATAGCAAAAACTACTTTTTCCATGCCCCAAAGCCATTATCAGTGGAAGAATA

GTCAGGCAAAACAGAGATGGCAGTTAAGGAATGGACAGAATATTATTGGCACATGCCCAGCT

AGTGACAAACAAATGCAGTACACCATGACTTGAAAATAAGTCACATTACAAGGAGAATGAAA

ACAACTACATCAACTAAGCTAAGGAGTGTGAAGTGGAAAGGGGATTGAGAGTTACTGGTTTA

ACTGGTACAACTTAAAAGCAGGAGGGCAAGCACTTAAATACAATTCATGGTAACATGATCAA

GAAAATACTGCAGAGCTGTTCAAAAACCACACCAAGTNANNN 

 

Sanger sequence for sample 7-SR_chr3_19133119-19134719: 

NNNNNNNNNNNNNNNTGTNNACAGAATAAAGCTACACATACATTCGGTTTTAACAGTGGACC

CATGTTTTTCANAACAAAATGTGAGGCAATTAAGCAAAGGAAAACAATACCAAAATACCTTC

ATAAACAAACTTGACCTGTAGCCTCTGTCTTGTGCGGAAAATGTCCAATAAGATGTAAAATGC

AGCATACATAGTCATGTAATCTAGAAACTTTCCATGATAATTAATTGCAAATTGCACTTGACA

GTTCACCACAACAATGGAAAGCTGGNCCCCTGTTGGTTTGCACAGTCCTTGAACCCCTAACTG

AANTTAAAGNCNCCAGNNAAATGATCTGGAAGTGTGTATGN 

 

Sanger sequence for sample 8-SR_chr4_43976853-43978453: 

NNNNNNNNNNNANNNNNNGANNNAGGCGTGGGGAAGGCATCTGCGAGTGACGGGTCCTCCT

TTGTGGTGGCTAGATACTTCCCAGCAGGGAATATTGTCAACCAGGGCTTCTTCGAAGAGAATG

TCCCACCTCCAAAGAAGTAGCTCTCGCCAGCAAGTGTAACGAGATGGAGATGCATATATGAA

GTGCCTATAGAACCACAAAAGCACCAGCGAGTGTCTGTCCCCGTGGGTGTGTGTATTTATGTG

TTTACCTGTGAGCATCTCTCGTGACAGCTACACCTGAGTACCTTCTGATTGAAGGATGGCCATC

TGAAACATTTGTCCAGAGGGCTAGCTAACCACAATTGGGTAAGATTAGTTCTGAAATCTTTTT

TCTGTTTTTGTTTGGTTGGGGTATTGTTTGTTTGTTTTGCTTTTATTTTTGTTTTGTTTTGTTTTTT

CAAGGCAGGGATTCTCGGTGTAGCCTTGGCTGTCCTAAAATTTGCTCTGCANACCAGGCTGGC

AGAGATGCACCTGCCTGTGCCTCCCAAGTGTGGGANTAAAGGCATGATCCACCACTGCCTGGN

TTTTGNTTTTGCTTTTTAAAACAAACTTNTTTTGAAACNGTCGTCCNTCTANTATCCNTCCNTG

G 

 

Sanger sequence for sample 9-SR_chr6_83801689-83803289: 

NNNNNNNNNNNNANNGCGGCATTCTTCTGCATTGGGGGGTGCCAGCCTGGGGGCCAGGCACA

TTGGATACCACCTTCCCATGGACTACAGTATCAATGCCATTGCCTTCTATTCCTATACCTTCTA

GAGTCTGTCCCCCTGCCCAACCAGCCAACACCGAGAGCTGGGAGACTTTCCTTTTTAAAAAAC

ACATATGGAAGAAAATAAATGCACTTTACTCCTTCCCTAGCAGGGTGTCATCTTCCATACATT



145 
 

 

GCTGTGCATGTCCTTGGCACCTCCAGCAGGTTCACCTAGCAAGCTCTCAGTTTAAAGACCCAC

CAGGCTCTTAGGCATATAAGAGCCCAGACCTTCCCATTTCCACACTATATGCTTTGGCTGCCA

GAAGCTGGGACCCAAGTTTCCTCTTAGCAGTTATGATTCCTCATGACAGAACTAAGTGTGTCT

AAGCCTACCTCCTGGGGAATGACCCAAGGTCTATTGTCTCCCAAGCTCTGGGAGACAGTACAA

TCCTAGTCTCAATTTTGACTTAATTTTATTTGGTAGCTGTAGGTACACAGGGCAGTTTTTCTTTC

TCATGTGTGCATGAATCCCCTGAGGGCCAAGTAGGCATTGCTTAACTCAGTGGCCTGCCTGCT

TTCTGACTGCTGCTCACNCGGCTCTGGTTTNANAANN 

 

Sanger sequence for sample 10-SR_chr8_36567023-36568623: 

CGNNNNNNNNNTAGGGTCATGCTAAGCTACCTTTTTGTCTCTTAAAAAATAAGAGAAGCAAA

TTCAATCAGTGTTCTTTAGCAAATGATCAATTTATTAGGTGTCTACAAGTACAAAACACTGAC

AGCTGCTGTAGAGAAGTAGAAAGATGTGCAGGAGATGAGCCTGCCCTTGAAGAACTCACAAT

CTAGACCCAAGAATCATCACGGGGACAAATCGTGGCCACAGTACAAGATGTTAACACCAGTT

CTTGGAAAGTTCCGTGCTCTGAATTCTCTCCTCTGGCCAGACGTAGGTAATCTCTTCAACAGGA

AAGTCAAAAGTGGGAAAGAGACCTCTTGCGGACTCATCAGTGACCTTTCCTTTGCTTCTAAGC

ATCGTTCCGTTGCTGTTGCTCTGTTCTNGGAACCTCTGGGCATCCTTTCTGACCTTGGTCTGGG

GAGACTCTCCGACTTCCTGAACCTTCACCANGNCTTCCTGNTGGTGNNNNNANTANTCAANNC

CCTTGAANTG 

 

Sanger sequence for sample 11-SR_chr8_71359179-71360779_7: 

NNNNNNNNNNNNCGCAGANAGGACCAGGTACATTCCGTATACATCGCCCCTGGGGCTGACCT

GCCATCACAGAGTACACTGATAGCCCTGGACCATGATACCATACTTCCTGGGACCAAGCGCAG

GTATTCGGACCCCCCTACCTACTGCCTGCCCCCCAGCTCCGGCCAGGCCAATGGCTGAGGACC

ATGACTGGCAGTCTGCATCTCCTAACATCCCCGAACTGGCATCCCAGCTGTGGAGCTGGCCTT

CACTTTCTGAGAAGGATCTAGAATGAAAAGCTCCCAAAGGGATGCAGTGGCCAGCTCTGTGT

GTTGTGGAGACTGGGAGCTGCTGGCCAGGAGCCATCAGAGCCCCAACCTGCACAGCAGTGGC

TCCTTTGTCCTTTCAGTAACTGTTTCTCTTTTTGTGGTTTACATAACTTTTAAGTTCATAACAGC

CTTAATGGAGGACCAAACTTTTGTATTTGTATGTCTGAACTTTTATATTAACTCTGCACCCTTG

TAANTGNNNNNGGGGCAAN 

 

Sanger sequence for sample 12-SR_chr9_44741870-44743470: 

NNNNNNNNNNNANCTAGAGATANGGATTCTTCCCTGATGCANNNTAGGGAAAAAGGAAAGG

CTAGAAATTTCTTTGGCAAGCCATCCCAGCCACAGTCTTCTGTGGGACTGCCCTGCTTCATGGA

TAGTATACTCTTGCCAGGGAAGGCAGGTGTTCAGAGGGAGATCTCTGCTCTGCTCTGCTCTGC

AGCCACCTGAGAGAATGGAGGTCATCTACTGCTTCCCATTGCTACTGCTTGCAGCCTTCAGCA

ACTGATCTTCCGCCCCACCCAGTTCAGTGCTTGGCGGGTGGGATTGGCTGATTCAGCCTCTATT

GAAAAGGTAATAGATCAAAATGAGCTGAGAAACTCCTACAATTATTACATGATGACACCAAA

AAGCCAGAGGAGGANAAAAAAGGTTTTCANAAACAAGGACANANAGGNNNNNGTGNNNNN 

 

Sanger sequence for sample 13-SR_chr10_112925393-112926993: 

CNNNNNNNGNNCTCNCACTGCTTTTTTGNTTTTCCACAATTCACTGAAGGTTTTTAAAGAACTC

ATGTAGCAAGGTATCTTTTAAGTATTTTTTAGCTCCTGCCAAGGTTTTACTCACGTTCTCAAAA

TTCTTGGACTAAGGATCCAAACTGTAACTAGGCCCCAACCCTGAGCTGCAAAACTCTGAGAAG

GCAACAACAGACAGTCTCAAGGCTCAAGCACTATAATTGCCTCAACTCTTTGAGTATAATCCA

AATTAGTCCACACACTTCAAATAGCTCCTGGGAGAAGGAAGATACATACACAATAGGATTAG

AAATGTGGAGCAGAACCAACTCCTTCCTTGTGTATGCCAGCATTCCTGGCTCTGCAGTAAGTC
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CTAAGAGGCCGTATCCAAGTAGCAATGGGAAGAAAGAACTCATGACAGGCAGGGAGATATAC

TAGCAAGGCAGCCTTATATAAGAGAAACACTTAGACATGACACTGCCTTGTAAATTTAAAAA

AAGGTTGTTTTTTTTTTTTTTTTTTTTTTTNNNNTTTTCCCCNTCCCNNCCCAAANNNGGGGNNC

NNNNNNAAAAAAAN 

 

Sanger sequence for sample 14-SR_chr11_73175160-73176760: 

NNNNNNNNNNNNGNCTCGNNNNGCCCCCTTCCAGACGAGCCACTTCTGGCAGAGACAACTAA

CTTCTCTGTGCTTCAGGTTTTTCATTAACAGAAAGTTAGCAGTAACATCTCCATTGCTATGGCG

AGAATGAAAACACACAATGCCGGTACACAGTGAAAGCTTAGTAACACGAACTGTTACCAGTT

CTTAAGATGTTAACGTTAAATTCTCTCATGTATACTCTAGAGGTCCCTTTGGACTTACTAGGCG

TTAAATCCAAAAAAATATACAGGCTGTGGCCTCGTACTTGCTCTCCAGGGAGCAAATCTTGGC

GACTTCAAAGCTTGGCTAAGCAAGGAACGACAAGGTGTCACACTTCATTTAATCTGAAGAATA

ATATTACAGGCTCTGTCTTCAGATATAAATTATAACAGTACAGAACAAGCAGCGAATTCCAAC

AATTTAAAATCTAAGTAAGTCTACCCGGTGTTAATTCTGGCAAGAGCCTTGCCGATCTGTTTTA

AAGTCACCCCTGCCCTCATTTCAGTAGACGTGCACCATGCCATAGAGGAAGGTCCAAAAGAG

GACGTAGGTGAAGAGGCCTCCAATGAGGCCTCCCGTAAAGAGAGGTCTTCGTGACTTAAAAT

ATTTGTTCCACCTCCTTCCCGCTTGAANNAATGAGNA 

 

Sanger sequence for sample 15-SR_chr13_75771143-75772743: 

NNNNNNNNNNNNNNNNNNNNNNNACANNNNANNNNNNTNNNNNNNNNNNNCCCTGGNNTT

CTCNGCGNACNNNNNNNNAGNNNNNNCGTGAAAACNACAACAAGGGANACGACACCTCTCG

AACCTCCCCACTNCNAGCCCCCCGGATNNNNTCACNTGTGGCGNNTTCNACNATNNTGNTGGT

TTCGTNTTTCTCTTNNCCACTATANNGATNCTGNTTNTTTTNCNCNATTNTCGTTTCTGTTGCTG

TTTATGAATATCNTGNCTTCCTTNAAANN 

 

Sanger sequence for sample 16-SR_chr13_90104423-90106023: 

NNNNNNNNNNNCTTNAGTCTAGTGTATGTTCTGTCAGCTTGAACTGGAATCTCTCTTGTAACT

TTGTAGGTTATAAACATATCTCATATCTGCTTTAGTCTGGGTACTATGCTCTAAGTACATTTCA

GCTTTGACACAGAATGTGAATAGACGAATATCAAAGGATACTTACAAGTTTGTATCCAACATT

TCTTCAGGTTCAGCTGAAAATCAGTTACTGTTTCAAAACAAAGAGGAATTAAATCCTAGCTGA

AAACTATACATAGCATTTATTAATTAATTACTGGGTTTAACTGCTCTTTTTAAAAGTTTGAAAA

AGAAAAAAAAAATTTTTTTCTTAAAAGTGAAGTTTCTATAAAAACAAAGCCCTGAACTTGCAG

TCTTCACTGTGTAGCCCAAATGGCCACCAGAGCTAGCTAGACCATCAGCTTTGACATCGTGCT

TGAAANGN 

 

Sanger sequence for sample 17-SR_chr16_49867208-49868808: 

NNNNNNNNNNNNNNGCNCNNNCACCGAAGANNGTTTGTGAAGTGGAAGTTGAACAAATCGT

ATATTTTCATCTATGATGGAAATAAAAATAGCACTACTACAGATCAAAACTTTACCAGTGCAA

AAATCTCAGTCTCAGACTTAATCAATGGCATTGCCTCTTTGAAAATGGATAAGCGCGATGCCA

TGGTGGGAAACTACACTTGCGAAGTGACAGAGTTATCCAGAGAAGGCAAAACAGTTATAGAG

CTGAAAAACCGCACGGGTAAGTGACACAGTTTGCCTGTTTTGAAACGTGTGTTGAGATATGGT

TGCCACTGTGGGAGTGCTGTAAGGTGGAACCTTGCAGAAGTCACTAGGAGGAATTAAGGCTC

TTCTTGGGCAAGTGGGCTAGCCATCTGGATAGAAAGTGAGTCTGGCACTCGTGTTA 

 

Sanger sequence for sample 18-SR_chr16_58465697-58467297: 

NNNNNNNNNNNTGCTCACCTGTGTTCATAAACCCTGGCAGCTCCTATCCAGCAGCAGTCACGG
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GAAGCCAGCCCTTCCCATCTTTAAGTATACTTCTCCACAGGGAACTGGGAGAGAAGCAACTTA

CGATGTAGAAAAGCTATAAAGGGAGTCCTCTGCGTCACTAAAGTAATCTGTAAATTACTTTAG

GGACAAAGTTAAGGGGGAACTAAAATTTAACCTTCTTTGCTTTCTTTACACACAAGCCCAAAA

ATTTGCAAAATTTTTTTTAAATTTCAATTAAATTTTTAAATTTAATTTTAAACCATTGTAAGAA

AAAGAAAGCCAACATGAGCCAGGTCTGATGGCTCAAGCCAGCAATCCCAACTGACCCAAGAA

N 

 

Sanger sequence for sample 19-SR_chr17_12683139-12684739: 

NNNNNNNNNNNNCNCTGTCNTCATGGANGGACACCAGCTTGGCAGGGGCTGTTGGCTTGCGC

TGTCCGGGTCTGAACTTCCCTTTTCTGGCCTTCTCACCTCGGACCAGCCCCAGCCTCTCACCCT

CCCTTTCCTTCAGGACCTTGCGCTGTGGGTTTCTCAGGGGCTGTGAGCTTTCCACCTCCGCTCC

TCGGCCTGAGTGAACTTTCACCTCTGGAACGGTCAGGACCTCATCCTCACTGTCCTGGTCGTCC

CCATGCAGGGACGAGAGAGCTTCTGCTTTCACCGCCTTGGTGGTGATATGGCCATTTTCTTGCC

CGTCCTTGCCTAGTCTTGGGGCTGGCACCTGGATCTCTTCCATCAGCCATTCTGTCTCATTCTC

ATCTGTCTCCTCCTCCNCNNANGNNN 

 

Sanger sequence for sample 20-SR_chr18_43320998-43322598: 

NNNNNNNNNNNNTAGANNNNANTTGGTGGAAGCCCCGATGACAGAGCTACTTGAGAGAAGA

TGGTACCAGCACGCTCTCCCACCCTGGAATGCGGCTGTCTGCCTGTGAAGCAGAAGCAATTTG

CATTTTGATTTGTAGCTCAAGTAACATGTTGCTTAGAAAAATTCTCATGTTAAGAAAACAGTT

GGGGAGTTGCCAAGGGATTCTCAGGATTTACGAGGCTTGGGCACTACTCATAGTGAATGAAG

AAAGAGACGCATCCTGAGATGGCGCCTGCCCACCTTGAGGACTTCAAGAAGCTGTTCCTTGCA

CAGGAAAGGAACACTTGAGTGGAACATAAGGTTTCGGCACAGTGGTACACTTTGGAAATGCC

AAGTGCAGTGCAAATGACCCAAAGGAGTTTATTTTTCATGATCAGAGAGACCCTGGAAGGGC

TCAGGCATGGGGAACCACACAGTTGAGGAGGCGCAGAATTACAGA 

 

Sanger sequence for sample 21-SR_chr2_120515174-120516774_1_F: 

NNNNNNNNNNNNNNTGTCTCNCTGNNNTTGAAAGCACACTGGTAAATGTGAATTTCCTTCCTA

TTTTGAGATGAATGCAAACTGCATGAGATAATGTTTCCCAGACAATTTTCTAACTGAAAATAC

ATGCCTTACCACTCACCAGACACTGATGAACTTGCCAGGGCATTGCTGAGTTCATGGCCTATG

CAGGACAACTATGAACTATCCTAGAAGGGCACAGAGTGCGGCCACAATAAAATACATTTGCT

TCTTGCTAGCTTTGTGCTTTAACCCAGGCACAAAGGACTATGATCTCCCTGACTGTGCTCTTTA

CAGGATGCCTGTTCTAAGCCTCACCGCACAGCAGCAGAAACGCCATCAATCCCATCCGTTCCC

TCACCTTCATGCACAGAACAGTCTNGCTGTGGCCCTCCAGGGTTCGGAGCAGCAGTCCGTTCC

GTGCATCACGAACACTAATGGTGCAGTCGTAAGATCCTACAACCAGCAGTTTTCGGGCACCTT

CCTGAGCTGTTGCGAGGCANCTGACTGCCCNAGGGCCATGGCATTCAAANATCTCCTGTCNCT

TGTTTGTTNNNNAANNNANNNN 

 

Sanger sequence for sample 22-SR_chr3_19133119-19134719_1_F: 

NNNNNNNNNNNATGCAGCATACATAGTCATGTAATCTAGAAACTTTCCATGATAATTTATTGC

AAATTGCACTTGACAGTTCACCACAACAATGGAAAGCTGGCCCCCTGTTGGTTTGCACAGTCC

TTGAGCCCCAAACTGAAGTTGAAGTCACCAGTAAAATGATCTGGATAAAAAGTTTGCTGCTGT

GCTCAACCAGCTGGCTCCACCTTCAGGGTGCGATCCAACCCGGGACACTGCCTTGTCCTGCTC

CTTTGTGGGACTCTCATCCTCAGGCAGGTAGTCAGGTAGCTCTGTGTTCTCTTCCACTTCCACA

GGGGCATCCTGAAAAGGGACCAGCATCTGACACGGAGAAGCCGGAAGAGCCATTACAACCA

ACCTAACACGACACGTACATCCCCACAGCCACATCCTCATTCTATGCATCATCTTCATTCCCAA
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GAGTCGCAAGGGCTCGCAATCTAACGCTTTCTTCTTTCATGCAGTCAGTCTGTCTGGGTTCTAG

GACAGGAGTAACCTATCNGTGTAGAAATGGGTTAAACGGGTGCAGGGCANCTTTGA 

 

Sanger sequence for sample 23-SR_chr3_95734076-95735676_7_F: 

NNNNNNNNNNNNNNNNNNTGCNNNNNANGGGGCCTTCNNNGTCCACACCTCTCACCCCCAAC

TCCCCCCACACACACACACCTTGTACTCTTTTCCCCTACAGACCCTGCTTTTACTCCGAGGCAT

CTGGAGGCTGGAGGCTCTGCCATCATCCGATGCTGGCTGGCTCATCAGCTGTTGCCATGGAGA

CCAGCCAGCAATCAGATCCATGCCCTCCTGCTGCTGGGCACAGTGGAGGTAAAGCCACAGAG

AACCTTGACAAATGAGGGAAAGNGCATACCTCCACGCCCACAGAAGACNATGNCTGNTTANC

TCCTCTTTCCTGCGGGAGGTGACCTCTGGAAGTCATTTCACCCCCCAAGGTCACTNCACTGGA

ATGNGGATGGGGCTGNCAACCCCTGCTGTTATATAGAGGTGAAATANNCCCCNGNNGTGTGT

GGGCCTGACAACACTTTTTGACGGNNTATGACTTCTGATTGA 

 

Sanger sequence for sample 24-SR_chr4_130165017-130166617_2_F: 

NNNNNNNNNNNNNGTCTTGGNTGGCTGACCAGGGACCTGGAATCTGTCTATACTCCCTGCAG

TTTCCAAACAGGGCCCTTCCCAGTTCCGGCTGTGATATCTGGGGGCTTCCGCCAGCCTGGTGC

ATCTTTGTCTCCTAGGTGGGATTCTGCCTTAGCGCGCACGCGCGGATCTGAGTCTGTAGAGATT

AGCACCTGGTCCCGAAGTGCACACAAGGCTTCATCGGGCATGGCCCCCAAGGCCTCTTCTGTG

GCTGTGGATCCCACCTCGCCTAGTGGCTGAGACTCAGTGGTGCCCCATGTCCTCCATTCCCAC

GCGACCCCAGACGCCCAGCACGAAGGTCTCGATGTCGCACTCGTTGGTGCCACGCACGATCCG

GAAGTGGCCCCTTTCACCCCACCATGGGCCCCACGAGTTGGCAGCAGTCTGGGAGTGAAAAG

GGGAGAGACATGAGGCAAAAGACAGATGATGGAGGGCTCAGAAGGGCAGGAACTTGGGACT

CGNCCTCGCACCAGANACTCACCCANTACTTAATGGTNCTTCCGTCTGGCAGCTTCTN 

 

Sanger sequence for sample 25-SR_chr4_132832255-132833855_7_F: 

NNNNNNNNNNNNNNNNNNNNNGCGCCNATGAGACCGTAGAATCGATGGG 

 

Sanger sequence for sample 26-SR_chr5_104434320-104435920_F: 

NNNNNNNNNNNANNAGTCTGANAGATCAAATTGTGTATCCATGTGGCCTTTATCTGTAACTTA

GATAGGAGAATCCATACCTTTCATCCCCATTGATGTTTTTCTACTAATTCAGTAACTATAAACA

AAGTCTCTGTGAGGGTGATCTACTCTTCCTTTCCTTATGGATCCCTGATGCTCTTCCGGGATTC

TAAATGCAGTCTATAAATGAAAAGGGTAGTTAATGACATCGTTCATCAGNAATGCTTTGTGTG

TGTTTCCTTTTCTTCCTTTTTTTTTTTTTTACCCACAAAACCAAAGGAGGAAGGTTAGGCNCTCT

NCCGCTTCCTCGCGCNCTAACTCNCTGCNCTCNACCNTTCNCCTGCGGCTGGCNNNATCNNCT

CNCTCAAANGCNCNNNATTCGGTTATCCNCNGAATCTNGNGATNACNCAGGAAANA 

 

Sanger sequence for sample 27-SR_chr7_27204354-27205954_7_F: 

NNNNNNNNNNNNANNNNCAGTGCTCTTANCTGCTGAGCCATCTNTCCANCCCCCCNANNTNA

TTCCANCNCNNANNGGTGNCGGGTTGCTNTTNNNNNNTACTGTTTGGGCGGTTTAAAANCGNC

CATGGGANTATGAAANCCCTGGGNCCCCCNGANNCATNNNNNCANACCCGNTTNNNTCCTTT

ACAGAAATTTTCCTCCNNTTCTNNTTCTTTACCTTNAANCTNNCTGAC 

 

Sanger sequence for sample 28-SR_chr7_27204354-27205954_F: 

NNNNNNANNNCTCNCNTNNATTTCTATGTTTTTCAAAGAAACCAAAATTTTTGCTACAGAGTC

ATGACCCCTTTGGGTGTCAAAAGACCCTTTCACAGGGATTGCCTAAGACCATCAGAAANAATA
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TATATTTANTTTATGATTCNTANTANNANAGNATATTGTAGTNATAGCNTANGGATCTNNTGA

ANTATATTT 

 

Sanger sequence for sample 30-SR_chr8_85260471-85262071_F: 

NNNNNNNNNNNNNNNNNNGNNNNNGCCAGTATCTCAGCATTGTTTGAAGGAAAAA 

 

Sanger sequence for sample 31-SR_chr10_40250385-40251985_8_F: 

NNNNNNNNNNNNNNNNNNNNCTGCNNNNTCACTGGGANTTCAAGCATGTGCTATCACATCCC

TCTAGTACTAGGCACCGATCCCAGGGCCCCACACATGCTAGGCAAGTGCTCTTGACCACTTAT

CTACACTCACAGCCCAAGAGTGCCCCTCTCCAGAGAAGGAAGTGAACGAACCTATGTTTTCTT

CTCCTTCCTTCTTTTCTGTCAGAAGCGTCCTTGTCATGCTCAGCTTCTTCATCGTGTGGCACTTG

TACTTCAGCACCGTCTTATCAGTCCCCTCTGGATCCACTAGGACATGAAATGATCTTATTATAC

CGCTTCATGCCATCAGATGTTGAGGGAGTTAGTCTCAACTACTTCCTATGGGAACAGCACAGG

AAGTTCCCACTGCAATTGATCACTCCTGTCCCACGTGCAAAGAAATGACAGATAACACTGACA

TTTGAAGGCACAATAGGTCTCACACACAAAAAACTCTAAGGACAGAGACACGTAAACACAGA

GACTAACGCAACAAGGTAGGGTTCCTAACATGGGAAATGGGGCTTAGGAGTTGGCCCGCAGA

GCACTGTGTCTACAGTCCTATCGCCCAAATGAAGA 

 

Sanger sequence for sample 32-SR_chr11_72777065-72778665_5_F: 

NNNNNNNNNNANNNNANANTNNGCATGGTTGCTGTGCTCNGTAATTTCTGTAACTGATGACA

CAAACAATCAAGTTCTTTTAATGTGGGAAAGCTAATGTGGTAATTATCATGCAAGTAACATAG

CAAATCTTAAGACTAATGGTGGGAACTCAAAGATATGTGGGGATGAAACCTGCTTCAAGTTTC

TAGAGCTTCACAGAGGATTTTTAGTGGGTGAGCTTGAACATGTGAGGGCAAACATGTTTAATT

TCGATGAAACAGCTCAGTGTCCTGCTCAAACATTTTGGTGTCCTGCTCCAAGTACCAGCAN 

 

Sanger sequence for sample 33-SR_chr12_54782625-54784225_1_F: 

NNNNNNNNNNNNNNNNNNNNCACNNNNATTTCANTCAGACCCTTCCNGGTTCCAAATTAGGC

TTCACTATGAGCAANTCGTTGGTTCTCTGAGCTTCCACACTCTCAACTCTAAAGTGAANACAG

TGAAGTTAGGCTGGGCTGTGGGAAGCTATGAGGGATGCACAAGTCACGTGCTTAATACAGTG

GATGGCTAACCAAGTAAAACCACTGCTATATGGTACAAAGTCCTGANAAGGAAAAATGAACT

TANAATTATTTTTTTTAATTCATAAACCTGACCAGGCAGTGGTGGTGTATGCCTTTAATCCCAG

CAGTCCAANNCCC 

 

Sanger sequence for sample 34-SR_chr13_31630105-31631705_F: 

NNNNNNNNNNCNNANNGCAGNNNNAGCACACCCATCACTTAGACAAATACCCAAGGGAGTT

CTGCTCACCGATATTTGCCCGGCCCCTGGAAGAGGAAACCTTTCGAAAGCTAATATCCCAGAA

GAGCGACAGACAGAGGAGGTGACTACATGTAAGACATATGTTACTGTGTGGAGGACATAAAA

CTTTTCAGTTCTGGGGTGGCCATTGCATTCACTAATCAGGGTCTGAAAAGGGAGGTGTGTGTG

TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCTTTTCAAAATTGCAGTGCTAAAAACACACTATT

TCAAGAAAGCCTTCTCTATCTCCCTGGCTCAGTAAGATTTTTCTTCCACCCACTCCCACTCCCC

CCACTCTCCTTTCTTCATATACGGGNGACA 

 

Sanger sequence for sample 35-SR_chr14_54541419-54543019_1_F: 

NNNNNNNNNNANGGNNNNNNCTTAGGTCTCTGGGCCTCACAGAGGCCCGAGATAACAGGTTC

GAAGTCTTGGACATCCCNGACACAGCTGGACACCGAGGAAAACATAAGAACAAAATGGGAG
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CCCCAGGAACAGCTCAGTCAGCTCAGGGACCAAAGGGAGGAGAGGGCAGGAAGAGAGAGGG

CACTGGGTGGTTCCCATGCGGATGAGAGTCCTTGGTCCAGTCCTTGGCTGGAGCACAGGAAGG

CCTTCTGGCAGGAGGTTAGATGCTGCTCTTTAGGGGAAAGCCTATCCCACCGTTCAAGCATGG

TGGGTCTTGATGAGCAGAGACAGTTTATAATTTTAGAACTTTATTGTAGAAAGGCAAGGAGAA

AGAGAGAAGGNAGAAAGAGTTTANGGGCCAGCA 

 

Sanger sequence for sample 36-SR_chr16_52269942-52271542_F: 

NNNNNNNNNNNNGANTGACTTAACTGTGAAGACAAGGGTAGTAGAAGAATGGAAACCAGGT

AAAAAAGAAAACNNNAACCTCATGGCGATGATATCAAAATGCCAAACAAAAGCGTGAAACTT

ACCATGATGCAGTACAGGGAGATGGAACTGAAGATGTTAAGCTAATGAAGAATAACTTCAAA

TTTTCTTACGGTTTTAATGCCAGAAATGAAATACTCACTCGCAGAGACATTCAGGGAGTTTAC

TGTTCTCTCCAGTTGGTTTTCTGCTGTGCAAGTTAATGTTACATTCTCCTCAGGGGAAATGATA

ATTTTACTATAATACCTGCCATTAATATAAGGAGACTCCTCTGTCTGGAAGAAGAAGGAAGAA

GAGTTTAGAGATGGAGGTGCACTTTACAAGTCTGGGAAAGCATAGTGGTAGATGACACAGGG

CAANACNANN 

 

Sanger sequence for sample 37-SR_chr16_94468034-94469634_3_F: 

NNNNNNNNNNNANCNNNTCNTAATTTTTAAGTGCTTATGATTCAATTAATCTACATTTTGGTA

ATCAATTATAAAATACTTTTTAAATTAGTATTGGCTATTTTTTTTTTTTACCCTGGGAAAATGCT

GTCTGCTCCCAGGAGTCCCACCCTTGGCACTTACACTAAGGTTACCATGTAAGTCTCATGATTC

AGCAGTGCTTGGAAGTGCACAGCTGGCTAGGGCTGAAAACAGGACATATGGCCCAGCGCAGG

GCAACCACCCTCACCCTCCTTCCTTATCCTTCCACCAAAAAAAAAATGTACCACAGCCCTGAT

GTGTTGGTGTTAACATTGTTCTGTTTGACTTTTGTGTAAAGTAATGCATGCAATCTTGTAATGG

GGCCTGAAAACAAGCTAACTGTATTAAAAACTATTCAAAAACTAGGTATTTTTAGTGACCTGT

AGGGAGTGGCAAATACAGACATGGGAACCTTGAATACATTACATTTCTCTCAAACACAAAAA

AAAAAACAAAAAACTTTTCCACCGTGTTCTCTGGTGCCCTGGAAATGCCNTCACCTTCCACCC

GTGTCTGTGTAANTTGTGGTGCCTTAGNGACTTANNATGNGACTCACTCCTTATTTNGAAANG

NTGTCTGTGGNGTCCCNGN 

 

Sanger sequence for sample 38-SR_chr19_60770223-60771823_F: 

NNNNNNNNNNNNNNNNCTCNCAACCATCTGTAATGATATTTAACCACCTCTTCTGGTGTGTCT

GAAGACAGTTACAATGCACTTACATATAATAATAAATAAATCTTTAAAAAAGAAAAAAAACT

TAGGGAAAAAAAAAAGACTCTAGAGGTAGCTATCTGGTAGGCCTGAAATTCCATCCTGCACT

GCCCCCAAAATCCCACACTTCAAAAAGATCAAAAAAAATAAACTTTCTTCTTTGAAACACTTG

AAAAGATTAAAATATCTCCCAACTCATCTATACAAATACTGAGTAATTACCTGTTAACCTTTA

ACCTGTGTTAAGGGAAAATCCTCAAAAAAAAACTAAAATTTCACAAATTAAACTTTTCCCTAA

ACAAAACAAACAAAAANNANCNCATTANTGAGCTTACCTCNTNNGCATATGGCAGGGCATNT

T 

 

Sanger sequence for sample 40-SR_chrX_101403719-101405319_6_F: 

NNNNNNNNNNGTCTGTCNNAGGGAGCACCCAGTTCTTTCCCTGTTGGCTTTGCTGTTCCCCAG

CCTTCTTTTTGTGTTTTTATAACTGTCCTCAGTTTAGCCACTGTTAAAATGTATATATTGTACTG

AGGTGCCTGGCCTGTTCCTTCAGTGAGCCATGCCCACCCTTGTGTTGTAGTGAGAAACTGTTGT

CACAACTAACTTGTCTCTGGAATTGTTTCAAATAAAGAGTTAAAATTGTTCTTTGCTTTCTCTG

GGGGAGGTAGAGCTGGCGTTGAAGAGTGGAAGAGAAGAGAAAGAGCACCCACTGTGGGTCC

CTGAAGATTAGTCTTCCCTCAGTCAATGAATATCACAACGTTGGTCCTCTTCTCATACATTTTC

AGATACATCAGAAAAAAATATTTTTCAATAGCCATTTATTGAGCTAGAGTTGCTTATGTCTAT
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AATCCCAGTAGTTGGGAGGTGGAGGCAGGAAGTTAGGAATTCAGTCATCCTTGGCTACATGTG

GAGTTCAGAGCCAACCTAGGTTATGTGAAACCCTGTCACAAAATGGGGACAGGGGCTGGAGA

TGTAGAA 

  



152 
 

 

Sequence from the second round of Sanger sequencing 

Sanger sequence for sample 21-F-chr2_120515174-120516774_1_F: 
NNNNNNNNANTCTGNNTNTCTGTNACTTNNNNNCNCACTGAATAAATGTGAATTTCCTTCCTA

TTTTGAGATGAATGCAAACTGCATGAGATAATGTTTCCCAGACAATTTTCTAACTGAAAATAC

ATGCCTTACCACTCACCAGACACTGATGAACTTGCCAGGGCATTGCTGAATTCATGGCCTATG

CAGGACAACTATGAACTATCCTAGAAGGGCACAGAGTGCGGCCACAATAAAATACATTTGCT

TCTTGCTAGCTTTGTGCTTTAACCCAGGCACAAAGGACTATGATCTCCCTGACTGTGCTCTTTA

CAGGATGCCTGTTCTAAGCCTCACCGCACAGCAGCAGAAACGCCATCAATCCCATCCGTTCCC

TCACCTTCATGCACAGAACAGTCTTGCTGTGGCCCTCCAGGGTTCGGAGCAGCAGTCCGTTCC

GTGCATCACGAACACTAATGGTGCAGTCGTAAGATCCTACAACCAGCAGTTTTCGGGCACCTT

CCTGAGCTGTTGCGAGGCAGCTGACTGCCCGAGGGCCATGGCATTCAAAGATCTCCTGTCGCT

TGNNNNNTCTNAAA 

 

Sanger sequence for sample 21-R-chr2_120515174-120516774_1_R: 
NNNNNNNNNNNNNNNCTCNGGCNGTCNGCTGCCTCNCTCANCTCAGGAAGGTGCCCGAAAAC

TGCTGGTTGTAGGATCTTACGACTGCACCATTAGTGTTCGTGATGCACGGAACGGACTGCTGC

TCCGAACCCTGGAGGGCCACAGCAAGACTGTTCTGTGCATGAAGGTGAGGGAACGGATGGGA

TTGATGGCGTTTCTGCTGCTGTGCGGTGAGGCTTAGAACAGGCATCCTGTAAAGAGCACAGTC

AGGGAGATCATAGTCCTTTGTGCCTGGGTTAAAGCACAAAGCTAGCAAGAAGCAAATGTATTT

TATTGTGGCCGCACTCTGTGCCCTTCTAGGATAGTTCATAGTTGTCCTGCATAGGCCATGAACT

CAGCAATGCCCTGGCAAGTTCATCAGTGTCTGGTGAGTGGTAAGGCATGTATTTTCAGTTAGA

AAATTGTCTGGGAAACATTATCTCATGCAGTTTGCATTCATCTCAAAATAGGAAGGAAATTCA

CATTTACCAGTGTGCTTTTCAAGTTACAGAGGAGACAGAACTTCCGCAGAAGTGACTGCNCNT

NNTTCTCTTTTCN 

 

Sanger sequence for sample 22-F-chr3_19133119-19134719_1_F: 
NNNNNNNNNNNATACNTAGTCATGTAATCTAGAAACTTTCCATGATAATTTATTGCAAATTGC

ACTTGACAGTTCACCACAACAATGGAAAGCTGGCCCCCTGTTGGTTTGCACAGTCCTTGAGCC

CCAAACTGAAGTTGAAGTCACCAGTAAAATGATCTGGATAAAAAGTTTGCTGCTGTGCTCAAC

CAGCTGGCTCCACCTTCAGGGTGCGATCCAACCCGGGACACTGCCTTGTCCTGCTCCTTTGTGG

GACTCTCATCCTCAGGCAGGTAGTCAGGTAGCTCTGTGTTCTCTTCCACTTCCACAGGGGCATC

CTGAAAAGGGACCAGCATCTGACACGGAGAAGCCGGAAGAGCCATTACAACCAACCTAACAC

GACACGTACATCCCCCAAGCCACATCCTCATTCTATGCATCATCTTCATTCCCAAGAGTCGCA

AGGGCTCGCAATCTAACGCTTTCTTCTTTCATGCAGTCAGTCTGTCTGGGTTCTAGGACAGGAG

TAACCTATCAGTGTAGAAATGGGTTAAACGGGTGCAGGGCCACTTTNANNNNNTCCGTGGGA 

 

Sanger sequence for sample 22-R-chr3_19133119-19134719_1_R: 
NNNNNNNNNNNNNTTCTACNCTGATAGGTTACTCCTGTCCTAGAACCCAGACAGACTGACTG

CATGAAAGAAGAAAGCGTTAGATTGCGAGCCCTTGCGACTCTTGGGAATGAAGATGATGCAT

AGAATGAGGATGTGGCTTGGGGGATGTACGTGTCGTGTTAGGTTGGTTGTAATGGCTCTTCCG

GCTTCTCCGTGTCAGATGCTGGTCCCTTTTCAGGATGCCCCTGTGGAAGTGGAAGAGAACACA

GAGCTACCTGACTACCTGCCTGAGGATGAGAGTCCCACAAAGGAGCAGGACAAGGCAGTGTC

CCGGGTTGGATCGCACCCTGAAGGTGGAGCCAGCTGGTTGAGCACAGCAGCAAACTTTTTATC

CAGATCATTTTACTGGTGACTTCAACTTCAGTTTGGGGCTCAAGGACTGTGCAAACCAACAGG

GGGCCAGCTTTCCATTGTTGTGGTGAACTGTCAAGTGCAATTTGCAATAAATTATCATGGAAA

GTTTCTAGATTACATGACTATGTATGCTGCATTTTACATCTTATTGGACATTTTCCGCACAAAG

ACAGAA 

 

Sanger sequence for sample 23-F-chr3_95734076-95735676_7_F: 
NNNNNNNCNNNNNNNGNGTNNTCTGNNANNGCTNNAGGCTTCTCGGGACGGCNGNACTGAG

GTTCTCCAAGAAGGATTNNCCTTCTTTAACTCCCANAAATGGTCTATTCTCCTCNACCTGACTT

CTGCGAACAGGCTTGAGGTACTAAAAAGAGGGGTAACCTCTACATCTANCCTTCTGATTCCCT

GGAGCCTTGGAATCCCAGGTCACACGCACTCACCTCCTCTTCACCGCAACACGCCTGTTCTGG
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ATATGGAAGCTCGAAACAGCGGACGTCCATATTCTGGATCAGCCCCGGAATCTGTTTACTGTG

GTTGGTATGAAANAGGNNCNNTCNNGNTTTCTGTCCCTTCCGCANCATCCANGGNCTGCTGGG

GGCGGTGGCTTATGCCGGTAATCTCTTTACTTGAAGTACNNGGGANAGAAGATTGGTCCNGTT

NNAAACNNCCTTGACNACNNANTGAAACTTTCANNATATNTNANNNTCTCNTNNNNNCANCA

ACTCAAATGGAACTGGGAAGTCATGATTTTGACCTCCCCAAGGGAACCCCCGGGGAGGAGGA

GGTTGGGGGATNAGGCAA 

 

Sanger sequence for sample 23-R-chr3_95734076-95735676_7_R: 
NNNNNNNNNNNGNNGGNNNNCNNNNNATGACTTCNNNNTTCCGTTTGANGCTGGTGGGGTG

AGTGAGATGTTTATTTATTGTGAAAGTTTCACTCCGTGGTCAAGGCTGTTTTGAACTGGACCAA

TCTTCTTTCCCCTGTACTCCAAGTAATGAGATTACAGGCATAAGCCACCGACCCCAGCAGGCT

TTGGGTGCTGTGGAAGGGACAGATACCCTGAGCTCTTCCTCTTTCATACCGACCACAGTAAAC

AGATTCCGGGGCTGATCCAGAATATGACCGTCCGCTGCTGCGAGCTTCCATATCCAGAACAGG

CCTGCTGCGGCGAAGAGGAGGTGAGTGTGTGTGACCTGTGATTCCAAGGCTCCAGGGAATCA

NAAGGCTAGATGTAAAGGTTACCCCTCTTTTTAGTACCTCAAGCCTGTTCGCAGAAGTCAGGT

TGAGTGGAATAGATCATTTCTCGGAGTTCTAGAAGGCTTCTTCCTTCCCGAGAACCTCTTGTCC

CTGCCCTGGGCCTCAAGCTTCTAGCATTTCCAGATGTACACATCTGTCAGGGACAAGCAGGCA

GTCCTGCTGTGGAAAAGGAAGA 

 

Sanger sequence for sample 24-F-chr4_130165017-130166617_2_F: 
NNNNNNNNNNNNNNNNNTNNNNNNNNNCTGANCNGGNACCTGGNATCTGTCTATACTCCCTG

CAG 

 

Sanger sequence for sample 24-R-chr4_130165017-130166617_2_R: 
NNNNNNNNNNNNTCNNNNNTTGCTTTGCCGCTAGGTGGGGAGAAGAGACGCTGCCAGACGG

AAGGACCATTAAGTACTGGGTGAGTCTCTGGTGCGAGGCTGAGTCCCAAGTTCCTGCCCTTCT

GAGCCCTCCATCATCTGTCTTTTGCCTCATGTCTCTCCCCTTTTCACTCCCAGACTGCTGCCAAC

TCGTGGGGCCCATGGTGGGGTGAAAGGGGCCACTTCCGGATCGTGCGTGGCACCAACGAGTG

CGACATCGAGACCTTCGTGCTGGGCGTCTGGGGTCGCGTGGGAATGGAGGACATGGGGCACC

ACTGAGTCTCAGCCACTAGGCGAGGTGGGATCCACAGCCACAGAAGAGGCCTTGGGGGCCAT

GCCCGATGAAGCCTTGTGTGCACTTCGGGACCAGGTGCTAATCTCTACAGACTCAGATCCGCG

CGTGCGCGCTAAGGCAGAATCCCACCTAGGAGACAAAGATGCACCAGGCTGGCGGAAGCCCC

CAGATATCACAGCCGGAACTGGGAAGGGCCCTGTTTGGAAACTGCAGGGAGTATAGACAGAT

TCCAGGTCCCTGGTCAGCCAGGCCAAGACCACAGGAGCTAAGACACCCCAACCTCNNNNCCC

CTCCTAAAN 

 

Sanger sequence for sample 25-F-chr4_132832255-132833855_7_F: 
NNNNNNNNNNNNNNNGGACNCGCCANTGANACNNNGTAATCAATGACCAATCCGTTGAGGC

TTGATGAGGTTCCNNTTTAAATGGGACCCTCTAGTTTGCCATGTGCTGCAAAGGCGAGTCTTA

AGTGTAAAGGGAGATACCAGCGCATAGGTAGCCAGTGCTCCCTTGCAGGATGTCAGGCAGCT

CCCACAGTTCATCAAGTTAGCCANCCTAACTGTTAGTGTTTAATGATAATAAGTGTCATATTCA

GGATCACTGACACAAAAGCACCTTTTTTGTTTCTTTTTTCTTTTACAGTACTAGGGTCAACCTT

AGGGTTTTGCCCATCCTAGGCAAGCACCCTACCATTGAGGTACAACCCAGCCCTTGGTTTCTG

AGTCAGAGTCTCACTATATAGTTAGGGCTGGCTTCCAACTTACTATGTAGCCAGTTTGGAGTC

AAACAAACTATGTCAACCAGACTGACTGAACTCATAATTCTCCTGCCTCATCTTCCTGAA 

 

Sanger sequence for sample 25-R-chr4_132832255-132833855_7_R: 
NNNNNNNNNNGNNNCGGNNGNATATTNTGATTGACTCCCACTGGTTACATATCAAGTTGGAC

ACCTTCCCTAACTATATAGTGAGACTCTGACTCNAAACCAAGGGCTGGGTTGTACCTCAATGG

CANGGTGCTTGCCTAGGATGGGCAAAACCCTAAGGTTGACCCTAGTACTGTAAAAGAAAAAA

GAAACAAAAAAGGTACTTTTGTGTCAGTGATCCTGAATATGACACTTATTATCATTAAACACT

AACAGTTAGGGAGGCTAACTTGATGAACTGTGGGAGCTGCCTGACATCCTGCAAGGGAGCAC

TGGCTGCCTCTGCGCTGGTCTCTCCCCTTACACTTAAGACTTGCCTTTGCAGCACATGGCACTT
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TCTTGGGTCACATTCGGCTGGAACCTCACAAGCCTCAACAGATTCCCATCGATTCTACGGTCTC

ATTTGGCGCGTCCACGAGGGCATACACTCTGCGAGAGAAGCCTCAGACATTGCCA 

 

Sanger sequence for sample 26-F-chr5_104434320-104435920_F: 
NNNNNNNNNNNNNANTNATANAGGTCACTGCCCTGTGGAAAGGTGTGCTCTCTTCTGGGCTA

GCCACCCTTGGCTATCACTCCACACAGCTGGGATGGGGGCTGGTCACTCTGCTGTGCCTCCCA

ATTTCCCCCAGGTTTCCCGGTATTTTCAAN 
 

 

Sanger sequence for sample 26-R-chr5_104434320-104435920_R: 
GNNNNGNANNNANNNNANTGACCAGACCNNNTCCCAGCTGTGTGGAGTGCTAGNNNAGGGT

GGCTAGCCCACAANAGAGCACACCTTTCACCACGGCAGTGACCTTTATGAGTCTTACTTGTTG

GTTTAGGCTCCNGGGCTGTCTCGNCANAACTTTCANCTGCCGCAGAAGACTGCAAACCCAAGC

AAGGATGCTTCTTCAGTGTGAGCTGCTGGTGGCTCAGACCTCCCAGAATTTAAATGCTGGTCC

AGACAGTCTCCACCAATCAGGAGGTGGAGTGATGTGTCATGAGGTTTTTGCCACTACCCGGCC

CACCTGCTCCTACACTTCCTCCTCTGGTTTTGTGGTTAAAAAAAAAAAAAAGGAAAAAAAGGA

AACCCCCCCAANNCTTTACTGATGAACNATGTCTTTANCTACCCTTTTCTTTTATAAACTGNNT

TTAAAATCCCGNAAAANCATCNGGGNTCCNTAAGGAAAGGAAAAGTAAATCNCCCCCACANA

AACTTTGTTTATANTTACTGANTTANTANAAAAACATCNNTGGGGATNAAAGGTATGGATTCT

CCTATCTAAGTTACANATAAAGGCCACATGGATACACAATTTGATTCTCTCNNACTTACTTAA

ATCTANAAAACTGCTGTCTCGNNAAAAATTTTANN 

 

Sanger sequence for sample 27-F-chr7_27204354-27205954_7_F: 
NNNNNNNNNANNNNNGTCNGTGCTCTTNNNGNTGAGCCATCTCTNCAGCCCNTATTCTNCAC

CATATTNTCANTGNTCAGTGNTGCGNNTNNNNNGGAATCGTTTGTTGATATTTNGGCANNGCA

NNTGNNANNNNATAACGTNNCTNNGGNNANAANAAANGAATNNNCANAAGGNCNNGANCCN

GGNAGNGGNGANTAGTGCACTAAGGGTGTAGGGTATTAAAGCTCAAAATTTNATTCATTTTGC

TTCATTGATANGCCTTACTNAANNCCCCNAATCCACAACACTCCNNNCNCGANGACTGGGGN

ACTTTTTTTTTTTAACATCAGAAAACCCCCNAAATTACNNAGGCTCCANCCTGGNAAAGCTTTT

TGAAAATGGANAANNCACCCCTTNCTAATNAAGAAACTTTCCCTCGGGGGGGGGNANNCCAT

TTTNCNCNCAAANTNGTATCTNCCTTTTNCCNCGNANNAGACGGCCTGGNGCTNCNTGCCTCC

GNCNGGACGTNTTCCTANGAGTNGANGGATCNNTGNGANTTGTCTGTCCNTCGGNGANTGTG

CCNTCGNTTATTNNTTCATANGGGNAGTGGTCGGNGTTACTGNNGNTTTNCANANCGTTCGGT

TCTNCTNNATCNTNGCCNTGTGGGAGTGANACGAGCGGNTNTACTGNAGTTGNNGAGTAGAG

NNGNGAGNGGCNNACGNNANGTNNAGTNNCNNNTGNTNNGNAGNNACNNAGNNGTNNNNG

NNGNNAANNNNNNNNNNGNNTNNNNTNAGNNGTNNTAGANNGNAGNAATNGNNNNNTNGA 

 

Sanger sequence for sample 27-R-chr7_27204354-27205954_7_R: 
NNNNNNNNNNNNNNANNNNNNCTGCTCTTCTGANNTCCTGAGTTCTNTTCCCANCNACCACA

TAAAAGGAACCTTTGGGGCTGGAGNNATTCCNGGTCTGCTAACTGTGGTTAGTGGANNCCGG

AACAGACATANGGNNTCCTACGAGGTTAAGNTGGGNNAGCGGTNNCGTGCTTGGGGAGGATC

CCCGTTAACTTCCAAGAAGCTGCCTAANTGGCTGCANGGNGNNAAGCCCTGNCTGCTCTTTGT

GAGGTCCTGAGTTCCNTTCCCGCTGACTTCATAANGNNACANAACTAACCCTTGTCTCGAGAT

CTATTCCNAGCGACGACNTAAAANCACANGNNACGCACAAACAAANCAATGGNTTGNGGTGN

CCGTAAAAANAGCATTNCNTTGCAACCACCGTGCTGGTCTGNCGGATCACCGGAATTCACTTC

CCACGGTCCTTACAAAGTNCCGAGTACCTTGCAACGATCATGATACATNNNTTNANATTTATT

TTTTNGTGATGNNCTTTAGGCGGTCCCTGNNATNNGNNCNGNNNNNNNCNTAAGGNGTCTGN

NCCCTNNANNAAAATTTTNGNTGTGC 

 

Sanger sequence for sample 28-F-chr7_27204354-27205954_F: 
NNNNNNNNNANCTNCTNNNNTAATATTTCTATGTTTTTCAAAGAAACCAAAATTTTTGCTACA

GAGTCATGACCCCTTTGGGTGTCAAAAGACCCTTTCACAGGGATTGCCTAAGACCATCAGAAA

AAATATATATTTACTTTATGATTCATAATAGTAGCAAGATTATAGTTATAAAGTAATGATGAA
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AATAACTTTATGGTTTGGGGTCACCACAACATGAGGTTATTATTCAAGGGTTGCAGCATTACA

AAGGTTGAGAACCACTGAGATAGAGGTAGCTGATCTGTGAGTTTGGAACCAGCCTGGTCTAC

ATAGCAACATCTAAGCCAGCCAGGGCTACATAGTGAGAACCTGCCTCAAAAGCAAAACAGCA

GTCTTACTATGTAGCCCTAGATGGCCTAGAACTCCCTATGCAGTAGGCCAGGTTGGCCTTTGCT

TCCTGTGTCCTGGGATTAAAGGCCTGTTCCTACATGCCTAGCCTAGAAGGCTCTTGGTAGTAA

CTCAGACCCTAGTCGTGGCCCTCCCACCTGAATGTGACATCCACTGGTCTTTCTTTGGGGGAAT

TGTTAAAGACACTGTCAGTTCACAGAGCAGGACTTAGCCCAGCTTCCTTCTCCTTGGCACACT

CAGACTACCCCGTCTNNNNNNNNCNNNNNNGNNNNNNN 

 

 

 

 

Sanger sequence for sample 28-R-chr7_27204354-27205954_R: 
NNNNNNNNNNNNNNNNANGAGCTGGGCTAAGTCCTGCTCTGTGAACTGACAGTGTCTTTAAC

AATTCCCCCAAAGAAAGACCAGTGGATGTCACATTCAGGTGGGAGGGCCACGACTAGGGTCT

GAGTTACTACCAAGAGCCTTCTAGGCTAGGCATGTAGGAACAGGCCTTTAATCCCAGGACACA

GGAAGCAAAGGCCAACCTGGCCTACTGCATAGGGAGTTCTAGGCCATCTAGGGCTACATAGT

AAGACTGCTGTTTTGCTTTTGAGGCAGGTTCTCACTATGTAGCCCTGGCTGGCTTAGATGTTGC

TATGTAGACCAGGCTGGTTCCAAACTCACAGATCAGCTACCTCTATCTCAGTGGTTCTCAACCT

TTGTAATGCTGCAACCCTTGAATAATAACCTCATGTTGTGGTGACCCCAAACCATAAAGTTAT

TTTCATCATTACTTTATAACTATAATCTTGCTACTATTATNAATCATAAAGTAAATATATATTTT

TTCTGATGGTCTTAGGCAATCCCTGTGAAAGGGTCTTTTGACACCCAAAGGGGTCATGACTCT

GTAGCAAAAATTTTGGTTTCNNNNAAAAACATAGAAATATTATGGGAGTATGTTTTCATTTTA

ATCCCAGGTGTNNNNNNGGGNNNNNNNCNAN 

 

Sanger sequence for sample 30-F-chr8_85260471-85262071_F: 
NNNNNNNNNNNNNANCNCNNTGCTCTNTGTAGTTGTGCAATGCTTGGTGCTATGCCCCCCCTG

NTCNCTGGTCTCGTGAAACCCNGATCCTTCTCATNTCTTTTGAATAGGTTGGTTCGAGACTTGA

ATGGTTACCTACAAAAAGAATAATTGTGTAGANGGCNTGTATCACCAAACAACATTTATCAGC

ACTGTTTTAAGGAACTTGCGTTACTTTCATCCCTACTTGAGTAATTATGAAAAAGAGATGAGA

ATATGATTCTGAGTTTAAGCAACGTCTATTACCTATTCATTAAGGAAAAAACAATTGTAAAAA

CTCAAAATATANAGCAACATAAACCAGCAAAAGAACAAAAAAACAAAACTGCCTTTAACTTA

AAAATCTTTTAAAAATGTATTTACTTCTATTTTATGTGCATTGGTATCTTGTCTGAATGTATGCC

TGGGTGAGGGGGTTGGATCCCGGAGTTACAGACAGTTGTGAGCCGCCATGTGGGTGCTGGGT

ATTGAACCCAGGTCTTCTGGAAAA 

 

Sanger sequence for sample 30-R-chr8_85260471-85262071_R: 
NNNNNNNNNNNNNNNNTNGNNNNTTTTGACCCGGGAGAATCCCCATCAGGGGGGGGAGACA

GAGATTTGGGGCGNGCGAAGAGCCTTACTATAAAAAGCTTTCTCNGATTGTTGNGTTGNNCAG

CGCTCGTTTCCTNCCTCTTTAGTTGGTTNACGTTGATCTATATTTTGAGTTTGCCGGTTCTTTTT

TCCNNAATGAAAAGCTATGACANGTTGCTTGAAATCGGAANCATATACTCATCTCATTTTCNT

AGTTACTTCGTATTTGATGANNGTCNTGCCNTTCCTTAAANAGNGCTGCTAAATTTTCTTTTGG

GATCCATGCCTGCTACCCAATTATTCTTGTTGCCTTTAACCTTTCCTTTCTTGAAGCTGCTTATT

CNAAAAATTCGAGAANATCTCCCAAATCNNGANTCCAGNGAANAANCNNAAAANATAAACA

AGCATTTTCNCAACNCATNGNAGCACTTGCGCTCAANANNNNAATCACCAGAGTCTGAGGGG

CCAATCTATGAAA 

 

Sanger sequence for sample 31-F-chr10_40250385-40251985_8_F: 
NNNNNNNNNNTNNNNNNTGNNNNANCACTGGNAGTTCAAGCATGTGCTATCACATCCCTCTA

GTACTAGGCACCGATCCCAGGGCCCCACACATGCTAGGCAAGTGCTCTTGACCACTTATCTAC

ACTCACAGCCCAAGAGTGCCCCTCTCCAGAGAAGGAAGTGAACGAACCTATGTTTTCTTCTCC

TTCCTTCTTTTCTGTCAGAAGCGTCCTTGTCATGCTCAGCTTCTTCATCGTGTGGCACTTGTACT

TCAGCACCGTCTTATCAGTCCCCTCTGGATCCACTAGGACATGAAATGATCTTATTATACCGCT
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TCATGCCATCAGATGTTGAGGGAGTTAGTCTCAACTACTTCCTATGGGAACAGCACAGGAAGT

TCCCACTGCAATTGATCACTCCTGTCCCACGTGCAAAGAAATGACAGATAACACTGACATTTG

AAGGCACAATAGGTCTCACACACAAAAAACTCTAAGGACAGAGACACGTAAACACAGAGACT

AACGCAACAAGGTAGGGTTCCTAACATGGGAAATGGGGCTTAGGAGTTGGCCCGCAGAGCAC

TGTGTCTACAGTCCTATCCNNNNAAANNNAANGAA 

 

Sanger sequence for sample 31-R-chr10_40250385-40251985_8_R: 
NNNNNNNTCNNNNNNNNNNTNNTNNGCNCCATTTNCCATGTTANGAACCCTACCTTGTTGCGT

TAGTCTCTGTGTTTACGTGTCGCTGTCCTTANAGTTTTTTGTGTGTGAGACCTATTGTGCCTTCA

AATGTGNNTGTTTTCTGTCATTTCTTTGGACGTGGGACAGGAGTGATCAATTGCATTGGGAAC

TTCCTGTGCTGTTCCCTTGAGTGNTAGTTGAGACTAACTCCCTCATCATCTGATGGNGTGAAGC

GGTATAATAATATCGTTTCATGTCCTANTGGATCCANAGGGGACTGATAANAANGTGCTGAAG

TACAAGTGCCACACGATGAAGAAGCTGAGCATGACTAGGACGCTTCTGACACAAAAGAAGGA

AGGANAATAAAACCTACGTTCTTTCACTTCCTTCTCTGGATAGGGGAACTCTTGGGCTGTGAG

TGTANATAANNGGTCAANAGCACTTGCCTANNATGTGTGGGGNCCTGNGATCGGTGNNNNNN

ACTNNNNANNTGTGATAGCACATGCTTGAAATCCCAGTGATTTGGGCAGTTGGGGAAGGCAG

CTGAAGATCATGAGTTCAAGGCCNGANNTGAGCTA 

 

Sanger sequence for sample 32-F-chr11_72777065-72778665_5_F: 
NNNNNNNNNNNNNNNNNNNTNNGANNCTGNNCCNCNTTTTGGTACCCGNTCTGGAAAAAAA

NNAATATTTTAATGGAGANGAGCTNATGTGGTAGTGTGCATCAAAGAACGGNATTCTGTCTTG

GGAGTGNTGNNGCAGCNTCGAAGACTCGTGGNGANGTGGCTGCTTAAAGGGATNCTTTTNCT

AAGGAATGAGTAAGGAAGAGTGTTTGATGGACACGNCGGAAGGGGGATTATGGTGTGATCCA

TCTGTGTGTCCTGCTCCCCCAAATCGGCGACTCGATCTTATTATCTCCACTCACTGGACCATCC

CAGTTCTCATGGAGTCAGTTTGCCCTGGAGTAGAGGTTTTAGAAATGTCACAAATGTCAGAAG

TTAAGAGCTCAGTCAATTACCCTGTGACTTAGAACAGTTACCTTCATTTTACTAAGGTGCAAA

ATCTTCTTGGGAAATGTCTGATTTTCCACTGAGAACCACAGTCCTGCTCCNANNTACCANN 

 

Sanger sequence for sample 32-R-chr11_72777065-72778665_5_R: 
NNNNNNNCNGACNCNNNNTNCNNNNNCCATTTCCCATGTTAGGAACCCTACCTTGTTGCGTTA

GTCTCTGTGTTTACGTGTCTCTGTCCTTANAGTTTTTTGTGTGTGAGACCTATTGTGCCTTCAAA

TGTGNNTGTTTTCTGTCATTTCTTTGGACGTGGGACAGGAGTGATCAATTGCATTGGGAACTTC

CTGTGCTGTTCCCTTGAGTGNTAGTTGAGACTAACTCCCTCATCATCTGATGGNGTGAAGCGG

TATAATAATATCATTTCATGTCCTANTGGATCCAGAGGGGACTGATAANAAGGTGCTGAAGTA

CNAGTGCCACACGATGAAGAAGCTGAGCATGACAAGGACGCTTCTGACACAAAAGAAGGAA

GGAGAATAAAACATACGTTCTTTCACTTCCTTCTCTGGAGAGGGGAACTCTTGGGCTGTGAGT

GTANATAANTGGTCAANAGCACTTGCCTANCATGTGTGGGGCCCTGGNATCGGTGNNNNNNA

CTANNNNNNTGTGATAGCACATGCTTGAAATCCCAGTGATTTGGGCAGTTGGGGAAGGCAGC

TGAAGATCATGAGTTCAANGNNNAAAGTGAGCCNN 
 

Sanger sequence for sample 33-F-chr12_54782625-54784225_1_F: 
NNNNNNNNNNTNNNNNNNNNNTCGNNNNGTCTTTCNNNNNNNCATGCCTTTNATCCCNGCNN

TCCAANNNNNNNNNNNNGNNNGNTNNCNGCTTCTCCAAGNNCCGTTTTTTCTTCTGGNCTCTG

TGGNCNCTGCNGNNGGCTCATGCCTNTATTNCNNNCTGTCCNNGNAGNNANGCAGGANATGG

TGAANGAAGGAAAGCCAAAGCTANNCNNGCACCNNACTTNNAAAGGAACCTGNATAGTCNN

CTTATCNTTTTAAAGAATTATGACNGNACATGAATTGATGNNGTNTGCNAACNATCGCAAATT

CTCATTTCTTANNATTTGGCAATGATTNCTGTCTANACNNATCTTTCTTGANNNNAGCANCCN

NNTCCTCANATCTTNGNNTNNNNANNNANNNNNNNNTTATATATTGNANNGNNNNNCNTNNN

NNNNNNNNTNCTTTNNNNNNNNNTCNTNNNNNNNNNCCTTNNATCNTNNNNNNCCANNNNTN

NTNTGNNNNNNNNNN 

 

Sanger sequence for sample 33-R-chr12_54782625-54784225_1_R: 
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NNNNNNNNNNNNNNNTAGCTGNTTTTNACCCAGGAGAATCCTCCTCAGGTGGCGTANAANAG

ATTTGATGTTGNGAGAAGAGACTAAATATAAAAAGNTNTCTCNGATTTTTANGTTGCCCCACG

CTCGTTTTTTTGCTCTTTTGTTGGTTNACGTTGATCTATATTTTGAGTTTTTACGATTCTTTTTTC

CTTAATGAATAGCTAATACATGTTGCTTAAAATCNGAAGCATATACACATCTCATTTTCATAGT

TACTCNNGTATTTGATGAAAGTAATGCAAGTTCCTTANAANNGTGCTGCTAAATTTTCTTTTGN

GATCCATGCCTGCTACCCAATTATTCTTTTTGTNTTTAACCTTTCNNGTCTTGAACCNACTTATT

CAAANGATTCGAGAANATCTCCCAAATCTTGANTCCAGTGAANAAACATAAAAAATAAACAA

GCATTTTCACAACACATTGGAGCACTTGCGCTCAAGACNNNAATCACCAGAGTCTGAGGGGC

CNATTCTATGAAA 
 

Sanger sequence for sample 34-F-chr13_31630105-31631705_F: 
NNNNNNNNNATANCNGTAAGTANCACACCCATCACTTATACAAATACCCAAGGGAGTTCTGC

TCACCGATATTTGCCCGGCCCCTGGAAGAGGAAACCTTTCGAAAGCTAATATCCCAGAAGAGC

GACAGACAGAGGAGGTGACTACATGTAAGACATATGTTACTGTGTGGAGGACATAAAACTTT

TCAGTTCTGGGGTGGCCATTGCATTCACTAATCAGGGTCTGAAAAGGGAGGTGTGTGTGTGTG

TGTGTGTGTGTGTGTGTGTGTGTGTGTTTTTCAAAATTGGAGTGAAAAAANCACACTATTNAN

ANANNNCTNTCTCTATCNCNNTGNCTCANNNAGATTTTTCNTNCNCNCTCTCCCACCCCCCCC

ACTCTCNNTTNTTCANATANGGGANANAN 

 

 

 

 

Sanger sequence for sample 34-R-chr13_31630105-31631705_R: 
NNNNNNNNNNGNNANNNTGNNNAATGTCCTACTGAGCCAAGGAACTAAGAAGGCTTTCTTGA

AATTGTGTGCTTTTAGCACTGCAATTTTGAAAAGCACACACACACACACACACACACACACAC

ACACACACACCTCCCTTTTCACACCCTGATTAGTGAATGCAATGCCCCCCCCAAAACTGAAAA

TTTTTATGCCCTCCACACAAAAACATATGTCTTACATGTACTCACCTCCTCTGTCTGTCTCTCTT

CTGGGATATTATCTTTCNAAAGGTTTCCTCTTCCGGGGGCCGGGCAAATATCGGAGAACAAAA

CTCCCTTGTGTATTTGTCTAAGTGATGGGTGTGCTACTTACTGCTATTCTCTATCCAGCGTGCA

CAGTGAGANTCNNTTTGAAATANA 

 

Sanger sequence for sample 35-F-chr14_54541419-54543019_1_F: 
NNNNNNNNNNNNNNNNNNNACTCTCNNNNNCTNCNGTGTGCTCGNGACTGGCTGGTACTGNA

ATCATTCCCCGGGCCCCCATGTAGCCACTCCTCCTGGANATTGTAGTCCCACCNACTGAACTC

AATGNNCCTANNCCCTCTGGGNAGGTCGATTTCATTTTCACAGGAGAGGCTAGGTGGGGGAG

GGATCAGCAGAAAAAGTTTAGGGGCCAANAATGGNTGGAGCACGGGAANGCATTCTGGCAA

GAGGAAAGATGCCGCTCTTTANGGGAAAGCCTCTCCCACCGTTCTCTCATGGTGGGTCTTGAG

GAGCAGAGACAGTTTATAATTTTAAAACTTTATTGNAGAAAGGCAAGGAGAATCTNNGAAGG

NTGAAAGAGTTTAGGGGCCNANNNNNGATATGCCGAAGGAGTTTAGGGGCCANNGNTAGTTA

CAACCTACCGCTAACAGANCTTNNATCCTCTANAACATCTACTCGCCTNNAANNTTTNCCNNC

GCCNTCACAACTACTNNTTANAAGCAGANNNCGTAACAGCATTAAGGGAGGACTCTTAGTTA

CTTTTCTATTGCTGTNNAAGGNTGATCATGNCCNGGCATCTTATAGNNNAAAGAATTTAGGGG

CCCANCANANAGNAGTANGGGGGGNGNNNNNTTNNNNNTGGNNACCANNNTCTGCAATNNA

NGNNNNATNGGNNATNNCCGTTTCNGTNNNNNTNNNNNGANNNNNN 

 

Sanger sequence for sample 35-R-chr14_54541419-54543019_1_R: 
NNNNNNNNCNNNNNTCCNNATNNTNTNNGTATACACTTCTGACGGTGTTGTAAGACACCGCT

GATNGAGGCTAAACAGATCCTTTAAGCGTGGCTAAAGTGCTCCCGGGGGCCAGATACNCTGN

CTGNGATCNNCTATCAGACTGGACNNNGTNTCTCTTCCTGTGATAACGNCCATGAACCTATCN

CTTCCTGCCCTAGGCTCNNNNNGGTCCCTGANCTGACTGANNTGTNCCTGGGGCTCCCATTTT

GTTCTTATGTTTTCCTCGGTGTCANNNTGTGTCTGTNATGTCCATTACTTCGAACCTGTTATCTC

GGNCCTCTGTGAGGCCCNNNNCCTAANACTGCCCCTTGCCCACCCCCTTGANCTGANNGNNNG

NNNANNNNNNGT 
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Sanger sequence for sample 36-F-chr16_52269942-52271542_F: 
NNNNNNNNNNNANTGACTTANNTGNNNNACAAGGGTAGTAGAAGAATGGAAACCAGGTAAA

AAAGAAAACGGTAACCTCATGGCGATGATATCAAAATGCCAAACAAAAGCGTGAAACTTACC

ATGATGCAGTACAGGGAGATGGAACTGAAGATGTTAAGCTAATGAAGAATAACTTCAAATTT

TCTTACGGTTTTAATGCCAGAAATGAAATACTCACTCGCAGAGACATTCAGGGAGTTTACTGT

TCTCTCCAGTTGGTTTTCTGCTGTGCAAGTTAATGTTACATTCTCCTCAGGGGAAATGATAATT

TTACTATAATACCTGCCATTAATATAAGGAGACTCCTCTGTCTGGAAGAAGAAGGAAGAAGA

GTTTAGAGATGGAGGTGCACTTTACAAGTCTGGGAAAGCATAGTGGTAGNNNNNNCAGGGCA

A 

 

Sanger sequence for sample 36-R-chr16_52269942-52271542_R: 
NNNNNNNNNNNNNAAAGTGCNCCTCCNTCTCTNNNCTCTTCTTCCTTCTTCTTCCAGACAGAG

GAGTCTCCTTATATTAATGGCAGGTATTATAGTAAAATTATCATTTCCCCTGAGGAGAATGTA

ACATTAACTTGCACAGCAGAAAACCAACTGGAGAGAACAGTAAACTCCCTGAATGTCTCTGC

GAGTGAGTATTTCATTTCTGGCATTAAAACCGTAAGAAAATTTGAAGTTATTCTTCATTAGCTT

AACATCTTCAGTTCCATCTCCCTGTACTGCATCATGGTAAGTTTCACGCTTTTGTTTGGCATTTT

GATATCATCGCCATGAGGTTCCGTTTTCTTTTTTACCTGGTTTCCATTCTTCTACTACCCTTGTC

TTCACAGTTTAAGTCACTTCATATATTAGCACTCAGACACTTTTCCCAGGAGAGGAAAN 

 

 

 

 

 

 

Sanger sequence for sample 37-F-chr16_94468034-94469634_3_F: 
NNNNNNNNNANNNNNNNCTAATTTTTAAGTGCTTATGATTCGTTATTCTACATTTTGGTAATC

AATTATAATATACTTTTTAAATTATTATTGGCTATTTTTTTTTTTTACCCGGGGAAAATGCTGTG

TGATCACGAGGATCCCNCACTTGNNCCTTACCCTAAGGTTACCATGCTGCNCTCATGAGTNNT

CCTAGCTTGGAAGTGCACGTNNCTGNTAGGGCTGAAAACAGGACATAGGGCCCAGCGCAGGG

CACCCACCCTCACCCTCCTTCCTTATCCTTCCACCAAAAAAAAAATGTACCACAGCCCTGATGT

GTTGGGGTTAACATTGTTCTGTTTGACTTTTGTGTAAAGTAATGCATGCAATCTTGTAATGGGG

CCTGAAAACAAGCTAACTGTATTAAAAACTATTCAAAAACTAGGTATTTTTAGTGACCTGTAG

GGAGTGNCAAATACAAACATGTGAACCTTGAATACATTACATTTCTCTCAAACACAAAAAAA

CAAACAAAAAACTTTTCCAGCGTGTTCTCTGCTGCCCTGGANATGCCGTCACCTTCCACCCGT

GTCTGTGTGAGTTGTGGTGTCTTAGTGACTTAGTATGTANCTCACTCNTTATTCTGAAACATTG

TCTGNGGGTGNNCNNNGN 

 

Sanger sequence for sample 37-R-chr16_94468034-94469634_3_R: 
NNNNNNNNNNNNNNNNNNNCTNNNTCACTANNACNCCNCAACTCACACAGACACGGGTGGA

AGGTGACGGCATCTCCAGGGCAGCANAGAACACGCTGGAAAAGTTTTTAGTTTGTTTCTTTGT

GTTTGAGAGAAATGTAATGTATTCAAGGTTCACATGTCTGTATTTGCCACTCCCTACAGGTCAC

TAAAAATACCTANTTTTTGAATAGTTTCTAATACAATTAGCTTGTTTTCAGGCCACATTACAAG

ATTGCATGCATTACTTTACACAAAAGTCAAACAGAACAATGTTAACACCAACACATCAGGACT

GTGGTACATTTCTCTTCTGGTGGAAGGATAAGGAAGGAGGGTGAGGGTGGCTGCCCTGCGCTG

GGCACTATGTCCTGTTTTCAGCACTAGCCAGCTGTGCACTTCCAAGCACTGCTGACTCATGAG

ACTTACATGGTAACCTTAGTGTAAGTGCCAAGTGTGGGACTCCTGTGAGCAGACAGCATCTTC

CCAGGGTAAAAAAAAAAAATANCCAATACTAATTTAAAAAGTATTTTATAATTGATTACCAA

AATGTANATTAATTGAATCATAAGCACTTTAAAAATTTATGACGGGGATGCTACAGTGCCACA

TGAGGAACTGAGANGGNNNNNNNNNNNNN 

 

Sanger sequence for sample 38-F-chr19_60770223-60771823_F: 
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NNNNNNNNNNNNGNNNNNNNNCTNCNCNNGNGTNNGTAANGATCTCTCCGGGTGTCCCTGA

AGGTTGNCTCCTGCACTTGAATTTTGCAGTAAATAAATCTTTAACACACAAAAAAAACTTAGG

GAAAAAAAAAAGACCCTANAGGATTATATCTGGTATGCCTGAAATTGCACCCTGCATTGCCCC

CAAAANCCCNCNCTTNAAAAGGATCGAAAGGAAGANCTTTNATCTTTGAAANNCTTGAAAAG

ATTAAAATATCTCCAAACTCTTCGACACTACCTTCGANTGNTTACCTGTGAACCTTTAACCTGT

GTTAAGGGAAAATCCTCAAAAAAAAACTAAAAGTTCACAAATTAAACTTTTCCCTAAACAAA

ACAAACAAAAAAAAACCCCATAGTGAGCTTACCTCGTAAACAAACTGCCGGGCAGCTTTGAG

GCGCATCACAAATAAATCTCTGTCTTCCAACATTCNTGACATCCTATTCTTATGCTCCAAAGCT

TTTTCTCGTTCTANCTGCATTGTANTGATCTGAAAGTACACAGCACTAGGTAATCTCCAAAGC

ATCACTCCAGGAAAATGCTCACCTTCCTTACACTGANAAGCTTCTCCTTCNNGNNTTTTTTNNA

GN 

 

Sanger sequence for sample 38-R-chr19_60770223-60771823_R: 
NNNNNNNNNNNNCTGANGNNAGCANCTTNCATGNCACTGGTGNANGACACNGTTCNCAGAG

GCTGTGTCTGGGAAAGGANGACNAGACATTCNGAAGAAGAAATGCTCGGGAACATCTTAATA

GGATGTCACAAATGTTGTAAGACAAAAATCTATTGGAGAGGCGCCTCAAAGCTGCCCGGCAG

TCTGTCTCNNTTCCTGCTCACTATGGGGTCTTTTTTTGTTTGTTTTGTTTAGGGAAAAGTTTAAT

TTGTGAACTTCTANTTTTCTTTTGAGGATTTTCCCTTAACACNGGTTAAAAGTTAACAGGTAAT

TACTCAGTATTTGTATAGATGAGTTGGGAGATATTTTAATCTTTTCAAGTGTTTCAAAGATGAA

AGTTTATTCTTTTTGATCTTTTTGAAGTGTGGGATTTTGGGGGCAGTGCAGGATGGAATTTCAG

GCCTACCAGATAGCTACCTCTAGAGTCTTTTTTTTTTCCCTAAGTTTTTTTTCTTTTTTAAAGAT

TTATTTATTATTATATGTAAGTGCATTGTAACTGTCTTCAAACACACCAAAAAAGGTGGTTAA

ATATCATTACANATGGTTGTGAGCCACCGTGTGNTTGCTGGGATTTGAACTCNNNNNTTTCGG

GAGN 

 

 

 

 

 

 

 

Sanger sequence for sample 40-F-chrX_101403719-101405319_6_F: 
NNNNNNNNNNNNNNNAGGGAGCACCCNGTTCTTTCCCTGTTGGCTTTGCTGTTCCCCAGCCTT

CTTTTTGTGTTTTTATAACTGTCCTCAGTTTAGCCACTGTTAAAATGTATATATTGTACTGAGGT

GCCTGGCCTGTTCCTTCAGTGAGCCATGCCCACCCTTGTGTTGTAGTGAGAAACTGTTGTCACA

ACTAACTTGTCTCTGGAATTGTTTCAAATAAAGAGTTAAAATTGTTCTTTGCTTTCTCTGGGGG

AGGTAGAGCTGGCGTTGAAGAGTGGAAGAGAAGAGAAAGAGCACCCACTGTGGGTCCCTGA

AGATTAGTCTTCCCTCAGTCAATGAATATCACAACGTTGGTCCTCTTCTCATACATTTTCAGAT

ACATCAGAAAAAAATATTTTTCAATAGCCATTTATTGAGCTAGAGTTGCTTATGTCTATAATCC

CAGTAGTTGGGAGGTGGAGGCAGGAAGTTAGGAATTCAGTCATCCTTGGCTACATGTGGAGTT

CAGAGCCAACCTAGGTTATGTGAAACCCTGTCACAAAATGGGGACAGGNNNGNAANAAATGT

AAGAA 

 

Sanger sequence for sample 40-R-chrX_101403719-101405319_6_R: 
NNNNNNGNNNNNNNNNNCTAGGTTGGCTCTGAACTCCACATGTAGCCAAGGATGACTGAATT

CCTAACTTCCTGCCTCCACCTCCCAACTACTGGGATTATAGACATAAGCAACTCTAGCTCAAT

AAATGGCTATTGAAAAATATTTTTTTCTGATGTATCTGAAAATGTATGAGAAGAGGACCAACG

TTGTGATATTCATTGACTGAGGGAAGACTAATCTTCAGGGACCCACAGTGGGTGCTCTTTCTCT

TCTCTTCCACTCTTCAACGCCAGCTCTACCTCCCCCAGAGAAAGCAAAGAACAATTTTAACTCT

TTATTTGAAACAATTCCAGAGACAAGTTAGTTGTGACAACAGTTTCTCACTACAACACAAGGG

TGGGCATGGCTCACTGAAGGAACAGGCCAGGCACCTCAGTACAATATATACATTTTAACAGTG

GCTAAACTGAGGACAGTTATAAAAACACAAAAAGAAGGCTGGGGAACAGCAAAGCCAACAG
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GGAAAGAACTGGGTGCTCCCTCTGACAGACACTAACCTTTCTGGGCCCACAANNGNNNNNTG

GGGGAA 
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