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ARID1B AND MACF1 IN MURINE BRAIN DEVELOPMENTA AND 

BEHAVIOR 

Jeffrey J. Moffat, Ph.D. 

University of Nebraska, 2018 

Supervisor: Woo-Yang Kim, Ph.D. 

Intellectual disability (ID) and autism spectrum disorder (ASD) affect between one and 

three percent of the global population. These disorders represent a significant emotional 

and financial burden for affected individuals and their families. Treatment for these 

conditions remains limited because many of the key molecular factors and associated 

pathogenic mechanisms are still poorly understood.  

In this report we examine two genes related to ASD and ID, AT-rich interactive domain-

containing protein 1B (ARID1B) and Microtubule-actin crosslinking factor 1 (MACF1). 

ARID1B is a subunit of the mammalian BRG1/BRM associated factor (BAF) chromatin-

remodeling complex, which broadly regulates gene expression. ARID1B also interacts 

with the transcription factor β-catenin, which regulates neurogenesis. Haploinsufficiency 

of ARID1B causes ID and ASD and mouse models of Arid1b haploinsufficiency exhibit 

abnormal cognitive and social behaviors and have fewer GABAergic interneurons. 

MACF1 is a member of the spektraplakin family of proteins and is responsible for 

regulating microtubule and actin  interaction and dynamics. As such, MACF1 plays a role 

in many cellular processes, such as migration and proliferation. MACF1 is a candidate 

gene for 1p34.2-p34.3 deletion syndrome, a chromosomal deletion disorder 

characterized by a greatly increased risk for autism and neurodevelopmental delay. We 

developed conditional knockout mice for both Arid1b and Macf1 in order to better 

delineate their respective roles in brain development and mouse behavior. 
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We detect a decrease in excitatory and inhibitory neural progenitor proliferation and 

survival as well aberrant cell cycle progression in Arid1b mutants. We also report 

decreased nuclear β-catenin localization and ID- and ASD-like behavioral phenotypes in 

both excitatory and inhibitory neural progenitor-specific Arid1b knockout mice. 

Conditional deletion of Macf1 in radial progenitors leads to cortical malformations and 

agenesis of the corpus callosum. It also causes increased neural progenitor proliferation 

accompanied by aberrant neuronal positioning. Macf1 conditional knockout mice also 

display ASD- and ID-like behavioral dysfunctions. 

Altogether, these results demonstrate a critical role for Arid1b and Macf1 in neural 

development and behavior and provide insight into the pathogenesis of ASD and ID. 
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CHAPTER 1: INTRODUCTION 

1.1 Genetic regulation of brain development 

1.1.1 Neuronal progenitor proliferation  

Brain development is a complex and tightly-regulated process. A precise interplay 

between genetic factors and environmental influences is required for the proper 

differentiation and organization of brain structures (Stiles and Jernigan, 2010) and a 

breakdown in one of these developmental processes can lead to severe cognitive and 

behavioral deficiencies (Machado-Salas, 1984; Takashima et al., 1991; Shinozaki et al., 

2002; Segarra et al., 2006; Dranovsky and Hen, 2007; Duan et al., 2007; Paul et al., 

2007; Lee et al., 2012; Riviere et al., 2012; Beguin et al., 2013; Callicott et al., 2013; 

Sharaf et al., 2013; Chinn et al., 2015).  

 

Neurons are the primary component of the brain, and they work, in concert with other 

brain glial cells, to carry out neural functions. Neurons arise from neural stem cells, 

primarily during embryonic development, in a process called neurogenesis (Stiles and 

Jernigan, 2010). In the developing cerebral cortex, neural progenitors can undergo self-

renewal or give rise to neurons within the ventricular/subventricular zone (Rakic, 2009; 

Franco and Muller, 2013; Greig et al., 2013). Reduced numbers of neural progenitors 

caused by depletion of progenitor pools or protracted proliferation may result in 

microcephaly with otherwise normal brain structures (Tang, 2006; Wu and Wang, 2012). 

Dysregulated neural progenitor proliferation has also been linked to genetic mutations 

and environmental insults related to many neurodevelopmental and psychiatric 

disorders, including ASD and schizophrenia (Kioussi et al., 2002; Sheen et al., 2004; 

Gotz and Huttner, 2005; Guerrini and Filippi, 2005; Hatton et al., 2006; Dranovsky and 

Hen, 2007; Duan et al., 2007; Moulding et al., 2007; Gulacsi and Anderson, 2008; 
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Yingling et al., 2008; Kim et al., 2009; Ming and Song, 2009; Ishizuka et al., 2011; Wu et 

al., 2013; Ka et al., 2014b; Hu et al., 2015; Koludrovic et al., 2015; Mariani et al., 2015; 

Pucilowska et al., 2015; Ka et al., 2017). The disruptive functions of neural progenitor 

renewal and neurogenesis may also interfere with later developmental aspects, such as 

neuronal migration and positioning in the developing brain.  

 

1.1.2 Neuronal migration and positioning 

Neuronal positioning is an integral part of the coordinated steps comprising neural circuit 

formation in embryonic and neonatal development (Martini et al., 2009). This process 

takes place throughout the nervous system at different time points depending on the 

type of neuron. Although neuronal positioning and migration occur throughout the central 

nervous system, I will primarily focus on neuronal positioning in the neocortex of the 

developing brain.  

 

Correct positioning of neurons by normal migration plays a critical role in establishing 

cognitive functions and emotion. Human cognitive activity depends on appropriate brain 

circuit formation. Disrupted brain wiring due to abnormal neuronal development, such as 

improper neuronal positioning, can result in brain malformations, cognitive dysfunction, 

and seizures (Gleeson and Walsh, 2000; Kaufmann and Moser, 2000; Wegiel et al., 

2010). The causes of brain malformations associated with positioning and migration 

defects are varied and include genetic mutations and environmental toxins (Martini et al., 

2009; Guerrini and Parrini, 2010; Liu, 2011). Studies of neuronal migration disorders 

have progressed due to advances in molecular genetics and brain magnetic resonance 

imaging. The commonly identified disorders of neuronal positioning include 

lissencephaly and heterotopia (Barkovich et al., 2012). 
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After neurons are born, they migrate from their birthplaces to their final destinations 

(Figure 1.1). There are two types of embryonic neuronal migration: radial and tangential. 

The migration of excitatory pyramidal neurons from the cortical ventricular zone (where 

they are born) is an example of radial migration (Figure 1.1A). These neurons migrate 

into the cortical plate alongside radial glial processes (Rakic, 1972; Chanas-Sacre et al., 

2000; Hartfuss et al., 2001; Noctor et al., 2001). The layers of the cortex form in an 

“inside-out” manner with later-born pyramidal neurons migrating past earlier-born 

predecessors in the cortical plate so that they are more superficial in their final position 

than earlier born neurons (Tan et al., 1998; Liu, 2011; Evsyukova et al., 2013; Sultan et 

al., 2013). In humans, neuronal migration takes place predominantly between 12 and 20 

weeks in gestation. The migration of inhibitory interneurons (GABAergic neurons) from 

the medial ganglionic eminence of the ventral telencephalon (where they are born) is an 

example of tangential migration (Figure 1.1B). Interneurons migrate tangentially to the 

dorsal telencephalon and then change direction to enter the cortical plate radially (Rakic, 

1978; Anderson et al., 2001; Molyneaux et al., 2007; Sultan et al., 2013). Subsets of 

these cells display ventricle-directed migration followed by radial movement to the 

cortical plate. Thus, neuronal migration determines the positioning of developing 

neurons into cortical layers and thereby is important in generating lamina-specific neural 

circuits. Normal development and function of the neocortex critically depends on the 

coordinated production and positioning of excitatory and inhibitory neurons (Powell et al., 

2003; Bedogni et al., 2010; Lodato et al., 2011; Bartolini et al., 2013). Abnormal neuronal 

migration can arrest different types of neurons at the wrong positions along the migratory 

path resulting in brain malformations and neurological disorders. 
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Figure 1.1 Two modes of neuronal migration in the developing brain  
(A). Radial migration. Excitatory pyramidal projection neurons migrate from the 
ventricular zone to the cortical plate in the developing brain. The right panel shows what 
happens in the rectangular box in the left panel. Newly-born neurons from radial glial 
progenitors (RGP) at the ventricular zone (VZ) migrate along the radial processes of 
RGPs. MZ: marginal zone. CP: cortical plate. IZ: intermediate zone. SVZ: subventricular 
zone. (B). Tangential migration. Inhibitory interneurons originate from distinct 
proliferative zones in the developing brain. Interneurons are born in the medial 
ganglionic eminence (MGE) of ventral brain and migrate in multiple streams into the 
cerebral wall. Once interneurons reach appropriate spots in the cerebral cortex, they 
establish their final positions by local adjustment of radial and tangential movement. 
Unlike pyramidal neurons, these neurons extend multiple leading branches during 
migration. LGE: lateral ganglionic eminence. LGE: lateral ganglionic eminence. Str: 
striatum 
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In addition to these well-defined modes of embryonic neuronal migration, a limited 

number of neurons and neuronal precursors have been shown to migrate and 

differentiate in the early postnatal rodent and human cerebellum and hypothalamus 

(Taupin and Gage, 2002; Ghashghaei et al., 2007). Another, more extensive mode of 

neuronal migration has been observed in adult rodents and non-human primates, in 

which neuronal precursors migrate along glial projections from the subventricular zone 

into the olfactory bulbs. This particular passage is referred to as the rostral migratory 

stream (RMS) (Luskin, 1993; Taupin and Gage, 2002; Ghashghaei et al., 2007), which 

continues well into adulthood, but has not been observed in humans (Sanai et al., 2004; 

Ghashghaei et al., 2007). In the RMS, neuronal precursors migrate via a “tunnel” made 

up of astrocytes into the olfactory bulb, where they then radially migrate in a glial-

independent manner toward the glomeruli and differentiate. The majority of these cells 

eventually become inhibitory neurons, mainly GABAergic granule neurons (Ghashghaei 

et al., 2007; Malagelada et al., 2011). Because the application of research tools is 

currently limited in humans, there is still ongoing debate about whether the RMS exists 

in humans (Sanai et al., 2004; Ghashghaei et al., 2007; Malagelada et al., 2011). 

It is important that further research also be done to understand the mechanisms of 

neuronal migration and the maintenance of neuronal precursor pools in adults, because 

of the potential to promote regeneration and repair in individuals with neuronal 

positioning disorders, neurodegenerative disorders, and severe brain injuries.  
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1.2 The role of chromatin-remodeler ARID1B in neural development 

ARID1B encodes AT-rich-interactive-domain-containing protein 1B (ARID1B), a 

chromatin remodeler. Haploinsufficiency of this gene has recently been linked to autism 

spectrum disorder (ASD) and intellectual disability (ID) (Hoyer et al., 2012; Santen et al., 

2012; Tsurusaki et al., 2012; Sim et al., 2015). New studies from our group and others 

have now examined the effects of heterozygous deletion of Arid1b in mice, which 

provides multiple novel insights into the mechanisms and roles of Arid1b in the 

developing brain and in behavior (Celen et al., 2017; Jung et al., 2017; Shibutani et al., 

2017). There have also been recent breakthroughs in potential pharmacologic 

treatments for ARID1B-related neurodevelopmental disorders. In this review we 

summarize and analyze these recent findings and provide potential plans for future 

research. Further understanding of ARID1B and its functions in the developing brain are 

now much more feasible with the availability and description of knockout animals and 

may play an important role in the future of neurodevelopmental and psychiatric disorder 

research. 

 

1.2.1 ARID1B mutations in human patients 

ARID1B mutations are prevalent in multiple neurodevelopmental disorders, including 

ASD, ID, and Coffin-Siris syndrome (CSS). ID is a developmental disorder characterized 

by significant limitations in both intellectual function and adaptive behavior, with an 

overall incidence estimated to be 2-3% (Sim et al., 2015). As ID is a severely 

incapacitating condition that imposes a significant burden on affected individuals and 

their families, much work has been done to identify its underlying causes. ID has a 

genetic origin in the majority of cases, and studies of X-linked, autosomal-recessive, 

syndromic and sporadic cases have resulted in the identification of several hundred ID-

associated genes. Mutational analysis in 887 patients with unexplained ID reveals nine 
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different de novo nonsense or frameshift mutations predicted to cause ARID1B 

haploinsufficiency, indicating haploinsufficiency of ARID1B as a common cause of ID 

(Hoyer et al., 2012).   

 

CSS is a rare autosomal-dominant anomaly syndrome and most affected individuals 

present with mild to severe ID. Additional features of CSS include growth deficiencies, 

microcephaly, coarse facial features, and a hypoplastic nail on the fifth finger and/or toe 

(Tsurusaki et al., 2012). To identify the genetic basis of CSS, Santen et al. utilize whole-

exome sequencing on three diagnosed individuals, revealing de novo truncating 

mutations in one copy of ARID1B in all cases. Array-based copy-number variation 

analysis in 2,000 individuals diagnosed with ID reveals 3 subjects with deletions in the 

ARID1B gene who also have phenotypes partially overlapping with that of CSS (Santen 

et al., 2012). Using exome sequencing in 23 individuals with CSS, another group show 6 

patients with de novo heterozygous mutations in the ARID1B gene, providing further 

evidence of ARID1B haploinsufficiency as a cause of CSS (Tsurusaki et al., 2012). 

 

ASD is characterized by significant communication and social interaction deficits as well 

as restricted interests and stereotyped behaviors (Walsh et al., 2011). ID is also a highly 

prevalent phenotype in individuals with ASD, seen in approximately 75% of those 

affected. Next generation sequencing and microarray analysis of samples from eight 

patients, all presenting with ID, shows de novo translocations or deletions resulting in a 

truncated copy of ARID1B in all cases (Halgren et al., 2012). Of these patients, 5 are 

diagnosed with ASD or have autistic traits. In addition, 4 of these 5 patients show corpus 

callosum abnormalities demonstrated by brain imaging. This finding suggests that 

structural defects may be associated with the cognitive and behavioral phenotypes 
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stemming from ARID1B haploinsufficiency. A separate study shows that the transcript 

level of the ARID1B gene is reduced in individuals with ASD (Nord et al., 2011).  

 

Taken together, these studies all emphasize the role ARID1B plays in proper brain 

development and behavior. Various de novo mutations resulting in haploinsufficiency 

cause ID, CSS, ASD, and corpus callosum abnormalities to varying degrees. These 

findings add to the growing evidence that mutations in chromatin-remodeling genes are 

important contributors to neurodevelopmental disorders (Ronan et al., 2013; Sokpor et 

al., 2017; Gabriele et al., 2018), and that several of these disorders with overlapping 

phenotypes have converging genetic causes.  

 

1.2.2 Arid1b knockdown and neuronal development 

Proper neurite outgrowth and maintenance, which involve coordinated changes between 

the actin cytoskeleton and the microtubule network, are critical for normal neural 

development and brain function (Tsaneva-Atanasova et al., 2009). This process is 

regulated by the SWI/BAF complex (Weinberg et al., 2013; Choi et al., 2015; Bachmann 

et al., 2016). ARID1B is a component of the BAF chromatin remodeling complex (Ho and 

Crabtree, 2010; Ronan et al., 2013) and plays an essential role in neurite outgrowth and 

maintenance. Using in utero shRNA delivery, Ka et al. show that ARID1B is required for 

dendrite outgrowth and arborization in cortical and hippocampal pyramidal neurons 

during brain development (Ka et al., 2016b). In addition to decreased dendritic 

branching, ARID1B-deficient neurons exhibit markedly decreased dendritic innervation 

into cortical layer I and fewer attachments of dendritic terminals at the pial surface (Ka et 

al., 2016b). It is noteworthy that layer I of the cerebral cortex receives inputs primarily 

from neurons in higher-order thalamic and cortical areas, and neurons in this layer 

preferentially increase their activity during attention-demanding processes (Baluch and 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/actin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytoskeleton
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Itti, 2011; van Gaal and Lamme, 2012; Larkum, 2013). Thus, the decreased dendritic 

innervation into cortical layer I caused by ARID1B deficiency may disrupt balanced 

excitatory and inhibitory inputs and thereby give rise to pathologic conditions of ID and 

ASD. 

 

Dendritic spines are the major sites of excitatory synaptic input in the brain and, 

therefore, form the basis of synaptic circuitry (Harris and Kater, 1994; Bourne and Harris, 

2008). Ka et al. show that ARID1B contributes to spine formation, maturation and 

maintenance (Ka et al., 2016b). ARID1B-deficient neurons exhibit a decreased number 

of dendritic spines and a prevalence of filopodia-like immature spines (Ka et al., 2016b). 

The aberrant dendrites and spines in ARID1B-deficient pyramidal neurons greatly 

resemble the unbranched dendritic and filopodia-like spine morphology observed in 

mouse models of ID and ASD, as well as in RETT, Down, and fragile-X syndrome (FXS) 

models (Irwin et al., 2002; McKinney et al., 2005; Jentarra et al., 2010). Thus, ARID1B 

abnormalities may contribute to clinical outcomes by creating inappropriate synaptic 

connectivity. Incorrect growth and differentiation of dendrites is linked to the pathology of 

many neurodevelopmental and psychiatric diseases including ID, ASD and 

schizophrenia (Machado-Salas, 1984; Kaufmann and Moser, 2000; Fiala et al., 2002; 

Chapleau et al., 2009; Penzes et al., 2011). Abnormalities in the dendritic differentiation 

of cortical pyramidal neurons are seen in postmortem brain samples from individuals 

with ID (Huttenlocher, 1974). A reduction in spine size along dendrites is also reported in 

Down syndrome (Marin-Padilla, 1976; Roberts et al., 1996) and altered dendrite 

arborization in cortical pyramidal neurons is found in the brains of Rett syndrome 

patients (Belichenko et al., 1994; Armstrong, 2005). 

 

1.2.3 Neural phenotypes of Arid1b knockout mice 
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Three recent independent studies, including our own, describe significant differences in 

brain anatomy and cellular composition in Arid1b heterozygous mice (Celen et al., 2017; 

Jung et al., 2017; Shibutani et al., 2017). Jung et al. observe normal density and 

distribution of pyramidal neurons, oligodendrocytes and astrocytes in Arid1b 

heterozygous mice, but find that GABAergic interneuron numbers are significantly 

reduced in Arid1b mutant mice, due to increased apoptosis and decreased proliferation 

of progenitors in the ganglionic eminence (Jung et al., 2017). The ventral ganglionic 

eminence is essential for the generation of GABAergic interneurons (Pleasure et al., 

2000; Brandao and Romcy-Pereira, 2015). GABAergic interneurons containing 

parvalbumin (PV), calretinin, somatostatin or calbindin-D28k are the primary source of 

GABA in the nervous system and play an important role in neural circuitry and activity 

(Kelsom and Lu, 2013; Butt et al., 2017). Specifically, the number of PV-positive 

interneurons is reduced in several brain regions including the cortex, amygdala, 

thalamus, and hippocampus in Arid1b heterozygous mice, but Arid1b haploinsufficiency 

does not lead to significant changes in the somatostatin-, calbindin- or calretinin-positive 

interneuron number in Arid1b heterozygous cortices (Jung et al., 2017). Decreases in 

GABAergic interneuron numbers in the cortex and hippocampus have previously been 

linked to autism and schizophrenia (Benes and Berretta, 2001; Pizzarelli and Cherubini, 

2011) and, more specifically, the number of PV-positive interneurons has been shown to 

be significantly reduced in autism and schizophrenia in both mouse models and 

postmortem brain tissue (Gogolla et al., 2009; Lawrence et al., 2010). Consistently, 

ASD-like behavioral profiles, such as social interaction and communication deficits with 

repetitive and stereotyped behavior, can be observed in PV knockout mice (Wohr et al., 

2015). Neuronal excitatory/inhibitory balance is regulated at the synaptic level, and a 

reduction in inhibitory synapse number or strength results in a shift of that balance (Gao 

and Penzes, 2015; Nelson and Valakh, 2015). As a result, excitatory/inhibitory 
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imbalance leads to broken synaptic homeostasis and facilitates the risk of the 

neurological disorders such as autism and schizophrenia. Arid1b heterozygous mice 

exhibit fewer inhibitory synaptic puncta, namely vesicular inhibitory amino acid 

transporter- (VGAT) and glutamic acid decarboxylase 2- (GAD2) positive puncta, in the 

cerebral cortex (Jung et al., 2017). In addition, glutamic acid decarboxylase 1 (Gad1) 

and Gad2 expression levels are markedly decreased in Arid1b haploinsufficient mouse 

brains. Heterozygous deletion of Arid1b also leads to abnormal miniature inhibitory 

postsynaptic currents (mIPSC) frequencies, characterized by increased inter-event 

intervals and increased inhibitory synaptic cleft width (Jung et al., 2017). Furthermore, 

GABAergic interneuron neurite number and length are decreased in Arid1b 

heterozygous mice (Jung et al., 2017). Thus, Arid1b haploinsufficiency results in 

excitatory/inhibitory imbalance via decreased GABAergic interneuron numbers and 

impaired synaptic transmission of inhibitory signals.  

 

Two other reports indicate that a small subset of Arid1b heterozygous mice are born with 

hydrocephalus (Celen et al., 2017; Shibutani et al., 2017), which corresponds well with 

some individuals with ASD (Turner et al., 2016) and a portion of patients with CSS who 

present with Dandy-Walker malformations (Schrier Vergano et al., 1993; Imai et al., 

2001). Celen et al. also report reductions in the size of the cerebral cortex, corpus 

callosum and dentate gyrus, as well as decreased adult hippocampal neurogenesis, in 

Arid1b mutant mice (Celen et al., 2017). 

 

1.2.4 Gene expression changes in Arid1b knockout mice  

The ATP-dependent BAF chromatin remodeling complex regulates gene expression via 

nucleosome remodeling (Singhal et al., 2010; Alver et al., 2017). Considering ARID1B’s 

role as a member of the BAF chromatin remodeling complex, it is unsurprising that 
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heterozygous deletion of Arid1b leads to broad changes in gene expression in the brain. 

Shibutani et al. report that many of the genes shown to be up- and down-regulated in 

Arid1b heterozygous brains are similarly altered in human patients with ASD and in 

another animal model of autism (Cdh8 heterozygous mice) (Shibutani et al., 2017). 

Celen et al. also report multiple changes in gene expression in Arid1b heterozygous 

mice, when compared to wild-type controls. In the adult hippocampus they find that 

genes associated with nervous system development and psychological, behavioral and 

developmental disorders appear to be distinctly affected. More specifically, they describe 

marked expression changes in Ephrin, nNOS, axonal guidance and glutamate receptor 

signaling pathway-related genes (Celen et al., 2017). Of the 140 differentially-expressed 

genes they identify, 91 are thought to be directly targeted by the BAF chromatin 

remodeling complex (Attanasio et al., 2014; Celen et al., 2017) and 14 are included 

amongst the highest ranking autism risk genes in the SFARI database (Basu et al., 

2009; Celen et al., 2017). A list of these genes can be found in Table 1.1.  

 

Histone modifications such as acetylation and deacetylation are important for the 

regulation of gene expression (Eberharter and Becker, 2002; Kurdistani and Grunstein, 

2003; Shahbazian and Grunstein, 2007; Bannister and Kouzarides, 2011; Lawrence et 

al., 2016).  Jung et al. report that Arid1b haploinsufficiency leads to an overall decrease 

in the acetylation of histone H3 at lysine 9 (H3K9ac) and tri-methylation of histone H3 at 

lysine 4 (H3K4me3), both markers of transcriptional activation, and an increase in tri-

methylation of histone H3 at lysine 27, a marker for transcriptional repression (Figure 

1.2) (Jung et al., 2017). They do not, however, report any global changes in histone 

acetyl-transferase (HAT) or histone deacetylase (HDAC) activity in Arid1b heterozygous 

brains, but do observe decreases in the level of acetyl-CREB-binding protein (CBP), 

which has been shown to enhance HAT function (Vecsey et al., 2007; Jung et al., 2017). 
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In a similar vein, a previous study shows that HAT and HDAC activities are regulated by 

the interaction of ARID1B with HATs or HDACs in mouse osteoblast cells (Nagl et al., 

2007). Jung et al. also report decreased protein levels for PCAF, a HAT, in Arid1b 

homozygous embryonic brains, but not in Arid1b heterozygous brains, and decreased 

binding of several HATs to H3K9 acetylated sites in Arid1b heterozygous brains (Jung et 

al., 2017).   
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Table 1.1 Selected genes with altered expression in Arid1b heterozygous mice 

GENE  FUNCTION/DESCRIPTION ASD ASSOCIATION* 

ARID1B  Chromatin Remodeler High confidence (syndromic) 

GRIN2B  NMDA receptor subunit High confidence 

ZBTB20  Transcription factor Suggestive evidence 
(syndromic) 

PRICKLE1  Nuclear receptor Suggestive evidence 

PRICKLE2  Nuclear receptor Suggestive evidence 

RBFOX1  Alternative splicing regulator Suggestive evidence 

HOMER1  Postsynaptic density scaffolding Minimal evidence 

LAMA1  Lamanin alpha 1 subunit Minimal evidence 

MKL2  Transcriptional coactivator Minimal evidence 

NBEA  A-kinase anchor protein Minimal evidence 

NTNG1  Neurite outgrowth-promoting protein Minimal evidence 

SOX5  Transcription factor Minimal evidence 

SSPO  Neuronal aggregation modulator Minimal evidence 

EGR2  Transcription factor Hypothesized 

EPHA6  Receptor tyrosine kinase Hypothesized 

ITGA4  Integrin subunit Hypothesized 

ROBO1  Membrane protein involved in axon 
guidance and cell migration Hypothesized 

 
* Based on Simons Foundation Autism Research Initiative (SFARI) numerical gene 
scoring: 1 = High confidence; 2 = Strong candidate; 3 = Suggestive evidence; 4 = 
Minimal evidence; 5 = Hypothesized; 6 = Not supported.  
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Figure 1.2 Graphical model of the neuronal effects of Arid1b haploinsufficiency 
Arid1b heterozygous mice exhibit wider inhibitory synaptic clefts and lower levels of 
transcription-activating histone post-translational modifications at specific GABAergic 
neuron-associated promoters. The latter leads to decreased phosphorylation of Ser 5 
within the CTD of RNA polymerase II at these DNA loci, which is necessary for gene 
transcription. These changes in gene expression contribute to the functional, anatomical 
and behavioral abnormalities observed in Arid1b mutant mice.  
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Corresponding with the overall reduction in PV-positive interneurons in Arid1b 

heterozygous cortices, Jung et al. observe a decrease in Pvalb and Ntrk2 transcripts in 

mutant brains. They also report that ARID1B binds to the Pvalb promoter in wild-type 

brains and that this localized binding is decreased in Arid1b heterozygous brains along 

with decreased H3K9ac in this region. One presumed effect of these changes is the 

decrease in transcriptional initiation for the Pvalb gene, shown by lower levels of the 

phosphorylated (ser5)-carboxy-terminal-domain of RNA polymerase II at the Pvalb 

promoter (Figure 1.2) (Jung et al., 2017). Therefore, ARID1B is an essential factor in 

regulating GABA neuron-associated genes through recruiting histone modification 

molecules to specific promoters and promoting chromatin remodeling for RNA 

polymerases to initiate gene transcription. These findings, in particular, provide insight 

into novel mechanisms for ARID1B-mediated gene regulation, as it appears that 

ARID1B-histone modifier interactions may act to facilitate gene transcription. It remains 

to be seen whether this is the case at the promoters of other genes altered in the Arid1b 

heterozygous mouse brain. Particularly, ARID1B may regulate histone modification at 

the Wnt signaling genes because Arid1b haploinsufficiency reduces the expression of 

Wnt-β-catenin signaling-related genes including Cyclin D1, c-Myc, n-Myc, Creb, Lef1, 

Ctnnb1, and others. (Jung et al., 2017). A number of studies show that histone 

modifications can regulate cell proliferation and differentiation as well as cell death 

(Mehnert and Kelly, 2007; Roidl and Hacker, 2014; Li et al., 2018). Wnt signaling plays 

important roles in ventral progenitor proliferation during brain development (Liebner et 

al., 2008; Brandao and Romcy-Pereira, 2015). Furthermore, expression of c-Myc, a key 

target of Wnt signaling and a cell cycle regulator, is decreased in ARID1B-deficient cells 

(Nagl et al., 2007). ARID1B deficiency also prevents the self-renewal capacity of ES 

cells (Yan et al., 2008). Thus, future studies should consider whether ARID1B can 

control Wnt-β-catenin signaling in ventral progenitor proliferation and development.  
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1.3 Genetic influences on mouse behavior 

1.3.1 The utility of mice in behavioral studies 

Due to the broad array of genetic tools available for mouse studies and the complexity of 

mouse behavior, mice have become an ideal model organism for behavioral genetics. In 

the early days of rodent studies, most behavioral abnormalities arose spontaneously in 

colonies and were only later shown to be heritable (Keeler et al., 1928; Bucan and Abel, 

2002; Greenspan, 2008). With the rise of genetics and genomics, as well as improved 

strategies for targeted genetic manipulation, researchers are now able to dissect the 

behavioral influences of genetic mutations in mice (Bucan and Abel, 2002; Heidenreich 

and Zhang, 2016). This is especially useful in studies of neurodevelopmental and 

psychiatric disorders, in which novel mutations are detected in human patients and can 

then be examined in mouse models with relative ease.  

 

1.3.2 Mouse models of autism spectrum disorder 

ASD is associated with a variety of mutated genes or copy-number variants. Because 

experimental mouse models are important for discovering the causes and pathogeneses 

of human disorders, there have been many attempts to develop genetic animal models 

of ASD based on human ASD-linked genetic mutations (Kazdoba et al., 2014). Typical 

hallmarks of ASD include impaired social behavior and communication, and repetitive 

and/or stereotyped behaviors. Additionally, ASD often presents with other co-occurring 

conditions, including depression, epilepsy, anxiety (Wing and Gould, 1979), attention 

deficit hyperactivity disorder (ADHD), ID, and motor coordination problems (Purpura et 

al., 2016). Similar behaviors are seen in animal models of ASD using specific tests 

developed to measure these behavioral abnormalities. One of the most commonly 

inherited genetic causes of ASD is FXS, which is caused by an expanded CGG repeat in 

the 5' untranslated portion of the fragile X mental retardation 1 gene (FMR1), leading to 
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deficiency or absence of the FMR1 protein (Harris et al., 2008; Kogan et al., 2009). 

Mouse models of FXS (Fmr1 knockout mice) exhibit several ASD- and ID-like behaviors 

such as anxiety, social behavior deficits, and cognitive deficiencies (Harris and Kater, 

1994; Peier et al., 2000; Yabe et al., 2004; McNaughton et al., 2008; Pietropaolo et al., 

2011; Kazdoba et al., 2014). 

Another protein closely associated with ASD is Contactin-Associated Protein Like 2, 

which is encoded by the gene CNTNAP2. Homozygous deletion of CNTNAP2 leads to 

core ASD-like behavioral symptoms, including social interaction deficits, stereotyped 

behaviors and impaired vocalization, as well as hyperactivity and seizures 

(Penagarikano et al., 2011). These mice also exhibit fewer GABAergic interneurons in 

the cortex and other brain regions, indicative of excitatory/inhibitory imbalance, and 

treatment with risperidone rescues some, but not all behavioral abnormalities 

(Penagarikano et al., 2011). 

Mutations within the gene that encodes methyl-CpG binding protein 2 (MECP2) cause 

Rett syndrome, symptoms of which include ASD-like behaviors (Chahrour and Zoghbi, 

2007). Mouse models of Rett syndrome demonstrate multiple ASD-like phenotypes 

(Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 2002; Calfa et al., 2011) and, 

interestingly, conditional deletion of Mecp2 in Vesicular inhibitory amino acid transporter-

positive (Viaat+) inhibitory neurons is sufficient to cause ASD-like behaviors and seizures 

(Chao et al., 2010).  

Another set of commonly used mouse models of ASD are Shank3 mutant mice. 

SHANK3 is a scaffolding protein enriched in postsynaptic densities (Kreienkamp, 2008) 

and mutations to SHANK3 have been observed in patients with ASD (Gauthier et al., 

2009). Three Shank3 mouse models have been developed to date, each affecting a 

different isoform or protein functional domain, and all exhibit ASD-like behavioral 

phenotypes to varying degrees (Bangash et al., 2011; Peca et al., 2011). Shank3B mice, 
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in which both the Shank3α and Shank3β forms are eliminated, exhibit the strongest 

ASD-like behaviors, including social deficits and stereotyped behavior (Peca et al., 

2011). 

There are many other genetic mutations that have been associated with ASD, some of 

which have been extensively studied while others have not (Provenzano et al., 2012). 

Comparing and contrasting the molecular, anatomical and behavioral abnormalities 

caused by each of these mutations provide insight into the pathogenesis of ASD and 

related disorders. Further detailed examinations of the roles of these genes in brain 

development and function will be necessary in order to develop effective interventions 

for individuals with sever ASD. 

 

1.4 The role of ARID1B in behavior 

Recently, three independent groups, including our own, developed mouse models of 

ARID1B haploinsufficiency. Two of the groups delete exon 5 of the Arid1b gene (Celen 

et al., 2017; Jung et al., 2017) while the other removes exon 3 (Shibutani et al., 2017), 

but both strategies appear to result in haploinsufficiency due to frameshift mutations. 

Celen et al. and Shibutani et al. generate the mutant mice using CRISPR/Cas9 gene 

editing while Jung et al. use a more traditional knockout strategy. The genetic 

background of the three mouse models is C57BL/6. Each group performed a different  

array of behavioral assays, many overlapping, and the results are generally concurrent, 

with a few exceptions. A summary of each group’s results is described in Table 1.2. All 

three groups performed the elevated plus maze test for anxiety-like behavior.  Arid1b 

heterozygous mice spend less time in the open arms of the maze and exhibit a lower 

percentage of entries into open arms, which indicates heightened anxiety (Celen et al., 

2017; Jung et al., 2017; Shibutani et al., 2017). In the open field test, Arid1b 

heterozygous mice spend less time in the center area and enter the center area less 
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frequently than controls, although their total travel distance is not different, which may 

also indicate anxiety-like behavior (Celen et al., 2017; Jung et al., 2017). In addition, 

Arid1b heterozygous mice avoid exploring the brightly-lit section in the light-dark box 

test, another common anxiety assay (Celen et al., 2017). Arid1b heterozygous mice also 

spend more time immobile in the forced swim and tail suspension tests, used to assess 

depression-like behavioral phenotypes (Jung et al., 2017), although Shibutani et al. 

report opposite results in the forced swim test (Shibutani et al., 2017).   
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Table 1.2 Summary of behavioral findings from three studies utilizing Arid1b 
heterozygous mice 

HUMAN 
BEHAVIORAL 
CORRELATE 

BEHAVIORAL 
ASSAY 

CELEN ET AL. 
2017 

JUNG ET AL. 
2017 

SHIBUTANI 
ET AL. 2017 

ANXIETY Elevated Plus 
Maze 

Heightened 
Anxiety 

Heightened 
Anxiety 

Heightened 
Anxiety 

ANXIETY Open Field Heightened 
Anxiety 

Heightened 
Anxiety Unclear 

ANXIETY Light-Dark Box Heightened 
Anxiety n/a No Change 

DEPRESSION Forced Swim n/a Increased 
Depression 

Increased 
Activity 

DEPRESSION Tail 
Suspension n/a Increased 

Depression n/a 

SOCIAL 
INTERACTION 

Three-
Chamber Test 
for Sociability 

n/a 
Decreased 

Social 
Interaction 

No Change 

SOCIAL 
INTERACTION 

Three-
Chamber Test 

for Social 
Novelty 

Preference 

n/a 
Decreased 

Social 
Interaction 

No Change 

SOCIAL 
INTERACTION 

Home-Cage 
Social 

Interaction 
n/a n/a 

Decreased 
Social 

Interaction 

SOCIAL 
INTERACTION 

Open Field 
Social 

Interaction 

Decreased 
Social 

Interaction 

Decreased 
Social 

Interaction 
No Change 

COMMUNICATION Ultrasonic 
Vocalizations 

Altered 
Communication n/a n/a 

REPETITIVE 
BEHAVIOR Grooming 

Increased 
Repetitive 
Behavior 

Increased 
Repetitive 
Behavior 

No Change 

BEHAVIORAL 
INFLEXIBILITY Barnes Maze n/a n/a 

Decreased 
Behavioral 
Flexibility 

INTELLECTUAL 
DISABILITY 

Morris Water 
Maze No Change Impaired 

Spatial Memory n/a 

INTELLECTUAL 
DISABILITY 

Novel Object 
Recognition n/a 

Impaired 
Recognition 

Memory 
n/a 

INTELLECTUAL 
DISABILITY T-Maze n/a Impaired 

Learning No Change 

INTELLECTUAL 
DISABILITY Barnes Maze n/a n/a No Change 

INTELLECTUAL 
DISABILITY/FEAR 

LEARNING 
Fear 

Conditioning No Change n/a 

Increased 
Long-Term 

Fear Memory 
and Fear 

Generalization 

PAIN RESPONSE Response to 
Foot Shock No Change n/a 

Heightened 
Response to 

Stimulus 
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As discussed above, one of the key characteristics of ASD is deficits in social behavior 

(Cohen et al., 1988). Jung et al. use the three-chamber social assay to assess social 

interaction and social novelty preference. Arid1b heterozygous mice spend less time in 

the chamber containing an unfamiliar mouse than in the empty chamber, indicative of 

impaired social interaction, and also spend less time with a novel stranger mouse than 

they do with a more-familiar stranger (Jung et al., 2017). Celen et al. report that Arid1b 

heterozygous mice spend less time interacting with unfamiliar juvenile mice compared to 

WT littermates, when placed together in a fresh cage (Celen et al., 2017). Jung et al. 

report that Arid1b heterozygous mice also spend less time interacting with one another 

when two unfamiliar mice of the same genotype are placed in the open field, compared 

with WT controls (Jung et al., 2017). Shibutani et al. evaluate social behavior between 

mice of the same genotype in a home-cage environment and observe decreased 

interaction between Arid1b heterozygous mice, compared with WT controls. In open field 

social interaction and three-chamber sociability and social novelty tests, however, 

Shibutani et al. do not report any differences between Arid1b heterozygous and control 

mice (Shibutani et al., 2017). This discrepancy could be due to a multitude of factors 

including animal stress, differences in protocols or environmental stimuli. Taken 

together, however, all three groups report significant impairments in social behavior in 

Arid1b heterozygous mice (Celen et al., 2017; Jung et al., 2017; Shibutani et al., 2017). 

These results agree with those seen in other mouse models of ASD, including 

haploinsufficiency of Chd8 (Katayama et al., 2016). 

 

Intellectual disability is a common comorbid disorder with ASD and is present in patients 

with haploinsufficient mutations of ARID1B (Yu et al., 2015a), as well as in FXS (Harris 
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et al., 2008). Arid1b heterozygous mice present with learning and memory deficits (Jung 

et al., 2017), which have also been observed in previous animal models of ASD (Kim et 

al., 2014). Jung et al. perform the Morris water maze test to assess cognitive function in 

Arid1b heterozygous mice. These mutant mice exhibit increased escape latencies during 

training trials and spend less time in the target quadrant during probe trials, with no 

changes in the distance or speed of swimming, compared with controls (Jung et al., 

2017). However, another group reports that Arid1b heterozygous mice do not exhibit 

cognitive deficits as measured by the Morris water maze test (Celen et al., 2017). Celen 

and colleague’s results are unexpected and somewhat surprising given the strong 

neurogenetic evidence of Arid1b haploinsufficiency causing intellectual disability 

(Halgren et al., 2012; Hoyer et al., 2012; Santen et al., 2012). Jung et al. also perform 

the novel-object recognition test to assess recognition memory. They find that Arid1b 

heterozygous mice demonstrate no preference for a novel object over a familiar one, 

whereas control mice spend considerably more time interacting with the novel object 

(Jung et al., 2017). Arid1b heterozygous mice are also less successful in the T-maze 

test, compared to controls (Jung et al., 2017). However, Shibutani et al. report that their 

Arid1b heterozygous mice do not demonstrate any deficiencies in the T-maze test, 

although they did not publish any of this data or report the method or protocol used 

(Shibutani et al., 2017). In addition, Celen et al. report that Arid1b heterozygous mice 

respond normally to foot shocks and perform similarly to controls in fear conditioning 

tests, while Shibutani et al. report that Arid1b heterozygous mice display a heightened 

response to foot shocks and enhanced performance in fear conditioning tests (Shibutani 

et al., 2017). Reports on FXS mouse models are also inconsistent in contextual and 

cued fear conditioning tests (Paradee et al., 1999; Dobkin et al., 2000; Van Dam et al., 

2000; Auerbach et al., 2011; Ding et al., 2014; Kazdoba et al., 2014), which implies that 



24 

these fear conditioning paradigms may be unreliable methods for testing cognitive 

deficits in genetic mouse models of ID  

 

In summary, Arid1b heterozygous mice demonstrate anxiety-like behavior, social 

behavior deficits and learning/memory impairments. Although there exists some 

contradiction regarding the results of a subset of individual behavioral assays, Arid1b 

heterozygous mice conveniently recapitulate many ASD-like and ID-like behavioral 

profiles, similar to those seen in other mouse models (Bilousova et al., 2009; Kazdoba et 

al., 2014; Katayama et al., 2016). Therefore, Arid1b heterozygous mouse models 

present a useful opportunity for advancing our understanding of the pathogenesis and 

underlying mechanisms of neurodevelopmental disorders and related behavioral 

defects. 

 

1.5 GABA modulation as a therapeutic intervention for Arid1b haploinsufficiency-

induced neurodevelopmental conditions  

As stark decreases in PV-positive interneurons are seen in Arid1b heterozygous 

cortices, Jung et al. attempt to rescue some of the behavioral deficits in these mice using 

a positive allosteric modulator for the GABAA receptor, clonazepam (Jung et al., 2017). 

Clonazepam is shown to be effective in treating seizures and anxiety in humans (Dahlin 

et al., 2003) and also effectively ameliorates some of the behavioral deficits in the BTBR 

mouse ASD model (Han et al., 2014). Accordingly, Jung et al. observe that 

intraperitoneal injection of clonazepam at a concentration of 0.0625 mg/kg 30 minutes 

prior to behavioral assays is sufficient to rescue impaired recognition memory, social 

memory and heightened anxiety-like behavior in Arid1b heterozygous mice but has no 

measurable effect on depression-like behaviors. Clonazepam treatment also rescues the 

decreased mIPSC frequency in Arid1b heterozygous mice (Jung et al., 2017). While it is 
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encouraging to see that treatment with a GABA allosteric modulator is sufficient to 

rescue several of the hallmark behavioral abnormalities in this mouse model of ASD and 

ID, attempted restoration of the excitatory/inhibitory imbalance in Arid1b heterozygous 

mice does not lead to improvements in all behavioral tests. Thus, there appears to be 

more at play in this mouse model than a gross reduction in the interneuron population. 

Clonazepam, or related drugs, may still prove to alleviate some of the symptoms caused 

by excitatory/inhibitory imbalance, be it due to ARID1B haploinsufficiency or other 

causes. It is especially promising that this treatment leads to improved behavior in adult 

mice, which may indicate that treatment during a critical developmental window may not 

be entirely necessary to treat all consequences of ARID1B haploinsufficiency. A deeper 

understanding of the cell-types and circuits regulating the behaviors related to ASD and 

ID will be required to develop more targeted therapies. 

 

1.6 Arid1b haploinsufficiency and body growth  

All three groups find reduced body weight at multiple ages in Arid1b heterozygous mice, 

compared with controls (Celen et al., 2017; Jung et al., 2017; Shibutani et al., 2017).  

Jung et al. report that females show less obvious weight differences than males (Jung et 

al., 2017). Mice lacking one copy of Arid1b also develop disproportionately small kidneys 

and hearts (Celen et al., 2017). Celen et al. hypothesize that the growth hormone-

releasing hormone–growth hormone–Insulin-like growth factor (GHRH-GH-IGF) axis 

deficiencies could be responsible for the smaller body size observed in Arid1b 

heterozygous mice and the short stature reported in ARID1B human patients (Santen et 

al., 2012; Celen et al., 2017). They report reduced IGF1 protein levels in the plasma and 

lower Igf1 mRNA levels in the liver but no changes in GH in the pituitary gland or fasting 

plasma of Arid1b heterozygous mice. The pituitary gland also appears to respond 

normally to GHRH stimulation and they detect no change in Ghrh mRNA levels in the 
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hypothalamus.  

 

To ascertain whether this reduction in IGF1 in Arid1b heterozygous mice is indeed due 

to a problem with CNS control of the GHRH-GH-IGF axis, Celen et al. conditionally 

delete one copy of Arid1b in the CNS and PNS or in the liver by crossing Arid1bFl/+ mice 

with Nestin-Cre mice or Albumin-Cre mice, respectively. The Nestin-Cre; Arid1bFl/+ mice 

present with a similar growth impairment and a reduction in plasma IGF1 levels with no 

accompanying increase in GH. Albumin-Cre; Arid1bFl/+ mice do not demonstrate any 

significant differences in body size or in plasma IGF levels, when compared to controls. 

Neuron-specific haploinsufficiency of Arid1b is, therefore, the cause of the growth 

retardation and GHRH-GH-IGF deficiencies observed in Arid1b heterozygous mice 

(Celen et al., 2017). It should be noted, however, that the Nestin-Cre mouse driver line 

has been reported to have hypopituitarism, decreased anxiety-like behavior and lower 

body weight (Galichet et al., 2010; Harno et al., 2013; Giusti et al., 2014; Declercq et al., 

2015). As Celen et al. do not include the Cre-driver lines as controls in their conditional 

knockout experiments (Celen et al., 2017), these results should be cautiously interpreted 

until they can be independently confirmed. Celen et al. also attempt to treat the smaller 

body size and weight by correcting the apparent GHRH-GH-IGF deficiencies. They first 

treat Arid1b heterozygous mice with recombinant human IGF1, but this does not have 

any measurable effects on body weight or anxiety-like behavior. Treatment with 

recombinant mouse GH for 40 consecutive days, however, is sufficient to rescue the 

growth deficits and grip weakness in Arid1b haploinsufficient mice but has no 

measurable effect on anxiety-like behavior (Celen et al., 2017). 

 

1.7 MACF1 in nervous system development and maintenance 
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Microtubule-actin crosslinking factor 1 (MACF1), also widely known as actin crosslinking 

factor 7 (ACF7), is a member of the spectraplakin family of cytoskeletal crosslinking 

proteins. Spectraplakins are large proteins distinguished by their ability to bind to 

different cytoskeletal networks. There are only two known mammalian spectraplakins, 

MACF1/ACF7 and bullous pemphigoid antigen 1 (BPAG1)/dystonin, but this family of 

proteins is evolutionarily conserved in most multicellular organisms (Suozzi et al., 2012). 

MACF1 was originally identified as an actin-crosslinking protein in 1995 (Byers et al., 

1995) and it belongs to a subset of microtubule plus-end tracking proteins (+TIPs), 

functioning at the microtubule plus-end to coordinate microtubule and F-actin 

interactions at the plasma membrane (Gupta et al., 2010).  The most widely researched 

function of MACF1 is in regulation of cytoskeletal proteins, specifically F-actin and 

microtubules (Leung et al., 1999). Microtubules, the actin cytoskeleton and their 

interacting components are involved in many polarized cellular processes including cell 

shape, cell division, intracellular transport, adhesion, and cell migration (Goode et al., 

2000; Yarm et al., 2001; Palazzo and Gundersen, 2002; Rodriguez et al., 2003). MACF1 

interacts with microtubules and F-actin via distinct microtubule and actin-binding 

domains to regulate the polarization of cells and coordination of cellular movements 

(Leung et al., 1999; Sun et al., 2001; Suozzi et al., 2012). MACF1 stabilizes the 

downstream cytoskeleton structure by either directly binding to microtubules or forming 

links between microtubules and F-actin (Kodama et al., 2003), and plays an important 

role in cell migration via its regulation of Golgi polarization (Etienne-Manneville, 2004; 

Siegrist and Doe, 2007). This large and complex protein, however, is involved in a wide 

range of cellular signaling networks and processes, including Wnt/β-catenin signaling, 

cell migration, proliferation, survival and autophagy (Chen et al., 2006; Goryunov et al., 

2010; Munemasa et al., 2012; Jorgensen et al., 2014; Sohda et al., 2015; Ka et al., 

2016a). MACF1 has recently received increased attention due to its broad expression in 

https://en.wikipedia.org/wiki/Microtubule
https://en.wikipedia.org/wiki/Actin
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the nervous system, more specifically, in the brain (Bernier et al., 2000; Goryunov et al., 

2010; Ka et al., 2014a). MACF1 mutations have been linked to neurological diseases 

including Parkinson’s disease (PD), autism spectrum disorder (ASD), and schizophrenia 

(Levinson et al., 2011; Kenny et al., 2014; Wang et al., 2016). On a related note, several 

contemporary studies from our group and others have found that MACF1 is essential for 

proper neural progenitor proliferation, neuronal migration and neurite development 

(Sanchez-Soriano et al., 2009; Goryunov et al., 2010; Ka et al., 2014a; Ka and Kim, 

2016; Ka et al., 2016a).  

 

Here, we provide a brief overview of the MACF1 protein and its known functions and 

interactions, followed by an in-depth analysis of the roles of MACF1 in nervous system 

development and function. We also seek to highlight current research questions and 

potential explanations relating to MACF1 and its neuronal activities and related 

disorders. 

 

1.7.1 Isotype structure and expression  

MACF1 is expressed in multiple tissues throughout the body and has various isoforms 

with distinctive structures. MACF1 is a large protein of ~600 kD (Byers et al., 1995) and 

its primary function is cross-linking microtubules and F-actin microfilaments. MACF1 is 

encoded by the MACF1 gene, which is located on the human chromosome 1p32 and on 

chromosome 4 in mice (Byers et al., 1995; Bernier et al., 1996; Gong et al., 2001), and is 

a unique hybrid of dystrophin/spectrin and plakin genetic domains (Leung et al., 1999; 

Gong et al., 2001). The MACF1 actin-binding domain (ABD) is located at the N-terminus 

and is composed of either one or two calponin homology domains, CH1 and CH2, 

respectively (Way et al., 1992; Winder et al., 1995; Leung et al., 1999; Karakesisoglou et 
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al., 2000; Bandi et al., 2015). Furthermore, the MACF1 ABD is conserved within the 

spectrin superfamily (Winder et al., 1995; Leung et al., 1999). Adjacent to the ABD in the 

N-terminus, all MACF1 isoforms possess a plakin domain stemming from spectrin 

repeats (Leung et al., 1999; Karakesisoglou et al., 2000; Sun et al., 2001; Jefferson et 

al., 2007), which can be observed throughout the plakin superfamily (Roper et al., 2002). 

Separating the functionally distinct N- and C-terminal domains, each MACF1 protein 

exhibits 23 flexible, α-helical spectrin repeats in one domain (Yan et al., 1993; Pascual et 

al., 1997; Leung et al., 1999; Roper et al., 2002; Suozzi et al., 2012). At the C-terminus 

of MACF1, two calcium-binding EF-hand motifs can be found (Sun et al., 2001), followed 

by a spectraplakin-specific Gas2-related protein (GAR) domain responsible for 

microtubule binding and stabilization (Figure 1.3A) (Leung et al., 1999; Sun et al., 2001; 

Roper et al., 2002).  
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Figure 1.3 MACF1 structure and role in the Wnt/β-catenin signaling 
(A) General protein structure of MACF1. The five functional domains found in most 
MACF1 isotypes are shown: the actin-binding domain (ABD) comprised of CH1 and CH2 
fragments, a plakin domain, 23 α-helical spectrin repeats, two EF hand motifs, and a 
GAR domain at the C-terminus. CH1: calponin homology domain 1. CH2: calponin 
homology domain 2. GAR: Gas2-related domain. (B) MACF1 knockdown inhibits Wnt/β-
catenin signaling. In the absence of MACF1, Axin is unable to translocate to the cell 
membrane and facilitate the release of β-catenin from its destruction complex. LRP5/6: 
low-density lipoprotein receptor-related protein 5/6. GSK-3: glycogen synthase kinase-3. 
APC: adenomatous polyposis coli. 
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There are six identified murine MACF1 isoforms (Hu et al., 2016). The first three 

isoforms to be discovered are currently known as MACF1a1, MACF1a2 and MACF1a3 

(Bernier et al., 1996; Lin et al., 2005). They possess identical 3’ RNA sequences, but 

display significant variation in the 5’ region leading to distinct protein N-termini (Bernier 

et al., 1996). MACF1a1 and MACF1a2 are both broadly expressed, although MACF1a1 

is more predominantly found in the kidney, stomach and skin (Bernier et al., 1996; 

Bernier et al., 2000; Lin et al., 2005). MACF1a2 is detected at higher levels in the lung 

and central nervous system (Bernier et al., 1996; Okuda et al., 1999; Bernier et al., 

2000; Lin et al., 2005). MACF1a3 expression is mainly restricted to the brain and spinal 

cord (Bernier et al., 1996; Bernier et al., 2000). In 2001, a fourth MACF1 isoform, 

MACF1-4, was discovered, with heightened expression levels in the placenta, pituitary 

gland, heart and lung. MACF1-4 is unique in that it lacks an ABD and instead expresses 

a series of plectin repeats at its N terminus (Gong et al., 2001). Successively, a further, 

exceptionally-large MACF1 isoform, MACF1b, was found to be expressed throughout 

the body. It contains additional plakin repeats between its N-terminal plakin domain and 

its spectrin repeat domain (Lin et al., 2005).  The most recent MACF1 isoform to be 

isolated, MACF1c, is thought to only be expressed in the nervous system. It is 

structurally similar to the MACF1a isoforms but lacks an ABD at its N-terminus 

(Goryunov et al., 2010). A recent, brief review from Hu et al. provides a summary of all 

MACF1 isotypes and their functions (Hu et al., 2016).  

 

In mice, MACF1 is broadly expressed throughout the developing brain. MACF1 protein 

can be detected in somas and neurites of cortical neurons (Ka et al., 2014a). During 

early brain development, MACF1 levels are highest in the ventricular zone and upper 

cortical areas near the marginal zone of the developing cerebral cortex (Ka et al., 
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2014a). As neurodevelopment progresses, MACF1 expression in the ventricular zone 

gradually decreases while MACF1 levels in the cortical plate steadily increase, following 

the established pattern of radial neuronal migration (Ka et al., 2014a). Additionally, 

MACF1 expression in postmitotic neurons is mainly restricted to the marginal zone at 

early stages of brain development, but transitions into the cortical plate by embryonic 

day 15.5 (E15.5) (Ka et al., 2014a), indicating that MACF1 may participate in neuronal 

migration and differentiation.  

 

1.7.2 Cellular signaling associated with MACF1  

Beyond its role crosslinking cytoskeletal proteins, MACF1 is actively involved in multiple 

signaling cascades. In 2006, Chen and colleagues published that Macf1 knockout 

(Macf1-/-) mice do not survive beyond gastrulation, as evidenced by a failure to develop a 

primitive streak, node or axial mesoderm. Interestingly, they also found that knockout of 

BPAG1, a closely related plakin protein, had strikingly different effects (mice survived 

until weaning), indicating a unique role for MACF1 in regulation of embryonic 

development (Chen et al., 2006). They further noted that the developmental defects 

present in Macf1-/- embryos mirror those seen in Wnt3-/- and LRP5/6 double-knockout 

mice (Liu et al., 1999; Kelly et al., 2004; Chen et al., 2006), indicating a potential role for 

MACF1 in the Wnt/β-catenin signaling pathway. Consequently, they demonstrated that 

MACF1 interacts with the β-catenin destruction complex in the cell, binding directly to 

Axin using the MACF1-spectrin repeat 0 (SR0) domain. The SR0 domain is defined as 

the region between the MACF1 plakin domain and the first Spectrin repeat (Chen et al., 

2006; Ortega et al., 2016). They also illustrated that MACF1 knockdown successfully 

inhibits Wnt/β-catenin signaling, acting upstream of GSK-3β. It was further shown that 

MACF1 interacts directly with Wnt co-receptors LRP5/6 at the cell membrane via its SR0 
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domain and that MACF1 knockdown or overexpression of a mutant MACF1 SR0 

dominant-negative protein fragment  prevents Axin translocation to the cell membrane 

(Figure 1.3B) (Chen et al., 2006).  

 

Interestingly, it was later shown that MACF1 is directly phosphorylated by GSK-3 at its 

C-terminal microtubule-binding domain in skin stem cells, effectively preventing MACF1-

microtubule interactions and nullifying microtubule polarization along actin focal-

adhesion networks (Wu et al., 2011). We have demonstrated that MACF1 and GSK-3 

physically bind to one another and that MACF1 is phosphorylated in a GSK-3-dependent 

manner in the developing brain (Ka et al., 2014a), similar to what was seen in skin stem 

cells (Wu et al., 2011). It is unclear, however, whether the GSK-3 and MACF1 interaction 

is part of the Wnt destruction complex or downstream of growth factor signaling. While 

Wnt signaling utilizes a protein-protein interaction mechanism to control GSK-3, growth 

factors regulate a different pool of GSK-3 in the cell by phosphorylation at serine 21 (α) 

and 9 (β). Both signaling pathways are thought to be insulated. Wu and colleagues have 

shown that phosphorylation-refractile constructs of GSK-3 modulate MACF1 

phosphorylation and activity in skin cells (Wu et al., 2008; Wu et al., 2011). Thus, at least 

a part of MACF1 regulation by GSK-3 appears to be induced by growth factor signaling. 

In a breast carcinoma model, it was found that MACF1 is involved in microtubule 

stabilization via an ErbB2 receptor tyrosine kinase signaling pathway. Heregulin β 

activates ErbB2, which leads to the phosphorylation and inhibition of GSK-3 through the 

Memo-RhoA-mDial pathway. Inhibition of GSK-3 kinase activity blocks the 

phosphorylation of two other cytoskeletal regulators, adenomatous polyposis coli (APC) 

and cytoplasmic linker-associated protein 2 (CLASP2), and their subsequent 
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translocation to the cell membrane. MACF1 is recruited to the membrane by APC, but 

not CLASP2, where it regulates microtubule dynamics (Zaoui et al., 2010). 

 

Additionally, MACF1 plays a role in DOCK 180-ELMO-Rac signaling in cell 

protrusion/lamellipodium extension during cell migration. In this system, ELMO recruits 

MACF1 to sites of emerging protrusions, where MACF1 orchestrates microtubule 

capture and stabilization (Margaron et al., 2013). Following stimulation by integrin, Elmo 

and MACF1 colocalize at the cell membrane (Margaron et al., 2013; Hu et al., 2016). 

MACF1 then organizes the cytoskeleton to extend stable membrane protrusions 

(Margaron et al., 2013).  

 

MACF1 is also integrally involved in some forms of vesicular trafficking, specifically 

relating to axonal vesicle transport (Burgo et al., 2012) and autophagy (Sohda et al., 

2015). MACF1 can act as a Rab21 effector. The complex of Rab21, Kif5A, GolginA4, 

and MACF1 acts together to transport TI-VAMP from the Golgi to neurite tips along 

microtubule (Burgo et al., 2012). In autophagy, MACF1 and its binding partner, the trans-

Golgi protein p230, are responsible for trafficking of mAtg9 from the trans-Golgi network 

to the cell surface, a necessary step in phagophore formation. MACF1 knockdown 

impairs mAtg9 transport and blocks early steps in autophagy in a state of amino acid 

starvation (Sohda et al., 2015). 

 

1.7.3 MACF1 in cell proliferation  

Cell proliferation is the process that results in an increased number of cells. During cell 

division, microtubule and actin interactions regulate spindle positioning and cytokinesis. 
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Abnormal microtubules and actin cytoskeleton dynamics cause cytokinesis defects, thus 

altering cell proliferation (Hossain et al., 2003; Zhu et al., 2005; Moulding et al., 2007). In 

osteoblast cells, MACF1 knockdown inhibits cell proliferation and induces S phase cell 

cycle arrest (Hu et al., 2015). Additionally, the microtubule organizing center (MTOC) 

fails to form in proximity to the condensed α-tubulin fibers surrounding the nucleus in 

osteoblasts(Hu et al., 2015). These observations indicate dysregulated cytokinesis 

following MACF1 knockdown (Hossain et al., 2003; Zhu et al., 2005; Moulding et al., 

2007; D'Avino et al., 2015). Wu and colleagues, however, have observed no significant 

deficit in cell proliferation in epidermal or endodermal cells in the absence of MACF1 

expression (Wu et al., 2008; Wu et al., 2011). This cell type-specific function of MACF1 

could be explained by unknown unique MACF1 protein-protein interactions in osteoblast 

cells or by additional proteins fulfilling the same functional role as MACF1 in epidermal 

and endodermal cells during cytokinesis (D'Avino et al., 2015; Hu et al., 2015). Taken 

together, these findings may provide insight into the role of MACF1 in the proliferation of 

neural progenitor cells.   

 

In dividing neural progenitor cells, proper positioning of the centrosome, the main 

MTOC, is necessary for cell proliferation (Higginbotham and Gleeson, 2007). Neurons 

originate from a limited number of neural progenitor cells during embryonic development 

(Homem et al., 2015). Neural progenitors can either self-renew (symmetric division) or 

undergo the process of neurogenesis, in which one daughter remains a neural 

progenitor cell and the other undergoes sequential differentiations toward becoming a 

neuron (asymmetric division) (Gotz and Huttner, 2005; Huttner and Kosodo, 2005; 

Rakic, 2009; Franco and Muller, 2013; Greig et al., 2013; Homem et al., 2015). This 

process takes place in the ventricular zone (VZ) or subventricular zone (SVZ) of the 

http://topics.sciencedirect.com/topics/page/Progenitor_cell
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developing cerebral cortex for most excitatory pyramidal neural progenitors and in the 

VZ or SVZ of the medial ganglionic eminence (MGE) for most inhibitory interneuron 

progenitors (Gotz and Huttner, 2005; Huttner and Kosodo, 2005; Franco and Muller, 

2013; Greig et al., 2013; Homem et al., 2015). Throughout the process of neurogenesis, 

a significant reorganization of cellular components is required before mitosis can take 

place. Following the completion of S phase, the nucleus must migrate before apical 

mitosis can be undergone in a process known as interkinetic nuclear migration, which 

requires the interplay of the actin and microtubule cytoskeletons (Taverna and Huttner, 

2010; Miyata et al., 2014; Mora-Bermudez and Huttner, 2015). Initially, neural 

progenitors and/or stem cells divide symmetrically along a vertical axis before 

asymmetrical division along a horizontal axis can begin (Gotz and Huttner, 2005; 

Taverna et al., 2014; Mora-Bermudez and Huttner, 2015). The plane of neural progenitor 

division is highly regulated by the cytoskeleton, specifically the orientation of mitotic 

spindles (Konno et al., 2008; Mora-Bermudez et al., 2014; Mora-Bermudez and Huttner, 

2015), thus microtubules and their regulatory proteins are crucial to proper proliferation 

and cell division throughout neural progenitor proliferation (Mora-Bermudez et al., 2014; 

Zigman et al., 2014; Homem et al., 2015; Mora-Bermudez and Huttner, 2015). During 

mitosis, microtubule assembly and disassembly at the plus- and minus-ends is required 

for proper separation of chromosomes and cytokinesis (Tanenbaum et al., 2006; Howard 

and Hyman, 2007; Mayr et al., 2007; Ferreira et al., 2014). +TIPs crucially regulate 

microtubule dynamics during cell division and must be maintained at proper levels 

(Wade, 2009; Ferreira et al., 2014), as abnormal microtubule stabilization can suppress 

microtubule dynamics, preventing cell division and resulting in apoptosis (Wood et al., 

2001; Wade, 2009).  Like other +TIPs, MACF1 is localized to microtubule plus-ends and 

physically interacts with several other +TIPs, including EB1, APC and CLASP (Chen et 

al., 2006; Scheffler and Tran, 2012), and regulates centrosome movement (Ka et al., 
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2014a). All of this circumstantial evidence suggests the importance of MACF1 in neural 

cell proliferation. However, its function in this process is still unclear.    

 

Examining a Macf1 conditional knockout mouse model (Macf1 cko), in which Macf1 

expression is eliminated in the developing nervous system, Goryunov and colleagues 

observed extensive heterotopia, or distinct disorganization of neural layers, in the cortex 

and hippocampus of Macf1 cko mice (Goryunov et al., 2010). The majority of early-born 

cortical neurons were found in their proper, deep layers, whereas neurons with a late-

born phenotype appeared to be mixed in with the deep-layer neurons and not in their 

typical outer cortical layers  (Goryunov et al., 2010). Heterotopia is often attributed to 

neuronal migration impediments but can also be caused by defective neuronal 

proliferation. It is unclear whether the layer positioning defects in Macf1 cko mice are 

due to a reduced neuronal migration rate, aberrant migratory guidance, or defective 

neuronal proliferation (Goryunov et al., 2010).   

 

1.7.4 MACF1 in neuronal and non-neuronal cell migration 

Cell migration is a fundamental cellular process and is essential for embryonic 

development, tissue repair and regeneration, and tumor metastasis (Watanabe et al., 

2005). Cell migration begins with various extracellular cues such as chemokines and 

signals from the extracellular matrix that lead to the polarization and the extension of 

protrusions in the direction of movement (Horwitz and Webb, 2003). Migrating cells must 

acquire a polarized, asymmetric morphology and develop a single leading edge with one 

filopodia (Lauffenburger and Horwitz, 1996). During the migration process, cells actively 

reorganize the actin cytoskeleton and microtubules (Watanabe et al., 2005).  MACF1 

directly interacts with other +TIPs, such as the EB1 protein, to recruit cell polarity and 
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signaling molecules to microtubule tips (Slep et al., 2005). MACF1 also interacts with 

CLASP2, another +TIP protein, and regulates CLASP localization. CLASP2 is involved 

in microtubule stabilization and is required for efficient, persistent motility (Drabek et al., 

2006). It was recently discovered that MACF1 also directly interacts with the ELMO 

protein (engulfment and cell motility protein), as mentioned above. ELMO1 recruits 

MACF1 to the cell membrane, where MACF1 regulates microtubule capture and 

stabilization of cellular protrusions (Margaron et al., 2013).  

 

In MACF1 null cells, many microtubules exhibit irregular trajectories and are more 

sensitive to depolymerizing agents. Moreover, loss of MACF1 causes defective 

polarization of stable microtubules in epidermal cells, and a lack of coordinated migration 

in response to wounding (Kodama et al., 2003). . In migrating skin stem cells, GSK-3β 

phosphorylates the microtubule-binding domain of MACF1, resulting in the dissociation 

of MACF1 from microtubules. Thus, phosphorylation of MACF1 is necessary for 

microtubule growth and for skin stem cell migration (Wu et al., 2011). Moreover, it was 

recently suggested that the FAK/Src kinase phosphorylation of MACF1 is essential for its 

binding to F-actin and coordination of cytoskeletal dynamics at focal adhesions. The 

effects of MACF1 phosphorylation in focal adhesion dynamics and cell motility have 

been clearly observed in epithelial cells (Yue et al., 2016). In motile fibroblasts, MACF1 

regulates cortical CLASP localization, allowing microtubule stabilization and promoting 

directionally persistent motility (Drabek et al., 2006). In breast carcinoma cells, the 

ErbB2 receptor controls microtubule capture by recruiting MACF1 to the plasma 

membrane, where MACF1 contributes to microtubule guidance and capture in migrating 

cells (Zaoui et al., 2010). miR-34a regulates cytoskeletal proteins such as MACF1, 

LMNA, GFAP, ALDH2 and LOC100129335, and transfection of miR-34a into carcinoma 
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cells causes inhibition of cell migration and invasion (Cheng et al., 2010). 

 

Neuronal migration and positioning are critical steps for establishing functional neural 

circuitry in the developing brain. Therefore, abnormal neuronal migration during 

development causes brain malformations, which have been linked to a variety of 

neurodevelopmental and neuropsychiatric diseases such as ASD, attention deficit 

hyperactivity disorder (ADHD), intellectual disability, and schizophrenia (Gleeson and 

Walsh, 2000; Kaufmann and Moser, 2000; Jan and Jan, 2010; Wegiel et al., 2010). 

Neuronal migration is also a dynamic process, which requires persistent reconstruction 

of the cytoskeleton. In this context microtubules and microtubule-related proteins, 

including MACF1, play important roles in the regulation of neuronal migration during 

brain development (Feng and Walsh, 2001; Bielas and Gleeson, 2004; Xie et al., 2006). 

We and others have reported that MACF1 is highly expressed in the nervous system 

and developing brain (Leung et al., 1999; Ka et al., 2014a). Macf1 conditional knockout 

brains using a nestin-cre driver display partially-mixed upper- and deeper-layer neurons 

in the cerebral cortex (Goryunov et al., 2010). The expression pattern of MACF1 and the 

heterotopic cortical phenotype in Macf1/nestin-cre conditional knockout mice strongly 

suggest a role for MACF1 in neuronal migration. Indeed, our study shows that neuron-

specific Macf1 deletion using a Nex-cre driver or in utero electroporation of the Dcx-cre-

iGFP construct suppresses the radial migration of cortical pyramidal neurons, resulting in 

aberrant positioning of excitatory pyramidal neurons in the cortical layers (Ka et al., 

2014a). During radial neuron migration, MACF1 regulates leading process 

morphogenesis and dynamics. Macf1-deleted neurons develop short and unstable 

leading processes resulting in unidirectional and slow radial neuron migration. Also, 

Macf1-deleted pyramidal neurons exhibit microtubule destabilization and static 
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centrosomes (Ka et al., 2014a). Centrosomes show dynamic back-and-forth movements 

along the leading process to pull the soma during normal neuron migration. However, 

centrosomes in Macf1-deleted neurons have little movement and remain close to the cell 

body, resulting in the creation of insufficient tension for somal translocation. Thus, 

MACF1-mediated regulation of microtubule stability and centrosome movement 

contributes to radial neuron migration in the developing brain. Consistent with migrating 

skin stem cells, GSK-3-mediated phosphorylation is an important mechanism for the 

MACF1 function in neuronal migration (Wu et al., 2011; Ka et al., 2014a). In addition to 

the role of MACF1 in radial migration, we have recently shown that MACF1 is also a key 

molecule in tangential neuron migration (Ka et al., 2016a). MACF1 is highly expressed in 

the tangential migratory stream (Ka et al., 2016a). Macf1 deletion in interneuron 

progenitors and progeny using Nkx2.1-cre or Dlx5/6-cre lines results in abnormal 

migration and defective positioning of GABAergic inhibitory interneurons in the mouse 

cerebral cortex and hippocampus (Ka et al., 2016a). Macf1-deleted GABAergic 

interneurons show slower speed and aberrant orientation of movement during migration. 

Importantly, MACF1 regulates the transition of migration direction from a tangential to a 

radial route during cortical development (Ka et al., 2016a). Macf1-deleted interneurons 

develop abnormal leading processes and disrupted microtubule stability and severing 

(Ka et al., 2016a). Overall, MACF1 is an essential regulator of cell migration via its 

management of microtubule and actin cytoskeleton dynamics. 

 

1.7.5 MACF1 in neurite development 

Neurite outgrowth is an essential event in neural development, which involves 

coordinated changes between the actin cytoskeleton and the microtubule network (da 

Silva and Dotti, 2002; Tsaneva-Atanasova et al., 2009). This process is regulated by 



41 

various proteins that manipulate the cytoskeletal network by various means (Belliveau et 

al., 2006; Tian et al., 2015). Recent studies indicate that MACF1 plays a vital role in 

neurite outgrowth. MACF1 controls the extension and differentiation of neurites in 

Drosophila neurons (Sanchez-Soriano et al., 2009). Knockdown of MACF1 decreases 

axon outgrowth, a process dependent on its F-actin- and microtubule-binding domains in 

Drosophila neuronal cultures (Sanchez-Soriano et al., 2009). We have recently provided 

evidence that supports the MACF1 function in mouse neurite growth in vivo (Ka and 

Kim, 2016). Using an in utero electroporation method and conditional knockout mouse 

lines to generate temporal and spatial Macf1 deletion, we have knocked out or down 

Macf1 in developing cortical and hippocampal pyramidal neurons. We have found that 

MACF1 deletion decreases dendrite growth and branching in mouse pyramidal neurons. 

Accordingly, Macf1-deleted neurons show reduced density and abnormal morphology of 

dendritic spines. Macf1-deleted spines appear long and thin with short spine heads and 

necks (Ka and Kim, 2016). The cellular cytoskeletal network is critical in dendritic spine 

morphogenesis, a process which is regulated by a complex network of signaling 

molecules (Korobova and Svitkina, 2010; Penzes and Rafalovich, 2012; Shirao and 

Gonzalez-Billault, 2013). Dendritic spine morphology is dependent on the amount and 

structure of F-actin within neurons (Okamoto et al., 2004; Koleske, 2013). MACF1 

interacts with F-actin to regulate cell polarization (Leung et al., 1999; Sun et al., 2001). 

Loss of MACF1 also impairs the elongation of callosal axons in the brain. MACF1 is 

thought to regulate neurite development via GSK-3 signaling in the brain (Figure 3). As 

described above, knockdown of the MACF1 protein inhibits Wnt signaling, which is 

mediated by GSK-3 (Chen et al., 2006). GSK-3 is a master-regulator of the cellular 

cytoskeletal network (Zhou and Snider, 2005), neural progenitor regulation (Kim et al., 

2009) and neurite growth (Zhou et al., 2004; Kim et al., 2006). Over-expression of a 

constitutively-active GSK-3β (ca-GSK-3β) construct reduces the number and length of 
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dendrites. However, co-expression of MACF1 S:A (phosphorylation-refractile form) 

rescues the inhibitory effects of ca-GSK-3β (Ka and Kim, 2016), suggesting that GSK-3-

mediated phosphorylation is an important mechanism for the MACF1 function in neurite 

development. Future studies will be needed to expand our understanding of MACF1 as 

to regulatory mechanisms and cellular signaling pathways in neurite development.  

 

Figure 1.4 MACF1 in neurite outgrowth 
(A) MACF1 regulation of neurite outgrowth. MACF1 localizes near the distal ends of 
growing axons and dendrites, where it stabilizes microtubule bundles and leads to the 
assembly of polymerized actin. In the absence of MACF1, microtubules and actin are 
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disorganized and unstable at the neurite tip and scattered in the cytosol. (B) GSK-3 
regulates the activity of MACF1 in dendrite outgrowth and arborization. When MACF1 is 
phosphorylated by GSK-3, it results in multiple short primary dendrites. When MACF1 
remains unphosphorylated, neurons extend a single long primary dendrite. 
 

1.7.6 Neural diseases and MACF1 

MACF1 gene mutations have been associated with neuromuscular diseases. Mutations 

in cytoskeletal genes, such as dystonin, dystrophin, and plectin result in myopathic 

consequences, thus suggesting MACF1 may have similar muscular phenotypes 

(Jorgensen et al., 2014). In a family with novel neuromuscular conditions including 

diminished motor skills, lax muscles, and occasional hypotonia, the Macf1 gene product 

is found at a low level due to a chromosome modification in a gene locus. This novel 

myopathy is termed “spectraplakinopathy type I,” based on MACF1 belonging to the 

spectraplakin protein family (Jorgensen et al., 2014). Ultrastructural changes and altered 

motility are accompanied in muscle tissues of affected individuals (Jorgensen et al., 

2014). 

 

MACF1 mutations have been shown to contribute to psychological disorders. Two 

schizophrenia risk genes, disrupted in schizophrenia 1 (DISC1) and dysbindin 

(DTNBP1), are associated with cognitive deficits in schizophrenics (Tamminga and 

Holcomb, 2005). DISC1 and DTNBP1 are important molecules in many aspects of 

neural development including neural progenitor proliferation and neurogenesis, neurite 

outgrowth, neuronal migration, and synaptic differentiation (Kamiya et al., 2005; Duan et 

al., 2007; Hayashi-Takagi et al., 2010; Ishizuka et al., 2011; Kang et al., 2011; Steinecke 

et al., 2012). Several instances of synaptic pathology have been reported in individuals 

diagnosed with schizophrenia (Harrison and Weinberger, 2005). Both proteins form a 

similar network of protein-protein interactions, and the profiles of proteins that they 
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interact with suggest similar functions in cytoskeletal stability and organization, 

intracellular transport, and cell cycle progression (Camargo et al., 2007). Camargo and 

colleagues have shown that MACF1 is one of the proteins involved in critical interactions 

with both DISC1 and DTNBP1. They suggest that DISC1 and DTNBP1 may play a 

converging role in affecting synapse structure and function by disrupting intracellular 

transport and cytoskeletal stability via interactions with MACF1, contributing to cognitive 

deficits in schizophrenics (Camargo et al., 2007). Furthermore, schizophrenia and ASD 

may share underlying pathology, as suggested by shared risk genes (Levinson et al., 

2011). For example, rare mutations in genes that are functional in the synapse have 

been identified in ASD and schizophrenia cases (Kenny et al., 2014). Several novel loss-

of-function variants overlap in both cases, including those coding for proteins involved in 

protein-protein interactions with DISC1, such as MACF1 (Kenny et al., 2014). These 

results suggest that mutations in multiple genes involved in synapse formation, including 

Macf1, are a risk factor for both ASD and schizophrenia. 

 

Several neurodegenerative disorders show evidence of cytoskeletal collapse. In 

particular, a hallmark of Parkinson’s Disease (PD) is degeneration of dopaminergic (DA) 

neurons in the substantia nigra pars compacta (Wang et al., 2016). It has been observed 

that both genetic and neurotoxic causes of PD may target the cytoskeleton, and resulting 

cytoskeletal disorganization and dysregulation may be a mechanistic cause of PD (Feng, 

2006). Two lines of evidence suggest that MACF1 is involved in the pathogenesis of PD. 

First, Macf1 knockout inhibits Wnt signaling, which is important in the development of 

dopamine neurons. Second, MACF1 mRNA levels in DA neurons of PD patients are 

significantly lower than in controls (Simunovic et al., 2009). Thus, reduced MACF1 levels 

leading to dysregulation of the cytoskeleton may cause vulnerability of DA neurons to 
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neurodegeneration. More directly, MACF1 has been shown to be a risk gene for PD 

(Wang et al., 2016). MACF1 is a downstream target of PD biochemical pathways and 

has been found to be significantly associated with PD in 713 families studied. In addition, 

knockdown of the Macf1 orthologue Vab-10 in C. elegans results in selective loss of DA 

neurons (Wang et al., 2016). These results suggest that MACF1 may contribute to 

genetic etiology of PD and may be a mechanistic cause. 

 

Optic nerve injury is another neurological condition in which MACF1 has been 

implicated. Retinal ganglion cells (RGCs) are the final neuronal output of the retina, 

receiving visual signals from amacrine and bipolar cells and transmitting them to the 

brain via the optic nerve (Munemasa et al., 2012). Degeneration of RGCs and their 

axons in the optic nerve leads to vision loss in multiple optic neuropathies, including 

glaucoma most commonly. The work of Munemasa and colleagues shows strong Nell2 

and MACF1 expression in RGCs (Munemasa et al., 2012). Nell2 has a strong 

neuroprotective function, increasing survival of neurons in the hippocampus and cerebral 

cortex. After an optic nerve injury, Nell2 interacts with MACF1 to promote survival of 

RGCs (Munemasa et al., 2012).  
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2.1 Abstract 

ARID1B gene encodes a critical DNA-binding subunit of the BAF chromatin-remodeling 

complex, which broadly regulates gene expression. ARID1B has been shown to interact 

with the transcription factor β-cat, which regulates neurogenesis, and genetic deletion of 

Arid1b in mice alters the expression of several β-cat-regulated genes involved in 

neurogenesis and cell cycle control. Genetic evidence indicates that haploinsufficiency 

of ARID1B causes ID and ASD, but the neural function of ARID1B is largely unknown. In 

this study we used both conditional and global Arid1b knockout mouse strains to exam 

the effects of Arid1b deletion on cortical and ventral neural progenitor populations. We 

detected an overall decrease in cortical and ventral neural progenitor proliferation 

following homozygous deletion of Arid1b, as well as altered cell cycle regulation and 

increased cell death. Each of these phenotypes was more pronounced in ventral neural 

progenitors. Furthermore, we observed decreased β-catenin protein nuclear localization 

in Arid1b-deficient neurons. Conditional homozygous deletion of Arid1b in ventral neural 

progenitors also led to pronounced ID- and ASD-like behaviors in mice, whereas cortical 

neural progenitor mutants only exhibited minor cognitive deficits. This study suggests an 

essential role for ARID1B in forebrain neurogenesis and clarifies its more pronounced 

role in inhibitory neural progenitors. Our findings also provide insights into the 

pathogenesis of ID and ASD. 
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2.2 Introduction 

ID and ASD affect between one and three percent of the global population (Perou et al., 

2013; Srivastava and Schwartz, 2014). These and other related neurodevelopmental 

disorders represent a significant emotional and financial burden for affected individuals 

and their families (Perou et al., 2013). Unfortunately, treatment for these conditions 

remains limited because many of the key molecular factors and their associated 

pathogenic mechanisms are still poorly understood. ARID1B is a sequence-specific, DNA-

binding subunit in mammalian SWI/SNF or BAF chromatin-remodeling complexes (Collins 

et al., 1999; Wang et al., 2004), whose epigenetic modifications have been linked to ID 

and ASD (Son and Crabtree, 2014; Narayanan et al., 2015; Jung et al., 2017). As such, 

genetic ARID1B mutations can lead to widespread alterations in gene and protein 

expression. The vast majority of mutations affecting ARID1B observed in humans have 

been nonsense mutations, which result in the production of a truncated, non-functional 

ARID1B protein (Sim et al., 2015). A few missense frameshift mutations have also been 

observed in patients with ID and/or ASD (Tsurusaki et al., 2012; Yu et al., 2015b). Because 

of the clear genetic correlation between ARID1B mutations and ASD and ID, defining the 

function of ARID1B in forebrain development is a crucial step toward understanding the 

neurological and developmental mechanisms responsible for these pathogenic 

phenotypes (Santen et al., 2012; Tsurusaki et al., 2012; Mariani et al., 2015).  

As we and other groups have recently reported, deletion of one Arid1b allele in mice is 

sufficient to cause significant behavioral deficiencies, including ID- and ASD-like behaviors 

(Celen et al., 2017; Jung et al., 2017; Shibutani et al., 2017). These mouse models of 

Arid1b haploinsufficiency are useful because they mirror the gene dosage effects seen in 

human patients, but are less useful for deciphering the neurobiological function of the 

ARID1B protein, whose levels remain above fifty percent in Arid1b mutant heterozygotes, 

compared to their wild-type littermates (Celen et al., 2017; Jung et al., 2017; Shibutani et 



49 

al., 2017).  

Despite their prevalence and severity, the underlying pathogeneses of ID and ASD remain 

unknown. One prevailing theory posits that an imbalance of neuronal excitation and 

inhibition in the developing brain underlies the neurological dysfunctions observed in 

patients with these neurodevelopmental disorders (Rubenstein and Merzenich, 2003; 

Gatto and Broadie, 2010; Cellot and Cherubini, 2014; Nelson and Valakh, 2015). This 

theory is supported by several studies demonstrating either decreased inhibitory 

GABAergic signaling and/or increased excitatory signaling in autistic brains (Cellot and 

Cherubini, 2014; Nelson and Valakh, 2015). The balanced and coordinated function of 

pyramidal neurons and interneurons regulates excitatory and inhibitory tones in the brain. 

Importantly, the numbers of these excitatory and inhibitory neurons are determined by the 

proliferation of cortical and ventral neural progenitors, respectively, in the developing brain 

(Nagl et al., 2007). We previously reported a significant decrease in the total number of 

GABAergic interneurons in the cerebral cortex of Arid1B mutant mice, suggesting that 

excitatory/inhibitory (E/I) imbalance may play a role in the pathology of ARID1B-related 

neurodevelopment disorders.  

During mouse brain development, forebrain excitatory and inhibitory neurons are 

generated in distinct brain regions and migrate along separate pathways before 

converging in the cerebral cortex. Excitatory neurons are born in the ventricular zone (VZ) 

of the developing cerebral cortex and migrate radially into the cortical plate, usually along 

radial glial processes (Rakic, 1972; Chanas-Sacre et al., 2000; Hartfuss et al., 2001; 

Noctor et al., 2001; Stiles and Jernigan, 2010). Most inhibitory interneurons (GABAergic 

neurons) originate from a population of neural progenitors within the MGE of the ventral 

telencephalon and migrate tangentially into the dorsal telencephalon and then radially into 

the cortical plate (Anderson et al., 2001; Molyneaux et al., 2007; Sultan et al., 2013). 

Cortical and ventral neural progenitors both need to be tightly regulated to ensure proper 
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brain development as they have distinct and complimentary roles in the mature brain and 

each is each under the control of different pathways (Gatto and Broadie, 2010; Nelson 

and Valakh, 2015).  

In order to separately identify the neurobiological function of ARID1B in excitatory and 

inhibitory neurons and their progenitors, we used conditional knockout mouse models to 

explicitly delete the Arid1B in either cortical or ventral neural progenitors. In this study, we 

utilize an Emx1-Cre driver line to conditionally delete Arid1b in cortical neural progenitors 

and both a Dlx5/6-Cre and Nkx2.1-Cre driver line to knockout Arid1b in ventral neural 

progenitors (Zerucha et al., 2000; Gorski et al., 2002; Monory et al., 2006; Xu et al., 2008; 

Taniguchi et al., 2011). We report impaired proliferation in the cortical neural progenitor 

population and, to a greater extent, in ventral neural progenitors. This may be due to 

altered cell cycle regulation, as we observe decreased cell cycle speed in ventral neural 

progenitors with homozygous Arid1b deletion and a decreased rate of cell cycle re-entry 

in both cortical and ventral neural progenitors. In both progenitor populations we also 

report an increased number of apoptotic cells.  

Brahma-related gene-1 (BRG1), encoded by SMARCA4, is the core subunit of the 

mammalian BAF chromatin remodeling complex (Chiba et al., 1994; Hodges et al., 2016) 

and interacts directly with ARID1B in the nucleus (Hurlstone et al., 2002; Inoue et al., 

2002). BRG1 has also been shown to physically interact with nuclear β-catenin at target 

gene promoters and facilitate transcriptional activation, most likely via chromatin 

remodeling (Barker et al., 2001). Intriguingly, two recent reports suggest that ARID1B 

represses β-catenin’s transcription factor activity in concert with BRG1 in vitro and in blood 

lymphocytes from patients with ARID1B mutations (Vasileiou et al., 2015; Wu et al., 2016). 

We recently showed, however, that Arid1b haploinsufficient mice express lower levels of 

β-catenin and its downstream target genes in the ventral telencephalon (Jung et al., 2017), 

which aligns more with what is seen in a Brg1/Brm-deficient cell line (Barker et al., 2001). 
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In this study we observe that homozygous deletion of Arid1b leads to decreased nuclear 

localization of β-catenin in vitro and in vivo. We also report that homozygous deletion of 

Arid1b in ventral progenitors leads to ID- and ASD-like behavioral phenotypes, similar to 

those seen in Arid1b haploinsufficient mice (Celen et al., 2017; Jung et al., 2017; Shibutani 

et al., 2017). Knockout of Arid1b in cortical progenitors, in contrast, has very little effect on 

the mouse behaviors we measured. Taken together, Arid1b conditional homozygous 

deletion has an outsize effect on ventral progenitor proliferation, which is closely linked to 

animal behavior, whereas homozygous loss of Arid1b in cortical progenitors gives rise to 

comparatively moderate neural and behavioral phenotypes.   
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2.3 Materials and methods 

2.3.1 Generation of conditional Arid1b knockout mice 

Knockout-first Arid1b mutant mice were developed using a C57BL6 background 

(Jackson Laboratory, #000058) in the Mouse Genome Engineering Core Facility at 

the University of Nebraska Medical Center as described previously (Jung et al., 2017). 

Homozygous floxed mice were crossed with appropriate Cre drivers (Jackson 

Laboratory, #005628, #023724 and #008661) for tissue-specific Arid1b deletion. All 

mice were housed in cages with 12:12-h light:dark cycles. No more than five mice 

were housed per cage. Mice were handled according to a protocol approved by the 

University Nebraska Medical Center Institutional Animal Care and Use Committee. 

2.3.2 Immunostaining 

Immunostaining of brain sections or dissociated cells was performed as described 

previously (Ka et al., 2016c; Jung et al., 2017; Ka et al., 2017). Primary antibodies 

used were mouse anti-ARID1B (Abcam, ab57461; Abnova, H00057492-M02), rabbit 

anti-cleaved caspase-3 (Cell Signaling Technology, #9664), mouse anti-BrdU (BD 

Biosciences, #555627), rabbit anti-p-histone-H3 (Cell Signaling Technology, #9701), 

rabbit anti-Ki67 (Cell Signaling, #9129), rabbit anti-β-catenin (Cell Signaling, #8480) and 

chicken anti-GFP (Invitrogen, A10262). Appropriate secondary antibodies conjugated 

with Alexa Fluor dyes (Invitrogen) were used to detect primary antibodies. DAPI 

(Sigma-Aldrich) was used to stain nuclei. 

 

2.3.3 Stereology 

For quantifying numbers of cells, images of 10 different brain sections were taken at 

periodic distances along the rostrocaudal axis with  a Zeiss LSM710 confocal 

microscope as described previously (Jung et al., 2017; Ka et al., 2017). N values for 
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each experiment are described in figure legends. Mouse cultured neurons were also 

assessed with this microscope. Cell numbers are described in figure legends. images 

were analyzed using ZEN (Zeiss) and ImageJ (NIH). The calculated values were 

averaged, and some results were recalculated as relative changes versus control. 

2.3.4 BrdU administration and cell cycle analysis 

For proliferation assays, BrdU administration and analysis of cell cycle speed and re-

entry were performed as described previously (Kee et al., 2002; Ka et al., 2017). 

Intraperitoneal injection of BrdU (20 mg per kg body weight, dissolved in 0.9% saline) 

into pregnant mice at E13.5-15.5. was performed prior to sacrifice. For the analysis of 

cell cycle re-entry, control and mutant mice were exposed to BrdU for 24 h. Brain slices 

were then immunostained with antibodies to BrdU and Ki67. The ratio of cells labeled 

with BrdU and Ki67 to total cells that incorporated BrdU was determined. For the 

analysis of cell cycle length, the ratio of progenitor cells positive for Ki67 and BrdU to the 

total Ki67 labeled cells was assessed after a 1 h BrdU pulse. 

 

2.3.5 Cell culture 

MGE cells were isolated and cultured from E12.5–E14.5 mice as described previously 

(Jung et al., 2017). Meninges were removed and MGE cells were dissociated with 

trituration after trypsin/EDTA treatment. The cells were plated onto poly-D-

lysine/laminin-coated coverslips and cultured in a medium containing Neurobasal 

medium (Invitrogen), 2 mM glutamine, 2% (v/v) B27 supplement (Invitrogen), 1% (v/v) 

N2 supplement (Invitrogen), and 50 U/mL penicillin/streptomycin (Invitrogen). 

 

2.3.6 Colocalization 
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Object-corrected fluorescence colocalization was performed as described by Moser et 

al. (Moser et al., 2017). Briefly, 10 sequential, individual Z stack images, spaced 

approximately 4 μm apart, were captured using a Zeiss LSM710 confocal microscope 

and analyzed for colocalization between DAPI and β-catenin using ImageJ (NIH) 

software with the macro described in the above reference (Moser et al., 2017). The 

mean corrected Pearson’s coefficient for each sample was recorded and the mean of 

all samples for each genotype is reported in the results.  

 

2.3.7 Behavioral assays 

All behavioral assays were done during the light cycle. Health conditions, including 

weight, activity, and feeding were checked before assays. 3- to 4-month-old male and 

female mice were for most behavioral assays. For social behavior assays, we used 

only male mice as sexual interactions between males and females and estrous cycle 

timing may interfere with accurate interpretation of social behavior. All behavioral 

assays were done blind to genotypes, with age-matched littermates of mice. 

2.3.8 Novel-object recognition test 

A test mouse was first habituated to an open field arena (35 × 42 cm) for 5 min. 

Following habituation, the test mouse was removed from the arena and two identical 

objects with size (10.5 × 4.5 × 2.5 cm) were placed in opposite corners of the arena, 

7 cm from the side walls. The test mouse was then reintroduced into the center of the 

arena and allowed to explore the field, including the two novel objects, for 10 min. 

After 6 h, one object was replaced with another novel object, which was of similar size 

but different shape and color than the previous object. The same test mouse was 

placed in the arena to explore the arena and the two objects. The movement of the 
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mouse was recorded by a camera for 10 min and further analyzed by EthoVision XT 7 

video tracking software (Noldus). 

 

2.3.9 Three-chamber test for social interaction and novelty behavior 

Social behavior was evaluated as described previously (Jung et al., 2016; Jung et al., 

2017). A rectangular, transparent Plexiglas box divided by walls into three equal-sized 

compartments (Ugobasile) was used. Rectangular holes in the Plexiglas walls provide 

access between the chambers. For sociability testing, a test mouse was moved to the 

center chamber (chamber 2) with the entrances to the two connecting chambers 

blocked. A stimulus mouse (unfamiliar mouse) designated as ‘stranger I’ was placed 

in a wire enclosure in chamber 1. Then the openings to the flanking two chambers (1 

and 3) were opened and the test mouse was allowed to explore the entire apparatus 

for 10 min. For the social novelty test, the stranger I mouse was randomly placed in 

one of the enclosures, while the test mouse had the choice of whether to investigate 

the stranger I mouse or a new novel mouse, designated ‘stranger II’. This second 

novel mouse was taken from a different home cage and placed into the remaining 

empty wire enclosure. Time spent sniffing each partner by the test mouse was 

recorded for 10 min in both sociability and social novelty behavior tests. All apparatus 

chambers were cleaned with water and dried between trials. At the end of each test 

day, the apparatus was sprayed with 70% ethanol and wiped clean. 

 

2.3.10 Grooming 

A mouse was placed in a clear plastic cage (17 × 32 × 14 cm). The mouse was 

allowed to freely explore the cage for the entirety of the test. The first 10 min served 

as a habituation period. The movement of the mouse was recorded by a camera for 
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30 min. Recorded grooming behaviors included head washing, body grooming, 

genital/tail grooming, and paw and leg licking. 

2.3.11 Elevated plus maze test 

The elevated plus maze test was performed as previously described (Jung et al., 

2016; Jung et al., 2017). The apparatus (EB Instrument) includes two open arms 

(35 × 5 cm), two enclosed arms (35 × 5 × 15 cm), and a central platform (5 × 5 cm). The 

entire apparatus was elevated 45 cm above the floor. A mouse was placed on the 

central platform, facing the open arms, and allowed to roam freely for 5 min. The 

number of entries into and the time spent in open and closed arms were recorded. 

2.3.12 Open field test 

A mouse was placed near the wall-side of a 35 × 42 cm open field arena, and the 

movement of the mouse was recorded by a camera for 5 min. The recorded video file 

was further analyzed using EthoVision XT 7.0 (Noldus). The number of entries into 

and the overall time spent in the center of the arena (15 × 15 cm imaginary square) 

were measured. The open field arena was cleaned with 70% ethanol and allowed to 

dry between each trial. 

2.3.13 Forced swimming test 

A mouse was placed individually into a glass cylinder (20 cm height, 17 cm diameter) 

filled with water to a depth of 10 cm at 25 °C. After 5 min, the animals were removed 

from the water, dried, and returned to their home cages. They were again placed in 

the cylinder 24 h later, and after the initial 1 min acclimatization period, the total 

duration of immobility was measured for 5 min. Motionless floating was considered 

immobile behavior. 
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2.3.14 Tail suspension test 

A mouse was suspended from the hook of a tail suspension test box, 60 cm above the 

surface of a table, using adhesive tape placed 1 cm from the tip of the tail. After 1 min 

acclimatization, immobility duration was recorded by a camera for 5 min. Mice were 

considered immobile only when they hung passively and were completely motionless. 

2.3.15 Statistical analysis 

Normal distribution was tested using the Kolmogorov-Smirnov test and variance was 

compared. Unless otherwise stated, statistical significance was determined using two-

tailed, unpaired Student’s t tests for two-population comparisons or one-way ANOVA 

followed by Bonferroni’s post hoc test for multiple comparisons. Data were analyzed 

using GraphPad Prism and presented as means ± SEM P values for each comparison 

are described in the results or figure legends. To determine and confirm sample sizes 

(n), we performed power analysis and/or surveyed the literature. Each experiment in 

this study was performed blind and randomized. Animals were assigned randomly to 

the various experimental groups, and data were collected and processed randomly. 

The allocation, treatment, and handling of animals was the same across study groups. 

Control animals were selected from the same litter as the test group. The individuals 

conducting the experiments were blinded to group allocation and allocation sequence. 

Exclusion criteria for mice were based on abnormal health conditions, including 

weights below 15 g at 6 weeks of age and noticeably reduced activity or feeding. 

Statistical data and n values for all behavioral assays are described in the figure 

legends.  

2.4 Results 

2.4.1 Cortical progenitor proliferation is decreased in Arid1bLoxP/LoxP;Emx1-Cre mice 
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We first examined the proliferation of cortical neural progenitors in Arid1bLoxP/LoxP;Emx1-

Cre mice by immunostaining consecutive cortical sections from E14-E16 mouse 

embryos with two antibodies. Anti-phosphorylated Histone-H3 (anti-PH3) staining, which 

is used to determine cells undergoing mitosis (Hans and Dimitrov, 2001), revealed a 

significant reduction (37.75%) in mitotic cortical neural progenitors in 

Arid1bLoxP/LoxP;Emx1-Cre mice, compared with controls (Figure 2.1A-B). Staining for Ki67, 

which is present during all stages of the cell cycle and absent in quiescent (G0) cells 

(Bruno and Darzynkiewicz, 1992; Scholzen and Gerdes, 2000; Cuylen et al., 2016), 

however, shows no significant difference in the number of actively proliferating cells in 

Arid1bLoxP/LoxP;Emx1-Cre mice, compared with controls (Figure 2.1C-D). We also 

peritoneally injected pregnant dams with bromodeoxyuridine (BrdU), a thymidine analog 

that is incorporated into dividing cells during DNA replication (Gratzner, 1982; 

Nowakowski et al., 1989; Wojtowicz and Kee, 2006), and report a significant decrease 

(24.32%) in the number of BrdU-positive cortical neural progenitors in 

Arid1bLoxP/LoxP;Emx1-Cre mice harvested 1 hour post-injection, compared with controls 

(Figure 2.1E-F).  
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Figure 2.1 Arid1b deletion decreases cortical progenitor proliferation 
(A), (C), and (E) Immunostaining of coronal cerebral cortical sections from E14-16 
control and Arid1BLoxP/LoxP;Emx1-Cre brains with anti-phosphorylated Histone H3 (PH3), 
anti-Ki67 or anti-BrdU antibodies with DAPI co-stain. Representative images from both 
six control and Arid1BLoxP/LoxP;Emx1-Cre brains for (A) and (E) and five from each 
genotype for (C). Scale bars: 50μm. (B), (D) and (F) Quantifications of (A), (C) and (E), 
respectively.  N=6 mice for each condition for (B) and (F) and N=5 for each condition for 
(D). Statistical significance was determined by two-tailed Student’s t-test. Error bars 
show standard error of the mean (SEM). *p < 0.05, ***p < 0.001. 
 

2.4.2 Ventral progenitor proliferation is impaired in Arid1bLoxP/LoxP;Dlx5/6-Cre mice 

In E14-E16 Arid1bLoxP/LoxP;Dlx5/6-Cre mice, we examined ventral neural progenitor 

proliferation using immunostaining for PH3 and Ki67 in the MGE. We observed a 

significant decrease (45.32%) in the number of PH3-positive cells (Figure 2.2A-B), as 

well as a significant decrease (47.20%) in the number of Ki67-positive cells (Figure 

2.2C-D), both compared with controls. These indicate large reductions in the numbers of 

mitotic and actively proliferating ventral neural progenitors in these mice, respectively. 

Arid1bLoxP/LoxP;Dlx5/6-Cre embryos removed 1 hour following BrdU injection into pregnant 

dams display a significant decrease (22.66%) in the number of BrdU-positive cells in the 
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MGE, compared with controls (Figure 2.2E-F). This can be interpreted to mean a drop in 

the number of ventral neural progenitors undergoing DNA replication as well as newly-

born cells in the MGE. 

 

Figure 2.2 Arid1b deletion greatly decreases ventral progenitor proliferation 
(A), (C), and (E) Immunostaining of coronal cerebral cortical sections from E14-16 
control and Arid1BLoxP/LoxP;Dlx5/6-Cre brains with anti-phosphorylated Histone H3 (PH3), 
anti-Ki67 or anti-BrdU antibodies with DAPI co-stain. Representative images from both 
six control and Arid1BLoxP/LoxP;Dlx5/6-Cre brains for (A) five from each genotype for (C) 
and five control and four Arid1BLoxP/LoxP;Dlx5/6-Cre brains for (E). Scale bars: 50μm. (B), 
(D) and (F) Quantifications of (A), (C) and (E), respectively.  N=6 mice for each condition 
for (B) N=5 for each genotype in (F) and N=5 mice for control and 4 for 
Arid1BLoxP/LoxP;Dlx5/6-Cre  (D). Statistical significance was determined by two-tailed 
Student’s t-test. Error bars show standard error of the mean (SEM). **p < 0.01. 
 

2.4.3 ARID1B regulates cell cycle progression in both cortical and ventral neural 

progenitors 

Seeing as homozygous deletion of Arid1b leads to impaired neural progenitor 

proliferation in both cortical and ventral progenitor pools, we next explored the effects of 

conditional Arid1b knockout on the cell cycle. Several BAF subunits have been shown to 

influence cell cycle progression and cell division (Battaglioli et al., 2002; Olave et al., 
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2002; Lessard et al., 2007; Wu et al., 2007; Tuoc et al., 2013; Son and Crabtree, 2014), 

thus we examined both cell cycle speed and cell cycle re-entry in both 

Arid1bLoxP/LoxP;Emx1-Cre and  Arid1bLoxP/LoxP;Dlx5/6-Cre mice.  

Cell cycle speed is assessed by first injecting pregnant dams with BrdU 30 minutes prior 

to removal of embryos, followed by immunostaining of brain sections using both anti-

BrdU and anti-Ki67 antibodies. The ratio of Ki67-BrdU-double-positive cells to the total 

number of Ki67-positive cells, essentially the proportion of actively proliferating cells that 

entered S-phase in a 30-minute time span, provides a quantifiable estimate of cell cycle 

speed (Kee et al., 2002; Ka et al., 2017). Homozygous knockout of Arid1b in cortical 

neural progenitors has no significant impact on cell cycle speed in the developing 

cerebral cortex (Figure 2.3A-B). In the ventral neural progenitor population, however, 

Arid1b deletion leads to a 50.33% reduction in this measurement of cell cycle speed, 

compared with control littermates (Figure 2.3E-F). 

To quantify cell cycle re-entry, we injected pregnant dams with BrdU 24 hours prior to 

embryo removal and then co-immunostained with anti-Ki67 and anti-BrdU antibodies. 

We then calculated the ratio of Ki67-BrdU-double-positive cells to the total number of 

BrdU-positive cells, which provides a measure of the newborn (in the last 24 hours) cells 

that are still actively proliferating (Kee et al., 2002; Ka et al., 2017). About 46.06% fewer 

BrdU-positive cortical neural progenitors also express measurable levels of Ki67 in 

Arid1bLoxP/LoxP;Emx1-Cre mice, compared with controls, which indicates impaired cell 

cycle re-entry (Figure 2.3C-D). Cell cycle re-entry is also impaired in ventral neural 

progenitors, as about 71.48% fewer BrdU-positive ventral neural progenitors are also 

Ki67-positive in Arid1bLoxP/LoxP;Dlx5/6-Cre mice (Figure 2.3G-H).  
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Figure 2.3 ARID1B regulates the cell cycle in neural progenitors 
(A) and (E) E14-16 control and Arid1BLoxP/LoxP;Emx1-Cre or Arid1BLoxP/LoxP;Dlx/6-Cre mice 
were pulse-labeled with BrdU for 30 min, and then brain regions containing the cerebral 
cortex were collected and immunostained using BrdU and Ki67 antibodies. Scale bar: 50 
μm. (B) and (F) Quantification of cell cycle speed from (A) and (E). The cell cycle speed 
was defined as the fraction of BrdU- and Ki67-double-positive cells in the total Ki67-
positive pool in the cerebral cortex. N=6 control and 9 Arid1BLoxP/LoxP;Emx1-Cre mice for 
(B) and N=10 for each genotype for (F). Statistical significance was determined by two-
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tailed Student’s t-test. Error bars show SEM. **p < 0.01. (C) and (G) E14-16 control and 
Arid1BLoxP/LoxP;Emx1-Cre or Arid1BLoxP/LoxP;Dlx/6-Cre mice were pulse-labeled with BrdU 
for 24 h and then brains were collected for immunostaining with BrdU and Ki67 
antibodies. Scale bar: 50μm. (D) and (H) The index of cell cycle re-entry was calculated 
as the fraction of BrdU- and Ki67-double-positive cells in total BrdU-positive pool. N=9 
mice for each genotype from both (D) and (H). Statistical significance was determined by 
two-tailed Student’s t-test. Error bars show SEM. *p < 0.05, ***p<0.001. 
 

2.4.4 Conditional homozygous deletion of Arid1b leads to similar increases in apoptosis 

in cortical and ventral neural progenitors  

In addition to examining the proliferation of cortical and ventral neural progenitors, we 

assessed apoptotic progenitors in the E14-E16 developing cerebral cortex and ventral 

telencephalon in conditional Arid1b mutants. We used an anti-cleaved-Caspase 3 (anti-

cl.-Cas 3) antibody to determine the relative number of apoptotic cells in tissue sections 

as cl.-Cas 3 is a well-understood marker of cells undergoing apoptosis (Nicholson et al., 

1995; Lavrik et al., 2005). In Arid1bLoxP/LoxP;Emx1-Cre mice, the cl.-Cas 3 intensity in the 

developing cerebral cortex is 138.67% higher than in wild type mice (Figure 2.4A-B). In 

Arid1bLoxP/LoxP;Dlx5/6-Cre mice, cl.-Cas 3 intensity in the MGE is increased by 165.32%, 

compared to controls (Figure 2.4C-D). From these results we conclude that homozygous 

deletion of Arid1b leads to a comparable increase in apoptosis among both cortical and 

ventral neural progenitor populations. 
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Figure 2.4 Arid1b deletion increases apoptosis in cortical and ventral neural 
progenitor pools 
(A) and (C) Cell death was assessed in E14-16 control and Arid1BLoxP/LoxP;Emx1-Cre or 
Arid1BLoxP/LoxP;Dlx5/6-Cre mutant neural progenitors by immunostaining with a cleaved 
caspase-3 (cl.-Cas 3) antibody. Representative images from both nine control and 
Arid1BLoxP/LoxP;Emx1-Cre brains for (A) and (E) and ten from each genotype for (C). 
Scale bars, 50 μ m. (B) and (D) Quantification of apoptotic cells from (A) and (C), 
respectively. N=9 mice for each genotype for (A) and N=10 mice for each genotype for 
(C). Statistical significance was determined by two-tailed Student’s t-test. Error bars 
show SEM.  **p<0.01 
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2.4.5 Arid1b knockout decreases β-catenin nuclear localization in vitro and in vivo 

In order to determine the degree to which β-catenin localizes in the nucleus of ARID1B-

depleted neurons and neural progenitors, we co-immunostained cultured cells and tissue 

sections with an anti-β-catenin and the nuclear stain, DAPI. We cultured primary 

neurons from the MGE of E12.5-E14.5 Arid1b+/+ and Arid1b-/- mouse embryonic brains 

for six days before fixing cells and immunostaining. Qualitative analysis reveals what 

appears to be a decrease in overlapping β-catenin and DAPI staining in Arid1b-/- cultured 

neurons, compared with Arid1b+/+ cultures(2.5A-B). We then determined the object-

corrected fluorescence colocalization of β-catenin and DAPI using ImageJ (NIH) 

software (Moser et al., 2017). The mean Pearson’s coefficient for Arid1b+/+ cultures 

was 0.61 and 0.20 for Arid1b-/- cultures, indicating decreased nuclear β-catenin in the 

absence of ARID1B (Figure 2.5A-B).  

Next, we examined nuclear β-catenin localization in vivo by immunostaining the MGEs of 

E12-14 Arid1bLoxP/LoxP;Dlx5/6-Cre mice and comparing DAPI-β-catenin colocalization with 

control MGEs. Similar to what we observed in vitro, we detect less overlapping β-catenin 

and DAPI staining in Arid1bLoxP/LoxP;Dlx5/6-Cre MGEs than in controls (Figure 2.5C-D). 

We also report a significantly lower Pearson’s coefficient of colocalization in 

Arid1bLoxP/LoxP;Dlx5/6-Cre mouse MGEs (0.03), compared with controls (0.27) (Figure 

2.5C-D). Taken together, we conclude that total loss of Arid1b gene expression leads to 

significant decreases in β-catenin nuclear localization. 
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Figure 2.5 Knockout of Arid1b reduces β-catenin nuclear localization 
(A) And (C) Nuclear localization of β-catenin was assessed in DIV 6 control and Arid1b-/- 
mouse primary neuronal cultures derived from E12.5-E14.5 embryonic MGEs by 
immunostaining with DAPI and an antibody against β-catenin. Representative images 
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from N=5 mice from each genotype for (A) and 3 mice from each genotype for (C). Scale 
bar: 50 μm. (B) and (D) Quantification of (A) and (C), respectively. Mean corrected 
Pearson’s coefficient from object-corrected fluorescence colocalization of DAPI and anti-
β-cat is plotted. N=5 mice from each genotype for (B) and 3 mice from each genotype for 
(D). Statistical significance was determined by two-tailed Student’s t-test. Error bars 
show SEM. 
 

2.4.6 Cortical neural progenitor-specific deletion of Arid1b impairs cognitive function 

With the alterations in cortical progenitor proliferation and survival in 

Arid1bLoxP/LoxP;Emx1-Cre mice more clearly defined, we next examined the behavioral 

outcomes of homozygous deletion of Arid1b within this population in 8-10-week-old 

animals. Heterozygous deletion of Arid1b leads to anxiety-like behaviors in mice (Celen 

et al., 2017; Jung et al., 2017; Shibutani et al., 2017) and is also present in other mouse 

models of ID and ASD (1994; Kazdoba et al., 2014). Anxiety is also a frequent comorbid 

condition with ASD in humans (Wing and Gould, 1979; Gillott et al., 2001; van Steensel 

and Heeman, 2017). To determine whether Arid1bLoxP/LoxP;Emx1-Cre mice develop 

anxiety-like behaviors, we performed the elevated plus maze and open field assays. 

Arid1bLoxP/LoxP;Emx1-Cre mice spent the same amount of time in the open arms of the 

elevated plus maze as controls (Figure 2.6A) and entered, and spent the same amount 

of time in, the center portion of the open field apparatus, compared with wild type 

littermates (Figure 2.6D-E). From these results we concluded that these mutant mice 

display no appreciable anxiety-like behaviors. 

Depression is another condition often seen in individuals with ID and ASD (Wing and 

Gould, 1979), and Arid1b heterozygous mutant mice display significant depression-like 

behaviors (Jung et al., 2017). To examine depression-like behaviors in this study, we 

utilized the tail suspension and forced swim tests. We report that Arid1bLoxP/LoxP;Emx1-

Cre mice do not spend a discernably different amount of time immobile in either of these 

assays, compared with control mice (Figure 2.6B-C). Thus, homozygous deletion of 



68 

Arid1b in cortical neural progenitors does not appear to engender depression-like 

symptoms in mice.  

Arid1b haploinsufficient mice spend considerably more time grooming than wild type 

mice, which is considered an appropriate measure of repetitive or stereotyped behaviors 

in mouse models of ASD (Celen et al., 2017; Jung et al., 2017). Arid1bLoxP/LoxP;Emx1-Cre 

mice, however, do not demonstrate a significant increase in the amount of time they 

spend grooming during a 10-minute period (Figure 2.6F).  

We have previously reported that heterozygous deletion of Arid1b leads to impaired 

recognition memory in mice (Jung et al., 2017). Therefore, we examined the effects of 

homozygous Arid1b deletion in cortical neural progenitors on performance in the novel 

object recognition task. Arid1bLoxP/LoxP;Emx1-Cre mice exhibit a recognition index of 

48.05% in this task, which indicates no real preference for a novel object versus a 

familiar one in an otherwise empty open field. Arid1b+/+;Emx1-Cre littermates, on the 

other hand, display a recognition index of 70.88%, indicative of a stronger preference for 

interaction with the novel object (Figure 2.6G). Arid1bLoxP/LoxP;Emx1-Cre mice also show 

no real preference for a second stranger mouse in the three-chamber social behavior 

assay, while controls do (Figure 2.6H). Their overall sociability, also measured in the 

three-chamber behavior assay, however, is similar to what we observe with their wild 

type littermates (Figure 2.6H). We conclude from these results that Arid1bLoxP/LoxP;Emx1-

Cre mice develop cognitive impairments specifically related to recognition memory. 
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Figure 2.6 Effects of conditional deletion of Arid1b in cortical neural progenitors 
on behavior 
(A) In the elevated plus maze, Arid1BLoxP/LoxP;Emx1-Cre mice spent spend the same 
amount of time in the open arm as controls. N = 6 mice for control and N=7 mice for 
Arid1BLoxP/LoxP;Emx1-Cre. Statistical significance was determined by two-tailed Student’s 
t-test. Error bars show SEM. (B) No significant difference in immobility times in the tail 
suspension test between controls and Arid1BLoxP/LoxP;Emx1-Cre mice. N= 6 mice for 
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control and N=7 mice for Arid1BLoxP/LoxP;Emx1-Cre. Statistical significance was 
determined by two-tailed Student’s t-test. Error bars show SEM. (C) In the forced swim 
test there was no significant difference in immobility time control and 
Arid1BLoxP/LoxP;Emx1-Cre mice. N= 6 mice for control and N=7 mice for 
Arid1BLoxP/LoxP;Emx1-Cre. Statistical significance was determined by two-tailed Student’s 
t-test. Error bars show SEM. (D) Representative traces from (E). (E) No significant 
difference in the total time spent in the center or the number of entries into the center in 
the open field test. N= 6 mice for control and N=7 mice for Arid1BLoxP/LoxP;Emx1-Cre. 
Statistical significance was determined by two-tailed Student’s t-test. Error bars show 
SEM. (F) No significant change in grooming time in a 10-minute session between control 
and Arid1BLoxP/LoxP;Emx1-Cre mice. N= 6 mice for control and N=7 mice for 
Arid1BLoxP/LoxP;Emx1-Cre. Statistical significance was determined by two-tailed Student’s 
t-test. Error bars show SEM. (G) Arid1BLoxP/LoxP;Emx1-Cre mice demonstrate impaired 
novel object recognition. Recognition index indicates the percentage of time the test 
mouse interacted with a novel object compared to a familiar one. N= 5 mice for control 
and N=7 mice for Arid1BLoxP/LoxP;Emx1-Cre.  Statistical significance was determined by 
two-tailed Student’s t-test. Error bars show SEM. (H) Slightly abnormal social behavior in 
Arid1BLoxP/LoxP;Emx1-Cre mice. Arid1BLoxP/LoxP;Emx1-Cre and control mice spend the 
same amount of time in the chamber containing the “stranger 1” mouse as they do in an 
empty chamber in the sociability trial. In the social novelty trial, control mice spend 
significantly more time with the novel “stranger 2” but Arid1BLoxP/LoxP;Emx1-Cre mice do 
not. N= 6 mice for control and N=7 mice for Arid1BLoxP/LoxP;Emx1-Cre. Statistical 
significance was determined by two-tailed Student’s t-test. Error bars show SEM.   
 

2.4.7 Conditional knockout of Arid1b in ventral neural progenitors results in multiple 

ASD-like behavioral phenotypes 

We also examined ID- and ASD-like behaviors in 8-10-week-old Arid1bLoxP/LoxP;Dlx5/6-

Cre and Arid1bLoxP/LoxP;Nkx2.1-Cre mice. On the elevated plus maze, 

Arid1bLoxP/LoxP;Dlx5/6-Cre mice spend less time in the open arm than their wild type 

littermates, but this result is not statistically significant (Figure 2.7A). 

Arid1bLoxP/LoxP;Nkx2.1-Cre mice spend the same amount of time in the open arm as 

controls (Figure 2.8A). In the open field assay, however, Arid1bLoxP/LoxP;Dlx5/6-Cre mice 

enter, and spend significantly less time in, the center area of the apparatus, compared to 

controls (Figure 2.7D-E), which is indicative of anxiety-like behavior. 

Arid1bLoxP/LoxP;Nkx2.1-Cre, in contrast, do not exhibit any significant anxiety-like behavior 

in the open field assay (Figure 2.8D-E). 
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Arid1bLoxP/LoxP;Dlx5/6-Cre mice also spend significantly more time immobile in the tail 

suspension assay, compared with control littermates (Figure 2.7B), but they are not 

significantly less mobile in the forced swim test (Figure 2.7C). Intriguingly, 

Arid1bLoxP/LoxP;Nkx2.1-Cre spend more time immobile in the forced swim test than 

controls, but do not demonstrate any significant differences in immobility time in the tail 

suspension test (Figure 2.8B-C). These results suggest that deletion of Arid1b in ventral 

neural progenitors may be sufficient to cause depression-like behaviors in mice.  

Similar to Arid1b haploinsufficient mice (Celen et al., 2017; Jung et al., 2017), 

Arid1bLoxP/LoxP;Dlx5/6-Cre mice exhibit a strong tendency toward repetitive/stereotyped 

behaviors, as evidenced by them spending nearly 4 times as much time grooming 

themselves during a ten-minute window than their wild type littermates (Figure 2.7F). 

Arid1bLoxP/LoxP;Nkx2.1-Cre mice also spend almost twice as much time grooming as 

controls (Figure 2.8F).  

In the novel object recognition test, neither Arid1bLoxP/LoxP;Dlx5/6-Cre nor 

Arid1bLoxP/LoxP;Nkx2.1-Cre mice any significance difference in recognition index, 

compared with controls (Figure 2.7G and Figure 2.8G). While Arid1bLoxP/LoxP;Nkx2.1-Cre 

mice did not demonstrate any aberrant social behaviors in the three-chamber social 

assay (Figure 2.8H), Arid1bLoxP/LoxP;Dlx5/6-Cre mice showed no preference for either the 

first or second stranger mouse, in contrast to controls (Figure 2.7H). Altogether, 

homozygous deletion of Arid1b in the ventral neural progenitor population contributes to 

multiple ID- and ASD-like behaviors, including depression- and anxiety-like behaviors, 

repetitive/stereotyped behaviors and social deficits. 
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Figure 2.7 Effects of conditional deletion of Arid1b in ventral neural progenitors 
on behavior 
(A) In the elevated plus maze, Arid1BLoxP/LoxP;Dlx5/6-Cre mice spend the same amount of 
time in the open arm as controls. N = 3 mice from each genotype. Statistical significance 
was determined by two-tailed Student’s t-test. Error bars show SEM. (B) 
Arid1BLoxP/LoxP;Dlx5/6-Cre spend significantly more time immobile in the tail suspension 
test than controls. N= 9 mice for control and N=4 mice for Arid1BLoxP/LoxP;Dlx5/6-Cre. 
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Statistical significance was determined by two-tailed Student’s t-test. Error bars show 
SEM. (C) In the forced swim test there was no significant difference in the immobility 
time of control and Arid1BLoxP/LoxP;Dlx5/6-Cre mice. N= 4 mice for control and N=3 mice 
for Arid1BLoxP/LoxP;Dlx5/6-Cre. Statistical significance was determined by two-tailed 
Student’s t-test. Error bars show SEM. (D) Representative traces from (E). (E) 
Arid1BLoxP/LoxP;Dlx5/6-Cre mice spend significantly less total time in the center and enter 
the center fewer times in the open field test. N= 10 mice for control and N=7 mice for 
Arid1BLoxP/LoxP;Dlx5/6-Cre. Statistical significance was determined by two-tailed Student’s 
t-test. Error bars show SEM. (F) Arid1BLoxP/LoxP;Dlx5/6-Cre mice spend significantly more 
time grooming than controls in a 10-minute session. N= 3 mice for control and N=3 mice 
for Arid1BLoxP/LoxP;Dlx5/6-Cre. Statistical significance was determined by two-tailed 
Student’s t-test. Error bars show SEM. (G) No statistically significant difference in the 
novel object recognition index between Arid1BLoxP/LoxP;Dlx5/6-Cre and control mice. N=3 
mice for each genotype. Statistical significance was determined by two-tailed Student’s 
t-test. Error bars show SEM. (H) Arid1BLoxP/LoxP;Dlx5/6-Cre mice demonstrate 
significantly impaired sociability and social novelty behaviors compared with controls. 
N= 4 mice for control and N=5 mice for Arid1BLoxP/LoxP;Dlx5/6-Cre. Statistical significance 
was determined by two-tailed Student’s t-test. Error bars show SEM.   



74 

 

Figure 2.8 Mouse behavior in Arid1b +/+;Nkx2.1-Cre mice 
(A) In the elevated plus maze, Arid1BLoxP/LoxP;Nkx2.1-Cre mice spend the same amount 
of time in the open arm as controls. N = 5 mice for control and N=4 mice for 
Arid1BLoxP/LoxP;Nkx2.1-Cre. Statistical significance was determined by two-tailed 
Student’s t-test. Error bars show SEM. (B) In the tail suspension test there was no 
significant difference in the immobility time of control and Arid1BLoxP/LoxP;Nkx2.1-Cre 
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mice. N = 5 mice for control and N=4 mice for Arid1BLoxP/LoxP;Nkx2.1-Cre. Statistical 
significance was determined by two-tailed Student’s t-test. Error bars show SEM. (C) 
Arid1BLoxP/LoxP;Nkx2.1-Cre mice spend significantly more time immobile in the forced 
swim test than controls. N = 5 mice for control and N=4 mice for Arid1BLoxP/LoxP;Nkx2.1-
Cre. Statistical significance was determined by two-tailed Student’s t-test. Error bars 
show SEM. (D) Representative traces from (E). (E) No significant difference in the total 
time spent in the center or the number of entries into the center in the open field test. 
N = 5 mice for control and N=4 mice for Arid1BLoxP/LoxP;Nkx2.1-Cre. Statistical 
significance was determined by two-tailed Student’s t-test. Error bars show SEM. (F) 
Arid1BLoxP/LoxP;Nkx2.1-Cre mice spend significantly more time grooming than controls in 
a 10-minute session. N = 5 mice for control and N=4 mice for Arid1BLoxP/LoxP;Nkx2.1-Cre. 
Statistical significance was determined by two-tailed Student’s t-test. Error bars show 
SEM. (G) No statistically significant difference in the novel object recognition index 
between Arid1BLoxP/LoxP;Nkx2.1-Cre and control mice N = 5 mice for control and N=4 mice 
for Arid1BLoxP/LoxP;Nkx2.1-Cre. Statistical significance was determined by two-tailed 
Student’s t-test. Error bars show SEM. (H) Arid1BLoxP/LoxP;Nkx2.1-Cre mice demonstrate 
significantly impaired sociability and heightened social novelty behaviors compared with 
controls. N=4 mice for each genotype. Statistical significance was determined by two-
tailed Student’s t-test. Error bars show SEM.   
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2.5 Discussion 

2.5.1 ARID1B differentially regulates neural progenitor proliferation but has similar 

effects on cell survival in both cortical and ventral progenitor populations 

We recently showed that adult heterozygous Arid1b knockout mice display a significant 

reduction in the overall number of their cortical interneurons with no major changes in 

cortical pyramidal neurons (Jung et al., 2017). We surmised that this is most likely due to 

defective proliferation and/or impaired cell survival in the ventral neural progenitor 

population. Here we show that homozygous knockout of Arid1b specifically in these cells 

leads to an overall decrease in the number of actively proliferating and/or mitotic cells, 

as well as fewer newborn neurons or neural progenitors in the MGE (Figure 2.2). We 

also report that loss of Arid1b in ventral neural progenitors leads to increased apoptosis 

in the MGE (Figure 2.3). The defects in proliferation are due, at least in part, to improper 

cell cycle regulation, as we observe reduced cell cycle speed and a lower rate of cell 

cycle re-entry in Arid1b-deleted ventral neural progenitors.  

Somewhat unexpectedly, homozygous deletion of Arid1b in cortical neural progenitors 

also leads to significant defects in cell proliferation and survival (Figures 2.1 and 2.3), 

though these impairments are not as severe as what we observe with Arid1b knockout in 

the ventral telencephalon. We report no change in active cell cycle participation in 

Arid1b-deleted cortical neural progenitors, however, we do observe a notable drop in the 

number of mitotic cells and fewer newborn cells in the developing cerebral cortex of 

these mutant mice. When we examine cell cycle regulation, we also see a significant 

decrease in cell cycle re-entry amongst cortical neural progenitors with no change in 

observed cell-cycle speed (Figure 2.3). Overall, it appears that Arid1b deletion in this 

population leads to pre-mitotic cell cycle arrest, as the number of progenitors apparently 

active in the cell cycle is not altered, but mitosis is decreased and there are fewer 

newborn cells, as well as decreased cell cycle re-entry. In cortical neural progenitors, at 
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least, ARID1B seems to play a crucial role in cell cycle progression, which may only be 

grossly observable with complete depletion of Arid1b and its gene product.  

Although ARID1B’s regulation of the cell cycle and neural progenitor proliferation 

appears to be cell-type specific, homozygous deletion of Arid1b leads to similar 

increases in apoptosis in both cortical and ventral neural progenitor populations. This 

indicates that the role of ARID1B in cell survival is likely similar in both progenitor 

subgroups and potentially elsewhere in the brain or periphery. It is unclear from the 

current study whether ARID1B’s functions in regulating cell proliferation or cell survival is 

likely to play a larger role in pathology of ARID1B-related neurodevelopmental disorders, 

but we can reasonably conclude that Arid1b plays a more substantial role in regulating 

ventral neural progenitor proliferation and survival than it does in cortical neural 

progenitors. 

     

2.5.2 Regulation of β-catenin by ARID1B 

In this study we report that homozygous deletion of Arid1b leads to reduced nuclear 

localization of β-catenin in ventral neural progenitors. Recently, Vasileiou et al. showed 

that β-catenin target gene expression is enhanced in peripheral blood lymphocytes taken 

from human patients with ARID1B loss-of-function mutations (Vasileiou et al., 2015). 

They also examined ARID1B interactions with β-catenin in a human osteosarcoma cell 

line and concluded that ARID1B-β-catenin interactions are mediated by BRG1 (Vasileiou 

et al., 2015). Another group demonstrated that shRNA-mediated knockdown of Arid1b 

leads to increased expression of β-catenin target genes in Stat3 knockout, sciatic-nerve-

derived neurofibroma spheres (Wu et al., 2016). A previous report, however, found that 

the central BAF component, BRG1, enhances β-catenin target gene expression by 

binding to β-catenin at target gene promoters and, most likely, facilitating chromatin 

remodeling (Barker et al., 2001). Our recent study involving global heterozygous 
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knockout of Arid1b agrees more with this finding, as we see significant decreases in the 

mRNA expression levels of several β-catenin target genes in the ventral telencephalon 

(Jung et al., 2017). Multiple studies have shown broad diversity in the configuration of 

BAF complexes dependent on cell type and switches in subunit composition play a large 

role in determining which genes are targeted by BAF complexes and how they mediate 

transcription (de la Serna et al., 2001; Olave et al., 2002; Lickert et al., 2004; Ohkawa et 

al., 2006; Cvekl and Duncan, 2007; Lessard et al., 2007; Li et al., 2013; Xiong et al., 

2013; Son and Crabtree, 2014; Yu et al., 2015a). For this reason, the effects of Arid1b 

knockdown in non-neural progenitor or non-neuronal populations may be entirely 

different than what is observed in the brain. It is entirely possible that ARID1B acts to 

repress β-catenin in a BRG1-dependent manner in peripheral blood lymphocytes and 

tumor cell lines and enhance β-catenin transcriptional activation in the developing brain.  

To further illustrate the variable role ARID1B seems to play in different cell types, 

Vasileiou et al. also report that siRNA-mediated knockdown of ARID1B in a human 

neuroblastoma cell line leads to 48% of cells extending pronounced neurites, compared 

to 14% of cells in controls, and that this is reversed by concurrently knocking down β-

catenin (Vasileiou et al., 2015). Conversely, we have shown that in utero knockdown of 

Arid1b in the cortical ventricular zone leads to impaired neuritogenesis and neurite 

outgrowth in mouse pyramidal neurons (Ka et al., 2016b).   

Overall, these contradictions contribute to the hypothesis that BAF complexes and, by 

association, ARID1B fulfill different regulatory functions in diverse cell types. As such, 

the current limited data appears to show that ARID1B enhances the function of β-catenin 

in the nucleus of neural progenitors. The exact mechanism by which ARID1B influences 

β-catenin, however, still needs to be elucidated before strong conclusions can be drawn. 

 

2.5.3 Arid1b knockout affects mouse behavior in a cell-type-specific manner 
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Arid1b haploinsufficient mice demonstrate marked ID- and ASD-like characteristics 

(Celen et al., 2017; Jung et al., 2017; Shibutani et al., 2017), making them a useful 

mouse model for studying neurodevelopmental disorders. With the apparent cortical 

excitatory/inhibitory imbalance we previously observed in Arid1b haploinsufficient mice 

(Jung et al., 2017), we were interested to determine whether ARID1B depletion in 

cortical or ventral neural progenitors and their progeny contribute individually to specific 

behavioral phenotypes. We report that homozygous deletion of Arid1b in cortical neural 

progenitors has little to no notable effect on the emotional or social behavior, compared 

with controls. It does, however, lead to a significant decrease in cognitive function, as 

evidenced by impaired recognition memory in Arid1bLoxP/LoxP;Emx1-Cre mice (Figure 2.6). 

Conversely, Arid1b deletion in ventral neural progenitors appears to have no effect on 

cognitive performance but does lead to considerable social and emotional deficits 

(Figures 2.7 and 2.8).  

We previously showed that multiple ASD- and ID-like behaviors can be rescued in 

Arid1b haploinsufficient mice by increasing GABA tone by treating with the GABA 

positive allosteric modulator, clonazepam. Intriguingly, in that study we saw 

improvements in both cognitive and emotional aberrant behaviors, although not all 

behavioral abnormalities were reversed (Jung et al., 2017). This would indicate that 

GABA signaling does play a role in cognitive function in Arid1b haploinsufficiency, even 

though homozygous deletion of Arid1b in GABAergice interneuron precursors leads to 

no cognitive impairments. Future studies will need to examine specific neuronal 

subpopulations and circuits related to particular behaviors in Arid1b mutant mice to 

provide a better understanding of the mechanistic link between ARID1B and behavior.  

 

2.5.4 Summary 
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Arid1b deletion alters neural progenitor proliferation in a cell-type specific manner, but 

indiscriminately increases apoptosis. The former is partially due to misregulation of the 

cell cycle in both ventral and cortical neural progenitor pools. ARID1B also plays a role in 

dictating the subcellular localization of β-catenin, as Arid1b deletion leads to decreased 

levels of β-catenin in the nucleus. Homozygous knockout of Arid1b leads to cognitive 

impairments without deficits in social or emotional behavior, whereas loss of Arid1b in 

ventral neural progenitors results in aberrant social and emotional behaviors and no 

cognitive dysfunction. Taken together, we conclude that ARID1B plays distinct, yet 

overlapping roles in cortical and ventral neural progenitors. Future studies will be 

required to further elucidate the exact mechanisms by which ARID1B independently 

regulates these cell types. As multiple BAF subunits have been linked to the regulation 

of cell proliferation and survival (Son and Crabtree, 2014), and the function of BAF 

complexes can be both cell-type and subunit-composition dependent (Battaglioli et al., 

2002; Inoue et al., 2002; Olave et al., 2002; Lickert et al., 2004; Lessard et al., 2007; Wu 

et al., 2007; Li et al., 2013; Tuoc et al., 2013; Son and Crabtree, 2014; Narayanan et al., 

2015; Vasileiou et al., 2015; Hodges et al., 2016), it is likely that ARID1B indeed fulfills 

different roles in divergent cell populations at different times. This study supports that 

notion and reiterates that mutations to a single gene can have a broad impact on 

multiple cell types and regulate diverse functions. In order to better understand and more 

precisely treat neurodevelopmental disorders such as ID and ASD, we will need to 

elucidate the specific cell types and circuits associated with aberrant behaviors and 

symptoms.   
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3.1 Abstract 

The polarity of radial glial cells, which serve as neural progenitors and as guides for 

neuronal placement, is crucial for cortical development. Cortical development disorders, 

such as lissencephaly and Subcortical Band Heterotopia (SBH), are associated with 

autism and intellectual disability. MACF1 is the candidate gene for 1p34.2-p34.3 deletion 

syndrome, a chromosomal deletion disorder characterized by a greatly increased risk for 

autism and neurodevelopmental delay. Here we show that genetic deletion of Macf1 in 

the developing mouse cerebral cortex results in SBH and abnormal neural proliferation. 

We further show that the abnormal polarity of radial glial progenitors in Macf1 mutants 

causes neural proliferation and migration defects through destabilization of actin and 

microtubules in the developing cortex. Moreover, Macf1 mutants also show defects in 

the ciliogenesis of radial glial progenitors in the ventricular zone (VZ) during cortical 

development. In addition, Macf1-mutant mice exhibit significant behavioral deficits. Our 

findings suggest that defects in microtubule binding components massively affect neural 

progenitor proliferation and cortical lamination via regulation of radial glial cell polarity in 

developing cortex, leading to cognitive and behavioral deficits. 
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3.2 Introduction 

Alterations in gene dosage due to the duplication or deletion of specific chromosome 

regions cause many neurodevelopmental disorders frequently associated with autism 

spectrum disorders (ASD), mental retardation, intellectual disability (ID), and other 

related conditions (Lupski and Stankiewicz, 2005; Lee and Lupski, 2006; Geschwind, 

2011; Mefford et al., 2012). A de novo 4.1Mb microdeletion at chromosome 1p34.2-

p34.3 has been identified by array-based comparative genomic hybridization in a young 

male with severely delayed development, microcephaly, pronounced hypotonia, and 

facial dysmorphism (Vermeer et al., 2007). Additionally, a 3.3Mb deletion of 1p34.2-

p34.3 was reported in another patient  characterized by microcephaly, ID and ASD 

(Kumar et al., 2010). An unborn fetus with a 2.7Mb de novo deletion of 1p34.3 was 

diagnosed with developmental delay and micrognathia (Dagklis et al., 2016). 

Chromosome 1p34.2-p34.3 contains about 43 genes, including Microtubule-Actin 

Crosslinking Factor 1 (MACF1), a gene previously shown to regulate neuronal migration 

and dendrite outgrowth in the developing cerebral cortex (Kumar et al., 2010; Ka et al., 

2014a; Ka and Kim, 2016; Ka et al., 2016a; Moffat et al., 2017). 

 

MACF1 is a cytoskeletal linker protein that interacts with both F-actin and microtubules 

via an actin-binding domain near its N-terminus and a microtubule-binding domain near 

its C-terminus (Leung et al., 1999; Sun et al., 2001; Suozzi et al., 2012). MACF1 

regulates pyramidal neuronal migration via microtubule dynamics and GSK-3 signaling 

in the developing cerebral cortex (Ka et al., 2014a). MACF1 is also required for dendrite 

arborization and axon outgrowth, which are both critical for the establishment of 

neuronal connections in the developing brain (Ka and Kim, 2016). We have also 

previously shown that MACF1 plays a critical role in cortical interneuron migration and 

positioning in the developing brain (Ka et al., 2016a). These findings suggest a potential 
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role for MACF1 in neuronal differentiation during brain development. However, the role 

of MACF1 and its associated mechanisms in neural cell proliferation and the interkinetic 

nuclear migration (INM) of radial glial cells in vivo is not known. 

 

The cerebral cortex is a central brain region, which controls complex cognitive 

behaviors, and cortical size is crucial for normal brain function (Geschwind and Rakic, 

2013). The control of cortical size depends on the balanced control of neural progenitor 

and mature neuron maintenance in developing brain (Chenn and Walsh, 2002). Radial 

glial cells (RGCs) are the key progenitor cells in the developing cerebral cortex. They 

can either generate two new RGCs via symmetric division or divide into one intermediate 

progenitor or post mitotic neuron and one RGC via asymmetric division during 

development (Gotz and Huttner, 2005; Huttner and Kosodo, 2005). RGCs extend apical 

radial fibers toward the ventricular zone (VZ) and basal radial fibers toward the marginal 

zone of the cerebral cortex (Fishell and Kriegstein, 2003; Rakic, 2003). The RGCs in the 

cortical VZ of the developing brain exhibit INM, in which their nuclei migrate between the 

apical surface and the basal portion of the polarized radial glial cells in phase with their 

cell-cycle progression (Frade, 2002; Gotz and Huttner, 2005; Schenk et al., 2009). 

Immediately following cell division, the nuclei are located at the apical surface, from 

where they migrate basally for the duration of the G1 phase of the cell cycle and 

subsequently remain in the basal region of the VZ during S phase. Upon 

commencement of the G2 phase, the nuclei begin to migrate apically, entering the M 

phase once they reach the apical surface (Kosodo et al., 2011; Kosodo, 2012). The actin 

and microtubule cytoskeleton are critical for both INM and neural proliferation (Messier 

and Auclair, 1973; Gotz and Huttner, 2005), however the regulatory roles for INM of 

RGCs in neocortical neurogenesis are not fully understood. 
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Here we investigate the functions and mechanisms of MACF1 in neural proliferation and 

the INM of radial glial progenitors during cortical development. We employ conditional 

knockout strategies to target MACF1 specifically in developing neural progenitors and 

provide evidence that MACF1 is essential for maintaining the neural progenitor pool via 

regulation of radial glial cell polarity during mouse neocortical development. We also 

report that loss of MACF1 results in aberrant radial progenitor proliferation and cortical 

malformation. Furthermore, Macf1 knockout mice demonstrate social and intellectual 

behavioral deficits and their brains display SBH. These findings support the proposition 

that loss of Macf1 expression is the fundamental cause of at least some of the 

anatomical and behavioral abnormalities produced by de novo microdeletion of 

chromosome 1p34.2-p34.3.  
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3.3 Materials and methods 

3.3.1 Mice 

Mice were handled according to our animal protocol approved by the University of 

Nebraska Medical Center. The Macf1 floxed mouse was described previously (Wu X et 

al., 2011). The Emx1-Cre mouse (Tronche et al., 1999) was purchased from The 

Jackson laboratory.  

 

3.3.2 Immunostaining 

Immunostaining of brain sections or dissociated neural cells was performed as described 

previously (Kim et al., 2006; Ka et al., 2016c). The following primary antibodies were 

used: Rabbit anti-MTOR (Santa Cruz, sc-68430), mouse anti-NeuN (EMD Millipore, 

MAB337), rat anti-neural cell adhesion molecule L1 (EMD Millipore, MAB5272), rabbit 

anti-TBR1 (Abcam, ab31940), rabbit anti-CUX1 (Santa Cruz, sc-13024), chicken anti-

MAP2 (Abcam, ab5392), rabbit anti-GFAP (Abcam, ab7260), rabbit anti-Ki67 (Cell 

Signaling, #9129), rabbit anti-phospho-Histone H3 (Cell Signaling, #9701S), mouse anti-

BrdU (BD Biosciences, 555627), chicken anti-TBR2 (EMD Millipore, ab15894), rabbit 

anti-BLBP (Abcam, ab32423), mouse anti-Nestin (PhosphoSolutions, 1435-NES), rabbit 

anti-ARL13B (Abcam, ab83879), rabbit anti-Acetyl-α-Tubulin (Cell Signaling, #5335), 

chicken anti-GFP (Thermo Fisher, A10262), rabbit anti-GFP (Thermo Fisher, A11122) 

and Alexa Fluor568-Phalloidin (Thermo Fisher, A12380). Appropriate secondary 

antibodies conjugated with Alexa Fluor dyes (Thermo Fisher) were used to detect 

primary antibodies.        

 

3.3.3 In utero electroporation 

In utero electroporation was performed as described previously (Ka et al., 2016b; Ka and 
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Kim, 2016). Briefly, timed pregnant female mice from E13.5 of gestation were deeply 

anesthetized, and the uterine horns were gently exposed by laparotomy. The lateral 

ventricles of an embryonic brain were injected with plasmid DNA (2 µg/µl) and 0.001% 

fast green (Sigma-Aldrich Corporation, St. Louis, MO, USA) using a Picospritzer II 

(Parker Hannifin, Hollis, NH, USA). Electroporation was achieved by placing two sterile 

forceps-type electrodes on opposing sides of the uterine sac around the embryonic head 

and applying a series of short electrical pulses using a BTX ECM 830 electroporator 

(Harvard Apparatus, Holliston, MA, USA) (five pulses with 100 ms length separated by 

900 ms intervals were applied at 45 V). The small electrical pulses drive charged DNA 

constructs into surrounding cells in the embryonic brain. Embryos were allowed to 

develop in utero for the indicated time. 

 

3.3.4 Morphometry 

Images of brain sections at periodic distances along the rostro-caudal axis were taken 

with the Zeiss LSM710 confocal microscope and ZEN software. We counted DAPI, 

BrdU, KI67, phospho-Histone H3, TBR2-positive cells in a field of 0.2 or 0.4 mm2 

throughout the rostro-caudal extent of the cerebral cortex. Ten mice for each experiment 

(control mice, n= 5; mutant mice, n= 5) were used. Stereological analysis of 

immunostained cells was performed by analyzing one-in-six series of 40 μm coronal 

sections (240 μm apart). The images were subjected to software-driven particle analysis 

with automatic machine-set thresholding in ImageJ, thus eliminating subjective 

investigator bias. Then, a particle parameter enumeration analysis was followed for size 

exclusion at minimum of 10 pixel2. The blue channel images were used to assess 

background cells. For analyzing cultured cells, more than 20 fields scanned horizontally 

and vertically were examined in each condition. Cell numbers were described in figure 

legends. The calculated values were averaged, and some results were recalculated as 
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relative changes versus control.  

 

3.3.5 BrdU administration and cell cycle analysis 

BrdU injection and cell cycle analysis were performed as described previously (Ka et al., 

2014b; Ka et al., 2017). Intraperitoneal injection of BrdU (20mg per kg body weight) was 

performed into pregnant mice at E13.5-14.5. For the analysis of cell cycle re-entry, BrdU 

was administered to control and Macf1-cKO mice for 24 h. Brains were fixed with 4% 

PFA, sliced, and immunostained with antibodies to BrdU and KI67. The ratio of cells 

labeled with BrdU and KI67 to total cells that incorporated BrdU was determined. For the 

analysis of cell cycle length, the ratio of progenitor cells positive for KI67 and BrdU to the 

total KI67 labeled cells was assessed after a 30 min BrdU pulse. 

 

3.3.6 Behavioral assays 

All behavioral assays were done during light cycle. Behavior recording and analysis 

were performed by a researcher blinded to the genotype of each mouse. Health 

conditions including weights, activity and feeding were checked prior to assays. 

 

3.3.7 Rearing test 

A test mouse was placed in a clean 300 ml glass beaker (Fisherbrand) and filmed for 5 

minutes. The number of times reared and the total duration of rearing were recorded. A 

rearing even was only counted when both hindpaws were fully extended. The beaker 

was cleaned with 70% ethanol between each trail. 

3.3.8 Grip strength test 

A mouse is suspended upside-down from a wire mesh approximately 60 cm from a 
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padded surface for a maximum of 2 minutes as described elsewhere (Deacon, 2013). 

The mean latency to fall for each mouse is recorded in three trials with at least a 30-

minute break between trials. The wire mesh was cleaned with 70% ethanol between 

each trial. 

3.3.9 Open field test 

A mouse was placed near the wall-side of a 35 × 42 cm open-field arena, and the 

movement of the mouse was recorded by a camera for 5 min. The recorded video file 

was further analyzed using EthoVision XT 7.0 software (Noldus). Total distance moved 

and average velocity of movement were recorded. The number of entries into, and the 

overall time spent in, the center of the arena (15 × 15 cm imaginary square) were also 

measured. The open field arena was cleaned with 70% ethanol between each trial.  

3.3.10 Novel object recognition test 

A test mouse was first habituated to an open field arena (35 × 42 cm) for 5 min. 

Following habituation, the test mouse was removed from the arena and two identical 

objects with size (10.5 × 4.5 × 2.5 cm) were placed in the opposite corners of the arena, 

7 cm from the side walls. Then the test mouse was reintroduced into the center of the 

arena and allowed to explore the arena including the two novel objects for 10 min. After 

6 h, one object was replaced with another novel object, which was of similar size but 

different shape and color than the previous object. The same test mouse was placed in 

the arena to explore the arena and the two objects. The movement of mice was 

recorded by a camera for 10 min and further analyzed by the video tracking EthoVision 

XT 7 software (Noldus). 

3.3.11 Three-chamber test for social interaction and novelty behavior 

Social behavior was evaluated as described previously 41. A rectangular and 
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transparent Plexiglas box divided by walls into three equal-sized compartments 

(Ugobasile) was used. Rectangular holes in the Plexiglas walls provide access between 

the chambers. For sociability testing, the test mouse was moved to the center chamber 

(chamber 2) with the entrances to the two connecting chambers blocked. A stimulus 

mouse (unfamiliar mouse) designated as “stranger 1” was placed in a wire enclosure in 

chamber 1. Then, the openings to the flanking two chambers (1 and 3) were opened and 

the test mouse was allowed to explore the entire apparatus for 10 min. For the social 

novelty test, the stranger 1 mouse was randomly placed in one of the enclosures in 

which the test mouse had the choice of whether to investigate the stranger 1 mouse or a 

novel mouse, designated “stranger 2”. This novel mouse was taken from a different 

home cage and placed into the remaining empty wire enclosure. Time spent sniffing 

each partner by the test mouse was recorded for 10 min in both sociability and social 

novelty behavior tests. All apparatus chambers were cleaned with water and dried with 

paper towels between trials. At the end of each test day, the apparatus was sprayed with 

70% ethanol and wiped clean with paper towels. 

3.3.12 Elevated plus-maze test 

The elevated plus-maze test was performed as previously described 41. The apparatus 

(EB Instrument) includes two open arms (35 × 5 cm), two enclosed arms (35 × 5 × 15 

cm), and a central platform (5 × 5 cm). The entire apparatus was elevated 45 cm above 

the floor. A mouse was placed on the central platform, facing the same open arm and 

allowed to roam freely for 5 minutes. The number of entries into, and the time spent on 

open and closed arms were recorded. Percent open arm time was calculated as time 

spent in the open arms divided by the total time. Rearing frequency was also recorded. 

3.3.13 Forced swimming test 

A mouse was placed individually into a glass cylinder (20 cm height, 17 cm diameter) 
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filled with water to a depth of 10 cm at 25°C. After 5 minutes, the animals were removed 

from the water, dried, and returned to their home cages. They were again placed in the 

cylinder 24 hr later, and after the initial 1 min acclimatization period, the total duration of 

immobility was measured for 5 min. Motionless floating was considered immobile 

behavior.  

3.3.14 Tail suspension test 

A mouse was suspended from the hook of a tail suspension test box, 60 cm above the 

surface of a table using adhesive tape placed 1 cm away from the tip of the tail. After 

1 min acclimatization, immobility duration was recorded by a camera for 5 minutes. Mice 

were considered immobile only when they hung passively and were completely 

motionless. 

3.3.15 Statistical analysis 

Normal distribution was tested using the Kolmogorov–Smirnov test and variance was 

compared. Unless otherwise stated, statistical significance was determined by two-tailed 

unpaired Student’s t-test for two-population comparison and one-way analysis of 

variance followed by Bonferroni correction test for multiple comparisons. Data were 

analyzed using GraphPad Prism and presented as mean (+/-) SEM. P values are 

indicated in figure legends. 
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3.4 Results 

3.4.1 Generation and gross anatomy of Macf1F/F; Emx1-Cre (Macf1-cKO) mice 

To examine the roles of MACF1 in neuronal proliferation during cerebral cortex 

development, we crossed Macf1 floxed mice (Goryunov et al., 2010) with an Emx1-Cre 

mouse line (Tronche et al., 1999). These Macf1; Emx1-Cre conditional knockout (Macf1-

cKO) mice express Cre recombinase by embryonic day 9.5 (E9.5) in dorsal neural 

progenitor cells (Gorski et al., 2002; Iwasato et al., 2004). Macf1-cKO mice survive into 

adulthood, however, they exhibit a reduced survival rate compared to control mice 

(Figure 3.1A-B). Macf1-cKO mice also present with significantly reduced body weight 

and slightly reduced brain volume and size at 8 weeks of age (Figure 3.1C-D). 

Interestingly, Macf1-cKO mice display an increased brain-to-body-weight ratio (Figure 

3.1A, D). In order to further define neuroanatomical abnormalities in these mutant mice, 

we measured cortical parameters including cortical area, anteroposterior (A-P) length 

and cortical length in Macf1-cKO and control mice (Pucilowska et al., 2015), (Figure 

3.1E). Macf1-cKO brains show a significant decrease in cortical area, A-P length and 

cortical length (Figure 3.1C, F). Histological examination of brain sections stained with 

DAPI reveals that Macf1-cKO brains also exhibit thicker cerebral cortices throughout the 

rostrocaudal axis (Figure 3.1G-H). However, Macf1-cKO brains display thinner cortical 

plates and smaller hippocampal areas, compared with control brains (Figure 3.1G-H). 

Macf1-cKO brains present SBH in the rostrocaudal region of the cerebral cortex, near 

the hippocampus (Figure 3.1G). Interestingly, Macf1-cKO brains do not exhibit any 

differences in brain size or brain volume at postnatal day 3 (P3) (Figure 3.2A-B). 

However, histological analysis of Macf1-cKO brains displayed SBH throughout the 

rostrocaudal axis of the cerebral cortex at P3, where we observed a second, ectopic 

layer of gray and white matter (Figure 3.1I and Figure 3.2B-C).  
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Figure 3.1 Severe brain malformations in Macf1LoxP/LoxP/Emx1-Cre (Macf1-cKO) 
mice 
(A) Representative images of control (larger one, left) and Macf1-cKO (smaller one, 
right) mice at 2-month-old. (B) The survival curve of Macf1-cKO and control mice after 
the Kaplan-Meier method. The numbers of mice used were 20 for littermate control and 
10 for Macf1-cKO mice. (C) Representative images of whole brains control (left) and 
Macf1-cKO (right) mice at 2-month-old. (D) Quantifications of the body weight and brain 
weight of the control and Macf1-cKO mice. N=5 mice for each condition. Statistical 
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significance was determined by two-tailed Student’s t-test. Error bars show standard 
error of the mean (SEM). *p < 0.05. (E), (F) Measured of cortical parameters including 
cortical area, anteroposterior (A-P) length, cortical length and cerebellum area. N= 5 
mice for each condition. Statistical significance was determined by two-tailed Student’s t-
test. Error bars show standard error of the mean (SEM). **p < 0.01. (G) Histologic 
appearance of brain sections from 2-month-old control and Macf1-cKO mice were 
stained with DAPI. Stars indicate SBH. Scale bars: 3mm, 300μm. (H) Quantifications of 
the thickness of the neocortex and hippocampus of the control and Macf1-cKO mice. N= 
5 mice for each condition. Statistical significance was determined by two-tailed Student’s 
t-test. Error bars show standard error of the mean (SEM). ***p < 0.001. (I) Coronal brain 
sections from P3 of the control and Macf1-cKO mice were stained with DAPI. GM 
indicates gray matter. WM indicates white matter. Arrows indicate ectopically formed 
layer of gray matter. Scale bars: 50μm. 
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Figure 3.2 Macf1 cKO causes SBH or double cortex 
(A) Representative images of whole brains control (left) and Macf1-cKO (right) mice at 
P3 stage. (B) Measured of cortical parameters including cortical area and cortical length. 
N= 5 mice for each condition. Statistical significance was determined by two-tailed 
Student’s t-test. Error bars show standard error of the mean (SEM). (C) Immunostaining 
of coronal cerebral cortical sections from P3 control and Macf1-cKO brains with anti-
NeuroN (NeuN) and anti-L1 antibodies. Stars indicate SBH. Representative images from 
both three control and Macf1-cKO brains. Scale bars: 300μm. 
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3.4.2 Cortical malformations in Macf1-cKO brains 

To examine the roles of MACF1 in neuronal positioning within the cerebral cortex, we 

immunostained for NeuN, a marker for differentiated neurons, and L1, a neural cell 

adhesion molecule. In P3 control mice, NeuN-positive cells were localized to the cortical 

plate, above L1-positive areas, which lined the neuronal axon tracts and the corpus 

callosum and make up the white matter of cerebral cortex (Figure 3.3A and Figure 3.2C). 

Conversely, Macf1-cKO mice exhibited a thin layer of NeuN-positive neurons in the 

cortical plate and periventricular heterotopia. Moreover, Macf1-cKO brains displayed 

abnormal L1-positive axon tracts surrounding ectopic neuronal nodules (Figure 3.3A and 

Figure 3.2C). These results demonstrate that deletion of Macf1 in the developing 

cerebral cortex results in the formation of SBH, or double-cortex, and the SBH in Macf1-

cKO brains is composed of differentiated neurons. 

Next, to examine the laminar identity of the heterotopic neurons, we immunostained for 

TBR1, a marker of deeper-layer cortical neurons, CUX1, a marker of more superficial 

cortical neurons, MAP2, a marker of neural dendrites and mature neurons, and GFAP, 

an astrocyte marker, in P3 mice. In control brains, TBR1-positive neurons are mostly 

restricted to the deeper cortical layer VI, whereas TBR1-positive neurons in Macf1-cKO 

brains appear to be abnormally distributed throughout multiple cortical layers (Figure 

3.3B). Similar patterns can be seen with CUX1 immunostaining. CUX1-positive neurons 

are localized in superficial cortical layers II-IV in control brains, however CUX1-positive 

neurons in Macf1-cKO mice are spread evenly throughout the cortex (Figure 3.3B). 

MAP2-positive mature neurons are positioned in the cortical plate and not in the IZ of 

control brains, however, MAP2-positive mature neurons in Macf1-cKO brains 

accumulate in heterotopic nodules (Figure 3.3B). Moreover, GFAP-positive astrocytes 

are not generally found in the cortical plate of control brains but can be readily observed 

in heterotopic nodules within the cortical plates of Macf1-cKO mice (Figure 3.3B). 
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In 8-week-old control mice, NeuN-positive cells are positioned within the cortex, above 

GFAP-positive astrocytes. GFAP-positive astrocytes also accumulate in the white matter 

of the corpus callosum (Figure 3.3C). Similarly, NeuN-positive neurons are found 

throughout the cerebral cortex in Macf1-cKO mice, however, GFAP-positive astrocytes 

are ectopically spread throughout the cortex (Figure 3.3C). Interestingly, the number of 

NeuN-positive neurons in Macf1-cKO mice is higher than in control mice (Figure 3.3C). 

Finally, to examine cortical layering in Macf1-cKO mice we immunostained for NeuN and 

labeled all nuclei with DAPI and assessed brains from cortical layer II-III to the pial 

surface of cerebral cortex. Control brains display a clear separation between cortical 

layer II-III and the pial surface. DAPI-positive, non-neuronal cells are densely 

concentrated in a straight line along the pial surface, while NeuN-negative Cajal–Retzius 

cells are localized in cortical layer I, and NeuN-positive pyramidal neurons populate 

cortical layer II-III (Figure 3.3D). In Macf1-cKO brains, however, the pial surface is not 

clearly defined and non-neuronal cells are interspersed with layer I and layer II-III 

neurons (Figure 3.3D). Together, these results suggest that dorsal neural progenitor 

specific Macf1-cKO mice display abnormal neural placement and develop pronounced 

malformations of the cerebral cortex.  
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Figure 3.3 Cortical malformation of Macf1-cKO brains 
(A) Immunostaining of coronal cerebral cortical sections from P3 control and Macf1-cKO 
brains with anti-NeuroN (NeuN) and anti-L1 antibodies. Representative images from 
both three control and Macf1-cKO brains. Scale bars: 300μm, 50μm. (B) Immunostaining 
of coronal cerebral cortical sections from P3 control and Macf1-cKO brains with anti-
TBR1, anti-CUX1, anti-MAP2 or anti-GFAP antibodies. Representative images from both 
five control and Macf1-cKO brains. Scale bars: 50μm, 20μm. (D) Immunostaining of 
coronal cerebral cortical sections from 2-month-old control and Macf1-cKO brains with 
anti-NeuN and anti-GFAP antibodies. Representative images from both three control 
and Macf1-cKO brains. Scale bars: 50μm, 20μm. (D) Immunostaining of coronal cerebral 
cortical sections control and Macf1-cKO brains with anti-NeuN antibody. Arrows indicate 
Cajal-Retzius cells in pia surface and stars indicate non-neuronal cells in II-III cortical 
layers. Representative images from both three control and Macf1-cKO brains. Scale 
bars: 20μm, 10μm. 
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3.4.3 Progenitor proliferation in the Macf1-cKO cerebral cortex 

We next attempted to delineate how Macf1-cKO mice develop such distinct SBH during 

development. DAPI staining reveals that Macf1-cKO brains exhibit thicker cerebral 

cortices, compared with control brains, while control mice present with thicker cortical 

plates all along the rostrocaudal axis (Figure 3.4A-B). Ki67 immunostaining generally 

labels actively proliferating cells. At E14.5, the number of KI67-positive progenitor cells 

in Macf1-cKO brains is increased by 92%, compared with control brains (Figure 3.4C 

and Figure 3.5A-B).  In addition, KI67-positive proliferating cells accumulate in the 

subventricular zone (SVZ) and VZ of control brains (Figure 3.4C and Figure 3.5A-C), 

while KI67-positive progenitor cells in Macf1-cKO brains are abnormally scattered 

between the SVZ/VZ, intermediate zone (IZ) and cortical plate (Figure 3.4C and Figure 

3.5A-C). We assessed cells in the mitotic phase by immunostaining for phospho-histone 

H3. Similar to our Ki67 results, there is a 116% increase in the number of phospho-

histone H3-positive mitotic cells in Macf1-cKO brains, compared with controls (Figure 

3.4D  and Figure 3.5D, E). Likewise, phospho-histone H3-positive mitotic cells in control 

brains accumulate in the VZ, but phospho-histone H3-positive mitotic cells in Macf1-cKO 

brains appear to be abnormally spread throughout all cortical layers (Figure 3.4D and 

Figure 3.5D, F). Finally, we immunostained cerebral cortex sections with an antibody to 

Tbr2, a marker for intermediate neural progenitors (Sessa et al., 2008). The number of 

Tbr2-positive intermediate progenitors in the Macf1-cKO cerebral cortex is 98% higher 

than in control brains (Figure 3.4E and Figure 3.5G-H). In control cortices, Tbr2-positive 

intermediate progenitors localize within the SVZ, whereas Tbr2-positive cells in Macf1-

cKO mice are spread out evenly throughout the cortex (Figure 3.4E and Figure 3.5G, I). 

Together, these results demonstrate that MACF1 plays an important role in radial 

progenitor proliferation during cortical development. In addition, MACF1 plays a crucial 

role in regulating proliferation in a region-specific manner within cerebral cortex.  
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Figure 3.4 Macf1-cKO causes abnormal proliferation in developing cerebral cortex 
(A) Histologic appearance of coronal brain sections from E14.5 of the control and Macf1-
cKO mice were stained with DAPI. Scale bars: 300μm. (B) Quantifications of the 
thickness of the neocortex and CP of the control and Macf1-cKO mice. N= 5 mice for 
each condition. Statistical significance was determined by two-tailed Student’s t-test. 
Error bars show standard error of the mean (SEM). ***p < 0.001. (C), (D), (E) 
Immunostaining of coronal cerebral cortical sections from E14.5 control and Macf1-cKO 
brains with anti-KI67, anti-phospho Histone H3 (p-HH3) or anti-TBR2 antibodies. 
Representative images from both three control and Macf1-cKO brains. Scale bars: 
100μm.  
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Figure 3.5 Proliferation in the Macf1-cKO developing cerebral cortex 
(A), (D), (G) Immunostaining of coronal cerebral cortical sections from E14.5 control and 
Macf1-cKO brains with anti-KI67, anti-phospho Histone H3 (p-HH3) or anti-TBR2 
antibodies. Representative images from both three control and Macf1-cKO brains. Scale 
bars: 50μm. (B), (E), (H) Quantifications of the KI67+, p-HH3+ or TBR2+ of the control 
and Macf1-cKO brains. N=5 mice for each condition. Statistical significance was 
determined by two-tailed Student’s t-test. Error bars show standard error of the mean 
(SEM). **p < 0.01, ***p < 0.001. (C), (F), (I) Quantification of KI67+, p-HH3+ or TBR2+ 
cells throughout the cerebral cortex. N=5 mice for each condition. Statistical significance 
was determined by multiple t-tests with Bonferroni correction test. Error bars show 
standard error of the mean SEM. *p < 0.05,  ***p < 0.001. 
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3.4.4 Cell cycle speed and re-entry of Macf1-cKO radial progenitors  

To identify the underlying cause of the increase in radial progenitor proliferation in the 

Macf1-cKO cerebral cortex we first examined cell cycle speed, because a prolonged cell 

cycle could lead to the observed decrease in proliferation. We immunostained control 

and Macf1-cKO brains with Ki67 and BrdU antibodies and assessed Ki67/BrdU double-

positive cells divided by the total number of Ki67-positive cells after a 30min BrdU pulse. 

This method has been established as a way to calculate the cell cycle speed index of 

neural progenitors (Chenn and Walsh, 2002; Ka et al., 2014b; Ka et al., 2017). This cell 

cycle speed index is increased by 60% in the Macf1-cKO cerebral cortex compared with 

controls (Figure 3.6A-B). Next, to investigate whether conditional Macf1 deletion causes 

changes in cell cycle re-entry, we assessed the proportion of cells that re-enter the cell 

cycle after a 24 h BrdU pulse, which is calculated by dividing the number of Ki67/BrdU 

double-positive cells by the total number of BrdU-positive cells (Ka et al., 2014b; Ka et 

al., 2017). The number of progenitors re-entering cell cycle is 46% higher in the Macf1-

cKO cerebral cortex than in controls (Figure 3.6C-D and Figure 3.7). These results 

indicate that both an increase in cell cycle re-entry and an increase in cell cycle speed 

induce radial progenitor self-renewal, leading to the marked growth of radial progenitor 

pools in the Macf1-cKO cerebral cortex. 
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Figure 3.6 Altered cell cycle progression in the Macf1-cKO developing cerebral 
cortex 
(A) E14.5 control and Macf1-cKO mice were pulse-labeled with BrdU for 30 min, and 
then brain regions containing the cerebral cortex were collected and immunostained 
using BrdU and Ki67 antibodies. Scale bar: 20μm. (B) Quantification of cell cycle speed. 
The cell cycle speed was defined as the fraction of BrdU+ and Ki67+ cells in total Ki67+ 
cells in the cerebral cortex. N=5 mice for each condition. Statistical significance was 
determined by two-tailed Student’s t-test. Error bars show SEM. ***p < 0.001. (C) E13.5 
control and Macf1-cKO mice were pulse-labeled with BrdU for 24 h and then brains were 
collected for immunostaining with BrdU and Ki67 antibodies. Scale bar: 20μm. (D) The 
index of cell cycle re-entry was calculated as the fractions of both BrdU+ and Ki67+ cells 
in total BrdU+ cells. N=5 mice for each condition. Statistical significance was determined 
by two-tailed Student’s t-test. Error bars show SEM. **p < 0.01. 
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Figure 3.7 Macf1-cKO causes abnormal cell cycle progression 
E13.5 control and Macf1-cKO mice were pulse-labeled with BrdU for 24 h and then 
brains were collected for immunostaining with BrdU and Ki67 antibodies. Scale bar: 
50μm.  
 

3.4.5 Abnormal radial glial development in Macf1-cKO brains 

In order to understand the abnormal positioning of proliferating cells in Macf1-cKO mice, 

we first examined the role of MACF1 in radial glial development and corticogenesis. We 

immunostained cerebral cortex sections at E14.5 with an antibody reactive to BLBP, a 

radial glial neural progenitor marker. The number of BLBP-positive radial glial cells in 

Macf1-cKO brains is 55% higher than in control brains (Figure 3.8A-B). Furthermore, 

BLBP-positive radial glial cells in control brains are positioned within the SVZ and VZ 

(Figure 3.8A-C), while BLBP-positive radial glial cells in Macf1-cKO brains are 

abnormally spread throughout the SVZ/VZ, intermediate zone (IZ) and cortical plate 

(Figure 3.8A-C). Radial progenitors extend apical radial fibers toward the ventricular 

zone (VZ) and basal radial fibers toward the marginal zone of the cerebral cortex (Fishell 

and Kriegstein, 2003; Rakic, 2003). We examined the basal glial fibers in mutant and 

control developing cerebral cortices. In control brains, BLBP-positive radial glial cells 
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develop straight, linear basal radial fibers attached at the pial surface (Figure 3.8D). 

BLBP-positive radial glial cells in Macf1-cKO brains, on the other hand, develop 

abnormal basal radial fibers and do not attach at the pial surface (Figure 3.8D). The 

intensity of BLBP staining on the Macf1-cKO pial surface is 33% lower, when compared 

with control brains. (Figure 3.8D-E). Moreover, it appears that all radial glial cells in the 

VZ of control brains are BLBP-positive, while BLBP-staining in Macf1-cKO brain VZs is 

sparser (Figure 3.8F). Finally, to more clearly define the role of MACF1 in radial glial 

fiber development during corticogenesis, we used in utero electroporation to express 

EGFP under the control of the BLBP promoter in mouse embryonic radial glia neural 

progenitors (Ka et al., 2016b). We introduced a plasmid encoding the BLBP promoter-

EGFP construct into the ventricles of E13.5 brains using in utero electroporation. 24 

hours after electroporation (E14.5), Most EGFP-labeled radial glial cells are localized in 

the VZ in control brain sections (Figure 3.8G). However, EGFP-labeled radial glial cells 

in Macf1-cKO brains are spread throughout the developing cortex from the VZ to the 

cortical plate (Figure 3.8G). We next examined the apical glial fibers of EGFP-labeled 

radial glial cells at the VZ surface. In control brains, EGFP-labeled radial glial cells 

develop the linear apical glial fibers that attach to the VZ surface (Figure 3.8G). EGFP-

labeled radial glial cells in Macf1-cKO brains do not develop prominent apical glial fibers 

VZ surface attachments (Figure 3.8G). Similar patterns exist on the basal surface, with 

the basal glial fibers of control radial glial cells robustly anchored to the basal surface, 

while Macf1-cKO basal glial fibers and basal surface attachments are difficult to detect 

(Figure 3.8G). Together, these results suggest that MACF1 is important for the proper 

maintenance and placement of radial progenitors during cortical development. Above all, 

MACF1 plays a crucial role in apical and basal fiber polarity in radial glial cells during 

corticogenesis.  

  



107 

 

Figure 3.8 Abnormal radial glial development in Macf1-cKO developing cortex  
(A) Immunostaining of coronal cerebral cortical sections from E14.5 control and Macf1-
cKO brains with anti-BLBP antibody. Representative images from both five control and 
Macf1-cKO brains. Scale bars: 50μm. (B) Quantifications of the BLBP+ cells of the 
control and Macf1-cKO brains. N=5 mice for each condition. Statistical significance was 
determined by two-tailed Student’s t-test. Error bars show standard error of the mean 
(SEM). **p < 0.01, ***p < 0.001. (C) Quantification of BLBP+ cells throughout the 
cerebral cortex. N=5 mice for each condition. Statistical significance was determined by 
multiple t-tests with Bonferroni correction test. Error bars show standard error of the 
mean SEM. *p < 0.05,  ***p < 0.001. (D) High magnification images of pia to CP in (A). 
Representative images from both three control and Macf1-cKO brains. Scale bars: 20 
μm, 5 μm. (E) Quantifications of the intensity of the pia surface of the control and Macf1-
cKO brains. N=5 mice for each condition. Statistical significance was determined by two-
tailed Student’s t-test. Error bars show standard error of the mean (SEM). **p < 0.01. (F) 
High magnification images of VZ in (A). Representative images from both three control 
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and Macf1-cKO brains. Scale bars: 10 μm. (G) E13.5 control and Macf1-cKO mice 
brains were electroporated in utero with a BLBP-EGFP construct to target radial glial 
progenitor cells and electroporated brains were collected after 24 hours. Arrows indicate 
the radial glial fibers of radial glial progenitor cells. Representative images from both 
three control and Macf1-cKO brains. Scale bars: 50 μm, 10 μm. 
 

3.4.6 Disruption of actin polymerization and microtubule stability in primary cilia in 

Macf1-cKO brains 

In order to understand why the apical polarity of radial glial cells is disrupted in Macf1-

cKO brains, we performed immunostaining with antibodies against MACF1 and Nestin, a 

marker of neuronal precursor cells. At E14.5, MACF1 is broadly expressed in the 

developing cerebral cortex and highly expressed in the VZ and upper cortical areas near 

the MZ (Figure 3.9A). MACF1 also colocalizes with Nestin in the VZ. To identify the role 

of MACF1 in actin polymerization and cilia formation on the VZ surface, we 

immunostained cerebral cortex sections at E14.5 with antibodies against Phalloidin, a 

marker for actin polymerization, and ARL13B, a primary cilia marker. In the control brain 

Phalloidin is highly expressed on the VZ surface and ARL13B is dotted along the surface 

of the VZ (Figure 3.9B). In the Macf1-cKO brain Phalloidin is broadly expressed 

throughout the cerebral cortex and ARL13B expression is not restricted to the VZ 

surface (Figure 3.9B). Finally, to determine the role of MACF1 in microtubule 

stabilization along the VZ surface, we immunostained cerebral cortex sections at E14.5 

stage with antibodies against Acetylated-Tubulin, a marker for microtubule stabilization, 

and Nestin. In control brains, Acetylated-Tubulin is highly expressed on the VZ surface 

and colocalizes with Nestin (Figure 3.9C). In Macf1-cKO brains, however, Acetylated-

Tubulin staining is spread throughout the cerebral cortex (Figure 3.9C). Together, these 

results demonstrate that MACF1 plays an essential role in actin polymerization, 

microtubule stabilization and ciliogenesis in the VZ during cortical development. 
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Figure 3.9 Actin polymerization and microtubules stability Is impaired in VZ 
surface in Macf1-cKO brains 
(A) Immunostaining of coronal cerebral cortical sections from E14.5 control and Macf1-
cKO brains with anti-MACF1 and anti-Nestin antibodies. Representative images from 
both five control and Macf1-cKO brains. Scale bars: 50 μm, 10 μm. (B) Immunostaining 
of coronal cerebral cortical sections from E14.5 control and Macf1-cKO brains with anti-
Phalloidin and anti-ARL13B antibodies. Representative images from both five control 
and Macf1-cKO brains. Scale bars: 30 μm, 10 μm. (C) Immunostaining of coronal 
cerebral cortical sections from E14.5 control and Macf1-cKO brains with anti-Nestin and 
anti-Acetyl-TUB antibodies. Representative images from both five control and Macf1-
cKO brains. Scale bars: 20μm, 5μm. 
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3.4.7 Hippocampal malformation and abnormal adult neurogenesis in Macf1-cKO mice 

To examine the roles of MACF1 in neuronal positioning in the mouse hippocampus, we 

examined brain sections stained with DAPI, which revealed that Macf1-cKO brains 

exhibit a 34% smaller mean hippocampal area, compared with controls (Figure 3.10A-

B). We next immunostained for NeuN and GFAP in 8-week-old mouse brains. In control 

mice, NeuN-positive cells densely accumulate within the pyramidal cell layer of the 

dorsal hippocampus. NeuN-positive cells in Macf1-cKO mice appear to be abnormally 

spread between the pyramidal cell layer and the stratum radiatum of the dorsal 

hippocampus (Figure 3.10C and Figure 3.11A). GFAP-positive cells, on the other hand, 

are spread evenly throughout the dorsal hippocampus in both the control on mutant 

hippocampus (Figure 3.10C and Figure 3.11).These results suggest that dorsal neural 

progenitor-specific Macf1-cKO mice develop pronounced hippocampal malformations 

due to abnormal neural positioning.  

To examine adult neurogenesis in the dentate gyrus (DG), we immunostained 2-month-

old mouse brains for KI67. In control mice KI67-positive proliferating cells localize to the 

subgranular zone (SGZ) of the hippocampal dentate gyrus (Figure 3.10D and Figure 

3.11B). KI67-positive cells in Macf1-cKO brains, however, are abnormally scattered 

within the hippocampal dentate gyrus (Figure 3.10D and Figure 3.11B). Interestingly, 

KI67-positive proliferating cells in Macf1-cKO brains accumulate within heterotopic 

clusters in the caudal cerebral cortex (Figure 3.10D). These results support the claim 

that dorsal neural progenitor-specific Macf1 knockout leads to abnormal neural 

positioning resulting in pronounced malformation of the cerebral cortex. Additionally, 

MACF1 plays a crucial role in regulating adult neurogenesis in a region-specific manner 

within hippocampus.  

  



111 

 

Figure 3.10 Hippocampus malformation and abnormal adult neurogenesis of 
Macf1-cKO brains 
(A) Histologic appearance of brain sections from 2-month-old of the control and Macf1-
cKO mice were stained with DAPI. Scale bars: 500 μm. (B) Quantifications of the area of 
the hippocampus of the control and Macf1-cKO mice. N= 5 mice for each condition. 
Statistical significance was determined by two-tailed Student’s t-test. Error bars show 
standard error of the mean (SEM). **p < 0.01. (C) Immunostaining of the coronal 
hippocampal sections from 2-month-old control and Macf1-cKO brains with anti-NeuN 
and anti-GFAP antibodies. Representative images from both three control and Macf1-
cKO brains. Scale bars: 50 μm, 20 μm. (D) Immunostaining of the hippocampal sections 
from 2-month-old control and Macf1-cKO brains with anti-KI67 antibody. Representative 
images from both three control and Macf1-cKO brains. Scale bars: 300 μm, 50 μm. 
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Figure 3.11 Macf1-cKO leads to hippocampal malformations and dysregulated 
adult neurogenesis 
(A) Immunostaining of the coronal hippocampal sections from 2-month-old control and 
Macf1-cKO brains with anti-NeuN and anti-GFAP antibodies. Representative images 
from both three control and Macf1-cKO brains. Scale bars: 300μm. (B) Immunostaining 
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of the hippocampal sections from 2-month-old control and Macf1-cKO brains with anti-
KI67 antibody. Representative images from both three control and Macf1-cKO brains. 
Scale bars: 20μm. 
 

3.4.8 Agenesis of the corpus callosum in Macf1-cKO brains 

Cortical and hippocampal malformations are commonly associated with agenesis of the 

corpus callosum, both in humans and animal models (Kappeler et al., 2007; Raybaud, 

2010; Cid et al., 2014). Therefore, we examined brain sections using Nissl staining and 

found that Macf1-cKO brains exhibit thinner corpus callosums in the rostral cerebral 

cortex, when compared with control brains (Figure 3.12A). In control brains, callosal 

axons cross the midline at the rostral extremity of the corpus callosum to varying 

degrees, while callosal axons in Macf1-cKO brains do not cross the midline of the 

cerebral cortex in the same region (Figure 3.12A). Moreover, in control brains the corpus 

callosum distinctly separates the caudal cerebral cortex from the dorsal hippocampus. In 

Macf1-cKO brains the caudal cerebral cortex and dorsal hippocampus are difficult to 

delineate due to corpus callosal abnormalities (Figure 3.12A). We next examined brain 

sections stained with antibodies specific for NeuN and L1 and confirmed that Macf1-cKO 

brains do indeed exhibit thinner corpus callosums in the rostral cerebral cortex, 

compared with control brains (Figure 3.12B). Together, these results demonstrated that 

MACF1 plays a crucial role in corpus callosum development.  
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Figure 3.12 Agenesis of the corpus callosum in Macf1-cKO brains 
(A) Histologic appearance of brains from 2-month-old of the control and Macf1-cKO 
mice. Nissl staining of rostral and caudal areas in the coronal cerebral cortical sections. 
Stars indicate corpus callosum and arrows indicate agenesis of the corpus callosum. 
Representative images from both three control and Macf1-cKO brains. Scale bars: 50 
μm, 30 μm. (B) Immunostaining of coronal cerebral cortical sections from 2-month-old of 
the control and Macf1-cKO brains with anti-NeuN and anti-L1 antibodies. Representative 
images from both three control and Macf1-cKO brains. Scale bars: 100 μm.  
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3.4.9 Behavioral outcomes of conditional Macf1 deletion 

Considering the broad range of neurodevelopmental and neuroanatomical abnormalities 

we observed in Macf1-cKO mice and the severe behavioral phenotypes of individuals 

with MACF1 mutations(Vermeer et al., 2007; Kumar et al., 2010; Dagklis et al., 2016), 

we next performed several assays to determine the behavioral consequences of 

conditional Macf1 deletion in mice. In spite of the significant difference in body weight 

between 8-week-old Macf1-cKO and control mice, we do not observe any significant 

abnormalities in the total distance moved or mean velocity of Macf1-cKO mice in the 

open field (Figure 3.13A-B).  8-week-old Macf1-cKO mice also do not exhibit any deficits 

in hindlimb or grip strength (Figure 3.13C-E). We do, however, observe marked hindlimb 

clasping and apparent deficits in hindlimb function and grip strength in 4-week-old 

Macf1-cKO mice (Figure 3.14A-D). In the open field, 8-week-old Macf1-cKO mice 

demonstrate unusual exploratory behavior, spending significantly less time in the center 

of the field and fewer center entries (Figure 3.13F-H). Most of their time appears to be 

spent seeking possible escape routes from the apparatus. Macf1-cKO mice also spend 

more time in the open arm of the elevated plus maze, compared to controls (Figure 

3.13I). In the forced swim test, Macf1-cKO mice are immobile for considerably less time 

than control mice but spend about the same amount of time immobile in the tail 

suspension test, on average (Figure 3.13J-K).  

In the novel object recognition test, Macf1-cKO mice and control mice both spend 

significantly more time exploring a novel object, rather than a familiar one, and show no 

difference in novel object recognition index (Figure 3.13L). In the three-chamber social 

interaction assay, we observe no significant differences in sociability between Macf1-

cKO mice and controls (Figure 3.13M). We do, however, observe deficits in social 

novelty behavior in Macf1-cKO mice, as they spend nearly the same amount of time with 

the more-familiar “stranger I” mouse as with the novel “stranger II” mouse (Figure 
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3.13M). To summarize, Macf1-cKO mice display multiple abnormal behavioral 

phenotypes which correspond well with the neurological malformations we observed.  

  



117 

 



118 

Figure 3.13 Behavioral effects of conditional Macf1 deletion in the cerebral cortex 
(A) Total distance moved and (B) mean velocity of movement during the open field test. 
n = 11 mice for controls and 7 mice for Macf1-cKO; two-tailed Student’s t test. (C) Total 
rearing time and (D) number of times reared during the rearing test. n=9 mice for 
controls and 7 mice for Macf1-cKO; two-tailed Student’s t test. (E) and (F) 
Representative traces from panels G and H. (G) Total time spent in the center and (H) 
the numbers of entries into the center in the open field test. **P < 0.01; n = 11 mice for 
controls and 7 mice for Macf1-cKO; two-tailed Student’s t test. (I) In the elevated plus 
maze, Macf1-cKO mice spent more time in the open arms. *P =< 0.05; n = 5 mice for 
control and 4 mice for Macf1-cKO; two-tailed Student’s t test. (J) In the forced swim test 
the immobility time was decreased in Macf1-cKO mice. *P < 0.01; n = 5 mice for controls 
and 4 mice for Macf1-cKO; two-tailed Student’s t test. (K) No significant difference in 
immobility times in the tail suspension between controls and Macf1-cKO mice. n = 5 mice 
for controls and 4 mice for Macf1-cKO; two-tailed Student’s t test. (L) Results of the 
novel-object recognition test. *P = 0.05; n = 9 mice for controls and 7 mice for Macf1-
cKO; two-tailed Student’s t test. (M) Three-chamber sociability test results for control and 
Macf1-cKO mice. In the social novelty test, Macf1-cKO mice spent an equal amount of 
time with each stranger mouse. *P <0.05, **P < 0.01, ***P < 0.001; n = 9 mice for control 
and 7 mice for Macf1-cKO; two-tailed Student’s t test. 
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Figure 3.14 Effects of conditional Macf1 deletion in the cerebral cortex on strength 
and mobility in 1-month-old mice 
(A) 1-month old Macf1-cKO mice display hind-limb grasping when lifted by the tail. (B) 
The total number of times reared and (C) the total time spent rearing during the rearing 
test and (D) the latency to fall in the grip strength test were significantly lower in 1-
month-old Macf1-cKO mice. n=4 for controls and 3 for Macf1-cKO mice; *P<0.05 
,**P<0.01 and ***P < 0.001; two-tailed Student’s t-test.  
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3.5 Discussion 

Using in vivo mouse genetics, we have defined a critical role for MACF1 in radial 

progenitor regulation in the developing cerebral cortex. A schematic model of radial 

progenitor polarity and neuronal placement within the cerebral cortex in the absence or 

presence of MACF1 is presented in Figure 3.15. Deletion of Macf1 in dorsal neural 

progenitor cells leads to abnormal neuronal positioning and corresponding 

malformations of the cerebral cortex via disruption of radial progenitor polarity. More 

importantly, our results suggest that MACF1 is essential for anchoring radial progenitors 

in the VZ and that ectopic radial progenitors represent the primary origin of heterotopia 

in the absence of MACF1. The results of the present study differ from classical forms of 

SBH, which are likely to be primarily caused by abnormal neuronal migration. We also 

find that Macf1 mutants exhibit significant deficits linked to autism-like and anxiety-like 

behavior. Our findings reveal a novel function of cytoskeleton-related proteins in radial 

progenitors and suggest a potential pathogenic mechanism for neurodevelopmental 

disorders associated with SBH, including intellectual disability and autism. 

 

3.5.1 SBH (Double Cortex) and MACF1  

SBH, also known as subcortical laminar heterotopia or double cortex syndrome, is a 

cortical malformation characterized by the presence of bilateral bands of heterotopic 

grey matter that results from the aberrant migration of neurons during cortical 

development (Dobyns et al., 1996; Pang et al., 2008). SBH has been largely linked to 

genetic deletions of microtubule binding components of the cytoskeleton, such as Lis1, 

Dcx, and a-tubulin (Reiner et al., 1993; Keays et al., 2007; Creppe et al., 2009; Jaglin 

and Chelly, 2009). Previously, we also reported that MACF1 regulates the neuronal 

migration and positioning of cortical pyramidal neurons and GABAergic interneurons via 

its regulation of microtubule stability (Ka et al., 2014a; Ka et al., 2016a). In the present 
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study, however, we find that loss of MACF1 starting at E9.5 in the developing cerebral 

cortex results in SBH and abnormal neural proliferation due to disrupted 

radial glial polarity. This is consistent with a previous report describing the loss of the 

small GTPase RhoA, which resulted in double cortex and an aberrant scaffold of radial 

progenitor cells in the developing cerebral cortex (Cappello et al., 2012). While the 

hypothesis that radial glial cell defects may contribute to SBH disorders has been raised, 

it has not been demonstrated as of yet (Feng et al., 2006; Sarkisian et al., 2006). The 

current study suggests that defects in radial glial polarity alter neural proliferation and 

neuronal migration via destabilization of both the actin and the microtubule 

cytoskeletons. Considering these observations, we propose that defects in the polarity of 

radial progenitor cells, rather than strictly neuronal migration defects, may explain some 

cases of SBH.  
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Figure 3.15 Model of cortical malformation and SBH formation in Macf1-cKO 
MACF1 facilitates the proper neural placement and differentiation via regulation of radial 
glial fiber polarity. MACF1 regulates the apical polarity and cilliogenesis in the radial 
progenitor cells during cortex. This is essential for the laminar organization of neurons in 
the cerebral cortex. In contrast, MACF1 deficiency leads to abnormal cilliogenesis and 
glial fiber polarity and cause aberrant cortical lamination and SBH.  
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3.5.2 MACF1 in radial glial neural progenitors 

Previous studies have shown that MACF1 regulates the radial migration of pyramidal 

neurons in the developing brain (Goryunov et al., 2010; Ka et al., 2014a) and, at E12.5, 

MACF1 is highly expressed at the VZ surface, one of the main proliferative zones during 

cortical development (Ka et al., 2014a). In spite of the use of a Nestin-cre driver to 

prevent Macf1 expression in radial glial neural progenitors at E10.5 (Goryunov et al., 

2010), previous studies have failed to clearly define the role of MACF1 in neural 

proliferation. We hypothesize that normal MACF1 expression is crucial for proper neural 

proliferation and early cortical development. Radial glial progenitor pools are mainly 

maintained via self-renewal at early stages of cortical development and begin to actively 

generate neurons via asymmetric division at later stages (Gotz and Huttner, 2005; Fietz 

and Huttner, 2011; Shitamukai and Matsuzaki, 2012). Conditional deletion of Macf1 in 

mice using an Emx1-cre driver disrupts radial progenitor homeostasis resulting in 

abnormal neuronal positioning and an increased number of proliferating cells in 

developing brains. This is similar to 14-3-3, a protein that interacts with MACF1, which, 

when knocked out, also leads to an aberrant distribution of progenitor cells in the 

developing cerebral cortex along with an overall increase in their number (Toyo-oka et 

al., 2014). The first effects of Macf1 deletion that we observed were major defects in the 

radial progenitor polarity. Loss of MACF1 at E9.5 disrupted cortical architecture due to 

aberrations in primary cilia maintenance at the VZ surface and radial glial fiber anchoring 

defects in the VZ and at the Pia surface. Thus, MACF1 is not only essential for 

mediating the apical attachment of radial glial primary cilia but also for the development 

and/or attachment of radial glial fibers. This matches up well with what occurs with loss 

of MACF1 during retinal development, namely the abolishment of ciliogenesis and 

disruption of apicobasal polarity (May-Simera et al., 2016). MACF1 is also an important 
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regulator of apicobasal polarity in mammalian intestinal cells in which radial centrosome-

centered microtubule organization inhibits epithelial polarity (Noordstra et al., 2016).  

This study suggests that depletion of MACF1 during early corticogenesis prevents 

proper F-actin formation and disrupts microtubules at the VZ surface. Thus, Macf1 

deletion in the VZ causes profound destabilization of the actin and microtubule 

cytoskeleton in radial progenitor cells resulting in a loss of radial glial processes, 

anchoring and epithelial architecture, as well as defects in basal radial glial process 

formation and maintenance. This is consistent with the requirement for acetylated tubulin 

for proper neuronal migration and process formation in neurons, as we have reported 

previously (Ka et al., 2014a; Ka et al., 2016a), and implies cell-type-specific effects of 

MACF1 on the actin and microtubule cytoskeleton. Considering these observations, we 

propose that actin- and microtubule-interacting cytoskeletal proteins, including MACF1, 

regulate the polarity of radial progenitor cells during corticogenesis. 

 

3.5.3 Agenesis of the corpus callosum and MACF1 

The corpus callosum is one of the largest white matter tracts in the human brain, serving 

to physically and functionally connect the hemispheres of the cerebral cortex and plays 

critical roles in normal cognitive function (Tomasch, 1954). In humans, 3–5% of patients 

with neurodevelopmental disorders present with partial or complete agenesis of the 

corpus callosum (Jeret et al., 1985; Bodensteiner et al., 1994). Multiple glial 

assemblages are present at the developing midline and are required for corpus callosum 

formation (Shu et al., 2003; Smith et al., 2006). The glial wedge is a bilaterally 

symmetrical structure composed of radial glial cells which regulates callosal axons that 

have crossed the midline. It repels these axons away from the midline, keeping them in 

the contralateral hemisphere (Shu and Richards, 2001; Shu et al., 2003). Agenesis of 

the corpus callosum is associated with 70% cases of SBH (Barkovich et al., 2005). We 
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find that elimination of MACF1 in the developing cerebral cortex results in agenesis of 

the corpus callosum leading to abnormal adult neurogenesis and SBH in and around the 

hippocampal area. This is consistent with mutations of the gene disrupted in 

schizophrenia 1 (Disc1), a MACF1-interacting protein, which may be causally linked to 

agenesis of the corpus callosum (Paul et al., 2007). LHX2, a LIM-homeodomain 

transcription factor that has been shown to regulate Macf1 expression in hair follicles , 

regulates glial wedge formation, and loss of LHX2 expression causes agenesis of the 

corpus callosum (Chinn et al., 2015). We conclude that MACF1 plays a critical role in 

corpus callosum formation and its function in this area may help explain corpus callosal 

agenesis caused by mutations in related genes. 

 

3.5.4 Abnormal behaviors and MACF1  

As may be expected considering the severe behavioral and neurodevelopmental 

phenotypes in individuals with 1p34.2 and/or 1p34.3 microdeletions (Vermeer et al., 

2007; Kumar et al., 2010; Dagklis et al., 2016), Macf1 cKO mice exhibit distinct and 

acute behavioral abnormalities. This conditional deletion of Macf1, however, 

considerably reduces the cell types in which Macf1 is knocked out (Gorski et al., 2002; 

Iwasato et al., 2004). This could make behavioral comparisons between humans with 

global reductions in MACF1 expression and Macf1-cKO mice even more likely to be 

misleading than would be the case with a global or whole brain-specific knockout. A 

close examination of behavioral differences between control and Macf1-cKO mice, on 

the other hand, demonstrates the profound effect Macf1 mutations can have on brain 

function, even though the deletion is restricted to the developing cortex. Adult Macf1-

cKO animals do not exhibit any obvious physical impairments in spite of their lower body 

weights. Overall locomotion and limb strength is not significantly affected, but in the 

open field Macf1 mutant mice spend the vast majority of their time exploring the 
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periphery, rarely venturing into the center of the field. This thigmotaxic behavioral pattern 

has classically been linked to heightened anxiety (Wilson et al., 1976; Crawley, 1999; 

Belzung and Griebel, 2001; Bailey and Crawley, 2009), though there are multiple 

critiques regarding the ability to measure anxiety in mice using this method (Belzung and 

Griebel, 2001; Rodgers, 2007). Interestingly, Macf1-cKO mice spent significantly more 

time in the open arms during the open field test, a result which suggests that these 

mutants actually have lower levels of baseline anxiety than controls (Handley and 

Mithani, 1984; Pellow et al., 1985; Belzung and Griebel, 2001). These seemingly 

confounding findings may be due to the incomplete knockout of Macf1 in this model or 

more complex behaviors we are unable to interpret at this time.  

In addition to anxiety-like behaviors, we examined depression-like behavior in Macf1-

cKO mice using the forced-swim and tail suspension tests. In both tests, increased 

immobility has classically been linked to depression-like phenotypes (Castagne et al., 

2011). Although these mutant mice were indistinguishable from controls in the tail 

suspension test, they spent considerably less time immobile in the forced swim test, 

indicative of decreased depression-like behavior.  

Despite extensive hippocampal anatomical abnormalities and the significant cognitive 

deficits in human patients (Vermeer et al., 2007; Kumar et al., 2010), Macf1-cKO mice 

did not show any significant deficits in non-spatial memory, as measured using the novel 

object recognition task (Cohen and Stackman, 2015). In the three chamber social 

interaction test, Macf1-mice did demonstrate deficits in social novelty behavior, but not in 

overall sociability.  

Taken together, these behavioral findings do little to increase our understanding of 

MACF1 function beyond confirming the profound effect of conditional Macf1 deletion. As 

stated above, it may not be surprising that the behavioral effects of Macf1 deletion in the 

developing cortex was not sufficient to mirror all of the behavioral defects seen in human 
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patients. Indeed, the majority of anxiety-like and depression-like behaviors are more 

strongly linked to deficits in inhibitory interneurons, often in brain regions outside the 

cerebral cortex, not in the excitatory cortical neurons largely affected by our conditional 

deletion (Gorski et al., 2002; Dulawa et al., 2004; Iwasato et al., 2004). It is sufficient to 

conclude that conditional deletion of Macf1 in radial progenitor cells and their progeny 

leads to marked behavioral abnormalities and it is reasonable to assume that global 

deletion of Macf1 would result in even more severe phenotypes. 

 

3.5.5 Summary 

Altogether, we report that conditional deletion of Macf1 in the mouse dorsal 

telencephalon starting at E9.5 significantly alters multiple aspects of cortical 

development, including; SBH, aberrant proliferation, migration, polarity and anchoring.  

We also report that Macf1-cKO mice display stark behavioral abnormalities compared 

with controls. These findings provide increased understanding of the 

neurodevelopmental role of MACF1, specifically in radial progenitors. This report also 

supports the suggestion that loss of Macf1 gene expression may be largely responsible 

for the neuroanatomical and behavioral defects observed in patients with 1p34.2 and/or 

1p34.3 microdeletions. Further research will be required to understand the role MACF1 

plays in the development of other brain structures and their roles in the behavioral 

phenotypes observed in the aforementioned microdeletions.   
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CHAPTER 4: CONCLUSIONS AND DISCUSSION 

 

In the preceding pages I have presented two primary research projects investigating the 

roles of ARID1B and MACF1 in brain development and mouse behavior. In this section I 

will separately summarize the results and implications from each of these studies and 

suggest avenues for future research. 

 

We had previously shown that heterozygous deletion of Arid1b in mice leads to 

excitatory/inhibitory balance in the cerebral cortex due to a decrease in the number of 

GABAergic interneurons. Furthermore, we found that pharmacologically increasing 

GABA tone was sufficient to rescue a subset of the aberrant behaviors we observed in 

Arid1b haploinsufficient mice (Jung et al., 2017). In the study presented in Chapter 2, we 

sought to more precisely examine the effects of Arid1b deletion in excitatory and 

inhibitory neural progenitors using a conditional homozygous knockout strategy. 

Interestingly, deletion of Arid1b in excitatory cortical neural progenitors had negative 

effects on cell proliferation and survival. We concluded that this was due, in part, to 

impaired cell cycle re-entry, indicative of pre-mitotic cell cycle arrest. The negative 

impacts of homozygous Arid1b knockout was more pronounced in inhibitory neural 

progenitors in the MGE. In this brain region, these mutant mice exhibit a marked 

reduction in actively-proliferating and mitotic neural progenitors and newborn neurons, 

as well as increased apoptosis. In addition to decreased cell cycle re-entry, these 

conditional mutants also present with slower cell cycle speeds in inhibitory neural 

progenitors. 
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In our previous work, we observed that Arid1b haploinsufficient mice exhibit reduced 

expression of β-catenin target genes as well as a decline in the mRNA transcript levels 

of multiple Wnt signaling genes (Jung et al., 2017). This corresponds with other reports 

that ARID1B and BRG1 interact β-catenin in the nucleus and alter its function as a 

transcription factor (Barker et al., 2001; Vasileiou et al., 2015). Here we report that 

homozygous deletion of Arid1b in primary neuronal cultures and in inhibitory neural 

progenitors in vivo leads to a decrease in β-catenin nuclear localization, which could 

partly explain the lower expression levels of β-catenin target genes. 

 

Finally, we examined the behavioral effects of conditional homozygous deletion of 

Arid1b and found that loss of Arid1b expression in excitatory neural progenitors appears 

to only significantly affect cognitive function or memory, whereas knockout of Arid1b in 

inhibitory neural progenitors substantially alters social and emotional mouse behaviors, 

but not cognitive function. This leads us to believe that the specific function of Arid1b in 

different neuronal subtypes have likewise specific effects on mouse behavior.  

 

Overall, in this chapter we confirmed that ARID1B indeed plays an outsize role in 

regulating the proliferation and survival of inhibitory neural progenitors, but, more 

surprisingly, we also found that Arid1b deletion also significantly impairs the survival and 

proliferation of excitatory neural progenitors. A closer examination reveals that ARID1B 

regulates cell cycle progression in both neural progenitor pools in a cell type-specific 

manner. It is likely that ARID1B mediates cell cycle progression via its regulation of Wnt-

β-catenin signaling, as β-catenin is known to be a master regulator of neural progenitor 

proliferation and targets multiple genes related to cell cycle progression (Chenn and 

Walsh, 2002; Gulacsi and Anderson, 2008).  
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Perhaps the most intriguing results in this chapter are, however, the distinct behavioral 

effects of Arid1b deletion in excitatory and inhibitory progenitor pools, respectively. As 

global heterozygous knockout of Arid1b alters a wide array of social, emotional and 

cognitive behaviors while only reducing the number of GABAergic interneurons in the 

cortex (Jung et al., 2017). Another prior study in our lab, however, found that shRNA-

mediated knockdown of Arid1b in excitatory neural progenitors does alter neurite 

outgrowth and dendritic arborization and morphology (Ka et al., 2016b). It is possible 

that correct “dosage” of ARID1B is required for the survival and proper proliferation and 

function of both excitatory and inhibitory neurons and their progenitors but that the 

threshold for measurable ARID1B-related deficiencies is lower in inhibitory neural 

progenitors and their progeny.  

 

Although we previously found that treatment with a GABA positive allosteric modulator 

was sufficient to rescue several aberrant behavioral phenotypes seen in Arid1b 

haploinsufficient mice (Jung et al., 2017), the research presented in chapter 2 may help 

explain why not all behavioral abnormalities can be reversed by increasing GABA tone. 

While heterozygous deletion of Arid1b appears to have the most obvious effects on the 

GABAergic inhibitory neuron population (Jung et al., 2017), it is clear from the data 

presented in this study, that ARID1B plays an important role in the development and 

function of pyramidal neurons as well. For this reason, in part, it will be necessary to 

determine alternative interventions which target all behavioral symptoms with minimum 

side effects, if possible. For this to be feasible it will first be necessary to determine in 

greater detail the mechanisms by which ARID1B regulates brain development and 

neuronal function, in particular the cell type-specific mechanisms will need more 

research. One way this could be accomplished is using single-cell RNA sequencing 

during brain development to compare the differences in gene expression in specific 
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cellular subtypes following Arid1b deletion. Regardless of these potential insights, the 

most promising potential treatment may be utilizing gene therapy to restore Arid1b gene 

expression, though the success of this tactic is not guaranteed. It is possible that gene 

therapy would only be effective during a critical developmental period and that restoring 

Arid1b expression in adolescents or adults would yield little or no functional or behavioral 

rescue. 

 

In chapter 3 we examined the consequences of conditional Macf1 deletion in the cortical 

neural progenitor pool. We report that loss of Macf1 causes SBH and that this is due, at 

least in part, to destabilization of the cytoskeleton in the cortical VZ. The leads to 

aberrant migration, positioning and over-proliferation of neural progenitor cells resulting 

in heterotopic nodules throughout the cortex. The role of MACF1 in regulating the 

cytoskeleton is also apparent in the severe agenesis of the corpus callosum in 

conditional Macf1 mutant brains. 

 

Importantly, conditional deletion of Macf1 in the developing cortex is sufficient to cause 

several ASD- and ID-like behavioral phenotypes. This lends credence to the hypothesis 

that Macf1 is a gene largely contributing to the behavioral deficits observed in patients 

with 1p34.2 and/or 1p34.3 microdeletions. At first glance it may appear that the 

behavioral phenotype of these Macf1-cKO mice is not robust, especially considering the 

contradictory results in social behavior and anxiety tests. It is crucial to keep in mind, 

however, that conditional deletion of a gene would be unlikely to result in a complete 

behavioral recapitulation of the human disease phenotype. In this case it is sufficient to 

conclude that MACF1 is essential in cortical pyramidal neurons and their progenitors for 

proper mouse behavior. Additional conditional knockout mouse models could be used in 
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the future to further asses which specific cell types contribute more or less to different 

behavioral phenotypes related to Macf1 deletion. 

 

Due to the severe brain malformations present in Macf1 mutant mice and patients with 

1p34.2 and/or 1p34.3 microdeletions (Vermeer et al., 2007; Kumar et al., 2010; Dagklis 

et al., 2016), it is unlikely that these findings will yield any immediate therapeutic 

breakthroughs. Future studies should examine the efficacy of individually stimulating or 

inhibiting specific neural circuits or neuronal subtypes in order to improve behavior. It 

may also prove beneficial to assess the potential roles MACF1 may play in other 

neurodevelopmental disorders characterized by heterotopia and corpus callosal 

agenesis. The identification of convergent pathways in brain development and behavior 

will greatly improve our understanding of disease pathogenesis and provide avenues for 

treatment. 

 

Overall, the work presented in this dissertation represents measurable progress toward 

understanding the pathogenesis of neurodevelopmental disorders such as ID and ASD. 

These findings also raise several new and exciting questions and directions for future 

research, as discussed above. Improving our understanding of genes vital for proper 

neural development will also inspire the conception of novel therapies and enhanced 

individualized care for patients. As we determine cell types and specific neural circuits 

regulating pathogenic behaviors in the future, and therapeutic technologies become ever 

more targeted, treatment with minimal side effects may soon be a reality.  
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