
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Fall 12-14-2018 

Dietary Polyunsaturated Fatty Acids Regulate Mammary Tumor Dietary Polyunsaturated Fatty Acids Regulate Mammary Tumor 

Growth and Metastasis by Modulating Tissue Microenvironments Growth and Metastasis by Modulating Tissue Microenvironments 

Saraswoti Khadge 
University of Nebraska Medical Center 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Biochemical Phenomena, Metabolism, and Nutrition Commons, Medical Immunology 

Commons, Medical Nutrition Commons, Medical Pathology Commons, Medical Pharmacology Commons, 

and the Preventive Medicine Commons 

Recommended Citation Recommended Citation 
Khadge, Saraswoti, "Dietary Polyunsaturated Fatty Acids Regulate Mammary Tumor Growth and 
Metastasis by Modulating Tissue Microenvironments" (2018). Theses & Dissertations. 309. 
https://digitalcommons.unmc.edu/etd/309 

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has 
been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. 
For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1012?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/675?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/676?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/960?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/703?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/309?utm_source=digitalcommons.unmc.edu%2Fetd%2F309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


 Dietary Polyunsaturated Fatty Acids Regulate 
Mammary Tumor Growth and Metastasis by 

Modulating Tissue Microenvironments 

 
 

By 
 
 

Saraswoti Khadge 
 
 

A DISSERTATION 
 
 
 

Presented to the Faculty of 

the University of Nebraska Graduate College 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

 

Pathology & Microbiology Graduate Program 
 

Under the Supervision of Profs. James E. Talmadge & Geoffrey M. Thiele 

 

University of Nebraska Medical Center 

Omaha, Nebraska 

 
September, 2018 

 
 
 

Supervisory Committee: 
 

James E. Talmadge, Ph.D. Geoffrey M. Thiele, Ph.D. 

Lynell W. Klassen, M.D. Joyce Solheim, Ph.D. 

 



   ii 

 

 

 

 

In memory of beloved 

Father Dwarika Lal Khadge and Mother Kamala Devi Khadge 

 

 

 

 

 

 

Dedicated to the brother 

Mr. Rasun Lal Khadge 

 

 

 

 

 

 

 

 

 



   iii 

ACKNOWLEDGEMENTS 

It is my immense pleasure to express my sincere gratitude to my mentors Dr. James E. 

Talmadge and Dr. Geoffrey M. Thiele for their excellent directions and supervision to get 

productive outcomes from my dissertation project, and for their guidance, which helped 

me to grow professionally and personally. I am thankful to my mentors for providing me 

an opportunity to work in this collaborative project that involved multiple professors with 

diverse expertise. The discussions during the project meetings helped me to analyze the 

differential perspectives of the same research question, which is critical for 

multidimensional studies. I am especially thankful to Dr. Talmadge for his efforts and time 

in conducting discussions of papers during my initial years in the lab, which helped me to 

understand the roots of seminal works in cancer biology and metastasis. Similarly, I am 

thankful to Dr. Thiele for discussion of the original articles on isocaloric diets, pair-fed 

models and their importance in nutritional studies.  

Besides my advisers, I would like to express my sincere thanks to Dr. John Graham Sharp 

and Dr. Timothy M. McGuire (collaborators of the project) who attended the weekly 

meetings and provided their valuable suggestions throughout the study period. I am 

especially thankful to Dr. Sharp for teaching me histo-pathology and the basics of human 

anatomy/physiology, and providing me an opportunity to observe a cadaver analysis. I am 

grateful to Dr. Sharp for his guidance and motivation for the study as well as for the 

career/personal challenges.  

I am sincerely thankful to Dr. Lynell W. Klassen for his generous financial support for my 

studies, without which this project may not have been completed. Besides, I am thankful 

to Dr. Klassen for being in my supervisory committee and provided valuable suggestions 

for the study. I would like thank Dr. Joyce Solheim for being on my supervisory committee 

and providing her expert guidance for the project directions as well as a student’s 



   iv 

curriculum development. Similarly, I am thankful to Dr. Paul W. Black, Dr. Concetta 

DiRusso and Jorden Beck from the University of Nebraska at Lincoln for their help in the 

fatty acids composition analysis.  

Working as a student in a collaborative project, I am thankful to the lab members from four 

different labs for their cooperation throughout my studies. Firstly, I would like to thank 

Alicia Dafferner and Holly Britton for being wonderful colleagues. I am thankful to Alicia 

for her help/instructions in lab protocols in my initial days and for answering my queries, 

although she is not currently present in the lab. I am thankful to Holly for her help 

throughout the study, and for a cozy blanket, she made for me, which I have been using 

a lot. Additionally, I would like to thank Michel Duryee, Carlos Hunter, Erin McIntyre and 

Karen Easterling for all of their help, whenever needed, especially during many of the 

hectic experimental days. My special thanks go to Karen for being a wonderful friend and 

helping me personally. I will miss our meetings.  

I am thankful to Dr. Sung-Ho Huh for allowing me to use equipment in his lab, and to the 

staffs of the tissue science facility, flow cytometry facility and animal facility for their service 

and co-operation.  Additionally, I would like to express my sincere thanks to Dr. Rakesh 

K. Singh, Tuire Cechin, and Dan Teet for their excellent co-ordination of the program and 

providing suggestions as per need. Specifically, I am thankful to Dr. Singh for his guidance 

and help  with experiments.  

I am thankful to all of my friends at UNMC at Omaha who made my stay here enjoyable. 

Specifically, I am thankful to Dr. Nirakar Rajbhandari for being a wonderful friend and 

helping me adapt to the new place. Similarly, I would like to express my thanks to my 

evergreen friends Laxmi, Niroj, and Roshan for unconditionally being part of my 

happiness/sorrows.  



   v 

In a personal note, I am thankful to my brothers and sisters for their constant support 

throughout my life and their solidarity with me in adversities. I am also thankful to all 

members of my family, including my in-laws, for providing their direct and indirect help to 

me and for being a wonderful family. Finally, yet importantly, I am thankful to my husband, 

who came into my life during this journey and brought more happiness to my life. I am 

thankful to him for understanding me and my dreams, and for supporting me in every 

possible context. 

Saraswoti Khadge 

Omaha, Nebraska 

September 2018 

  



   vi 

Dietary Polyunsaturated Fatty Acids Regulate Mammary Tumor 

Growth and Metastasis by Modulating Tissue 

Microenvironments 

Saraswoti Khadge, Ph.D. 

University of Nebraska, 2018 

Supervisor: James E. Talmadge, Ph.D. and Geoffrey M. Thiele Ph.D. 

 

Omega (ω)-6 and ω-3 polyunsaturated fatty acids (PUFAs) are essential fatty acids (FAs) 

and the precursors of pro- and anti-inflammatory mediators respectively. Epidemiological 

studies have shown a lower incidence of breast cancer (BC) in the countries where long-

chain (LC)-ω-3FAs consumption is higher; however, the role of ω-3FAs in BC growth and 

metastasis is poorly understood. We used isocaloric, isolipidic ω-6 and ω-3 (contains LC-

ω-3FAs) diets and a pair-fed model to evaluate the effects of dietary PUFAs in mammary 

tumor metastasis. Our studies have resulted in several novel observations including that 

dietary LC-ω-3FAs modulate mammary gland (MG) microenvironments in non-tumor 

bearing (NTB) mice by lowering MG ductal density, epithelial cell proliferation, adipocyte 

hypertrophy and adipose tissue inflammation compared to the MGs in the ω-6 group. 

Similarly, we reported that dietary LC-ω-3FAs modulate the hepatic microenvironment (a 

common site of metastasis) by lowering hepatic steatosis, hepatocyte apoptosis, 

extramedullary myelopoiesis and NFκB expression relative to the respective observations 

in the ω-6 group. Finally, 4T1 mammary tumor studies in mice pre-exposed to these diets 

showed that, dietary LC-ω-3FAs delays mammary tumor induction and growth, and 

enhances survival of mice by lowering incidences/frequencies of spontaneous metastases 

to multiple organs including, lungs, liver, bone, heart, kidneys, ovaries and contralateral 
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mammary glands compared to the respective analyses in the  mice fed a ω-6 diet. In tumor 

microenvironments of mice fed a ω-3 diet, there were significantly lower numbers of 

proliferating tumor cells, neo-vascularization and a higher incidence of apoptotic tumor 

cells. Similarly, there was a significantly lower infiltration of myeloid cells including F-4/80+ 

macrophages and neutrophil elastase positive cell (granulocytes), and a higher infiltration 

of CD3+ T-Cells in tumors from mice fed an ω-3 diet relative to the ω-6 diet-fed group. 

There was a direct correlation between the neutrophil to T-cell ratio with tumor size and 

macrophage infiltration with neovascularization.  There was also a direct correlation 

between T-cell infiltration and frequency of apoptotic tumor cells, indicating their roles in 

tumor growth. IL10 mRNA expression in tumors of mice fed an ω-3 diet was six fold higher, 

relative to the expression in the tumors from the ω-6 group, indicating a potential role of 

IL10 in the tumor growth suppression by dietary LC-ω-3FAs. In summary, our studies 

using isocaloric/isolipidic diets and a pair-fed model showed for the first time that dietary 

LC-ω-3FAs delay tumor growth and lower metastasis, and enhance survival by modulating 

the tissue microenvironments including MGs and liver.  
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Chapter 1: 

Introduction1 
 

1.1. Commentary: Background of the project design 
 

A team of researchers, led by Dr. James E. Talmadge (expertise in cancer biology), Dr. 

Geoffrey M. Thiele (expertise in immunological disorders and alcoholism-associated 

pathologies) and Dr. John Graham Sharp (expertise in pathology and stem cell biology), 

initially conceived of the project and the aims to analyze the effects of alcohol on 

pathological alterations and mammary carcinoma development. Dr. Thiele’s lab has been 

using Lieber-Decarli liquid diets and the pair-feeding model for alcohol-related studies. Dr. 

Talmadge’s lab has been studying 4T1 mammary tumor for decades. Thus, the initial 

project was designed to analyze the effects of chronic alcohol consumption on 4T1 tumor 

cell growth and metastasis.  To investigate this, preliminary studies using the Lieber-

DeCarli diet with altered alcohol concentrations (5.5% to 16.6%) were administered for 4-

8 weeks before an orthotopic inoculation of 50,000 4T1 cells. The results showed a 

significant increase in tumor growth in mice fed the Lieber-Decarli alcohol diet relative to 

the Lieber-Decarli control diet but no difference in survival days was observed between 

the groups. In these experiments, we observed a few 4T1 tumor-bearing (TB) mice from 

both of the dietary groups had posterior paralysis, which led us to analyze bone 

morphology and metastasis by micro-CT and histology. As we expected, the mice with 

posterior paralysis had tumor metastasis in their femurs/tibia. To our surprise, we also 

observed mild osteopenia in non-tumor bearing (NTB) mice fed the Lieber-Decarli control 

                                                           
1 A part of this chapter is derived from previously published book chapter: Saraswoti Khadge, John Graham 
Sharp, Timothy R. McGuire, Geoffrey M. Thiele, and James E. Talmadge. "Lipid Inflammatory Mediators 
in Cancer Progression and Therapy." In Tumor Immune Microenvironment in Cancer Progression and 
Cancer Therapy, pp. 145-156. Springer, Cham, 2017. 
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diet compared to the mice on standard chow diet. Thus, we revisited the diets’ composition 

and their roles in the outcomes we observed.  

The Lieber-Decarli control diets contain 35.5% of calories from fat, which is a higher fat 

level compared to the 16% calories from fat in standard chow diets. Based on this, we first 

analyzed the effect of fat calories in altering the histopathology and immunological 

markers in spleen, liver and bone marrow (BM) from NTB mice fed isocaloric diets 

containing moderate fat (35.5%) versus low fat (12.5%) calories. However, there were no 

significant differences in immunological phenotypes in liver, spleen and BM between the 

various dietary groups. We did observe was hepatic macro-steatosis, and micro-steatosis 

in moderate-fat versus low-fat pair-fed mice. Surprisingly, the fat droplets in hepatocytes 

of low-fat diet-fed mice were more extensive than the droplets observed in the livers from 

chow fed mice, which has higher calories from fat compared to the low-fat diet. These 

results suggested a unique role of dietary fat composition in hepatic pathology and 

metabolism. Thus, our results from these preliminary experiments suggested that the 

observations in the original alcohol studies were confounded by many factors; including, 

alcohol, calories from fat, and the composition of the fats. Clarification of relevant factors 

was necessary to evaluate the effects of a single component without overlapping effects 

from others. We noted that the Lieber-Decarli control diet incorporates insignificant levels 

of long chain (LC) omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), but contained 

significant amounts of safflower oil, which is rich in omega-6 (ω-6) PUFA and olive oil 

(mono unsaturated fatty acid; MUFA). Thus, the present study has the aim of analyzing 

the effects of these PUFAs on the tissue microenvironments, which might play a role in 

regulating in mammary tumor pathogenesis. 

Therefore, the role of PUFAs, in regulating tissue microenvironments and tumor 

progression, was the major aim of these studies. The first research section of the thesis 
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is oriented toward the analysis of mammary gland macro and microenvironments by 

dietary PUFA (Chapter 3). Since the liver is a frequent site of breast cancer metastasis; 

although less frequent in mice, we also analyzed alterations in the hepatic 

microenvironment by PUFA diets. In the second research section, we investigated PUFA 

modulation of hepatic tissue in NTB mice (Chapter 4).  After analyzing the changes in 

tissue microenvironments by diets in NTB mice, we evaluated the effects of chronic 

exposure to PUFA diets in mammary tumor progression and metastasis to multiple organs 

(Chapter 5).  

The introduction in this thesis is presented in the order the studies are discussed in the 

subsequent sections. The introduction starts with breast cancer epidemiology and the 

potential effects of diets; followed by a general background of PUFA, metabolism, and 

their role in inflammation. I then discuss mammary gland biology, the hepatic 

microenvironment and PUFA regulation of the metabolism and pathobiology of these 

organs. Finally, the pathogenesis of breast BC and the role of microenvironments and 

chronic inflammation in BC progression are discussed.  

 

1.2. BC epidemiology 
 

BBC is the most common cancer in women, regardless of race or ethnicity, and is the 

second most common cause of death from cancer in American women [1]. According to 

statistics from the National Cancer Institute, there were an estimated 3,418,124 women 

living with female breast cancer in the United States in 2015. About 266,120 women are 

expected to be diagnosed with invasive BC and 40,920 women are expected to die from 

BC in 2018  in the United States [2] The global pattern of BC incidence reflects the 

availability of BC screening as well as BC risk factors in the population. The highest BC 
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incidence rates are in most of  Western countries including North America, Australia/New 

Zealand, and Europe, while the lowest rates are in Africa and Asia (Fig. 1 and Fig. 2) [3]. 

Besides the major risk factors relating to age, hormonal exposure, genetics and obesity 

[4], there are modifiable lifestyle factors such as alcohol, smoking, sedentary life, obesity 

and dietary factors that have been associated with an increased BC risk. The 

epidemiological studies investigating possible effects of dietary behavior on BC incidence 

are confounded by the close relationship among, dietary composition, caloric consumption 

and body weight, making it difficult to define the effects of one variable, independent of 

the others [5]. However, epidemiological and animal-based studies have shown a direct 

association between BC and total fat intake [6, 7], high saturated fat intake [8, 9] and a 

higher intake of omega (ω)-6 polyunsaturated fatty acid (PUFA), relative to the dietary 

level of ω-3 PUFA [10-13]. In contrast, the consumption of marine-derived long-chain (LC)-

ω-3FAs have been associated with a lower risk of BC [14-17]. Despite extensive evidence 

of an association of dietary PUFA composition with neoplasia, the regulatory mechanisms 

driving such effects are little understood.  
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Figure 1. World BC map showing differences in incidence between countries.  

 

The data are presented as cases per 100,000 population. Color code: the darker the color 

the greater the incidence [3]. 
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Figure 2. Breast cancer incidence between the years 1975 to 2010.  

(A) Asian countries (B) and (C) many Western countries [3].  
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1.3. PUFAs 
 

PUFAs are a class of lipids having two or more double bonds in their carbon chain. Among 

the PUFAs, ω-3 and ω-6 PUFAs are essential FAs important for human health. The name 

ω-3 and ω-6 are given based on the location of the last double bond relative to the terminal 

methyl end of the molecule (Fig. 3) [18]. The biological reactivity of fatty acids is defined 

by the length of the carbon chain and by both the number and position of any double bonds 

present. Thus, differences in the position of the last double bond between ω-3 and ω-6 

PUFAs result in various biological functions.  Linoleic acid (LA) (C18:2; ω-6) and α-

linolenic acid (ALA) (C18:3; ω-3) are the simplest members of the ω-6 and ω-3 PUFA 

families, respectively, and are precursors to the long-chain (LC) series of the respective 

series of PUFA families. Saturated FAs (SFAs) and most monounsaturated FAs (MUFAs) 

can be synthesized in mammalian tissue from non-fat precursors such as glucose and 

amino acids. However, mammals cannot convert oleic acid (MUFA, 18:1; n-9) to LA and 

LA to ALA due to lack of 12-desaturase and 15-desaturase respectively [19], which are 

enzymes found only in plants and lower animals like C. elegans. Thus, LA and ALA are 

termed essential FAs as the human body must obtain these FAs from external sources 

[20]. LA is plentiful in nature and found in the seeds of most plants, except for coconut, 

cocoa, and palm. On the other hand, ALA is found in the chloroplasts of green leafy 

vegetables, and in flax, rape, chia and perilla seeds, and in walnuts [20, 21]. In the human 

body, most of the biological functions of PUFAs are mediated by the LC series of ω-6 and 

ω-3 FAs. Arachidonic acid (AA) is a LC-ω-6FA and is obtained efficiently from eggs, 

poultry and red meat, while LC-ω-3FAs such as eicosapentanoic acid (EPA) and 

docosahexaenoic acid (DHA) are obtained from cold water fish such as salmon [22]. 

Besides external sources, LC-ω-6FAs and LC-ω-3FAs can be derived from LA and ALA 

respectively in the human body by competitively using the same series of enzymes: 
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desaturases and elongases (Fig. 4). In general, these enzymes have greater affinity for 

ALA than LA, but due to increased availability of LA in diets and intake of at least 10 times 

more LA than ALA, more AA is formed than EPA and DHA [22-24]. As noted above, LA 

cannot be converted to ALA in mammals due to lack of converting enzyme ω-3 desaturase 

[25]. Further, studies using increased dietary ALA have shown the conversion of LA to LC-

ω-3FAs, specifically to DHA, is generally poor in humans [26, 27]. Thus, the consumption 

levels of ω-6 and/or ω-3 FAs directly affect their bioavailability and their respective 

downstream biological functions. Therefore, dietary consumption of LC-ω-3FAs (EPA and 

DHA) might be more effective than ALA for ω-3FAs-related functions.  
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Figure 3.  Molecular structure of different classes of fatty acids.  

Red arrows indicating position of the first double bond in ω-3 and ω-6 PUFA. Figure 

source [28]  
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1.4. PUFAs metabolism 
 

PUFA uptake to cells is a facilitated membrane translocation process that involves FA 

translocases (i.e., CD36), FA transport proteins and membrane-bound FA binding proteins 

[29-32]. The transported PUFAs are converted to FA acyl-CoA thioesters prior to entering 

one of three major metabolic pathways. The first pathway is a beta-oxidization pathway to 

generate energy (ATPs). The second pathway is one in which FA acyl-CoA thioesters of 

PUFAs are metabolized for the synthesis of neutral lipids (triglycerides, cholesterol, 

esters) or polar lipids such as phospholipids and sphingolipids. The third pathway occurs 

if PUFAs are consumed in the form of LA or ALA, where they may undergo a series of 

desaturation and elongation reactions and form LC-PUFAs such as AA, EPA and DHA 

respectively [33-35]. LA and ALA are not efficiently synthesized nor incorporated into 

phospholipid membranes. However, LC-ω-6FA (AA) and LCω-3FAs (EPA and DHA) can 

be efficiently incorporated into phospholipid membranes [24, 36]. The incorporation of LC-

PUFAs affects the biological functions and/or signaling of immune cells in a variety of 

ways, including the fluidity of cell membranes, alterations of lipid raft composition, acting 

as ligands for G-receptors, or by being substrates for cyclooxygenase (COX) and 

lipoxygenase (LOX) enzymes for the production of bioactive lipid mediators or eicosanoids 

[19, 35, 37]. 
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Figure 4.  The metabolism of plant-derived essential ω-3 and ω-6 PUFAs. 

 

Both ω-3 (n-3 in Fig) and ω-6 (n-6 in Fig) PUFA precursors competitively use the same 

set of enzymes to prepare derivatives. DHA, docosahexaenoic acid; EPA, 

eicosapentaenoic acid. Figure source [36]  
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1.5. PUFA and inflammation 
 

Eicosanoids are a group of key, biologically active mediators that regulate inflammation 

signaling [38, 39]. They are typically synthesized from 20-carbon PUFAs, such as AA, 

dihomo-γ-linolenic acid (20:3; n=6) (DGLA) and EPA that are released from membranes 

by the action of phospholipase A2, after activation of the membrane receptors by growth 

factors or hormones [19]. These free AA, DGLA and EPA are metabolized to eicosanoids 

such as prostaglandins (PGs), leukotrienes (LTs) and thromboxanes (TXs) depending on 

the action of COX (COX-1, a constitutive enzyme, or COX-2, an inducible enzyme) and 

LOX (5-, 12-, or 15-LOX) enzymes. The activity of COX on AA leads to the formation of 2-

series prostanoids such as PGE2 and TXA2; whereas the activity of LOX on AA generates 

4-series LTs.  Similarly, the activity of COX and LOX on EPA produces 3-series 

prostanoids (PGE3 and TXA3), and 5-series LTs and resolvins respectively. On the other 

hand, DGLA is metabolized by COX resulting in 1-series PGs. Since AA is the most 

abundant PUFA in most cells [18], relative to EPA and DGLA, eicosanoids that are 

synthesized are mostly derived from AA. However, the concentrations of EPA and DGLA 

modulate synthesis of AA derived eicosanoids as they are competitively used by the same 

enzyme system to generate eicosanoids [19, 22, 24]. Further, eicosanoids derived from 

EPA are less potent in inflammatory signaling. Thus, the competitive presence of EPA as 

a substrate for COX and LOX enzymes reduces inflammation by either inhibiting the 

production of inflammatory eicosanoids from AA or by producing fewer inflammatory 

eicosanoids or anti-inflammatory resolvins [40].  

 

1.6. ω-6 PUFA- and PGE2-mediated inflammation 
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Among eicosanoids, PGE2 is the most abundant AA (ω-6) metabolite and has a crucial 

role in inflammation. Depending on the duration and extent of PGE2 production, it has pro-

inflammatory functions such as induction of fever and pain [41-43], vasodilation [42], and 

local attraction and activation of neutrophils, macrophages, and mast cells at early stages 

of inflammation [44-46]. Thus, the inhibition of PGE2 synthesis is an important anti-

inflammatory strategy that has been used for more than 100 years [47]. PGE2 can be 

produced by any cell in the body, but the major source is immune cells. Although PGE2 is 

unambiguously an inflammatory mediator, the finding of its role in the induction of 

suppressive IL10, and suppression of lymphocyte proliferation, natural killer cells activity, 

limitation of phagocytosis by alveolar macrophages and TNFα and IFNγ secretion, 

emphasizes the importance of PGE2’s role as a mediator of immune suppression 

associated with chronic inflammatory conditions including cancer [48-53]. Further, PGE2 

can enhance Th2 responses, promote Th17 differentiation, and facilitate the development 

of immunosuppressive macrophages and myeloid-derived suppressive cells (MDSC), all 

of which emphasize the critical role of PGE2 signaling in tumor progression [54-57].  
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1.7. Regulation of inflammation by ω-3FAs 
 

Clinical and experimental studies have shown beneficial effects of ω-3FAs in controlling 

chronic inflammatory diseases. Thus, increased consumption of ω-3FA-enriched diets or 

endogenous synthesis of ω-3FAs are directly associated with increased incorporation of 

EPA and DHA in cell membranes [58-60]. The presence of higher levels of EPA in 

membranes competitively inhibits production of PGE2 and LTA4 from AA and elevates the 

production of the non-inflammatory eicosanoids PGE3 and LTB5 (Fig. 5) [61]. These 

effects have been shown in macrophages from fish oil-fed mice [62] and neutrophils from 

humans consuming fish oil supplements [63]. Further, fish oil consumption is able to 

decrease LTB4-mediated chemotaxis of neutrophils and monocytes [63, 64], reduce 

expression of adhesion molecules in endothelial and immune cells [65-67], and decrease 

production of inflammatory cytokines such as IL6, TNFα, MCP1, IL1B and the 

inflammation pathway-associated gene NFkB [68-71].  

Besides modulation of classical inflammatory pathways, EPA and DHA anti-inflammatory 

activities can be developed by further metabolizing them to the pro-resolving/anti-

inflammatory lipid mediators, including resolvins (Rvs), protectins (PDs) and maresins [72-

77]. These novel, pro-resolution lipid mediators provide insight into the mechanisms of 

actions by ω-3FAs and their beneficial actions in the moderation of the unresolved 

inflammation, associated with chronic disorders. Resolvins (Rvs) are synthesized from 

EPA (E-series) and DHA (D-series) via differential COX-2 pathways, in the presence or 

absence of aspirin, while protectin D1 (PD1) is synthesized by the 15-LOX pathway using 

DHA as a substrate [72, 78]. Rvs are found to inhibit TNFα-induced NFkB activation, 

decrease polymorphonuclear leukocyte (PMN) activation by antagonistic effects of LTB4 

mediated chemotaxis, and to decrease dendritic cell (DC) migration and cytokine 
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production [79, 80]. Similarly, PDs have tissue specific bioactivities in the resolution of 

inflammation. Pre-administration of PD1 dampens allergic airway inflammation and acute 

kidney injury-associated inflammation [81, 82]. Both Rvs and PDs protect mice from colitis 

[83], and improve insulin sensitivity by reducing the chronic inflammation associated with 

obesity [84]. Further, a recent study demonstrated that Rvs inhibit cancer progression by 

enhancing clearance of tumor cell debris by macrophage phagocytosis, [85] which 

emphasizes ω-3FA associated lipid mediators as novel therapeutic targets, that may 

complement cytotoxic cancer therapies. Maresins are primarily produced by 

macrophages, shift macrophage phenotypes by inhibiting pro-inflammatory mediators [86, 

87], and have been found to suppress breast tumor growth by stimulating phagocytosis of 

apoptotic tumor cells and enhancing anti-inflammatory cytokines [88]. Despite recent 

advances in identifying the role(s) of these novel ω-3FA-derived lipid mediators in multiple 

inflammatory disorders and understanding their mechanisms of actions, their role(s) in the 

modulation of tumorigenesis and associated mechanisms of action is not fully defined.  
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Figure 5. PUFA and inflammation.  

Arachidonic acid (active metabolite of ω-6FA) metabolizes into prostaglandins (PGs) 

leukotrienes (LTs) with high pro-inflammatory potential. In contrast, LC-ω-3FAs such as 

eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) metabolize into low- pro-

inflammatory PGs and LTs and anti-inflammatory resolvins and protectins respectively.   

Figure source: [89] 
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1.8. MG: Primary site of tumorigenesis 
 

To understand the role of macro and microenvironment in mammary tumorigenesis, the 

understanding of MG development and morphology is crucial. In the following section, the 

normal development of MG and the various factors, including PUFA-modulated alteration 

in morphology, that may impact mammary tumorigenesis will be discussed.  

1.8.1. Breast/MG development and morphology 

 

MG morphogenesis is similar between women (breasts) and rodents (multiple MGs).  The 

structural and functional parts of MG develop after birth and morphogenesis occurs in 

different stages of life.  During fetal development, MGs develop from ectodermal 

thickening called the milk line, that extends on each side of the body from the neck to the 

inguinal region [90]. One MG on each side of the milk line develops into a breast in humans 

while mice have 5 pairs of MGs. MG epithelium originates from the milk bud (which later 

develops into a nipple) and extends into the mammary fat pad as a series of branching 

ducts. In humans, the nipple contains outlets for 5-10 lactiferous ducts, which extend and 

branch out in a radial pattern to form a triangular structural lobe supported by collagenous 

stromal tissues [90]. In contrast, MGs in rodents contain a single lactiferous duct arising 

from each nipple but the duct subsequently divides into 5-10 secondary ducts. In both 

humans and mice, the end structures at the tip of the terminal ducts/ductules resembles 

bud-like structures during early puberty and are called terminal end buds (TEBs) that in 

humans are also known as lobular buds. These TEBs contain progenitor cells, which are 

highly proliferative during puberty, in the process of ductal branching and formation of MG 

functional units known as terminal duct lobular units (TDLU) in humans. In rodents, these 

units are known as lobuloalveolar units (LAU) (also called as terminal buds, side buds, 

alveolar buds or terminal ducts) [90, 91]. Besides cell proliferation, active cell death occurs 
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in TEBs during puberty, which leads to lumen formation. Both TDLU and LAU contain 

hormone-responsive cells and undergo continuous morphogenesis both per hormonal 

cycle or based on functional needs. Since these units contain proliferative cells, there is a 

higher chance of mutagenesis in the cells of these units and thus, they are tumor initiation 

sites for most mammary carcinomas [90-92].  As shown in Fig. 6, TDLU (LOB in the figure) 

of an adult nulliparous woman contains multiple alveolar buds of different sizes that can 

exist in various stages of differentiation depending on the menstrual cycle. In contrast, the 

LAU of an adult mouse resembles a single bud or blunt terminal duct without any subunits. 

During pregnancy and in a lactating woman, both the number of TDLU and the number 

and size of alveolar buds per TDLU will increase, forming a morphological unit (lobule or 

LOB 3 in Fig. 6), which resembles a cluster of grapes. In pregnant and lactating mice, 

LAUs undergo extensive morphogenesis, forming a lobule-like structure, but at the 

completion of involution, murine mammary ducts and lobule-like structures return to 

morphology similar to that of nulliparous mice, which contains only ductal ends but not 

lobules [92, 93].  
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Figure 6. Different developmental phases of the mammary gland. 

Human (upper part) and mouse (lower part) mammary gland. LOB = Terminal ductal 

lobular unit; LA = lobuloalveolar unit; TEB = terminal end bud; AB = alveolar bud [92] 
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1.8.2. MG morphology and BC risk 

 

Besides the morphogenesis of MGs in response to hormonal effects in different stages of 

life, other external factors, including nutrition, can influence the morphology of MGs. The 

glandular mass of a breast/MG is represented by the total number and size of lobules and 

ducts in a MG of an adult nulliparous human, and total number and or size of terminal 

ducts and buds in a nulliparous mouse. Breast density is a measure of glandular mass, 

along with associated stromal tissues relative to adipose mass in the breast, and can be 

measured by mammographic analysis [94]. Epidemiological studies show that increased 

mammographic density (MD) is directly associated with the risk of BC and appears to be 

a major risk factor for interval BC (BC diagnosed within a year from the negative 

mammographic result) [95, 96]. The risk of BC development was found to be 4-6 fold 

higher in women with breasts that have 75% greater MD compared to the women with 

breasts that have 10% or lower MD [97, 98]. In murine models, MG density can be 

measured by the evaluation of total glandular area, ductal length, thickness and branching 

complexity and total number of TEB (younger mouse) and/or terminal and side ducts 

(older mouse) [99, 100]. Consistent with human epidemiological studies, murine studies 

have shown that mice with more TEBs, epithelial proliferation, and MG density develop 

spontaneous and carcinogen-induced mammary tumors more frequently [101-104]. 

Molecular mechanisms supporting an association of BC risk with dense breasts remain to 

be defined. However, possibilities include an increased number of epithelial cells [105] 

that may provide a greater chance for somatic mutations, increased epithelial cell 

proliferation [106, 107], alteration in stromal tissues [98, 108] and increased local 

inflammation in breast tissues [98, 109] of women having dense breasts. In experimental 

studies, higher MG density in mice was associated with a thicker ductal stroma, a higher 

number of proliferating ductal epithelial cells and increased infiltration of inflammatory cells 
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[110], and the interaction of stroma epithelium and inflammatory microenvironments [111, 

112]. Further mechanistic studies are needed to evaluate the role of the microenvironment 

in the development of BC. The difference in MD has been found to be influenced by 

multiple factors, including genetic components, race, parity status, hormonal therapy and 

dietary factors [113]. 

 

1.8.3. Dietary PUFA composition and MG tumorigenesis 

 

Experimental studies have shown that exposure to different levels and compositions of 

dietary PUFAs modulate mammary tumor carcinogenesis. Since MG morphogenesis is 

extensive before and during puberty, most murine studies are conducted at an early stage 

of life. Pregnant mice fed diets high in ω-6 have high levels of serum estrogen, which is 

associated with an increased incidence of mammary tumors in female offspring [114-116]. 

In contrast, the risk of mammary tumor development is reduced when fish oil is included 

in a maternal ω-6-containing diet [117]. Similarly, a delayed appearance of tumors and 

slower tumor growth is observed in offspring of mice fed a diet high in canola oil (ω-3FA) 

compared to the mice fed a corn oil diet (ω-6FA) [116]. In murine experiments using pre-

pubertal mice, the results are similar, with ω-3 diet-fed mice having a lower incidence of 

carcinogen induced or transgenic mammary tumors [118-120] and delayed growth of 

transplanted xenograft tumors [121] compared to mice fed diets high in ω-6FA.  However, 

when the results from mice fed a high-fat ω-3 diet were compared with mice fed a low fat 

ω-6 diet, the mice fed the high-fat ω-3 diet had a greater incidence of mammary tumors 

[118]. These results emphasize the importance of both dietary ω-6 and ω-3, as well as, 

the total dietary lipid calories in the diet with respect to mammary tumorigenesis. Further, 

these observations document the importance of using isocaloric diets for the analysis of 

FA composition on tumorigenesis.  
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The mechanism of action by ω-3FA in mammary tumorigenesis might be influenced by 

the stage of MG development and morphogenesis during LC-ω3FA exposure. Exposure 

to LC-ω-3FA, in-utero or early in life, modulates metabolic programming of PUFA 

pathways in the offspring [122, 123]. Similarly, ω-3FA exposure early in life suppresses 

tumorigenesis by regulating MG development as ω-3FAs enhance the differentiation of 

TEBs, reducing the possibility of mutations in highly proliferative TEBs [124-126]. Besides 

these age-dependent effects, other potential mechanisms for ω-3FA-mediated regulation 

of tumorigenesis may be due to the modulation of the stromal and inflammatory 

microenvironments.  Dietary incorporation or endogenously metabolized ω-3FA, in  

rodents, significantly increases EPA and DHA levels, as well as decreases AA levels, and 

mRNA expression of fatty acid synthase, COX-2, and 5-LOX in mammary tumor tissues 

[125, 127]. Further, the incorporation of ω-3FA results in inhibition of NFkB activation, 

decreased expression of anti-apoptotic proteins Bcl-2 and Bcl-XL, increased caspase 3 

activity, and reduced activation of EGFR in mammary tumor cells [128, 129].  

Metabolites of ω-6 and ω-3FAs are pro- and anti-inflammatory respectively, and 

differential PUFA composition regulates the activity of inflammatory cells. Therefore, the 

regulation of the numbers and functions of inflammatory cells and their signaling pathways 

might be one of the mechanisms by which ω-3FAs suppresses tumor growth and 

metastasis as discussed in Section 1.4. Prior studies have shown that feeding LC-ω-3FA 

can increase natural killer cell cytotoxicity, decrease expression of related transcripts to 

macrophage proteins, inflammatory cytokines TNFα, IL6, CCL2, IL10, and NFkB pathway-

related targets [130, 131]. However, few mechanistic studies have analyzed ω-3FA 

regulation of inflammatory cells in the tumor microenvironment and no published reports, 

to our knowledge, have used the essential controls of isocaloric, isolipidic diets in a pair-

feeding model to evaluate these effects.  
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1.9. Liver: One site of breast/mammary tumor metastasis 

Since the aim of the study is to analyze the role of diet-modulated tissue microenvironment 

in the regulation of metastasis to an organ, we analyzed PUFA-mediated modulation of 

hepatic macro and microenvironments, which may regulate hepatic metastasis. In this 

section, we will discuss normal histology and the metabolism by the hepatic tissue 

microenvironments, in response to dietary PUFA regulation. We posit that the 

modulated/altered microenvironments may have an impact on the arrest and survival of 

metastatic tumor cells in the liver. 

1.9.1. Overview of anatomy and histology of liver 

 

The liver is the largest visceral organ in the body. It is structurally and functionally 

heterogeneous and has been considered second only to the brain in complexity [132]. The 

liver has a crucial role in the efficient uptake of amino acids, carbohydrates, bile acids, 

cholesterol, proteins, vitamins and lipids for storage and metabolism, subsequently to 

release into the bile and/or blood [132, 133]. The fundamental structure of livers from 

humans and rodents are similar. A liver in a human has 4 lobes(right, left, quadrate and 

caudate) [134]. Livers of rodents (mice and rats) also have 4 major lobes named as right, 

left, median and caudate.  The median and caudate lobes are further subdivided into 2 or 

more parts. Mice and humans have a gallbladder, but not the rat [134-136]. The functional 

unit of liver, i.e. a lobule, has the same histologic appearance, regardless of the angle a 

liver is sectioned [137]. Histologically, a hepatic lobule is a hexagonal region of the liver 

parenchyma (hepatocytes) around the central vein. At the vertices of the lobule, portal 

triads can be observed, which include a bile duct and branches of the hepatic artery and 

hepatic portal vein [138] (Fig. 7). Hepatocytes are arranged radially around the central 

vein, and blood sinusoids form between them. The hepatic parenchyma is divided into 

three zones. The hepatic parenchymal area near the portal triads is termed the peri-portal 
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(or zone 1), the area near the central vein is centrilobular (or zone 3) and the area in 

between the zone 1 and zone 3 is midzonal (or zone 2) [132, 138]. Hepatocytes (liver 

parenchymal cells) are the most numerous cells in the liver and comprise 60% of total 

cells. They perform the major functions of the liver and their cytoplasm contains varying 

levels of glycogen and lipids, depending on the metabolic stage. Among the non-

parenchymal cells in liver, sinusoidal epithelial cells (SECs) are the primary barrier 

between the blood and hepatocytes and act to filter fluids and particles that are exchanged 

between the sinusoidal lumen and the space of the Disse [139]. Kupffer cells are resident 

hepatic macrophages and are derived from circulating monocytes. They represent 15% of 

the liver cells (30% of sinusoidal cells) and are the major producers of cytokines providing 

cross-talk with other cells [140]. Other resident cells in the liver include hepatic stellate 

cells (HSCs), which comprise 5% of the liver cells and have a major role in the 

regeneration and fibrogenesis of hepatic tissue [141, 142].  
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Figure 7. Hepatic lobule from a section of pig liver 

Hematoxylin and eosin-stained section of a liver from pig showing hepatic lobule distinctly lined 

by sinusoids [143] 
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1.9.2. Hepatic extra-medullary hematopoiesis 

 

Beside, the resident cells of the liver, foci of immature-inflammatory cells or hematopoietic 

progenitor cells are frequently observed in human fetal liver. The process of proliferation 

by hematopoietic progenitor cells (erythroid and myeloid progenitors), outside of the 

medullary space is called extra medullary hematopoiesis (EMH) [144]. Under normal 

circumstances, after birth, there is little proliferation of hematopoietic elements outside of 

the medullary space except in pathological conditions [144, 145].  In fetal life, the liver 

provides a niche for colonization, proliferation and differentiation of circulating 

hematopoietic progenitor cells, making the liver the primary site of EMH, which generally 

ceases after birth when the bone marrow develops. However, EMH is observed normally 

in neonatal life, especially following a premature birth or in pediatric patients with hepatic 

disorders such as hepatitis [133, 145, 146]. In contrast, hepatic EMH in adult life is 

associated with pathological conditions, including sepsis, solid organ and stem cell 

transplantation and malignancy [147-149]. While myeloid precursors are the predominant 

proliferating cells in EMH, the process is called extra medullary myelopoiesis (EMM) [150]. 

The occurrence of EMH or EMM in an adult might be the result of the arrest of immature 

cells that become trapped in extra-medullary tissues. Such an increase in the number of 

circulating hematopoietic stem cells might also be due to inadequate or inhospitable 

marrow space for EMH or over production of marrow elements, as a consequence of 

pathological conditions. Modulation of local tissue microenvironment, including an 

increase in hypoxia and/or inflammatory cytokines and growth factors, stimulates the 

proliferation of immature hematopoietic cells in extra-medullary tissue [144, 150, 151]. 

Hepatic EMH/EMM is mostly found in the vicinity of sinusoidal areas, which might be due 

to the supporting role of sinusoidal endothelial cells in the proliferation of progenitor cells 

[152]. Besides pathological conditions, changes of the hepatic micro-environment or 
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inflammatory signaling, due to life style factors such as chronic inflammation or due to 

alcohol consumption or diets, may influence hepatic EMH/EMM [153-155]. However, 

further studies are needed to examine this since the role, or effects and consequences of 

EMH or EMM foci and their signaling in hepatic microenvironments, is still not understood.  

 

1.9.3. Lipid versus glycogen metabolism in liver 

 

The liver is the primary metabolic organ for the storage or metabolism of both glucose and 

lipids, depending on the host energy requirement. The liver synthesizes glycogen and 

triglycerides as two major forms of energy storage, and metabolizes them to provide 

energy during different phases of food deprivation. However, how the dietary composition 

affects the liver’s metabolic preferences, for synthesis of glycogen versus triglycerides, is 

not clearly understood.  

 

1.9.3.1. Glycogen metabolism in liver 

 

Glycogen is synthesized in the liver after consumption of food (energy sufficient or fed-

state). Glucose enters hepatocytes via GLUT2 transporters and is phosphorylated by 

glucokinase to synthesize glucose 6-phosphate (G6P) and glycogen synthase, which uses 

G6P as a precursor to synthesize glycogen [156, 157]. In the fasted or energy deprivation 

state, due to exercise, glycogen is hydrolyzed to generate glucose by glycogen 

phosphorylase in the process called glycogenolysis [158]. The mechanism of glycogen 

synthesis versus glycogenolysis is regulated directly by the availability of glucose in the 

circulation and indirectly by insulin. In the fed-state, when the glucose levels are increased 

in the circulation, more glucose is converted to G6P, which is an allosteric activator of 
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glycogen synthase, whereas an inhibitor of glycogen phosphorylase thus increases G6P 

and enhances glycogen synthesis. Similarly, insulin is secreted by pancreatic β cells in 

response to an increase in blood glucose, amino acids, and fatty acids. Insulin stimulates 

glycogen synthase by inactivating inhibitors of glycogen synthase (glycogen synthase 

kinase 3) via activation of Akt (protein kinase B) [157, 158]. Insulin also stimulates 

acetylation of glycogen phosphorylase, which promotes dephosphorylation and inhibition 

of glycogen phosphorylase by protein phosphatase 1; thus, suppressing glycogenolysis 

[159]. Under fasting conditions, insulin secretion is downregulated, which leads to 

inhibition of glycogen synthase and activation of glycogen phosphorylase. Further, 

counter-regulatory hormones (epinephrine and norepinephrine) secreted by pancreatic α 

cells activate protein kinase A, which directly or indirectly activates glycogen 

phosphorylase, resulting in increased glycogenolysis [157-159].  

 

1.9.3.2. Fatty acid metabolism in the liver 

 

Hepatocytes obtain FAs from the plasma or by de novo synthesis. After a meal, dietary fat 

is digested, mainly in the small intestine and absorbed into enterocytes, where FAs are 

esterified with glycerol 3-phosphate into triacetylglycerol (TAG) and incorporated into 

chylomicrons before they are secreted into the gut lymphatic system [157, 160]. Those 

triglyceride-rich chylomicrons enter into plasma, from which 70% of FAs are delivered into 

adipose tissues. The remaining FAs circulate to the liver and are incorporated into 

hepatocytes as non-esterified FAs (NEFAs) or free FAs formed by lipoprotein lipase 

mediated lipolysis [160, 161]. If dietary carbohydrates are excessive to energy 

requirements, de novo FAs synthesis occurs from glucose in the liver. FAs convert into 

TAGs as described above or are esterified with cholesterol to produce cholesterol esters. 

TAG and cholesterol esters are either packed into very low-density lipoprotein (VLDL) 
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particles and delivered into adipose and extrahepatic tissues via the circulation, or stored 

within hepatocytes as lipid droplets, depending on metabolic circumstances. In normal 

metabolism, hepatic de novo lipogenesis can be driven by excess dietary carbohydrates, 

by multiple transcription factors related to glycolysis and lipogenesis, insulin production or 

the metabolic state (fed versus fasted) [157, 161, 162]. Besides the liver’s metabolic role 

in synthesis and storage of FAs, hepatocytes also metabolize (oxidize) FAs to generate 

energy by the process of β oxidation. In a fasted state or when energy requirements 

cannot be fulfilled by the available glucose, β oxidation of FAs occurs in the mitochondria 

of the liver and provides energy locally, or generates ketone bodies that are exported into 

the circulation for delivery to energy deficient extrahepatic tissues [162]. Similarly, hepatic 

β oxidation is regulated by the fasting state or multiple factors related to PPARα signaling 

[157, 162, 163].  

Although hepatic lipid metabolism is a tightly regulated process, different lifestyle 

modifying factors can modulate metabolic parameters, resulting in benign to pathologic 

hepatic conditions. The most notable factors are ethanol consumption and high calorie 

and high fat diets resulting in accumulation of excess fats in the liver, a condition known 

as fatty liver disease. Nonalcoholic fatty liver disease (NAFLD) is becoming the most 

common cause of liver disease in Western countries and 30% of the people of the United 

States have various levels of NAFLD [164, 165]. If uncontrolled, NAFLD can progress to 

non-alcoholic steohepatitis (NASH) and cirrhosis, and is associated with hepatic 

carcinoma [165]. NAFLD is directly associated with obesity, which is further associated 

with consumption of a high fat, high calorie diet, although the liver is not a primary site of 

lipid deposition. However, energy excess states, either diet or obesity can stimulate 

hepatic TAG synthesis and/or free FA accumulation in hepatocytes [166, 167]. Besides 

being hyper-caloric and high-fat, Western diets also have high amounts of ω-6 PUFA and 
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mostly lack ω-3 PUFAs. However, little is known about the effects of dietary PUFA 

composition, independent of calorie consumption and obesity, in hepatic lipid metabolism 

and/or storage. Recent clinical studies have shown that obese patients with diabetes and 

metabolic syndrome have low levels of LC-PUFAs in blood and tissue [168, 169]. 

Experimental studies, using obesity-resistant A/J mice and susceptible C57BL/6J, have 

shown an inverse regulatory role of enzymes involved in LC-PUFA synthesis in obesity 

associated fatty liver, so that elevated expression of these enzymes protects A/J mice 

from obesity and fatty liver [170-172]. Among PUFAs, ω-3FAs have been associated with 

decreased hepatic fat [173]. Additionally, dietary fat was found to modulate membrane 

lipid composition of hepatocytes, which may alter their metabolic functions and associated 

pathologies including NAFLD [174, 175].  

Recent studies have demonstrated a correlation between lipid and glycogen metabolism 

in high fat diet-feddiet-fed animals [176] and shown that liver glycogen levels reduce food 

intake and prevent diet-induced obesity [177]. However, the mechanisms that switch lipid 

to glycogen metabolism in non-obese conditions is not understood, nor is the role of PUFA 

composition in the regulation of these metabolic processes. Altogether, an alteration in 

hepatic lipid or glycogen metabolism results in the modulation of liver microenvironments 

including steatosis, inflammation and fibrosis. The regulatory roles of diet-induced 

alternation in the metabolism of the hepatic microenvironment, which can modulate 

hepatic metastasis, are not known. Few epidemiological studies aimed to address a 

correlation between fatty liver diseases including NAFLD with hepatic metastasis from BC 

however the results from such studies are conflicting [178, 179]. Thus, further clinical, 

experimental and mechanistic studies are warranted to address the role of PUFAs in 

hepatic metastasis.  
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1.10. Inflammation and cancer induction progression and metastasis 

In 1863, Rudolf Virchow first proposed the hypothesis that cancer cells originate at the site 

of chronic inflammation (irritation at that time) and that inflammation also enhances cell 

proliferation [180]. It is now widely accepted that chronic inflammation is a risk factor for 

cancer initiation and the type of inflammatory cells present in the tumor microenvironment, 

and their cross talk with stromal cells and tumor cells has been shown to regulate tumor 

progression and therapy resistance in multiple cancers, including BC. The role of 

inflammation in BC development can be evaluated in two stages of cancer pathogenesis: 

1) chronic local or systemic inflammation modulating BC development, and 2) double 

edged roles of inflammatory cells in the tumor microenvironment  

1.10.1. Chronic local or systemic inflammation modulating BC development 

Clinical and epidemiological studies have shown an association between breast cancer 

and obesity [181]. Adipose tissue is an endocrine organ and able to secrete bioactive 

adipokines, cytokines, chemokines and hormone-like growth factors, depending on the 

metabolic and/or inflammatory state [182]. Adipose tissue expansion, either due to 

adipocyte hyperplasia (increase in cell number) or hypertrophy (increase in cell size), 

induce local hypoxia, which is associated with dysregulated production of adipokines and 

inflammatory cytokines [183, 184]. A chronic hypoxic condition results in apoptosis of 

adipocytes, and the release of free fatty acids, which stimulate Toll-like receptors (TLRs) 

on adipocytes and macrophages, and initiate the NFB pathway, activating the expression 

of inflammatory cytokines including TNF‐α, IL1β, IL6, IL8 and CCL2 [182, 185]. Several 

cytokines, specifically CCL2, attract circulating monocytes to the site of adipocyte death 

where they differentiate to macrophages, resulting in the formation of crown-like structures 

(CLS). The inflammatory signaling pathways needed to form CLS, or by the CLS, induce 

chronic adipose tissue inflammation. Adipocyte death and/or CLS formation is mostly 
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found in visceral/subcutaneous fat of humans and mice, and correlates with adipocyte size 

[186, 187]. However, recent findings of CLS in adipose tissue from breast cancer patients 

and normal weight women undergoing mastectomy for breast cancer risk reduction or 

therapy not only emphasize the role of local adipose inflammation in tumor progression, 

but also raise a potential new direction for the investigation of CLS pathways in BC 

development, independent of obesity [188, 189].  

Adipose tissue hypoxia also induces hypoxia-inducible factor-1 (HIF-1) that acts as a 

molecular oxygen sensor and upregulates leptin and vascular endothelial growth factors 

(VEGF) and downregulates adiponectin; thus, enhancing both systemic chronic 

inflammation and angiogenesis [190]. Leptin levels in serum are directly correlated with 

obesity, and higher leptin levels are associated with increased risk of BC [191]. Further, 

leptin and leptin receptor expression are higher in breast adipose tissues of BC patients, 

and in vitro studies have shown the efficiency of leptin in enhancing the proliferation of 

normal mammary epithelial cells and mammary tumor cells, which further emphasizes a 

potential role of leptin in mammary carcinogenesis [192-194].  

 

1.11. Inflammatory cells in the tumor microenvironment 

There are complex interactions between inflammatory microenvironments and tumor cells, 

including the type of inflammatory cells that infiltrate tumors, and the activities regulating  

hallmarks of cancer, such as cell proliferation, apoptosis, angiogenesis, invasion and 

metastasis [195]. Immune cells can be of a cytotoxic (or tumor suppressing) phenotype, 

and tumor-secreted growth factors and cytokines can modulate the immune cell 

phenotype. Thus, tumor-infiltrating immune cells can have multiple roles in tumor 

pathogenesis and control. Some of the important immune cell types in the mammary tumor 

microenvironment are discussed below.  
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1.11.1. Tumor associate macrophages (TAMs) 

Macrophages are one of the most abundant immune cells in the tumor microenvironment 

of solid tumors, including BC. Intratumoral infiltration by TAMs has been associated with 

a higher proliferation index and poorer disease-free survival in BC patients [196, 197]. 

TAMs are comprised of functionally heterogeneous populations of macrophages, and can 

acquire different phenotypes, depending on activation signals. M1 and M2 macrophages 

represent two functionally distinct phenotypes that are identified in tumor 

microenvironments. M1 macrophages are activated by IFNγ and bacterial 

lipopolysaccharides, and are associated with higher expression of proinflammatory 

cytokines such as TNF-α, IL1, IL6, IL12 or IL23, antigen presentation and generation of 

reactive oxygen species and are capable of killing pathogens and enhancing anti-tumor 

immune responses. M2 macrophages (alternatively activated) are differentiated by IL4 

and IL13 and are associated with the production of anti-inflammatory cytokines, 

upregulation of scavenging receptors and participate in tissue remodeling, angiogenesis, 

immunoregulation, and tumor promotion [198-200].  

 

1.11.2. Tumor-associated neutrophils 

 

High neutrophil numbers in the circulation (neutrophilia), or increased neutrophil to 

lymphocyte ratios (NLR) have been associated with a poor prognosis of BC patients [201] 

However, there is limited information on the regulatory role of neutrophils in tumor 

microenvironments in BC patients. Neutrophils recruited to the tumor microenvironments 

are known as tumor associated neutrophils (TANs) and chemokines skewed by tumor 

cells recruit TANs into tumors [202, 203]. Thus, as with macrophages, tumor 
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microenvironments can modulate TAN frequency and phenotypes [204]. A recent study 

showed that TGFβ, within the tumor microenvironment, induce a pro-tumor TAN 

phenotype N2, and the blockade of TGFβ increased the anti-tumor cytotoxic (N1) 

phenotype of TANs [204]. The N2 TANs promote tumor growth by expressing matrix 

degrading enzymes such as metalloproteases (MMP)-9, oncostatin M and chemokines 

enhancing invasiveness of tumor cells and angiogenesis [202, 205]. However, additional 

studies are needed to improve the understanding of TAN cross talk in tumor 

microenvironments.   

 

1.11.3. Myeloid derived suppressor cells (MDSCs) 
 

MDSCs are heterogeneous population of myeloid precursor cells that were initially 

identified as myeloid hyperplasia associated with tumor progression  [206], but later were 

found to be associated with other pathological conditions including bacterial infections, 

autoimmune diseases and obesity [207-209]. As there is cellular heterogeneity in MDSCs, 

the phenotypic characterization was initially contentious [206] and the markers to define 

MDSCs have been evolving [210]. Classically, MDSC subsets were categorized as 

granulocytic (G)-MDSCs versus monocytic (M)-MDSCs but G-MDSCs have also been 

known as polymorphonuclear (PMN)-MDSCs based on their morphological and 

phenotypical characteristics [210].  PMN-MDSCs are morphologically and phenotypically 

similar to TANs and a recent study has shown a subgroup of tumor promoting TANs (N2). 

Thus, it is likely that N2 TANs identified in tumor microenvironment are PMN-MDSCs [204, 

211]. Tumors secrete growth factors including G-CSF, GM-CSF and M-CSF that induce 

myelopoiesis [144, 145], and have been correlated with MDSC numbers.  Similarly, tumor-

secreted chemokines, and inflammatory mediators including TNFα, IL6, IL1β and PGE2 
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have roles not only in mobilization but also may limit the maturation and differentiation of 

MDSCs, resulting in accumulation [206, 211, 212] [127, 136-138]. Further, the 

accumulation of their MDSCs in tumor microenvironments promote tumor growth by 

regulating tumor invasion, angiogenesis [212, 213], reducing T-cell frequency and/or 

suppressing T-cell function [206, 214]. MDSCs mediate T-cell suppression, support tumor 

growth and can impede tumor therapies. Thus, recent studies have been focusing on the 

mechanisms involved, including mechanisms of MDSC mediated suppression of T-cells: 

1) down-regulation of T-cell receptor-zeta, which is required to transmit signal for 

activation;  2) down-regulation of L-selectin, a plasma membrane molecule necessary for 

homing of naïve T-cell to lymph nodes; and, 3) depletion of cysteine (an amino acid that 

is essential for T-cell activation) from the microenvironment [215-217]. 

 

1.11.4. T-cells (Tumor infiltrating lymphocytes) 

The impact of T-cells or tumor infiltrating lymphocytes (TIL) in tumor microenvironments 

in the tumor progression has been studied for decades. Based on IHC evaluation of solid 

tumors including BC, an increase in the frequency of TILs has been positively correlated 

with a good prognosis and a response to cancer therapy [218, 219]. Among the subsets 

of T-cells, the number of CD8+ cells has the greatest correlation and is most promising in 

predicting responses. However, Th1 CD4+ infiltration has also been found to be a positive 

prognostic marker [220, 221]. It is unclear if the presence of CD8+ in tumor 

microenvironments has a strong effect on the killing of tumor cells or if having CD4+ in the 

periphery will have additional effects.  

Among T-cells, regulatory T-cells (T-regs) or Foxp3+CD25+CD4+ T-regs, play an important 

role during immunological self-tolerance in healthy individuals. In BC patients, increased 

tumor infiltration by T-regs has been correlated with poor prognosis; however, there is 
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limited information on the immunosuppressive mechanism and cross talk of T-regs in the  

tumor microenvironment [222, 223]. Tumor-derived chemokines recruit T-regs into tumor 

microenvironment and induce them to express high levels of CD25+ by tumor-derived 

TGFβ and drive them to a suppressive phenotype [224]. One, well-studied T-reg-mediated 

immune suppression mechanism, includes the activation of immune checkpoint 

molecules, including T-lymphocyte associated protein 4 (CTLA-4) and program death 1 

(PD1). CTLA-4 is a highly potent, co-inhibitory molecule expressed constitutively by T-

regs and by conventional T-cells after activation. Since CTLA-4 has much higher affinity 

than CD28 for their common ligands CD80 and CD86, constitutive CTLA-4 expressed by 

T-regs may outcompete CD28 on conventional T-cells for binding to CD80/CD86 on 

antigen-presenting cells resulting in inhibition of co-stimulation of conventional T-cells 

[225]. The success of anti-tumor immunotherapy, using anti-CTLA-4 antibody, has been 

previously attributed to augment the activity of tumor infiltrating CD8+ cells; however, 

recent studies have suggested the possibility of the role of anti-CTLA-4 antibody in 

depletion of T-regs, resulting in enhancing of anti-tumor immune response [226]. 

 

1.12. Breast cancer metastasis:  Role of the tissue microenvironment 

The metastasis of tumor cells from primary sites to distant organs is a non-random 

process, and the successful development of metastasis in specific organs is a result of 

tumor cell properties (seed) and the supportive environment of the host organ (soil). 

Stephen Paget first proposed the seed and soil hypothesis in 1889 [227]. Fidler and 

coworkers verified different aspects of the seed and soil hypothesis repeatedly in their 

seminal findings; including the clonal origin of metastasis [228], organ selectivity [229]   

and the role of cross talk between the tumor cells and the host microenvironment in the 

formation of the metastases [227, 229-234]. By now the hypothesis has been widely 
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accepted, although the definitions of seed and soil have been updated with the new 

insights in the molecular properties of both seed and soil [230].  However, most efforts to 

define therapeutic targets to control metastases have focused on the properties of the 

tumor cells, while modifiable properties of the host organs have been less emphasized.  

Studies have shown that the tumor supportive microenvironments, known as pre-

metastatic niches, occur prior to colonization by the seed (metastatic tumor cell). Tumor-

derived factors or tumor-induced bone marrow-derived factors, and immune cells, have 

been shown to have a role in the formation of pre-metastatic niches. Additionally, 

modulation of the host organ microenvironments by chronic inflammation, immune 

suppressive cell infiltration or local PGE2 production (influenced by the tumor or other 

mechanisms) have a role in the preferential homing by tumor cells [235, 236]. The 

emerging concepts of infiltration by myeloid cells, including MDSCs in pre-metastatic sites 

prior to arrival of tumor cells, further indicate the role of inflammatory microenvironments 

in tumor metastasis [237]. However, the mechanism of dietary factor mediated regulation 

of the pre-metastatic niche remains to be understood. BC preferentially metastasizes to 

bone, liver, brain, lungs and distant lymph nodes [235], while BC metastasis to heart, 

kidney and ovaries are rarely reported.  

 

1.13. Bone metastasis in BC 

Around 70% of metastatic BC patients develop bone metastasis, indicating bone as one 

preferable metastatic site for BC cells [238]. Therapeutic targeting of bone metastasis is 

difficult, and the consequences of bone metastasis, including pathological bone fractures, 

pain, hypercalcemia, and spinal cord and nerve-compression syndromes, significantly 

reduce the quality of life amongst BC patients [239].  Although of great clinical importance, 

molecular mechanism(s) underlying bone metastasis have not been elucidated, and more 
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research is needed to understand the role of pre-metastatic bone microenvironments that 

attract tumor cells. Based on the type of bone lesions, bone metastases are classified into: 

osteoblastic, or osteoclastic. The major differences are that the osteoblastic lesions are 

the consequence of tumor growth and tumor-derived factors.  In contrast, osteoclastic 

lesions are due to osteoclasts under the influence of tumor cells. Bone metastases in 

prostate cancer are predominantly osteoblastic, while BC metastases are predominantly 

osteoclastic [240]. In osteoblastic metastases, C-X-C chemokine receptor type 4 (CXCR-

4) is a major mediator that induces migration of tumor cells towards bone 

microenvironments by interacting with C-X-C motif ligand 12 (CXCL12) on osteoblasts. 

The invaded tumor cells produce multiple growth factors that alter the remodeling process 

in the affected bone. Since osteoclastic metastases are important in BC, they are 

discussed in more detail below.  

 

1.13.1. Mechanisms of osteoclastic or osteolytic bone metastases  

As described above, osteolytic lesions are due to the activities of osteoclasts under the 

influence of tumor cells. BC cells produce factors such as parathyroid hormone related 

peptide 1 (PHRP1) that binds to parathyroid hormone receptor 1 (PHR1) on marrow 

stromal cells and induces the expression of receptor activator of nuclear factor-κB (RANK) 

ligand (RANKL). The newly formed RANKL binds the RANK receptor on osteoclast 

precursors and induces them to differentiate into mature osteoclasts, which resorb bone 

by secreting proteases and acid to dissolve the matrix and release bone mineral into the 

extracellular space [240, 241]. The bone resorption enhances TGFβ expression, which 

induces PHRP1 production by BC cells [242]. Further, bone resorption enhances local 

calcium levels, which promote tumor growth in bone, resulting in more PHRP1 production 

[243]. Thus, this reciprocal cross talk between BC cells and bone microenvironments via 
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PHRP1 and PHR1 results in a vicious cycle, increasing both bone destruction and 

promoting tumor growth in the bone. Besides PHRP1, other factors such as TNFα, IL6, 

macrophage colony-stimulating factor and IL1 produced by BC cells or microenvironments 

may play a role in osteoclast formation. PGE2 can enhance osteoclast formation by 

increasing expression of RANKL [244]. However, it is unclear if these factors/mediators, 

in pre-metastatic bone microenvironments, modulate bone metastatic BC cells to produce 

PHRP1 for colonization in bone, or if preselected bonetropic BC cells produce those 

factors/mediators to initiate the vicious cycle of the osteolytic bone metastases in BC 

patients. Osteopenia is also observed in post-menopausal women secondary to hormonal 

factors [245]. Other life style factors such as alcohol consumption can enhance 

osteopenia, and high fat diets lead to marrow adiposity modulating the marrow 

microenvironments [246, 247]. However, how such pre-existing BM microenvironments 

regulate BC bone metastasis is not clear and needs further evaluation.   
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Chapter 2: 

Materials and Methods 
 

2.1. Animals and housing:  
 

Female BALB/c mice (6 weeks old) purchased from Charles River Laboratories were 

housed in micro-isolators in groups of five mice per cage, under standard conditions of 

temperature and humidity, with a 12 h light-dark cycle. The micro-isolators were attached 

to high efficiency particulate air (HEPA)-filtered ventilation blowers to provide sterile air. 

The animal housing facility was maintained as a specific pathogen free (SPF) area. The 

Institutional Animal Care and Use Committee at the University of Nebraska Medical Center 

approved the animal protocol for the study. After two to three weeks of acclimation to the 

laboratory conditions, mice were divided at random into two dietary groups based on the 

experimental liquid diets (ω-6 or ω-3 diet). At least n=20 mice per group were used for 

each pair-feeding dietary experiment. All the animal experiments were repeated at least 3 

times for analysis of the outcomes. At least n=5 mice/group were used for each histological 

experiment in non-tumor bearing mice and at least n=10 mice/group used for histological 

and metastasis analysis of tumor-bearing experiments. The exact number mice/ group for 

each experiment is mentioned in the respective result section of each chapter (chapters 

3-5).  

 

2.2. Diets and pair-feeding:  
 

The diets were isocaloric and isolipidic and had identical protein, fiber, and micronutrient 

contents.  The ω-6 diet was the Lieber-DeCarli control diet (Dyets # 710027) containing 

28.4 gm/L olive oil, while the ω-3 diet was customized by using the base diet (Dyets # 

710166) and adding 8.4 gm/L olive oil and 20 gm/L of fish oil (NutriGold Triglyceride 
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Omega-3 Gold capsules; Lot # 0081-3180-2) (Table 1). Both liquid diets provided 1.0 Kcal 

energy per ml of diet and equal calories from macronutrients (35% derived from fat, 47% 

from carbohydrate, and 18% derived from protein). The ω-6 and ω-3 diets differed 

primarily by the absence or presence of LC-ω-3FAs from fish oil and ω-6 PUFA from olive 

oil respectively. Omega-3 capsules and Lieber-DeCarli powder diets were stored at 4oC. 

Diets were prepared and delivered daily (within 24-26 hours) and daily intake was 

monitored. Ad libitum access to the liquid diets was provided for the first 5 days to 

acclimatize the mice to the liquid diets. From day 6, the ω-6 diet group mice were pair-fed 

based on mean consumption of the ω-3 diet group from the previous day, and this was 

continued throughout the study for 10 or 20 weeks. Body weights were recorded twice a 

week. In addition, a limited number of control studies were undertaken with age matched, 

chow fed (#7912, Teklad) mice, as a baseline control.  

  



   42 

Table 1. Composition of the diets used in the study 

  

Ingredient in Diet 
 ω-6 Diet  ω-3-Diet 

Grams/L Grams/L 

Casein 41.4 41.4 

L-Cystine 0.5 0.5 

DL-Methionine 0.3 0.3 

Corn Oil 8.5 8.5 

Olive Oil 28.4 8.4 

Safflower  Oil 2.7 2.7 

Maltose Dextrin 115.2 115.2 

Cellulose 10 10 

Mineral Mix 8.75 8.75 

Vitamin Mix 2.5 2.5 

Choline Bitartrate  0.53 0.53 

Xanthum gum 3 3 

Fishoil  0 20 

Total 221.8 221.8 



   43 

2.3. Blood Collection: 
 

At the end of each experiment, blood was collected, without fasting, prior to the mice being 

euthanized and hematological parameters, such as total white blood cell count (WBC) 

count, red blood cell (RBC) count, hemoglobin level, hematocrit and mean corpuscular 

volume (MCV) were determined using a vet ABC animal blood counter (Scil animal care 

company, Grayslake, IL).  

 

2.4. Fatty acid analysis:  
 

Portions of liver, MG tissues and plasma samples were collected after 10 weeks of diet, 

snap frozen and stored at -80oC for FA analysis. Portions of ready-to-use ω-3 and ω-6 

diets were also frozen until needed for lipid extraction. Omega-3 capsules were stored at 

4oC and used directly for FA analysis. Total lipid extraction from tissues and diets were 

undertaken using antioxidant β-hydroxy-toluene (0.05%, wt/vol) as previously described 

[248, 249]. Heptadecanoic and nonadecanoic acid (100 μg each) were added to all 

samples to estimate the recovery of FA.  Complex lipids were hydrolyzed by adding 0.5 

ml of methanol containing 1% (wt/vol) sulfuric acid and 0.25 ml of toluene, and then were 

incubated at 60°C overnight. Following incubation, 1.25 ml of water containing sodium 

chloride (5%, wt/vol) was added, and esters were extracted using hexane (2 X 1.25 ml per 

sample). The hexane layer was washed using 1 ml of water containing potassium 

bicarbonate (2%, wt/vol), and dried over anhydrous sodium sulfate. The solvent was 

removed under a stream of nitrogen and the FA methyl esters were analyzed by gas 

chromatography-mass spectrometry (GC-MS) using an Agilent 6890 series gas 

chromatograph, equipped with a 5873 mass-selective detector. For assessment of sterols, 

100 μg of 5α-cholestane was added to samples as an internal standard. Sterols were 

separated and detected by GC-MS using a DB-17ms column. FA concentration was 
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analyzed as µg/µl or µg/mg of the samples, analyzed, and compared between the diets 

and tissues from ω-3 and ω-6 diet-fed mice 

 

2.5. Histological analysis of mammary ducts and adipocytes: 
 

The MFP and abdominal fat tissues from non-tumor-bearing mice (Chapter 3) were fixed 

in zinc fixative for 24-48 hours, and transferred to 70% ethanol, prior to paraffin 

embedding, and sectioned at 4 μm. Sections were stained with hematoxylin and eosin (H 

& E) or trichrome stain for histological analysis. The sections were analyzed under light 

microscopy using a Zeiss Axioplan-2 microscope, and images were obtained using a HRc 

camera using Zeiss AxioVision Rel 4.8 software from 10 randomly selected fields at 100x 

or 200x magnifcation. The size of mammary ducts and stromal and epithelial layers in the 

ducts were analyzed in trichrome stained MFP sections using Image-J software. The 

average number and size of adipocytes per high power image was evaluated in H & E 

stained sections of MFP and abdominal fat using MRI_Adipocyte_Tools, a plug-in tool 

from Image-J as per the software protocol. The mean adipocyte size/number from the 10 

high power field/sample were evaluated for the quantitative data. Two persons examined 

the sections as “blinded” group assignments and an experienced pathologist validated the 

results.  

2.6. Hepatic steatosis analysis: 
 

Steatosis was initially examined in H & E stained sections, then further confirmed and 

quantified by counting Oil Red O (ORO) stained lipid droplets in hepatocytes. For ORO 

staining, fresh liver tissues were embedded in optimal cutting temperature (O.C.T) 

compound medium (Tissue-Tek #4583, Sakura Finetek, CA U.S.A) and stored at -80oC 

until sectioned and stained. Lipid droplets, the size of a hepatic nucleus or larger, were 
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enumerated to analyze macro-vesicular steatosis, whereas smaller lipid droplets were 

enumerated for micro-vesicular steatosis analysis. To quantify hepatic steatosis, the 

number of lipid droplets per 1000x magnification field were counted for 10 random fields 

per liver sample.  

 

2.7. Hepatic EMM analysis: 
 

EMM was assessed based on foci of immature myeloid inflammatory cells and their 

nuclear morphology in H & E stained sections.  The number of foci per field and the 

number of inflammatory cells per focus were counted in 10 fields at 200x magnification. 

Biliary duct size and the area of biliary epithelium were measured in the biliary ducts 

present in 10 random fields at 200x magnification using Image-J software.  

 

2.8. Hepatic glycogen storage analysis 

 

Hepatic glycogen deposition was measured using Periodic Acid-Schiff (PAS) staining on 

paraffin embedded liver tissue sections. Magenta color PAS positive hepatocytes were 

confirmed as glycogen-deposited hepatocytes by comparing glycogen degradation in a 

serial section treated with PAS-diastase (PAS-digest). The average number of PAS-

positive hepatocytes were counted in 10 fields of hepatic lobular regions (200x).  

 

2.9. Immunohistochemistry (IHC) analysis: 

 For IHC staining, slides of paraffin-embedded tissue sections were warmed on a slide 

warmer for 30 minutes to 1 hour. The slides were deparaffinized and rehydrated by serial 

incubations in xylene (3x), 100% ethanol, 95% ethanol, 70% ethanol, 50% ethanol, and 



   46 

water. For IHC analysis of liver tissue (data presented in Chapter 4), rehydrated sections 

were steamed in preheated sodium citrate antigen retrieval buffer (pH 6.0) for 20 minutes 

using a steamer (HS1000, Black and Decker, Miramar, Florida). Slides were cooled, 

washed 3 times in TRIS-buffered saline, pH 7.6 (TBS) containing Tween-20 (TBST). 

Endogenous peroxidase was blocked by hydrogen peroxide, slides were washed in TBST 

and blocked with 5% goat serum in TBST (ab7481; Abcam Inc.) for 1 hour at room 

temperature (RT). Primary antibodies were diluted in antibody diluent (BD559148; BD), 

and incubated at 4oC overnight. For negative controls, serial sections were incubated in 

the diluent without the primary antibody and all other staining procedures were 

undertaken. Sections were washed 3 times with TBST and incubated in Signal Stain Boost 

IHC detection reagent (HRP, Rabbit 8114S Cell Signaling Technology; Danvers, MA.) for 

30 minutes at RT in a humid chamber. The washed sections were incubated with DAB 

chromogen (BD550880; Becton Dickinson, New Jersey) until a mild brown color was 

detected. Sections were briefly dipped in a hematoxylin solution (MHS32; Sigma-Aldrich, 

St. Louis, MO) followed by 0.1% sodium bicarbonate for counter staining. Images were 

captured on a Zeiss Axioplan-2 microscope as described above.  The number of CD45+ 

cells in each cluster, and the number of clusters of CD45+ cells per 100x field were counted 

in 10 random fields per sample. 

For IHC analysis of mammary fat pads and tumor tissues, the same procedures and 

incubation times were used as discussed above, however, different reagents were used 

for some steps as mentioned below. For antigen retrieval, EDTA-based retrieval buffer, 

pH 8.0 (ab93680, Abcam) was used instead of citrate buffer. Endogenous 

peroxidase/phosphatase was blocked with BLOXALL (SP6000, Vector labs, Burlingame, 

CA). Non-specific antibodies were blocked using 2.5% normal horse serum (S-2012, 

Vector labs). For detection, ImmPRESS-AP, anti-rabbit Ig (MP-5401, Vector labs) was 
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used for 30 minutes at RT in a humid chamber and staining was detected using ImmPACT 

Vector Red alkaline phosphatase reagent (SK-5105). Counter staining was performed as 

described above. The stained sections were dehydrated with serial incubations in water, 

increasing concentrations of ethanol and then xylene and mounted with Permount, before 

evaluation of the stain-positive cells by microscopy. (Fisher, SP15-100). For analysis of 

staining, 10 random high power fields (HPF) were evaluated for the number of positive 

cells or clusters of cells (for CD45+ cell clusters in liver) or CD31+ vessels per HPF. All the 

IHC analyses of tumor tissues were performed by evaluating positive cells in sub-capsular 

oxic areas of the tumors.   
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Table 2. List of antibodies used in IHC experiments 

  

Antibody Reactivity 
Host 

species Supplier Catalogue Dilution  

Anti-F4/80  Mouse Rabbit Cambridge, MA ab111101 1:100' 

Anti-Ki67 
Mouse,Rat, 

Human Rabbit Cambridge, MA ab16667 1:100' 

Anti-
Neutrophil 
elastase 

Mouse, 
Human Rabbit Cambridge, MA ab68672 1:2000' 

Anti-CD3 
Mouse, 
Human Rabbit Cambridge, MA ab16669 1:100' 

Anti-CD31 
Mouse,Rat, 

Human Rabbit Cambridge, MA ab182981 1:2000' 

Anti-CD45 
Mouse,Rat, 

Human Rabbit Cambridge, MA ab10558 1:2000' 
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2.10. TUNEL labeling of liver tissues (Fluorescent based)  

 

The terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick 

end labeling (TUNEL) assay was performed on deparaffinized liver sections according to 

the manufacturer's instructions (Roche, Indianapolis, IN). The label solution without TdT 

was used as a negative control and liver sections with known tumor metastases were used 

as positive controls. Slides were cured overnight, in the dark, with ProLong® Diamond 

Antifade Mountant with DAPI (P36971; Thermo-Fisher, Grand Island, NY). Fluorescent 

images were captured on a Zeiss LSM-710 confocal microscope at 630x magnification, 

and the images were processed using the Zeiss Zen 2012 stitching software and merged 

into a single image. The number of TUNEL positive nuclei and DAPI positive hepatic nuclei 

per field at 630x magnification were counted in 10 random fields to calculate the number 

of apoptotic nuclei and relative percentages of apoptotic hepatocytes.  

 

2.11. Protein extraction of hepatic lysates and western blotting: 
 

Freshly isolated liver sections were collected in ice-cold Tissue Protein Extraction Reagent 

(T-PER™; #77510; Thermo-Scientific, Grand Island, NY) containing complete™ ULTRA 

Tablets, EDTA-free, Protease Inhibitor Cocktail (#5892953001, Roche, Indianapolis, IN) 

and PhosSTOP™ phosphatase inhibitor cocktail (#04906837001, Roche, Indianapolis, 

IN), and then homogenized using a tissue homogenizer with disposable tips (Omni TH; 

Omni International, Kennesaw, GA). The homogenized tissues were centrifuged at 

10,000g for 10 minutes at 4oC. Protein concentrations of the whole tissue extracts were 

determined according to the manufactur’s protocol (Pierce™ BCA Protein Assay Kit; 

#23227, Thermo-Fisher, Grand Island, NY). For Western blotting, whole cell protein 

samples were separated by SDS PAGE using a 4-15% Mini-PROTEAN TGX Precast Gel 
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(456-1084, Bio-Rad), and blotted using Trans-Blot® Turbo™ Mini PVDF Transfer Packs 

(1704156, Bio-Rad) Trans-Blot® Turbo™ Transfer System (Bio-Rad, Hercules, 

California). The blotted membranes were blocked using 5% BSA in TBST for 1 hour at 

RT, followed by incubation in diluted primary antibodies anti-NF-kB p65 [E379] (ab32536), 

anti-beta Actin (ab8227) overnight at 4oC. After washing 3 times, blots were incubated with 

the secondary antibody [goat anti-rabbit IgG H&L chain, HRP] (ab6721, Abcam Inc.) for 1 

hr at RT. All the antibodies were purchased from Abcam Inc. The protein bands were 

examined by using SuperSignal™ West Pico Chemiluminescent Substrate (34078, 

Thermo-Fisher, Grand Island, NY). Blots were exposed and digital images were acquired 

using a myECL™ Imager, and relative protein quantities were determined by using 

myImageAnalysis™ Software (62237, Thermo-Fisher, Grand Island, NY). 
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Table 3. List of antibodies used in Western blot analyses 

 

  

Antibody Reactivity Host species Supplier Catalogue Dilution  

Anti-NF-kB p65 
[E379]  

Mouse, 
Human Rabbit 

Cambridge, 
MA ab32536 1:50,000' 

Anti-Beta Actin 
Mouse, Rat, 

Human Rabbit 
Cambridge, 

MA ab8227 1:25,000' 

Goat Anti-Rabbit 
IgG H&L (HRP) Rabbit Goat 

Cambridge, 
MA ab6721 1:10,000' 
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2.12. Flow cytometry and colony forming units-granulocyte/macrophage 

(CFU-GM) 
 

Freshly isolated livers were minced into small pieces, treated with collagenase-IV (17104-

019, Gibco) and DNAse I (D5025, Sigma), and filtered through cell dissociation sieves to 

prepare single cell suspensions. Hepatic leukocytes (WBCs) were isolated using mouse 

cell separation media, Lympholyte M (CL5035, Cedarlane). Then the total hepatic WBC 

count was analyzed using a vet ABC animal blood counter and data assessed as WBC 

count/gram of liver. For flow cytometry, isolated leukocytes were stained with the indicated 

antibodies for 30 minutes at 4oC. The antibodies used were anti-CD45-V450 (clone 30-

F11, BD Pharmingen) anti-CD201-APC (clone ebio1560, ebioscience) and anti-CD27-

BV650 (clone LG3A10, BD Pharmingen). Flow cytometry was performed using a BD 

LSRFortessa X50 platform, and results were analyzed using FlowJo software version 

9.9.5 (TreeStar). For CFU-GM assays, 105 hepatic leukocytes were cultured in 1.1 ml of 

methylcellulose-based medium for myeloid progenitor cells (MethoCult™ GF M3534, 

STEMCELL technologies) as per company protocol. Colonies of at least 50 cells were 

scored for analysis of CFU-GM. 

 

2.13. RNA extraction / quantitative real time PCR 

 

Tissues were collected in RNA stabilizing solution, RNAlater (#76106, Qiagen) and stored 

at -20oC until used. RNA was extracted by using TRIzol reagent (15596026, Invitrogen). 

RNA concentrations were measured using NanoDrop (ND1000, Thermofisher).  In order 

to confirm the integrity of the RNA, the RNA (2 µg) was separated in a denaturing agarose 
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gel (1%) in formaldehyde, and samples with two distinct bands of RNA (16S and 23S) in 

the gel were used for further analyses. Complimentary DNA (cDNA) was prepared from 2 

µg of RNA using a high-capacity cDNA synthesis kit (4374966, Applied Biosystems; AB) 

as per the kit protocol.  

The qRT-PCR master mix was prepared using TaqMan gene expression master mix 

(4370074, AB), anti-mouse probes and 10 ng of cDNA in Micro Amp fast optical 96 well 

plates (4346906, AB). Pre-synthesized mouse probes from Applied Biosystems were used 

for the study as listed in Table 4. Negative controls were run for every probe in the plate. 

The samples were run using a StepOnePlus qPCR machine (Applied Biosystems) with 

the program: pre-heating at 95oC for 10 minutes, 40 cycles of 15 seconds at 95oC and 60 

seconds at 60oC.  Each qRT-PCR experiment was carried out in triplicate (technical 

replicates) so that the average cycle thresholds (Cts) from technical replicates was used 

as a Ct value of the sample. Then the average Ct values (for each target or reference) 

from all samples (each tissue) in the dietary group, from the same experiment (biological 

replicates) were obtained for each dietary group. The relative quantities of target mRNAs 

was determined using the Levak method [250]. Briefly, the Ct of GAPDH was subtracted 

from the Ct value of the target to obtain a delta (d) Ct. Then the dCt of each of samples 

from the ω-6 group was compared with the average dCt from the ω-3 group to obtain ddCt 

values. The fold changes between the samples was calculated as 2-ddCt as described 

previously [250]. 
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Table 4. List of probes used in qRT PCR analyses 

  

Gene 
symbol 

Taqman gene 
expression assay ID 

Target 
species Supplier Translated protein 

GAPDH Mm99999915_g1 Mouse 
Applied 

Biosystem, 
Foster city, CA 

glyceraldehyde-3-
phosphate 

dehydrogenase  

IGF1 Mm00439560_m1 Mouse 
Applied 

Biosystem 
Insulin like growth 

factor 1 

IGF1R Mm00802831_m1 Mouse 
Applied 

Biosystem 
Insulin like growth 

factor 1 

ESR1 Mm00433149_m1 Mouse 
Applied 

Biosystem 
Estrogen receptor 1 

Lep Mm00434759_m1 Mouse 
Applied 

Biosystem 
Leptin  

Adipoq Mm00456425_m1 Mouse 
Applied 

Biosystem 
Adiponectin  

IL6 Mm00446190_m1 Mouse 
Applied 

Biosystem 
Interleukin 6  

PTGS2 Mm00478374_m1 Mouse 
Applied 

Biosystem 

prostaglandin-
endoperoxide 

synthase 2 (COX-2) 

IFNγ Mm01168134_m1 Mouse 
Applied 

Biosystem 
Interferon gamma 

PGR Mm00435628_m1 Mouse 
Applied 

Biosystem 
Progesterone 

receptor 

AREG Mm01354339_m1 Mouse 
Applied 

Biosystem 
Amphiregulin 

TNFα Mm00443258_m1 Mouse 
Applied 

Biosystem 
Tumor necrosis 

factor 

CCL2 Mm00441242_m1 Mouse 
Applied 

Biosystem 
chemokine (C-C 
motif) ligand 2 

NFκB Mm00476361_m1 Mouse 
Applied 

Biosystem 
nuclear factor NF-

kappa-B 

IL10 Mm01288386_m1 Mouse 
Applied 

Biosystem 
Interleukin 10  

CSF3 Mm00438334_m1 Mouse 
Applied 

Biosystem 
Granulocyte colony-

stimulating factor 

CSF2 Mm01290062_m1 Mouse 
Applied 

Biosystem 

granulocyte-
macrophage colony-

stimulating factor 
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2.14. MG morphological analyses: Whole mount assays 
 

The intact inguinal MGs (#4) were excised from the mice at necropsy. The MGs were 

spread onto a glass slide immediately after collection and fixed in Carnoy’s solution (100% 

EtOH, chloroform, glacial acetic acid; 6:3:1) for 4 hours in a fume hood at room 

temperature (RT).  The fixed MGs were then gradually rehydrated in graded ethanols 

(70%, 35%, 15%) ending in water. The MGs were stained using carmine alum staining 

solution [0.2% Carmine (C6152, Sigma, MO) and 0.5% aluminum potassium sulfate 

dodecahydrate (#237086, Sigma, MO) with a few flakes of thymol (#16254, Sigma, MO) 

overnight. The stained MGs were washed in water and dehydrated in ascending graded 

ethanol solutions (50%, 70%, 95%, 100%), cleared by incubating in xylene overnight and 

mounted with Permount (SP 15-100, Fisher scientific). Whole slide images were acquired 

using the Invitrogen™ EVOS™ FL Auto Imaging System.  For quantitative analysis, higher 

magnification images were acquired using the Zeiss Discovery V8 Stereo Microscope with 

a Axiocam 105 color camera. We used the term “ductal terminus/termini” for all the end 

structures of ducts and ductules present in the high power field (HPF). The number of 

ductal termini were counted in 10 images (40x magnification) per sample and used to 

calculate the average value for each sample. The extent of ductal branching was analyzed 

by counting the total number of lateral branches in 3-4 primary ducts and five secondary 

ducts (between lymph node and distal ends of ducts) at 12.5x magnification. The results 

were expressed as a number of lateral branches per mm of a duct (primary/secondary). 

The quantitative results of ductal termini and lateral branching were discussed as ductal 

end-point densities and branching densities respectively, as described previously [100]. 

The total area of the MG ductal tree, the length of the primary duct (from nipple to end of 

the duct) and lymph node area, were quantified using Image-J software.  
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2.15. Culture of 4T1 cells and orthotopic inoculation: 
 

Mammary adenocarcinoma 4T1 cells derived from BALB/c mice [228] were used in an 

orthotopic mammary tumor model. These tumor cells were a generous gift from Dr. Fred 

R. Miller [228].  The cells were grown in 4T1 culture media at 37oC with 5% CO2. The 

composition of the media is shown in Table 5.  

Cells growing in log phase (40-60% confluent) were treated briefly with 0.05% trypsin-

EDTA (Gibco# 25300-054), washed twice at 4oC and re-suspended in Ca++-Mg++ free 

(CMF) Hank’s balanced salt solution (HBSS) (Gibco# 14170-112). Live cells were counted 

using trypan blue (Corning, 25-900CI) and re-suspended in concentrations of 5000 

cells/100ul CMF-HBSS [  ]. For tumor inoculation, 100ul of 4T1 cells were injected in the 

left inguinal (fifth) mammary fat pad (MFP).  

 

2.16. Tumor growth and survival analyses 
 

The MFPs were palpated daily, from day 3 of injection until all animals had palpable 

tumors. Body weights and tumor volumes were measured every 3 days. Tumor volume 

was calculated using the formula (0.5 (short diameter) 2 x long diameter). For survival 

analysis, mice were monitored for the signs of morbidity and autopsied at morbidity or 

necropsied at death. The days between tumor injection and autopsy or death was 

recorded as survival days.   
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Table 5. Composition of 4T1 culture media 

  

Reagent name Supplier Catalogue Volume (ml) 

Dulbecco’s modified eagle medium 
(DMEM) 

Gibco, Grand Island NY 11995-065 500 

Fetal bovine serum Atlanta biologics S11150 50 

100 X MEM Vitamins Gibco, Grand Island NY 11120-052 10 

200 mM L-Glutamate Gibco, Grand Island NY 25030-081 5 

100 mM Sodium pyruvate Gibco, Grand Island NY 11360-070 5 

50 X MEM Amino acids Gibco, Grand Island NY 11130-051 5 

100 X Non essential amino acids GE Healthcare SH30238.01 5 

50 mg/ml Gentamycine  Gibco, Grand Island NY 15750-060 2.5 
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2.17. Metastases analyses: 
 

Groups of mice were autopsied on day 35 post tumor injection for single time point 

metastases analyses in two independent experiments. For overt metastases (overt-met) 

analyses, whole organs (lungs, livers, hearts and kidneys) were fixed in Bouin’s fixative 

for 24 hours prior to counting of the total number of nodules of overt-mets per organ 

(n=10/group/experiment, two independent experiments) using a Stereoscope (Zeiss # 

Stemi DV4). After overt-met analysis, heart and kidneys were sectioned longitudinally 

(including cephalo-caudal regions of each organ). One-half of the organ was embedded, 

and cross-sectioned from the deeper tissue side. A piece of liver and spleen were also 

embedded and sectioned. Both ovaries and a half of the CMGs were collected and fixed 

in 10% normal buffered formalin (NBF) (Fisher # SF100) for 24 hours at RT prior to 

embedding and cross-sectioning. Histological analyses for the presence of metastatic foci 

in cross/longitudinal sections of organs was performed in all animals from a single 

experiment (n=10/group). The histologically analyzed metastatic foci were abbreviated as 

histologically-observed metastases (HO-met). All the tissues were sectioned at 4 µm 

thickness and stained with H & E for HO-met analyses. The number and size of HO-met 

foci per cross-section of heart, kidney and ovaries were evaluated quantitatively using 

Image-J software. The presence of metastases in liver and spleen was confirmed by 

scanning sections of the tissue at 200x and 400x. Individual tumor cells (ITC) were 

identified based on 4T1 tumor cell morphology.  

 

2.18. Bone metastasis analyses: 
 

For bone metastasis analyses, both hind limbs were collected and fixed in 10% NBF for 

24 hours, washed in 1x PBS, and muscles removed to isolate the femurs and tibias. The 
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bones were decalcified by immersing them in decalcification solution (15% EDTA in 1X 

PBS, pH 7.6) at 4oC until the bones became soft enough to section (10-15 days). Lateral-

longitudinally sectioned femurs-tibias (4 µm) were stained with H & E. Bone metastases 

were analyzed in medullary spaces of epiphysis/metaphysis and diaphysis of the femurs 

and the epiphysis/metaphysis areas of the tibia and presented as the number and size of 

HO-met present per longitudinal section of femurs-tibias.  

 

2.19. Apoptotic nuclei detection in tumor tissue (Colorimetric method) 
 

Apoptotic nuclei were detected using “In situ Apoptosis Detection Kit” (ab206386, Abcam) 

as per the kit’s protocol. Briefly, deparafinized and rehydrated tumor sections were 

permeabilized with Proteinase K for 20 minutes followed by washing in 1X TBS. 

Endogenous peroxidases were inactivated by treating the sections with 3% H2O2. Then 

the sections were treated with Terminal deoxynucleotidyl Transferase (TdT) and detected 

with a conjugate and DAB chromogen based method, and counter-stained with methyl 

green. Apoptotic nuclei were analyzed in the subcapsular areas (oxic) of the tumors and 

evaluated in 10 HPF per each tumor sample.  

 

2.20. Statistical Analyses: 
 

Results are expressed as a mean ± standard error of the mean (SEM) for animal weights, 

liver/MG/abdominal fat weights of NTB studies and IHC quantification data, and were 

compared between the dietary groups by Student’s t-test for independent samples. The 

differences in the incidences of metastases was analyzed by Fisher’s exact test for the 

differences in the proportions between the experimental groups. Metastases analyses 
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data including organ, weights, metastases number, and HO-met area were presented as 

median values and compared by Mann Whitney’s test. Longitudinal plots for change in 

body weights and tumor growth and dietary consumption were based on the mean ± SEM 

value for each time point, and the curves between the dietary groups were compared by 

repeated measures analysis (two-way). Graphs were plotted using Sigma Plot or Graph-

pad Prism. Survival analysis was presented as Kaplan-Meier plots and statistical 

significance was analyzed using the log-rank test. All data were analyzed using SPSS for 

statistical significance. For qRT-PCR data, dCt values were compared by independent 

sample t-test. In all instances, differences where p<0.05 were considered to be statistically 

significant. 
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Chapter 3: 
Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate 

Mammary Gland Composition and Inflammation2 

 

3.1. Abstract 

 

Studies in rodents have shown that dietary modifications as MGs develop, regulates 

susceptibility to mammary tumor initiation. However, the effects of dietary PUFA 

composition on MGs in adult life, remains poorly understood. This study investigated 

morphological alterations and inflammatory microenvironments in the MGs of adult mice 

fed isocaloric and isolipidic liquid diets with varying compositions of ω-6 and LC-ω-3FA 

that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet 

had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) 

weights. Fatty acid analysis showed significantly higher levels of LC-ω-3FAs in the MFPs 

of mice on the ω-3 diet, while in the MFPs from the ω-6 group, LC-ω-3FAs were 

undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal 

end-point density, branching density, an absence of ductal sprouts, a thinner ductal 

stroma, fewer proliferating epithelial cells and lower transcription levels of estrogen 

receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed 

significantly smaller adipocytes in the ω-3 group, which was accompanied by lower 

transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had 

significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ 

                                                           
2 A part of this chapter is derived from previously published original article: Saraswoti Khadge, 
Geoffrey M. Thiele, John Graham Sharp, Timothy R. McGuire, Lynell W. Klassen, Paul N. Black, 
Concetta C. DiRusso, and James E. Talmadge, “Long-Chain Omega-3 Polyunsaturated Fatty 
Acids Modulate Mammary Gland Composition and Inflammation,” Journal of Mammary Gland 
Biology and Neoplasia, Volume 23, Issue 1-2, pp 43-58, June 2018. 
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macrophages and decreased expression of proinflammatory mediators including Ptgs2, 

IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary LC-ω-3FA 

regulation of MG structure and density and adipose tissue inflammation with the potential 

for dietary LC-ω-3FA to decrease the risk of MG tumor formation. 
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3.2. Introduction 
 

A growing body of evidence suggests a linkage between MG development and diet [251] 

that can also modify breast cancer risk [252]. The majority of studies into dietary PUFA 

regulation of MG development have been undertaken with in utero, fetal, post-natal and 

prepubertal manipulated rodents but are rarely undertaken in adult mice. These studies 

have shown that feeding a LC-ω-3FA (fish oil)-containing diet reduces the number of 

terminal end buds (TEB), which are a marker of MG development [114, 253, 254]. Indeed, 

rodent studies have suggested that ω-6 and ω-3 PUFA have opposing effects on TEB 

formation, with ω-3 PUFA reducing the number of TEBs [124, 251, 254] and MG-density 

[255], while  high ω-6 PUFA diets reduce the differentiation of TEBs to alveolar buds [256].  

During puberty, the majority of TEBs differentiate into terminal ducts or alveolar buds, 

while lateral branching of MG ducts occurs post-pubertal. As tumor initiation typically 

occurs post pubertal, it is critical to study the effect of PUFA on MG differentiation in adult 

mice.   Further, it is critical that studies into dietary regulation of MG development be 

undertaken using isolipidic diets differing only in PUFA composition [254]; specifically, the  

presence or absence of LC-ω-3FA. It is clear that dietary PUFA composition can regulate 

carcinogenesis and tumor progression [257]; however, the potential for dietary epigenetic 

modification of molecular targets, in early life, requires additional investigation [258] as do 

the effects on post-pubertal MG structure and composition 

MFPs in rodents are comprised of epithelial cells in the MG (or ductal tree), and adipose 

tissue, stroma and extracellular matrix which provides physical support for the MG ductal 

network [259]. Recently, mammary adipocytes have also been shown to have an active 

role in the chronic inflammation [260] that is associated with adipocyte IL6 secretion, and 

likely plays a regulatory role in mammary cancer induction and progression [189, 261]. 
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Adipocytes within the MFP contribute to the regulation of MG development. For example, 

in the absence of mammary fat in A-ZIP/F-1 transgenic mice, abnormal MG development 

occurs [262]. MG adipocytes also regulate changes in mammary tissue during pregnancy, 

lactation, and involution, via local signals between mammary epithelium and adipocytes 

[261].  

Emerging research suggests that the timing of PUFA exposure is critical to the increased 

risk of mammary cancer [263].  As MG development is age-dependent, specifically during 

puberty, most studies to date have used pre-pubertal exposure [264, 265].  These studies 

have demonstrated that pre-pubertal ω-3 PUFA incorporation into the MG regulates the 

morphological development of the MG during puberty [265], and reduces mammary 

tumorigenesis [118]. However, the role of dietary LC-ω-3FA exposure in post-pubertal life, 

and its regulation of the MG stromal microenvironments and morphogenesis is little 

studied.   

Based on these observations, we examined the hypothesis that dietary LC-ω-3FA 

regulates mammary gland morphology.  We report that in the absence of dietary LC-ω-

3FA the FA composition within the adipose tissue of MG varies, resulting in local-regional 

inflammation and increased ductal branching density and mammary epithelial cell 

proliferation, all of which may potentially contribute to MG carcinogenesis.  
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3.3. Results 
 

3.3.1. Food consumption, body weight, and MG and abdominal fat weights: 

 

Pair-feeding was undertaken, as described previously [266], to assure isocaloric and 

isolipidic consumption. To acclimate the mice to a liquid diet, the first five days of feeding 

was ad libitum. During this time, average liquid diet intake was assessed daily, with the 

observation of increased diet consumption of the ω-6 diet. Based on this observation, the 

ω-3 diet consumption was used as the baseline for pair feeding.  During this five-day 

period of ad libitum feeding the ω-6 group of mice gained more weight than the ω-3 group 

in association with increased liquid diet consumption.  Following the initiation of pair 

feeding, on day 6, no significant differences in food intake occurred between the dietary 

groups. (Fig. 8A). The initial body weights were comparable between the dietary groups.  

However, mice (n=20) on the ω-3 diets had a significantly lower body weight gain 

throughout the study (Fig. 8B), despite the use of isocaloric diets. The weights of the 

abdominal fat in the mice on the ω-3 diet were 45% lower (Fig. 8C) and 42% lower as 

abdominal fat weight relative to the body weight (Fig. 8D) compared to the ω-6 group (n=8) 

(both p<0.05).  Similarly, the weight of the fourth (left inguinal) MGs were assessed after 

the mice were fed the diets for 20 weeks (n=10). Significant decreases in the MG weights 

(-43%) (Fig. 8E) and MG weight relative to the body weight (-41%) (Fig. 8F) were observed 

in the mice on the ω-3 diets compared to the MGs from the mice receiving the ω-6 diets 

(p<0.05) (n=10).  
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Figure 8. Effects of LC-ω-3FAs on body weight, MG weight, and abdominal fat 
deposits 

 

Mice were pair-fed omega-6 (ω-6) and omega-3 (ω-3) PUFA diets for 10 - 20 weeks 

[n=20/group]. The average amount of diet consumed/day (A). Differences in percent 

changes in body weights between the pair-fed groups compared by a repeated measure 

test (B). Differences in abdominal adipose tissues deposits (C) [n=10/group], and 

abdominal fat weight relative to the body weight (D). Weights of the fourth rear MG at the 

age of 30 weeks (E). MG weight relative to body weight (F) [n=10/group].  
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3.3.2. Modulation of MG, FA profile by the ω-3 versus ω-6 isolipidic PUFA diets: 

 

The FA composition of the diets and MFPs are shown in Table 6. There was a significant 

effect of the dietary FA composition on the lipid profile of the MFPs from mice fed the diets 

for 10 weeks. The ratio of ω-6:ω-3 FA of the ω-6  and ω-3 diet were 21:1 and 0.7:1 

respectively. The ω-6 diet did not have detectable levels of LC-ω-3FA such as EPA and 

DHA, which were major sources of ω-3FA in the ω-3 diet. Consistent with the dietary FA 

composition, significantly higher levels of ω-3FAs such as LNA (0.7 ± 0.2), EPA (11.1 ± 

1.2) and DHA (7.5 ± 0.6) µg/mg were observed in the MFPs of mice fed the ω-3 diet.  In 

contrast, all ω-3FAs were below the detection levels in the MFPs of the ω-6 diet-feddiet-

fed mice. The levels of ω-6FAs were not significantly different between mice fed ω-6 and 

ω-3 diets, nor in the MFPs from mice fed the respective diets. However, a lack of Lc-ω-

3FAs in the ω-6 diet significantly increased the ratio of ω-6:ω-3 FA in MFPs from the mice 

fed the ω-6 diet. Besides PUFA, the levels of total saturated fatty acid (SFA) were 

increased (1.5 fold), and oleic acid (a major monounsaturated fatty acid from olive oil) was 

decreased (1.5 fold) in MFPs from mice fed a ω-3 diet compared to the levels in MFP from 

the ω-6 diet group.  The total levels of FAs were similar between the ω-6 and ω-3 diets 

and not significantly different between the MFPs from the mice fed the diets. 
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Fatty Acid (FA) Name 
Carbon 
chain  

Diet  
(FA µg/ml of 

diet) 

Mammary fat pad  
(FA µg/mg of MFP ± 

SEM) 

 ω-3  ω-6  ω-3  ω-6 

Saturated fatty acid (SFA)     

Tetradecanoate C14:0 0 0.2 6.3 ± 0.7 2.8 ± 0.6 

Hexadecenoic C16:0 1.53 3.02 105.3 ± 8.8 * 68.5 ± 8.3 

Octadecenoic C18:0 0.28 0.76 19.8 ± 2.5 13.9 ± 2.0 

Monounsaturated fatty acid (MUFA)     

9-Hexadecenoic  C16:1 0 0.2 18.2 ± 1.4 12.3 ± 2.4 

9-Octadecenoic C18:1 3.77 15.62 166.1 ± 7.0 * 
252.2 ± 
31.4 

cis-13-Eicosenoic C20:1 0.7 0 9.2 ± 0.5 * 3.0 ± 0.5 

13-Docosenoic acid C22:1 0.25 0 1.3 ± 0.1 * 0.0 ± 0.0 

Polyunsaturated fatty acid (ω-6 FA)     

cis-8,11-Octadecadienoic (Linoleic)  C18:2 6.67 5.03 71.3 ± 3.3 55.2 ± 7.4 

cis-5,8,11,14-Eicosatetraenoic (Arachedonic 
acid; AA) 

C20:4 0.51 0 0.7 ± 0.2 0.2 ± 0.2 

Polyunsaturated fatty acid (ω-3 FA)     

cis-9,12,15-Octadecatrienoic acid (Linolenic) C18:3 0.14 0.24 0.7 ± 0.2 * 0.0 ± 0.0 

7,10,13-Eicosatrienoic C20:3 0 0 0.7 ± 0.2 * 0.0 ± 0.0 

cis-5,8,11,14,17-Eicosapentaenoic (EPA)  C20:5 7.52 0 11.1 ± 1.2 * 0.0 ± 0.0 

cis-4,7,10,13,16,19-Docosahexaenoic (DHA) C22:6 2.64 0 7.5 ± 0.6 * 0.0 ± 0.0 

cis-4,7,10,13,16-Docosapentaenoic acid C22:5 0.26 0 1.7 ± 0.1 * 0.0 ± 0.0 

Total omega 6 FA level 7.18 5.03 72 ± 3.5 55.5 ± 7.3 

Total omega 3 FA level 10.56 0.24 21 ± 2.0 * 0.0 ± 0.0 

Total MUFA level 4.72 15.82 193.5 ± 8.7 
267.5 ± 
32.6 

Total SFA level 1.81 3.98 131.4 ± 11.9* 85.3 ±10.0 

Total FA mass per mg/ml of MFP/diet  24.27 25.07 420.3 ± 20.1 
442.2 ± 
47.0 

Ratio of total ω-6 FA to ω-3 FA (ω-6:ω-3) 0.7:1 21:1 3.4:1 55.5:0 
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Table 6. Fatty acid profiles of the diets and mammary fat pads 

MFPs were collected from the mice fed respective diets for 10 weeks. (n=5/group). The 

ready to use diets were used for fatty acid (FA) analysis. FA profile was measured by gas 

chromatographic mass spectrophotometry (GC-MS) analysis. The results were expressed 

as microgram of fatty acid per milligram of MFP tissue. 
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3.3.3. Dietary PUFA regulation of mammary ductal branching 

 

A histopathologic analysis of the inguinal MFPs of mice fed the diets for 20 weeks, was 

performed to evaluate structural/morphological alterations in MGs. (n=10). A significant 

morphological difference was observed in the ductal tree network and the total glandular 

area between the two dietary groups (Fig. 9A and 9B). The total area of the MG tree of 

MFPs from ω-3 fed mice was 20% smaller (143.3 ± 10.4 mm2) relative to the area of the 

MFPs from ω-6 fed mice (177.6 ± 11.8 mm2) (p<0.05) (Fig. 9C).  A comparison of the 

quantitative differences in the ductal tree compared the number of ductal termini (end-

point density) and the extent of lateral branching (branching density). Since the mice used 

in the study were post-pubertal adults, TEBs had differentiated into terminal ducts, alveolar 

buds or end buds and we use the term ductal termini for these end structures. MFPs from 

mice fed the ω-3 diet had 63% fewer ductal termini/HPF (25.9 ± 1.9) compared to the 

numbers in the MFPs from ω-6  diet-fed mice (70.9 ± 5; p<0.05) (Fig. 9D). Similarly, there 

were significantly fewer lateral branches per mm of primary ducts (0.7 ± 0.1) (a 60% 

decrease) and secondary ducts (1.3 ± 0.1) (a 65% decrease) compared to the numbers 

in each mm of primary duct (1.7 ± 0.1) and secondary ducts (3.8 ± 0.2) of MFPs from the 

ω-6  diet-fed group (Fig. 9E).  In the microscopic analysis, there was a significant 

difference in the ductal morphology, including the presence of ductal sprouts, along the 

ductal wall in MFPs from ω-6  diet-fed mice, which were absent in the ducts of the MFPs 

from ω-3  diet-fed mice (Fig. 9F-9G).  Despite the differences in lateral branching, there 

was no significant differences in the length of the primary ducts in mice fed the ω-3 diet 

(25.9 ± 1.2 mm) compared to the primary ductal length (28.1 ± 1.6 mm) in MFPs from ω-

6  diet-fed mice. Similarly, the average lymph node (LN) area (2.7 ± 0.1 mm2) of the ω-3 
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diet-fed mice were not significantly different from the LN area (2.7 ± 0.3 mm2) of ω-6 diet-

fed mice. 
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Figure 9. Effects of LC-ω-3FAs on MG ductal branching and morphology 

MGs were analyzed for ductal termini (end-point density), lateral branching (branching 

density) and sprouts in mice fed the diets for 20 weeks [n=10/group]. Whole mounts of 

carmine-alum stained fourth rear, MGs from 30-week old ω-3 diet-fed mouse (A) and ω-6 

diet-fed mouse diets (A) [n=10]. MGs were analyzed for the number (B). The total ductal 

tree area (C), number of ductal terminus (D) and number of lateral branches/mm of primary 

or secondary ducts (E). High power analysis of ductal branches showing absence of 

sprouts in MFP of ω-3 diet-fed mouse (F) and presence of sprouts (shown by arrows) in 

MFP of ω-6 diet-fed mouse (G). Images of (A and B) are 12.5x and (F and G) are 40x 

magnification. [*=p<0.05] 
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3.3.4. Dietary PUFA regulation of ductal epithelial cell proliferation 

The ductal histology of the MFPs from mice, fed each of the diets for 20 weeks, were 

analyzed using Mason’s trichrome stain and proliferating epithelial cells assessed by Ki67 

staining.  As shown in a representative Mason’s trichrome stained MG duct (Fig. 10A), we 

analyzed ductal lumen (DL) area, ductal epithelium (DE) area and ductal connective tissue 

(blue stained) or ductal stroma (DS) area.  The ω-3 diet feeding for 20 weeks (Fig. 10B – 

10E) resulted in a 34% decrease in the DE area (1883.3 ± 145.0 µm2) and a 54% decrease 

in the DS area (3034.5 ± 377.9 µm2), compared to the DE area (2863 ± 189.6 µm2) and 

the DS area (6,593.1 ± 493.9 µm2) respectively from mice fed the ω-6 diets for the same 

duration (p<0.05). Further, the effects on ductal size, based on a comparison of the ductal 

lumen (DL) area between the dietary groups, documented that mice fed a ω-3 diet had 

42% smaller ducts with an average DL area of 1,497.1 ± 243.6 µm2, compared to the 

MFPs from ω-6 fed mice, (2,568.7 ± 380.9 µm2) (p<0.05).  As there were significant 

differences in ductal size, we further evaluated the area of DE and DS relative to the DL.  

The results showed that the DS relative to DL were 33% smaller in the MFPs of ω-3 diet-

fed mice (3.6 ± 0.3) compared to the same in MFPs of the ω-6 group (5.3 ± 0.5) (Fig. 10F) 

(p<0.05). However, there was no significant difference in the DE relative to DL area 

between the dietary groups (Fig. 10G). These results suggest that the differences in ductal 

connective tissue were independent of ductal size; however, the size of ducts between the 

dietary groups might affect the DE area. Thus, proliferating epithelial cells were evaluated 

to confirm the effect of dietary PUFA on DE, which showed there were 88% fewer 

proliferating cells in the DE of ω-3 diet-fed mice (1 ± 0.5) compared to ω-6 diet-fed mice 

(8.3 ± 3.1) (Fig. 10H – 10J) (p<0.05). The regulation of estrogen signaling is one 

mechanism of epithelial proliferation in MG ducts. To address this, we assessed the 

relative mRNA expression of amphiregulin (AREG) and estrogen receptor-1 (ESR1) as a 
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potential mechanism for the dietary PUFA regulation of DE cell proliferation. These studies 

revealed that the MFPs from mice fed the ω-6 diet had 3.1-fold and 1.4-fold higher 

transcription levels of AREG and ESR1, respectively, compared to MFPs from age-

matched, isocaloric ω-3 diet-fed mice (Fig. 10K). However, there were no differences in 

the levels of progesterone receptor and prolactin mRNA levels were below the level of 

detection (data not shown). 
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Figure 10. Effects of LC-ω-3FAs on MG ductal histology 

Mammary ductal histology analyzed in trichrome stained MFP sections, using 200x 

images (n=10fields/mouse from five mice/group).  In each duct, the area of lumen marked 

as (DL), epithelium (DE) and stroma or connective tissue (DS) were analyzed as illustrated 

(A). Masson’s trichrome stained MFP from ω-3 diet-fed mice (B) and ω-6 diet-fed mice 

(C). The difference in the area of ductal stroma (D), ductal epithelium (E), stroma relative 

to luminal area (F) and epithelial area relative to luminal area (G) were analyzed.  MFP 

sections stained with the anti-Ki67 antibody were analyzed for Ki67+ proliferating ductal 

epithelial cells (H). Images showing Ki67+ cells in ducts of MFP from ω-3 diet-fed mouse 

(I) and ω-6 mouse (J). Relative mRNA expression (fold change compared to the ω-3 

group) of ESR1 and AREG in MFP of mice fed the ω-6 diet for 20 weeks (n=15/group) [# 

=p<0.05 compared to the ω-3 group]. Images were taken at a magnification of 200x (A 

and F) [*=p<0.05] 
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3.3.5. Dietary PUFA regulation of MFP and abdominal fat adipocytes 

 

A comparison of adipocyte histology in the MFPs and abdominal fat deposits of mice, fed 

the two diets for 20 weeks, revealed (Fig. 11) that adipocytes in the MFPs of mice fed the 

ω-3 diet, were approximately 45% smaller compared to MFP adipocytes from ω-6 diet-fed 

mice (p<0.05) (Fig. 11A and 11B). The increase in MFP adipocyte size was validated by 

an analysis of the adipocyte number/100x image, which documented that the adipocyte 

number/field was increased 67% in the MFPs of the ω-3 diet-fed group, compared to the 

ω-6 diet-fed mice (Fig. 11A and 11B) (p<0.05). Consistent with variations in MFP 

adipocyte sizes, an analysis of adipocytes size and the number of adipocytes/100x field 

in abdominal fat showed that mice fed the ω-3 diet had 53% smaller adipocytes and 113% 

more adipocytes per 100X field compared to isocaloric ω-6 diet-fed mice (Fig. 11C and 

11D) (p<0.05). We also assessed potential mechanisms for the differences in adipocyte 

size. This focused on alterations in fat storage/metabolism in the MFP and abdominal fat 

between the dietary groups by analyzing the relative mRNA expression of genes 

associated with fat metabolism. The results revealed that mice on the ω-6 diet had 

significantly increased mRNA expression for leptin (LEP) levels (3.1-fold), insulin-like 

growth factor-1 (IGF1) (1.8-fold) and IGF1 receptor (IGF1R) (1.7-fold) compared to the 

MFPs from mice fed the ω-3 diet (Fig. 11E) (p<0.05). Similarly, mRNA analysis of the 

abdominal fat showed that mice fed an ω-6 diet had significantly increased mRNA levels 

of Lep (5.1-fold) and IGF1 (1.9-fold) but did not differ in the expression of IGF1 (0.6-fold) 

compared to the mice fed diets high in ω-3 FA. (Fig. 11F).   
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Figure 11. Effects of LC-ω-3FAs on adipocytes histology and metabolic gene 

expression 

Analysis of adipocytes in H & E stained mammary fat pad (MFP) (A) by measuring an 

average adipocyte size (area) and the number of adipocytes per 100x field (B) [10 

fields/mouse in five mice]. H and E stained sections of abdominal fat (C), adipocyte size 

and the number of adipocytes per 200x field (D) [n=10 fields/mouse in five mice]. Relative 

mRNA expression (fold change compared to ω-3) of leptin, IGF1, and IGF1R in MFP (E) 

[n=15/group] and an abdominal fat of mice fed an ω-6 diet for 20 weeks (F) [n=8/group] [# 

=p<0.05 compared to ω-3 group]. Images were taken at a magnification of 100x (A and 

C) [*=p<0.05].   
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3.3.6. Dietary PUFA regulation of adipose tissue inflammation 

 

The MFPs from groups of mice on the two FA diets for 10 and 20 weeks were assessed 

for CLS, macrophage infiltration and expression of inflammatory cytokines (Fig.12). The 

number of CLS per 100 adipocytes and infiltrating immune cells/CLS were analyzed in H 

& E stained MFP sections (Fig. 12A). Mice on the ω-3 diet had 64% fewer MFP-CLS (11.0 

± 0.8) compared to MFP-CLS (30.7 ± 3.2) in the ω-6 diet-fed mice (Fig. 12A and 12B) 

(p<0.05). Similarly, there was a 31% decrease in the number of infiltrating macrophages 

per CLS i.e. (2.8 ± 0.4) compared to the number of infiltrating macrophages (4.0 ± 0.6) 

cells/CLS in the MFPs from the ω-6 diet-fed mice (Fig. 12A and 12C). Macrophage 

infiltration of MFPs was confirmed by F4/80+ staining (Fig. 12D). This analysis revealed 

that mice on the ω-3 diet had 60% fewer adipocytes with at least one adjacent F4/80+ 

cell/s (1.5 ± 0.1) compared to adipocytes (5.2 ± 0.2) in the MFPs from ω-6 diet-fed mice 

(Fig. 12D and 12E) (p<0.05). As high levels of inflammatory mediators have been 

associated with the increased numbers of CLS in adipose tissue [260], we analyzed the 

mRNA levels of inflammatory cytokines by qRT-PCR. These studies revealed that the 

MFPs of mice fed an ω-6 diet, had higher levels of mRNA for Prostaglandin- Endoperoxide 

Synthase 2 (Ptgs2) (2.3-fold), interleukin-6 (IL6) (2.0-fold), C-C motif chemokine ligand 2 

chemokine (CCL2) (2.3-fold), interferon gamma (IFNg) (2.8-fold), NFkB (1.5-fold) and 

TNFα (1.7-fold) in the MFPs from ω-6 diet-fed mice compared to ω-3 diet-fed mice (Fig. 

12F).  
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Figure 12. Effects of LC-ω-3FAs on adipose tissue inflammation 

Analysis of crown-like-structures (CLS) in H & E stained mammary fat pad (MFP) (A) [n=10 

fields/mouse from five mice/group]. Number of CLS per 100 adipocytes (B) and the 

number of inflammatory cells per CLS (C) were compared. Macrophages infiltration 

analyzed in F4/80-stained MFP sections (D) [n=10 fields/mouse in five mice]. The number 

of adipocytes surrounded by at least one F4/80+ cell/s were counted in 200x field (E) 

Relative mRNA expression (fold change compared to ω-3) of inflammatory mediators, 

such as ptgs2, IL6, CCL2, IFNγ NFκB and TNFα in MFP of mice fed the ω-6 diet for 20 

weeks (F) (n=15/group) [# =p<0.05 compared to ω-3 group). Images were taken at a 

magnification of 400x (A) and 200x (D) respectively. [*=p<0.05] 
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3.4. Discussion 

 

In this study, we provided moderate fat, isocaloric diets to pair-fed groups of mice for 10 

or 20 weeks of adult life. Our goal was to assess the effects of dietary LC-ω-3FAs on the 

structural, inflammation and morphological alterations and differentiation of post-pubertal 

murine MGs. These studies demonstrated that a post-pubertal exposure to LC-ω-3FAs 

modulates MG FA composition, lateral branching, ductal epithelial proliferation and 

adipose tissue inflammation relative to the mice fed ω-6 diet, which contained high levels 

of ω-6FA and oleic acid but lacked LC-ω-3FAs. 

A difference in dietary consumption (likely due to palatability) may be a factor when 

analyzing effects specific to the dietary composition, independent of total caloric intake or 

obesity [266]. We report that mice fed an ω-6 diet consumed significantly more liquid diet 

compared to the ω-3 diet during a 5-day initial ad libitum feeding period. This difference 

was subsequently controlled by pair feeding based on consumption of the ω-3 diet. 

Despite pair feeding and isocaloric and isolipidic diet consumption, the inclusion of LC-ω-

3FA in the diet significantly decreased body weight gains and abdominal fat deposits (-

45%) in mice. These results are consistent with prior studies comparing diets high in ω-3 

or ω-6FA [265, 266]. In addition, studies have reported a 50% reduction in retroperitoneal 

fat mass [267], and a 25% reduction in epididymal fat deposits in mice fed a high ω-3FA 

diet [268]. This suggests that dietary LC-ω-3FA are associated with the regulation of fat 

mass via stimulatory or inhibitory roles of ω-6FA and ω-3FA metabolites respectively in 

the differentiation of adipocytes [269, 270]. Further, increasing β-oxidation and 

suppression of lipogenic enzymes, such as leptin in adipose tissue, may provide potential 

mechanisms for reducing body fat by ω-3FA exposures [271, 272].  

To analyze the effects of dietary PUFA in MGs, we compared MFP weights of the fourth 

MG, after feeding the diets for 20 weeks, and observed 43% lighter MFPs in mice on a ω-
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3 diet as compared to the ω-6 diet group. This was associated with the novel observation 

of a significant higher incorporation of LC-ω-3FAs in the MFPs from ω-3 diet-fed mice as 

compared to the MFPs from ω-6 mice.  The ω-6 and ω-3 diets used in the present study 

contained a ω-6:ω-3 ratio of  21:1 and 0.7:1 respectively. The only ω-3FA in the ω-6 diet 

was ALA, whereas LC-ω-3FAs such as EPA and DHA were prominent ω-3FAs in the MGs 

of the ω-3 diet-fed mice (Table 2). Thus, our results document that the incorporation of 

LC-ω-3FAs in MFP depends directly on the dietary intake rather than in vivo conversion 

to ω-3FAs from dietary ALA. We note that dietary ALA can be endogenously converted to 

LC-ω-3FAs in mammals; however, the process is not efficient and <5% of ALA consumed 

is converted to LC-ω-3FAs in humans [273].  The observation might explain the lack of 

LC-ω-3FAs in the MFPs of mice fed the ω-6 diet. The LC-ω-3FA levels of mammary 

adipose tissue might be of clinical relevance as the breast adipose tissue from breast 

cancer patients has significantly higher and lower levels of ω-6FA and LC-ω-3FA 

respectively [274, 275]. Besides the differences in ω-3 and ω-6FA composition between 

the diets, the level of oleic acid was significantly higher in ω-6 diet and in MFPs of mice 

fed ω-6 diet compared to the levels in the ω-3 group. However, there is no significant data 

on oleic acid regulation of inflammation and mammary gland density published rather; 

oleic acid is known to prevent inflammation in adipose tissue [276]. Thus, we believe the 

alterations in outcomes between the dietary groups potentially be due to the differences 

in LC-ω-3FA levels between the diets.  

Although MFP weights may be a gross indicator of MG density in animal models, 

significant differences in MG adiposity might influence the MG weights. Pubertal exposure 

to HF diets has been shown to result in heavier MGs and stunted development in C57BL/6 

mice due to higher adiposity [264], while in-utero exposure to an HF-ω-6 diet increased 

the TEB number and enhanced susceptibility to carcinogenesis in BALB/c mice [277]. Our 
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data suggest that the observed difference in MFP weight might be the result of combined 

effects by the difference in MFP adipocyte size and alterations in MG glandular structure 

and composition including ductal epithelial cells proliferation and leucocytes infiltration 

between the dietary groups. MG development is age-dependent such that MGs undergo 

extensive modeling and remodeling during fetal development, puberty and pregnancy. 

The majority of dietary intervention studies use pre-pubertal mice that have a correlation 

between a higher number of TEBs and an increased risk of cancer [118, 264, 277]. 

However, in this study we used post-pubertal mice whose TEBs had differentiated into 

terminal ducts. Despite the post pubertal status, we observed that feeding an ω-3 diet in 

early adulthood (10-30 weeks of age) was associated with a decreased number of ductal 

termini, lateral branching of primary and secondary ducts, and a different total ductal area 

compared to isocaloric, isolipidic ω-6 diet-fed mice.  Previous studies, based on ω-3 diets 

using a LF-ω-3 (16% energy) diet in pre-pubertal mice [118] and offspring of HF-ω-3 (39% 

energy) diet-fed mice, had a reduced number of TEB associating with the lower risk of 

tumorigenesis compared to same fat level ω-6 dietary group [278]. However, when HF-ω-

3 (39% energy) were compared to LF-ω-6 (16% energy), the former developed more TEB 

and an increase in tumorigenesis compared to the latter, emphasizing the differential 

effects of fat-calories versus fat composition of the diets in MG differentiation and 

tumorigenesis [118]. Since we used an isocaloric diet and pair-feeding, our observation of 

differences are indicative of the regulation of MG structure and morphology by dietary LC-

ω-3FA, independent of caloric intake and obesity. Total ductal tree area and ductal end-

point and branching density represents epithelial and stromal mass of MG in animals, 

which can be considered equivalent to breast density as shown by mammographic scans 

in humans [100, 279].  Animal and clinical studies showed MG or breast density as a 

predictor of carcinogenic response or breast cancer risk [280, 281], while an increase in 

plasma DHA was associated with a decreased breast density in obese, postmenopausal 
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women [282]. We did not observe a significant difference in ductal lengths between the 

dietary groups, which might be due to the age of the mice (post-pubertal) at the start of 

the diet, since mice at this age have already gained full primary duct length, as a result of 

the extension which occurs mostly during pubertal age [265]. Rather, the effects of the 

diets alter the frequency of lateral branches, ductal terminus and formation of ducts 

(shown by a presence of sprouts in ducts in ω-6 diet-fed mice) and likely the total epithelial 

mass of MG.  Further, future studies will need to evaluate the effects of dietary PUFA 

composition in mammary tumor growth and metastasis. 

The observation of structural and morphological alterations in MG ductal trees was 

confirmed by immune-histological analysis of MG ducts. Mice fed the ω-3 diet had 

significantly smaller ducts, and a thinner layer of epithelium and connective tissue (stroma) 

in the ductal wall, as compared to the ducts from the ω-6 group. Since there was a 

difference in ductal size, we further evaluated those parameters relative to the ductal 

luminal area and found that the difference in the stroma was independent of ductal size, 

but the differences in epithelium thickness might be secondary to the ductal size. However, 

a significant decrease in proliferating ductal epithelial cells in the ω-3 group suggests a 

regulatory role of LC-ω-3FAs in mammary epithelial cells proliferation. Our observations 

of an increased ductal stroma and proliferating ductal epithelial cells in MFPs from mice 

receiving the ω-6 diet were in agreement with previous reports that showed higher stromal 

density [283] and proliferating epithelial cells [284] in mammary ducts of mice fed a high 

fat-diet. However, effects of isocaloric PUFA diets and/or dietary LC-ω-3FAs in ductal 

stromal tissue have not been reported before. 

Evidence from clinical studies showed that women with cytological atypia had a higher 

ratio of ω-6:ω-3FA in breast tissue [285], which was associated with a reduced number of 

Ki-67+ cells with increased levels of LC-ω-3FAs in erythrocyte phospholipids [286]. 
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Further, animal studies have shown that pre-pubertal exposure to low-fat (LF)-ω-3 was 

able to reduce chemical induced tumorigenesis [118] and inhibit atypical ductal 

hyperplasia at early stages of mammary carcinogenesis [287]. In addition, a recent finding 

of the regression of established pre-neoplastic lesions, by combined treatment of fish oil 

and tamoxifen and its correlation with tissue levels of LC-ω-3FA, demonstrated preventive 

and therapeutic roles of dietary LC-ω-3FAs in MG malignancies [288].  

In our studies, we detected estrogen receptors in the MFPs, consistent with prior reports 

of their presence on adipocytes and fibroblasts, within MFPs.  This supports the critical 

role of estrogen receptors in epithelial proliferation, mediated by both endocrine-derived 

and locally produced estrogen [261, 289, 290]. We also studied message levels of AREG, 

a ligand for epidermal growth factor receptor (EFGR), which is induced by estrogen 

binding to ESR1 stimulating the proliferation of mammary epithelium. Further, the 

overexpression of AREG has been associated with mammary tumorigenesis [291, 292]. 

Recent studies have shown estrogen stimulated ductal side branching by enhancing IGF-

I action, while an overexpression of IGF-I was associated with ductal hyperplasia [293, 

294] as observed in our studies. Further, both estrogen and IGF-I are required for 

progesterone-mediated formation of mature mammary gland alveoli. Thus our observation 

of increased lateral branching, stromal thickness and epithelial proliferation in mice fed the 

ω-6 diet might be due to additive effects of IGF-I to estrogen signaling, as shown by 

significant higher expression of AREG and ESR1 respectively in MFPs of ω-6 diet-fed 

mice.  However, as there were no differences in progesterone receptor mRNA expression 

in the MFPs. These observations indicate progesterone message levels might have little 

effect on lateral branching of the ducts in virgin, nulliparous adult mice.  

We also assessed the effects of PUFA on adipocytes, which may regulate MG ductal 

morphogenesis. Adipocyte hypertrophy is one mechanism for storing excess energy, and 
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has been observed in both omental and subcutaneous fat of obese humans [295], and in 

HF, high calorie-fed animals, [296] and genetically susceptible animals [297]. In our 

studies, we used moderate fat (MF), isocaloric diets and a pair-fed model in BALB/c mice, 

which are known to be less susceptible to obesity [298]. Thus, our observation of 

significantly smaller adipocytes in abdominal and mammary adipose tissue from ω-3 mice 

suggests differential regulation of lipid metabolism, storage and/or beta-oxidation in 

adipose tissue by dietary ω-3 and ω-6FAs [299-301].  Studies showed that ω-6FAs 

consumption triggered adiposity in human [302] and rodents [303]  potentially by 

promoting pre-adipocyte differentiation or adipogenesis [304] while, DHA was able to 

inhibit differentiation  to adipocytes and promote lipolysis [305]. In this study, the ω-3 diet-

fed group had significantly higher number of adipocyte per microscopic field, which further 

validates our observation of smaller adipocytes in the ω-3 group. However, since we did 

not analyze a total adipocytes number per MFP or abdominal fat, further studies are 

required to analyze PUFA regulation of adipogenesis in this pair-fed model.  Further, prior 

reports have shown that EPA can reduce hypertrophy of abdominal adipocytes [296, 306]. 

However, the role of LC-ω-3FAs in decreasing MFP adipocyte hypertrophy, have not been 

done previously, even though adipocytes have been actively researched for their crucial 

role in MG growth, development and carcinogenesis [261].  

Adipocyte’ size and fat mass are important determinants in adipokine regulation of energy 

homeostasis. Leptin expression increases with adipocyte size [307] and fat mass [308], 

while adiponectin (Adipoq) expression is inversely correlated with obesity [309]. However, 

the fat deposit distribution depends on the levels of leptin expression  [310]. Leptin is a 

hormone of satiety; however, elevated plasma leptin levels do not induce a reduction of 

food intake nor increased energy expenditure in obese people, due to development of 

leptin resistance [311]. Although the mouse strain we used is less sensitive to obesity 
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[312], the absence of LC-ω-3FAs in the ω-6 diet led mice to gain adipose tissue resulting 

in a significant increase in Lep and no effects on Adipoq expression in abdominal fat tissue 

and MFP. Our results in Lep expression are in agreement with prior studies using HF diets 

with and without EPA [308, 313], while no effect in Adipoq might be due to dietary FA 

levels, mouse strain, or type of adipose tissue analyzed. Fish oil was able to induce 

epididymal adipose tissue but not subcutaneous adipose tissue [314]. Besides their role 

in lipid homeostasis, leptin levels have been associated with the induction of pro-

inflammatory cytokines [315], and enhanced proliferation of normal and malignant breast 

epithelial cells [316].  

In addition, we observed that a lack of dietary LC-ω-3FAs significantly enhanced 

expression of IGF1 and IGF1R in MFPs and abdominal fat. IGF1 was originally believed 

to be exclusively produced by the liver [317], but a recent study [318] showed IGF1 

secretion by adipocytes and M2-macrophages. Further, ablation of IGF1R from myeloid 

cells results in elevated adiposity, lowered energy expenditure and increased macrophage 

infiltration into adipose tissue, and reduced phagocytosis [318, 319]. While IGF1 is 

synthesized by MG adipocytes and promotes the growth of ductal epithelium [320], 

overexpression of IGF1R can induce mammary epithelial hyperplasia in transgenic mice 

(containing human IGF-IR under a doxycycline-inducible MMTV promoter) [321] and is 

associated with increased risk of mammary cancer [322].  Our results are consistent with 

a prior study, which showed a negative correlation of dietary ω-3FA with plasma IGF1 

expression and ductal density [280]. However, the effects of ω-3 in local IGF1 expression 

in MG and other adipose tissue have not been previously reported; thus, our results 

indicate a need for additional investigation. Further, the similarities in IGF1 expression, in 

both MFP and abdominal fat, but differential expression pattern of IGF1R, indicates 
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morphological similarities between adipocytes, but potentially different mechanisms of 

signaling.  

Recent studies suggest that white blood cells, notably macrophages and eosinophils, are 

attracted to the end bud [323] and are essential for their development [323]. This finding 

raises a question regarding the regulatory role of chronic local/adipose tissue inflammation 

in MG pathology. Further, macrophages may also have a role in other attributes of MG 

morphogenesis such as lateral branching, terminal ducts, and ductal sprout formation, 

potential mechanisms requiring additional study. In the studies reported herein, we 

observed that the number/size of CLS and the number of macrophages infiltrating MGs 

were significantly lower in MFPs of ω-3 diet-fed mice. CLS is a hallmark of chronic adipose 

tissue inflammation, and increased numbers of CLS in the breast (CLS-B) have been 

associated with increased risk and poor prognosis of breast cancer patients in both obese 

individuals and those with normal BMI [324, 325]. CLS formation has been shown to 

enhance the expression of inflammatory cytokines/chemokines potentially further 

activating macrophages for clearing of apoptotic adipocytes.  We observed significantly 

increased expression of Ptgs2, NFkB, IL6, IFNγ, and the macrophage chemoattractant 

CCL2 in the MFP of ω-6 diet-fed mice. These findings support an increase in pro-

inflammatory signaling by ω-6 FAs and its metabolite, AA in the MFP microenvironment.  

In these studies, the AA levels in the MGs did not differ between the ω-6 and ω-3 diet 

groups; however, the MFP from ω-6 diet mice did not have detectable levels of LC-ω-3FA. 

Thus, our results suggested that the lack of detectable LC-ω-3FA crucial relative to the 

levels of AA for chronic inflammation. Local LC-ω-3FA has been shown to exert anti-

inflammatory and anti-chemotactic activity regulating adipose tissue inflammation [326]. 

Further, constitutive expression of CCL2 by mouse mammary epithelium has been 

reported to increase stromal density and increase mammary tumor susceptibility [327], 
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emphasizing a potential role of chronic inflammation in ductal epithelial proliferation and 

carcinogenesis that could be modified by dietary ω-3FAs.  

Findings from epidemiological, and animal studies using HF-fed or genetically obese 

models have provided contradictory results regarding the role of dietary LC-ω-3FA in the 

MG microenvironment and morphogenesis, depending on the age of mice and mixed 

effects of dietary calories versus composition. In summary, this research show that dietary 

LC-ω-3FA reduces MG density by decreasing ductal end-point density, branching density, 

ductal stroma and epithelial proliferation in adult mice. This occurred in an amphiregulin-

estrogen and IGF-I-dependent manner, potentially by modulating adipocyte metabolism 

and adipose tissue inflammation. Further, an absence of detectable levels of LC-ω-3FA, 

such as EPA and DHA in MG might be an indicator of inflammation-associated 

pathologies. Future, mechanistic studies using tumor models are justified to assess a role 

for dietary LC-ω-3FA inhibition of mammary tumor development in adults.  

  

After evaluation of PUFA modulations of MG microenvironments (as the primary site of 

mammary tumor), we extended our studies to analyze alterations in hepatic 

microenvironments (one of the major metastasis sites by mammary tumor) by dietary 

PUFA composition that are discussed in the next chapter (chapter 4).  
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Chapter 4: 
Dietary Omega-3 and Omega-6 Polyunsaturated Fatty Acids 

Modulate Hepatic Pathology3 

4.1. Abstract 
 

Recent evidence has suggested that dietary PUFAs modulate inflammation; however, few 

studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and 

it is unclear if the associated pathologies are due to dietary PUFA composition, lipid 

metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used 

isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions 

of ω-6 or LC-ω-3FAs that were pair-fed and assessed hepatic pathology, inflammation 

and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no 

significant difference in diet consumption between the groups.   In contrast, the body and 

liver weight, total lipid level and abdominal fat deposits were significantly higher in mice 

fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice 

on the ω-6 diet had significantly more AA in the plasma and liver, whereas, in these mice 

ω-3 fatty acids such as EPA were not detected and DHA was significantly lower. 

Histopathologic analyses documented that mice on the ω-6 diet had a significant increase 

in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes 

and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation 

relative to mice fed the diet containing LC-ω-3FAs.  Together, these results support PUFA 

                                                           
3 A part of this chapter is derived from previously published original article: Saraswoti Khadge, 
John Graham Sharp, Geoffrey M. Thiele, Timothy R. McGuire, Lynell W. Klassen, Michael J. 
Duryee, Holly C. Britton, Alicia J. Dafferner, Jordan Beck, Paul N. Black, Concetta C. DiRusso, and 
James E. Talmadge, "Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate 
hepatic pathology." The Journal of Nutritional Biochemistry, Volume 52, pp 92-102, Feb. 2018. 
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dietary regulation of hepatic pathology and inflammation with implications for enteral 

feeding regulation of steatosis and other hepatic lesions. 
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4.2. Introduction 

 

Omega (ω)-6 and ω-3 PUFA are essential FAs, which cannot be interconverted in humans 

due to a lack of ω-3 desaturase [328]. Besides their role in energy storage and production, 

PUFA are important constituents of biological membranes and are precursors to 

prostaglandin and pro-resolving lipid mediator pathways [329, 330]. Many lipid mediators 

derived from ω-6FA have pro-inflammatory functions [331], whereas; those synthesized 

from ω-3FAs have anti-inflammatory properties [332, 333]. Both ω-3 and ω-6FAs are 

metabolized by the same enzymes, resulting in signaling molecules with opposing 

bioactivities. Studies have suggested that humans evolved on a diet containing 

approximately a 1:1 ratio of ω-6:ω-3 PUFA [25]; however, current western diets have a 

high ω-6:ω-3 ratio [334].  A diet high in ω-6 PUFAs, such as LA, results in decreased 

tissue levels of LC-ω-3FAs, including  EPA, DHA [335], and a heightened risk of chronic 

inflammatory disease processes [336]. In contrast, a diet containing a low ω-6:ω-3 PUFA 

ratio, or one that is supplemented with LC-ω-3FAs, reduces risk factors for chronic 

inflammatory diseases, including cardiovascular disease [337, 338], cancer [339, 340], 

and obesity [341, 342]. Dietary LC-ω-3FAs can also reduce hepatic inflammation, fibrosis, 

and steatosis in non-alcoholic fatty liver diseases (NAFLD), and non-alcoholic 

steatohepatitis (NASH) [343, 344]. 

Although hepatic lipid storage is normal, excessive intrahepatic lipid accumulation (>5.6% 

of liver weight) [345] is associated with steatosis, inflammation and cardiometabolic 

syndromes. Several mechanisms are involved in the accumulation of intrahepatic lipids, 

including increased accumulation of triglycerides in the liver, increased de novo 

lipogenesis, and/or reduced clearance and obesity [167]. Approximately 30% of 

Americans have a fatty liver [345], and this is increased up to 75% amongst obese 
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individuals [346]. Further, hepatic steatosis occurs rapidly with excess calorie 

consumption, independent of dietary composition [347]. In contrast, in humans a 

hypocaloric diet reduces steatosis [348, 349], suggesting that it is crucial to differentiate 

between the effects mediated by total caloric intake versus obesity to understand the role 

of dietary composition in the modulation of the hepatic microenvironment. The majority of 

studies on hepatic steatosis have used high-fat diets (60% of calories from saturated fatty 

acids (SFAs)) and overfeeding to provide an animal model of NAFLD [350, 351]. To date, 

little is known about the effects of ω-6 and ω-3FAs dietary composition, independent of 

caloric intake on the hepatic microenvironment.  

Mature myeloid cells are terminally differentiated and continuously renewed by the 

proliferation of committed hematopoietic precursors, such that myelopoiesis is critical to 

expand and replenish the myeloid cell pool.  Numerous pathologic conditions stimulate 

myelopoiesis, including infections, autoimmune and inflammatory conditions, neoplasia 

and obesity in association with neutrophilia, splenomegaly and multifocal, hepatic EMM, 

i.e. the formation of myeloid tissue outside of the bone marrow [352]. Hepatic EMM is 

normal during fetal and early development [144, 150]; however, EMM in adult tissues is 

associated with pathological conditions. Hepatocyte apoptosis indicates liver injury and 

found significantly increased in patients with NASH [353]. High fat diets have also  been 

reported to increase the osmotic fragility of red blood cell (RBC) membranes resulting in 

decreased RBC counts and hemoglobin concentration [354].  

In the present study, we used an isocaloric, isolipidic liquid diet combined with pair feeding 

that allows for controlled dietary caloric intake and limited weight changes between 

groups. Using this model, we examined the effects of dietary ω-6 and ω-3FAs composition 

on hepatic pathobiology and report that dietary PUFA composition regulates hepatic 

steatosis, proliferation, apoptosis and EMM using a dietary model containing 
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comparatively lower fat calories as a percent of total relative to previously reported studies 

[350, 351].  
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4.3. Results 
 

4.3.1. Pair-feeding, food consumption and body weight 

 

During the initial 5-day ad libitum diet acclimation period (Fig. 13A), mice on the ω-6 diet 

consumed more feed than those in the ω-3-diet group (p<0.05). Therefore, when pair-

feeding was initiated on day 6, the average amount of ω-3 diet consumed was used as 

the baseline for the ω-6 diet (Fig. 13B). Studies of changes in body weight over time with 

the isocaloric and isolipidic diets using a repeated measures test revealed significant 

increases in weight in the mice (n=20/group) given the ω-6 diets (Fig. 13C).  In part due 

to the increased consumption of the ω-6 diet during a brief acclimation period a significant 

difference in body weight was observed between the groups on day 5 (Fig. 13D). Similarly, 

at the pair-feeding mid points (day 20, and day 40) and at autopsy on day 69 (Fig. 13D) 

significant differences in body weights were also observed.  Consistent with the higher 

body weights at autopsy (20 weeks), mice fed the ω-6 diet had significantly more 

abdominal fat (Fig. 13E) and abdominal fat weight relative to the body weight (Fig. 13F), 

as compared to ω-3 diet-fed mice. On gross examination of the livers from the ω-3 (Fig. 

13G) and ω-6 diet-fed mice (Fig. 13H), livers from ω-6 diet-fed mice were lighter in color 

(pink) and significantly smaller than those from the ω-3 diet-fed mice, which were red-

brown in color (Fig. 13H).  In both groups, liver weights (Fig. 13I) and liver body weight 

ratios (Fig. 13J) were significantly lower in mice fed the ω-6 diet.  
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Figure 13. Isocaloric and isolipidic diets, pair-fed model and their impact on body 

weight 

Mice were pair-fed omega- (ω-6) and omega-3 (ω-3) PUFA diets for 10 or 20 weeks. 

Experimental design for a pair-fed model (A). Mice were acclimatized to liquid diets by 

feeding ad libitum amounts for the first five days. Thereafter, the ω-6 diet group mice were 

pair-fed based on the diet consumed by the ω-3 mice on a cage basis on the preceding 

day. The average amount of diet consumed/day (B). Differences in percent changes in 

body weights between the pair-fed groups [n= 20] compared by a repeated measure test 

(C). Body weights before the start of the liquid diet [day 0], at the start of pair-feeding [day 

5], on day 20, and day 40, of pair feeding and before autopsy on [day 69] (n=20) (D). 

Comparison of abdominal adipose tissues between the groups (E and F) (n=3), based on 

abdominal fat weight (E), as well as, fat weight relative to body weight (%) at autopsy (F). 

Photographs of representative livers document differences in color and size from mice fed 

ω-3 (G) or ω-6 (H) diets. Comparison of liver weight (I) and liver weight relative to body 

weight (J) (n=3). * = p < 0.05 
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4.3.2. Effect of PUFA diet composition on the lipid profile of plasma and liver 

 

The lipid composition of the plasma and livers were analyzed following autopsy at 10 

weeks post dietary initiation (Table-7). These studies revealed an 8-fold higher level of AA 

(0.64 µg/µl) in the plasma of ω-6 fed mice. However, as the ω-6 diet contained no AA 

(C20:4); the AA is of a metabolic origin from the ω-6FA precursor, linoleic acid (C18:2), 

which is contained in both diets. Both of the diets and the plasma of mice on these diets 

had a comparable level of C18:2, but AA product:precursor ratio (C20:4/C18:2) was 5.8 

fold higher in the plasma of ω-6 diet-fed mice. Further, there was a 2.8-fold higher level of 

total ω-6 FAs in the plasma of ω-6 diet-fed mice compared to ω-3 diet-fed mice (p<0.05); 

even though both of the diets had comparable amounts of total ω-6 PUFAs. In contrast to 

ω-6 FA levels, the ω-3 PUFA, EPA was not detected in the plasma or livers of mice 

consuming the ω-6-diet. Similarly, levels of the ω-3FAs, DHA were 2.8-fold lower (0.05 

vs. 0.14 µg/µl) in the plasma of mice fed the ω-6 diet (p<0.05). There were also 1.9-fold 

and 2.4-fold increases in the level of linoleic acid and AA respectively in the liver, resulting 

in a significantly higher level of total ω-6 PUFA in livers of ω-6 diet-fed mice as compared 

to ω-3 diet-fed mice (p<0.05). However, the C20:4:C18:2 FA ratio was not significantly 

different between the livers of ω-6 versus ω-3 diet-fed mice. Consistent with the plasma 

EPA levels, EPA was not detected in the livers of mice fed the ω-6 diet and the DHA 

content was significantly (11-fold) lower (1.5 vs. 16.5 µg/mg), compared to mice fed the 

ω-3 diet (p<0.05). We note that the mono unsaturated fatty acid (MUFA) content was 

significantly higher in the liver, but not in plasma of mice fed the ω-6 diet. Table 2 also has 

an analysis of the FA composition of the fish oil used in the diet, which contained 83.2% 

of total FAs in the form of ω-3FA (from C20:5 and C22:6) resulting in a ω-6:ω-3FA ratio of 

0.7:1 in the ω-3 diet compared to 21:1 in the ω-6 diet. The ω-6: ω-3FA ratios of the plasma 

was similar to the dietary ratio.  
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Carbon 
chain 
length 

and 
double 
bonds 

Fatty Acid (FA) Name 

Concentration 

Diet (µg/µl) Plasma (µg/µl ± SEM) Liver (µg/mg ± SEM) 
 Fish 
Oil 

(µg/µl)  ω-3  ω-6  ω-3  ω-6  ω-3  ω-6 

14:0 Tetradecanoate 0.00 0.20 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 

16:0 Hexadecanoic 1.53 3.02 0.79 ± 0.08 0.79 ± 0.10 12.32 ± 4.12 15.83 ± 1.30 9.65 

16:1 9-Hexadecenoic  0.00 0.20 0.00 ± 0.00 0.01 ± 0.01 1.01 ± 0.29 1.42 ± 0.18 0.00 

18:0 Octadecanoic 0.28 0.76 0.57 ± 0.14 0.38 ± 0.01 5.18 ± 1.42 5.19 ± 0.21 0.00 

18:1 9-Octadecenoic 3.77 15.62 0.20 ± 0.01 0.35 ± 0.02 * 8.35 ± 0.85 42.87 ± 3.11 * 27.44 

18:2 cis-8,11-Octadecadienoic (Linoleic) (ω-6) 6.67 5.03 0.31 ± 0.01 0.44 ± 0.03 5.78 ± 0.62 11.22 ± 0.83 * 4.73 

18:3 
cis-9,12,15-Octadecatrienoic acid 

(Linolenic) (ω-3) 
0.14 0.24 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 

20:1 cis-13-Eicosenoic 0.70 0.00 0.01 ± 0.01 0.00 ± 0.00 0.10 ± 0.10 0.86 ± 0.05 * 26.99 

20:3 cis-7,10,13-Eicosatrienoic  0.00 0.00 0.00 ± 0.00 0.00 ± 0.00 0.69 ± 0.21 0.49 ± 0.04 0.00 

20:4 cis-5,8,11,14-Eicosatetraenoic (AA) (ω-6) 0.51 0.00 
0.08 ± 0.01 0.64 ± 0.03 * 2.13 ± 0.38 5.14 ± 0.20 * 

37.60 

20:5 
cis-5,8,11,14,17-Eicosapentaenoic (EPA) 

(ω-3)  
7.52 0.00 

0.19 ± 0.01 0.00 ± 0.00 * 5.58 ± 1.07 0.00 ± 0.00 * 
409.70 

22:1 13-Docosenoic acid 0.25 0.00 0.02 ± 0.02 0.00 ± 0.00 0.09 ± 0.09 0.00 ± 0.00 * 12.54 

22:5 
cis-4,7,10,13,16-Docosapentaenoic acid (ω-

3) 
0.26 0.00 0.00 ± 0.00 0.00 ± 0.00 2.22 ± 0.33 0.68 ± 0.08 * 17.97 

22:6 
cis-4,7,10,13,16,19-Docosahexaenoic 

(DHA) (ω-3) 
2.64 0.00 

0.14 ± 0.01 0.05 ± 0.01 * 16.55 ± 2.92 1.50 ± 0.06 * 
159.78 

  
Total omega 6 FA level 7.18 5.03 0.39 ± 0.01 1.08 ± 0.04 * 7.91 ± 0.73 16.36 ± 0.85 * 42.33 

  Total omega 3 FA level 10.56 0.24 0.33 ± 0.01 0.05 ± 0.01 * 24.35 ± 3.13 2.18 ± 0.10 * 587.45 

  Total MUFA level 4.72 15.82 0.23 ± 0.02 0.36 ± 0.02 * 9.55 ± 0.91 45.15 ± 3.12 * 66.97 

  Total SA level 1.81 3.98 1.37 ± 0.16 1.17 ± 0.10 17.50 ± 4.35 21.02 ± 1.32 9.65 

Total Fatty Acid Concentration (µg/mg or µg/uL) 24.27 25.07 2.32 ± 0.16 2.66 ± 0.11 60.00 ± 5.49 85.20 ± 3.49 706.40 

Ratio of total ω-6 FA to ω-3 FA (ω-6:ω-3) 0.7:1 21:01 1.2:1 21.6:1 * 0.32:1 7.5:1 *   
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Table 7. Fatty acid profiles of diets, liver, and plasma 

Sections of livers and plasma were collected from the mice fed respective diets for 10 

weeks. (n=5/group). The ready to use diets and fish oil were used for fatty acid (FA) 

analysis. FA profile was measured by gas chromatographic mass spectrophotometry (GC-

MS) analysis. The results were expressed as microgram of fatty acid per mg or ml of the 

sample.  
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4.3.3. Effect of dietary ω-3:ω-6 PUFA hepatic histopathology and steatosis  

 

Histopathologic analysis of H & E stained liver sections from mice fed the different diets 

for 10 weeks (Fig. 14A) revealed significant effects on hepatocyte steatosis. The livers 

from mice fed the ω-3 diet had occasional hepatocyte lipid microvacuoles; whereas mice 

on the ω-6 diet had an increase in macro- and micro-vesicular steatosis in their 

hepatocytes (Fig. 14A).  Steatosis was quantified by counting the ORO positive fat 

droplets that were about the size of a hepatic nucleus. There was a 7-fold increase in 

macrovesicular steatosis in mice fed the ω-6 diet, compared to the ω-3 diet-fed mice 

(p<0.05) (Fig. 14B and 14C).  Moreover, an increase in microvesicular steatosis was 

observed in the livers of ω-6 diet-fed mice (Fig. 14C). This suggested that the increase in 

the dietary hepatic ω-6:ω-3 ratio in mice receiving the ω-6 diet (Table 6) enhanced hepatic 

macro-steatosis, independent of total caloric consumption.  

Hepatic glycogen storage was assessed by the histological analysis of PAS (+/- diastase 

digestion) stained liver sections of mice fed the diets for 20 weeks (Fig. 15). The result 

showed that livers from mice fed the ω-3 diet had significant glycogen storage in 

hepatocytes around portal triads and central veins of hepatic lobules, which was absent 

in mice fed the ω-6 diet (Fig. 15A- 15C). The presence of glycogen deposits in PAS 

positive cells was confirmed by a comparison to a serial section that underwent glycogen 

digestion (Fig. 15C).  Thus, the results indicate that the dietary ω-6:ω-3FA ratio might 

modulate energy storage and metabolism pathways, such that increasing consumption of 

a diet with a high ω-6:ω-3FA ratio enhances hepatic fat storage whereas consumption of 

LC-ω-3FA reduces fat storage but enhances energy storage in the form of glycogen.  

Collectively, the increase in the dietary ω-6:ω-3FA ratio results in macrosteatosis, and  

decreased glycogen deposition in lobular hepatocytes. We also undertook a histological 

analysis of liver tissues from mice fed a chow control diet using H & E and ORO stained 
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sections (Fig. 17A-17C). The histological features of livers from chow controls were 

distinct from the mice receiving liquid diets and had intermediate levels of steatosis (more 

than the ω-3 group but less than the ω-6 group. Also, there were a few microgranulomas 

in the liver from chow fed mice, but the size, number and features of those immune cells 

were more distinct than what we reported as EMM in this study (Fig. 17B).  Thus, mice in 

a chow control group were not used in further analysis as their dietary composition had 

multiple differences from our experimental liquid diets including lipid types, percentages, 

protein and carbohydrate levels and calorie consumption.  

 The total WBC count of blood and liver was determined. There was no significant 

difference in the peripheral blood WBC count between the dietary groups, i.e.; 11.3 x 106 

+/- 1.1 x 106 and 9.3 x 106 +/- 1.0 x106 WBC cells per ml of blood in mice from ω-3 and ω-

6 diet groups respectively (n=20). In contrast, mice fed an ω-6 diet had a significant (10-

fold) increase in the number of WBC cells per gram of liver (7.9 x 106 +/- 1.3 x 106) 

compared to ω-3 diet-fed mice (0.8 x 106 +/- 0.5 x 106). We also evaluated hepatic 

inflammatory cell infiltration by H & E and anti-CD45 staining from mice receiving the diets 

for 10 and 20 weeks (Fig 16A-16G). The differentiated inflammatory cells were observed 

in cellular clusters composed of immature myeloid cells with variable size and nuclear 

morphology (Fig. 16A), supporting hepatic EMM. Mice given the ω-6 diet for 10 weeks 

had a significant (9-fold) increase in EMM foci (0.9+/-0.2 per 100x magnified field), 

compared to ω-3 diet-fed mice (Fig. 16A and 16B). Similarly, mice given the ω-6 diet for 

20 weeks had an inflammatory appearance, with a significantly higher number of EMM 

foci (2-fold) compared to ω-3 diet-fed mice (0.2+/-0.06 per 100x magnified field) (Fig. 16B). 

However, there was no significant difference in the number of EMM foci between the 10- 

or 20-week diet-fed groups (Fig. 16B). Further, the EMM foci in ω-6 fed mice were larger 

and located adjacent to the central veins, whereas the EMM foci in ω-3 diet-fed animals 
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were smaller and located randomly in the hepatic sinusoids (Fig. 16A). The presence of 

inflammatory cells (individually distributed or in clusters) was confirmed by staining the 

liver sections with the anti-CD45 antibody (Fig. 16C-16G). The ω-6 diet-fed mice had 

significantly higher numbers of individual CD45+ cells compared to the ω-3 diet-fed 

groups, in both the 10 and 20 weeks’ diet-fed studies (Fig. 16C & 16D). Morphologically, 

these CD45+ cells included both myeloid and lymphoid cells. In addition, ω-6 diet-fed mice 

had a significantly higher number of CD45+ inflammatory cell foci (6.8+/0.4) compared to 

ω-3 diet-fed mice (0.4+/-0.3 per 100x magnified field). The foci were approximately 3 times 

larger (23.2+/-2.4 cells/cluster) in the livers of ω-6 diet-fed mice compared to the ω-3 diet-

fed mice (8+/-5.3 cells/cluster) (Fig. 16E-16G). Similar results were observed in the livers 

of mice maintained on the diets for 20 weeks. Additionally, the number of inflammatory 

cells per EMM foci were significantly increased in the 20-week diet-fed mice compared to 

the 10-week mice, when studied using mice from both dietary groups. (Fig. 16F and 16G).   

Confirmation of the increase in hepatic hematopoietic progenitor (CD201+CD27+) cells 

[355] was obtained by flow analysis of isolated hepatic non-parenchymal cells and found 

as a 24.4+/-4.9% of CD45+ cells in ω-6 diet-fed mice versus 3.7+/-1 % of CD45+ cells  in 

ω-3 diet-fed mice were of progenitor phenotype respectively. The myeloid phenotypes of 

progenitor cells were further confirmed by CFU-GM analysis, which showed that ω-6 and 

ω-3 dietary groups had 14.9+/-1.1 and 9.4+/-2.1 CFU-GM colonies/100,000 cells plated 

respectively. 

 Since NF expression is associated with myelopoiesis, we examined the expression of 

NF protein in the livers of mice fed the diets for 10 weeks and found that livers from ω-

6 diet-fed mice had a significantly higher level of NF expression (Fig. 16H and Fig. 16I) 

(p<0.05, n=5), indicating inflammatory cell activation.  Collectively, the higher ω-6:ω-3FA 
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ratio in the diets appeared to be associated with inflammation and EMM in the hepatic 

microenvironment. 
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Figure 14. Differential effects of dietary PUFA on hepatic steatosis 

Hepatic steatosis analysis of livers by hematoxylin and eosin (H & E) staining (A). Oil Red 

O-stained liver sections analyzed for hepatic steatosis (B and C). Images were taken with 

magnification of 400x (A) and 1000x (B) (n=5) [*=p<0.05]. 
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Figure 15. Differential regulation of hepatic glycogen storage by dietary PUFA 

Liver sections stained with Periodic Acid-Schiff (PAS) showed glycogen-containing 

hepatocytes around the regions of central vein and portal area of hepatic lobules in mice 

fed ω-3 diet but absent in ω-6 diet group (A and B). The hepatic glycogen was digested 

using PAS-diastase staining (PAS-Digest) (C).  Images were taken with magnification of 

200x (A and C) and (n=5) [*=p<0.05].  
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Figure 16. Differential regulation of hepatic EMM by PUFA 

Livers of mice were compared for hepatic EMM by counting the number and size of EMM 

foci in 10 microscopic fields/sample by H & E staining (A) (n= 3 to10). Arrows indicate a 

focus of EMM. Comparison of EMM foci between 10 weeks and 20-week diet-fed mice of 

the dietary groups (B). Analysis of 100x magnified fields of CD45 stained liver sections for 

CD45+ single cells (C and D). Analysis of number and size of CD45+ cell clusters in dietary 

groups (E, F, and G). Images were taken at a magnification of 400x (A) and 100x (C and 

E). Hepatic NFB protein expression was significantly higher in the ω-6 as assessed 

based on Western blots (H and I) [*=p<0.05].  
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Figure 17. Hepatic histology and fat accumulation in chow fed mice liver 

Sections of liver from control mice fed chow diet. (A-B)  Hematoxylin & eosin stained liver 

sections at the magnification of (A) 200x and (B) 400x. (B) Cluster of immune cells in 

hepatic tissue. (C) Oil red O stained hepatic section showing fat droplets in hepatocytes 

at 1000x magnification.   
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4.3.4. Dietary ω-3:ω-6 PUFA regulation of hepatocyte proliferation, degeneration, 

and apoptosis 

We examined hepatocyte proliferation (Ki67) and apoptosis (TUNEL) by IHC using mice 

fed the experimental diets for 10 or 20 weeks. Mice fed the diet for ten weeks did not have 

a difference in hepatocyte proliferation (data not shown). However, mice fed the ω-6 diet 

for 20-weeks had a significantly lower number of proliferating hepatic nuclei (1.5-fold) as 

compared to ω-3 diet-fed animals (Fig. 18A and 18B). In contrast to hepatocyte 

proliferation, a 4-fold increase in the number of TUNEL positive hepatocyte nuclei was 

observed in the livers of mice fed the ω-6 diet for 20 weeks (Fig. 18C and 18D). When the 

number of TUNEL positive nuclei relative to total hepatocyte nuclei were compared, a 

significantly higher frequency of hepatocytes in the livers of ω-6 diet-fed mice were TUNEL 

positive (41%) as compared to 15% of the hepatocytes in the livers of ω-3 diet-fed mice 

(Fig. 18E). Collectively, these results suggest a potential mechanism for the decrease in 

liver weight in the ω-6 diet-fed animals.   

Additionally, morphological differences were observed in the bile ducts of ω-3 versus ω-6 

diet-fed mice although no differences were observed in RBC count and properties 

between the dietary groups (Fig. 19). 
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Figure 18. Dietary PUFA regulation of hepatocyte proliferation, and apoptosis 

The livers of mice fed ω-3 and ω-6 diets for 20 weeks were compared based on 

proliferation (Ki67) and apoptosis (TUNEL) by counting the number of positive cells per 

10 microscopic fields per sample (n=3). The number of proliferating hepatocytes observed 

are shown in A and B. The number of TUNEL+ (apoptotic) nuclei (C and D) and apoptotic 

nuclei relative to total nuclei (C and E) observed in are shown. Images were taken at a 

magnification of 100x (A) and 630x (C) respectively [*=p<0.05]. 
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Figure 19. Biliary histology and blood parameters 

(A) H & E stained sections of liver (400x) showing bile duct histology, comparative analysis 

of bile duct (B) diameter, (C) thickness of epithelial cell layer in bile duct and (D) bile duct 

diameter relative to are of the adjacent artery. Blood samples were collected from 

heparinized mice at autopsy from the mice fed the diets for 10 weeks and analyzed for (E) 

RBC count (F) hemoglobin level, (G) hematocrit % and (H) blood mean corpuscular 

volume  (MCV) [*=p<0.05].  
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4.4. Discussion 
 

In the present study, we compared the biological effects of feeding ω-3 versus ω-6 PUFA 

using Lieber-DeCarli, isocaloric liquid diets and a pair-fed model. During acclimatization, 

the dietary preference was for the ω-6 diet, which was consistent with our earlier 

observations. Thus, the ω-3 diet consumption was used as the base-line for pair feeding. 

In contrast to prior reports of pair-fed mice given isocaloric diets [356, 357], in our studies 

significant differences in body weight were observed between mice fed an isolipidic ω-3 

versus ω-6 diet. It is noted that in the referenced prior studies, diets differed in components 

other than PUFA and so are not directly comparable.  This is relevant as in the one 

published study, in which mice were pair fed, isocaloric and isolipidic diets differing in 

PUFA composition (safflower oil (ω-6) versus fish oil (ω-3)) mice on the safflower oil diet 

for nine months had a 31% increase in weight versus mice on the fish oil diet.[358] These 

observations support a need for pair-feeding to achieve an isocaloric diet due to dietary 

preferences by laboratory rodents, and a need for isolipidic diets to study PUFA regulation 

of body weight.  Further, despite providing isocaloric and isolipidic diets, we observed a 

significant difference in fat mass measured as abdominal fat in ω-6 diet-fed mice, 

suggesting differential metabolism between the two groups.  This is consistent with prior 

reports of PUFA regulation of dietary fat content and body fat deposition and distribution 

[359, 360]. In one clinical study, consumption of PUFA diets was reported to decrease 

visceral fat and increase lean muscle mass as compared to individuals receiving high 

saturated fat diets [359]. Among the subtypes of PUFA, ω-3 can limit hypertrophy of 

abdominal fat deposits [267] and reduce weight gain in pre-obese animals and humans 

by a reduction in visceral fat [361-364]. Potential mechanisms for the divergent effects of  

ω-3 and ω-6 FAs in adipose tissue biology include the regulation of adipogenesis [365], 
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lipid homeostasis [366], brain-gut-adipose tissue axis [367], and systemic 

inflammation,[368] suggesting that  lowering the dietary ω-6:ω-3 ratio might help control 

obesity [20]. The levels of LC-ω-3FAs used in this study was higher than the dose used in 

clinical study [369], because the current study was primarily designed to analyze the 

effects of a ω-6:ω-3 ratio of 1:1, which has been reviewed in literatures as the ω-6:ω-3 

ratio upon which humans evolved [25]. 

The FA composition of diets can modulate the composition of stored and structural lipids 

[370], including the FA profile of plasma and tissues [371, 372] In the present study, we 

observed a significant increase in total ω-6FA, AA, and a decrease in DHA, and an 

absence of EPA in the plasma of mice fed a ω-6-diet. These observations are in 

agreement with a previous report, in which rats were fed a diet with a 1:1 ratio of ω-6:ω-3 

FA resulting in a significantly higher levels of plasma EPA, DHA, and a lower level of AA, 

compared to the rats fed a diet with a 30:1 ratio of ω-6:ω-3 PUFA [371]. The results are 

also consistent with a clinical study in which the plasma FAs in humans were associated 

with their dietary FA composition [373]. 

Our results suggest that the plasma level of LC-ω-3FAs, such as EPA and DHA, reflect 

dietary intake. In contrast, plasma AA (C20:4) levels could only be explained by the 

elongation and desaturation of the ω-6 linoleic acid (C18:2) in mice given the ω-6 diet. 

Further, the ω-6 and ω-3FAs compete for incorporation into phospholipids and as 

substrates contributing to these differences [374]. In this study, the concentration of  total 

ω-6 PUFAs and linoleic acid (precursor to AA) did not differ between the experimental 

diets, although the AA: precursor  linoleic acid was 5.8-fold higher in the plasma of mice 

fed ω-6 diets. Thus, the decreased level of plasma AA in the ω-3 diet-fed mice is 

apparently regulated by dietary LC-ω-3FAs, as a modulator of AA biosynthesis. This 

observation is supported by reports that both EPA and DHA can reduce pro-inflammatory 
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cytokines [375]  and hepatic steatosis [376]. The observation of significantly higher MUFA 

level in mice fed ω-6 reflected the dietary composition of the ω-6 diet. Previous studies 

into the bioactivity of olive oil showed that an iso-energetic MUFA diet can reduce liver fat 

in diabetic patients [377], higher oxidation of MUFA in the liver of rats [378] and protects 

against experimental inflammation [379]. Thus, we posit that our observations of 

inflammatory signals in ω-6 diet-fed mice is primarily due to changes in dietary ω-6:ω-3 

or the absence of LC-ω-3FAs, rather than an increase in MUFA with the ω-6 diet.  In our 

studies, we evaluated DHA and EPA in the livers of mice fed ω-3 and ω-6 diets. In a 

previous report, a decrease in total hepatic ω-6FA and AA levels were observed in a 

mouse model of NAFLD, which was associated with the metabolic utilization of AA during 

chronic inflammation [380]. A Majority of NAFLD studies were based on diet induced 

obesity models including; over-consumption/hypercaloric diet compared to a control diet 

[381], ad-libitum feeding of a high saturated fat diet (>60% calories from fat) [351, 382] or 

a high fat Lieber-DeCarli diet (71% of energy from fat) compared to the Lieber-DeCarli 

control diet (35% fat, that we used herein) [383]. Thus, the role of PUFA composition, as 

opposed to obesity in the pathogenesis of “fatty liver” has been poorly evaluated. In these 

studies, we report an increase in macro-vesicular steatosis in ω-6 diet-fed mice, an 

observation consistent with previous clinical and animal model studies, which emphasized 

that a western diet-induced hepatic steatosis [382, 384]. However, unlike previous animal 

studies, we observed lower relative liver weights and higher steatosis in the ω-6 diet-fed 

mice [382], supporting a role for dietary PUFA composition on the hepatic 

microenvironment, independent of total caloric intake [385]. Most studies used high 

fat/high caloric /high saturated fat diets to induce hepatic steatosis and compared the 

results with liver from control mice fed a standard laboratory chow diet, which has ω-6:ω-

3 ratio of around 10:1 with variable dietary composition [386, 387]. The present study 

compared the results between two liquid diets differed in FA composition only. Further, an 
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increase in liver weights in diet induced NAFLD/NASH studies might be a consequences 

of severe steatosis along with induction of fibrosis in liver.  Thus, it is possible that feeding 

the moderately fat ω-6 diet for 20 weeks may be insufficient for the development of other 

NASH symptoms such as fibrosis, which might be responsible for increasing liver weight 

in steatosis studies using NAFLD/NASH model. In this study, the lobular hepatocytes from 

ω-6 diet mice lacked glycogen storage (Fig.15) which is supported by the significant 

increase in macrosteatosis in lobular and portal regions of the ω-6 mice (Fig. 14I). Hepatic 

steatosis and glycogen storage levels vary depending on the strain of mice and the 

percent of glycogen positive cells decrease with an increase in steatosis in high fat diet-

fed BALB/c mice [388]. Similarly, increased macrosteatosis in the livers of mice fed a high 

carbohydrate diet was associated with a decrease in glycogen storage, which recoverd by 

inclusion of ω-3FA in the diet [389]. The difference in hepatic glycogen storage might be 

due to specific regulatory roles of ω-6 and ω-3FA in metabolic pathways. [390] However, 

a comparison of hepatic glycogen content between moderately fat, isocaloric, isolipidic 

and pair-fed model has not been reported previously, suggesting a need for further studies 

to understand the metabolic regulation of the diets which might have modulated 

mechanisms of energy storage in the form of fat or glycogen.  In summary, the decreased 

glycogen content (Fig. 15), together with increased steatosis (Fig. 14), decreased 

hepatocyte proliferation and increased hepatocyte apoptosis (Fig. 18) might contribute to 

the lower hepatic weight of the ω-6 diet-fed mice observed in the current study.  

In these studies, we observed a significant increase in hepatic inflammatory cells in an 

absence of leukophilia in the ω-6 diet group suggesting that the outcome of higher number 

of inflammatory cells in the liver was independent of a systemic inflammatory response. 

Further, histological analysis documented a significant increase in the number and size of 

inflammatory cell foci, containing immature myeloid cells in the livers of mice fed a high 
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ω-6:ω-3 diet. The foci closely resembles hepatic EMH as defined by National Toxicological 

program [72] however, as majority of cells in the foci were early myeloid cells, likely 

myeloid progenitor cells with a lack of erythroid progenitor cells [as defined in EMH], we 

addressed the foci as EMM. We further confirmed the increase in hematopoietic 

progenitors in livers of the ω-6 diet-fed mice by flow analysis and CFU-GM counts. Unlike 

humans, mice have a smaller medullary space resulting in EMH during early development; 

however, our observation of a significant increase in number and size foci of EMM in 30 

weeks old mice fed an ω-6 diet compared to age matched ω-3 diet-fed mice cannot be 

considered as a normal developmental phenomenon and needs further evaluation. An 

increase in EMM foci in association with hepatic steatosis has not been reported 

previously; however, prior hepatic steatosis studies were based on a NASH model, which 

might have an infiltration of mature inflammatory cells, such that enhanced EMM was 

obscured by regional inflammation. Modulation of the hepatic microenvironment and the 

production of growth factors such as granulocyte-monocyte colony stimulating factor (GM-

CSF) by inflammatory cells may result in EMM [145]. Further, our observation of 

degenerating hepatocyte morphology with large lipid inclusions, higher numbers of 

apoptotic hepatocytes, and an increase in NF levels support an inflammatory cell role 

in the modulation of the hepatic microenvironment resulting in the mobilization of 

hematopoietic precursors leading to hepatic EMM in mice fed a high ω-6:ω-3 PUFA diet.  

Hepatocyte proliferation [391] maintains hepatic mass and in our studies we observed 

decreased  hepatocyte proliferation in the ω-6 diet-fed mice. However, this differs from a 

previous report of an increased hepatocyte proliferation in NAFLD hepatic steatosis [392]. 

The basis of this difference needs further evaluation, but likely contributes to the 

decreased liver size in the ω-6 diet-consuming mice.  Further, hepatocyte apoptosis is a 

prominent clinical feature of NASH and positively correlates with hepatic inflammation 
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[353]. Thus, the observation of increased apoptotic hepatocytes in livers of mice fed ω-6 

diet, steatosis and EMM supports a role of for dietary PUFA in the initiation of liver 

inflammation. 

The significant increase in bile duct diameters at comparable levels of the biliary tree and 

morphological alterations on the biliary epithelium in mice fed ω-3 versus ω-6 diet may be 

secondary to the changes in liver mass between the dietary groups (Fig. 19). However, 

additional mechanistic studies are needed to analyze a potential role for dietary PUFA on 

the biliary system.  

In summary, employing a pair fed, liquid diet with a lipid composition of 35% of dietary 

calories, the present study demonstrates that consuming a high ω-6:ω-3 PUFA diet 

regulates hepatic steatosis, EMM, glycogen deposition, and hepatocyte apoptosis. These 

results indicate that dietary LC-ω-3FAs suppresses steatosis and prevents the “first hit” 

mechanism of fatty liver development, and potentially lowers the risk of NAFLD and liver 

injury associated hepatic disorders. This may support a role for a ω-6:ω-3FA ratio, but not 

the average calories consumed from fat, (~35%)  in the initiation of the formation of a “fatty 

liver”. However, other attributes of metabolic changes due to hypercaloric consumption 

and obesity might promote progression to NAFLD and NASH. 

 

After evaluating the modulation of tissue microenvironments (MG and liver) by dietary 

PUFA composition, we extended our studies to understand how pre-modulated modulated 

tissue microenvironments by dietary PUFA regulate mammary tumor growth and 

metastasis. The finding from our studies on 4T1 mammary tumor bearing mice are 

discussed in the next chapter (Chapter 5).  
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Chapter 5: 

Long-chain Omega-3 Polyunsaturated Fatty Acids decrease 

Mammary Tumor Growth, Multiorgan Metastasis and Enhance 

Mouse Survival4 

 
 

5.1. Abstract 
 

Epidemiological studies show a reduced risk of B) in women consuming high levels of LC-

ω-3 FAs compared with women who consumed low levels. However, the regulatory and 

mechanistic roles of dietary ω-6 and LC-ω-3FAs on tumor progression, metastasis and 

survival are poorly understood. Female BALB/c mice (10-week old) were pair-fed with a 

diet containing ω-3 or an isocaloric, isolipidic ω-6 diet for 16 weeks prior to the orthotopic 

implantation of 4T1 mammary tumor cells.  Major outcomes studied included: mammary 

tumor growth, survival analysis, and metastases analyses in multiple organs including 

pulmonary, hepatic, bone, cardiac, renal, ovarian, and contralateral MG (CMG). The 

dietary regulation of the tumor microenvironment was evaluated in mice autopsied on day-

35 post tumor injection. In mice fed the ω-3 containing diet, there was a significant delay 

in tumor induction and prolonged survival relative to the ω-6 diet-fed group. The tumor 

size on day 35 post tumor injection in the ω-3 group was 50% smaller and the frequencies 

of pulmonary and bone metastases were significantly lower relative to the ω-6 group.  

Similarly, the incidence/frequencies and or size of cardiac, renal, ovarian metastases were 

significantly lower in mice fed the ω-3 diet.  The analyses of the tumor microenvironment 

                                                           
4 This chapter is derived from previously submitted original article: Saraswoti Khadge, Geoffrey 
M. Thiele, John Graham Sharp, Timothy R. McGuire, Lynell W. Klassen, and James E. Talmadge, 
"Long Chain Omega-3 Polyunsaturated Fatty Acids decrease Mammary Tumor Growth, 
Multiorgan Metastasis and Enhance Mouse Survival." Clinical and Experimental Metastasis, 
July 2018. 
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showed that tumors in the ω-3 group had significantly lower numbers of proliferating tumor 

cells (Ki67+)/high power field (HPF),  and higher numbers of apoptotic tumor cells 

(TUNEL+)/HPF, lower neo-vascularization (CD31+ vessels/HPF), infiltration by neutrophil 

elastase+ cells, and macrophages (F4/80+) relative to the tumors from the ω-6 group. 

Further, in tumors from the ω-3 diet-fed mice, T-cell infiltration was 102% higher resulting 

in a neutrophil to T-lymphocyte ratio (NLR) that was 76% lower (p<0.05).  Direct 

correlations were observed between NLR with tumor size and T-cell infiltration with the 

number of apoptotic tumor cells.  qRT-PCR analysis revealed that tumor IL10 mRNA 

levels were significantly higher (six-fold) in the tumors from mice fed the ω-3 diet and 

inversely correlated with the tumor size. Our data suggest that dietary LC-ω-3FAs 

modulates the mammary tumor microenvironment slowing tumor growth, and reducing 

metastases to both common and less preferential organs resulting in prolonged survival.  

The surrogate analyses undertaken support a mechanism of action by dietary LC-ω-3FAs 

that includes, but is not limited to decreased infiltration by myeloid cells (neutrophils and 

macrophages), an increase in CD3+ lymphocyte infiltration and IL10 associated anti-

inflammatory activity.  
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5.2. Introduction 
 

Breast cancer (BC) is one of the leading causes of cancer deaths of women in the United 

States [393]. However, there is a significant difference in BC incidence between 

populations consuming Western diets, with those, who consume an Asian diet, typically 

due to a higher intake of fish, supporting dietary PUFA composition as a risk factor for BC 

[394-397].  A typical Western diet contains higher levels of ω-6FAs relative to ω-3FAs, 

mainly LC-ω-3FAs [25]. The LC-ω-3FAs such as EPA and DHA are metabolized to 

bioactive lipid mediators important in inflammation resolution [398]. In contrast, ω-6FA 

metabolites such as AA are pro-inflammatory mediators and chronic production of AA has 

been associated with inflammation-associated morbidity including BC patients [329]. 

Thus, the ratio of dietary ω-3 and ω-6 FA has a critical role in determining the inflammatory 

status of tissue microenvironments, which can modulate tumor growth, metastasis and the 

efficacy of therapeutic treatments [399, 400]. 

In murine studies, dietary LC-ω-3FAs early in life results in reduced incidences and growth 

of mammary tumors compared to the mice fed diets high in ω-6FA [118, 401]. Further, 

feeding LC-ω-3FA enriched diets in adult life results in significantly lower MG ductal 

density, proliferation of epithelial cells in the MG, and adipose tissue inflammation, all of 

which are associated with reduced risks of BC [110, 402, 403].  However, dietary LC-ω-

3FAs regulation of mammary tumor microenvironments, tumor progression, metastasis 

and survival, has been little studied.  

Despite recent advances in the development of molecularly targeted therapies, most 

deaths due to cancer result from the progressive growth of therapy-resistant metastases 

[234]. Metastasis is regarded as a highly inefficient process so that less than 0.01% of 

circulating tumor cells eventually succeed in forming secondary tumor growths [404]. The 
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growth of a metastatic lesion in a specific organ is determined by the intrinsic properties 

of the tumor cells (seed) and the supportive role of the microenvironment of the target 

organ (soil) so that some cancer cells grow preferentially in one organ while not in other 

organs [227, 230]. Most invasive BC cells preferentially metastasize to bone, lungs, liver 

and brain [230] while ovarian [405], cardiac [406] and renal [407] metastases have been 

less frequently observed. Similarly, 4T1 mammary tumor cells predominantly metastasize 

to lungs in the spontaneous metastasis model whereas metastases to liver, heart, kidneys 

and bone have been less frequently reported, and there are no published data on ovarian 

metastases by 4T1 cells [408-411]. In animal models and in-vitro studies, ω-3 and ω-6FA 

have been shown to modulate tissue microenvironments of MG, liver, bone, ovaries, heart 

and kidneys [110, 266, 412-416]. However, the role of the modulated microenvironments 

by pre-exposure to PUFA in the regulation of metastasis to those organs has not been 

studied. Further, the role of dietary PUFA composition in mammary tumor 

microenvironments such as inflammation, neo-vascularization and apoptosis have been 

little studied.  

In this study, we hypothesize, that LC-ω-3FA diets can suppress mammary tumor cell 

proliferation and metastasis by modulating tumor and metastatic microenvironments. By 

pair-feeding isocaloric and isolipidic diets in an orthotopic model of mammary tumor, we 

uniquely analyzed the effects of dietary LC-ω-3FA on tumor microenvironments, 

measured as tumor cell proliferation and  apoptosis, neo-vascularization and infiltrating 

leukocytes with pro-and anti-tumor inflammatory activities. Further, with the injection of 

low numbers of 4T1 cells, we established a tumor model capable of assessing the 

differential regulation of dietary PUFA on spontaneous metastases to different organs 

including bone, heart, kidneys, ovaries and CMG, which have not previously been 

reported. 
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5.3. Results 
 

5.3.1. Dietary LC-ω-3FA regulate mammary tumor induction, growth and mouse 

survival 

 

Mice (n=20/group) were fed the experimental diets for 10-16 weeks before use in two 

independent tumor experiments. The Fig. 20 shows the data from pair-fed groups of mice 

in a single experiment (n=20/group). There was no difference in the average dietary 

consumption between the groups during the non-tumor bearing (NTB) period; (Fig. 20A) 

but the dietary consumption levels significantly decreased in the ω-6 group during the 

tumor bearing (TB) phase of the experiments (Fig.20B).  

 

The effects of dietary LC-ω-3FAs on the regulation of mammary tumor induction, growth 

and survival from pooled data of two independent studies are shown in (Fig. 21). Out of n 

= 40 mice/group used in the study, 100% (40/40) of the mice from the ω-6 group and 95% 

(38/40) of mice from the ω-3 group developed palpable tumors within the experimental 

period (89 days). Among the mice which developed tumors, the median time to a palpable 

tumor were significantly delayed for the ω-3 group (10 days, range: 6 - 32 days) compared 

to a median of 7 days, range: 5 - 22 days for the ω-6 diet group (Fig. 21A). Similarly, mice 

fed the ω-3 diet had a significantly slower mammary tumor growth compared to the ω-6 

diet-fed mice (Fig. 21B). These data are supported by a 50.2% smaller tumor volume 

(446.3 ± 52.3 mm3), and 48.8% lower tumor weight (0.6 ± 0.1 g) in mice fed the ω-3 diet 

compared to the tumor volume (888.5 ± 115.2 mm3), and weight (1.2 ± 0.2 g) in the mice 

fed the ω-6 diet on the day-35 post 4T1-tumor injection autopsy (n=20/group, p<0.05) (Fig. 

21C-21D). The body weights of the mice were evaluated at different times during the 

experiment to analyze the effects of dietary PUFA composition on body mass, before and 

during tumor growth (Fig. 21E). There was no difference in body weights when the 
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experimental diets were started at the age of 10 weeks. However, after feeding the diets 

for 16 weeks, mice given the ω-3 diet had significantly lower body weights compared to 

the mice on ω-6 diet, resulting in a significant difference in the body weights on the day of 

tumor injection. When the tumors are palpable, changes in body weights are influenced 

by multiple factors in addition to diet, including tumor growth and weight, and tumor-

associated metabolic changes (cachexia). Thus, we analyzed the body weights at autopsy 

(day 35 post tumor injection Fig. 21E(c)) and after subtracting the weight of the tumor on 

that day (fig. 21E (d)). Both dietary groups of mice lost significant body weight by the day 

of autopsy compared to their weights at tumor injection. The ω-3 diet mice had significantly 

lower body weights (with or without tumor) on day 35 post tumor injection; although, the 

% change in body weights (-tumor weights) relative to their weights on tumor injection day 

were not different between the groups (Fig. 21E(e)).  

Among the mice used in the study, 20/group that were pooled from two studies were 

autopsied on day 35 post injection and the extent and sites of metastases assessed and 

the survival of the remaining 20 mice/group was monitored. During the study period of 89 

days, two mice from the ω-3 group did not develop tumors, and one mouse had a palpable 

tumor, which did not grow to a measurable size by 89 days post tumor injection, when the 

study terminated. The survival analysis showed that a mice fed the LC-ω-3FA diet for 16 

weeks of adult life, prior to tumor challenge,  significantly prolonged overall survival (a 

median survival time (MST) of 46.5 days) compared to the MST of 35.5 days for the ω-6 

diet-fed mouse group (p<0.05) (Fig. 21F).  
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Figure 20. Dietary consumption in pair-fed model 

Dietary consumption levels in a single study were presented. Experimental diets were 

started in mice (n=20/group) at the age of 10 weeks. Ad libitum amounts of diets were 

provided for first 5 days of the experiment. Thereafter, mice on an ω-6 diet were pair-fed 

depending on the average amount consumed by the mice on an ω-3 diet. (A) Diet 

consumption levels during non-tumor-bearing (NTB) phase. (B) Diet consumption levels 

after injection of 4T1 tumor.  
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Figure 21. Dietary PUFA regulation of 4T1 tumor induction, growth and survival. 

Mice were fed an isocaloric, isolipidic pair fed ω-3 (W3 in figure) or ω-6 (W6 in figure) diet 

for 10 weeks prior to orthotopic injection of 4T1 cells in left rear mammary gland (MG). 

Pooled data from two experiments is shown and analyzed.  (A) Graph is a Kaplan-Meier 

plot of the time to development of a palpable tumor (log-rank test). (B) Longitudinal 

changes in tumor volume (repeated measures test).  (C) Tumor volume and (D) tumor 

weights were compared from mice autopsied on day 35 post-tumor injection. Horizontal 

line represents median values and Mann-Whitney test was used to analyze the difference 

between the dietary groups. (E) Body weights of the mice were compared at key study 

landmarks: body weights at the start of the experimental diets, at the time of tumor 

injection, at autopsy on day-35 post tumor injection, host weight at autopsy (body weight 

minus tumor weight) and percent body weight loss at autopsy relative to the day of tumor 

injection. $ and # indicate p<0.05 for the change in host body weight at autopsy in ω-3 

and ω-6 group respectively compared to the respective weights on tumor injection day (t-

test).  (F) Kaplan-Meier survival plot of mice on ω-3 and ω-6 diets (n=20/group) (log-rank 

test). *p<0.05 compared to mice fed the ω-6 diet.  
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5.3.2. Effect of dietary PUFA in 4T1 tumor MET to lung, liver and bone 

 

Metastasis analysis was performed on day 35 on autopsied mice from two independent 

experiments (n=10/group/experiment). The extent of metastasis was determined by 

counting overt metastases  on the organ surfaces [417] and by evaluating the weights of 

organs autopsied on the same day. Further, smaller and deep tissue metastases were 

evaluated by analyzing histologically-observed metastases (HO-met in figures) in H & E 

stained tissue sections. Among the organs investigated, the lungs had the highest number 

of metastases in both dietary groups and metastases were detected in all animals (Table 

7). However, the ω-3 diet group mice had a 64% lower number of pulmonary overt-

metastases (median=28; range: 2 - 187) compared to the ω-6 group (Median = 78; range: 

8 - 312) (p<0.05) (Fig. 22B). This observation was supported by the lower lung weights in 

mice fed the ω-3 diet that were 36% lighter (median = 0.27g; range: 0.16 – 0.74g) relative 

to the lungs of the ω-6 fed group (median = 0.47g; range: 0.16 – 0.96g) (p<0.05) (Fig. 

22C). Histopathological analysis of lung metastases showed that the majority of metastatic 

pulmonary foci were localized superficially on the lungs while metastatic foci in the lungs 

from mice given the ω-6 diet were localized throughout the pulmonary parenchyma (Fig. 

22A). An analysis of hepatic metastases (Table 8) (Fig. 22D-22F) showed that there was 

a 47% lower incidence of mice with hepatic overt-metastases in the mice that received the 

ω-3 diet (8/20 mice) compared to the incidence in the ω-6 group (15/20 mice) (p=0.05).  

However, there were no significant differences in the median number of hepatic overt-

metastases nor the weights of livers between the dietary groups (Fig. 22E-22F). 

Histopathological analysis showed that the livers from ω-3 diet-fed mice had fewer and 

smaller metastatic foci deeper in the hepatic parenchymal tissue compared to mice in the 

ω-6 fed group (Fig. 22D). There were individual tumor cells and clusters of few tumor cells 

in the livers from the ω-3 fed group, while the histologically observed metastases in the 
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livers from the ω-6 group were macrometastases (≥2mm in size). Quantitative analysis of 

the hepatic metastases size was challenging due to extensive extramedullary 

myelopoiesis (EMM) within the metastatic foci, preventing reliable analyses of the 

metastasis area. The tumor weights were directly correlated with the weights of lungs, the 

number of overt metastases in lungs and the weights of  and liver were directly correlated 

with the tumor weights suggesting a direct relationship to tumor growth with 

metastasesMETs to these organs (Fig. 23A -23C).   

 

The effects of dietary PUFA on the spleen was evaluated based on weights and 

histological analyses. There were significantly lower spleen weights in the ω-3 dietary 

groups compared to the ω-6 group (Fig. 22H). Further, the spleen weights directly 

correlated with tumor weights in both groups of mice (Fig.22I). Histological analyses of 

spleen sections showed splenomegaly was predominantly due to increases in EMM in the 

sub-capsular and red pulp areas, as previously reported [418]. Individual tumor cells 

and/or clusters of a few tumor cells were observed in all spleens independent of the dietary 

group (Fig. 22G). However, the incidence of distinct histologically observed metastasis 

was non-significantly (33%) lower in the spleens from ω-3 diet-fed mice (4/10) compared 

to the ω-6 group (6/10) (p=0.6).  

 

Bone metastases by 4T1 tumors have been rarely reported, with the exception of sub-

clone 4T1.2 tumor cells which were selected for their propensity to develop bone 

metastases [419].  In the current study, we report dietary PUFA regulation of bone 

metastases in this 4T1 orthotopic primary tumor bearing mice model. The presence of 

osseous metastases was suggested by the observation of hind-limb paralysis in the ω-6 

group of mice.  We analyzed bone metastasis in the longitudinal sections of femurs and 

tibias from both hind limbs of mice autopsied on day 35 post tumor injection to evaluate 
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the effects of dietary PUFAs on bone metastases (n=10 mice/group). Mice fed the ω-3 

diet had an 80% lower incidence of bone metastasis in at least one leg (1/10 mice) relative 

to the incidence in the ω-6 group (5/10 mice) (p=0.1). Similarly, (3/10) mice on ω-6 diet 

had metastases in the femur and/or tibias from both hind limbs, which was not observed 

in mice fed the ω-3 diet (0/10) (p=0.08) (Table-8). Further, there were significantly fewer 

(median=0; range: 0-1)  and smaller (median=0; range: 0-0.099mm2)  HO-met/s per 

femurs/tibias in ω-3 diet-fed mice, compared to the retrospective analyses of number 

(median=0; range: 0-6) and size (median=0; size: 0-0.346 mm2) of metastases in the ω-6 

diet-fed mice (Fig. 22J-22K). Histopathological analyses showed the larger metastases of 

the ω-6 group were localized to the femur metaphyses, specifically around the growth 

plate, while smaller metastases were present throughout the distal and proximal 

epiphyses and diaphyses of the femurs and epiphyses of the tibias. The only metastasis 

detected in an ω-3 diet-fed mouse was localized in the femur diaphysis medullary space 

(Fig. 22J). Despite variations in the location of metastases, all of the detected metastases 

in long bones were adjacent to trabecular bone, indicating potential interactions of tumor 

cells and sites of active hematopoiesis/osteogenesis in bone microenvironments.  
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      Metastases Incidence   

 Organ 
mice/ 
group 

(n) 

Mice with overt-met 
[n (%)] mice/group 

(n) 

Mice with HO-
met [n (%)] 

  W3 W6 W3 W6 

Lung  20 20(100%) 20(100%) n/a n/a n/a 

Liver  20 8 (40%) 15 (75%) n/a n/a n/a 

heart 20 2 (10%)* 12 (60%) 10 
2 

(20%) 
6 

(60%) 

 Kidney (at least 
one) 

20 2 (10%)* 15 (75%) 10 
1 

(10%) 
6 

(60%) 

Kidneys (Both) 20 2 (10%) 7 (35%) 10 0 (0%) 
2 

(20%) 

Ovary (at least 
one) 

  n/a n/a 10 
1 

(10%)* 
9 

(90%) 

Ovary (both)   n/a n/a 10 
0 

(0%)* 
6 

(60%) 

Bone (one leg) 
  

n/a n/a 10 
1 

(10%) 
5 

(50%) 

Bone (both leg) 
  

n/a n/a 10 0 (0%) 
3 

(30%) 
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Table 8. Dietary LC-ω-3FA regulation of incidences of metastasis 

 

Mice autopsied on day 35 post tumor injection were analyzed for incidence of overt 

metastases (overt-met) (n=20 mice/group) and histologically observed metastases (HO-

met) (n=10 mice/group). The results are presented as number of mice with at least one 

metastasis in the indicated organ (n) and percent representation per total animal analyzed 

in the group (%). *p<0.05 ω-3 versus ω-6 diet-fed mice. Fisher exact test for the difference 

in proportions was used to analyze statistical difference. n/a indicates either the analysis 

was not applicable or not done. 
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Figure 22. Dietary PUFA regulation of 4T1 metastasis to the lungs, liver and femur. 

Mice from two experiments were autopsied on day 35 post tumor injection and analyzed 

for overt metastases (overt-met) (n=20/group) and histologically observed metastases 

(HO-met) (n=10mice/group). (A) Hematoxylin and eosin (H & E) stained section of lungs 

with HO-met. (B) Median number of overt-mets and (C) median lung weights at autopsy.  

(D) H & E liver sections with HO-met. (E) Median number of overt-met on the liver surface 

and (F) median liver weights at autopsy. (G) H & E stained sections from spleens showing 

foci of myeloid cells. (H) Spleen weights. (I) Linear regression analysis of tumor weight. 

(J) H & E stained sections of decalcified femurs that had HO-met. (K) One mouse from 

the ω-3 group has one smaller HO-met while 5 mice in the ω-6 group had small to large 

sized HO-met. Images (A), (D), (J) and (K) were taken at 100x. Images of G and J were 

taken at 25x and 400x magnification respectively. *p<0.05 compared to the mice fed ω-6 

diet (Mann-Whitney test). 
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Figure 23. Influence of tumor weight on lung and liver weight 

 

Mice autopsied on day 35 post tumor injection (n=20) were evaluated for lung, liver and 

tumor weight. Relationship of tumor weights with (A) lung weights and (B) lung overt 

metastases counts and (C) liver weights at autopsy. Pearson’s correlation analysis was 

performed.   
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5.3.3. Effect of dietary PUFA in 4T1 tumor metastasis to heart, kidneys and ovaries 

 

Heart, kidneys, and ovaries are not primary targets of 4T1 mammary tumor metastases 

[409, 420, 421] and therefore are infrequently reported. In this study, we observed an 83% 

lower incidence of cardiac metastases in mice receiving dietary LC-ω-3FAs (2/20 mice) 

compared to the incidence in mice on the ω-6 diet (12/20 mice) (p<0.05) (Table-8). Mice 

from the ω-3 group with cardiac metastases had a single nodule of overtmetastases 

(median=0; range: 0-1) on the pericardium, which was a significantly lower number 

compared to the frequency found on the pericardium from the mice fed ω-6 diet 

(median=1; range:0-5). Histological analysis of myocardial metastases deeper in the 

cardiac tissue was performed by evaluating the frequency and size of histologically 

observed metastases per cross section  of cardiac tissue (n=10/group) (Fig. 24A-24B). 

The results showed the incidence of cardiac histologically observed metastasis in cardiac 

tissue was 67% lower in mice fed the ω-3 diet (2/10) relative to the incidence in the ω-6 

group (6/10) (p=0.16). Both of the mice from the ω-3 group with myocardial metastases 

had a single histologically observed metastasis (median=0; range: 0-1) while mice on the 

ω-6 diet had a median=1; range of 0-5 metastatic foci  in heart tissue (p=0.07). The median 

size of cardiac histologically observed metastatic foci in the ω-3 group was significantly 

lower (median=0; range: 0-1.730) mm2 compared to metastases size in ω-6 group 

(median= 0.491; range: 0-7.698) mm2 (p<0.05). The cardiac metastases in mice fed the 

ω-3 mice were limited to the pericardium; while the metastatic foci were present in 

pericardium, as well as deeper in the cardiac tissue of the mice from the ω-6 group.   

 

Renal metastases were analyzed by counting the number of overt metastases nodules on 

the renal membrane, histologically observed metastases per renal cross-section and by 
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determining the size of the histologically observed metastases (Fig. 24C-24D). We 

analyzed metastases in both kidneys of the mice and expressed our data as the incidence 

of metastases in one kidney or both kidneys per mouse. The incidence of having 

overtmetastases in at least one kidney of the mice fed ω-3 diet (2/20) was significantly 

(87%) lower relative to the incidence in the ω-6 group (15/20). Similarly, there was a 72% 

lower incidence of overtmetastases in both kidneys of mice fed ω-3 diet (2/20) relative to 

the ω-6 group (7/20) (p=0.4) (Table-7).  Further, the median number of overt metastases 

per kidney for the ω-3 group (median: 0 range: 0-2) was significantly lower from that of 

the ω-6 group (median:1, range:0-4). Histological analysis (Fig. 24C - 24D) confirmed that 

the incidence of histologically observed metastasis in at least one kidney was 83% lower 

in the mice fed ω-3 diet (1/10 mice) relative to the ω-6 group (6/10 mice). None of mice 

from the ω-3 group had histologically observed metastases on both kidneys in the ω-3 

group; while, (2/10) of mice on the ω-6 diet had metastasis in the histological sections 

from  in both kidneys. The single metastatic lesion  found in the kidney of a mouse from 

the ω-3 diet was found attached to the renal peri-capsular area, but did not invade into the 

renal parenchyma. In contrast, amongst the 20 metastatic lesions analyzed in the kidneys 

from mice fed the ω-6 diet, 35% were located in the peri-capsular fat and attached to the 

renal capsule, 45% were located on the adrenal gland and 20% were located in the renal 

parenchyma.  The median size of histologically observed renal metastases in a ω-3 diet-

fed mice (median=0; range:0-0.222 mm2 ) was significantly lower compared to the median 

size from kidney of ω-6 diet-fed mice (median=0; range: 0-3.554 mm2). Overall, the results 

suggest that the incidence of kidney metastases (both overt and histologically observed) 

were significantly lower in the mice fed the ω-3 diet compared to the mice fed the ω-6 diet.  

 

Representative images of an ovarian cross-section with histologically observed 

metastases and variations in their size between the dietary groups are presented in (Fig. 
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24E-24F) (n=10/group).  Among the ovarian cross-sections examined, the ovaries with 

intact capsule, cortex, medulla and follicles were included in the quantitative analysis of 

histologically observed metastases. The incidence of having metastasis in at least one 

ovary was significantly lower (89%) in mice fed ω-3 diet (1/10 mice) relative to the 

incidence in the ω-6 diet-fed group (8/9 mice). Similarly, in the ω-3 diet-fed group, none 

of mice had metastasis in both ovaries (0/9 mice), while 86% (6/7mice) had metastasis in 

both ovaries in mice on the ω-6 diet. There was significantly fewer number of metastatic 

lesions met (median=0; range: 0-3), and the lesions  were significantly smaller in size 

(median=0; range: 0 - 0.010 mm2) in the mice fed the ω-3 diet compared to the frequency 

(median=3; range: 0-8), and size (median= 0.088; range: 0 - 0.939 mm2) of  ovarian 

metastases in mice fed the ω-6 diet. Collectively, these results suggested that mice on the 

ω-3 diet had a significantly lower incidence/frequency and smaller ovarian metastases 

compared to the respective observations in the mice fed the ω-6 diet. 
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Figure 24. Dietary PUFA regulation of 4T1 metastasis to the heart, kidneys and 
ovaries. 

 

Mice (n=10/group) autopsied on day 35 post tumor injection were analyzed for 

histologically observed metastases (HO-met). (A) Hematoxylin & eosin (H & E) stained 

cardiac cross section showing myocardial HO-met. (B) Two of the ten mice fed the ω-3 

diet had small cardiac HO-met and six of the ten mice on the ω-6 diet had larger HO-met. 

(C) H & E stained renal cross-sections showing HO-met in each dietary group. (D) One of 

the ten mice fed the ω-3 diet had one small renal HO-met in one kidney, while six of the 

ten mice on the ω-6 diet had larger HO-met. (E) H & E stained ovarian cross-sections 

showing HO-met in each dietary group. (F) One of the ten mice fed the ω-3 diet had small 

ovarian HO-met, while eight of the nine mice on the ω-6 diet had larger HO-met. Scale 

bars in images (A), (C) and (E) represent 200 µm length. Horizontal line in (B), (D) and (F) 

represents median. *p<0.05 mice fed ω-3 versus ω-6 diet.  
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5.3.4. Metastases in the contralateral mammary gland 

 

The fifth left MG was injected with tumor cells and the fourth right MG was assessed for 

the presence of metastasis in CMG that is distant to the primary tumor.  Out of n=10 

mice/group in which metastases were analyzed histologically in CMGs, metastases were 

observed in three mice in the ω-3 group (range: 0-1 /CMG) and four mice in ω-6 group 

(range 0-6 /CMG) respectively (p=0.4). In addition to studies into metastases to the CMG, 

we also examined metastases to the associated MG lymph node (Fig. 25A - 25B). Among 

the analyzed lymph nodes in the CMG sections, metastases were observed in 100% of 

lymph nodes from both dietary groups. We did not find any lymph node in the tumor 

injected MGs, which might be due to the aggressive growth of the tumor throughout the 

MG.  

 

In a histological analysis, tumor cell morphology of the CMG metastases from the ω-6 diet 

appeared more proliferative, compared to metastases in CMGs from ω-3 mice, an 

observation confirmed by Ki67 staining. In the Ki67 IHC studies, the  frequency of 

proliferating tumor cells in the CMGs from ω-3 diet-fed mice were 74% lower compared to 

tumor cells from the CMG from the ω-6 group (n=3, p<0.05) (Fig. 25C-25D). In addition to 

the CMG metastases, the mammary ducts in the CMG from ω-6 fed mice had a 

significantly higher number of proliferating cells (Ki67+), which was rarely observed in the 

mammary ducts from the ω-3 group. Our analysis of 10 fields/sample for n=10 mice/group 

showed that ω-3 diet-fedmice had 97% fewer proliferating cells in the ductal epithelial 

layer (Fig. 25E-25F) relative to mice on the ω-6 diets (p<0.05). We previously showed that 

NTB mice on the ω-3 diet had thinner epithelia, ductal stroma, and fewer proliferating 

epithelial cells and macrophages in adipose tissue of MFPs compared to mice in the ω-6 

fed group [110]. The current analysis of CMGs from TB mice support these previous 
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observations; but the extent of effects may be influenced by the presence of the primary 

tumor. In the current study, the 4T1 TB mice fed the ω-3 diet had 59% fewer F4/80+ 

macrophages in the periductal area and 52% fewer in the adipose tissues of the CMG, 

compared to the respective analysis in CMG from TB mice fed ω-6 diet (n=10, p<0.05) 

(Fig. 25G-25J). The infiltrating macrophages in the CMG from 4T1 TB mice were 

increased (data not shown) and appeared to be larger and morphologically activated, with 

multiple cytoplasmic granules, compared to those observed in the MGs from NTB mice 

independent of the dietary group (Fig. 26A-26B). These results suggest, dietary PUFA 

might influence the number of infiltrating macrophages in both NTB MGs and TB CMGs 

but the presence of primary tumor further enhance the number and activity of infiltrating 

macrophages. Additionally, individual tumor cells were observed around the ducts in 

association with an increased number of infiltrating macrophages, notably in the CMGs 

from the ω-6 group. Collectively, our data document that prior exposure to dietary PUFAs 

modulate the CMGs microenvironments to be tumor promoting or suppressing, depending 

on the type of PUFA, and might further regulate the proliferation of tumor cells in the CMG 

metastases.    
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Figure 25. Dietary PUFA regulation of contralateral mammary gland metastasis. 

 

Mice (n=10/group) autopsied on day-35 post tumor injection were analyzed for 

histologically observed metastases (HO-met) in contralateral mammary gland (CMG).  (A) 

H & E stained CMG sections showing tumor HO-met arrested in the CMG (B). Incidences 

of HO-met in the CMG lymph node (LN) and the CMGs. Note, that a CMG LN was 

sectioned in only six of the ten CMG.  (C) Proliferating tumor cells in CMG HO-met as 

shown by Ki67 staining. (D) Quantitative analysis of proliferating tumor cell frequency in 

the HO-met of the CMGs. (E) Ki67 staining for proliferating cells in the ductal wall of CMGs 

and (F) their frequency. (G) F4/80+ macrophages in the ductal wall of CMGs and (H) their 

frequency. (I and J) F4/80+ macrophages in adipose tissue of CMGs. Images of (A) were 

taken at 100x and those of (C), (E), (G) and (I) were taken at 200x. *p<0.05 mice fed ω-3 

versus ω-6 diet and were analyzed using t-test. 
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Figure 26. Differential morphology of F 4/80+ macrophages in MGs from NTB and 
TB mice 

Mammary glands (MGs) from NTB mice were collected after feeding the diets for 16 

weeks. Contralateral MGs were collected from mice autopsied on day 35 post tumor 

injection. The morphological differences of F 4/80+ macrophages were shown in (A) MGs 

from NTB mice and (B) CMGs for TB mice from the each of dietary group. Arrows showing 

F 4/80+ macrophages. 
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5.3.5. Dietary PUFA regulation of mammary tumor cell proliferation, apoptosis and 

neo-vascularization 

 

 

Mammary tumors from mice (n=10 mice/group) were collected on day 35 post tumor 

injection for the analysis of dietary PUFA regulation of the tumor microenvironment. We 

obtained representative CS from these tumors containing oxic, hypoxic and necrotic tumor 

zones. The sub-capsular, oxic areas of tumors were used for all IHC evaluations. Our data 

showed that a diet high in LC-ω-3FA,  fed for 16 weeks, prior to tumor challenge decreased 

the number of proliferating (Ki67+) primary tumor cells by 44% (49 ± 7 cells/HPF)  

compared to the tumors from the mice fed the ω-6 diet (87 ± 7 cells/HPF) (p<0.05) (Fig. 

27A and 27B). In contrast, the tumors in the ω-3 fed mice had a 50% higher frequency of 

apoptotic  tumor cells (8 ± 1 cells/HPF) relative to the tumors from the mice fed ω-6 diet 

(4 ± 1 cells/HPF) (p<0.05) (Fig. 27C-27D).  

PUFA regulation of intra-tumoral neo-vascularization was also evaluated as CD31+ 

vessels in oxic areas of the tumors. These studies showed that mice fed an ω-3 diet had 

34% fewer neo-vascular vessels (14 ± 1 vessels/HPF) relative to the counts in the ω-6 

diet-fed mice (22 ± 2 vessels/HPF) (p<0.05) (Fig. 27E-27F). Morphologically, the vessels 

in the tumors from the ω-3 group were smaller and of uniform size; while the vessels in ω-

6 fed mice were larger, connecting with an irregular structure. The number of CD31+ 

vessels, and the number of proliferating tumor cells were positively correlated with the size 

of the tumors, while an inverse correlation was observed between the number of apoptotic 

cells in the tumors and the tumor size (Fig. 27G-27I). We note that the tumor sizes of the 

mice on ω-3 diet were significantly smaller relative to tumors of mice on the ω-6 diets (Fig. 

21C-21D).  Further, a direct correlation was found between the CD31+ vessels and the 

number of F4/80+ cells in tumors (Fig. 27J) indicating a potential role of tumor infiltrating 

macrophages in enhancing neo-vascularization.  
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Figure 27. Dietary PUFA regulation of 4T1 tumor proliferation, apoptosis and neo-
vascularization. 

 

Mice (n=10/group) were autopsied on day 35 post tumor injection and well oxygenated, 

peripheral tumor sections analyzed by immunohistochemistry (IHC). (A) Representative 

images of tumor tissue stained with Ki67 staining. (B) Frequency of proliferating tumor 

cells. (C) Tumor tissue showing TUNEL+ nuclei. (D) Differences in TUNEL positive 

apoptotic cells between the dietary groups. (E) Intra-tumoral neo-angiogenesis as shown 

by CD31+ vessels in actively growing areas of tumor. (F) Differences in tumor associated 

neo-angiogenesis between the dietary groups. Correlation analysis between tumor 

weights and (G) Ki67+ cells.  (H) TUNEL+ nuclei. (I) CD31+ vessels per high power field 

(HPF). Relationship between the number of CD31+ vessels in tumor with (J) the number 

of F4/80+ cells and (K) the number of CD3+ cells in tumor.  Pearson’s correlation analysis 

was used for statistical test.  Images (A), (C) and (E) were taken at 400x. *p<0.05 

compared to the mice fed ω-6 diet. 
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5.3.6. Dietary PUFA regulation of mammary tumor inflammatory 

microenvironments 

 

Tumor infiltrating neutrophils were assessed as the frequency of elastase positive (NE+) 

cells, as were the frequency of F4/80+ macrophages and CD3+ T-cells to characterize the 

tumor microenvironment between the dietary groups (n=10). There were 52% fewer 

neutrophils infiltrating the tumors from mice fed the ω-3 diet (10 ± 2 cells/HPF) compared 

to tumors from mice fed the ω-6 diet (22 ± 4 cells/HPF) (p<0.05) (Fig. 28A-28B). Similarly, 

infiltrating F4/80 positive macrophages were 49% lower in mice fed the ω-3 diet (5 ± 1 

cells/HPF) compared to the mice on the ω-6 diet (10 ± 1cells/HPF) (p<0.05) (Fig. 28C-

28D). In contrast, mice on the ω-3 diet had a 102% more infiltrating T-cells (23 ± 3 

cells/HPF) compared to tumors from mice on the ω-6 diet (11 ± 1 cells/HPF) (p<0.05) (Fig. 

28E-28F). Based on studies that have shown that the neutrophil to lymphocyte ratio (NLR) 

can be used as an independent prognostic factor and that a high NLR is associated with 

shorter survival of patients [422] we assessed these ratios as well. Feeding a LC-ω-3FA 

diet for 16 weeks prior to tumor challenge significantly lowered the NLR by 76% in 4T1 

mammary tumors compared to the mice fed the isocaloric, isolipidic ω-6 diet.  Further, the 

NLR directly correlated with tumor size (Fig. 28J). In addition, a direct correlation between 

tumor size and infiltration by neutrophil-elastase positive (NE+) myeloid cells and 

macrophages, but an inverse correlation with infiltrated T-cells (Fig. 28G-28I) was noted. 

Further, the number of T-cells in tumors was inversely correlated with the  intra-tumoral 

neo-vascularization (Fig. 27K) and directly correlated with the number of apoptotic tumor 

cells  (Fig. 28K) Thus, the differences in the tumor microenvironments may be associated 

with both tumor size and indirectly or directly associated with diet.  This suggests a critical 

role for dietary PUFA composition in the regulation of the inflammatory tumor 

microenvironment, and that an increase in a dietary LC-ω-3FA may regulate tumor growth 

by decreasing inflammatory cells and increasing lymphocyte infiltration.  



   162 

 

Cytokines and chemokines are mediators of inflammation, including myeloid cell 

proliferation and infiltration, and can have a critical role in tumor growth and progression, 

depending on the type and function of the cellular mediator.  The mRNA expression of 

inflammatory and immune regulatory mediators in tumors and spleens was analyzed from 

mice autopsied on day-35 post tumor injection (n=10/group). Sections of tumors from 

subcapsular, actively growing tumor areas were collected for the evaluation of mRNA 

expression to avoid the influence of hypoxic condition on the mRNA expression of the 

target genes. Among the analyzed target genes, there was no difference in mRNA 

expression levels of NFkB, G-CSF, GM-CSF, TNFα, CCL2, PTGS2, LEP, IGF1, CXCL5, 

CXCL1 and AREG in tumors between the dietary groups. Unexpectedly, we observed a 

significant (6 fold) higher expression level of IL10 mRNA in the tumors from mice fed ω-3 

diets relative to the expression in tumors from ω-6 diet-fed mice (Fig. 29A). We compared 

the expression levels of the indicated genes in tumors of both groups with the respective 

gene expression levels in NTB spleens to evaluate if mRNA expressions was directed by 

tumor growth and/or dietary PUFA differences. Our data showed that the tumor mRNA 

levels of PTGS2, CCL2 and G-CSF from both dietary groups were significantly higher 

relative to the respective mRNA levels in NTB spleens. In contrast, IL10 mRNA level was 

not different in the tumors of the ω-3 group but significantly lower in the tumors from ω-6 

group relative to the level in NTB spleens (Fig. 29B). Further, there was a indirect 

correlation between the mRNA levels of IL10 with tumor size (Fig. 29C) but no relationship 

was observed in the levels of G-CSF, PTGS2 and CCL2 with tumor size (Fig. 29D-29F). 

Collectively our data showed that the mRNA expression of PTGS2, CCL2 and G-CSF 

were associated with the presence of 4T1 tumors and that diets may have minimal effects 

on their expression; however, the IL10 expression in the tumors might have been 

modulated by dietary PUFA composition.  
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Figure 28. Dietary PUFA regulation of 4T1 tumor inflammatory cell infiltration. 

Mice (n=10/group) autopsied on day 35 post tumor injection were assessed by IHC for 

leukocyte infiltration of well oxygenated, peripheral tumor sections. (A) Infiltration of 

neutrophil-elastase positive (NE+) myeloid cells in tumor. (B) Quantitative differences in 

the number of infiltrated cells per high power field (HPF) between the groups. (C) 

Infiltration by F4/80+ macrophages in tumors. (D) Differences in the number of invading 

macrophages per HPF between the groups. (E) T-cell infiltration assessed as CD3+ cells. 

(F) Plot comparing the frequency of T-cells per HPF infiltrating the tumors. Correlation 

analysis of tumor weights. (G) Neutrophil-elastase+ cells. (H) F4/80+ nuclei and (I) CD3+ 

cells per HPF (Pearson’s correlation analysis). (J) Relationship between neutrophil to 

lymphocyte ratio (NLR) (evaluated by NE+cell number/ T-Cell number) and tumor weight 

(Pearson correlation analysis). (K) Correlation analysis of CD3+ T-cells with apoptotic cells 

in tumor. Images (A), (C) and (E) were taken at 400x. *p<0.05 fed ω-3 versus ω-6 diet 

(independent sample t-test for IHC data and one sample t-test for qPCR data).  
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Figure 29. Dietary PUFA regulation of inflammatory mediators 

Tumor tissue from peripheral tumor sections, and sections of spleen were collected from 

mice autopsied on day 35 post tumor injection for evaluation of mRNA expression by qRT-

PCR (n=10/group). (A) qPCR analysis of the mRNA levels of the indicated genes in the 

tumors from ω-3 (W3) diet-fed mice. Data are expressed as the fold change (FC) relative 

to the corresponding mRNA levels in the tumors from ω-6 group. (B) mRNA levels as a 

FC of the indicated genes in tumors from ω-3 and ω-6 diet-fed mice relative to the 

expression levels in the spleen from NTB control mice. (C) Correlation analysis of 

comparing FC of IL10 mRNA in tumors (D), G-CSF, (E) PTGS2 and (F) CCL2 relative to 

the levels in NTB spleen versus tumor weight (D). For statistical analysis, dCts were 

compared by Student’s t-test in (A) and (B). *p<0.05 versus ω-6 diet group and #p<0.05 

versus NTB spleen. Pearson’s correlation analysis was performed for (C-F). 
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5.4. Discussion 

 

In this study, we present evidence that LC-ω-3FAs-containing diets in adult life 

significantly decreased 4T1 mammary tumor induction, growth, metastasis to multiple 

organs and enhanced survival of mice compared to mice pair-fed with an isocaloric, 

isolipidic ω-6FA diet. The outcomes were consistent with the observed differences in 

tumor microenvironments including tumor cell proliferation, apoptosis, neo-vascularization 

and infiltrating immune cells between the two dietary groups. We have previously shown 

that feeding a LC-ω-3FAs diet for 16 weeks of adult life resulted in decreased MG density, 

ductal epithelial cell proliferation and decreased expression of inflammatory mediators in 

MGs [110] and liver [266]. In our current study, we extended these observations to dietary 

PUFA-mediated alterations in mammary tumor microenvironments that regulate tumor 

growth and metastasis.  

 

The observations of significantly lower body weight gains in mice fed an ω-3FA diet 

compared to the mice fed an ω-6FA diet during NTB phase is consistent with our previous 

studies using the same dietary model [110, 266]. BALB/c mice are refractory to obesity 

[7], such that their body weights did not increase significantly , following consumption of a 

high fat diet (60% calories from fat) for 16 weeks [7]. Thus our observation of significant 

differences in body weights, on diets with 36% calories from fat, after a 16 week diet 

feeding period, may be due to lack of body fat deposits on the mice fed LC-ω-3FAs diets, 

rather than a significant increase in body weights on the ω-6 diet group [110]. The potential 

mechanisms behind the difference in the body fat depositions are more likely  by 

differential regulation of metabolism and adipogenesis by dietary PUFAs [361, 365].  

During tumor bearing phase, mice fed the ω-6 diet lost more weight compared to their 

body weights prior to tumor injection. During tumor growth, body weight is more influenced 
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by tumor associated metabolic disorders, including cachexia and adipose tissue atrophy 

than the effects by a dietary calories and composition [423, 424]. Further, when the energy 

generated from dietary calories is not sufficient to fulfil the requirement for hyper-

proliferative tumor cells, beta-oxidation of body fats occur to generate energy 

endogenously, resulting in the weight loss [425]. In these studies, tumors were initiated 

earlier, growing faster resulting in around double sized  tumors on day 35 and had more 

metastasis in the mice fed a ω-6 diet compared the mice from  ω-3 group, so it is likely 

that they lost more weight due to tumor growth associated factors as discussed before.   

 

Whether tumor growth and metastasis are regulated by PUFA composition or specific 

PUFA metabolism is not directly addressed in our studies.  However, we have separated 

PUFA composition from caloric composition with the use of an isocaloric diet.  This 

provides a model to address the role of ω-3 versus ω-6FA composition on tumor growth 

and metastasis.  Further, the timing (in utero, pre/puberty or adult) of dietary PUFA 

consumption may also have a critical role in these parameters as well as mammary 

tumorigenesis. The results from the studies based on in utero/prepubertal dietary 

exposure helps to understand the role of PUFAs in mammary tumorigenesis during MG 

development. Studies with autochthonous mammary tumors have shown that fish oil-

based diets markedly suppress mammary tumor incidence, multiplicity and MG 

hyperplasia in murine mammary tumor virus (MMTV)-HER-2/neu transgenic mice [426, 

427]. Similarly, pre-pubertal consumption of a low-fat (16% calories from fat) ω-3 diet but 

not a high-fat (39% calories) ω-3 diet induced mammary epithelial differentiation by 

reducing TEBs, increasing apoptosis and reducing cell proliferation, as well as, decreasing 

mammary tumor incidence, compared to a low-fat ω-6FA diet [118, 428]. These results 
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emphasized the critical role of calories from FAs as well as dietary composition in 

mammary tumorigenesis.  

The current study is based on dietary consumption during adult life using isocaloric and 

isolipidic diets to assess the role of PUFA composition on the growth of orthotopically 

implanted mammary tumors. . As we started the diets earlier than tumor injections, our 

study emphasizes the potential prophylactic role of dietary LC-ω-3FAs in the control of 

tumor growth and metastasis by modulating microenvironments by prior exposure of the 

diets. Among the 40 mice/group in two studies, two mice from the ω-3 group did not 

develop tumors. Potential reasons for this might be due to technical issues related to the 

low number of tumor cells injected (5,000 4T1 cells), compared to most prior reports [7, 

429, 430]. Alternatively, the delay in tumor development in the ω-3 group may be due to 

ω-3FAs mediated microenviromental changes. We report that mice fed the ω-3 diet had 

a significant delay in tumor induction resulting in 50% smaller tumors at autopsy on the 

day 35  post tumor injection, compared to the mice fed the ω-6 diet.  These findings are 

consistent with previous studies using autochthonous mammary tumors in rodents fed ω-

3FA-enriched diets [426, 427] or studies with the fat-1 transgenic mice capable of 

endogenously producing ω-3FA [125] and orthotopic mammary tumor models [431, 432].  

However, this is the first study using rodents receiving isocaloric and isolipidic diets and 

pair feeding in the analysis of tumor growth and metastases to multiple organs. 

 

4T1 mammary carcinoma tumors spontaneously metastasize to multiple organs [433] in 

a process involving both soil and seed properties [227, 230]. BCs usually metastasize to 

lymph nodes, bone, lungs and liver [230, 434] and less frequently to the ovaries [405], 

heart, and kidneys [406, 407].  The 4T1 mammary tumor is an aggressive tumor 

spontaneously metastasizing to the lungs [228] and less frequently to other organs 
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including the liver, brain, bone [7, 408-411, 420], heart, and kidney [408, 411] while, no 

report published to our knowledge, has described metastasis to ovaries  and CMGs by the 

parental 4T1 tumor cells.  In our present study, we report dietary PUFA regulation of a 

frequency and number of spontaneous metastasis to both common and infrequent organs. 

The presence of pulmonary metastases was anticipated, as lungs are preferential site of 

metastasis in most murine mammary tumor models. Further,  the direct correlation of lung 

weights and pulmonary overt metastases with the tumor size indicates the potential role 

of slower tumor growth in ω-3 diet-fed mice in having less burden of pulmonary 

metastases compared to  the ω-6 group is a novel observation.  

Although, the incidence of hepatic metastasis was lowered by 35% in the ω-3 group, we 

did not observe significant differences in either hepatic overt metastases counts or liver 

weights between the dietary groups. We previously reported that the liver weights of NTB 

mice fed an ω-6 diet were significantly lower compared to the livers from mice fed the ω-

3 diet. The differences in liver weights were accompanied by differences in hepatic storage 

of fat versus glycogen in mice given ω-6 or ω-3 diets respectively [266]. Thus, our 

observation of similar liver weights in TB mice between the dietary groups may be due to 

an increase in liver weights of TB mice on the ω-6 diet, potentially by the presence of a 

greater number of metastases in the hepatic parenchyma (Fig. 22D).  Spontaneous bone 

metastases are infrequently reported by primary 4T1 tumors, compared to their 

occurrence following intra-cardiac or intra-tibial inoculation of 4T1 cells or the bone trophic 

variant that favors colonization of the femurs/tibias (4T1.2) [419, 435, 436]. In the current 

study, using a low number of 4T1 parent cells, we observed dietary PUFA regulation of 

bone metastases and an 80% lower incidence of spontaneous femur/tibia metastases in 

mice fed an ω-3 diet relative to mice given an ω-6 diet. Previous studies have shown that 

dietary fish oil prevents osteolytic lesions following intra-cardiac injection of MDA-MB-231 
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breast cancer cells and bone metastases [437]. These data were supported by the findings 

that DHA and EPA significantly attenuated the migration/invasion of MDA-MB-231 BC 

cells in-vitro as well as reduced cell migration to bone [437, 438]. Further, other studies 

have shown a beneficial role of fish oil in bone health, including inhibitory activities of DHA 

for osteoclastogensis [413] and calcium bioavailabity [439], and a negative correlation of 

the dietary ω-6:ω-3 ratio with bone formation [412, 440].  Thus, it is unclear, if a dietary 

PUFA modulation of osteolytic pre-metastatic niches in bone acts as a chemoattractant 

for metastases to bone, or PUFA modulated bone metastases regulate osteolysis 

suggesting that further mechanistic studies of bone metastases are needed.  

Cardiac and renal metastasis are rarely reported metastatic sites for any tumor type. The 

lower incidence may be due to the lymphatic network in these organs, composition of the 

tissue microenvironments or physiological functions of the organ (for example, myocardial 

contractions) [406, 441]. However, it is also possible that metastases to these sites may 

have been overlooked when focusing on the burden of metastases in the more common 

metastatic sites.  This is supported by the frequent findings of cardiac metastases in post-

mortem examinations [442-444]. In this study, a diet enriched in ω-3FA was associated 

with lower incidences of cardiac and renal metastases, relative to the respective 

incidences in mice fed an ω-6 diet. Further, the observation of a significantly lower number 

and size of histologically observed metastases in the heart and kidney of mice given the 

ω-3 diet suggests a role of the dietary LC-ω-3FAs on the establishment and growth of 

metastatic cells in those tissues, potentially due to modulated tissue microenvironments. 

However, our study is the first reporting dietary PUFA regulation on cardiac and renal 

metastasis of a murine carcinoma, thus further mechanistic studies are warranted. 

Although the ovary is not a preferential site for BC metastasis, ovarian metastasis have 

been detected in autopsies from young women with BC [405, 445]. Differential diagnosis 
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of ovarian metastasis by BC are challenging because ovarian cancer is frequently 

diagnosed as a primary tumor rather than a metastatic lesion [446]. We did not find any 

previous reports of spontaneous 4T1 ovarian metastasis or for any other mammary 

tumors. Interestingly, we observed a significant decrease in number of mice with ovarian 

metastasis that were fed the LC-ω-3FA diet relative to mice in the ω-6 group. Further, 

metastasis were found extensively in the follicular regions in mice fed an ω-6 diet, while 

the growth was limited to medullary region of ovaries in mice fed the ω-3FA diet, indicating 

the critical role of PUFAs in growth of tumor cells in the ovarian microenvironment. 

Potential mechanisms are the regulation of prostaglandin E2 and estrogen levels by LC-

ω-3FA, as reported with ovarian cancer growth [447-449]. However, further mechanistic 

studies in animal models of mammary tumors are needed to evaluate the specific roles of 

LC-ω-3FAs in BC ovarian metastasis.  

CBC metastases have been diagnosed in 11% of BC survivors [450]. CBC can be a new 

cancer or invasion of metastatic tumor cells in the second breast, but due to challenges in 

differential diagnosis of the clonal origins, most CBC are treated as a second BC [450, 

451]. A recent study reported a direct relationship between breast density and incidence 

of CBC in women with a primary BC [452]. Recently, we showed that the MGs of NTB 

mice fed a LC-ω-3FA diet had significantly lower ductal densities and macrophage 

infiltration, relative to the MGs from NTB mice given an ω-6 diet [453]. However, there are 

no reports on the association of LC-ω-3FA in the induction of CBC, nor murine studies on 

the role of ω-3FA, on metastasis to CMG. In the current study, we did not find significant 

differences in the incidence of CMG metastases between the dietary groups. 

Nevertheless, there were significantly fewer proliferating tumor cells in the metastases of 

CMG of mice fed an ω-3 diet, which was accompanied by fewer proliferating epithelial 

cells in the ductal epithelium and infiltrated macrophages relative to the respective findings 
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in mice given an ω-6 diet (Fig. 25C-25H). Additionally, the macrophages infiltrated in tumor 

tissue were larger and granulated compared to the macrophages we observed in MGs 

from NTB mice (Fig. 26). These data suggest that tumors’ growth might regulate the 

activation of macrophages in CMGs from TB mice, however further studies are warranted 

to evaluate the macrophage phenotypes. Collectively, our previous data from NTB mice 

[453] and our current analyses of CMG metastases in 4T1 TB mice, suggests that the 

consumption of LC-ω-3FAs may suppress pro-inflammatory mediators and growth factors, 

thus modulating the microenvironment, inhibiting successful 4T1 metastasis in the CMG 

of mice fed the ω-3 diet. These observations are supported by previous findings of the 

ability of ω-3FA to inhibit mammary tumor growth in-vitro [454] and in-vivo [401, 455].  

Splenic BC metastases are a rare event in humans [456] and have been infrequently 

reported in mice bearing 4T1 murine carcinomas [408, 457]. Splenomegaly in a 4T1 tumor 

bearing mouse is strongly associated with extramedullary hematopoiesis, driven by 

myeloid growth factor secretion by 4T1 cells [206, 458, 459]. In these studies, as we 

expected, we observed splenomegaly in TB mice from both dietary groups compared to a 

normal mouse spleen; however, mice from the ω-3FA group had significantly smaller 

spleens, relative to those from ω-6FA diet-fed mice. Spleen weights were directly 

correlated with tumor size in both groups and the histology demonstrated sub-capsular 

myeloid hyperplasia. Thus, the observation of smaller spleens in the ω-3 groups may be 

associated with the decreased tumor size. 

The tumor microenvironment has a crucial role in tumor progression. In these studies, we 

observed a significantly lower number of proliferating tumor cells, a greater number of 

apoptotic tumor cells and less neo-vascularization in the sub-capsular oxic areas of tumors 

from mice fed an ω-3 diet, relative to the same analyses in the ω-6 fed groups. DHA has 

been shown to induce tumor cell apoptosis and reduce proliferation in vitro and in vivo, 
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potentially by increasing lipid peroxidation [460], tumor cell cytotoxicity [400], inhibition of 

pro-inflammatory eicosanoids [461] and cell cycle arrest [462, 463]. The induction of tumor 

cell apoptosis has an important role in cancer therapy and represents a target for many 

treatment strategies.  As LC-ω-3FAs appear to cause selective cytotoxicity towards cancer 

cells with little or no toxicity to normal cells, many studies have assessed the role of ω-3 

PUFAs as a therapeutic adjuvant, to improve the efficacy and tolerability of traditional 

anticancer therapies [400, 464-466].  

Neo-vascularization is essential for tumor metastases, thus it is an important target in the 

treatment of solid tumors, including BC [467, 468]. Our observation of lower numbers of 

CD31+ vessels in tumor tissue from an ω-3 diet-fed mice suggests a decrease in tumor 

neo-vascularization by dietary LC-ω-3FAs. In addition to a direct effect of active 

metabolites of LC-ω-3FAs on mediators of neo-vascularization, such as vascular 

endothelial growth factor (VEGF) [469], modulation of tumor infiltrating inflammatory cells 

might also indirectly regulate neo-vascularization. Recent evidence indicates that tumor-

associated immune cells, including macrophages, neutrophils, and mast cells can 

stimulate tumor angiogenesis [470-473]. We found that infiltration of macrophages and 

neutrophils in tumor oxic areas from mice fed ω-3 diets was significantly lower, relative to 

their infiltration in the tumors from ω-6 diet-fed mice. Further, the number of neutrophils 

and macrophages in tumor tissue directly correlated with tumor size and a direct 

correlation was observed between the numbers of macrophage with the extent of neo-

vascularization in tumors. These results suggest that macrophages mediating 

downregulation of neovascularization might be one of the potential mechanisms of tumor 

growth suppression by dietary LC-ω-3FA. Our results are supported by previous findings 

on the effects of LC-ω-3FA metabolites in the suppression of tumor-associated 
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macrophage infiltration and the association of macrophages with tumor angiogenesis 

[130, 474-476]. 

The presence of tumor infiltrating T-cells has been associated with a better prognosis and 

response to cytotoxic treatments in BC patients [477]. In contrast, a neutrophilic response 

can inhibit immunity by suppressing the cytotoxic activity of T-cells and is associated with 

a poor prognosis in cancer [478].  The NLR of blood is an indicative of systemic 

inflammation and clinical studies have demonstrated the prognostic value of a systemic 

NLR  in multiple cancers, including BC [201, 422]. We evaluated NLR in tumor 

microenvironment in this study as an index of pro-tumorigenic immune response. Our 

finding of a greater number of T-cells and fewer neutrophils in tumors from mice fed a diet 

rich in LC-ω-FAs, relative to the numbers in the ω-6 diet group, and a direct correlation of 

NLR with tumor size indicates the potential of dietary LC-ω-3FAs in tumor growth 

suppression by decreasing tumor supporting inflammation. Further, our results also 

support a potential role of LC-ω-3FA as an adjuvant to enhance tumor therapies [479-

481].  

In an analysis of potential mediators of inflammation and/or immune-regulation in the 

tumor microenvironment, the expression of IL10 was significantly higher in tumors and 

spleens of ω-3 diet-fed mice relative to the ω-6 group And IL10 expression in tumors was 

negatively correlated with tumor size. These data suggest a potential role for dietary LC-

ω-3FAs in the regulation of tumor and systemic inflammation via IL10 mediated pathways. 

In tumor immunology, IL10 has multifaceted roles and has been associated with both poor 

and good cancer prognoses [482-484]. It has been suggested that IL10 contributes to an 

immune suppressive tumor microenvironment, however, recent studies have shown a role 

for IL10 in stimulating antitumor activity of CD8+ T-cells [485] suggesting IL10 as a 

potential therapeutic target for cancer treatment [486, 487].  The ω-3FAs have been 
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associated with increased IL10 production in in-vitro and in-vivo studies, [488, 489] but the 

role of LC-ω-3FA mediated IL10 in tumor microenvironment has not been fully elucidated. 

In the present study, since increased IL10 expression in tumors was associated with tumor 

size, our data indicates a potential novel mechanism of dietary ω-3FA mediated tumor 

growth suppression; however, future mechanistic studies are warranted.   

In our studies, we did not observe any significant difference in the expression of the 

cytokines and growth factors we analyzed in tumors between the dietary groups, although 

the expression of PTGS2, CCL2 and G-CSF were significantly higher in the tumors from 

both groups relative to the respective levels in NTB spleens.  Studies have shown 4T1 

tumor message level of G-CSF [490, 491], PTGS2 (COX-II) [492] and CCL2 [493] were 

associated with tumor growth and metastasis. It is noted that in our prior study [490], the 

G-CSF message was associated with tumor cells and not infiltrating leukocytes, consistent 

with in vitro studies showing high levels of G-CSF message and protein with 4T1 tumor 

cells [491, 494]. Thus, our data indicate that the increase in intra-tumoral expression of G-

CSF, COX-II and CCL2 might be tumor cells dependent phenomenon and the dietary 

PUFA may not significantly regulate those inflammatory mediators.  

In this study, we reported the effects of dietary PUFAs in mammary tumor using 4T1 

murine cell line and BALB/c mice. To validate that these effects are not limited to a single 

tumor cell line and mouse strain, further studies are warranted using different mammary 

tumor cell lines and mouse strains. Our findings suggest a potential prophylactic role of 

dietary LC-ω-3FAs in breast cancer, and also emphasize for the need of future studies 

(mechanistic/translational/clinical) to evaluate the therapeutic role of LC-ω-3FAs in breast 

cancer growth, metastasis and in clinical management of co-morbidities in survivors. 

There are ongoing clinical trials on the role of ω-3FAs in breast cancer prevention 

(https://clinicaltrials.gov/ct2/show/NCT02295059) and a recent clinical study showed the 
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beneficial effects of ω-3FAs. They are able to reduce arthralgia associated with aromatase 

inhibitors treatment in obese breast cancer patients. Moreover, clinical studies focusing 

on the role of LC-ω-3FAs as an adjuvant therapy and translational studies in 

understanding of modulation of microenvironments of primary tumor and metastatic sites 

would provide an insight on targeting LC-ω-3FAs associated pathways for an 

advancement of anti-cancer therapies. 

In summary, using isocaloric, isolipidic diets in a pair-fed model, we conclude that dietary 

LC-ω-3FAs suppress mammary tumor growth resulting in lower  frequency of metastases 

to the preferential sites such as lungs and prolonged survival of the mice. Moreover, 

considering the difference in the metastatic burden (incidence/frequency/size) in multiple 

organs (specifically low preference metastatic sites: heart, kidney, ovaries, bone and 

CMGs) between the ω-3 and ω-6 dietary groups, out data indicate dietary PUFA 

composition have additive effects in metastasis, in addition to the regulation of metastasis 

by primary tumor growth. Further, analyses of the tumor microenvironments showed 

significantly lower neo-vascularization, macrophage infiltration, and NLR and higher T-cell 

infiltration, tumor cell apoptosis and increased IL10 expression in the ω-3 diet-fed mice. 

Together, these factors might contribute the suppressive effects on to the tumor growth 

by dietary ω-3 PUFAs.  
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Chapter 6: 

Discussion/Summary and Future Directions 
 

6.1. General discussion and summary 

 

Dietary calories versus dietary composition are crucial factors in studies analyzing the role 

of nutritional components in pathological outcomes. For instance, both hypercaloric and 

hyperlipidemic diets induce obesity, which is a co-morbidity for multiple metabolic 

disorders and a risk factor for BC development and negative outcomes [495-497]. Animal 

studies have shown that high-fat diets stimulate increased food consumption and weight 

gain through its low satiety properties [498].  Thus, balancing of total dietary calories, 

calories from fat and food intake is important in the studies of fat composition as regards 

to downstream effects. Among dietary FA studies, both ω-6 and ω-3FAs are essential FAs 

that are competitive substrates for downstream pro- and anti-inflammatory pathways, 

respectively. Evolutionary studies have indicated that humans evolved on diets that 

contained an ω-6:ω-3 ratio of about 1:1; however, most current Western diets are high 

caloric, high fat and have an ω-6:ω-3FA ratio of 20-25:1 and mostly lack significant 

amounts of LC-ω-3FAs [25].  Animal studies evaluating the effects of dietary fats have 

focused on high versus low fat diets; which also have a differential ratio of ω-6:ω-3FAs 

and caloric consumption from fats [7, 118]. Thus, the present studies used isocaloric, 

isolipidic diets and pair-feeding to evaluate dietary ω-6 and LC-ω-3FAs effects on tissue 

microenvironments, in the regulation of mammary tumor growth and metastasis.   

During preliminary optimization studies for the pair-fed model, we found that mice 

administered the ω-3 diet consumed less diet compared to the mice receiving the ω-6 diet. 

These observations suggested that the presence of fish oil in ω-3 diets makes them less 
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palatable to mice or decreased satiety, resulting in thecconsumption of lower amounts of 

food than isocaloric, isolipidic ω-6 diets, which have higher levels of olive oil and safflower 

oil. Thus, we used the ω-3 diet as the baseline diet for pair-feeding and the same amount 

of the diet consumed by the ω-3 group was given to mice from the ω-6 group on the next 

day, so that the overall food intake by each group was balanced throughout the studies.  

Using the optimized pair-feeding model, we investigated the effects of dietary PUFAs on 

tissue microenvironments of the MG, which is the primary site of mammary tumor growth 

(Chapter 3), the hepatic microenvironment; one of the major sites of metastasis (Chapter 

4) and the cumulative effects of those pre-modulated microenvironments on mammary 

tumor growth, metastases and survival (Chapter 5). We extended our analyses of 

metastases to common and uncommon sites of metastases indicating dietary PUFA may 

modulate the microenvironments of multiple organs, rendering them hospitable sites for 

metastatic cell seeding and growth.  

Our first series of studies evaluating MG macro- and microenvironments (Chapter 3) 

showed that dietary ω-6 and ω-3 PUFAs have differential effects on MG morphologies 

including ductal density, including the thickness and morphology of ductal end structures. 

Mice fed ω-3 diets had significantly thinner ducts, fewer lateral branches and lack ductal 

sprouts, resulting in a significantly lower MG density relative to mice consuming ω-6 diets. 

This is an important observation as increased breast density has been associated with 

increased risk for BC development [95]. Increases in breast density is most often attributed 

to either increased stroma or epithelial mass in the breast. In histological analyses, both 

ductal stroma and epithelium were significantly thinner and fewer numbers of proliferating 

epithelial cells were observed in the mammary ducts of mice fed an ω-3 diet compared to 

the ω-6 group. MG morphogenesis including ductal epithelial cell proliferation during 

pubertal life is mainly regulated by estrogen, progesterone and growth hormones, while 
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IGF1 also plays a role in branching morphogenesis. During pregnancy and lactating 

phases, progesterone and prolactin have major roles in alveolar development and their 

differentiation into milk secreting lobules [499].  In our studies, the expression of ESR1 

was significantly lower in MGs from the ω-3 group. However, we did not observe 

differences in the mRNA expression of the progesterone receptor and prolactin expression 

was undetectable. These results can be explained by the use of mice in the studies that 

were adults and virgin. It also indicates that the morphological differences we observed 

are potentially  regulated by other factors/cells in the MG microenvironment. Thus, we 

analyzed local adipose tissue, whose fundamental function is to provide physical support 

for the MG ductal network, but also has an active role in MG development [261], and 

tumorigenesis [500].   

The histological analyses of adipocytes in local MG microenvironments, as well as, in 

abdominal adipose tissues showed that PUFAs regulate the hypertrophy of adipocytes 

independent of total fat calories in the diets. We observed significantly smaller adipocytes 

in MFPs and abdominal fat from mice fed ω-3 diets, a finding paralleled  by higher mRNA 

expression of adipokines including; leptin, IGF1 and IGF1R in the respective tissues. 

Excessive adipocyte hypertrophy can induce hypoxic microenvironments in local adipose 

tissues [501], which stimulates adipocyte apoptosis followed by the induction of pro-

inflammatory mediators and recruitment of macrophages to clear the apoptotic bodies. 

Our results showed that the MG microenvironments had significantly lower inflammation 

as shown by fewer numbers of CLS/macrophages and a lower mRNA expression of 

inflammatory mediators in mice fed ω-3 diet compared to the ω-6 group. Thus, it is likely 

that dietary ω-3 and ω-6 PUFA may regulate FA metabolism in adipose tissues such that 

increased dietary levels of ω-3FAs prevent FA storage by adipocytes compared to the 

same levels of dietary ω-6FAs. Further, the prevention of local adipocyte hypertrophy 
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might be one of regulatory mechanisms by which ω-3FAs limit pro-inflammatory 

microenvironments in MGs.    

Thus, our studies examining dietary PUFA regulation of MG microenvironments, showed 

that the increased consumption of LC-ω-3FA lowers MG density and can prevent chronic 

inflammation of local adipose tissue, potentially by controlling adipocyte hypertrophy and 

associated adipokine and cytokine expression. Local expression of leptin can regulate 

proliferation of both normal and malignant breast epithelial cells [316] and local adipose 

tissue, and chronic inflammation has been found to contribute to BC development [403].  

Therefore, we postulate that alterations in MG macro/microenvironments by ω-3 and ω-6 

PUFAs regulate MG tumorigenesis by providing an unfavorable or favorable 

microenvironment for tumor growth.  

Since the liver is a common metastatic site in breast cancer, the second phase of our 

studies investigated dietary PUFA modulation of the hepatic macro/microenvironment. 

Hepatocytes metabolize dietary macromolecules, and depending on the excess energy 

state, they can transiently store glycogen and FAs. The chronic storage of FAs by 

hepatocytes leads to fatty liver disease, and if uncontrolled, progresses to hepatic 

inflammation and fibrosis. Chronic consumption of alcohol or high caloric/high fat diets 

have been associated with fatty liver diseases. Our studies showed that dietary LC-ω-3FA 

limits hepatic FA storage compared to mice fed an isocaloric and isolipidic ω-6 diet. In 

contrast, lobular hepatocytes from mice fed the ω-3 diet had significantly more glycogen 

deposits compared to the mice given the ω-6 diet. These results indicate that dietary ω-3 

and ω-6 have differential metabolic preferences/fates such that increased levels of ω-

3FAs potentially promote FA metabolism and/or distribution of FAs/energy to extrahepatic 

tissue as needed. In contrast, high levels of ω-6FAs (or lack of LC-ω-3FA) may promote 

FAs storage in hepatocytes and metabolism of glycogens to generate energy and 
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distribution as needed. In either situation, the difference in hepatic storage of fat versus 

glycogen can influence the hepatic microenvironment in many ways. The observation of 

increased hepatic steatosis in the ω-6 diet group was also accompanied by increased 

EMM, lower numbers of proliferating hepatocytes and higher numbers of apoptotic 

hepatocytes, all of which might contribute to significantly lower liver weights of mice from 

the ω-6 group relative to the ω-3 group. Collectively, dietary PUFA composition modulates 

hepatic macro and microenvironments such that an absence of LC-ω-3FAs and increased 

ω-6:ω-3 FAs promote hepatic steatosis, which may further regulate hepatocyte apoptosis, 

proliferation and hepatic myelopoiesis. Therefore, we hypothesize that these alterations 

in the hepatic microenvironment by PUFA composition might differentially regulate hepatic 

metastasis from mammary tumor.. 

After evaluating the effects of dietary PUFA composition on the primary tumor site (MG) 

and one of the major metastatic sites (liver) in NTB mice, we investigated the effects of 

chronic dietary pre-exposure of PUFAs on 4T1 mammary tumor growth and metastases. 

Our data showed that diets high in LC-ω-3FAs, consumed for 20 weeks, resulted in a 

significant delay in tumor induction, smaller tumor size, and prolonged survival. Metastasis 

is the main factor that regulates primary tumor survival. Thus, we analyzed mammary 

tumor metastases in multiple organs and analyzed the tumor microenvironments of 4T1 

TB mice autopsied on day 35-post tumor injection. Mice fed diets high in LC-ω-3FAs had 

lower frequencies and/or incidences of spontaneous metastases in both common and 

uncommon sites compared to the mice fed ω-6 diets. The lungs are the most common site 

of metastases in the 4T1 mammary tumor model.  We observed lung metastases in 100% 

of mice from both of the groups; however, there was a significantly lower frequency of 

overt-metss and pulmonary weights.  Additionally, histological analyses suggested that 

dietary LC-ω-3FAs lowers pulmonary metastases. Hepatic metastases are also reported 
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in imaginable 4T1 models. In this study, quantitative analysis of the hepatic metastasis 

burden was difficult to evaluate.  In the studies on NTB mice (Chapter 4), we showed that 

liver weights of mice fed ω-6 diets were significantly lower due to hepatic steatosis 

compared to the observations in the ω-3 diet-fed mice. In 4T1 TB mice, there was no 

difference in liver weights between the dietary groups. Altogether, the differential 

outcomes of liver weights in NTB and TB mice indicates that mice fed ω-6 diet potentially 

had increased hepatic metastases replacing hepatic fat content such that liver weights 

increased in TB mice compared to NTB mice fed the same diet. Further, histological 

analysis confirmed our hypothesis that hepatic metastases in mice fed the ω-3 diet were 

mostly limited to subcapsular areas, while METs grew extensively in deeper hepatic tissue 

in the mice from the ω-6 fed group.  

Bone is also a common metastasis site in breast cancer patients but less commonly 

reported in rodent’s mammary tumor models including in 4T1 (parent) mammary tumors 

[238, 419]. Analysis of bone metastases in the hind limbs of mice fed an ω-3 diet, there 

was an 80% lower incidence of bone metastases and the metastases were significantly 

smaller relative to the mice fed a ω-6 diet. A single bone metastasis was found in only one 

mouse in the ω-3 group, which was significantly smaller and located in the medullary 

space of the femural diaphysis. Further, all analyzed bone metastases were located in 

trabecular bone, which indicates a potential role of osteoclasts in the formation of bone 

metastases. However, further studies are required to validate the role of a diet modulated 

pre-metastatic niche in the establishment of bone metastases.  

In addition to metastases in common sites, our data showed the incidence/frequency of 

metastases in uncommon sites including heart, kidneys and ovaries were significantly 

lower by feeding diets containing LC-ω-3FAs. The metastases in mice fed ω-3 diets were 

significantly smaller and were limited mostly to the subcapsular regions of the heart, 
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kidneys and ovaries. In the ovaries, the metastases were located outside of follicular 

regions unlike the metastases in the deeper tissue of heart, kidney and inside follicular 

regions of ovaries from mice fed an ω-6 diet. The difference in the metastatic growth in 

the mentioned organs might be regulated by the metastatic niche in these sites [235].  

However, in our current study, we did not analyze the effects of dietary PUFAs on the 

modulation of microenvironments in these organs, nor did we evaluate the metastatic 

sites. Thus, further studies are warranted to evaluate the mechanism(s) behind the 

outcomes of the current study.  

Our studies in NTB mice (discussed in Chapter 3) showed that dietary LC-ω-3FAs lowers 

MG ductal density, ductal epithelial cell proliferation and local inflammation in MGs relative 

to the mice fed an ω-6 based diet. As discussed above, modulation of the MG 

microenvironments due to ω-3 consumption suppressed primary tumor growth.  We 

extended our studies to evaluate the role of modulated MG microenvironment in 

metastases to the CMG. There were metastases in the CMG associated LNs analyzed in 

all of mice, which is expected as we evaluated metastases in the late stage of tumor 

growth (day 35 post tumor injection). Further, there were insignificantly fewer mice with 

CMG metastases in mice from the ω-3 group. However, when the metastatic 

microenvironments were analyzed, we observed that there were significantly lower levels 

of proliferation by tumor and ductal epithelial cells and lower infiltration by macrophages 

to the CMGs from ω-3 diet-fed mice compared to the ω-6 group. The macrophages in the 

CMGs of TB mice morphologically resembled activated (large and granulated structure) 

macrophages as compared to macrophages in the MGs of NTB mice. Collectively, our 

data showed that feeding of PUFA diets for 20 weeks prior to tumor injection modulated 

CMG microenvironments, which potentially regulated the growth of metastases number 

by suppressing or promoting proliferation of tumor cells in CMGs. 
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Major factors that regulate local tumor growth and metastases are related to the 

modulation of tumor microenvironments including neovascularization and recruitment of 

pro- or anti-tumor inflammatory cells. The analysis of the tumor microenvironment showed 

that tumors in the ω-3 group had significantly lower numbers of proliferating tumor cells 

(Ki67+)/high power field (HPF), lower neo-vascularization measured as CD31+ vessels 

and infiltration by neutrophil elastase+ cells, and macrophages (F4/80+) relative to the 

tumors from mice in the ω-6 group. Tumor cell proliferation, intra-tumoral 

neovascularization and infiltration of macrophages and neutrophils directly correlated with 

tumor size indicating their direct roles in the promotion of tumor growth. In contrast, tumors 

from the ω-3 fed mice had significantly higher numbers of apoptotic tumor cells 

(TUNEL+)/HPF and infiltrating CD3+ T-cells, both of which indirectly correlated with tumor 

size indicating their role in the suppression of tumor growth. Further, the macrophage 

infiltration is directly correlated with neovascularization, while infiltration of T-cells is 

directly correlated with the number of apoptotic tumor cells. Collectively, our data on the 

inflammatory microenvironment of tumors on day 35 showed that the increased infiltration 

of T-cells and decreased infiltration by tumor promoting myeloid cells including neutrophils 

and macrophages might regulate tumor microenvironments in mice fed ω-3 diets resulting 

in the suppression of tumor growth compared to the mice on an ω-6 diet.  

Finally, we analyzed the mRNA expressions of cytokines/adipokines and growth factors 

to understand their potential role in dietary PUFA mediated regulation of tumor 

microenvironments. When the mRNA expression in tumors were compared to the 

respective mRNA expression in spleens from NTB control mice, G-CSF, PTGS2 and 

CCL2 were highly expressed in 4T1 mammary tumors in both dietary groups and the 

expression was not different between the tumors from the dietary groups. These results 

indicates that the expression of G-CSF, PTGS2 and CCL2 is largely regulated by 4T1 
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tumors such that, the effects of dietary PUFA interventions in their expression was minimal 

during tumor growth. Further, we did not observe any difference in the expression of NFkB, 

GM-CSF, LEP, IGF1, CXCL5, CXCL1 and AREG either as compared to the expression in 

NTB spleen nor in tumors between the dietary groups. It should be noted that we evaluated 

mRNA expression in the tumor tissue that were collected on day 35 post tumor injection. 

Thus, it is likely that cytokine expression levels may have been upregulated in the early 

phases of tumor growth during recruitment of inflammatory cells, and that by day 35, the 

expressed mediators may have been used for the respective signaling processes. 

Unexpectedly, we observed that the mRNA expression of IL10 in tumors from ω-3 diet-

fed mice was significantly higher (six fold) relative to the expression in the tumors from the 

ω-6 diet-fed mice.  Further, the levels of IL10 mRNA were inversely correlated with the 

tumor size indicating a potential role of IL10 in the suppression of tumor growth. However, 

further mechanistic studies are required to confirm the role of IL10 in LC-ω-3FA mediated 

tumor suppression.  

It is estimated that metastasis is responsible for about 90% of deaths due to cancer and 

represents the central clinical challenge of oncology of all types of cancers including BC 

[502, 503]. Our studies shows lower incidence and frequencies of metastatic tumor 

growths in multiple organs in mice fed a diet high in LC-ω-3FAs, which are in 

correspondence with a significant longer survival of mice in the group compared to the 

mice fed ω-6 diet. The death due to metastasis (typically in BC) is not due arresting of few 

tumor cells from blood stream into a distant organ, rather it is due to the consequences 

related to the uncontrolled proliferation of metastatic tumor cells in the organ, affecting its 

physiological functions needed for life. Metastasis is a sequential process and for a 

successful metastatic growth, roles of both tumor microenvironments and pre-metastatic 

tissue microenvironments are crucial [504-506]. Most of metastasis and survival studies 
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focus on tumor microenvironments and less emphasis is given on the role of pre-

metastatic niche. As per seed and soil hypothesis, all organs are not hospitable for all 

tumor types so specific tumor types have organ preferences for metastasis. However, as 

showed by our studies, dietary factors such as PUFAs can modulate organ 

microenvironments modulating the metastatic growth in the organ. Thus, further studies 

should be done to understand the role tissue microenvironments and the modifying factors 

that can modulate pre-metastatic niche in favoring of tumor growths. 

In conclusion, from the NTB studies, we showed that a dietary ω-3 and ω-6 PUFAs 

differentially modulated the microenvironments of the primary tumor site and one of the 

metastatic sites (liver), which can regulate 4T1 mammary tumor growth and metastasis. 

Specifically, dietary LC-ω-3FAs lowers MG ductal density, epithelial cell proliferation and 

adipose tissue inflammation in MGs and lowers hepatic steatosis, hepatocyte apoptosis 

and EMM in livers of NTB mice. In 4T1 mammary tumors, dietary LC-ω-3FAs delayed 

tumor initiation, growth and enhanced survival of the mice by lowering the incidence and 

frequencies of metastases to common and uncommon sites. The potential mechanism 

includes modulation of inflammatory microenvironments in tumors, specifically increased 

infiltration of T-cells and IL10 mediated anti-inflammatory activities.  

 

 

6.2. Future directions  

 

The present study is the first study analyzing the effects of PUFAs administered as 

isocaloric, isolipidic diets using a pair-fed model. From our NTB and TB studies, we 

reported many novel observations of tissue microenvironment modulations by dietary 

PUFA composition regulating mammary tumor progression and answered critical 

questions regarding the importance of PUFA composition in diets. However, our studies 
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have raised many important questions that can be addressed in future studies, some of 

which are discussed below. 

1. We observed the differences in MG ductal branching and sprouting between mice 

fed ω-6 and ω-3 diets.  Progesterone and prolactin are the major hormones 

regulating branching during normal MG developments. We used adult, nulliparous 

mice and did not see differences in those hormones. So, it is likely that an 

alternative mechanism could play role in the regulation of branching 

morphogenesis by dietary PUFAs.  

2. There were significantly smaller adipocytes in MG and abdominal fats in a ω-3 

diet-fed mice compared to the ω-6 group. The observation raises the question that 

dietary PUFA composition potentially regulates FA storage versus metabolism, 

which can be addressed in future metabolic studies.  

3. There was significantly more hepatic steatosis but lower glycogen deposits in the 

hepatocytes of mice fed an ω-6 diet relative to the ω-3 group. It is unclear if 

increases in fat droplets in hepatocytes are limiting glycogen storage, or vice 

versa. It is possible a different mechanism related to the choice of fat versus 

glycogen pathways, is regulated by PUFA composition.  

4. In metastasis studies, we evaluated multiple organs (lungs, liver, heart, kidneys, 

ovaries, and bone) and found differences in the incidence and frequency of 

metastasis in those organs. However, in our NTB studies, we analyzed hepatic 

microenvironments only as one of the representative metastatic sites. It is likely 

that dietary PUFA composition might have modulated microenvironments of the 

other organs to regulate metastatic growth to these sites. Further studies 

analyzing each of these organs are needed to address these questions. 
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5. Bone metastasis in breast cancer is regulated by cross talk between osteoclasts 

and tumor cells. The understanding of how dietary PUFA composition modulates 

osteoclastic activities in the presence and absence of tumor will help to 

understand if PUFAs aid in the formation of pre-metastatic niches in bone.  

6. We analyzed inflammatory microenvironments of tumors on day 35 post tumor 

injection for the evaluation of inflammatory cells and cytokines/growth factors. 

Since tumor immunology depends on the stage of tumor growth and progression, 

time dependent studies will help in understanding PUFA regulation of tumor 

immunology during tumor development and metastasis.  

7. Examine the therapeutic potential of ω-3 PUFA interventions. 

8. Determine the longitudinal response to ω-3 “change over” in tumor bearing mice 

9. Determine a dietary PUFA regulation of mammary tumor on brain metastasis. 

10. Analyses of metastatic burden between the mice from the dietary groups that are 

having similar tumor size. 
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