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Abstract 
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Supervisor: Robert E. Lewis, Ph.D. 

Multiple studies have revealed that Ras-driven tumors acquire vulnerabilities by adapting 

cellular mechanisms that promote uncontrolled proliferation and suppress apoptosis. Kinase 

Suppressor of Ras 1 (KSR1) modulates ERK activation downstream of oncogenic Ras, and 

knockdown of KSR1 selectively kills malignant, Ras-driven cancer cells, but does not kill 

immortalized, non-transformed human colon epithelial cells (HCECs). KSR1-/- mice are fertile 

and phenotypically normal, but resistant to Ras-driven tumor formation suggesting KSR1 

represents a vulnerability in cancer cells.   

To identify additional vulnerabilities in cancer, a screening approach termed Functional 

Signature Ontology (FUSION) was used to screen 14,355 genes and 1,200 natural product 

fractions in K-Ras-mutant HCT116 colon cancer cells for functional similarity to KSR1 and a 

selective requirement in colon cancer cells. FUSION identified numerous targets including 

TIMELESS, WDR5, and an AMPK inhibitor, 5’-hydroxy-staurosporine.  

Downstream of oncogenic signaling, TIMELESS is constitutively overexpressed in 

multiple types of cancer and required for increased cancer cell proliferation. TIMELESS 

depletion increases γH2AX, a marker of DNA damage, and triggers downstream G2/M arrest via 

increased CHK1 and CDK1 phosphorylation. Wee1 or CHK1 inhibition in combination with 

TIMELESS depletion demonstrates at least additive effects suggesting this combination may be 

efficacious for the treatment of cancer.   

WDR5 is overexpressed, and WDR5 depletion reduces cell viability in colon cancer cells 

by reducing H3K4Me3 and increasing γH2AX, which further sensitizes cells to radiation-induced 
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DNA damage. WDR5 inhibition also reduces colon cancer cell viability, but less so than WDR5 

depletion.  

The catalytic, kinase-containing 2 subunit isoform of AMPK is expressed at variable 

levels in colon cancer cells and is selectively required for colon cancer cell survival suggesting 

that AMPK kinase inhibition may be a useful component of cancer therapeutic strategies. 

FUSION identified 5´-hydroxy-staurosporine as a competitive inhibitor of AMPK that is 

selectively toxic to colon cancer cells.   

Our results demonstrate the ability of FUSION to reveal functional similarities between 

genes, identify novel inhibitors, and expose oncogene-induced changes in cancer that promote 

proliferation and survival, but may also leave cancer cells vulnerable to targeted therapies.   
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Portions of the content covered in this chapter are the subject of a published 

review article in Expert Opinion on Therapeutic Targets by Neilsen BK et al.2 
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Cancer 

In 2018, the American Cancer Society estimates that more than 1.7 million people will be 

diagnosed with cancer for the first time, and just over 600,000 people will die from cancer in the 

United States 4. Cancer is the second leading cause of death among Americans with only heart 

disease causing more deaths 5. Colon cancer is the third most common cancer in men and women 

with projections that more than 140,000 individuals will be diagnosed with this disease in 2018. 

Even though colon cancer has a high survival rate if caught in early stages, it remains the third 

most lethal type of cancer and is projected to kill more than 50,000 individuals in 2018 4. Patients 

with early stage or only locally advanced disease can be treated with multiple modalities 

including surgical resection and radiation therapy with the potential for curative outcomes. 

However, the only real treatment option for patients with any type of advanced or metastatic 

cancer are systemic therapies that include chemotherapy, hormone therapy, immune-based 

therapy, and/or targeted therapy. Most chemotherapeutics are often not curative, not selective 

(target all rapidly dividing cells), and not effective after resistance develops. Hormone therapies 

are highly efficacious in tumors that are reliant on hormone receptors for growth (e.g. breast and 

prostate cancers), but not all tumors rely on these receptors and those that do, often evolve so they 

are no longer susceptible to these therapies. Immune-based therapies (a.k.a immunotherapies) 

represent a new, promising category of therapeutics, but very few of these therapies have been 

developed and tested such that they are ready for clinical use. Studies have shown that 

immunotherapy is particularly effective in tumors with high mutational burdens (e.g. melanoma) 

or in tumors that have mechanisms promoting immune escape (e.g. increased PD-L1 expression 

in lung cancer), which has limited the approval of immunotherapies for use in specific tumor 

types with these characteristics. While often very effective and without significant side effects, 

very few targeted therapies exist and those that do are commonly specific for one type of cancer 

(e.g. imatinib targeting BCR-ABL in CML). Therefore, developing novel therapeutic strategies to 

target and kill cancer cells, preferably with little or no harm to normal tissues, is vital. Specific 
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targeting of cancer cells can be achieved by targeting the vulnerabilities that develop in tumors as 

a result of driving mutations altering normal cellular mechanisms to promote uncontrolled growth 

and suppress apoptosis. Specifically, oncogenic Ras mutations have been shown to induce 

changes in cancers that introduce targetable vulnerabilities in cancer cells that are not present or 

significantly diminished in normal cells.  

Ras Mutations in Cancer and Therapeutic Targeting of Ras 

Oncogenic Ras mutations are a common trait of more than one third of all tumors 6. 

There are three isoforms of Ras: K-Ras, H-Ras, and N-Ras. K-Ras mutations, the most commonly 

mutated isoform of the Ras gene, are present in 25%-30% of all human cancers 6. Mutations in H-

Ras and N-Ras are present in 3% and 8% of all tumors, respectively 7,8. Ras mutations are also 

present at much higher frequencies in certain types of cancers. Approximately one fifth of lung 

cancers, one third of colon cancers, and more than two thirds of pancreatic cancers have 

oncogenic Ras mutations 8.  

Based on its prevalence, substantial efforts have been directed towards developing a 

targeted Ras inhibitor; however, despite these efforts, very few efficacious therapies have been 

developed that specifically target Ras. Based on our understanding of Ras, inhibition could be 

achieved by decreasing the amount of activated, GTP-bound Ras, disrupting the interaction 

between Ras and its downstream effectors, stabilizing non-active protein complexes, or 

preventing Ras membrane localization 9. Despite substantial understanding of Ras regulation and 

function, inhibiting Ras has been problematic. This is due, at least in part, to difficulty interfering 

with the nucleotide-binding pocket of the protein, which is much more difficult than blocking the 

ATP-binding pocket of kinases. This is likely due to the incredibly high affinity of Ras for GTP, 

which is in the picomolar range 10. Instead of inhibiting nucleotide binding, the possibility of 

inhibiting the guanine exchange factor SOS, which catalyzes the conversion of GDP-bound Ras 

(inactive) to GTP-bound Ras (active), has been explored. Compounds have been identified that 
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bind to Ras and interfere with SOS binding 11-13; however, it is unclear if this interference will be 

clinically efficacious or if drugs with a high enough affinity to substantially displace SOS can be 

developed from the recently identified starting compounds. Recently, a drug specifically targeting 

the G12C mutant isoform of Ras (RasG12C), but not wildtype Ras has been identified. This 

compound specifically binds to RasG12C because it binds to a pocket that is only exposed on the 

RasG12C mutant and alters its nucleotide preference such that it favors GDP over GTP thereby 

suppressing mutant Ras signaling 12. More recently, another group has identified an inhibitor that 

preferentially binds to RasG12D that demonstrated some efficacy in xenograft models re-opening 

the possibility of directly targeting Ras 14.  

Alternatively, instead of targeting Ras GTP binding, groups have attempted to inhibit Ras 

by interfering with its localization to the cell membrane, which is required for Ras activation and 

is dependent upon post-translational lipid modifications. Initial attempts to block Ras 

farnesylation, demonstrated some efficacy, but, surprisingly, were only effective at inhibiting H-

Ras localization and activation. Subsequent studies revealed that in addition to farnesylation, K-

Ras and N-Ras can also undergo lipid modifications by geranylgeranyltransferases effectively 

circumventing their dependency on farnesyltransferases for cell membrane localization and 

activation 15,16.  

Since targeting Ras directly has proven difficult and complicated, several inhibitors of 

proteins downstream of Ras have been developed. An attempt to interfere with the interaction 

between Ras and Raf was made, but the identified compound that reduced this interaction 

demonstrated low efficacy in preclinical models 17. Some success has been achieved through the 

development of Raf and MEK inhibitors, yet efficacy is still highly variable in tumors. 

Additionally, resistance to Raf and MEK inhibitors often develops and is characterized by 

reestablishment of ERK signaling suggesting that more robust disruption of Ras signaling is still 

likely to be efficacious 18.  
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Kinase Suppressor of Ras  

Kinase Suppressor of Ras (KSR) proteins were identified more than twenty years ago in 

Drosophila melanogaster (Drosophila) (KSR) and C. elegans (KSR1 and KSR2) and shown to 

modulate Ras-mediated signaling 19-21. It was immediately recognized that KSR had a larger 

effect on signaling from mutant Ras than wildtype Ras. This result was counterintuitive as the 

more robust signal from constitutively active Ras was thought to be more difficult to repress than 

signals from wildtype Ras. This is intriguing as it opens the possibility of selectively targeting 

Ras-mutated tumors through KSR 22. In Drosophila, heterozygous mutations in KSR reverted the 

phenotype of a mutant, constitutively active form of Ras (RasG12V), which demonstrates the 

ability of KSR to suppress mutant Ras signaling 21. Several groups have shown that KSR acts 

downstream of Ras as a molecular scaffold for the Raf/MEK/ERK kinase cascade to promote 

downstream Ras signaling unless KSR is significantly overexpressed 23-37. Therefore, the name 

Kinase Suppressor of Ras is a misnomer as endogenous levels of KSR promote Ras signaling, 

while only substantial overexpression of KSR serves to suppress Ras signaling. Therefore, KSR 

plays a role in regulating several cellular mechanisms to promote cell proliferation and survival 

including increasing the metabolic capacity, cell cycle re-initiation following DNA damage 

repair, and translational regulation of key mediators that promote the transformation such as 

MYC 3,33,38-42. However, the mechanisms behind these effects have not been fully elucidated. 

Phenotypic analysis of KSR genetic inactivation  

KSR proteins have been studied by genetic inactivation in several model systems. In 

Drosophila, there is only one KSR protein and homozygous inactivating or truncating mutations 

are lethal 21. In contrast, in a genetic screen to identify modifiers of Ras signaling, it was 

discovered that heterozygous loss of ksr suppresses RasG12V signaling and prevented the 

roughening of the eye that is seen with increased Ras signaling in Drosophila 21. In comparison, 

two KSR proteins (KSR1 and KSR2) are present in C. elegans, as well as in mammals. KSR1 and 
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KSR2 have different expression profiles in mammals and both unique and overlapping functions 

43. KSR2 is largely expressed in the brain including the pituitary. While KSR1 is also highly 

expressed in the brain, it is also expressed at relatively low levels in most other tissues and has 

been shown to be overexpressed in tumors 3. In all cases, KSR proteins contribute positively to 

ERK phosphorylation and activation downstream of Ras 19-21; however, either due to their distinct 

functions or varied expression profiles, animals lacking KSR1 or KSR2 have different 

phenotypes. 

Apart from a few minor defects, ksr1-/- knockout mice are fertile and otherwise 

phenotypically and developmentally normal (Fig. 1.1). Ksr1-/- mice have hair follicle defects 

similar to the phenotype of egfr-/- mice reinforcing the idea these proteins are within the same 

pathway 24,44,45. As a result of reduced ERK signaling, ksr1-/- mice have a marginally impaired 

immunological response, particularly in regards to T-cell activation 24,34,46,47. Most importantly, 

ksr1-/- mice are resistant to Ras-driven tumor formation 24. This fact is demonstrated by the 

reduced mammary tumor burden in ksr1-/- mice with transgenic expression of polyomavirus 

Middle T-Antigen 24. Induction of skin tumors with v-Ha-Ras was also completely lost in ksr1-/- 

mice 45. These observations demonstrate that KSR1 modulates Ras signaling in vivo, but it is 

largely dispensable for normal cell survival. This selective requirement for KSR1 in Ras-driven 

tumor formation makes it an attractive target for therapeutic intervention. 

In contrast to the mild phenotype of ksr1-/- mice, ksr2-/- mice have reduced fertility and 

become spontaneously obese 48-51 (Fig. 1.1). Although ksr2-/- mice have not been assessed for 

their resistance to tumor formation, there is in vitro evidence for a role of KSR2 in promoting 

tumor formation. In ksr1-/- mouse embryo fibroblasts (MEFs), ectopic expression of KSR2 

restored ERK1/2 activation and mutant Ras-dependent anchorage-independent growth 52. KSR2 is 

expressed in a mouse neuroendocrine cell line (Min-6) and mouse neuroblastoma/rat glioma 

hybrid cell line (NG108-15) and shRNA-mediated depletion of KSR2 in these cell lines reduced 

proliferation and anchorage-independent growth 52. Consistent with observations from the ksr2   
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Fig. 1.1: KSR Knockout Mice. Ksr1-/- mice are largely developmentally and phenotypically 

normal, yet resistant to Ras-driven transformation. Ksr2-/- mice have an abnormal metabolic 

profile and become obese. (Images of KSR1 and KSR2 knockout mice were taken by Diane 

Costanzo-Garvey. This figure has been previously published in 2).  
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knockout mice, RNAi-mediated depletion of KSR2 in insulinoma cell lines showed decreased 

ERK1/2 and AMPK activation leading to reduced metabolic activity. Therefore, while the role of 

KSR2 in human cancers has not been defined, substantial evidence suggests a potential, pro-

tumorigenic role for KSR2 in cancer. However, thus far, KSR2 has not been shown to be 

significantly expressed and required in any type of tumor, suggesting that while KSR2 may 

possess oncogenic capabilities, its contribution in cancer may be limited due to its restricted 

tissue-specific expression 52,53. Additionally, the profound differences in the phenotype of ksr1-/- 

and ksr2-/- mice demonstrate that while there is likely significant overlap in their functions, KSR1 

and KSR2 must have unique and distinct physiological roles and therefore may contribute 

differently to tumorigenesis.  

The role of KSR in cancer  

KSR1 has been extensively implicated as playing a key role in Ras-driven cancers 

3,24,29,32,38,41,42,45,52,54-56. Consistent with its role as a molecular scaffold for the Raf/MEK/ERK 

cascade, KSR1 interacts with each kinase in this cascade 31,32,57, and increasing levels of KSR1 

enhance Ras signaling to a maximum point 32. As predicted of a scaffold, exceeding the optimal 

cellular KSR1 expression disrupts ERK signaling and inhibits Ras transformation likely by 

separating and sequestering the members of the kinase cascade from one another 32,56. Comparing 

KSR1 expression in a panel of colon cancer cell lines to non-transformed human colon epithelial 

cells demonstrated that colon cancer cells have increased KSR1 expression, which suggests that 

enhanced ERK signaling may be accomplished, at least in part, through upregulation of KSR1 in 

colorectal cancer 3. Ksr1-/- mouse embryo fibroblasts that exogenously express RasG12V are 

resistant to Ras-driven transformation, maintain contact inhibition, and fail to form colonies in 

soft agar 32. In preclinical, mechanistic studies, stable depletion of KSR1 using multiple shRNA 

sequences reduces the ability of colon cancer cells expressing mutant K-Ras to grow in an in vitro 

soft agar assay as well as in an in vivo xenograft mouse model 3. Finally, RNAi-mediated 
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depletion of KSR1 robustly induces cell death in the Ras-mutated colon cancer cell line HCT116 

cells, but not in non-transformed human colon epithelial cells 3. Taken together, these results 

support the conclusion that KSR1 is required for mutant Ras to promote the development and 

maintenance of cancer such that targeting KSR1 is likely to be selectively toxic to Ras-driven 

cancers with relatively little toxicity to the patient. 

Structural analysis of KSR proteins  

KSR is highly conserved from invertebrates to mammals. However, Drosophila express 

only one KSR protein, while C. elegans and mammals encode two members, KSR1 and KSR2 

21,31. KSR proteins are structurally related to Raf proteins; however, they have diverged to obtain 

significant structural and functional differences (Fig. 1.2). KSR proteins are highly homologous, 

containing five conserved areas (CA1-CA5) 21. The first conserved region on the N-terminus end 

is CA1. B-Raf binding to KSR1 requires a 40 amino acid sequence within CA1 and prior MEK 

binding via the CA5 area of  KSR1 28,58,59. Within the CA1 domain, amino acids 25-170, termed 

CA1α, contain a coiled coil and sterile-α-motif (SAM), which promotes KSR1 membrane 

association that is essential for its effects on MAPK signaling 60.  The CA2 is a proline-rich 

region with an unknown function. CA3 is a cysteine-rich atypical C1 motif that mediates the 

membrane localization of KSR by recruiting phospholipids and is largely homologous with the 

CR1 cysteine-rich region in Raf 61,62. Studies on the cysteine-rich region of KSR, in contrast to C1 

regions in Raf and PKCγ, have demonstrated that the KSR1 C1 domain is structurally unique, 

particularly within the ligand binding region, such that KSR does not react to phorbol esters or 

ceramide and does not directly interact with Ras 62. CA4 is a serine/threonine rich region 

containing a FXFP motif that mediates interaction with ERK 28,63,64 and is similar to the CR2 

region in Raf proteins. Interaction of KSR1 with ERK is not constitutive and requires Ras 

activation 65,66. The CA5 domain in KSR proteins encodes a kinase domain highly homologous to 

Raf family CR3 kinase domains 20,21. While CA5 contains a putative kinase domain, there are 
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Fig. 1.2: KSR Structure. KSR proteins are structurally similar to Raf proteins with the CA3, CA4, 

and CA5 regions in KSR sharing significant homology with the CR1, CR2, and CR3 regions in Raf 

respectively. (This figure has been previously published in 2). 

 

CR1-3: Conserved Regions 1-3 

RBD: Ras-binding domain 

CRD: Cysteine-rich domain 

Ser/Thr-rich: Serine/Threonine-rich domain 

CA1-5: Conserved Areas 1-5 

CC-SAM: Coiled coil-sterile alpha motif domain 

Pro-rich: Proline-rich domain 
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multiple mutations within this domain including an important lysine to arginine exchange in a 

lysine residue that is generally required for kinase activity (Table 1.1) 21,28. Substantial effort has 

been exerted to clarify if KSR can or does phosphorylate any substrates within cells, and if so 

whether this activity contributes to the downstream effects of KSR. The general consensus 

currently is that KSR is not likely to have any biologically relevant kinase activity and instead 

exerts its effects through protein-protein interactions and altered subcellular localization. 

MEK1/2 bind to the CA5 region of KSR proteins and the interaction is constitutive in 

both quiescent and cells activated with growth factors 57,65,66. Mutations within the CA5 region 

that abrogate binding of KSR to MEK also reduce ERK signaling (Table 1.1) 19-21,57,66. However, 

due to the location of these mutations either within or near the ATP binding domain, they 

potentially also interfere with ATP binding or other KSR functions that may be independent of 

interaction with MEK (Table 1.1). Mutation C809Y within the C terminal tail of KSR1, and distal 

to the ATP binding domain, also disrupts MEK binding to KSR, yet allows for increased Ras-

mediated ERK signaling (Table 1.1) 56. These data suggest that the interaction between KSR and 

MEK is dispensable for Ras-induced ERK signaling and raises the possibility that this interaction 

reflects a negative regulatory role for KSR1 that controls the timing and spatial location of MEK 

activation. The CA5 domain is also required for KSR to bind to Raf, but the mechanism is 

incompletely understood 58. Another region has been identified in KSR2 between CA2 and CA3 

that is required for the interaction between KSR proteins and AMPK. Mutations in this and 

nearby regions reduced the binding of AMPK to KSR (Table 1.1) 50,53,59,67. Tissue-specific splice 

variants have also been identified. B-KSR1 is a splice variant of murine KSR1 that is 

preferentially expressed in neural tissues that largely acts like KSR1 in regards to Raf/MEK/ERK 

interactions and signaling regulation, but specifically plays a role in cells within the central 

nervous system 66. A truncated version of KSR2 (T-KSR2) was found in mouse testes, which may 

play a role in male fertility 68.    
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Mutation Effects Location Species References 

W255X, R277H 
Decrease constitutively active 

Ras-mediated signaling 
CA3 C. elegans 19 

G549E, P696L, Q733X 
Decrease constitutively active 

Ras-mediated signaling 
CA5 C. elegans 19 

G484E 
Decrease constitutively active 

Ras-mediated signaling 
CA5, ATP-

binding region 
C. elegans 20 

R531H 
Decrease constitutively active 

Ras-mediated signaling 
CA5 C. elegans 20 

G494E 
Decrease constitutively active 

Ras-mediated signaling 
CA5 C. elegans 20 

P630S, P630L 
Decrease constitutively active 

Ras-mediated signaling 
CA5 C. elegans 19,20 

Intron 12 Change 

GA generating a stop 

codon following G678 

Decrease constitutively active 
Ras-mediated signaling 

CA5 C. elegans 20 

C727Y 
Decrease constitutively active 

Ras-mediated signaling 
CA5 C. elegans 20 

A696V 
Decrease constitutively active 

Ras-mediated signaling 
CA5 Drosophila 21 

A703T 
Decrease constitutively active 

Ras-mediated signaling 
CA5 Drosophila 21 

S721+10bp in N727  

frameshift 

Decrease constitutively active 
Ras-mediated signaling 

CA5 Drosophila 21 

S548+4bp L50G, R51S 

Weak disruption of 

constitutively active Ras-
mediated signaling 

N-terminus Drosophila 21 

C359S and C362S (CRM-

KSR1) 

Prevented the enhanced 

RasV12-mediated signaling 
seen with the expression of 

exogenous WT KSR1, but did 

not disrupt RasV12-mediated 
maturation 

Loss of KSR1 membrane 

localization 

CA3 

Xenopus 
oocyte meiotic 

maturation 

assays using 
exogenous 

mouse KSR1 

61 

CA3 domain 

(amino acids 319–390) 
Augments Ras signaling CA3-Only Mouse KSR1 61 

CRM CA3 domain 
Abolished augmented Ras 

signaling 
CA3 Mouse KSR1 61 

Myristylated N-Terminus 

KSR1 (Myr-KSR) 

Constitutively localized to the 

plasma membrane 
Accelerates RasV12-induced 

maturation 

Expression of Myr-KSR alone 
was unable to promote oocyte 

maturation 

N-terminus 

Xenopus 

oocyte meiotic 

maturation 
assays using 

exogenous 

mouse KSR1 

61 

CRM Myr-KSR 
Abolished the positive effect 

of Myr-KSR on Ras signaling 

CA3, N-

terminus 
Mouse KSR1 61 

R589M, R589L 
Inactivates kinase domain and 

blocks MEK binding 

CA5, ATP-

binding site 
Mouse KSR1 69,70 

G580V and A587T 

Decreased MEK:KSR 
association 

Decreased ERK activation 

CA5 Mouse 69 

S190, T256, T274, S297, 

S320, T411, S429, S434, 

S518 

KSR phosphorylation sites 

confirmed with mutagenesis 

N-Terminus to 
the CA5 

domain 

Mouse 70 

C540 

Suppressed ERK and MEK 
activation 

Interacts with MEK1 

Decreased Ras signaling 
(suppressed Xenopus oocyte 

maturation, cellular 

transformation, and 
Drosophila eye development) 

Truncated C-

terminus, 
kinase domain 

preserved 

Mouse 55,63,69,70 

N539 

No effect on the activation of 

ERK 
Fails to interact with MEK1 

Unable to bind B-Raf 

Interacts with ERK2 

Truncated N-

terminus 
Mouse 55,58,63,69,70 
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C809Y 

Lacks KSR:MEK interaction 

Unable to bind B-Raf 

Increased Ras signaling 

CA5 MEK 

docking site 
Mouse 56-58,66,69 

FSFP/AAAP 

DEF docking motif for 

activated ERK (FxFP) 

(AxAP- KSR1) 

Lacks KSR:ERK interaction 
Decreased Ras signaling 

(decreased RasG12V-induced 

senescence associated β-
galactosidase activity) 

Required for Ras-induced 

senescence 
Decreased proliferative rate 

with activated Ras 

Increased binding to 
endogenous B-Raf 

FXFP Motif 

ERK docking 
site 

CA4 

Mouse 56,58,64,71 

S392A, S392A/S297A 

Defective 14-3-3 binding 

Enhanced growth-factor 
mediated binding to B-Raf 

Increased plasma membrane 

localization even without 

growth factor stimulation 

Accelerates Ras-induced 

oocyte maturation 
Unable to promote oocyte 

maturation without activated 

Ras 
Promotes ERK activation and 

cell cycle progression 

following growth factor 
treatment 

CA3 

Xenopus 

oocyte meiotic 
maturation 

assays using 

exogenous 
mouse KSR1 

38,65,72,73 

L360A/R363A (KR/AA) 

L360Q/R363G (KR/QG) 

 

Abolished CK2 binding 

No decrease in MEK, ERK, or 
14-3-3 binding 

Decreased Ras-mediated 

MEK and ERK activation 
 

CA3 

Xenopus 
oocyte meiotic 

matu- ration 

assay 

74 

S518A 

(CK2 phosphorylation site) 

No apparent effects on Ras 

signaling 

Biological effect is unknown 

CA5 Mouse 74 

L56G and R57S 

Disrupted binding of 

mammalian KSR1 to 

endogenous B-Raf. 

CA1 Mouse 58 

T260A/T274A/S320A/S443A 

(FBm-KSR1) 

ERK-dependent S/TP sites 

mutated to alanine 

 

Increased/Prolonged plasma 

membrane localization 

Increased association with B-
Raf 

Increased Ras signaling 

CA5 Mouse 58,65 

Loss of CA3 

Frameshift mutations and 

nonsense mutation that 

disrupt the kinase domain 

E667V, A373T 

 

Disrupt or reduce AMPK 

binding to KSR2 

CA3 

Region 
between CA2 

and CA3 

 

Mouse 

Human 
50,53,67 

Asp-529A 

DEVA mutant 

Inhibition of caspase cleavage 
Reduced apoptotic signaling 

in response to tumor necrosis 

factor and cycloheximide 
treatment due to decreased 

caspase cleaved C-terminal 

KSR fragments 
 

CA5 

C-Terminus 

DEVD site for 
caspase-

mediated 

cleavage 

Mouse 75 

C-terminal KSR1 fragment 

(CTF-KSR1) 

Result of caspase cleavage 

during apoptosis 

Reduced ERK activation and 
enhanced apoptotic signaling 

C-Terminus Mouse 75 

 

Table 1.1: KSR Mutations and Associated Characteristics 

(This table has been previously published in 2). 
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 KSR proteins are molecular scaffolds of the Raf/MEK/ERK kinase cascade 

Substantial evidence has demonstrated that KSR proteins act as molecular scaffolds for 

the Raf/MEK/ERK kinase cascade 23-37,76. KSR promotes Raf phosphorylation of MEK 26,61,63 and 

is required for maximal Ras-mediated ERK phosphorylation and activation by MEK 21,24,31,32,38,63. 

Prior to experiments that controlled the level of KSR1 expression, publications reported a 

conflicting role for KSR overexpression, suggesting that KSR1 could both promote and inhibit 

Ras signaling 19-21,32,55,61,63,65,69,77,78. These data were consistent with the idea that KSR1 acts as a 

scaffold for the Raf/MEK/ERK kinase cascade as increasing this scaffold to an optimum level 

increases signaling; however, once the optimal level is exceeded, models predict that the scaffold 

will dilute and sequester the individual signaling components and disrupt signaling. This dose-

dependent action of KSR1 was demonstrated in ksr1-/- mouse embryo fibroblasts expressing 

various levels of a transgene KSR1 32. ERK signaling and proliferation, as well as KSR1 

interaction with Raf, MEK, and ERK, all increased with increasing KSR1 expression until KSR1 

was approximately 14-fold higher than endogenous levels in wild type mouse embryo fibroblast 

cells. ERK signaling and cell proliferation then dramatically decreased, while the interaction of 

Raf, MEK and ERK with KSR1 plateaued when KSR1 was further increased to a level 20-fold 

higher than endogenous levels 32. When excessively high levels of KSR inhibits signaling of the 

MAPK cascade, these inhibitory effects can be abrogated by overexpressing additional 

components of the MAPK pathway. This was elegantly demonstrated in Drosophila S2 cells 

where the overexpression of Raf and MEK in conjunction with KSR overexpression still 

demonstrates robust MEK phosphorylation by Raf even with levels of KSR that would normally 

interfere with MEK phosphorylation 31. These characteristics are consistent with the defining 

features of scaffolding proteins 79,80. Furthermore, the scaffolding activity of KSR is both 

temporally and spatial regulated allowing for additional levels of regulation of the Ras pathway.  

In resting conditions, KSR1 is bound to MEK and an autocatalytic ubiquitin ligase, IMP, and is 

sequestered in the cytoplasm as a result of  C-TAK1 phosphorylating KSR1 at S392, which 
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promotes 14-3-3 binding 57,58,65,69,72,77,81 (Fig. 1.3A). The crystal structure of KSR2 kinase domain 

bound to MEK demonstrated that these proteins interact at two primary locations: the activation 

segments within their kinase domains and the alpha G helixes on the C-terminal lobe of each 

protein 26, and mutations within the alpha G helix of MEK 58, or mutations that either disrupt the 

secondary structure of or are within the alpha G helix of KSR inhibits the binding of KSR to 

MEK (Table 1.1) 26. Of note, when KSR is bound to MEK, the activation segments of both 

proteins are constrained. MEK cannot be phosphorylated and activated, and KSR is in an inactive 

conformation 26. This inactive state may reflect KSR1:MEK heterodimers in the cytoplasm of 

quiescent cells. Upon Ras activation, Raf is phosphorylated, and PP2A dephosphorylates KSR1 at 

S392, such that 14-3-3 no longer binds 82 (Fig. 1.3B). IMP dissociates simultaneously from 

KSR1, interacts with GTP-bound Ras, autoubiquitinates, and is targeted to the proteasome for 

degradation 81 (Fig. 1.3B).  KSR1 is then free to move to the plasma membrane with MEK in tow 

23,31,32 (Fig. 1.3C). The localization of KSR1 to the plasma membrane is dependent upon its 

interaction with Caveolin-1 and is required for KSR1-mediated ERK activation and Ras-driven 

transformation 36. Once KSR1 localizes to the plasma membrane, MEK is phosphorylated by 

activated Raf 23,31,32,61,83. Based on the observation that KSR1 bearing C809Y mutations fails to 

interact with MEK and promotes ERK activation better than wildtype KSR1, MEK is predicted to 

phosphorylate ERK when it is dissociated from KSR1 (Table 1.1). Once phosphorylated by 

MEK, ERK interacts with KSR1, and this interaction is required for normal ERK signaling 56,58 

(Fig. 1.3D). The sustained and coordinated activation of ERK ultimately promotes the 

transformation, survival, and proliferation of Ras-driven cancer cells 24,32,39,45. The activation of 

ERK also controls a negative feedback loop, in which activated ERK when bound to KSR1 

phosphorylates and inhibits both KSR1 and B-Raf 58,84. This phosphorylation by ERK causes 

KSR1 and B-Raf to dissociate from the plasma membrane and halts additional ERK activation.  
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Fig. 1.3: KSR1 as a scaffold for the Raf/MEK/ERK kinase cascade. (A) When Ras is bound to 

GDP and inactive, KSR1 is constitutively bound to MEK1/2 and IMP and is phosphorylated (yellow 

circle) at S392 by C-TAK1 allowing for 14-3-3 binding and cytoplasmic sequestration. (B) Upon Ras 

activation, PP2A dephosphorylates KSR1 at S392 causing 14-3-3 and IMP to dissociate and IMP to 

autoubiquitinate and be degraded. (C) Through interaction with caveolin-1, KSR1 and MEK1/2 then 

move to the plasma membrane where Raf activates MEK1/2 by phosphorylation at S217/S221. (D) 

MEK1/2 then dissociates from KSR1 and activates ERK1/2 through phosphorylation at T202/Y204 

and T185/Y187.  Activated ERK1/2 then associates with KSR1, which allows ERK1/2 to 

phosphorylate KSR1 and Raf and initiate a negative feedback loop. (This figure has been previously 

published in 2). 
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KSR proteins form heterodimers with Raf proteins to regulate MEK and ERK activation 

Dimerization of Raf proteins is thought to be crucial for wildtype Raf activation. This 

dimerization is not unique to Raf proteins within the MAPK pathway as both Ras and ERK have 

also been shown to form dimers 85-89.  The similarity between KSR and Raf proteins is 

specifically conserved within the region required for Raf dimerization, and KSR has been shown 

to form heterodimers with Raf, particularly B-Raf 26,54,83. This dimerization regulates an allosteric 

conformational change in KSR that allows for the phosphorylation of MEK 26. Specifically, when 

KSR forms a dimer with a Raf protein (cis interaction), the conformational change in KSR 

facilitates the exposure of the activation site on MEK and allows for its phosphorylation. 

However, the dimerization of KSR and Raf orients the Raf protein such that the catalytic site of 

Raf is not in proximity to its phosphorylation target site on MEK 26. Therefore, this 

phosphorylation must be completed by another Raf protein (trans interaction) 26.  More recently, 

it has been shown that KSR2 is also able to homodimerize through a side-to-side interface that is 

specifically dependent upon Arg718 26. In a genetic screen, mutations at this site were previously 

shown to suppress Ras signaling, suggesting that dimerization of KSR proteins is required to 

promote Ras signaling 19-21. This is consistent with results demonstrating that mutations that 

inhibit the KSR-Raf heterodimerization decrease Raf activity (Table 1.1) 83; however, the 

functional role of KSR homodimers is still incompletely understood. 

The effects of Raf kinase inhibitors on KSR and Raf dimerization 

Raf kinase inhibitors were developed in the hopes they would be able to suppress Ras 

signaling even in the presence of oncogenic, activating Ras or Raf mutations. Unfortunately, 

while these inhibitors were shown to strongly antagonize Raf activity in RafV600E mutant cells, 

paradoxical increases in Raf activity and downstream signaling were often seen in cells with Ras 

or Raf mutations following treatment with Raf kinase inhibitors 90-92. Several follow-up studies 

demonstrated that this effect was due to increased Raf dimerization and subsequent activation 

90,92-94. This led to several studies that revealed there are multiple classes of Raf mutations 
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including highly activating mutations (e.g. V600E) that resulted in constitutively-activated, 

monomeric Raf, in addition to mutations that only weakly improved the catalytic activity of Raf 

or even decreased it, yet promoted Raf dimer formation and therefore increased subsequent Raf 

activation 90,92. Initial Raf kinase inhibitors targeted kinase activity and therefore were largely 

only functional against the highly activating Raf mutations 92. It is important to note, that Raf 

inhibitor binding also demonstrated inverse cooperativity as binding of the inhibitor to one Raf 

protein in a Raf protein dimer, decreased the affinity of the other Raf protein to inhibitor binding 

95,96. The initial Raf inhibitors also promoted increased dimer formation, such that the use of Raf 

inhibitors could cause paradoxical Raf activation by promoting Raf activation through 

dimerization, while only inhibiting one Raf protein within the dimer and leaving the other 

catalytically active.  

Raf inhibitors also promote KSR1-B-Raf heterodimer formation 27. In this manner, KSR1 

can compete with other Raf proteins (C-Raf) for inhibitor-induced dimerization to B-Raf. The 

dimerization between C-Raf and B-Raf promotes ERK signaling; however, complex formation of 

KSR and B-Raf actually limits ERK activation 27. This suggests that high KSR expression in cells 

being treated with Raf kinase inhibitors may actually limit paradoxical, rebound ERK activation 

downstream of inhibitor-induced Raf dimerization and activation. While dimerization of B-Raf 

with KSR2 has been shown to allosterically alter the orientation of KSR2 into a more 

catalytically active conformation, KSR expression reduced Raf inhibitor-induced paradoxical 

ERK signaling, which suggests that the overall effects of KSR in this scenario are not likely to be 

a result of its kinase activity, but instead are a consequence of its interaction with B-Raf 27.  

Non-Canonical Functions of KSR Proteins 

Recent work has demonstrated additional functions for KSR that are either independent 

of or downstream of its role as a scaffold for the Raf/MEK/ERK kinase cascade. Both KSR1 and 

KSR2 have been shown to promote AMPK expression or activity 3,34,50,52. While the role of 

AMPK in cancer is still controversial, multiple groups have shown that after transformation, 
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AMPK can promote tumor cell survival by mediating an increase in the overall metabolic 

capacity allowing the cells to survive in stressful conditions. One mechanism by which this 

occurs is through the upregulation of PGC1β and its transcriptional partner ERRα 3,41. An 

additional KSR-regulated mechanism promoting the expression of PGC1β has recently been 

described where KSR1 promotes ERK activation in colon cancer cells, which is required for 

increased MYC translation. MYC then acts as a transcription factor and increases PGC1β 

transcript levels 42. KSR proteins also play a role as overall metabolic regulators in cells by 

regulating glucose metabolism 40 and adipogenesis 33. The scaffold function of KSR1 promotes 

adipogenesis by coordinating the timing and intensity of ERK-dependent p90 RSK activation 

with the expression of its key adipogenic substrate C/EBP. Defective adipogenesis in vitro 

caused by loss of KSR1 can be rescued by adding back low levels of KSR1. Increasing KSR1 

levels above the optimal level inhibits adipogenesis through sustained ERK signaling while 

inducing the phosphorylation and inhibition of the key adipogenic transcription factor PPAR33.  

The presence of a kinase domain within the CA5 region of KSR has led numerous groups 

to examine the potential of KSR to act as a kinase. Initial reports suggested KSR was a ceramide-

activated kinase 97 even though amino acids critical for phosphotransferase activity, including the 

lysine involved in exchange of the gamma phosphate of ATP with a substrate, are not conserved 

within the kinase domain of KSR proteins 21,43,66. More recently, a crystal structure of the kinase 

domain of KSR2 and MEK1 with ATP bound within the catalytic site combined with in vitro 

assays and chemical genetics data suggested KSR2 has the potential to phosphorylate MEK 26. 

However, the evidence supporting a role for KSR as a kinase has shown very low levels of 

substrate phosphorylation in vitro (low stoichiometry), has demonstrated phosphorylation on sites 

different than those required to activate MEK, has largely been based on experiments performed 

outside of cellular systems, and may be a consequence of co-precipitating kinases as many 

subsequent experiments have demonstrated KSR1 lacks catalytic activity 61,70. This raises the 
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question as to whether any residual intrinsic kinase activity, if present, within KSR proteins has 

biological relevance. Expression of the isolated kinase domain of KSR inhibited ERK signaling 

and suppressed Ras-dependent Xenopus oocyte maturation, cellular transformation, and 

Drosophila eye development 63. This supports the role of KSR proteins as molecular scaffolds, 

where the isolated expression of the CA5 domain, which could only bind and sequester MEK, but 

not regulate its cellular localization or coordinate interactions with Raf, would be expected to 

antagonize MAPK signaling 57,63,69. In contrast, the conservation of the binding site residues for 

ATP within KSR and the prevalence of mutations within the ATP binding pocket in loss-of-

function KSR mutants do suggest that ATP binding itself may play an important role in KSR 

activity (Table 1.1) 20,21,63. Thus, KSR proteins have largely been considered pseudokinases. 

KSR1 has been shown to travel through the nucleus when in complex with MEK 98. The 

functional significance of this subcellular localization is unknown, but may facilitate activity of 

ERK toward nuclear substrates. Further investigation may provide additional understanding of the 

complex role KSR plays in modulating ERK signaling as well as other processes. These and 

additional undiscovered pathways could reveal novel approaches for targeting of KSR-dependent 

actions specific to tumor cell maintenance. 

KSR as a Target for Therapy 

Based on the role KSR1 plays in modulating signaling through the Raf/MEK/ERK kinase 

cascade, and the fact that ksr1-/- mice are largely phenotypically normal, inhibiting KSR1 in Ras-

driven cancers appears to be a reasonable approach to selectively target cancer cells without 

subjecting patients to the side effects that normally accompany chemotherapeutics. Supporting 

this strategy, RNAi approaches depleting cancer cells of KSR both within in vitro and in vivo 

models demonstrated a decrease in tumor growth 3. Further, a continuous infusion of 

phosphorothioate antisense oligonucleotides that inhibited KSR1 expression caused regression of 

established tumors and inhibited metastases without overt toxicity in Ras-driven PANC-1 

pancreatic and A549 non-small cell lung cancer xenografts in nude mice 99. 
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Recent studies have attempted to target KSR proteins directly for therapy.  The small 

molecule APS-2-79 is able to bind and stabilize KSR in an inactive state, interfere with KSR:Raf 

heterodimerization, and inhibit oncogenic Ras signaling 54. Based on the finding that mutations in 

KSR that suppress oncogenic Ras signaling largely mapped to a region adjacent to the ATP-

binding pocket, it was hypothesized that a small molecule that bound KSR within the ATP-

binding pocket could interfere with Ras signaling. APS-2-79 blocks heterodimerization with Raf 

and conformationally biases KSR towards an inactive state 54 similar to the conformation of the 

KSR2 kinase domain bound to MEK1 and ATP 26. In this conformational state, MEK cannot be 

phosphorylated because the active segments of both MEK and KSR2 interact directly with 

additional stabilization provided by interactions between the alpha G helices on the C-terminal 

lobe of each protein 26.  

The efficacy of APS-2-79 has been demonstrated with a simplified cell-based 

reconstitution system that monitored KSR-dependent MEK and ERK signaling. KSR enhanced 

MEK phosphorylation at Ser218/Ser222 by Raf in a dose-dependent manner. This increased 

phosphorylation was inhibited by APS-2-79, but not a similar small molecule that due to small 

modifications was no longer able to bind to KSR2. The effect of APS-2-79 was also lost when 

KSR was mutated within the active site (A690F) such that KSR can promote MEK 

phosphorylation even in the absence of ATP binding. APS-2-79 had no ability to affect MEK 

phosphorylation in the absence of KSR, suggesting that the effect of APS-2-79 on ERK signaling 

is dependent on KSR, and APS-2-79 does not inhibit MEK phosphorylation by interacting 

directly with Raf proteins even though Raf shares a high degree of homology with KSR1 and 

KSR2 54. Unfortunately, APS-2-79 was only modestly able to decrease cell viability in two Ras-

mutated cancer cell lines (HCT116 and A549) and did not affect Raf-mutated cancer cells (A375 

and SK-MEL-293) 54. In contrast to APS-2-79 treatment, in HCT116 cells, transient siRNA-

mediated depletion of KSR1 dramatically reduced viability in vitro and stable shRNA-mediated 

depletion of KSR1 reduced tumor growth in vivo 3. There are several reasons that may explain the 
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discrepancy between APS-2-79 treatment and RNAi-induced protein loss. The ability of APS-2-

79 to bind and directly inhibit KSR1 has not yet been demonstrated, and therefore it may not bind 

and inhibit KSR1 as well as it binds to KSR2, potentially limiting its efficacy in cancer cell lines 

that express high levels of KSR1. The limited efficacy of APS-2-79 could also result from 

compensation by alternative MAPK pathway scaffolds. Several scaffolds have been shown to 

allow for increased Ras-mediated signaling such as IQ motif-containing GTPase activating 

protein 1 (IQGAP1), Sef, dystroglycan, β-arrestin, MEK partner 1 (MP1), and Paxillin 

29,79,80,85,86,100. However, this possibility is less likely as the RNAi-mediated depletion of KSR1 

robustly disrupts Ras signaling even with potential compensation by other scaffolds. It is also 

possible that APS-2-79 only inhibits a subset of KSR-dependent signaling events and therefore is 

less effective than RNAi-mediated depletion of KSR1. Interestingly, APS-2-79 treatment shows 

substantial synergy with the MEK inhibitor trametinib in Ras-mutated, but not Raf-mutated, 

cancer cells. This observation suggests that robustly inhibiting Ras-mediated ERK signaling in 

conjunction with inhibition of non-canonical components of KSR1-dependent signaling is 

efficacious though the exact mechanism behind this combinatory effect is not known 54. 

Demonstrating the ability of APS-2-79 to bind and inhibit KSR1, as it was only tested against 

KSR2, and evaluating its ability to suppress both canonical and non-canonical KSR1-dependent 

effects will be important moving forward.  

Alternative Approach to Identify Novel Effectors of Ras-driven Tumorigenesis 

Despite being identified more than 20 years ago, the functions of KSR proteins and the 

mechanisms by which they modulate Ras signaling and promote cancer cell survival are still not 

fully understood. It is well established that KSR acts as a scaffold for the Raf/MEK/ERK kinase 

cascade and promotes phosphorylation and activation of Ras downstream effectors through 

protein:protein interactions and subcellular trafficking. However, fully understanding the 

dynamics of these interactions, the regulatory mechanisms controlling KSR subcellular 



23 
 

 

localization, and the regulation of KSR expression in cells is vital because KSR has the potential 

to both promote and inhibit ERK signaling. This behavior is consistent with KSR acting as a 

scaffold protein and suggests that since KSR modulates Ras signaling in normal cells, KSR itself 

must be tightly regulated. These regulatory mechanisms, while likely still at play in cancer cells, 

are at least somewhat disrupted as evidenced by increased KSR1 protein expression. This 

increased expression in cancer and selective requirement for KSR1 for cancer cell survival, but 

not normal cell survival, suggests that KSR1 would be a selective, efficacious therapeutic target 

in pancreatic, colon, and lung cancers where Ras mutations are commonly required for tumor 

growth and survival.  

Recent work has further characterized KSR proteins, and several new functional and 

physical interactions have been identified. The introduction of Raf inhibitors has expanded the 

understanding of KSR:B-Raf heterodimerization and the mechanisms behind Raf activation. The 

recent publication by Dhawan et al. demonstrated the possibility of targeting KSR proteins with a 

small molecular inhibitor that stabilizes KSR in an inactive state to effectively limit Ras 

signaling. The limited efficacy of APS-2-79 as monotherapy against Ras- and Raf-mutated cancer 

cells is disappointing; however, more selective targeting of KSR1 may substantially improve its 

effectiveness and is still a viable therapeutic approach based on the promising signaling studies. 

However, studies on Raf inhibitors has also highlighted the complex nature of these signaling 

pathways and the potential for paradoxical re-activation of Raf, which may complicate the 

targeting of KSR as well. Thus, it will be important to examine the effects of KSR inhibition in a 

global context, particularly in light of the potential for side effects given the obesity phenotype 

seen in KSR2 knockout mice and evidence that KSR expression antagonizes Raf kinase inhibitor-

induced Raf dimerization and paradoxical activation. 

Therefore, identifying additional targets that represent selective vulnerabilities that are 

only present in cancer cells provides the opportunity for the development of novel therapeutics 

that would possess a large therapeutic index with the potential to dramatically improve both 
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patient outcomes and quality of life while undergoing treatment. To identify additional genetic 

targets that, like KSR1, are selectively required in cancer cells, but not in normal cells, KSR1 was 

applied as a positive control to a functionality-based genome-scale screen termed Functional 

Signature Ontology (FUSION). FUSION identified numerous potential therapeutic targets based 

on Euclidean distance and Pearson correlation similarity metrics, which were further filtered and 

prioritized based on bioinformatic analysis. Biological validation of the prioritized hits 

demonstrated an increased requirement for these targets in cancer cells as compared to normal 

cells. Targets were further evaluated to elucidate their mechanisms of action in cancer and 

evaluate their potential to serve as therapeutic targets either independently or in combination with 

current therapies for the treatment of cancer.  
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Chapter 2: Materials and Methods 

  



26 
 

 

FUSION Analysis 

Only abbreviated methods describing the experimental completion of the FUSION screen 

that are required to understand the computational and bioinformatic analysis that is the topic of 

Chapter 3: FUSION are included as the genome-scale screen was previously completed by Dr. 

Kurt Fisher and its methods are fully described in his dissertation and published manuscripts 

3,42,101.  

FUSION Screen Experimental Details 

Gene expression for genes within the KSR1-depletion genes expression-based signature 

(BNIP3, NDRG1, ACSL5, ALDOC, and BNIP3L) and control genes (PPIB and HPRT) was 

measured using the Affymetrix Quantigene 2.0 Multiplex assay. This assay captures and 

amplifies the signal using branched DNA, such that the gene expression can be easily quantified 

by measuring fluorescence using a Luminex instrument following the addition of streptavidin 

phycoerythrin.  

The screen used siRNA pools from the Dharmacon siGenome library that were predicted 

to target a single genetic target to individually knockdown 14,355 unique genetic targets. This 

was robotically performed simultaneously in biologic triplicate on three 384-well plates. The 

plates were processed in the following groups: #1: 1-5, 20-22; #2 6-13; #3: 14-19, 23, 24; #4: 25-

32; #5: 33-40; #6: 41-44; #7: 66-67.  

Data Preprocessing 

Data preprocessing consisted of acquiring all the original data files and ensuring they 

were formatted consistently so they could be processed in an automated fashion. R scripts were 

used to read and integrate the data. Then the data was reformatted and scrubbed so that it could be 

computationally analyzed. Once the data was fully integrated and formatted, the values were 

background subtracted using “blank” wells (40 μl of water and 30 μl of hybridization solution), 

and geometric mean normalized to the housekeeping genes (PPIB and HPRT). Negative numbers 
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were set to the probe minimum on each plate. All processing was completed for each biological 

replicate individually and on the average of the three biological replicates. At each stage, 

intermediate data files were generated and saved for future review if needed.  

Outlier Detection 

Control wells were excluded if their raw PPIB value was less than 1000. Outliers from 

the repeated wells (i.e., control and KSR1 depleted wells) were identified using the grubbs.test 

algorithm in R. Minimum number for control wells per plate was set to 6 and for KSR1-depleted 

targets per group was set to 20. Outlier wells for all individual gene depletions were identified 

based on variability between replicates and excluded from results based on the biological 

replicate precision filter described in Chapter 3: FUSION. 

Accuracy, Precision, and Scalability 

To assess the validity of the screen algorithms, three measures were used: accuracy, 

precision, and scalability. To measure the accuracy, the previously biologically validated hits was 

used. Since these have already been validated and been shown to be KSR1-like, they are expected 

to be in the top results (cutoff was top 5% of results). To measure precision, the ability for 

siKSR1 replicates to cluster was evaluated visually by plotting the siKSR1 positive control values 

by Euclidean distance and Pearson correlation similarity metrics. Scalability refers to the 

consistency between results regardless of the number of plates used. For example, the results 

should be relatively consistent if 25%, 50% of all the plates are included in the analysis. This was 

evaluated by plotting the Euclidean distance similarity metric for the data from the kinome plates 

for each normalization method after processing and normalizing the data using only the three 

plates from the kinome or the entire genome-scale dataset. The correlation between the results 

from the kinome-only processing/normalization compared to the results from the genome-scale 

dataset processing/normalization was calculated.  
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Normalization 

Each normalization method was completed and evaluated on a per plate, group, or whole 

assay basis. Normalization was completed based on the reporter median, plate position, or 

negative controls. Normalization to reporter median is completed by finding the median value for 

each individual gene within the KSR1-depletion signature from each plate, group, or across the 

whole assay. Each gene reading is then divided by the median value for that given gene. For plate 

position normalization, the same method is employed, but the median is determined for each row, 

column, or both (if more than one plate is being evaluated). Normalization to negative controls is 

performed by finding the median value for each gene within the KSR1-depletion signature from 

the negative control (non-targeting siRNA/siControl) wells. After normalization, the data 

underwent log base 2 transformation.  

Calculate Similarity 

The positive control (siKSR1) target was the average of the KSR1-depleted wells from 

each experimental group/batch after outliers were excluded. Euclidean distance and Pearson 

correlation metrics were calculated using the rdist and cor functions in R.  

Calculate Viability Filter 

The viability filter is based on the decrease in PPIB with a given gene depletion relative 

to the average PPIB in the control wells. Based on the geomean normalized values for each 

replicate individually and for the average of the three replicates, the PPIB decrease was calculated 

as follows:  

PPIB Decri = 1 - PPIBi/PPIBCONT 

Cell Culture 

Colorectal cancer cell lines HCT116, LoVo, RKO, HCT15, SW480, SW620, T84, and 

Caco2 were purchased from American Type Culture Collection (ATCC). Cells were grown in 

Dulbecco’s Modified Eagle’s Medium (DMEM) containing high glucose and L-glutamine with 



29 
 

 

10% or 20% (Caco2) fetal bovine serum (FBS). All colorectal cancer cells were grown at 37°C 

with ambient O2 and 5% CO2. Immortalized non-transformed human colonic epithelial cell lines 

(HCEC) and HCEC exogenously expressing G12V mutant H-Ras (HCECs + Ras) were a gift 

from J. Shay (UT Southwestern) 102. HCECs and HCECs + Ras were grown in medium composed 

of 4 parts DMEM to 1 part media 199 (Sigma-Aldrich) with 2% cosmic calf serum (GE 

Healthcare), 25 ng/mL EGF, 1 μg/mL hydrocortisone, 10 μg/mL insulin, 2 μg/mL transferrin, and 

5 nM sodium selenite. HCECs were grown in a hypoxia chamber with 2% O2 and 5% CO2 at 

37°C. In some cases, additional supplementation with l-glutamine/gluta-max (1%), non-essential 

amino acids (1%), penicillin-streptomycin (1%), gentamicin (final concentration of 50 μg/mL), 

and/or Fungizone (amphotericin B solution final concentration of 0.25-2.5 μg/mL) was used. 

When used the additional reagent and concentration used are specified in the respective methods 

sections.  

siRNA Reverse Transfections 

Pooled or individual (Table D.1) ON-TARGET plus siRNAs (DharmaconGE) were 

introduced into the cell lines listed above following the Lipofectamine RNAiMAX (Invitrogen) 

reverse transfection protocol and as described: 5 μL of RNAiMax was added to 2 mL of cells in 

normal culture media (150,000 cells/mL), 500 μL Opti-MEM media in 6-well plates with a final 

RNAi concentration of 40 nM. HCECs were transfected following the RNAiMax reverse 

transfection protocol using 5 μL RNAiMax transfection reagent per 3-5 mL of media and 100,000 

cells/mL with a final RNAi concentration of 20 nM in 6 cm plates (CorningTM, PrimariaTM) or on 

6-well plates. After a 72-hour transfection, cells were lysed in RIPA lysis buffer with protease 

and phosphatase inhibitors as described in the Western Blot Analyses section. 

cDNA Forward Transfections 

200,000-500,000 cells were plated on 6-well plates with one well for each forward 
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transfection or experimental condition. When cells were 50-90% confluent (usually 24 hours after 

plating) depending on your experiment/timeline, add transfection reagents. Transfection reagents 

are made in two parts, first 2.5-10 μg of plasmid is added to OptiMem to a final volume of 250 

μL. Second, 5-12.5 μL of Lipofectamine 2000 is added to OptiMem again to a final volume of 

250 μL. The contents of the first tube (containing plasmid) was added to the second tube 

(Lipofectamine 2000 and OptiMem) and were inverted 3 times to mix and incubated for 5 

minutes. The entire 500 μL mixture was added dropwise to the cells on the 6-well plate. Cells 

were collected 24-72 hours after transfection.   

Circadian Rhythm Cell Synchronization  

Cells were circadianly synchronized by treating with 50% horse serum for 2 hours, 10 

μM forskolin for 30 minutes, or 100 nM dexamethasone for 30 minutes. Cells were then collected 

at the end of the treatment (0 hr) and every four hours for the next 24-48 hours. For each 

collection, the media was collected, cells trypsinized and pelleted. The cell pellet was rinsed with 

PBS and repelleted. The pellet was then snap frozen in liquid nitrogen and stored at -80C until all 

samples could be lysed in RIPA lysis buffer with protease and phosphatase inhibitors (described 

in Western Blot Analysis section) and analyzed by western blot. 

Anchorage-independent growth on poly-2-hydroxyethyl methacrylate (polyHEMA)-coated plates 

10 mg/ml polyHEMA stock solution was made by dissolving polyHEMA in 95% ethanol 

and shaking at 37°C until fully dissolved (6 hours to overnight). 96-well plates were coated with 

polyHEMA by evaporating 100-200 μl of the 10 mg/ml stock polyHEMA solution in each well. 

Cells were plated in complete medium on polyHEMA-coated wells at a concentration of 1.5-2 x 

104 cells/100 µl 48 hours post-transfection (as described above). Cell viability was measured per 

the manufacturer’s protocol using the CellTiter-Glo® Luminescent Cell Viability Assay 

(Promega). Specifically, this was done by adding 90 µl of CellTiter-Glo® reagent, shaking for 
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two minutes to lyse the cells, incubating at room temperature for 10 minutes, and measuring 

luminescence (POLARstar OPTIMA).  

Cell growth assay 

5,000-10,000 (HCEC, LoVo, T84, Caco2) cells/well were transfected on white or clear 

96-well plates. Transfections were done as described above but at a ratio of 1:25 for all of the 

reagents. At 72 or 96 (start with half as many cells) hours post-transfection, 10 μL of 

alamarBlue® (ThermoFisher Scientific) was added to each well (100 μL) or 100 μL of 

alamarBlue® was added per mL of media and media was removed from the 96-well plate and 

replaced with the alamarBlue®/media mixture. Plates were incubated at 37°C for 1-3 hours and 

fluorescence was measured (POLARstar OPTIMA). Results were background subtracted (well 

with media + alamarBlue® without any cells) and normalized with the control being set to 1. In 

other instances, cell viability was measured per the manufacturer’s protocol using the CellTiter-

Glo® Luminescent Cell Viability Assay (Promega). Specifically, this was done by adding 90 µl 

of CellTiter-Glo® reagent, shaking for two minutes to lyse the cells, incubating at room 

temperature for 10 minutes, and measuring luminescence (POLARstar OPTIMA). 

Cell Count 

Adherent cells were counted by removing the media, washing the cells gently with PBS, 

and trypsinizing the cells. The total volume of trypsin and media cells were resuspended in was 

kept consistent across samples and noted for total cell number calculations. At each time point, 

cells were then counted either manually using a hemocytometer or using a Coulter Counter to 

obtain a concentration of cells. This was then multiplied by the total volume of suspended cell 

mixture to obtain a total cell count.  

Sensitization Studies with IR or 5-FU 

2,500 (or 5,000 for slower growing cell lines: HCEC, LoVo, T84, Caco2) cells/well were 
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plated or transfected on white or clear 96-well plates or 200,000 cells were plated/transfected on 

6-well plates. Transfections were done as described above but at a ratio of 1:25 for 96-well plates. 

At 24 hours, drug was added if included in the experiment. At 48 hours, 3-5 Gy gamma IR was 

applied to the cells in a single dose (RS-2000 Irradiator). At 96 hours after plating, alamarBlue® 

(ThermoFisher Scientific) was added to each well (100 μL alamarBlue/1 mL media) or cells were 

collected for western blot analysis. Plates were incubated at 37°C for 1-3 hours and fluorescence 

was measured (POLARstar OPTIMA). 

Colony Forming Assay 

250-500 (HCEC, LoVo, T84, Caco2) cells were plated on 12-well or 24-well plates. Drug 

was added 24 hours later and replaced as needed. Media containing Fungizone (Amphotericin B – 

2.5 µg/mL final conc.) and gentamicin (50 µg/mL final conc.) was used. 10-14 days later, cells 

were rinsed with PBS, and methanol for 20 minutes to fix the cells. Cells were rinsed with water 

and incubated in Giemsa Stain (diluted 1:10-1:20) for 5 minutes. Cells were washed with gently 

running water. Plates were laid upside down and dried overnight. Images were taken of the 

colonies using the LI-COR Odyssey imager. Cell colony number and size were quantified using 

an ImageJ macro and the built-in analyze particles function.    

Carboxyfluorescein succinimidyl ester (CFSE) Cell Proliferation/Division Assay 

Cells were stained with CFSE by resuspending 2 million HCT116 or SW480 cells in 10 

μM CFSE in PBS (1 mL total volume) in a 1.5 mL Eppendorf tube. Resuspended cells were 

incubated at 37oC in the hot water bath for 15 minutes, washed once with 5 mL media, and 

resuspended in 13 mL media. Two mL of cells/media (approximately 300,000 cells/well) were 

added to each well on a 6-well plate on top of the siRNA transfection reagents as described 

previously. After 96 hours, cells were trypsinized, pelleted, and resuspended in PBS for flow 

cytometry analysis to measure CFSE staining. Remaining cells, after flow cytometry analysis, 
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were used in western blot evaluation to confirm target gene depletion.  

Propidium Iodide 

Cells were assessed for apoptosis using the sub-G1 peak and percent of cells in each 

phase of the cell cycle as measured by flow cytometry following propidium iodide (PI) staining. 

Prior to staining, all media in the sample well was collected and placed in a 12 x 75 mm round 

bottom polystyrene tube (BD Falcon, 352054). Cells were washed once with PBS, the PBS was 

saved, and cells were subsequently treated with 0.25% trypsin for 5 minutes. Media was then 

used to resuspend the trypsin-treated cells, which were collected and placed in the polystyrene 

tube. Cells were pelleted by centrifugation for 5 minutes at 2800 RPM using an Immunofuge II. 

The media was aspirated, and the cells were fixed in 1 mL of ice cold 70% ethanol overnight at -

20°C. Cells were then warmed to room temperature (~15 minutes on bench), pelleted by 

centrifugation for 5 minutes, then rehydrated in 1 mL of room temperature PBS and incubated at 

37°C for 15 minutes. Cells were then pelleted, the PBS aspirated, and the cells were resuspended 

in PI stain overnight. Data was acquired using a Becton-Dickinson FACSCalibur flow cytometer 

and analyzed using FlowJo Cell Cycle analysis to detect the percentage of cells in the sub-G1 

peak, 2N peak/G1 phase, S phase, and 4N peak/G2 phase. 

RT-qPCR 

RNA was harvested using 1 mL TriReagent (MRC, TR118) and stored at -80C until 

extraction. RNA was extracted per manufacturer’s protocol and final RNA was eluted with 

nuclease-free water. RNA was quantified using the NanoDrop 2000 (Thermo Scientific). Reverse 

transcription was performed using iScript™ Reverse Transcription Supermix for RT-qPCR (Bio-

Rad, 170-8840) with 1 μg of total RNA per 20 μL reaction. RT-qPCR was performed using the 

primers and conditions listed in Table 2. All targets were amplified using SsoAdvanced™ 

Universal SYBR Green Supermix (Bio-Rad) with 40 cycles of a 2-step program (95°C x 5 sec, 
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Tm x 45 sec). Primer sequences used are specified in Table D.2.   

TCGA  

mRNA expression was analyzed based on the FPKM-UQ normalized RNASeq values of 

normal solid tissue samples and primary tumors from within The Cancer Genome Atlas (TCGA) 

Breast Invasive Carcinoma (BRCA)(Number of Samples from Normal N=113 and Primary 

Tumor N=1102), Colon Adenocarcinoma (COAD) (N=41 and N=478 samples with 456 unique 

patients), Lung Adenocarcinoma (LUAD)(N=59 and N=533), Lung Squamous Cell Carcinoma 

(LUSC)(N=49 and N=502), Glioblastoma (GBM)(N=5 and N=156), Prostate Adenocarcinoma 

(PRAD)(N=93 and N=498), Pancreatic Ductal Adenocarcinoma (PAAD)(N=4 and N=177), 

Sarcoma (SARC)(N=2 and N=259) datasets and primary tumors only from Ovarian Serous 

Cystadenocarcinoma (OV)(N=374) and Cervical Squamous Cell Carcinoma (CESC)(N=304) 

datasets. Results were analyzed for statistical significance using unpaired (unmatched samples) 

and paired (patient-matched samples) Student’s t tests. 

Western Blot Analysis 

Whole cell lysate extracts were prepared in radioimmunoprecipitation assay (RIPA) 

buffer comprised of 50 mM Tris-HCl, 1% NP-40, 0.5% Na deoxycholate, 0.1% Na dodecyl 

sulfate, 150 mM NaCl, 2mM EDTA, 50 mM NaF, 10 μg/mL aprotinin, 10 μg/mL leupeptin, 2 

mM EDTA, 1 mM PMSF. Nuclear and Cytoplasmic lysates were obtained using the 

ThermoFisher NE-PER Nuclear and Cytoplasmic Extraction Reagents Kit (78835, ThermoFisher 

Scientific) based on the manufacturer’s protocol and the 100X Halt Protease and Phosphatase 

Inhibitor Cocktail (ThermoFisher Scientific 78440). Protein concentration was determined using 

the Promega BCA protein assay. SDS-PAGE was performed, membranes were blocked in 

Odyssey PBS blocking buffer (LI-COR Biosciences, 927-40000), and incubated in primary 

antibody (listed below) overnight at 4°C. LI-COR secondary antibodies (IRDye 800CW, 680LT, 
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or 680RD) were diluted 1:10,000-1:50,000 in 0.1% TBS-Tween (for nitrocellulose). Membranes 

were imaged using the LI-COR Odyssey. 

In vitro kinase assay 

AMPK assays were performed by diluting 20 ng of AMPKα1β1γ1and 60 ng of 

AMPKα2β1γ1 in 5 µl of 10 mM MOPS (pH 7.2), 5 mM β-glycerophosphate, 10 mM MgCl2, 2 

mM EGTA, 0.8 mM EDTA and 0.1 mM DTT, 80 ng/µl BSA and 8% glycerol and placing them 

on ice. 5 µl of AMP (480 µM final in water), drug or DMSO diluted in water (1:10,000 nM final), 

1 mg/ml SAMS substrate (in water) and -32P-ATP (40-500 µM final dilution in 25 mM MOPS 

pH 7.2, 12.5 mM β-glycerophosphate, 25 mM MgCl2, 5 mM EDTA, 2 mM EGTA and 0.25 mM 

DTT) was added. Standard assay included a 50 µM final ATP concentration. Samples were 

mixed and incubated in 30C water bath for 15 minutes with gentle rocking and then returned to 

ice. 20 µl of samples were spotted on P81 paper and allowed to dry. Papers were washed three 

times each with 200 ml 0.1% phosphoric acid, allowed to dry, placed in a vial with scintillation 

cocktail, and counted. One sample without enzyme was used to correct for non-specific binding 

to the P81, which was determined to be equal to using no SAMS peptide in a mock assay.  

Anchorage-independent growth in soft agar 

Cells were seeded at 5 x 103 cells/35 mm dish in 1 ml of top agarose consisting of 

Iscoves’s Dulbecco Modified Growth Medium (DMEM) mixed with 0.4% NuSieve GTG 

agarose, 4 mM L-Glut, 1% NEAA and 1% penicillin/streptomycin suspended over a bottom layer 

consisting of 2 ml of DMEM with 0.8% Nu-Sieve GTG agarose, 4 mM L-Glut, 1% NEAA and 

1% penicillin/streptomycin. DMSO or 5-OH-S was placed in both top and bottom layers at a 

concentration of 10 µM. Colonies over 100 microns were counted and representative 

photomicrographs were taken after 14 days of incubation in 37C and 5% CO2. 

Antibodies 
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Primary antibodies were diluted as follows:  

P-4EBP1 (T70 9455, Cell Signaling) 1:1000; T-4EBP1 (53H11, 9644, Cell Signaling) 

1:1000; pACC (#3661, Cell Signaling) 1:2000; tACC (#3676, Cell Signaling) 1:2000; B-Actin 

(C-4, 47778, Santa Cruz) 1:2000; pAKT S473 (9271, Cell Signaling) 1:1000; pAKT T308 

(9275, Cell Signaling) 1:1000; tAKT (9272, Cell Signaling) 1:1000; pAMPKα1α2 (#2531, Cell 

Signaling) 1:1000; AMPKα1α2 (#2532, Cell Signaling) 1:1000; AMPKα2 (#AF2850, R&D 

systems) 1:1000, and AMPKα1 (#2795, Cell Signaling) 1:1000; AMPKβ1 (#12063, #4182, 

Cell Signaling) 1:1000, and AMPKβ2 (#4148, Cell Signaling) 1:1000; AMPKγ1 

(#ab32382, Abcam) 1:2000; Beclin 1 (3495, Cell Signaling) 1:1000; CDC25C (4688, Cell 

Signaling) 1:1000; P-CDC25C (S216, 9528, Cell Signaling) 1:1000; P-CDC25C (T48, 9527, Cell 

Signaling) 1:1000; P-CDK1 (Y15, 9111, Cell Signaling) 1:1000; T-CDK1 (77055 and 9112, Cell 

Signaling) 1:1000; P-CHK1 S345 (2348, Cell Signaling) 1:1000; T-CHK1 (G-4, 8408, Santa 

Cruz) 1:1000;  eIF4A (C32B4, 2013, Cell Signaling) 1:1000; eIF4E (9742, Cell Signaling) 

1:1000; peIF4E (S209, 9741, Cell Signaling) 1:1000; pERK (9106, Cell Signaling) 1:1000; ERK 

(9102, Cell Signaling) 1:1000; ERRa (V-19, 32971, Santa Cruz) 1:1000; P-GSK3B (S9, cs-

55585, Cell Signaling) 1:1000; Phospho-Histone H2A.X (Ser139)(2577, Cell Signaling) 1:1000; 

H2A.X (2595, Cell Signaling) 1:1000; H3K4Me3 (ab8580, Abcam) 1:1000; H3K4Me1 (ab8895, 

Abcam) 1:1000, Histone 3 (ab1791, Abcam) 1:2500; HDAC2 (ab7029, Abcam) 1:5000; KSR1 

(H-70, Santa Cruz) 1:1000; pMEK (4694, Cell Signaling) 1:1000; MEK (9122, Cell Signaling) 

1:1000; MYC (5605, Cell Signaling) 1:1000; MDM2 (sc-965, Santa Cruz) 1:500; p53 (6243, 

Santa Cruz) 1:1000; P21 (ab7903, Abcam) 1:1000; PARP (9542, Cell Signaling) 1:1000; PDCD4 

(D29C6, #9535, Cell Signaling) 1:1000; PP2ACa/B (1D6, sc-80665, Santa Cruz) 1:1000; PUMA 

(3041, ProSci, gift from Xu Luo lab) 1:1000; pRAPTOR (#2083, Cell Signaling) 1:1000; 

tRAPTOR (#2280, Cell Signaling) 1:1000; RBBP5 (A300-109A, Bethyl) 1:1000; P-RSK (S380, 

cs-9341, Cell Signaling) 1:1000; T-RSK (601225, BD Biosciences) 1:1000; TIMELESS (A300-
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961A, Bethyl) 1:5000; α-tubulin (B-5-1-2, Santa Cruz) 1:2500; ULK1 (#4773, Cell Signaling) 

1:1000; P-ULK1 (S317, #12753, Cell Signaling) 1:1000; WDR5 (ab22512, Abcam) 1:1000, and 

P-Wee1 (S642) (4910, Cell Signaling) 1:1000. The PGC1β antibody was a generous gift from Dr. 

Ching-Yi Chang and Dr. Donald McDonell (Duke University) and was used at 1:5000 dilutions. 

Anti-mouse, and anti-rabbit secondary antibodies conjugated to Alexa Fluor 680 

(Invitrogen, Carlsbad, CA) or IRDye800, and IRDye680LT were used at 1:5000-1:10,000 

dilutions.  

Reagents 

Additional reagents included recombinant AMPKα1β1γ1 (#P47-10H, SignalChem) and 

AMPKα2β1γ1 (#P48-10H, SignalChem), SAMS peptide (S07-58, Cquential Solutions), and 

radioactive -32P-ATP (64014, MPBIo). Poly-2-hydroxyethyl methacrylate (polyHEMA, P3932), 

cycloheximide (CHX, C7698), Wright-Giemsa stain (WG16), the MYC inhibitor 10058-F4 

(F3680), and propidium iodide (PI, P4170) were purchased from Sigma-Aldrich. OICR-9429 was 

purchased from Caymen Chemical (1801787-56-3). WDR5-C47 was purchased from Xcessbio 

(M60118-2). The RSK inhibitor BI-D 1870 was purchased from Axon MedChem (1528). The 

mTOR inhibitor AZD8055 (HY_10422), Wee1 inhibitor MK-1775 (HY-10993) and CHK1 

inhibitor AZD-7762 (HY-10992) were purchased from MedChem Express. The ERK inhibitor 

SCH772984 was purchased from SelleckChem (S7101). Z-Leu-Leu-Leu-al (MG132, S2619) and 

5-flurouracil (5-FU, AC228440010) were purchased from Fisher. The AKT inhibitor MK2206 

was a gift from the Black Lab.  

Constructs purchased from Addgene include: pcDNA4-Flag-TIM (22887, Addgene) and 

WDR5 plasmid (#15552). Other constructs include an GIPZ WDR5 shRNA (Thermofisher 

RHS4531-EG11091), pTRIPZ inducible WDR5 shRNA (Dharmacon/Fisher RHS4696-

200696686 Clone: V2THS-140181), and pTRIPZ inducible TIMELESS shRNA 

(Dharmacon/Fisher RHS-4696-200685318 Clone: V2THS-47526).  
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STR PCR Profiling for Cell Line Validation 

The DNA Forensic Lab Core Facility within MMI was utilized to verify cells lines using 

STR PCR Profiling. A PBS washed cell pellet (can be frozen) is needed to perform the analysis. 

The results were evaluated using the ATCC tool: https://www.atcc.org/STR%20Database.aspx 

Statistical Analyses 

P values were calculated using Prism Software (GraphPad, La Jolla, CA). A P value of 

less than 0.05 was considered statistically significant. Values presented as bar plots are shown as 

mean +/- standard deviation (SD) unless otherwise noted.  
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Chapter 3: Evaluation of a Functional Signature Ontology 

genome-scale screen to identify novel targets in cancer 
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Introduction 

Tumors acquire vulnerabilities due to oncogene-driven changes in cell signaling 

pathways, which promote uncontrolled proliferation and suppress apoptosis. These vulnerabilities 

provide opportunities to develop selective cancer therapeutics that lack the side effects 

accompanying current therapies. Previously, Kinase Suppressor of Ras 1 (KSR1), a scaffold for 

the Raf/MEK/ERK kinase cascade, has been shown to be required for maximal ERK activation 

and Ras-driven transformation 3,24,32,38,41,56. Depletion of KSR1 by RNA interference (RNAi) kills 

malignant, Ras-driven cancer cells, but not immortalized, non-transformed human colon 

epithelial cells (HCECs) 3. Additionally, KSR1-/- mice are viable and fertile 24 suggesting KSR1 is 

not required for normal cell survival making it a prime therapeutic target; however, drug 

development targeting KSR1 has had limited success.  

Using screening approaches to identify KSR1-like targets that are selectively required for 

cancer cell survival has proven fruitful. In fact, Gene Set Enrichment Analysis (GSEA) of gene 

expression alterations discovered through microarray analysis in HCT116 colon cancer cells with 

and without KSR1 led to the discovery that PGC1β and ERR were key downstream effectors of 

KSR1 in cancer 3. Further analysis revealed that PGC1β and ERR were overexpressed in cancer 

and required for cancer cell survival as shown in both cell line-based and tumor xenograft studies. 

These findings led us to hypothesize that novel vulnerabilities in cancer could be identified using 

an unbiased genetic depletion screen.  

RNA interference (RNAi) screens can be performed using multiple techniques. The two 

most common techniques involve using either a pooled gene depletion method or an arrayed 

single gene depletion method (Fig. 3.1). In pooled approaches, an entire library of shRNA 

(RNAi) or sgRNA (CRISPR-based screens) is added to a single dish of cells. This method is 

typically performed for longer periods of time, which allows a few cells with the desired 

phenotype to outgrow other cells and become overrepresented at the end of the study. Cells can  
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Fig. 3.1: RNAi-mediated screening overview. High-throughput screening can be completed by 

applying siRNA, shRNA, or CRISPR-Cas9 to alter gene expression or genetically manipulate cells 

in either an arrayed or pooled approach.  
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then be examined for the presence of shRNA barcodes or genetic mutations through sequencing 

to determine the genetic alteration that induced the phenotype of interest or is overrepresented in 

a population. Recently, several groups have utilized the pooled method to perform CRISPR-based 

screens seeking to identify mechanisms of drug resistance. In these instances, a pool of sgRNA 

targeting the entire genome are added to cells stably expressing Cas9 that are sensitive to a given 

therapy. Shortly after the addition of sgRNA, the drug of interest is added and clones that develop 

drug resistance to the therapy survive. These are then evaluated by sequencing to determine the 

genetic alterations that were responsible for the development of resistance.  In the arrayed, single 

well screen, siRNA or shRNA targeting a single gene is added to each well. The result of the 

individual gene depletion is then evaluated in each well typically using high content microscopy, 

cell viability, or other reporter assays such that each gene depletion examined in the screen yields 

a quantifiable effect. One vital aspect in arrayed screening is identifying the optimal readout. 

Assessing cell viability is cheap and informative; however, it is a crude approach and does not 

distinguish between numerous downstream effects of gene depletion. This approach was therefore 

not sensitive enough for this study since the goal was to identify genetic targets that are 

functionally similarly to KSR1 such that they are selectively required only in cancer cells. Other 

common readout assays evaluate the state or effect of individual gene depletions on a specific 

downstream target of interest. KSR1 promotes phosphorylation of ERK, therefore, evaluating the 

phosphorylation status of ERK with each gene depletion could have been applied as the screen 

readout. However, this approach suffers from a significant weakness in that it would fail to detect 

targets that acted either downstream or tangentially to ERK. Additionally, the activation of ERK 

has been well-studied and using phosphorylation of ERK would be likely to just reinforce the 

already identified interactions without revealing significant novel effectors in cancer. Recent 

studies have also demonstrated that it is likely KSR1 has functions that are independent of its 

effects on ERK, further necessitating the use of a different readout for this function-based screen.  

In 2004, Stegmaier et al. published a study describing the successful implementation of 
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gene expression-based high-throughput screening to identify chemical compounds that induce 

differentiation of acute myeloid leukemia cells. This method used a gene expression-based 

signature as a marker for the differentiation phenotype, which can be quantifiably compared 

between known differentiating agents and the tested compounds. In this implementation, they 

screened 1,739 compounds using RNA extraction, RT-PCR, then performing mass spectrometry 

to assess gene expression of five genes that demonstrated altered expression following cell 

differentiation. This screen ultimately identified eight compounds that induced the differentiation 

signature and demonstrated morphological and functional evidence of differentiation upon 

follow-up analysis 103. This study definitively demonstrated that a gene expression-based 

signature could be used as a proxy for a phenotype of interest such that one could effectively 

assess the functional effect of a chemical or genetic perturbation without having to examine or 

even knowing all the intermediate steps allowing for an unbiased, rapid identification of novel 

potential therapeutic targets in cancer.  

Therefore, a gene expression-based screening approach termed Functional Signature 

Ontology (FUSION) 3 was utilized to identify other genes that are functionally similar to KSR1, 

such that they are required for colon cancer survival, but not normal colonic epithelial cell 

survival. To do this, a gene signature representing the downstream effects of KSR1 depletion in 

HCT116 colon cancer cells was established. This was based on gene expression changes in 

HCT116 cells with and without KSR1 measured using a microarray. Based on this analysis, six 

reporter probes (BNIP3, NDRG1, ALDOC, LOXL2, ACSL5, BNIP3L), which decreased in 

expression following KSR1 depletion were chosen for the KSR1-depletion gene expression-based 

signature (Table 3.1). Since these six genes demonstrated consistent downregulation upon KSR1 

depletion, their expression was measured following individual gene depletions to identify genes 

that had a similar effect on their expression, and, theoretically, the same overall effect on cancer 

cells (Fig. 3.2). Two additional reporters, cyclophilin B (PPIB) and hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) that did not change with KSR1-depletion were included as  
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Gene Gene Details 

BNIP3 
BCL2/Adenovirus E1B 19 kDa Interacting Protein 3: Encodes a 

mitochondrial protein with a BH3 domain, pro-apoptotic 

NDRG1 

N-Myc Downstream Regulated 1: alpha/beta hydrolase 

superfamily, involved in stress response, hormone response, cell 

growth and differentiation 

ALDOC 
Aldolase C: Fructose-bisphosphate:Glycolytic enzyme that 

catalyzes F1,6BP and F1P  DHAP, G-3-P 

LOXL2 
Lysyl Oxidase-Like 2:Biogenesis of connective tissues, 

crosslinkage of collagen and elastin 

BNIP3L 
BCL2/Adenovirus E1B 19 kDa Interacting Protein 3-Like: 

Protein with a BH3 domain, binds Bcl-2, pro-apoptotic 

ACSL5 

Acyl-CoA Synthetase Long-Chain Family Member 5: Converts 

free fatty acids into fatty acyl-CoA esters  lipid biosynthesis 

and fatty acid degradation 

 

 

Table 3.1: Genes comprising the KSR1 depletion gene expression-based signature. 
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Fig. 3.2: Representative diagram of the FUSION analysis. 
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control reporters and were used to account for well-to-well cell number variation. This allowed 

for the relative change in gene expression to be evaluated without being confounded by cell 

proliferation or viability changes. In contrast to the study performed by Stegmaier et al. that 

measured gene expression using RT-PCR followed by mass spectrometry, the gene expression-

based signature was measured using the Affymetrix Quantigene 2.0 Multiplex assay. This 

allowed for a much easier evaluation of gene expression during high throughput screening as 

gene expression was easily quantified for each gene in the KSR1-depletion signature by 

measuring fluorescence. The identification of the KSR1-depletion gene expression signature 

(BNIP3, NDRG1, ALDOC, LOXL2, ACSL5, BNIP3L) and validation of the Affymetrix 

Quantigene 2.0 Multiplex assay laid the foundation for the preliminary kinome (791 kinases, 

phosphatases, and related genes) screen, which was robotically performed simultaneously in 

biologic triplicate on three 384-well plates. Each gene within the kinome portion of the siGenome 

library (Dharmacon) was individually knocked down using pooled siRNA sequences and gene 

expression of BNIP3, NDRG1, ACSL5, ALDOC, BNIP3L, PPIB, and HPRT were measured 

(Fig. 3.3). Data underwent quality control and data preprocessing (see Chapter 2: Materials and 

Methods), then was normalized based on the median gene expression for each of the six genes in 

the KSR1-depletion signature (Fig. 3.3). Positive control outliers (siKSR1 wells) were identified 

using Grubbs algorithm as described in Chapter 2: Materials and Methods. The positive control 

target was the average of all remaining siKSR1 wells. Euclidean Distance and Pearson 

Correlation similarity metrics were used to evaluate the effects on the gene expression-based 

signature following each individual gene depletion. Five (AMPKγ1, EPHB4, ERK5, DYRK1A, 

and LATS1) of the top ten hits from the kinome screen were biologically validated with three of 

these hits (AMPKγ1, EPHB4, DYRK1A) being examined extensively and two being the subject 

of published manuscripts from the Lewis lab 3,42 (Fig. 3.4).  

The current work expands upon this early success with FUSION and applies this analysis 

to the full genome-scale RNAi screen that interrogated 14,355 genes (siGenome library from  
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Fig. 3.3: FUSION relies on the identified KSR1 depletion gene expression-based signature to 

evaluate the functional similarity between KSR1 and other genes.  
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Fig. 3.4: Biologically validated hits from the preliminary kinome screen. (A) Scatter plot of the 

kinome screen results based on Euclidean distance and Pearson correlation. KSR1-depleted wells are 

shown in red and the remaining gene depletions from the kinome library are shown in black. (B) 

Expanded view of the Euclidean distance and Pearson correlation metrics for each gene depletion. KSR1-

depleted wells are shown in red, validated hits in blue, and the remaining gene depletions in black.  (C)  

Table of validated hits with Pearson correlation and Euclidean distance metrics.  
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Dharmacon) and was adapted to evaluate 1,200 natural product fractions in the K-RasG13D-driven 

human colorectal cancer cell line HCT116. However, the scale of the expanded experiment 

dramatically increased the experimental and computational complexity required to elucidate 

promising targets while limiting false positives. First, the size of the genome-scale screen forced 

it to be processed in batches. This caused a certain degree of unavoidable variability between 

individual runs that must be accounted for in order to preserve the unbiased nature of the screen. 

These batch-wise variances need to be identified and accounted for prior to analysis. This was 

completed through normalization of the data. Additionally, in any experiment with more than 

50,000 measurements there is bound to be a certain number of faulty wells that generate outliers 

in the data that should be excluded from analysis. Following the data preprocessing and 

normalization, the functional similarity between KSR1 and each gene screened was quantified in 

the same manner that was employed in the kinome screen using Euclidean distance and Pearson 

correlation similarity metrics. However, this led to the identification of nearly 800 potential target 

genes. To prioritize the identified hits, filters were applied to the 788 identified genes and 

bioinformatic analyses were performed to identify common pathways or related proteins that 

were identified in an attempt to limit false positives and prioritize the identified targets. 

Results 

FUSION Screen: Experimental Background 

Each 384-well plate consists of 24 vertical columns and 16 horizontal rows. On every 

plate, 10 control wells with non-targeting siRNA (siCont) and 10 wells containing siRNA 

targeting KSR1 (siKSR1) are split evenly between columns 3 and 22 along with other control 

gene depletions (PPIB and PLK1) in the same columns above and below the siCont and siKSR1 

wells as shown in the plate layout diagram (Fig. 3.5). The screen was performed in experimental 

batches because of the limitations in the size of the incubating shaker such that only eight plates 

could be processed at a time.  
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Fig. 3.5: FUSION screen 384-well plate layout. (A) Plate layout with control and KSR1-depleted wells 

in columns 3 and 22 shown in black and red, respectively. (B and C) Plate diagram heatmap with PPIB 

values from a representative individual plate (B) and average of all plates (C). 
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Quality Control: Probe Correlations 

Ideally, the probes included in the gene expression-based signature will move 

independently and will not co-vary. To evaluate the covariation of probes, a pairwise comparison 

between each of the probes was performed. BNIP3 and NDRG1 had a correlation value of 0.84, 

while the remaining pairwise comparisons demonstrated correlations less than 0.7 (Fig. 3.6).  

Quality Control: Experimental Consistency 

Experimental variability was examined and visualized using the raw HPRT and PPIB 

gene expression. Replicate and plate consistency were evaluated using PPIB expression (Fig. 

3.7). There was a high level of correlation between replicates (Fig. 3.7). Interestingly even though 

the same number of cells were plated in each experiment, there was significant variation between 

the PPIB ranges on different plates particularly between experimental batches (Fig. 3.7B). These 

differences were consistent between the three replicates (Fig. 3.7B). These effects are seen in the 

expression of all of the genes examined, but to differing degrees (Fig. 3.8). This could be due to 

different gene depletions being placed on each plate; however, this is highly unlikely as non-

targeting siRNA and lethal controls appear on every plate and a large number of unique gene 

depletions are found on each plate. Examining the raw PPIB gene expression relative to the well 

type clearly demonstrates the ranges for the PPIB values fluctuate between plates and batches 

(Fig. 3.9). Reassuringly, background control wells and lethal controls have minimum PPIB 

values, while the non-targeting siRNA negative controls consistently have some of the highest 

PPIB levels. The positive control, KSR1-depleted wells sit between these two groups and 

demonstrate intermediate PPIB values and are intermixed within the other screened gene 

depletions (Fig. 3.9).  Other possibilities that could explain the different PPIB ranges include the 

experimental cell growth being altered or probe signal intensity varying between plates or 

processing groups. Follow-up analysis demonstrated that the PPIB value was highly variable 

depending on the confluency or density of the cells on the stock plate prior to plating for the 

experiment. This suggests that the confluency of the cells was affecting whether the cells were in 
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Fig. 3.6: Pairwise evaluation of gene expression-based signature probes. Correlation between gene 

expression for the six genes within the KSR1-depletion reporter genes BNIP3L, NDRG1, ALDOC, 

LOXL2, BNIP3, and ACSL5. Correlation values are designated in the top/right half above the diagonal 

and plots comparing the values are shown one the bottom/left half below the diagonal. Dot colors within 

the correlation plots represent the experimental group or batch. 
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Fig. 3.7: Replicate and Plate Consistency. (A) Scatter plot and correlation between biological replicates. 

(B) Raw PPIB values for each replicate by plate. 
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Fig. 3.8: Probe consistency across plates. Boxplot of BNIP3L, NDRG1, ALDOC, LOXL2, 

BNIP3, ACSL5, HPRT, and PPIB expression represented by plate. (Continued on the following 

pages).  
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Fig. 3.8 Continued: Probe consistency across plates. 
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Fig. 3.8 Continued: Probe consistency across plates. 
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Fig. 3.9: Scatterplot of Raw PPIB values by well type. Average raw PPIB for the three 

biological replicates. Dot color represents the well type: BKGD control in yellow; Lethal control 

in orange; Negative control (non-targeting siRNA) in blue; positive control (KSR1-depleted) in 

pink; and siRNA library gene depletion in green.  

  



58 
 

 

a log growth phase or becoming senescent and highlights the importance of careful replication of 

all aspects of the experiment particularly when completing large-scale screens. Additionally, the 

reporters within the Quantigene system reported differently with different types of serum, which 

unfortunately was changed between groups of experimental plates.  

The potential effect of plate position (i.e. plate row and column) was evaluated. PPIB 

showed a slight trend for increased values on edge rows and HPRT demonstrated an offsetting 

slight decrease in these rows resulting in no differences being seen in gene expression for any of 

the genes within the KSR1-depleted signature panel after PPIB- and HPRT-based geomean 

normalization (Fig. 3.10). More dramatic effects were seen in gene expression based on column 

(Fig. 3.11). Columns 1 and 24 were excluded from this analysis because they only contained 

background controls (Fig. 3.5 and Chapter 2: Materials and Methods). Columns 3 and 22 have 

lower readings in PPIB, NDRG1, and ACSL5, as well as a substantially increased range of values 

for BNIP3 (Fig. 3.11). This can be attributed to the effect of non-random plating in these columns 

(Fig. 3.5) as these two columns contained five non-targeting negative control wells, five KSR1-

depleted wells, and six additional lethal controls.  

Quality Control: Outlier Detection 

Outliers were identified among the positive control (KSR1-depleted) wells and negative 

control (non-targeting siRNA-treated) wells (Fig. 3.12 and Fig. 3.13). Prior to algorithmic 

identification of outliers, visual examination of the PPIB expression in negative and positive 

control wells demonstrated a cluster with PPIB values less than 1000 on plates 20 and 21 (Fig. 

3.12). This led to further examination of these wells, which revealed that they were blank wells 

and not negative or positive control wells despite being labeled as such. These wells were 

therefore no longer included as positive and negative controls. Algorithmic identification of 

outliers was performed for each plate individually for the negative controls and across each 

experimental batch for the positive control, KSR1-depleted wells using a Grubbs algorithm   
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Fig. 3.10: Plate position effects evaluated by row. Boxplots of BNIP3L, NDRG1, ALDOC, 

LOXL2, BNIP3, ACSL5, HPRT, and PPIB expression represented by row.  
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Fig. 3.11: Plate position effects evaluated by column. Boxplots of BNIP3L, NDRG1, ALDOC, 

LOXL2, BNIP3, ACSL5, HPRT, and PPIB expression represented by column. 
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Fig. 3.12: Relationship between raw PPIB values of negative control (siControl) and positive 

control (siKSR1) wells by plate. Negative control wells are shown in black and positive control 

wells are shown in red. Circles designate outliers in plates 20 and 21 and a highly variable third 

biological replicate in plates 38, 43, and 44.   
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Fig. 3.13: Outliers identified in positive control wells using the Grubbs algorithm.  
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(described in Chapter 2: Materials and Methods). The Grubbs algorithm is based on minimizing 

the distance between samples, therefore, outliers were preferentially excluded if they had a higher 

Euclidean distance more so than a reduced level of correlation (Fig. 3.13).  

Seventy-five outliers in control wells that were transfected with non-targeting siRNA 

were identified out of a total 452 negative control wells. Fifteen outliers were identified from the 

average of the three biological replicates for the KSR1-depleted wells. Examining each biological 

replicate individually, 30, 25, and 31 outliers were identified for the first, second, and third 

biological replicate respectively. This is out of a total 456 KSR1-depleted wells on 46 plates, such 

that each plate averages less than one KSR1-depleted well outlier and represents a 7% or less 

outlier detection rate for these repeated wells.  

Outliers for each individual RNAi-mediated gene depletion were visualized based the 

standard deviation between the three biological replicates using a heatmap shown by plate 

position (Fig. 3.14). These were not immediately excluded from further analysis, but their 

presence identified the need for a filter based on consistency in results between the three 

biological replicates.  

FUSION Normalization 

The genome-scale screen represented a substantial increase in complexity over the 

original kinome-only screen, and the original method of normalization was not designed to handle 

this complex, variable data set. Therefore, over 100 algorithmic variations following the same 

general pattern of data validation and initial processing, normalization, outlier identification of 

non-targeting control and KSR1-depleted wells and removal, generation of the siKSR1 target, and 

similarity evaluation were evaluated. Several of these steps could be completed across all of the 

data, by experimental batch, or on a plate-by-plate basis, which contributed to the high number of 

algorithmic variations evaluated. 

Normalization methods typically include normalizing to the mean/median of all samples 

for a given probe based on the Z-score or variation of this method, normalizing to plate position,   
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  Fig. 3.14: Identification of outliers was performed by evaluating the standard deviation 

between the PPIB values on the three biological replicate plates. Plate layout heatmap 

representing the standard deviation for each knockdown between the three biological replicates. 

Green depicts a lower standard deviation and red depicts a larger standard deviation. (Continued 

on the next pages). 
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  Fig. 3.14 Continued: Identification of outliers was performed by evaluating the standard 

deviation between the PPIB values on the three biological replicate plates.  
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Fig. 3.14 Continued: Identification of outliers was performed by evaluating the standard 

deviation between the PPIB values on the three biological replicate plates.  
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or normalizing to positive or negative controls. Each of these methods has pros and cons and 

should be selected for utilization based on the specific biologic question being asked and the 

experimental design being employed. The methods of normalization that were examined included 

normalizing based on plate median values, by plate position, or to control wells all with log base 

2 transformation. Each of these methods were evaluated using the ranking of the previously 

validated kinome hits (accuracy), evaluating the effects of analyzing the kinome vs the entire 

genome-scale screen (scalability), and confirming the KSR1 depletion wells demonstrated high 

similarity based on Euclidean distance and Pearson correlation similarity measures (precision).  

FUSION Normalization: Reporter Median 

First, normalization to reporter median was evaluated (Fig. 3.15). This was the method 

originally used to analyze the pilot kinome screen data that successfully identified multiple genes 

that were biologically validated and shown to be selectively required for colon cancer cell 

survival. To assess the validity of the screen algorithms, three measures were used: accuracy, 

precision, and scalability, which are fully described in Chapter 2: Materials and Methods.  

Unfortunately, the previously validated hits dropped dramatically demonstrating a low accuracy 

(Fig. 3.15A). To measure precision, the ability for siKSR1 replicates to cluster was evaluated, 

which in this algorithm was satisfactory (Fig. 3.15B). Last, scalability was examined. In this case, 

the scalability is low because the analysis depends on all plates being on the same range and 

assumes the median on each plate is and should be the same (Fig. 3.15C). However, based on the 

experimental setup (non-random plate assignments based on the siGenome library), there is no 

expectation that all of the plates should be the same (i.e. the median on one plate could be the 

minimum or max for another). Based on the poor performance of this normalization method, 

additional methods were evaluated.  

FUSION Normalization: Plate Position 

Our collaborators initially chose to pursue normalization based on plate position based on  
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Fig. 3.15: Evaluation of median reporter normalization based on accuracy, precision, and 

scalability. (A) Table containing the Euclidean distance and Pearson correlation rank and values for three 

previously biologically validated hits: DYRK1A, PRKAG1 (AMPKγ1), and EPHB4. (B) Scatterplot of 

positive control (KSR1-depleted) wells shown in red and individual gene depletions from the siGenome 

library shown in black based on Euclidean distance and Pearson correlation similarity metrics. (C)  

Scatterplot and correlation of the Euclidean distance metrics for the kinome data after normalizing only 

the kinome or analyzing the entire genome.  
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the plate positional effects they were seeing particularly in regard to the column assignment. This 

was prior to the recognition that these effects could largely be attributed to the non-random 

plating (i.e. control wells being assigned to the same column on each plate) (Fig. 3.5). 

Unfortunately, this normalization method also demonstrated very low accuracy (Fig. 3.16A) and 

almost no precision (i.e. there was no correlation between the KSR1-depleted wells) (Fig. 3.16B), 

which was very concerning as the identification of hits is predicated upon their similarity to 

KSR1-depleted wells. If the repeated KSR1-depleted wells were not similar to each other, it 

would be very difficult, if not impossible, to identify additional genes that could be described as 

KSR1-like. In retrospect, the distribution of KSR1-depleted wells could have been predicted 

based on this normalization scheme in conjunction with the knowledge that the KSR1-depleted 

wells all reside in one column. Therefore, normalizing in any way based on column position, 

forces these wells to be evenly assigned across a normal distribution, which pushes them to have 

very little similarity with each other. This method does have nearly perfect scalability between 

the kinome- and genome-scale screens. This is expected as normalization based on plate position 

for each individual plate, is not affected or altered by the addition of more plates resulting in the 

outcomes from each plate being completely independent from the other plates analyzed resulting 

in perfect scalability (Fig. 3.16C).  

FUSION Normalization: Normalize to Controls  

Finally, the method of normalizing to control wells was evaluated (Fig. 3.17). This 

method intuitively makes sense in the context of the biological experiments because it is 

consistent with how the reporters were initially chosen (represents a difference between an 

siControl well and siKSR1 or other individual gene knockdown), it takes into account 

experimental differences (plate to plate or group to group), and it does not require any 

assumptions be made about randomness of plating. Normalization based on the median of the 

negative control (non-targeting siRNA) wells for each individual plate demonstrated high 

accuracy, precision, and scalability (Fig. 3.17). Therefore, it was selected for future analysis. 
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Fig. 3.16: Evaluation of plate position normalization based on accuracy, precision, and scalability. 

(A) Table containing the Euclidean distance and Pearson correlation rank and values for three previously 

biologically validated hits: DYRK1A, PRKAG1 (AMPKγ1), and EPHB4. (B) Scatterplot of positive 

control (KSR1-depleted) wells shown in red and individual gene depletions from the siGenome library 

shown in black based on Euclidean distance and Pearson correlation similarity metrics. (C)  Scatterplot 

and correlation of the Euclidean distance metrics for the kinome data after normalizing only the kinome 

or analyzing the entire genome.  
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Fig. 3.17: Evaluation of negative control normalization based on accuracy, precision, and 

scalability. (A) Table containing the Euclidean distance and Pearson correlation rank and values for 

three previously biologically validated hits: DYRK1A, PRKAG1 (AMPKγ1), and EPHB4. (B) 

Scatterplot of positive control (KSR1-depleted) wells shown in red and individual gene depletions from 

the siGenome library shown in black based on Euclidean distance and Pearson correlation similarity 

metrics. (C) Scatterplot and correlation of the Euclidean distance metrics for the kinome data after 

normalizing only the kinome or analyzing the entire genome.  
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FUSION Output 

The positive control target was established by averaging the positive control (KSR1-

depleted) wells after the exclusion of outliers. Based on this target, the FUSION analysis provides 

a ranked list of genes based on two similarity metrics, Euclidean Distance (ED) and Pearson 

Correlation (PC). Empirically, other targets with both a high correlation and a low distance were 

the most likely to validate. Therefore, linear regression analysis was used to establish a cutoff (PC 

> 0.25 X ED + 0.5) for KSR1 similarity based on the ED and PC values of KSR1- positive 

controls (Fig. 3.18A). Using this linear regression cutoff, 788 hits were identified from the 

genome-scale screen (Fig. 3.18B). Unfortunately, this is too many for follow-up biological 

validation (Table 3.2). One approach that could have been employed would have been to 

complete a follow-up screen comparing viability changes in HCEC and HCT116 cells with 

genetic knockdown using individual oligos. This would have limited off-target effects because 

the effect could be confirmed for multiple siRNAs as well as evaluating the selective toxicity to 

cancer as compared to normal cells. This approach, while commonly practiced and effective, is 

also very expensive and likely would still yield numerous promising targets. Instead, further 

bioinformatic analysis was applied to limit the hits.  

Bioinformatic Analysis 

In this screen, eliminating false positives was prioritized over reducing false negatives 

leading to a high degree of specificity, but lower sensitivity. Stringent criteria were established in 

an attempt to reduce wasted time and resources following up on false positives. To do this, the 

following factors were used as limiting criteria: viability (hits remaining = 662), precision (189), 

seed sequence off-target potential (157), and target expression level in HCT116 cells (81) and 

colon adenocarcinoma samples within The Cancer Genome Atlas (40) (Fig. 3.19). This was 

paired with gene set enrichment analysis (GSEA), Database for Annotation, Visualization, and 

Integrated Discovery (DAVID)-based KEGG pathway and GO term association, and Cytoscape 

pathway analysis. 
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Fig. 3.18: FUSION identified 788 targets. (A) Scatterplot of positive control (KSR1-depleted) wells 

shown in red and individual gene depletions from the siGenome library shown in black based on 

Euclidean distance and Pearson correlation similarity metrics. The linear regression-based cutoff to 

specify hits based on Euclidean distance and Pearson correlation metrics is shown as a line in blue.  (B) 

Flow chart of the FUSION screen that identified 788 targets. 
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NCOR2 UBASH3B NPEPL1 NPL ABTB2 KIAA0100 FPR1 APOL6 
PPT1 DACH2 TEN1-CDK3 MYCBPAP CHRNA5 ZCCHC9 ADRA1D TXK 

TACR3 CHCHD2 RAB21 HSPA9 NAP1L1 PTPN4 TCHH CLPB 
RGS19 ADIPOR1 CPB2 IFFO1 ZC3H14 CISH ATP2A3 SPNS1 
STK32A PIP4K2C NIM1K HIAN2 GLIPR1L1 LPAR3 ABHD1 PODXL 
SEMA7A S100B SFSWAP CADM3 RNASEH2C HCRT TH TMPRSS13 
RGS12 CDH1 DEDD TRO ACAD11 PTCD2 DNAJC5 ST5 

GPRC5B PIGL GIPC1 DLX3 PIK3CG PLA2G12B TMEM204 OR2B2 
WDR5B LPAR4 PPP1R16B MRPL38 CSRNP2 THAP2 MRGPRX3 GLIPR1 

TAS2R13 BAZ2B JAM3 HSPH1 RGS4 ZBTB37 ATP5G2 HLA-DMA 
LDOC1L SRCT1 AKAP6 MYH9 ETV6 NFYA CCDC136 PRODH 
PAIP2 VN1R2 FYCO1 ADGRL3 NEK3 LDHC PRR5L IRX1 

FAM172A C15orf48 DYM FLJ13105 PPP4R1L AHNAK OR51B4 KIN 
LGALS2 RBM5 LPO PI4K2A FOSL2 NOS3 OR10H2 SELE 
OR1E2 EVA1A C19orf44 RGS2 ACSS3 CHIA FGFBP2 P2RY8 

LINC01547 NUDT4 ADGRE5 NSUN7 FOS KRT84 FIBP SH3D21 
AADAC PDCD2L EPHB4 ADORA2B TKTL2 RNASE7 MMAA TMEM126A 
PTGFR VWA7 C4orf17 RNF128 HTR5A TATDN1 CELSR2 AMELX 
ACADM ADGRL1 NKTR HNF1A ZBTB45 SIPA1 OR2C1 NPY5R 

ZNF385D TCFL5 ACKR4 APOC1 LPAR5 RHOH AFTPH VN1R1 
TXNDC2 DLX6 NTNG2 RIOK3 MYH14 FGF9 EN2 NPIPA1 
ZNF566 CNTNAP4 OR51E2 LRIG2 EFCAB1 SIGLEC11 ADO SOD2 
TAAR9 OR52A1 LPAR1 CCDC183 DMWD AKIRIN2 BDKRB1 HK1 

GPR183 PINK1 FKSG17 CCDC142 RHOXF2 ACYP2 PAX1 MARVELD1 
FAR1 ZRANB3 OR1J2 DCAKD RAB34 FAM136A HOXC11 ANG 
TNS1 GPR143 ATG12 MAS1L OR2T1 ZNF394 ATP8B4 FRY 

CARS2 LRRC27 EIF4EBP2 ADRA2B OR3A2 ZNF541 MAGI1 MMP19 
PTGER1 VIP RHBDD1 SH3GL2 NPY2R ZMYND8 TIMELESS FAM167B 
ADGRG1 MAF1 RIN1 IP6K1 NPVF HSP90AA1 SYP PLXNC1 

PSG7 IL22RA1 JRKL TCF19 OR7A17 FAM207A TMEM156 APOPT1 
ECE2 SDPR ACTR10 MUC2 PCNA NR3C1 CXCL8 KLF16 

OPRM1 SEPP1 AARS LRRC19 NEK6 SDCBP COG8 CARD11 
ZGPAT SYT15 TAAR1 3-Sep DHRS9 GABBR2 CLPTM1L RPE65 
MC1R CERS1 VPS25 H3F3B ZNF702P RBM48 GPR162 CYSLTR2 
TTTY5 NUDT16L1 SLC35G5 GNB1 OTX1 LGR5 MSMO1 KDM2B 
CRIP1 RGP1 C14orf151 DDB2 ZMYND15 TAS2R4 UGT1A3 ESYT3 

HTATIP2 OR2H1 NUBPL GPR75 CDC42BPB CLEC11A FRMPD3 SEPT1 
ENDOU C12orf49 ARHGAP10 MEX3B OR5V1 OR3A1 ARHGAP11A HAS2 
CSF3R ASCL1 NRP1 DDX47 PDE1C NEURL1 YIPF4 GABARAP 

OR51E1 PRKAG1 BAALC ALDH18A1 TCF7L2 APLNR HBZ GADD45B 
TPM2 PTPRT FYTTD1 NFIC SLC7A6 GZMA HNRNPD TXNDC15 

DUSP2 CYORF15B HOXD1 PRDM13 RHOBTB1 MAP4K4 ETV4 PCDHB12 
MAPK10 DYRK1A APLF PRSS27 BAD OXTR ALLC ABLIM3 
OR5P3 CRY1 GRWD1 TOMM40L PPP1R14D FARP1 RHNO1 FUBP3 
OR2W1 MFSD7 CXorf36 ELAVL3 SLC25A2 ARFGAP2 KIAA1024 GLI1 
PCDH17 TMEM222 TAAR8 SOCS1 CRHR1 DMXL1 SCO2 CKS1B 
MC2R FRS3 ZNF28 OR2A4 BACH1 DGAT1 RASL11B RSPH6A 

CDKN1A TTLL2 PKN3 CIRBP PARM1 MTCH1 TAAR2 ADRA1B 
CDH19 VCAM1 ITIH5 MND1 ZNF557 SYTL1 RFK C3orf20 
TRPM7 MTNR1A CXCL13 MAP2K7 SPIC TAS2R14 ZSWIM5 DRD4 

 

Table 3.2: List of 788 hits from FUSION. 
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OR13A1 PSENEN TCERG1 NPPB TBRG1 ITGA10 GATAD2B CPSF7 
ERLIN1 SPATC1L BATF RAB27B TFB2M TBX22 GTF2I ABCC4 
TBX2 HN1L GRM2 PCOLCE TUSC3 FGFBP1 RPRM PRLHR 
TPK1 SPINK7 GUCA2B ZNF559 NLRP12 GPR1 CELF1 HORMAD1 

ZNF528 HIST1H2AC FGFR1 MMEL1 PEBP1 ANGPTL6 CTC1 SVEP1 
NONO DNAJC9 LGALS13 VIPR1 ARF6 ANKRD20A1 ADGRE1 EZR 
LATS1 PIK3C2G ABCG4 FAM126A IL1B ALKBH5 SND1-IT1 SLC35E2 
PLCB4 PDZD7 GRK1 PCDHA3 SNED1 ZNF484 SNTA1 CD3E 
NPTX2 FAM167A-AS1 PTP4A1 C7orf50 FSCB C9orf78 SCD5 AMD1 
NME3 RAB33B GPR61 VBP1 CPT1B KLHL22 GPR101 TM2D1 

ADCYAP1R1 HPCAL1 PRH2 ABCG8 ADGRF3 SRY TESK2 TAZ 
DLX2 SNX2 C10orf76 POF1B CDR2L PTDSS2 FLJ10246 MEST 

STXBP3 NMBR PRSS1 ADRM1 SYCP1 FOXC2 ITFG3 KIRREL2 
FOXP3 ARMC2 IGSF9 TMEM43 PTH1R PROZ CLMP PNKP 

FAAP100 MVK PROP1 LGALS3BP SLC22A16 LY6G5C STAG3L4 CNFN 
DLX1 LHCGR HIST1H4I RNF208 OR8B8 VGLL4 MS4A2 FGF13 

FOXD1 HPR PARD6G MAPK8IP2 ASB13 CDKN1B BTRC EFNA2 
SSBP1 TAS2R46 TAX1BP1 TMEM25 TNNC2 UBA5 GMPPA WDR78 
MON1A IMMP2L KRTAP9-3 CDKN3 MUS81 LRRTM4 SORT1 GTF2A1L 
CFAP69 OXER1 BMP4 IGFBP5 KRCC1 ZDHHC8 ACTRT3 USP48 

FER RASGRF2 KLF13 PSG9 ECHDC3 KLK10 NFATC3 TNIP1 
CMSS1 HOOK3 CHD6 ULK4 TSPYL5 SRSF4 FNDC1 NPFFR2 

SLITRK2 RGS5 ZNF382 GSK3A LRRC8D MORN1 SLC10A7 TMEM185A 
RALB BMP2 TEAD3 CHKA ARL3 LRRC37A2 PUM1 SPIRE2 

METTL25 PIK3CG DDA1 DDHD1 TAS2R16 HSPA1B PAPD5 IFNG 
PRKY SHC1 ZNF397 PI4KA ITPKB C1orf115 LTBP2 CYP2A13 

GARNL3 MAGT1 FLJ12595 CHRM1 TAS2R39 TEC PKD2 PTGDR 
ADIPOQ RAP1A ADGRA2 HSPB8 GRK7 GPR17 SPINK1 LUM 

MT4 LY6K SPATA16 TGM2 PDE4B GCGR FCAMR CCNL1 
B3GNT9 TNNI2 AATK DRP2 WDR24 PHC2 HNF1B GABRG1 

HFE FSCN2 QDPR GNAZ TEKT2 GPR6 EMC6 TBCK 
MAPK7 TSEN2 TRAF7 GNG11 PRICKLE3 CHST15 VRK1 FZD1 
BCO2 RGS9 S1PR5 RGS1 TSN PAQR8 MDS1 IRX3 

GNRH1 FAM155B HKDC1 EIF4G2 ARPP19 RPP30 DEFB4A CDH5 
MATK ZNF395 NODAL HSH2D LRRC61 CD40 KCNIP3 ADORA3 

SPIRE1 MRI1 RASD1 ZFYVE21 CCR4 FRMD8 ZNF124 GFI1B 
ZNF84 RFXANK CDK20 PECR FAM184A C10orf2 MFSD5 FLJ14054 
OR3A3 PIK3R1 L3MBTL3 HAND1 GPR82 GP2 MEFV PSD2 
KLHL1 RHOBTB2 ZXDC MPV17L2 ACSF2 SPARC FAM134B  
NUDT2 TBL1XR1 SSTR4 SCTR FAM167A RPL7A POLR3GL  
TRABD NR1D1 CDC2L2 QRICH2 EGR4 SPATA9 LPAR2  
OR6A2 ENTPD7 GFM2 IL17RB PTPRJ STRN GABPA  

CHCHD5 BBC3 ADORA3 NEK4 ADGRB2 KISS1R MICA  
IQCG FZD10 ARSJ PAX5 ROM1 AMIGO1 MACC1  
XCL2 TAAR6 GPR160 MYH11 DRC7 PCDHB10 MMRN2  
GARS PLEKHA1 ZNF182 UQCR10 CXCL3 NR4A2 IL27RA  
SCN9A AMMECR1L NTSR1 LY6H ZBTB22 SLC46A2 MINA  
GNG3 MRGPRX4 PKN1 MTERF2 POLE NPHS1 TNFSF15  
DRD1 FAM118B CSTF3 C11orf63 PPP1R14C BMX INPP5E  

GPR55 P2RY14 TMEM11 GNAI3 LAT1-3TM PQLC1 RAC1  
 

Table 3.2 Continued: List of 788 hits from FUSION. 
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Fig. 3.19: Flow chart of prioritizing targets using bioinformatic filters 

that limited the FUSION-identified 788 to 40 hits.  
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 This approach was based on the idea that the FUSION analysis suggests these genes relate, so 

gene set enrichment analysis or the evaluation of pathways and functionally related genes that are 

enriched at the top of the results allows us to focus on the most promising hits. 

Bioinformatic Analysis: Filtering the Results 

The viability filter cutoff was a PPIB decrease of greater than 20% in the average of the 

replicates. This reduced the number of hits approximately 15% or from 788 to 662. Based on the 

earlier identification that in a few cases significant variability occurred between the three 

biological replicates within the screen (Fig. 3.14), precision, or consistency of results was added 

as a metric to filter out potentially false positive results. The criteria used that the maximum 

difference between the three biological replicates of an identified hit must be less than 0.6 for 

Euclidean distance and 0.2 for Pearson correlation to be considered further. This reduced the 

number of hits dramatically from 662 to 189.  

The results were then evaluated for the presence of enrichment of certain seed sequences 

within the siRNAs targeting the top results from the screen (Fig. 3.20). This was completed using 

two independent algorithms: Common seed analysis (CSA)104 and Genome-wide enrichment of 

seed sequences (GESS)105. Criteria were imposed such that results that were identified using 

either method as potentially being hits due to seed sequence effects were excluded. This reduced 

the number of hits from 189 to 157.  

Finally, the expression of the identified hits was evaluated in HCT116 cells based on 

microarray analysis and in colon tumors based on TCGA. To pass the microarray expression 

filter, the gene had to be designated as being “Present”. The TCGA-based filter required that 

genes had greater than 150 RSEM expression. These cutoffs reduced the number of hits to 83 and 

then to 40, respectively (Table 3.2).  

Bioinformatic Analysis: Gene Set Enrichment Analysis (GSEA) 

The Gene Set Enrichment Analysis (GSEA)106-108, maintained by the Broad Institute of  
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Fig. 3.20: Seed sequence off-target effect diagram. 
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Symbol Gene Name 

PPT1 palmitoyl-protein thioesterase 1 [HGNC:9325] 

ECE2 endothelin converting enzyme 2 [HGNC:13275] 

CRIP1 cysteine-rich protein 1 (intestinal) [HGNC:2360] 

TPM2 tropomyosin 2 (beta) [HGNC:12011] 

CHCHD2 coiled-coil-helix-coiled-coil-helix domain containing 2 [HGNC:21645] 

TCFL5 transcription factor-like 5 (basic helix-loop-helix) [HGNC:11646] 

DEDD death effector domain containing [HGNC:2755] 

EPHB4 EPH receptor B4 [HGNC:3395] 

ACTR10 actin-related protein 10 homolog (S. cerevisiae) [HGNC:17372] 

AARS alanyl-tRNA synthetase [HGNC:20] 

GRWD1 glutamate-rich WD repeat containing 1 [HGNC:21270] 

HSPH1 heat shock 105kDa/110kDa protein 1 [HGNC:16969] 

TCF19 transcription factor 19 [HGNC:11629] 

GNB1 guanine nucleotide binding protein (G protein), beta polypeptide 1 [HGNC:4396] 

CIRBP cold inducible RNA binding protein [HGNC:1982] 

MAP2K7 mitogen-activated protein kinase kinase 7 [HGNC:6847] 

NEK3 NIMA-related kinase 3 [HGNC:7746] 

KIAA0100 KIAA0100 [HGNC:28960] 

SDCBP syndecan binding protein (syntenin) [HGNC:10662] 

MAP4K4 mitogen-activated protein kinase kinase kinase kinase 4 [HGNC:6866] 

ATP5G2 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) [HGNC:842] 

TIMELESS timeless circadian clock [HGNC:11813] 

PODXL podocalyxin-like [HGNC:9171] 

NONO non-POU domain containing, octamer-binding [HGNC:7871] 

GARS glycyl-tRNA synthetase [HGNC:4162] 

ZNF395 zinc finger protein 395 [HGNC:18737] 

TAX1BP1 Tax1 (human T-cell leukemia virus type I) binding protein 1 [HGNC:11575] 

ZNF397 zinc finger protein 397 [HGNC:18818] 

ADGRA2 adhesion G protein-coupled receptor A2 [HGNC:17849] 

TRAF7 TNF receptor-associated factor 7, E3 ubiquitin protein ligase [HGNC:20456] 

GPR160 G protein-coupled receptor 160 [HGNC:23693] 

LGALS3BP lectin, galactoside-binding, soluble, 3 binding protein [HGNC:6564] 

HSPB8 heat shock 22kDa protein 8 [HGNC:30171] 

HSH2D hematopoietic SH2 domain containing [HGNC:24920] 

ASB13 ankyrin repeat and SOCS box containing 13 [HGNC:19765] 

PQLC1 PQ loop repeat containing 1 [HGNC:26188] 

GMPPA GDP-mannose pyrophosphorylase A [HGNC:22923] 

LTBP2 latent transforming growth factor beta binding protein 2 [HGNC:6715] 

MMRN2 multimerin 2 [HGNC:19888] 

TAZ tafazzin [HGNC:11577] 

 

 

Table 3.3: List of 40 FUSION-identified hits after bioinformatic filtering. 
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MIT and Harvard, is a tool developed to look for the presence of the selective enrichment of 

genes at the top of a result set compared to the rest of the data based on the annotated gene sets in 

the Molecular Signatures Database (MSigDB) 106,108. This analysis demonstrates if any of the 

known gene sets have more members ranking higher than they would if their members were 

distributed randomly throughout the results, and if any sets are likely to represent a common 

pathway or function that is required for survival in HCT116 cells. Even though GSEA is limited 

by the gene sets that are already known, it still has the potential to identify known gene sets that 

have a previously unrecognized role in Ras-driven, KSR1-dependent tumorigenesis.  

A ranked list of genes based on the Pearson correlation similarity metric was used as the 

input and compared against the Hallmark Gene Sets and identified multiple gene sets whose 

members were enriched in the top results with a nominal p-value less than 5% and a false 

discovery rate of less than 25%. Enriched Hallmark gene sets included KRAS_Signaling_Up,  

PI3K_AKT_MTOR_Signaling, UV_Response_UP, P53_Pathway, Hypoxia, 

IL2_Stat5_Signaling, IL6_JAK_STAT3_Signaling, Interfereon_Gamma_Response, 

Inflammatory Response, TNFA_Signaling_Via_NFKB, and Adipogenesis (Fig. 3.21).  

Bioinformatic Analysis: Database for Annotation, Visualization, and Integrated Discovery 

(DAVID) 

Instead of analyzing a ranked list of genes from the FUSION analysis for enrichment of 

gene sets within the top results, DAVID analysis provides gene annotation and assignment to 

functional groups or pathway mapping for a list of hits. Therefore, the 788 hits identified from 

FUSION analysis were supplied to DAVID for GO term annotation (biological processes and 

molecular function) and KEGG pathway mapping. Of the 788 hits that were supplied for DAVID 

analysis using Entrez IDs, 779 were identified and included in the results. The missing IDs were 

83459 (DKFZP761H1710/NM_031297), 79765 (HIAN2/NM_024711), 84234 

(DKFZP547F072/NM_032274), 55104 (FLJ10246/NM_018038), 80068  

(FLJ13105/XM_376325), 57413 (AD026/NM_020683), 985 (CDC2L2/NM_024011), and 
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Fig. 3.21: Gene Set Enrichment Analysis (GSEA) Hallmark Gene Sets positively associated with 

hits from FUSION. 



82 
 

 

84800 (C14orf151/NM_032714). KEGG pathway mapping identified neuroactive ligand-receptor 

interaction, calcium signaling pathway, taste transduction, chemokine signaling pathway, 

leukocyte transendothelial migration, inositol phosphate metabolism, colorectal cancer, and 

melanoma terms were identified with a p-value of less than 0.1. Identified GO terms for 

molecular function included G-Protein coupled receptor activity, transmembrane receptor 

activity, signal transducer activity, receptor activity, peptide receptor activity, G-protein coupled, 

peptide receptor activity, neuropeptide receptor activity, neuropeptide binding, and kinase activity 

with a Bonferroni corrected p-value of less than 0.01 and FDR < 5%. Identified GO terms for 

biological processes included G-protein coupled receptor protein signaling pathway, cell surface 

receptor linked signal transduction, signal transduction, regulation of cellular process, regulation 

of biological process, biological regulation, second-messenger-mediated signaling, cyclic-

nucleotide-mediated signaling, intracellular signaling cascade, regulation of cyclic nucleotide 

metabolic process, G-protein signaling, coupled to cyclic nucleotide second messenger, 

regulation of nucleotide metabolic process, regulation of nucleotide biosynthetic process, 

regulation of cyclic nucleotide biosynthetic process, MAPKKK cascade, regulation of catalytic 

activity, regulation of cAMP metabolic process with a Bonferroni corrected p-value of less than 

0.01 and FDR <5%. The presence of a large number of GO terms surrounding GPCR signaling, 

signal transduction, kinase activity, and MAPKKK cascade were reassuring; however, the list of 

KEGG pathways and GO terms that were found to be associated with the FUSION hits were 

difficult to interpret and did not reveal new information as was anticipated. Therefore, additional 

methods including graphical representations of the associated cellular functions were employed.  

Bioinformatic Analysis: Cytoscape App Reactome and Reactome Pathway Browser 

In collaboration with Dr. Nicholas Woods, evaluation using hits that had a PC greater 

than 0.7 and an ED less than 1 (197 targets queried, 47 returned) using the Reactome Cytoscape 

App 109,110 demonstrated pathway enrichment of GPCR ligand binding (CX3CR1, ADCYAP1R1, 

LPAR4, CXCL13, TAS2R4, P2RY14, TAS2R13, HTR5A, MTNR1A, MC1R, ADORA2B, 
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GNRH1), neuroactive ligand-receptor interaction (ADCYAP1R1, LPAR4, TAAR8, P2RY14, 

HTR5A, MTNR1A, MC1R, ADORA2B), Rap1 signaling (RAP1A, YWHAZ, SIPA1), 

Calcineurin-regulated NFAT-dependent transcription in lymphocytes (EGR4, NFATC3, FOS, 

RNF128), Heterotrimeric G-protein signaling pathway Giα and Gsα mediated pathway (RGS19, 

GNG3, RAP1A, HTR5A, MTNR1A, ADORA2B), Neurotrophic factor-mediated Trk receptor 

signaling (TGS19, RAP1A, FRS3, GIPC1), PDGFRβ signaling pathway (RAP1A, FOS, 

YWHAZ, MAPK10, SIPA1), and Circadian Rhythm pathway (TIMELESS, NR1D1, CRY1) with 

an FDR < 1% (Fig. 3.22). One of our previously validated hits, AMPKγ1 was integrated in this 

figure clustering with the circadian rhythm pathway, which led us to investigate these three 

targets further. Only one of the three circadian rhythm pathway genes, TIMELESS, also passed 

all of the bioinformatic filters making it a prioritized hit for further evaluation. 

Conclusions 

Using a gene expression-based signature as a proxy or readout for our phenotype of 

interest (effect of KSR1 depletion in cancer cells), Functional Signature Ontology (FUSION) was 

applied to a genome-scale genetic depletion screen to identify genes that are selectively required 

in colon cancer cells, but dispensable in normal cells. Hits that were biologically shown to be 

preferentially required in colon cancer cells represent cancer-specific vulnerabilities that can 

often be tied back to driving oncogenic signaling, reinforcing the idea that oncogenes corrupt or 

hijack certain cellular pathways or functions to promote tumorigenesis. This, however, can leave 

the cells susceptible or vulnerable to targeted therapies that disrupt the required downstream 

effectors.  

The scale of this screen dramatically increased the complexity for computational analysis 

as compared to the preliminary kinome screen. The sheer size of the data being analyzed made it 

difficult to perform initial quality control checks on the data as issues were not readily apparent 

until R scripts were written to aid in data visualization. Additionally, experimental limitations 
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Fig. 3.22: Pathway enrichment analysis performed using the Reactome Cytoscape App. 

Functionally related genes are grouped by color.  
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forced the screen to be performed in batches further compounding the biological variability 

between plates. The batched processing also created a lapse in time between when the initial and 

last plates were processed. Unfortunately, only rudimentary quality control checks were evaluated 

as each plate was completed, such that additional issues were painstakingly identified and 

corrected after all of the data was generated and was being compiled.  

Another confounding issue that arose was the lack of random plating both due to control 

wells being plated in the same two columns on each plate as well as the functionally grouped 

library being assayed in the groups assigned by the manufacturer. This eliminated the possibility 

of normalizing the results based on plate position or median probe value as either technique 

would experience confounding due to the non-random plating.  

After these issues were identified, they were addressed using multiple computational 

approaches. R scripts were generated to take the raw reads that were manually validated, 

complete the geomean normalization, and integrate the data for further analysis. Negative and 

missing values were set to the plate minimums for each probe. Outliers were identified and 

excluded in an attempt to eliminate variability in the positive and negative controls due to faulty 

wells. Numerous methods of normalization were considered and evaluated with a normalization 

method based on the negative control wells (treated with non-targeting siRNA) outperforming the 

other methods based on accuracy, precision, and the potential for scalability. In retrospect, it is 

logical that this method would be preferable when the experimental conditions are considered. It 

is vital that experimental conditions be considered when performing the quality control evaluation 

and computational processing of biologic experimental data. A robust understanding of how the 

screen was performed prior to computational processing could have reduced the amount of time 

required and limited wasted efforts to computationally process the screen data. For this to occur, 

strong collaborations must be formed between the individuals performing the biologic assay and 

the individuals performing the computational analysis such that both of these groups can work 

closely together to ensure the experiments are performed in a robust manner that will allow for 
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direct computational-mediated assessment after completion. This requires both biologists and 

computer or data scientists to learn about the other field at least to an extent such that they can 

effectively communicate.  

Several modifications or additions could be employed to improve upon the current 

computational analysis of FUSION. Further evaluation of the six genes within the KSR1-depleted 

gene signature to delineate those that preferentially identified hits that were biologically validated 

could lead to a refinement of the KSR1-depletion signature gene set. This could then lead to 

dropping one or more probes from the signature or weighting the probes to give more 

discriminatory power to certain probes. Since the dynamic ranges of the probes varied, the genes 

within the gene expression signature were inherently given different levels of impact on the 

similarity metrics used to identify other KSR1-like genes. This effect is much more pronounced 

on Euclidean distance, but is seen to a lesser extent on the Pearson correlation similarity metric.  

A FUSION screen was also performed on a library of microRNA, natural products, and 

commercially available drugs. The results from the microRNA screen were computationally and 

biologically validated by our collaborators in Dr. Michael White’s lab at UT Southwestern 101. 

Genetic targets and natural product compounds identified at multiple time points during the 

computational analysis of FUSION are the subject of the subsequent chapters contained herein. 

These include TIMELESS (Chapter 4), a circadian gene that was identified in the 40 hits listed in 

Table 3.3, WDR5B/WDR5 (Chapter 5), a highly ranking gene within the 788 initially identified 

hits listed in Table 3.2, and AMPKγ1/5-OH-S 1 (Chapter 6), a genetic target initially identified in 

the preliminary kinome screen depicted in Fig. 3.4 and a compound that inhibits AMPK that was 

identified in the natural product screen. Preliminary biological validation data is also provided for 

ECE2 (Table 3.3), HAS2, DYRK1A, and BMP4 (Table 3.2) in Appendix A.  

Out of the prioritized 40 hits (Table 3.3), other targets that are of particular interest 

include MAP2K7 and MAP4K4, two highly druggable kinases that share JNK as a direct 

downstream target, and two heat shock proteins, HSPH1 and HSPB8.  
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Chapter 4: TIMELESS promotes colon cancer cell 

proliferation by limiting the accumulation of DNA damage  

 

 

 

 

 

 

 

 

 

Portions of the material covered in this chapter are the subject of a manuscript  

submitted for publication by Neilsen BK et al. 
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Introduction 

Data indicate that the FUSION screen provides a platform for identifying novel 

therapeutic targets and demonstrates the potential to identify oncogene-specific vulnerabilities in 

an unbiased manner. Based on the similarity between gene expression signatures, Timeless 

Circadian Clock (TIMELESS) was identified as being KSR1-like and a potential therapeutic 

target in cancer (Fig. 4.1).  

TIMELESS Protein Structure 

Mammalian TIMELESS is a protein that was named for its similarity to the TIMELESS 

protein in Drosophila with which it shares four homologous regions, nuclear localization signals 

(NLS), short stretches of glutamate-rich regions, and a conserved DEDD sequence on the C-

terminus 111,112 (Fig. 4.2). However, later studies revealed that a different gene in Drosophila, 

TIMEOUT, shares greater sequence similarity to mammalian TIMELESS 113. TIMELESS is also 

a member of an evolutionarily conserved family of orthologs that are conserved all the way back 

to yeast and are implicated in DNA synthesis, S-phase dependent checkpoint activation, and 

chromosome cohesion 114,115. Mammalian TIMELESS is highly conserved, as mouse and human 

TIMELESS share greater than 80% identity in both the nucleotide and amino acid sequences 

111,116. The human form of TIMELESS contains a TIMELESS domain on the N-terminus, which 

is required for homodimerization and interactions with TIPIN, CHK1, and CRY1 proteins 

111,112,116,117. On the C-terminus, TIMELESS has the TIMELESS C-terminal domain that is 

predicted to be required for nuclear localization. Between these two regions, is the glutamic acid-

rich region and a region predicted to contribute to DNA binding (Fig. 4.2).  

Circadian Rhythm 

TIMELESS was initially identified in Drosophila where TIMELESS is a circadian gene 

that serves as a negative circadian regulator. Initial studies of TIMELESS function in mice, failed 

to demonstrate circadian expression or function 118; however, several mouse strains have been  
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  Fig. 4.1: FUSION identified TIMELESS as a functional analogue of KSR1 based on 

Pearson correlation and Euclidean distance similarity metrics.  
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Fig. 4.2: TIMELESS protein structure diagram. 
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shown to have abnormal circadian rhythms, which casts some doubt as to the applicability of 

these findings to human TIMELESS. In early studies, TIMELESS mRNA did not oscillate in the 

suprachiasmatic nucleus (SCN) or the retina and was not altered with light exposure at night in 

mice 111,112,116. However, soon thereafter another group demonstrated constitutive, high expression 

of TIMELESS in the SCN, but oscillatory expression of TIMELESS in the retina with light/dark 

cycles 119. Further studies using a different probe against TIMELESS observed diurnal variation 

of TIMELESS mRNA in the SCN with peak levels at the day-to-night transition in light-entrained 

animals and demonstrated light pulse-induced elevation in TIMELESS mRNA in mice 120. In rat 

models, TIMELESS expression demonstrated clear 24-hour oscillations and physically interacted 

with the PERIOD circadian proteins (PER1/2/3). Conditional knockout of TIMELESS in the 

SCN disrupted SCN neuronal activity rhythms and altered levels of other known core clock genes 

121, which provided strong evidence for a role for TIMELESS in the mammalian circadian clock.  

Canonical circadian signaling is driven by CLOCK:CYCLE/BMAL1 binding to E-boxes 

(CACGTG sequences) within promoters thereby initiating transcriptional activation of circadian 

genes, including PER and TIMELESS 122. PER and TIMELESS then inhibit 

CLOCK:CYCLE/BMAL1 activity forming a negative feedback loop. Mutations of the canonical 

E-box sequence of TIMELESS reduces mRNA cycling and circadian locomotor activity rhythms 

demonstrating the necessity of the E-box sequences and the transcriptional regulation of circadian 

cycles 122,123.  

In both Drosophila and mammalian models, TIMELESS has been shown to interact with 

other circadian genes, most notably the family of PERIOD proteins. This interaction promotes 

protein stability and nuclear localization of both interacting partners 111,119,124-128. When the 

PER:TIMELESS complex is in the nucleus, it inhibits CLOCK:CYCLE/BMAL1 DNA binding at 

E-boxes, which dramatically decreases circadian gene transcription (including PER and 

TIMELESS transcription), without affecting CLOCK:CYCLE/BMAL1 heterodimer formation 

122,129-133. In addition, complex formation between PER:TIMELESS and 
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CLOCK:CYCLE/BMAL1 induces hyperphosphorylation of CLOCK by DBT/CK1 leading to 

CLOCK degradation 133.  TIMELESS has also been shown to interact with CRY proteins. While 

CRY proteins support light-dependent degradation of TIMELESS in Drosophila, CRY1/2 inhibits 

CLOCK:CYCLE/BMAL1 and interacts with PER1/2 and TIMELESS in a light-independent 

manner in mice 134.  

An additional layer of regulation exists through post-translational modifications. 

Phosphorylation of PER by DBT/CK1 targets PER for degradation, and phosphorylation of 

TIMELESS by Sgg/GSK3 promotes the PER:TIMELESS complex translocation to the nucleus, 

both of which significantly alter the circadian period 135-144. Additionally, GSK3-mediated 

phosphorylation of PER-bound TIMELESS initiates a CK2-mediated phosphorylation cascade. 

Mutations in TIMELESS that block this phosphorylation cascade delay its nuclear accumulation 

and affect rhythmic behavior 145. Data suggest that PER:TIMELESS complex formation prevents 

PER phosphorylation and subsequent degradation revealing the mechanism by which TIMELESS 

promotes PER stability 136,146.  

TIMELESS is rapidly degraded through a ubiquitin-proteasome mechanism that is 

preceded by tyrosine phosphorylation and generally triggered in response to light. This 

contributes to light-mediated circadian cycle entrainment 127,128,130,147-151. Alternative mechanisms 

do exist to maintain the circadian rhythms in the absence of light as evidenced by the continued 

phosphorylation and degradation of TIMELESS through a ubiquitin-proteasome mechanism even 

in the absence of light. However, this mechanism is mediated by different kinases than those that 

promote light-induced degradation 152. Specific kinases have been identified that regulate the 

stability of mammalian TIMELESS including multiple individual Src-family tyrosine kinases that 

direct the degradation (Fyn or Hck) or protection of TIMELESS (c-Src and c-Yes) based through 

changes to phosphorylation-dependent ubiquitylation 153. Recent screens have also revealed 

several protein phosphatases that alter the circadian cycle suggesting possible additional 

mechanisms by which the circadian rhythm is regulated through phosphorylation changes 154.  



93 
 

 

Development 

TIMELESS is essential for development 118,155-157 and has been shown to be highly 

expressed in the developing lung, liver, kidney, and neuroepithelium 156,158. The definitive 

requirement for TIMELESS has been shown as TIMELESS depletion causes defects in kidney 

development and evidence suggests TIMELESS may be an immediate early gene that is required 

for kidney morphogenesis 156, lung development 157, and neural development 158. Further, mouse 

embryonic stem cells lacking TIMELESS formed embryoid bodies that failed to cavitate due to a 

lack of programmed cell death and differentiation, which ultimately arrested development 159.  

DNA synthesis 

During normal DNA replication, TIMELESS depletion decreased DNA replication 

efficiency and caused genomic instability demonstrated by increased γH2AX, Rad51, and Rad52 

foci formation 114,160. TIMELESS localized to replication forks and limited ssDNA accumulation 

as well as fork rotation during DNA replication to prevent DNA damage and chromosomal 

instability 114 161-164. This is particularly important at sites of physical barriers including 

centromeres, telomeres, ribosomal DNA repeats, and termination sites 165. Specifically at 

telomeres, TIMELESS promoted efficient DNA replication, and TIMELESS depletion caused 

telomere shortening independent of telomerase, increased DNA damage leading to telomere 

aberrations, and slowed telomere replication 166. As a component of the replication fork barrier, 

TIMELESS also coordinated transcription and S-phase DNA replication thereby reducing DNA 

damage 167. 

TIMELESS interacted with DNA helicases 168-170 and stimulated their unwinding activity 

by enhancing DNA binding 171. Additionally, TIMELESS coupled the replicative helicase 

complex to DNA polymerases for efficient DNA synthesis 172. TIMELESS also stimulated the 

activity of DNA polymerases , δ, and ε 169, and without TIMELESS, replication fork 

progression was dramatically decreased 171,173. TIMELESS promoted chromosome cohesion, and 
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TIMELESS depletion caused a 100-fold increase in sister chromatid discohesion and induced 

significant chromosome fragmentation 114,163,165,174,175.  

These combined mechanisms demonstrate how TIMELESS promotes high fidelity, 

efficient DNA synthesis. These mechanisms also likely contribute to the maintenance of viral 

genomes as TIMELESS has been shown to promote viral episome maintenance in two cancer-

associated viruses: Herpes Simplex virus (HSV, Kaposi’s sarcoma) and Epstein-Barr virus (EBV, 

Burkitt’s lymphoma)176,177. 

Cell Cycle 

The cell cycle is under circadian regulation 178-181, and TIMELESS could be the mediator 

that coordinates this connection 182. TIMELESS expression is regulated both by the circadian 

rhythm and cell cycle with the highest expression occurring at night and during S and G2 phases 

in normal human fibroblasts, respectively 182. TIMELESS depletion has been shown to limit the 

ability of cells to trigger DNA damage-associated checkpoint arrest at intra-S checkpoints and the 

G2/M checkpoints 173,182,183, which further sensitized cells to DNA damaging agents 183. Loss of 

TIMELESS caused defects in mitotic progression 163,165 because TIMELESS synchronizes 

replication termination and subsequent mitotic kinase (CDK1, Auroras A and B, PLK1) 

activation 165.  

DNA Damage  

Further, in addition to causing genomic instability, DNA damage, and subsequent 

checkpoint activation, TIMELESS is involved in the DNA damage signaling cascade, DNA 

damage repair, and cell cycle arrest 114,173.  

RPA binds to ssDNA during replication fork advancement and intermediate ssDNA that 

is created during homologous recombination following double stranded breaks and chewing back 

of the ends. RPA binding recruits the ATR-ATRIP complex, which then phosphorylates and 

activates CHK1 at S345. Activated CHK1 prevents CDK1 activation and mitotic entry, thereby 
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triggering the G2/M DNA damage checkpoint 184,185. In this pathway, TIMELESS, along with its 

binding partner TIPIN (Timeless interacting protein) physically interacts with RPA, claspin, and 

CHK1 and mediates both ATR- and claspin-mediated phosphorylation of CHK1 114,168,173,182,186-190. 

Independent of ATR, CHK1 and TIMELESS are also required for efficient PCNA ubiquitination 

after DNA damage 191,192.  

Similar to other synthetically lethal combinations in DNA damage repair pathways, 

TIMELESS depletion increased reliance on homologous recombination for continued DNA 

synthesis 160, and TIMELESS depletion dramatically increased cell sensitivity to ATR depletion. 

Cells deficient in ATR and TIMELESS have dramatically reduced nucleotide incorporation in S 

phase and experience replication failure as a result of synergistic increases in γH2AX and DNA 

double stranded breaks 162.  TIMELESS has also been shown to be required for ATM-mediated 

CHK2 activation following DNA double strand breaks 183.  

TIMELESS physically interacts with PARP-1 193,194 and this interaction is required for 

TIMELESS to accumulate at sites of DNA damage 193,194. TIMELESS does not affect PARP-1 

enzyme activity 193,194, but is required for recruitment of other complex components to sites of 

DNA damage 194. Loss of TIMELESS reduces homologous recombination193 as well as DNA 

double strand break repair 194 suggesting a role for TIMELESS in DNA damage repair. PARP 

inhibition prevents DNA damage repair by trapping PARP-1 at sites of DNA damage 193. PARP 

inhibitors also trap TIMELESS at sites of DNA damage, but the effect of the sequestration of 

TIMELESS is unknown 193.  

Cancer 

Significant evidence now suggests that cancer may be a circadian-related disorder as 

several studies have demonstrated circadian rhythms are dysregulated in cancer cells 195,196. 

Concerningly, large studies have correlated a substantial history of shift work and jet lag or 

altered sleep/wake patterns with increased cancer incidence and higher mortality rate 197-201. This 

suggests circadian rhythm dysregulation is not merely a downstream effect of oncogenic 
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signaling, but also plays a pro-tumorigenic role. Recent work has started to elucidate the 

relationship between the development of cancer and circadian rhythm dysregulation as well as 

demonstrate the functional benefits of circadian dysregulation in cancer cells.  

Oncogenes can drive the expression of certain circadian genes effectively hijacking the 

circadian cycle, such as when MYC drives the expression of REV-ERB, which decreases 

BMAL1 expression thereby releasing the cell from its tumor suppressive effects and alters cell 

metabolism 202. Recent work has also shown that restoring circadian rhythmicity in vitro 

decreased proliferation of cancer cells and circadian dosing of certain chemotherapeutics 

increased their efficacy 203.  

TIMELESS was not mutated in cancer 204, but was significantly overexpressed in both 

patient tumors and cancer cell lines relative to normal adjacent tissue and normal cell lines, 

respectively in multiple cancer types including acute lymphocytic leukemia, breast, cervical, 

hepatocellular, and lung cancer (both non-small cell lung cancer and small cell lung cancer) 204-

210.  

Generally, TIMELESS has been shown to promote proliferation and metastasis in cancer 

cells 204,207,208; however, the demonstrated mechanisms have varied greatly. In breast cancer, 

TIMELESS upregulated the expression and activity of MYC, and inhibition of MYC blocked the 

effects of TIMELESS 207. In hepatocellular carcinoma, TIMELESS depletion decreased cell 

viability via increased apoptosis and G2 arrest following CHK2, but not CHK1, phosphorylation 

and reduced ribosomal protein biosynthesis by decreasing EEF1A2 levels 208. TIMELESS 

conferred cisplatin resistance in nasopharyngeal carcinoma by activating the Wnt/β-catenin 

signaling pathway and promoting epithelial-mesenchymal transition 211. Increased TIMELESS 

expression also correlated with tamoxifen resistance in breast cancer 212, and subsequent analysis 

demonstrated that 17β-estradiol promoted TIMELESS expression in vitro in cells sensitive to 

tamoxifen, but in tamoxifen-resistant cells, TIMELESS expression was independent of 17β-

estradiol 212. Clinically, increased TIMELESS expression was associated with a poorer prognosis 
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in breast, cervical, bladder, and lung cancer 204-207,210,212,213. This suggests that TIMELESS likely 

has a conserved, protumorigenic role that is present in many types of cancer. Determining the 

mechanism behind its overexpression and further elucidating its functional role in tumorigenesis 

is likely to increase our understanding of cancer and may reveal opportunities for the 

development of new therapeutics. 

Results  

Preliminary biological validation of TIMELESS  

Initial biological validation of targets identified using FUSION was performed by 

assessing cancer cell growth or viability in anchorage-independent conditions following RNAi-

mediated target depletion by measuring cell ATP levels on polyHEMA-coated plates 214,215 using 

CellTiter-Glo® Luminescent Cell Viability Assay, as previously described 3. The smartPool of 

four siRNA oligos (Dharmacon) targeting KSR1 or TIMELESS was used to deplete cells of the 

target. Growth in anchorage-independent conditions was reduced substantially with KSR1 or 

TIMELESS depletion in HCT116 colon cancer cells (Fig. 4.3A).  

Immortalized, yet non-transformed human colon epithelial cells (HCECs)102 are unable to 

proliferate in an anchorage-independent environment and were therefore not assayed in 

anchorage-independent culture conditions. To compare the effects of TIMELESS depletion in 

colon cancer cells to immortalized, yet non-transformed HCECs, RNAi-mediated depletion of 

TIMELESS was completed under normal plating conditions and viability was measured using 

alamarBlue. TIMELESS depletion for 72 hours reduced viability in HCT116 cells, but not 

HCECs (Fig. 4.3B). TIMELESS depletion was validated by western blot in HCECs and HCT116 

cells (Fig. 4.3C).  

TIMELESS is overexpressed in cancer 

TIMELESS is upregulated at the RNA level in several types of tumors compared to solid 

normal tissue (TCGA) (Fig. 4.4A) and is upregulated at the mRNA (Fig. 4.4B) and protein level  
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Fig. 4.3: Preliminary biological validation of TIMELESS. (A) Viability of HCT116 colon 

cancer cells measured using CellTiter-Glo® following RNAi of KSR1 or TIMELESS that were 

replated on polyHEMA-coated plates 48 hours following transfection to simulate anchorage-

independent conditions. Cell viability is measured immediately after replating (Hrs: 0) and 24 

hours later. (N=6). (B) Viability of HCECs and HCT116 cells measured using alamarBlue® 

following RNAi-mediated TIMELESS depletion for 72 hours in normal culture conditions. (N=6) 

(C) Immunoblot confirmation of TIMELESS depletion from B. Data are shown as mean ± SD.  
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Fig. 4.4: TIMELESS is overexpressed in cancer. (A) TIMELESS gene expression (RNASeq) 

data from TCGA for unpaired primary colon tumors and normal solid tissue samples. The results 

published here are in whole or part based upon data generated by the TCGA Research 

Network: http://cancergenome.nih.gov/.  (B) Immunoblot and (C) RT-qPCR of TIMELESS levels 

in a panel of colon tumor cell lines and immortalized, non-transformed HCECs. RT-qPCR data is 

shown as mean ± SD. (N=3) (Experiment 4.4C was completed in collaboration with Jamie 

McCall and Danielle Frodyma).   
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(Fig. 4.4C) in a panel of human colon cancer cell line (HCT116, LoVo, RKO, HCT15, SW480, 

SW620, T84, and Caco2) compared to HCECs.  

 Previous reports suggested altered promoter methylation on circadian genes was 

associated with their altered expression in cancer 216. Specifically, TIMELESS promoter 

hypomethylation was present with TIMELESS overexpression in breast cancer 217. Examining the 

Beta value of TIMELESS-associated sites included on the Illumina Infinium Human DNA 

Methylation 27 and Illumina Infinium Human DNA Methylation 450 beadchips from solid tissue 

normal and primary tumor samples from the TCGA COAD dataset revealed the methylation of 

TIMELESS is nearly identical between normal and colon tumor samples (Fig. 4.5A and B). 

Comparing TIMELESS methylation state in HCECs as compared to HCT116s demonstrated no 

difference in methylation (Fig. 4.5C) suggesting promoter hypomethylation is not contributing to 

TIMELESS overexpression in colon cancer.  

TIMELESS loses circadian expression in cancer.  

In normal cells and tissues, TIMELESS expression has a circadian pattern 119-121. 

However, TIMELESS demonstrated a loss of circadian rhythmicity in protein expression in colon 

cancer cell lines. Following 50% horse serum shock for two hours, HCECs demonstrate cyclical 

expression of TIMELESS over a 24-hour period that is consistent with a normal circadian pattern 

with the highest level of expression being seen approximately 16-18 hours following serum shock 

(Fig. 4.6A). Conversely, in HCT116 colon cancer cells, TIMELESS is constitutively expressed at 

a high level, with very little cyclic alterations in expression (Fig. 4.6B). TIMELESS also 

demonstrated circadian expression, with an earlier peak in expression, ~ 12 hours, following cell 

synchronization by forskolin treatment (Fig. 4.6C).  

Mutant Ras through downstream ERK signaling contributes to TIMELESS expression  

To evaluate if oncogenic Ras contributes to increased TIMELESS expression in colon 

cancer, TIMELESS expression was examined in HCECs following exogenous expression of   
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Fig. 4.5: TIMELESS overexpression is not due to methylation changes at the 

promoter. (A and B) TIMELESS methylation data from Illumina Infinium Human DNA 

Methylation 27 (A) and Illumina Infinium Human DNA Methylation 450 (B) beadchips 

data from TCGA for unpaired primary colon tumors and normal solid tissue samples. The 

results published here are in whole or part based upon data generated by the TCGA 

Research Network: http://cancergenome.nih.gov/. (C) Percent methylation for CpG sites 

near or within the TIMELESS DNA sequence in HCECs and HCT116 cells. (Experiment 

4.5C was completed in collaboration with Dr. Dave Klinkebiel and the Epigenomics Core). 
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Fig. 4.6: TIMELESS is circadianly-expressed in HCECs, but constitutively overexpressed in 

HCT116 colon cancer cells. (A and B) Immunoblot of TIMELESS expression over 24 hours 

following circadian synchronization via 2 hour 50% horse serum treatment in HCECs (A) and 

HCT116 cells (B). (C) TIMELESS mRNA expression over 24 hours following circadian 

synchronization via 2 hour 50% hourse serum treatment in HCEC and HCT116 measured with RT-

qPCR. (N=1). (D) Immunoblot of TIMELESS expression over 24 hours following circadian 

synchronization via 30 minute 10 µM foskolin treatment. (Experiment 4.6C-D were completed in 

collaboration with Danielle Frodyma).  
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mutant Ras and in HCT116 cells following ERK inhibition or RNAi-mediated ERK1/2 depletion. 

HCECs expressing exogenous RasG12V have increased TIMELESS expression relative to HCECs 

albeit not to the levels seen in the colon cancer cell lines tested. Following serum shock-induced 

cell synchronization, HCECs with Ras maintain circadian expression of TIMELESS, but at an 

increased level of expression (Fig. 4.7A). Comparing TIMELESS expression 16 hours following 

serum shock in HCECs with Ras to HCECs (far right lane) demonstrates RasG12V promoted 

TIMELESS expression. This increase in expression was abrogated with ERK inhibition with 

1µM SCH772984 (Fig. 4.7B). In asynchronous HCECs, HCECs exogenously expressing RasG12V, 

and HCT116 colon cancer cells, ERK inhibition with 1 μM SCH772984 decreased TIMELESS 

expression (Fig. 4.8A) demonstrating the vital role ERK activation plays downstream of activated 

Ras to promote TIMELESS expression. RNAi-mediated depletion of ERK demonstrates a similar 

effect, but to a lesser degree (Fig. 4.8B). ERK inhibition for 24 hours prior to cell synchronization 

by serum shock and collection over the next 24 hours demonstrated partial restoration of the 

circadian expression of TIMELESS; however, the levels of TIMELESS remain elevated as 

compared to the non-transformed HCECs (Fig. 4.9).  

In HCECs, TIMELESS expression decreases with increasing cell confluency (Fig. 

4.10A). In HCT116 cells, TIMELESS expression is constitutively high regardless of cell 

confluency (Fig. 4.10A). However, changing the HCEC media daily dramatically reduces this 

decrease in TIMELESS expression. This maintained TIMELESS expression occurs coordinately 

with maintained levels of ERK phosphorylation and activation suggesting the possibility that 

replacing the media daily refreshes the EGF levels (a normal additive in the HCEC as described 

in Chapter 2: Materials and Methods), which then promotes ERK activation.  

To evaluate how consistently ERK signaling promotes TIMELESS expression in colon 

cancer, multiple colon cancer cell lines were treated with 1 μM SCH772984 for 48 hours and 

assessed for cell viability with alamarBlue and TIMELESS expression via immunoblot. ERK 

inhibition decreased cell viability and TIMELESS expression in HCT116 and SK-Co-1 cancer   
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Fig. 4.7: HCECs expressing mutant RasG12V have increased, but circadianly regulated 

TIMELESS expression. (A) Immunoblot of TIMELESS expression over 24 hours following 

circadian synchronization via 2 hour 50% horse serum treatment in HCEC with RasG12V. 

Lysates from HCECs 16 hours after 50% horse serum shock is included for reference. (B) 

Immunoblot of TIMELESS in HCECs, HCECs with RasG12V, and HCECs with RasG12V 

treated with 1 µM SCH772984 (ERK inhibitor) 24 hours prior to synchronization with 50% 

horse serum shock and for the 16 hours after serum shock prior to collection.  
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Fig. 4.8: Activated ERK promotes TIMELESS expression. (A) Western blot of TIMELESS in 

HCECs, HCECs that stably express H-RasG12V, and HCT116 colon cancer cells with and without 1 µM 

SCH772984 (ERK inhibitor) treatment for 48 hours. (B) Western blot of TIMELESS following RNAi-

mediated ERK1/2 depletion for 72 hours in HCT116 cells. (Experiment 4.8B was done in collaboration 

with Clara Rich) 
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Fig. 4.9: ERK inhibition decreases TIMELESS expression and restores circadian expression of 

TIMELESS in HCT116 cells. (A) Immunoblot of TIMELESS expression over 24 hours following 

circadian synchronization via 2 hour 50% horse serum treatment in HCECs (top), HCT116 treated 

with DMSO (middle), and HCT116 cells treated with 1 µM SCH772984 (ERK inhibitor) (bottom) 

for 24 hours prior to synchronization and following synchronization throughout the time course until 

collection. (B) Densitometry quantification of TIMELESS levels in A. (N=1).   
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Fig. 4.10: TIMELESS expression correlates with phospho-ERK and is higher in less 

confluent cells. (A and B) Immunoblot of TIMELESS expression and phosho-ERK in HCEC 

and HCT116 cells at different stages of confluency without changing media daily (A) or 

changing media daily (B). Note: In both figures, the lysates from both cell lines were run on 

single blot and are shown at the same intensities.  

 



108 
 

 

cell lines, but did not affect viability or TIMELESS levels in HCT15 and FET cancer cell lines 

(Fig. 4.11). 

TIMELESS is known to be degraded via the ubiquitin-proteosome system. ERK 

inhibition by 1 μM SCH772984 or MEK inhibition by 1 μM PD0325901 decreases TIMELESS 

expression, which was not rescued by 6-hour treatment with MG132 (Fig. 4.12A). Unfortunately, 

the half-life of TIMELESS appears to be extended in cancer such that a 6-hour treatment with 

MG132 may not have been long enough for TIMELESS expression to be rescued. Conversely, 

TIMELESS mRNA levels were not affected by ERK inhibition suggesting that ERK is not 

affecting TIMELESS transcription or mRNA stability (Fig. 4.12B).  

ERK inhibition decreases cell viability and TIMELESS expression in HCT116 and SK-

Co-1 cells, but not HCT15 or FET cells (Fig. 4.11). In a similar pattern, ERK inhibition reduces 

MYC expression in HCT116 and SK-Co-1 cells, but not in HCT15 and FET cells (Fig. 4.13A). In 

normal cells, protein translation is largely regulated by PI3K and mTOR signaling, but recently it 

has been shown that in some colon cancer cell lines PI3K and mTOR does not regulate MYC 

translation 218. This led to the hypothesis that ERK may be regulating translation in these cell 

lines.  Previous work has shown that KSR1 regulates MYC expression in HCT116 cells by 

promoting its translation via regulation of P-4EBP1 (T70) and PDCD4 42. Similarly, ERK 

inhibition regulates P-4EBP1 (T70) and PDCD4 in HCT116 and SK-Co-1 cells, but not HCT15 

and FET cells. This opens the possibility that ERK regulates TIMELESS expression via 

translation in HCT116 and SK-Co-1 cells. To ascertain if the cell lines that are not affected by 

ERK inhibition are instead dependent on mTOR signaling for increased translation, the effect of 

mTOR inhibition on PDCD4, P-4EBP1 (T70), and TIMELESS was examined. mTOR inhibition 

with 1 μM AZD8055 decreased TIMELESS expression in HCT15 and FET cells, while 

TIMELESS expression in RKO and SW480 cells decreased with ERK or mTOR inhibition (Fig. 

4.13B). P-4EBP1 (T70) decreased in all four colon cancer cell lines tested following mTOR 

inhibition, with a slight decrease in expression following ERK inhibition in HCT116 cells. ERK  
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Fig. 4.11: ERK inhibition decreases TIMELESS expression in colon cancer cell lines that 

are sensitive to ERK inhibition.  (A and B) Viability (A) and paired immunoblot analysis of 

TIMELESS expression (B) following treatment with 1 uM SCH772984 for 48 hours in a panel of 

colon cancer cells. (N=6). (Experiment 4.11A-B was done in collaboration with Danielle 

Frodyma) 
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Fig. 4.12: ERK does not promote TIMELESS expression by increasing its protein stability or 

mRNA levels. (A) Immunoblot of TIMELESS and MYC levels (MG132 rescue control) following 

treatment with 1 µM SCH772984 (ERK inhibitor), or 1 µM PD0325901 (MEK inhibitor) with and 

without 10 µM MG132 treatment for 6 hours. (B) TIMELESS mRNA following 48 hour ERK 

inhibition with 1 µM SCH772984. (N=3). (Experiment 4.12B was performed in collaboration with 

Jamie McCall).  
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Fig. 4.13: ERK and mTOR inhibition regulates inhibitors of translation in a subset of colon 

cancer cell lines. (A) Immunoblot of downstream ERK targets (phospho- and total-RSK) 

regulators of translation (PDCD4, phospho- and total-4EBP1), and MYC following ERK 

inhibition with 1 µM SCH772984 for 48 hours in HCT116, HCT15, LoVo, SK-CO-1, and FET 

cells. (B) Immunoblot of PDCD4 and P-4EBP1 (T70) following ERK or mTOR inhibition with 1 

µM SCH772984 or AZD8055 for 24 hours in HCT116, HCT15, RKO, FET, and SW480 cells.  
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inhibition increased PDCD4 expression in the cell lines tested, but this effect was modest in 

HCT15 and FET cells (Fig. 4.13B).    

Using polysome profiling, the translational efficiency of TIMELESS was examined 

following ERK or mTOR inhibition in HCT116 and HCT15 colon cancer cells, respectively. 

Translational efficiency is defined as the ratio of polysome-bound mRNA to total mRNA. Total 

TIMELESS mRNA was unchanged, but polysome-bound TIMELESS mRNA was significantly 

decreased following ERK inhibition with 1 μM SCH772984 in HCT116 cells or mTOR inhibition 

with 1 μM AZD8055 in HCT15 cells for 24 hours resulting in an overall decrease in TIMELESS 

translational efficiency (Fig. 4.14). 

To further evaluate the requirement for ERK or mTOR in colon cancer cells, cell viability 

was examined following single agent treatment with either 1 μM SCH772984 or 1 μM AZD8055 

as well as combination treatment with both SCH772984 and AZD8055 either 500 nM or 1 μM 

doses for 48 hours. Consistent with previous results, HCT116, SW480, and RKO cells were 

sensitive to both the ERK inhibitor and mTOR inhibitor and underwent a substantial decrease in 

cell viability with either individual treatment; however, no additional effects were seen with 

inhibition of both ERK and mTOR together (Fig. 4.15). HCT15 and FET cells were more 

sensitive to mTOR inhibition than ERK inhibition, but also demonstrated very little additional 

effect of treating with both inhibitors simultaneously (Fig. 4.15).  

The mechanism by which ERK or mTOR regulates translation is thought to be at least in 

part through RSK; however, RSK inhibition via 1 μM BI-D 1870 treatment only reduced 

TIMELESS expression in HCT15 cells, but not HCT116 or RKO cells (Fig. 4.16). RSK 

inhibition in HCT15 cells did not affect PDCD4 levels; however, the effect of RSK inhibition on 

P-4EBP1 (T70) in these cells is still unknown and could still be mediating an effect of RSK on 

TIMELESS translation. Additionally, the interpretation of these results is limited by the lack of 

positive controls that demonstrate the effects of the inhibitors on downstream targets of ERK, 

mTOR, and RSK. Regardless, the preliminary evidence that RSK may not be mediating the effect  
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Fig. 4.14: Translation of TIMELESS is decreased following ERK inhibition in 

HCT116 cells and mTOR inhibition in HCT15 cells. Translational efficiency (TE) of 

TIMELESS in HCT116 cells (top) following ERK inhibition with 1 μM SCH772984 

and in HCT15 cells (bottom) following mTOR inhibition with 1 μM AZD8055 for 24 

hours. (N=3). (Experiment 4.14 was completed by Eyerusalem  Lemma and Danielle 

Frodyma.).  
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  Fig. 4.15: Effects of ERK and mTOR inhibition on cell viability in a panel of colon 

cancer cell lines. (N=6). 
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Fig. 4.16: RSK does not mediate the effect of ERK on TIMELESS. Western blot of 

TIMELESS and PDCD4 following ERK, mTOR, or RSK inhibition for 24 hours with 1 

μM of SCH772984, AZD8055, or BI-D 1870 treatment, respectively.  
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of ERK on TIMELESS expression raises questions about whether this interaction is truly 

mediated through changes in translation.   

TIMELESS is required for cancer cell proliferation 

Preliminary biological validation demonstrated that HCT116 colon cancer cells were 

substantially more sensitive to TIMELESS depletion than HCECs (Fig. 4.3). To determine the 

prevalence of the requirement for TIMELESS in colon cancer cells, cell viability was measured 

in a panel of colon cancer cell lines following RNAi-mediated TIMELESS depletion for 96 hours 

using alamarBlue®. TIMELESS depletion decreased cell viability by more than 20% in HCT116, 

SW480, SW620, and RKO colon cancer cells (Fig. 4.17A). HCT15 colon cancer cells were not 

sensitive to TIMELESS depletion (Fig. 4.17A). To determine if this decrease in cancer cell 

viability was a result of cells undergoing apoptosis, PARP cleavage following TIMELESS 

depletion for 72 hours was assessed by western blot. TIMELESS depletion induced only a very 

slight increase in PARP cleavage in HCT116, SW480, and SW620 colon cancer cells and did not 

affect PARP cleavage in HCT15 or RKO cells (Fig. 4.17B). Therefore, the effect of TIMELESS 

depletion on cell viability cannot be attributed to an increase in apoptosis.  

Comparing the effect of TIMELESS depletion on PARP cleavage in HCECs and 

HCT116 cells confirmed that TIMELESS depletion induces a small amount of PARP cleavage in 

HCT116 cells; however, TIMELESS depletion reduced levels of PARP in HCECs without 

increasing PARP cleavage (Fig. 4.18). Previous reports have clearly demonstrated that 

TIMELESS physically interacts with PARP 193,194. This interaction was not required for PARP 

enzymatic activity, but loss of this interaction reduced the level of DNA damage repair 

suggesting a functional role for the TIMELESS PARP interaction. This data suggests the 

possibility that TIMELESS could promote PARP stability.  

TIMELESS depletion induces G2/M arrest 

A previous study demonstrated that TIMELESS knockdown in HCT116 cells did not  
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Fig. 4.17: TIMELESS is required for colon cancer cell viability, but does not induce cell 

death. (A) Cell viability in a panel of colon cancer cells following RNAi-mediated depletion of 

TIMELESS. Viability was measured by alamarBlue® assays 96 hours after transfection. (N=6). 

(B) Western blot of TIMELESS and PARP following RNAi-mediated TIMELESS depletion for 

72 hours in HCT116, HCT15, SW480, SW620, and RKO colon cancer cells. Data are shown as 

mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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Fig. 4.18: TIMELESS depletion selectively induces low levels of cleaved PARP in 

HCT116 cells, but not HCECs. Immunoblot of TIMELESS and PARP following RNAi-

mediated TIMELESS depletion for 72 hours in HCECs and HCT116 cells.  
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affect the cell cycle 183. However, in a panel of colon cancer cell lines, TIMELESS depletion 

reduced metabolic capacity based on the alamarBlue® viability assay, but did not increase 

apoptosis based on very little, if any, increase in PARP cleavage (Fig. 4.17B). Additionally, 

TIMELESS has been shown to play a role in triggering cell cycle checkpoints 163,165,173,182,183. 

Therefore, cell cycle analysis was performed using propidium iodide staining and flow cytometry 

evaluation. In HCT116, SW620, and SW480 colon cancer cell lines a very small increase in sub-

G1 peak was induced with TIMELESS depletion (Fig. 4.19). This is consistent with the very 

minor induction of PARP cleavage in these cell lines following TIMELESS depletion (Fig. 

4.17B). All five colon cancer cell lines underwent a decrease in percent of cells within G1 and an 

increase in percent of cells within G2 (Fig. 4.19).   

TIMELESS depletion reduces cancer cell proliferation  

To confirm that TIMELESS depletion reduced cell proliferation, or specifically cell 

division, a carboxyfluorescein succinimidyl ester (CFSE) assay was completed. CFSE is a cell-

permeable, fluorescent dye that covalently binds to intracellular molecules, particularly lysine and 

other amine-containing molecules. The covalent integration of CFSE is highly stable such that the 

fluorescence is sustained for long periods of time, and the dye is not leached to other cells. With 

each cell division, approximately half of the integrated CFSE is passed on to each daughter cell, 

such that the degree of CFSE staining can be used as a marker for cell division. Therefore, 

HCT116 and SW480 cancer cells were stained with CFSE dye prior to RNAi-mediated 

TIMELESS depletion for 96 hours. Flow cytometry analysis was then employed to measure 

CFSE fluorescence levels (Fig. 4.20). Both HCT116 and SW480 cancer cells that lacked 

TIMELESS had increased mean levels of CFSE demonstrating they underwent fewer cell 

divisions (Fig. 4.20).  

TIMELESS depletion does not affect ERK activation or MYC expression 

One previous study demonstrated TIMELESS supports cancer cells by increasing MYC  
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Fig. 4.19: TIMELESS depletion induces a G2/M arrest in a panel of colon cancer cells.   (A) 

Quantification of the percent of cells in each phase of the cell cycle following RNAi-mediated 

TIMELESS depletion in HCT116, HCT15, SW480, SW620, and RKO colon cancer cells from 3 

biological replicates. Apoptosis (% of cells in the sub-G1 peak) and cell cycle were evaluated using 

propidium iodide staining followed by flow cytometry analysis. (N=3). (B) Representative cell cycle 

histograms from (A). Data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001 
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Fig. 4.20: TIMELESS depletion decreases cell proliferation. (A) Overlay histogram for three 

biological replicates of flow cytometry analysis of CFSE staining following RNAi-mediated TIMELESS 

depletion in CFSE-stained HCT116 (top) and SW480 (bottom) cells for 96 hours. Control replicates are 

shown in gray, and TIMELESS-depleted replicates are shown in black. (N=3). (B) Quantification of mean 

CFSE staining from (A). (C) Western blot confirming TIMELESS depletion in all three biological 

replicates of CFSE-stained cells from (A). **** p < 0.0001 
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expression and activity 207. Another report proposed that TIMELESS could support cancer by 

supporting Ras signaling as Ras mRNA expression was downregulated following TIMELESS 

depletion 205. Therefore, the potential for TIMELESS to support Ras or MYC to promote cell 

cycle advancement and proliferation was evaluated by examining the effects of TIMELESS 

depletion on MYC expression and ERK activation/phosphorylation. RNAi-mediated TIMELESS 

depletion for 72 hours did not affect ERK phosphorylation in HCEC or HCT116 cells (Fig. 

4.21A) or MYC expression in HCT116 cells (Fig. 4.21B). However, serum shock (50% horse 

serum for 2 hours) reduced phosphorylation of ERK and induced MYC expression (Fig. 4.21B), 

which could be contributing to or confounding the results from the in vitro examination of the 

circadian expression of TIMELESS (Fig. 4.6).  

TIMELESS depletion decreases AKT phosphorylation 

Preliminary experiments demonstrated that TIMELESS reduced AKT phosphorylation 

and activation (Fig. 4.22). Several previous studies have demonstrated the strong role AKT plays 

in cell cycle advancement and have shown that expression of activated AKT can drive cells 

through the G2/M checkpoint via AKT phosphorylation and inactivation of Wee1. When Wee1 is 

active, it phosphorylates and inactivates CDK1. Therefore AKT-mediated inactivation of Wee1 

releases its inhibition of CDK1 thereby preventing G2/M arrest 219,220.  

AKT does not mediate the effect of TIMELESS on the cell cycle 

Based on this information, the ability of exogenous expression of a mutant, constitutively 

active form of AKT that had S473 and T308 replaced with aspartic acid (D), which was denoted 

AKTDD, to rescue the G2/M arrest caused by TIMELESS depletion in HCT116 cells was 

evaluated. Overall, TIMELESS depletion still induced a small increase in the sub-G1 peak, 

decreased the number of cells in the G1 phase, and increased the number of cells in the G2 phase 

in cells transfected with the control eGFP or the eGFP-AKTDD (Fig. 4.23A). However, separating 

the cells that received the eGFP-AKTDD construct with and without TIMELESS depletion based   
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Fig. 4.21: TIMELESS depletion does not affect ERK activation or MYC levels, but serum shock 

decreases P-ERK and induces MYC expression. (A) Western blot of TIMELESS, phospho- and total-

MEK, phospho- and total-ERK following RNAi-mediated TIMELESS depletion for 72 hours in HCECs 

and HCT116 cells. (B) Immunoblot of  TIMELESS, MYC, phospho-ERK, and phospho-MEK following 

RNAi-mediated TIMELESS depletion with and without 50% horse serum shock for two hours in 

HCT116 cells.  
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Fig. 4.22: TIMELESS depletion decreases AKT activation. Western blot of 

phospho- and total-AKT (S473 and T308) following RNAi-mediated TIMELESS 

depletion for 72 hours in HCT116 cells.  
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Fig. 4.23: AKT can drive cells through G2/M, but AKT inhibition does not mimic TIMELESS 

depletion and cause G2/M arrest. (A) Cell cycle analysis by PI stain following TIMELESS 

depletion for 72 hours and exogenous expression of AKTDD  for 48 hours prior to collection. (N=1). 

(B) Re-evaluation of data from A separating the eGFP-AKTDD based on GFP positivity. (N=1). (C) 

Cell cycle analysis following inhibition of AKT with 500 nM MK2206 for 48 hours. (GFP-AKTDD 

and the AKT inhibitor MK2206 were a kind gift from the Black Lab at UNMC).  
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on GFP positivity revealed that the cells expressing the eGFP-AKTDD no longer underwent G2/M 

arrest following TIMELESS depletion (Fig. 4.23B). This suggested that activated AKT was able 

to push the cells through the G2/M cell cycle checkpoint. However, inhibition of AKT with 

MK2206 did not induce a G2/M arrest, but instead triggered S phase arrest (Fig. 4.23C). This 

suggests that TIMELESS depletion is not inducing G2/M arrest through AKT despite the 

potential for activated AKT to rescue cells from this arrest.  

TIMELESS depletion causes G2/M arrest through increasing levels of DNA damage and 

subsequent phosphorylation of CHK1 and CDK1 

In normal cells, TIMELESS has been shown to promote DNA synthesis and DNA 

damage repair 114,160. In a panel of five colon cancer cell lines, RNAi-mediated TIMELESS 

depletion for 72 hours ubiquitously caused an increase in γH2AX, a marker of DNA damage (Fig. 

4.24). Downstream of γH2AX, all five cancer cell lines demonstrated increased phosphorylation 

of CHK1 and CDK1 (Fig. 4.24), which provides a mechanism for the G2/M arrest following 

TIMELESS depletion. The increase in γH2AX, P-CHK1, and P-CDK1 was recapitulated using 

four individual oligos targeting TIMELESS in HCT116 cells (Fig. 4.25). This mechanism appears 

to also be present in HCECs, but is triggered to a lesser degree likely as a result of intact DNA 

repair mechanisms, high fidelity DNA replication, and a slower cell proliferation rate in the 

normal HCECs compared to colon cancer cells (Fig. 4.26).  

ERK inhibition increases γH2AX, which cannot be rescued with exogenous TIMELESS 

expression 

Since ERK inhibition decreases TIMELESS expression, and TIMELESS depletion 

dramatically increased the level of γH2AX, the effect of ERK inhibition on DNA damage was 

examined, which demonstrated that ERK inhibition also substantially increased the 

phosphorylation of H2AX (γH2AX) (Fig. 4.27). To determine if this increase in γH2AX was an 

effect of decreased TIMELESS levels following ERK inhibition, TIMELESS was transiently   
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Fig. 4.24: TIMELESS depletion induces G2/M arrest via CHK1 phosphorylation, 

which leads to Cdk1 phosphorylation and inactivation. Immunoblot of phospho- and 

total-H2AX, phospho- and total CHK1 (S345), phospho- and total- CDK1 (Y15)  and AKT 

targets phospho-GSK3B (S9) and phospho-Wee1 (S642) following RNAi-mediated 

TIMELESS depletion for 72 hours in a panel of colon cancer cells. Note: The primary 

antibody used for the T-CDK1 blot was 77055 cell signaling antibody. All other T-CDK1 

blots used the 9112 cell signaling antibody.  

 



128 
 

 

  

Fig. 4.25: Individual oligos induce TIMELESS depletion, which causes increased 

γH2AX, CHK1 phosphorylation, and CDK1 phosphorylation in HCT116 cells. 

Western blot of phospho- and total-H2AX, phospho- and total CHK1 (S345), phospho- 

and total- CDK1 (Y15) following RNAi-mediated TIMELESS depletion for 72 hours 

using four individual oligos or a pool of  all four oligos in HCT116 cells.  
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Fig. 4.26: TIMELESS depletion induces increased γH2AX, CHK1 phosphorylation, 

and CDK1 phosphorylation in HCT116 cells and to a lesser extent in HCECs. 

Western blot of phospho- and total-H2AX, phospho- and total CHK1 (S345), phospho- 

and total- CDK1 (Y15) following RNAi-mediated TIMELESS depletion for 72 hours in 

HCEC and HCT116 cells.  
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Fig. 4.27: Exogenous TIMELESS expression does not prevent the accumulation of γH2AX 

following ERK inhibition. (A and B) Western blot of ERK and its downstream targets including 

γH2AX following moderate (A) or high (B) exogenous expression of TIMELESS for 72 hours 

with or without ERK inhibition with 1 µM SCH772984 for 48 hours. 



131 
 

 

exogenously expressed in HCT116 cells prior to treatment with SCH772984 for 48 hours. Low 

levels (Fig. 4.27A) and high levels (Fig. 4.27B) of exogenous TIMELESS were unable to prevent 

the increase in γH2AX or restore MYC expression in HCT116 cells following ERK inhibition 

(Fig. 4.27) suggesting the induction of γH2AX following ERK inhibition is not solely due to a 

decrease in TIMELESS expression. 

Of note, while ERK inhibition decreased endogenous TIMELESS expression, it did not 

affect the exogenous expression (Fig. 4.27). This demonstrates that ERK does not affect 

TIMELESS protein stability, and must instead affect either transcription, mRNA stability, or 

translation.   

ERK inhibition prevents the phosphorylation and activation of CHK1 and CDK1 in 

response to DNA damage.  

Paradoxically, ERK inhibition with 1 μM SCH772984 for 24 hours in HCT116 cells 

dramatically reduces the total and phosphorylated levels of CHK1 and CDK1 despite an increase 

in γH2AX (Fig. 4.28).  This is consistent with previous reports that ERK is activated in response 

to DNA damage, and this activation contributes to DNA damage-induced cell cycle arrest or 

apoptosis depending on the level of DNA damage induced 221. This effect may be coordinated by 

RSK as RSK has been shown to phosphorylate CHK1 at S280, which is a prerequisite for nuclear 

localization that is required for DNA-damage induced ATR-mediated phosphorylation of CHK1 

at S345 222. Thus, Ras signaling ensures high DNA fidelity during DNA replication to allow for 

increased cell proliferation, which explains the loss of CHK1 and CDK1 phosphorylation with 

ERK inhibition.  

Combination therapy with TIMELESS depletion and DNA-damaging chemotherapies 

TIMELESS depletion caused an increase in γH2AX, a marker of DNA damage; however, 

it is unclear whether this increase is due to an increase in the induction of DNA damage or a 

reduced capacity to repair DNA damage. Regardless of the mechanism, the potential exists for  
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Fig. 4.28: ERK inhibition increases γH2AX, but decreases phospho- and 

total- CHK1 and CDK1. (A) Western blot of TIMELESS, phospho- and 

total- RSK, phospho- and total- CHK1, and phospho- and total- CDK1 after 

ERK inhibition for 24 hours with 1 μM SCH772984.  
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TIMELESS depletion to synergize with other DNA-damaging therapies as the combination could 

further induce damage or the increased induction of damage could be amplified by a decreased 

ability to repair it. Therefore, the effect of TIMELESS depletion with other DNA damaging 

agents including mitomycin C (MMC), 5-fluoruracil (5-FU), and oxaliplatin (OXAL) was 

examined. The induction of γH2AX following TIMELESS depletion was modestly increased 

with the addition of MMC (Fig. 4.29). Treatment with 5-FU further decreased viability compared 

to TIMELESS depletion alone, but the effect was small and likely was not even additive (Fig. 

4.30A). OXAL treatment reduced the effect of TIMELESS depletion (Fig. 4.30A). Interestingly, 

treatment with 5-FU did not increase and may have in fact reduced the level of γH2AX following 

TIMELESS depletion, while OXAL treatment caused a slight increase in γH2AX following 

TIMELESS depletion (Fig. 4.30B). Even though these are largely negative results, they may 

provide hints towards the mechanism behind the requirement for TIMELESS in cancer cells. The 

principal mechanism by which 5-FU affects cancer cells is by inhibiting DNA replication through 

depletion of thymidine that is required for DNA synthesis. If TIMELESS is limiting the induction 

of DNA damage during DNA synthesis by supporting replication fork stability, slowing DNA 

synthesis through 5-FU treatment, may, in fact, reduce the level of DNA damage induced by 

TIMELESS depletion, while serving to reduce cell proliferation. On the other hand, OXAL 

directly induces double-stranded DNA breaks and blocks DNA replication following the 

formation of platinum-DNA adducts or cross-linking DNA. This could explain the increased level 

of γH2AX, while also reducing the effect of TIMELESS depletion by again limiting DNA 

synthesis.  

Combination therapy with TIMELESS depletion and ionizing radiation 

Examining TIMELESS depletion in combination with ionizing radiation (IR) treatment in 

a panel of colon cancer cell lines revealed variable effects with HCT116, SW480, SW620, and 

T84 cells showing some increased effects with combination treatment, while HCT15, RKO, and 

LoVo cells did not (Fig. 4.31A).  However, even in the cell lines that demonstrated some effect of   
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Fig. 4.29: TIMELESS depletion induces DNA damage as evidenced by increased 

phosphorylation of H2AX. (A) Western blot of phospho- and total H2AX following RNAi-

mediated TIMELESS depletion for 72 hours with and without MMC treatment for 48 hours in 

HCT116 cells. (Fig. 4.26A was completed in collaboration with Danielle Frodyma). 
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Fig. 4.30: TIMELESS depletion in conjunction with DNA damaging agents (5-FU and 

oxaliplatin). (A and B) Cell viability (A) as measured by alamarBlue and western blot (B) of 

γH2AX in HCT116 cells following 72-hour TIMELESS depletion in combination with 1 μM 5-

FU or OXAL treatment for 48 hours. (C) Dose-response curves for 5-FU and oxaliplatin (OXAL) 

in HCT116 cells treated for 48 hours.   
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combination treatment, the effect of the combination demonstrated less than additive effects. 

Specifically, in HCT116 cells, both TIMELESS depletion or IR treatment alone dramatically 

reduced cell viability; however, the combination barely outperformed either of these treatments 

individually based on viability (Fig. 4.31A).  The combination of TIMELESS depletion with IR 

did increase the level of γH2AX further than either TIMELESS depletion or IR treatment alone 

(Fig. 4.31B). Taken together these results suggest there may be limiting returns for inducing more 

and more DNA damage or a longer assay may be needed for the full effects of these combination 

treatments to be realized.  

Combination therapy with TIMELESS depletion and cell cycle checkpoint inhibitors 

Since TIMELESS depletion induces G2/M arrest, the potential for TIMELESS depletion 

to synergize with checkpoint inhibition was examined. With individual drug treatment, CHK1 

inhibition was more lethal than Wee1 inhibition in all cell lines except HCT15 cells, which were 

more sensitive to the Wee1 inhibitor (Fig. 4.32). Cell viability was decreased with TIMELESS 

depletion in HCECs, but combination treatment with Wee1 or CHK1 inhibitors reduced this 

effect (Fig. 4.32). In contrast, TIMELESS depletion in combination with Wee1 or CHK1 

inhibition further decreased cell viability than either perturbation alone in all the colon cancer cell 

lines tested except for HCT15 cells (Fig. 4.32). Inhibition of Wee1 or CHK1 actually increased 

the percentage reduction in viability following TIMELESS depletion suggesting at least additive, 

if not synergistic, effect with this combination in all of the colon cancer cell lines tested, but an 

inhibitory effect in HCECs (Fig. 4.32B).  Interestingly, TIMELESS depletion has no effect in 

HCT15 cells with no drug treatment or Wee1 inhibition; however, CHK1 inhibition sensitized 

HCT15 cells to TIMELESS depletion.  

Conclusions 

This and previous studies have demonstrated that TIMELESS is highly expressed in 

multiple types of cancer 204,206,207,210,216,217. Despite the high prevalence of TIMELESS  
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Fig. 4.31: TIMELESS depletion in conjunction with ionizing radiation in a panel of colon 

cancer cell lines. (A and B) Viability (N=6) (A) and Western blot (B) of p53, phospho- and total- 

H2AX following RNAi-mediated TIMELESS depletion for 96 hours with and without a single 

dose treatment of 5 or 3 Gy ionizing radiation 48 hours prior to collection in a panel of colon 

cancer cells and HCT116 cells, respectively.  
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  Fig. 4.32: TIMELESS depletion sensitizes colon cancer cells to Wee1 and CHK1 inhibition. (A) Cell 

viability in a panel of colon cancer cells following RNAi-mediated depletion of TIMELESS with Wee1 

inhibition or CHK1 inhibition. Viability was measured by alamarBlue® assays 96 hours after 

transfection. 300 nM of Wee1 (MK-1775) or CHK1 (AZD7762) inhibitor was added 48 hours after 

transfection. Data are normalized to the DMSO treated control transfection (far left bar) and are shown as 

mean ± SD. (N=6). The lower case letters denote a statistical significance (one-way ANOVA with 

Bonferroni’s Multiple Comparison test for the specified comparisons) with a p value less than 0.001 for 

the following comparisons: a – DMSO-treated siCont vs DMSO-treated siTIM; b – MK-1775-treated 

siCont vs MK-1775-treated siTIM; c – AZD7762-treated siCont vs AZD7762-treated siTIM; d – DMSO-

treated siTIM vs MK-1775-treated siTIM; e – DMSO-treated siTIM vs AZD7762-treated siTIM.  
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Fig. 4.32 Continued: TIMELESS depletion sensitizes colon cancer cells to Wee1 and CHK1 

inhibition. (B) Same data as A, but data are normalized to the control transfection for each drug 

treatment to isolate the subsequence effect of TIMELESS depletion on top of the drug-mediated 

effects. (N=6). The lower case letters denote a statistical significance (one-way ANOVA with 

Bonferroni’s Multiple Comparison test for the specified comparisons) with a p value less than 

0.001 for the following comparisons: a – DMSO-treated siCont vs DMSO-treated siTIM; b – 

MK-1775-treated siCont vs MK-1775-treated siTIM; c – AZD7762-treated siCont vs AZD7762-

treated siTIM; d – DMSO-treated siTIM vs MK-1775-treated siTIM; e – DMSO-treated siTIM vs 

AZD7762-treated siTIM.   



140 
 

 

overexpression, there is a distinct lack of mutations in TIMELESS in cancer 204 suggesting that 

individual mutations are unlikely to increase TIMELESS activity and instead TIMELESS 

expression determines its level of activity. These results demonstrate oncogenic Ras promoted 

TIMELESS overexpression in cancer. Downstream of Ras this effect is mediated by ERK or 

mTOR depending on the colon cancer cell line and is possibly tied to the ability of ERK or 

mTOR to modulate translation. However, TIMELESS expression has been shown to vary with 

cell cycle, with the highest levels being seen in the S and G2 phases 182. Therefore, it is possible 

that ERK or mTOR activation promote TIMELESS expression as a side effect of increasing cell 

proliferation and subsequently increasing the percentage of cells in S and G2 phases. Consistent 

with the hypothesis that proliferation rate affects TIMELESS expression levels, as HCECs 

become more confluent, TIMELESS expression decreases; however, in HCT116 cells, 

TIMELESS expression is constitutively high regardless of confluency. TIMELESS is also 

aberrantly expressed in colon cancer as it is constitutively expressed in HCT116 cells and has lost 

the circadian expression that is present in HCECs, which could also be a result of oncogenic 

signaling overriding the normal regulation of TIMELESS expression to drive its constitutive 

expression.  

It is also likely that TIMELESS expression is increased through other mechanisms since 

TIMELESS is overexpressed, at least at the mRNA level, in several cancers that are not 

commonly driven by oncogenic Ras including breast, uterine, ovarian, and cervical cancers (Fig. 

4.4A). Additionally, while the exogenous expression of mutant Ras in HCECs increased the level 

of TIMELESS expression, the colon cancer cell lines still maintained a much higher level of 

TIMELESS expression. Previous reports have hypothesized TIMELESS expression is increased 

as a result of decreased DNA methylation in breast cancer 217, but this was not seen in colon 

cancer. Alternatively, the TIMELESS promoter contains an E-box sequence such that CLOCK 

and BMAL1, the driving circadian rhythm transcription factors, are likely to promote the 

transcription of TIMELESS; however, this has not yet been demonstrated in mammalian cells. 
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Additionally, the presence of this E-box opens the possibility that MYC could drive the 

expression of TIMELESS as MYC has recently been shown to disrupt the normal circadian-

regulated expression of REV-ERBα and promote its constitutive expression by aberrantly binding 

to the E-box within its promoter 202.  

The increase in TIMELESS expression in multiple cancers suggests that TIMELESS may 

ubiquitously promote cell proliferation by supporting high fidelity DNA synthesis, DNA damage 

repair, and cell cycle advancement likely through numerous mechanisms as several potentially 

contributing mechanisms have already been described 114,160,162-165,168,169,173,175,207. Interestingly, 

TIMELESS has been shown to be required for the maintenance of cancer-associated viral 

genomes as well 176,177, which could provide some rationale for its particularly high expression in 

cervical cancer, which is almost always driven by human papillomavirus (HPV).  

While TIMELESS depletion increased γH2AX and triggered the same downstream 

activation of CHK1 and inhibition of CDK1 in HCT15 cells as it did in the other cell lines 

examined (Fig. 4.24), TIMELESS depletion did not reduce HCT15 cell viability (Fig. 4.17). This 

could be due to dramatically disrupted and non-functioning cell cycle checkpoint function in 

these cells as HCT15 cells have a high basal level of P-CDK1 (Fig. 4.24), yet maintain a high 

proliferative rate. HCT15 cells have an abundance of genetic alterations that disrupt DNA 

damage repair and cell cycle checkpoint pathways including mutations in ATM, ATR, BRCA1, 

BRCA2, CHK2, and FANCA. These or other alterations that promote cell cycle advancement in 

the presence of DNA damage could allow cells to lose their dependency on TIMELESS. 

Similarly, SW480 cells had high basal level of P-CHK1 and demonstrated a limited capacity to 

phosphorylate and inactivate CDK1 even following a robust induction of γH2AX (Fig. 4.24) 

suggesting these cells may also contain additional alterations that suppress DNA damage 

checkpoint signaling cascades and subsequent cell cycle arrest. Elucidating the mechanisms by 

which HCT15 cells promote cell cycle advancement even in the presence of phosphorylated and 

inactivated CDK1 and SW480 cells limit CDK1 inactivation by CHK1 may reveal novel 
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mechanisms with potential therapeutic implications.  

Despite the potential for some cancer cells to be insensitive or develop insensitivity to 

TIMELESS depletion, four of the colon cancer cell lines that were tested in this study 

demonstrated a substantial requirement for TIMELESS in order to maintain a high level of 

proliferation. G2/M arrest was particularly high in HCT116 and RKO cells, two colon cancer cell 

lines with wildtype p53. Several previous studies have demonstrated there are both p53-

independent and p53-dependent pathways in cell cycle checkpoints following DNA damage. This 

suggests the p53-wildtype cells may trigger both p53-independent and p53-dependent pathways 

thereby inducing a more robust cell cycle arrest as compared to the mutant p53 cell lines (HCT15, 

SW480, and SW620) that only trigger p53-independent pathways.  

Interestingly, ERK inhibition increases γH2AX, but downstream CHK1 phosphorylation 

does not occur. This could be the result of decreased RSK phosphorylation as RSK has previously 

been shown to phosphorylate CHK1 at S280, which is required for CHK1 nuclear localization, a 

prerequisite for ATM or ATR mediated phosphorylation at S345 in response to DNA damage. 

Additionally, ERK inhibition increases γH2AX independent of TIMELESS as exogenous 

expression of TIMELESS does not reduce γH2AX levels.  

TIMELESS appears to have a highly conserved functional role in cells that could make it 

difficult to target therapeutically with a reasonable therapeutic index. However, HCECs 

expressed TIMELESS at lower levels and demonstrated less sensitivity to TIMELESS depletion. 

This could be a result of a slower proliferation rate, a difference that could also be exploited in 

vivo and that is the only means of cancer selectivity for several clinically approved 

chemotherapeutics. Targeting TIMELESS directly may be particularly efficacious in tumors that 

possess other defects in DNA damage repair pathways as they may be more dependent on 

TIMELESS to prevent or repair DNA damage. Unfortunately, combination treatment with 

TIMELESS depletion and DNA damaging chemotherapeutics or ionizing radiation had only 

small incremental increases in efficacy over single treatments. This suggests there may be an 
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upper limit for the efficacy of DNA damaging agents or a minimum amount of DNA damage that 

is required for cell cycle arrest such that once this level is reached further induction of DNA 

damage has little or no effect. Alternatively, the combinatory effects of TIMELESS depletion in 

conjunction with DNA-damaging chemotherapeutics or ionizing radiation might only be seen 

with longer treatment regimens to allow for the effects of DNA damage accumulation to be fully 

realized. Additional studies using other DNA damaging agents and/or longer experimental 

courses may reveal a potential for TIMELESS depletion to complement currently used cancer 

therapies.  

Combination therapy with TIMELESS depletion and either Wee1 or CHK1 inhibition 

demonstrated at least additive effects in the colon cancer cell lines, but not in HCECs, suggesting 

this combination may be an efficacious strategy for the treatment of colon cancer. Interestingly, 

the CHK1 inhibitor AZD7762 did not decrease HCT15 viability alone, but sensitized the HCT15 

cells to TIMELESS depletion.  

Recent studies have also demonstrated increased efficacy and decreased side effects 

when chemotherapeutics are dosed in a circadian fashion 195,203,223-225 suggesting a window of time 

exists when cancer cells, but not normal cells are proliferating and therefore even more sensitive 

to chemotherapeutics. TIMELESS has been shown to be circadianly expressed in normal tissue; 

however, it is likely constitutively overexpressed in cancer due to oncogene-driven expression. 

This opens the possibility that a circadian dosing scheme could increase the therapeutic index of 

TIMELESS inhibition.  

This may not be necessary, however, as TIMELESS has previously been shown to 

physically interact with PARP at sites of DNA damage and PARP inhibitors trap TIMELESS 

with PARP at DNA lesions 193 effectively sequestering and possibly preventing TIMELESS from 

performing its other functions in the cell. Clinical trials with PARP inhibitors have demonstrated 

favorable side effect profiles such that these inhibitors are clinically approved for the treatment of 

multiple cancers, which provides optimism that, if developed, direct TIMELESS inhibitors may 
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also be efficacious and have minimal side effects in patients. However, the effects of PARP 

inhibitors on TIMELESS have not been evaluated, and the high level of TIMELESS expression 

in cancer may mitigate any effect from sequestration of TIMELESS with PARP at sites of DNA 

damage. Additional work is needed to evaluate if PARP inhibitors functionally inhibit 

TIMELESS and if this mechanism also contributes to their efficacy.  

To summarize, oncogenic Ras, through increased ERK activation, contributes to the 

overexpression of TIMELESS in cancer. TIMELESS reduces the accumulation of DNA damage 

thereby supporting cell proliferation by preventing cell cycle checkpoint-induced G2/M arrest. 

These results demonstrate a clear role for TIMELESS in cancer and suggest that further 

examination of the link between circadian rhythm and cell cycle regulation may reveal novel 

approaches for the development of cancer therapeutics.  TIMELESS represents only one of many 

therapeutic targets and associated vulnerabilities identified from the FUSION screen. Future work 

validating and characterizing additional targets will increase our understanding of oncogene-

induced vulnerabilities in cancer and provide viable, novel approaches for the development of 

selective cancer therapeutics. 
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Chapter 5: WDR5 supports colon cancer cells by promoting 

methylation of H3K4 and suppressing DNA damage 

 

 

 

 

 

 

 

 

 

Portions of the material covered in this chapter are the subject of a manuscript  

submitted for publication by Neilsen BK et al. 
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Introduction 

WDR5 (WD-repeat containing protein 5) is a WD40-repeat containing seven-bladed 

propeller protein. WDR5 was initially identified as being a BMP2 inducible gene and was 

originally named BIG-3 (BMP2-induced 3-kb gene protein). Early studies demonstrated that 

WDR5 dramatically increased osteoblastic differentiation and chondrocyte differentiation 

downstream of BMP2 226,227. Several additional studies have further demonstrated the role WDR5 

plays in skeletal development, but the role of WDR5 has been expanded since its identification, 

and it has been shown to function ubiquitously in human tissues.  

COMPASS Complex 

Importantly, WDR5 serves as a core component of several complexes within the cell 228. 

It has been most well-studied for its role in the SET/MLL COMplex of Proteins ASsociated with 

Set1 (COMPASS), which serves to mono-, di-, and tri-methylate Histone 3 Lysine 4 (H3K4Me1-

3), 229-231. WDR5 has been shown to contribute to recognition of specific H3K4Me3 targets, 

which serves to promote increased transcription of select target genes as the H3K4 methylation 

often occurs within enhancer or promoter regions 232. WDR5 has a significant role in 

development as it regulates embryonic stem cell pluripotency, self-renewal, and reprogramming 

by modulating the transcription of targets that promote stem cell-like states 233-236. In particular, as 

part of the COMPASS complex, WDR5 has been shown to regulate several HOX genes as well 

as SOX9 expression 235,237-239. Of note, WDR5 can also promote its own expression through a 

positive feedback loop where increased H3K4Me3 within the WDR5 promoter increases its 

transcription 239.  

The SET/MLL COMPASS Complex consists of one of the KMT2/MLL proteins 

(KMT2A/MLL1, KMT2B/MLL2 or MLL4, KMT2C/MLL3, KMT2D/MLL4 or MLL2, 

KMT2F/SETD1A, or KMT2G/SETD1B) in addition to a common subcomplex that includes 

WDR5, RBBP5, Ash2L, DPY30 (WRAD subcomplex) 240. Interestingly, the catalytic component 
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of this complex, the KMT2/MLL proteins, have very little activity outside of the complex, and 

thus require the common WRAD subcomplex and COMPSS complex formation to be 

functionally active. COMPASS complex formation serves to dramatically increase the affinity of 

the KMT2/MLL protein for DNA and increases its catalytic activity 241.  

KMT2/MLL family proteins, while highly related, have both distinct and redundant 

functions 242. In mammals, these six proteins form three pairs of paralogs: KMT2A/MLL1 and 

KMT2B/MLL2; KMT2C/MLL3 and KMT2D/MLL4; and KMT2F/SETD1A and 

KMT2G/SETD1B. While all KMT2/MLL proteins bind to the WRAD subcomplex, each pair 

also has unique additional complex members, which may contribute to their unique functions and 

specific target genes 241.  

The COMPASS complex primarily functions to add methyl groups to H3K4, which 

generally promotes transcription by recruiting transcription factors and coactivators to promoters 

while also interfering with the addition of epigenetic modifications that would repress 

transcription 241. However, the location of methylation (in promoters or enhancers) and degree of 

methylation (mono-, di-, and tri-methylation) varies between KMT2/MLL proteins and can be 

tissue-specific. In general, monomethylation is most often associated with enhancers and tri-

methylation with promoters and transcription start sites in genes that are actively being 

transcribed 241.   

KMT2A/MLL1 and KMT2B/MLL2 have specific or limited methylation activity and are 

most commonly associated with di- or tri-methylation of H3K4. Specific target genes of 

KMT2A/MLL1 and KMT2B/MLL2 include the HOX genes where increasing H3K4Me3 

increases their transcription 241. KMT2A/MLL1 is commonly chromosomally translocated or 

mutated in leukemia. In normal cells, KMT2A/MLL1 is required for hemopoietic stem cell 

maintenance at least in part by promoting the expression of hemopoietic stem cell transcription 

factors HOXA9, PRDM16, PBX1 by increasing H3K4Me3 and H4K16Ac in or near these target 

genes, which increases their transcription. KMT2B/MLL2 is not chromosomally translocated in 
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leukemia and cannot replace KMT2A/MLL1 in these cancers likely due to its lower affinity for 

CpG sequences 243,244. However, a recent report has indicated that maintenance of 

KMT2B/MLL2, and not KMT2A/MLL1, is required in KMT2A/MLL1-rearranged leukemia 245. 

KMT2B/MLL2 is required for H3K4Me3 maintenance at promoters and may limit trimethylation 

at Histone 3 Lysine 27 (H3K27Me3), which is inhibitory for transcription, thereby modulating 

the expression of bivalent promoters 241.  

KMT2C/MLL3 and KMT2D/MLL4 demonstrate redundancy and both maintain 

H3K4Me1 levels on enhancers 241,246,247 and recruit CBP/p300 to enhancers 247,248; however, either 

knockout alone is embryonic/perinatal lethal in mice suggesting that neither one is able to fully 

compensate for the loss of the other. Traditionally, KMT2C/MLL3 and KMT2D/MLL4 have 

been considered tumor suppressors in leukemia and have been implicated as such in solid tumors 

as well 241. Knockdown of KMT2C/MLL3 or KMT2D/MLL4 impaired differentiation of 

hematopoietic stem/multipotent progenitor cells and increased the prevalence of progenitor cells 

249 250. These defects may be caused by increased oxidative stress due to the reduced expression of 

KMT2D/MLL4-dependent genes that protect cells from oxidative stress 250. However, deletion of 

KMT2D/MLL4 in an Acute Myeloid Leukemia (AML) model system, as opposed to most studies 

that are performed in lymphoma models, demonstrated limited effects suggesting there may be 

context or tissue-specific effects of KMT2D/MLL4 250. Additionally, KMT2C/MLL3 and 

KMT2D/MLL4 contribute to the mono-methylation of H3K4 in collaboration with hormone 

receptors, and thus may play a pro-tumorigenic role in hormone-driven tumors 241 251 252-254.  

KMT2F/SETD1A and KMT2G/SETD1B are highly related, but phenotypes from 

KMT2F/SETD1A knockouts demonstrate global decreases in mono-, di-, and tri-methylation on 

H3K4, while KMT2G/SETD1B knockouts do not suggesting KMT2F/SETD1A may be the 

dominant allele and capable of compensating for the loss of KMT2G/SETD1B 255. Alternatively, 

their functions may not be fully redundant with KMT2F/SETD1A preferentially affecting H3K4 

methylation and KMT2G/SETD1B potentially contributing to a different, unrecognized function. 
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Functionally, changes in methylation on H3K4 downstream of KMT2F/SETD1A affect target 

gene expression, which has been shown to affect erythroid cell differentiation as 

KMT2F/SETD1A conditional knockouts demonstrated decreased expression of Gata1 and Tal1 

corresponding to decreased H3K4Me3 at their promoters 256.  

While the significance of KMT2A/MLL1 rearrangements in leukemia has been 

established for many years 257-259, the specific effects of unique rearrangements and mutations, 

and the mechanisms behind their pro-tumorigenic behavior are still being elucidated and 

characterized 259. Interestingly, examining four specific mutations within the catalytic SET 

domain of KMT2A/MLL1 that were identified in cancer demonstrated that these mutations can 

decrease or increase KMT2A/MLL1 baseline activity and can modulate the augmented effect of 

complex formation on DNA binding affinity and enzymatic activity 260. However, the H3K4 

methyltransferase domain in KMT2A/MLL1 is often excluded from KMT2A/MLL1 fusion 

proteins, yet the fusion protein still modulates transcriptional elongation. This suggests a broader 

role for KMT2/MLL proteins in addition to altering specific chromatin modifications 261. 

KMT2A/MLL1 and KMT2A/MLL1-fusion proteins have also been shown to have distinct 

chromatin target sites, which may be a consequence of the KMT2A/MLL1:WDR5 interaction 262. 

This highlights the complexity and potentially tumor-specific effect of KTM2/MLL proteins in 

cancer. More recently, the surprisingly high frequency of KMT2/MLL mutations in solid tumors, 

including breast, prostate, pancreas, stomach, and colon has been recognized. In addition to being 

commonly mutated, these proteins are often overexpressed in cancer, and their expression has 

largely been associated with protumorigenic effects and worse patient outcomes (pancreatic 

cancer) 263.  

In general, within cancer KMT2/MLL proteins have been shown to promote 

transcriptional reprogramming through increased methylation at H3K4 264 and through 

interactions with commonly recognized oncogenic transcription factors. Specific targets of 

KMT2/MLL epigenetic regulation have been shown to include hTERT (KMT2A/MLL1, in 
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melanoma) 265 , several HOX genes (KMT2A/MLL1) 266, ER target genes in breast cancer 

(KMT2D/MLL4) 254,267, and androgen receptor target genes in prostate cancer (KMT2A/MLL1 

and WDR5) 268,269. Inhibition or depletion of KMT2D/MLL4 in breast cancer or KMT2A/MLL1 

in prostate cancer decreased the expression of important transcriptional targets thereby inhibiting 

cancer cell growth 254,269. In pancreatic cancer, KMT2C/MLL3 and KMT2D/MLL4 depletion 

caused downregulation of genes related to cell cycle advancement and proliferation based on 

microarray and gene set enrichment analysis 263. The variable effects of individual KMT2/MLL 

family member inhibition or depletion in various types of cancer supports the idea that 

KMT2/MLL proteins have distinct roles and targets that are context- and tissue-specific.  

In colon cancer, KMT2D and KMT2C mutations are common and are present in 10% of 

tumors (Table 5.1, 270, COSMIC v83). In contrast, the common components of the COMPASS 

complex were rarely mutated (Table 5.1). Additionally, many of the commonly used colon cancer 

cell lines harbor multiple mutations within KMT2/MLL family members (Table 5.2, COSMIC 

Cell Lines Project,271). However, the effects of these mutations are still being debated. While 

often labelled as tumor suppressors, evidence demonstrating a protumorigenic role for KMT2C 

and KMT2D in solid tumors has recently been reported. For example, one study demonstrated 

that KMT2D promoted global K3K4 monomethylation in transcriptional enhancers, and depletion 

of KMT2D in two colon cancer cell lines (HCT116 and DLD-1) decreased cancer cell 

proliferation and migration 264.  

Recent studies have identified a correlation between H3K4Me3 enrichment, 

transcriptional fidelity, and enhanced elongation rates 272,273. This suggests a potential role for the 

COMPASS complex in promoting DNA synthesis while preventing DNA damage during 

replication, which could ultimately support cell proliferation. Recent studies have specifically 

demonstrated that KMT2A/MLL1 as well as WDR5 are required for proper chromosome 

congression and spindle assembly during mitosis, which may affect chromosomal stability 274, 

and a KMT2B/MLL2 mutation resulted in genome instability 275. In another report, AML driven  
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Gene Percent 

Mutated 
Samples 

(Mutated/Tested) 

KMT2C/MLL3 13% 323/2478 

KMT2D/MLL2 11% 243/2209 

KMT2A/MLL 7% 152/2178 

KMT2B/MLL4 7% 150/2130 

KMT2F/SETD1A 6% 116/2109 

KMT2G/SETD1B 3% 67/2098 

RBBP5 2% 32/2109 

WDR5 1% 28/2109 

ASH2L 1% 25/2109 

DPY30 <1% 6/2098 
 

Table 5.1: Frequency of KMT2/MLL Mutations in Colon Adenocarcinoma (COSMIC v83). 
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Cell Line KMT2A KMT2B KMT2C KMT2D KMT2F KMT2G WDR5 

HCT116  
D550fs

2 
G1881fs

1 
L2136fs

2 

Q419R
1 

I1344fs
1,2 

V160M
2 

R2173fs
1
 

R2443fs
1,2 

 
G1578fs

2 Y260H
1,2 

HCT15 
T771fs

2 
 S1062Y

1,2
 

V2178A
1 

R226W
2 

R1125H
2 

A1989T
2 

G3438D
1,2 

S3543N
1,2 

P1152H
2 

E1244D
1 

E1517D
1,2 

P1931H
2 

 D159N
2 

Q780H
2 

 

SW480    
D1633N

2    

SW620  G273S
2 

G292V
1,2 

     

RKO 
T771fs

2 
S873fs

2 
D877fs

1 

A905T
2 

R1579H
2 

D1819fs
2 

P1823fs
1 

G2636C
1 

R3853W
2 

R916H
1 

R1189H
1,2 

L1327P
1 

L1600P
1,2 

G1960fs
2 

P2550fs
2 

G3465*
1,2 

L4516P
1 

R4964fs
2 

L5056P
1,2 

A1325T
2 T1657A

2 V217Ins
1 

LoVo  R525W
1,2 

P2255L
2 

C1013R
1
 

E1313K
1 

H77fs
1,2 

P647fs
1,2 

P648fs
1,2 

T3548I
2 

 
V1404I

2 G277D
1,2 

T84 None
1,2 

 

Table 5.2: Frequency of KMT2/MLL and WDR5 Mutations in Colon Cancer Cell Lines. 
  

1=COSMIC 
 2=Mouradov et al 

 Note: SW480 are not included in COSMIC 
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by KMT2A/MLL1 fusions were shown to be proficient in DNA-damage response (DDR) leading 

PARP inhibitor resistance. However, depleting or inhibiting cells of HOXA9, a downstream 

target of KMT2A/MLL1, caused DDR impairment and PARP inhibitor sensitization 266. Together 

these data suggest a role for this complex in supporting DNA replication and maintaining DNA 

fidelity thereby promoting cancer cell survival and proliferation. Consistent with this hypothesis, 

depletion of KMT2D/MLL4 in multiple pancreatic cancer cell lines increased their 

responsiveness to 5-FU 263 suggesting a possible role for KMT2/MLL or COMPASS complex 

inhibition in chemotherapy or radiation sensitization.  

The role of WDR5 outside of the COMPASS Complex 

In addition to serving as a required component of the COMPASS complex, new evidence 

shows that WDR5 participates in several other protein complexes such as the CH8-containing 

ATP dependent chromatin remodeling complexes 276, human acetyltransferase complexes such as 

MOF (Males absent On the First) and ATAC (Ada Two-A Containing) 277-279, and NSL (Non-

Specific Lethal) complex in Drosophila 228. WDR5, as a component of a CHD8-containing 

complex, regulates the expression of β-catenin target genes 276. WDR5 has also been shown to 

regulate genes that are expressed in a circadian manner by supporting PER-mediated 

transcriptional repression through histone methylation within the promoter region of clock-

regulated genes 280. WDR5 also plays an important role in the self-renewal of embryonic stem 

cells and the maintenance of active chromatin for pluripotency genes 235,281 and is required to 

induce pluripotent stem cell generation from differentiated somatic cells 233. This may be the 

result of WDR5 binding to RNA as further studies identified a RNA-binding pocket in WDR5 

through which WDR5 interacts with more than a thousand RNA including several lncRNAs 

known to be important for embryonic stem cell gene expression 234. 

WDR5 has also been shown to physically interact with MYC and promote transcription 

of a subset of MYC target genes 282-286 287. This synergistic increase in transcription following 

MYC and WDR5 interaction is thought to contribute to tumorigenesis, particularly in 
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neuroblastoma and other MYC-driven tumors. Interestingly, a study using patient-derived 

xenografts of pancreatic cancer demonstrated the WDR5:Myc interaction in vivo and showed this 

interaction prevented DNA damage accumulation 287. Additional reports have shown that WDR5 

regulated DNA replication and chromosomal polyploidy 288 as well as abscission through 

localization to the midbody 289. The induction of DNA damage following loss of WDR5 could be 

independent of or a result of its role in the COMPASS complex as there are multiple reports 

suggesting that depletion of KMT2A/MLL1 or KMT2B/MLL2 induce DNA damage 263,266,272-275. 

WDR5 has also been shown to increase transcription of cyclins, which serve to promote cell cycle 

progression and increase cell proliferation 290,291. 

Cancer 

Recent studies have also demonstrated a role for WDR5 in cancer based on its increased 

expression and requirement for cancer cell survival. Specifically, expression of WDR5 is 

increased in prostate cancer tissues 268, leukemia 292, and bladder cancer 293. WDR5 promotes 

survival, proliferation, and chemoresistance in bladder cancer 293. WDR5 overexpression is 

associated with worse patient outcomes in breast cancer and hepatocellular carcinoma 291,294. In 

breast cancer, WDR5 promotes cell survival 295 and tamoxifen resistance 296. WDR5 has also been 

shown to physically interact with MYC and promote target recognition contributing to 

tumorigenesis 282,284. In pancreatic cancer, WDR5 promotes cell proliferation, survival, and 

migration 297. As expected, WDR5 appears to play a role in leukemia as it is overexpressed, 

promotes H3K4Me3, and depletion of WDR5 decreases cell proliferation, increases cell death, 

and reduces H3K4Me3 on target gene promoters 292.  

In general, the mechanism by which WDR5 supports cancer cells has been shown to be 

through increased target gene expression. For example, WDR5 has been shown to promote 

epithelial to mesenchymal transition (EMT) by interacting with HDA3 to promote hypoxia-

induced EMT by promoting mesenchymal gene activation 298. WDR5 promotes colon cancer 

metastasis by binding to ZNF407 299. WDR5 has also been shown to promote both ErbB2 and 
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NOTCH expression and signaling through a H3K4Me3-dependent manner to promote mammary 

tumorigenesis 295,300, and depletion of WDR5 reduced ErbB2 expression and cooperated with 

trastuzumab or chemotherapy to reduce ErbB2-positive breast cancer cell growth 295. WDR5 has 

been shown to cooperate with HOTTIP to promote HOXA9 in prostate and pancreatic cancer 

301,302 and HOXA13 expression in esophageal and gastric cancer cells by increasing H3K4Me3 on 

their promoters 303,304. Increased HOX protein expression promoted aggressive cellular 

phenotypes as cells demonstrated increased invasion and migration 301. In bladder cancer, WDR5 

promotes global transcription by increasing H2A.Z incorporation 305 and increases the 

transcription of cyclin B1, cyclin E1, cyclin E2, UHMK1, MCL1, BIRC3 and Nanog via 

increased histone H3 lysine 4 trimethylation 306 293,306. WDR5 promotes gastric tumorigenesis 

through multiple mechanisms including upregulation of cyclin D1 290,307. Based on its widespread 

overexpression and pro-tumorigenic role in cancer, inhibition of WDR5 has therapeutic potential 

in multiple cancers.  

Therapeutic Targeting of WDR5 

After multiple reports characterizing the structure and binding domains of WDR5 that 

included the crystal structure of WDR5 in complex with KMT2A/MLL1 Win motifs 308,309, MYC 

Mb111b peptide 284, and histone H3K4 peptides 310, numerous groups have designed inhibitors of 

WDR5. Successful inhibitors have largely targeted the WDR5:MLL protein:protein interaction 

260,311-320 with some groups demonstrating selective targeting of KMT2A/MLL1:WDR5 318 

interactions or KMT2F/SETD1A:WDR5 314 interactions. Further, use of a WDR5:MLL inhibitor, 

OICR-9429 in C/EBP N-terminal acute myeloid leukemia cells inhibited proliferation and 

induced differentiation 321.  More recent attempts have largely focused on targeting other WDR5 

protein interactions with the WDR5:MYC interaction being a primary target, but these have not 

yet been successful.  

Results  
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Preliminary Biological Validation of WDR5 

Based on the screen results, the seven-bladed beta propeller protein WDR5B was 

identified as a hit. Unfortunately, there is very little known about WDR5B. In contrast, the 

highly-related protein WDR5 is well-established in the literature, has validated reagents, and 

several inhibitors targeting this protein have been developed.  

Initial biological validation of targets identified using FUSION was performed by 

assessing cancer cell growth or viability in anchorage-independent conditions following RNAi-

mediated target depletion by measuring cell growth on a polyHEMA-coated plate 214,215 using 

CellTiter-Glo® Luminescent Cell Viability Assay, as previously described 3. The smartPool of 

four siRNA oligos (Dharmacon) targeting KSR1, WDR5, or WDR5B was used to deplete cells of 

the target. Growth in anchorage-independent conditions was reduced substantially with KSR1 or 

WDR5 depletion, but not WDR5B depletion in HCT116 colon cancer cells (Fig. 5.1A).  

Repeating the WDR5 knockdown in two colon cancer cell lines, HCT116 and HCT15, 

demonstrated a robust decrease in HCT116 cell viability, but a relatively small decrease in 

viability in HCT15 cells (Fig. 5.1B). HCECs are unable to proliferate in an anchorage-

independent environment and were therefore not assayed in this manner. To compare the effects 

of WDR5 depletion in colon cancer cells to immortalized, yet non-transformed HCECs, RNAi-

mediated depletion of WDR5 was completed under normal plating conditions and viability was 

measured using alamarBlue. WDR5 depletion in HCECs, HCT116, and HCT15 cells for 72 hours 

reduced viability in all three cell lines, but did so to varying degrees with the HCT116 cells 

decreasing viability by more than 80% and HCEC and HCT15 cells decreasing by 20% and 25%, 

respectively (Fig. 5.1C). Additionally, apoptosis was significantly upregulated in HCT116 cells 

depleted of WDR5 where nearly 40% of the cells resided in the sub-G1 peak following propidium 

iodide staining and flow cytometry analysis (Fig. 5.1D). In contrast, the HCEC and HCT15 cells 

demonstrated no increase in sub-G1 peak following loss of WDR5. HCT15 cells did demonstrate 

a robust increase in G1 peak; however, representing a cell cycle arrest (Fig. 5.1E).  
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Fig. 5.1: Preliminary biological validation of WDR5. (A) Viability of HCT116 colon cancer 

cells measured using CellTiter-Glo® following RNAi of KSR1, WDR5, or WDR5B that were re-

plated on polyHEMA-coated plates 48 hours following transfection to simulate anchorage-

independent conditions. (N=6). (B) Viability of HCT116 and HCT15 colon cancer cells measured 

using CellTiter-Glo® following RNAi of WDR5 that were replated on polyHEMA-coated plates 

48 hours following transfection to simulate anchorage-independent conditions. (N=6). (C) 

Viability of HCECs, HCT116, and HCT15 cells measured using alamarBlue® following RNAi-

mediated WDR5 depletion for 72 hours in normal culture conditions. (N=6). (D) Apoptosis 

(percent of cells in the sub-G1 peak) in HCEC, HCT116, and HCT15 cells after WDR5 depletion 

by RNAi for 72 hours. (N=3). (E) G1 arrest (percent of cells in the G1 peak) in HCT15 cells after 

WDR5 depletion by RNAi for 72 hours. Apoptosis and cell cycle were evaluated using propidium 

iodide staining followed by flow cytometry analysis. Data are shown as mean ± SD. (N=3).  
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A single oligo targeting WDR5 increases p53 stability in HCT116 cells 

To elucidate the mechanism behind the massive increase in apoptosis in HCT116 cells 

following WDR5 depletion that is not seen in HCECs or HCT15 cells, cells were depleted of 

WDR5 using the smartPool oligos for 72 hours and assessed for expression of pro-apoptotic 

proteins. PARP cleavage, p53, and downstream p53 effectors (p21, MDM2, PUMA) were 

increased following WDR5 depletion in HCT116 cells, but not HCECs or HCT15 cells (Fig. 5.2). 

Of note, HCEC and HCT116 cells have wild-type p53, but HCT15 cells have mutated p53, which 

explains the constitutively high level of p53 expression in HCT15 cells and could explain why 

WDR5 depletion in HCT15 cells does not reduce their viability.   

A common mechanism by which p53 expression is increased in cells is by increasing 

protein stability following DNA damage. Therefore, the effect of WDR5 depletion on p53 protein 

stability was examined in HCT116 cells. Preliminary studies found the half-life of p53 was 

approximately 2 hours in these cells in stable conditions, therefore cells were treated with 

cycloheximide for four hours to allow for approximately 75% p53 protein degradation. HCT116 

cells depleted of WDR5 using the smartPool oligos and treated with cycloheximide (100 μg/mL) 

to prevent translation of new proteins, demonstrate p53 is significantly stabilized with WDR5 

depletion (Fig. 5.3A). To confirm the effect of WDR5 on viability is p53 mediated, HCT116 cells 

that lack p53 (HCT116 p53-/-) were utilized. HCT116 cells without p53 were less sensitive to 

WDR5 depletion suggesting the effects of WDR5 knockdown in HCT116 cells are, at least in 

part, p53-mediated (Fig. 5.3B-D).   

Based on previous studies, known mechanisms by which WDR5 could be acting include 

serving as part of the COMPASS complex to facilitate histone modifications that support tumor 

maintenance or physically interacting with MYC to promote tumorigenesis. However, MYC 

depletion decreased p53 expression (Fig. 5.4A) and OICR-9429, an inhibitor of 

WDR5:KMT2/MLL interaction and COMPASS complex formation, had no effect on p53 (Fig. 

5.4B).  
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Fig. 5.2: WDR5 depletion Induces p53 expression and PARP cleavage in HCT116 colon 

cancer cells. (A) Immunoblot of WDR5, PARP, p53, and downstream p53 targets (MDM2, 

PUMA, and p21) following RNAi-mediated WDR5 depletion for 72 hours in HCECs, HCT116, 

and HCT15 cells.  
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Fig. 5.3: WDR5 depletion induces cell death in HCT116 colon cancer cells by stabilizing p53. (A) 

Immunoblot and relative densitometry-based quantification (below) of p53 following RNAi-mediated 

WDR5 depletion for 72 hours and 100 µg/mL CHX treatment for 4 hours prior to collection to inhibit 

new protein translation. (B-D) Viability as measured with alamarBlue® (N=6) (B), immunoblot of PARP, 

WDR5, p53, and p21 (C), and photomicrographs (D) of p53WT and p53-/- HCT116 cells following RNAi-

mediated WDR5 depletion for 72 hours.  

 



161 
 

 

 

 

Fig. 5.4: MYC depletion or OICR-9429 treatment does not induce p53 expression. (A) 

Immunoblot of p53 following RNAi-mediated MYC depletion for 72 hours in HCECs, HCT116, 

and HCT15 cells. (B) Immunoblot of p53 following WDR5 depletion (smartPool) or OICR-9429 

treatment for 72 hours in HCT116 cells.   
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Concerningly, WDR5 depletion in other colon cancer cell lines did not induce p53 

expression (Fig. 5.5) even in another other cell lines with wildtype p53 (LoVo). Examining the 

individual oligos from the smartPool of four oligos targeting WDR5 revealed that even though all 

four dramatically decreased WDR5 levels, in HCT116 cells, oligo #6, the smartPool (a pre-mixed 

pool of all four oligos in an undisclosed ratio), and 1:1:1:1 pool of all four oligos dramatically 

decreased viability to a level substantially lower than the other three individual oligos (#5, #7, 

and #8) even though the level of WDR5 depletion was comparable (Fig. 5.6A). Comparing oligo 

#6 with #8, both oligos induced DNA damage, as evidenced by increased phosphorylation of 

H2AX (γH2AX), yet only oligo #6 increased p53 expression and induced PARP cleavage in 

HCT116 cells (Fig. 5.6B). This was concerning for the possibility of an off-target effect for oligo 

#6. A blast search using the oligo #6 sequence demonstrated an 100% match to WDR5, but also 

shared a high degree of similarity to ME1 sharing a 14-nucleotide substring within the 19-

nucleotide siRNA oligo: GUGGAAGAGUGACUGCUAA (large, bold letters were matches). 

A substantial, previous publication demonstrated ME1 depletion induced p53 322, suggesting this 

off-target could likely be causing the p53 induction in HCT116 cells. Reassuringly, all four 

individual oligos and both pools reduced HCT116 viability as measured by alamarBlue following 

WDR5 depletion by more than 30% in 72 hours suggesting WDR5 itself is playing a role 

supporting colon cancer cells, but the mechanism of action remains to be revealed.   

WDR5 is required for colon cancer cell survival 

To determine whether WDR5 is required for cell survival in more than just HCT116 

cells, cell viability in a panel of colon cancer cell lines and HCECs following transient depletion 

of WDR5 by RNAi was measured. A pool containing all four oligos was used for all cell lines 

except HCECs and HCT116s where oligo #6 was shown to induce p53. In HCECs and HCT116 

cells a pool of oligos #7 and #8 was used. Cell viability was measured using CellTiter-Glo® 

Luminescent Cell Viability Assay 72 hours after WDR5 depletion. WDR5 depletion reduced   
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Fig. 5.5: WDR5 depletion does not induce p53 in other colon cancer cell lines. 

(A) Immunoblot of WDR5, PARP, and p53 following RNAi-mediated WDR5 

depletion for 72 hours in LoVo (p53WT), SW480 (p53MUT), and T84 cells 

(p53NULL).   
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Fig. 5.6: Evaluation of individual WDR5 siRNA. (A) Immunoblot of WDR5 and viability as measured 

by alamarBlue® following RNAi-mediated knockdown with individual siRNA oligos in HCT116 colon 

cancer cells. (N=6). (B) Immunoblot of WDR5, PARP, p53, and γH2AX following RNAi-mediated 

WDR5 depletion using either oligo #6 or #8. (C) WDR5 #6 oligo sequence with nucleotides that match 

the ME1 sequence shown in red.  
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cell ATP levels by 15-30 percent in six colon cancer cell lines (Fig. 5.7A). These results were 

largely confirmed using the alamarBlue® Cell Viability Assay after 96 hours of WDR5 depletion 

(Fig. 5.7B) with the only change being WDR5 depletion having no effect on viability in LoVo 

cells as measured by alamarBlue. In contrast, HCECs demonstrated only a 5% decrease in cell 

ATP levels (Fig. 5.7A) and no difference in viability following WDR5 depletion as measured 

using the alamarBlue assay (Fig. 5.7B).  

COMPASS complex inhibition is detrimental to colon cancer cells 

To evaluate the effect of WDR5 inhibition, the effect of OICR-9429 on colon cancer cells 

and HCECs was examined. OICR-9429 is an antagonist of the interaction of WDR5 with peptide 

regions of MLL and Histone 3, and disrupts COMPASS complex formation by blocking the 

interaction between WDR5 and MLL1 and RBBP5 319,321. Treatment with 10 µM OICR-9429 for 

72 hours also decreased cell viability (alamarBlue® Cell Viability Assay), but to a lesser extent 

than seen with WDR5 depletion in some cell lines (Fig. 5.7C). Interestingly, OICR-9429 

treatment had less of an effect in RKO and HCT116 cells, two cell lines that harbor WDR5 

mutations that may reduce the affinity of OICR-9429 for WDR5. Two cell lines with wildtype 

WDR5 and relatively few or no mutations in any COMPASS components (Table 5.2), SW620 

and T84 cells, were more sensitive to both WDR5 depletion as well as OICR-9429 treatment with 

approximately a 50% decrease in cells over 72 hours.  

WDR5 is overexpressed in colon cancer cells 

To evaluate the expression of the components of the required WRAD subcomplex within 

the COMPASS complex in cancer, the mRNA levels of WDR5, RBBP5, ASH2L, and DPY30 in 

tumors compared to solid tissue normal samples were examined based on RNASeq from the 

colon adenocarcinoma (COAD) dataset within The Cancer Genome Atlas (Fig. 5.8A). WDR5, 

RBBP5, and DPY30 are increased in tumors relative to normal tissue; however, WDR5 was 

expressed at the highest level and showed the most dramatic increase in expression between 
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Fig. 5.7: WDR5 depletion or disruption of the COMPASS complex limits cell proliferation 

or viability in colon cancer cells. (A and B) Cell viability in a panel of colon cancer cells as 

compared to HCECs following RNAi-mediated depletion of WDR5. Viability was measured by 

CellTiter-Glo® (A) and alamarBlue® (B) assays 72 hours and 96 hours after transfection, 

respectively. (C) Cell viability in a panel of colon cancer cells as compared to HCECs following 

72 hour treatment with 10 uM OICR-9429 as measured by alamarBlue®. Data are shown as mean 

relative light units or relative fluorescent intensity ± SD. (N=6). ** p < 0.01 *** p < 0.001 **** 

p < 0.0001   
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Fig. 5.8: WDR5 is overexpressed in colon cancer cells. (A) WDR5, RBBP5, ASH2L, and 

DPY30 gene expression (RNASeq) data from the Colon Adenocarcinoma (COAD) dataset within 

TCGA for unpaired primary colon tumors and normal solid tissue samples. Tumor includes 478 

samples from 456 patients for each gene. Normal includes 41 samples from 41 patients for each 

gene. The results published here are in whole or part based upon data generated by the TCGA 

Research Network: http://cancergenome.nih.gov/. (B) RT-qPCR of WDR5 and (C) western blot 

of WDR5 and RBBP5 in a panel of colon tumor cell lines as compared to immortalized, non-

transformed HCECs. RT-qPCR data is shown as mean ± SD. (N=3).** p < 0.01 *** p < 0.001 

**** p < 0.0001 (Figure 5.8B was performed by Danielle Frodyma and Jamie McCall).  
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normal tissue and colon tumor tissue. WDR5 is also overexpressed at the mRNA (Fig. 5.8B) and 

protein level (Fig. 5.8C) in a panel of colon cancer cells as compared to immortalized, yet non-

transformed human colon epithelial cells (HCECs) 102. RBBP5 is similarly overexpressed at the 

protein level (Fig. 5.8C) in a panel of colon cancer cells as compared to the HCECs.  

OICR-9429 treatment dramatically decreases colony growth in colon cancer cell lines  

Based on the assumption that WDR5 depletion or COMPASS complex inhibition is 

altering histone modifications, it would be expected that the effects on proliferation would 

increase with a longer treatment. Therefore, drug treatment with OICR-9429 for 10-14 days in a 

colony forming assay was performed in a panel of colon cancer cell lines. Interestingly, OICR-

9429 treatment had variable effects between colon cancer cell lines. RKO, LoVo, SW480, 

SW620, and T84 cell lines demonstrated dramatic decreases in colony formation; however, 

HCT15 and HCT116 cell lines demonstrated no effect (Fig. 5.9) even after an effect in viability 

was seen after 72 hours of treatment (Fig. 5.7C).  

WDR5 depletion does not decrease AKT phosphorylation and activation 

Preliminary data in the lab demonstrated that WDR5 depletion (pool of all four oligos) 

decreased AKT phosphorylation at both S473 and T308 (Fig. 5.10A); however, later analysis 

demonstrated the opposite effect (Fig. 5.10B). The misinterpretation of the preliminary results 

could have been a result of uneven loading. Regardless, if a relationship exists between WDR5 

and AKT activation, this relationship is likely indirect and context-specific. Therefore, the 

mechanism or relationship between WDR5 and AKT phosphorylation was not pursued further.  

WDR5 depletion increases DNA damage and decreases trimethylation of H3K4 

To further examine the role WDR5 plays in cancer, the effect of WDR5 depletion (oligos 

#7 and #8 only) and OICR-9429 treatment on H3K4Me3, H3K4Me1, and phosphorylation of 

H2A.X (γH2AX) was examined in HCT116, SW620, and RKO cells. These cell lines were 

chosen because HCT116 cells were highly sensitive to WDR5 depletion, but not OICR-9429  
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Fig. 5.9: Disruption of the COMPASS complex decreases cell colonies in colon cancer cells. 

(A and B) Representative pictures (A) and quantification of number and average size of colonies 

(B) formed on 24-well plates in colon cancer cell lines following treatment with OICR-9429 

treatment for 10-14 days. (N=3). 
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Fig. 5.10: The relationship between WDR5 and AKT may be context dependent. (A) 

Immunoblot of pAKT (S473), pAKT (T308), and tAKT following RNAi-mediated WDR5 

depletion (smartPool of all four oligos) for 72 hours with insulin stimulation for 30 minutes 

prior to collection in HCT116 cells. (B) Immunoblot of WDR5, pAKT (S473), pAKT (T308), 

and tAKT following RNAi-mediated WDR5 depletion (smartPool of all four oligos) for 72 

hours in HCECs, HCT116 (two independent replicates), and HCT15 cells.    
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treatment; RKO cells were sensitive to both WDR5 depletion and OICR-9429 treatment, but to a  

lesser extent; SW620 cells were highly sensitive to both WDR5 depletion and OICR-9429 

treatment; and HCT15 cells were mildly sensitive to both WDR5 depletion and OICR-9429 

treatment. In all four cell lines, WDR5 depletion induced γH2AX formation and decreased 

H3K4Me3 (Fig. 5.11). In SW620 cells, WDR5 depletion also decreased H3K4Me1. OICR-9429 

treatment was able to induce γH2AX in SW620 cells, but did not affect γH2AX in the other two 

cell lines. OICR-9429 treatment decreased H3K4Me3 levels in HCT116 cells and to a less extent 

in RKO and SW620 cells (Fig. 5.11).  

These results suggest that WDR5 depletion induces damage in colon cancer, but the 

OICR-9429 treatment is unable to fully replicate this effect in HCT116 and RKO colon cancer 

cells. This could be due to the presence of WDR5 mutations in these cell lines that render them 

less sensitive to OICR-9429 treatment. In contrast, SW620 cells that harbor wildtype WDR5 

appear to be equally sensitive to WDR5 RNAi-mediated depletion and OICR-9429 treatment and 

demonstrate increased γH2AX with either manipulation. The effect on H3K4 methylation appears 

to be more consistently affected by OICR-9429 treatment. This could be due to the drugs ability 

to not only directly interact with WDR5, but could be the result of generalized COMPASS 

complex disruption. This leads one to wonder if the effect of WDR5 on γH2AX is a function of 

its role within the COMPASS complex or another mechanism. In fact, RBBP5 depletion did not 

affect cell viability suggesting that WDR5 may function outside of the COMPASS complex to 

promote tumorigenesis (Fig. 5.12).  

WDR5 depletion sensitizes colon cancer cells to IR-induced DNA damage 

The increase in γH2AX with WDR5 depletion (Fig 5.11) and previous literature 

demonstrating that WDR5 depletion induces DNA damage suggests that WDR5 depletion may be 

able to sensitize cancer cells to DNA damage. To evaluate the potential that loss of WDR5 

sensitizes cells to DNA damage, the effect of WDR5 depletion (oligos #7 and #8 only) on IR- 

induced γH2AX formation and PARP cleavage was assessed. HCT116, HCT15, SW620, and 
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Fig. 5.11: WDR5 depletion increases DNA damage and reduces H3K4Me3. (A) Immunoblot 

of γH2AX, H3K4Me1, and H3K4Me3 following 96-hour RNAi-mediated WDR5 depletion 

(oligo pool of #7 and #8 only) or 72 hour OICR-9429 treatment in HCT116, HCT15, SW620, and 

RKO colon cancer cells.  
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Fig. 5.12: RBBP5 depletion does not affect cell viability in a panel of colon cancer cell lines. (N=3). 
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RKO cells were depleted of WDR5 for 48 hours prior to a single dose of irradiation (3 Gy). Cells 

were allowed to recover for 48 hours after IR prior to collection and then were assessed for 

γH2AX expression and PARP cleavage. In control cells, radiation increased γH2AX levels, 

which were further increased with the loss of WDR5 in all cell lines tested (Fig. 5.13). SW620 

and RKO cells demonstrated a step-wise increase in γH2AX levels with WDR5 depletion, 

irradiation in control cells, with maximal γH2AX in the cells that received irradiation in 

conjunction with WDR5 depletion (Fig. 5.13). In contrast, HCT116 and HCT15 cells 

demonstrated substantial increased in γH2AX with WDR5 depletion that was not further 

increased with the addition of IR (Fig. 5.13). This could be a consequence of the high level of 

endogenous genomic instability and defects in DNA damage repair present in these cells. 

Regardless, in all conditions, WDR5 depletion further increased γH2AX levels indicating 

increased DNA damage.  

Conclusions 

The data presented clearly demonstrate that WDR5 is overexpressed and preferentially 

required in colon cancer cells more so than in immortalized, yet non-transformed human colon 

epithelial cells (HCECs); however, the mechanism behind its overexpression and requirement for 

survival has not been fully revealed. WDR5 has previously been shown to promote its own 

expression through a positive feedback loop where increased H3K4Me3 at the WDR5 promoter 

increases its transcription 239. It is possible this positive feedback loop could be contributing to the 

maintenance of the overexpression of WDR5 demonstrated here in both colon cancer cell lines 

and human colon tumors, yet this cannot explain the initial increase in WDR5 expression and is 

difficult to demonstrate experimentally. The overexpression of WDR5 is not unique to colon 

cancer as several recent studies have demonstrated WDR5 is overexpressed in several cancer 

types including breast, prostate, bladder, and pancreatic cancer. Of importance, WDR5 

overexpression has been clinically associated with worse patient outcomes in breast cancer and 
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Fig. 5.13: WDR5 depletion increases sensitivity to ionizing radiation. Immunoblot of γH2AX 

and PARP following 96-hour RNAi-mediate WDR5 depletion (oligo pool with #7 and #8 only) 

with 3 Gy gamma IR for 48 hours prior to collection.  
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hepatocellular carcinoma 291,294. Our data demonstrate that colon cancer cells rely on WDR5 for 

increased proliferation and cell survival as depletion of WDR5 reduces cell viability, but does not 

substantially increase apoptosis. Other groups have demonstrated similar findings and 

demonstrated that WDR5 is similarly required for cell survival and proliferation in various other 

types of cancer including leukemia 292, prostate268, bladder 293 breast 295, and pancreatic cancer 297.  

In general, the mechanism by which WDR5 supports cancer cells has largely been shown 

to be through increased target gene expression. Consistent with these findings, our data 

demonstrate that WDR5 depletion caused a decrease in global H3K4Me3 levels likely 

suppressing target gene expression. However, our data demonstrated that WDR5 depletion 

induced a robust increase in γH2AX levels representative of an increase in DNA damage that was 

highly associated with decreased viability in colon cancer cells following WDR5 depletion. 

Recently, WDR5 has been shown to physically interact with MYC to promote transcription of a 

subset of MYC target genes. In addition, this interaction also prevented DNA damage 

accumulation in patient-derived xenografts of pancreatic cancer 287. Other mechanisms by which 

WDR5 may suppress the accumulation of DNA include regulating DNA replication, 

chromosomal polyploidy 323 and abscission through localization to the midbody 289. Based on our 

data demonstrating WDR5 depletion increases DNA damage accumulation, it is likely that 

WDR5 is contributing to DNA fidelity possibly through one of the previously described 

mechanisms thereby supporting cancer cell viability. The contribution of WDR5 to DNA fidelity 

may or may not be independent of its role in the WRAD subcomplex, as RBBP5 did not affect 

viability in a panel of colon cancer cells. However, there are multiple reports suggesting that 

depletion of KMT2A/MLL1 and KMT2B/MLL2 induce DNA damage as well as WDR5 

suggesting a potential connection between the increased DNA damage following WDR5 

depletion and its role in the COMPASS complex 263,266,272-275. 

Resolution of γH2AX is thought to occur through exchange of γH2AX with 

dephosphorylated H2AX with subsequent dephosphorylation of the removed γH2AX by 
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phosphatases. One mechanism that facilitates the dephosphorylation of γH2AX is through H3K4 

and H3K36 methylation by metnase, a protein that contains a SET domain and is a potential 

binding partner of WDR5. Metnase also promoted non-homologous end-joining, restart of stalled 

replication forks, resolution of γH2AX, and knockdown increased sensitivity to ionizing radiation 

324. Alternatively, WDR5 could contribute to K3K4 methylation through the COMPASS complex 

to facilitate γH2AX resolution. WDR5 itself has been shown to promote the incorporation of 

H2A.Z to promote global transcription 305 suggesting a potential mechanism where WDR5 

regulates cell cycle progression through increased transcription (H2A.Z incorporation) and 

release of cell cycle checkpoints (removal of γH2AX). Future studies are needed to further 

elucidate the individual contributions each of the multitude of functions WDR5 has on the 

induction of DNA damage, and more importantly, on cancer cell viability. 

Our data demonstrated increased sensitivity to radiation, particularly in SW620 and RKO 

colon cancer cells. While the HCT116 cells demonstrated increased γH2AX following WDR5 

depletion, WDR5 depletion alone was sufficient to increase γH2AX to the same level seen with 

IR. Relative to the other cell lines, HCT116 cells demonstrated the highest induction of γH2AX 

with WDR5 depletion alone. This could be a result of the high level of genomic instability in 

these cells. This, in combination with the additive effect of WDR5 depletion following IR-

induced DNA damage, suggests WDR5 is particularly required in cells following DNA damage.  

Overall, WDR5 depletion demonstrated a more robust phenotype than OICR-9429 

treatment. Several factors could contribute to this disparity, but likely either WDR5 plays a role 

independent of the COMPASS complex that is not inhibited by OICR-9429 treatment or 

mutations in WDR5 or other COMPASS components limited the affinity and therefore efficacy 

of OICR-9429. Consistent with the second possibility, cells with limited mutations in WDR5 and 

KMT2/MLL proteins had increased sensitivity to both WDR5 depletion and OICR-9429. This 

could be because that without mutations in KMT2/MLL components, the KMT2/MLL have a 

significant requirement for WDR5 in order to function to methylate H3K4 as they have very little 
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enzymatic activity outside of the COMPASS complex. Cells containing WDR5 mutations could 

be less sensitive to OICR-9429 as mutations could reduce the affinity of the drug for WDR5. 

These results also suggest that it is unlikely that the reduced effect on cells following OICR-9429 

treatment as compared to WDR5 depletion is simply due to the drug being unable to inhibit 

WDR5 as some cell lines showed a similar response to WDR5 depletion and OICR-9429 

treatment.  

Additional studies on the effect of mutations in KMT2/MLL proteins and WDR5 will 

provide further understanding of the role of WDR5 and the COMPASS complex in cancer and 

will help delineate whether these proteins have tumor suppressive, oncogenic, or a combination 

of both roles. Further studies are also needed to fully distinguish if the role of WDR5 is a result of 

its contribution to the COMPASS complex, is due to an alternative mechanism, or a combination 

of multiple mechanisms. Regardless, WDR5 is required for colon cancer cell proliferation and 

sensitized cells to ionizing radiation demonstrating a clear role for WDR5 in cancer and revealing 

its potential as a therapeutic target in cancer.  
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Chapter 6: FUSION identified 5’-hydroxy-staurosporine as an 

AMPK inhibitor that is selectively toxic in colon cancer cells 
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Introduction 

The Ras oncogene is activated in more than 40% of colon tumors 325 and 25%-30% of 

human cancers overall 6,7. Despite substantial efforts to develop therapeutics targeting this 

pathway 18,326, significant challenges still exist. We previously demonstrated that Kinase 

Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK kinase cascade, is 

required to maintain the transformed phenotype of Ras-driven colon cancer cell lines, but is 

dispensable for the survival and proliferation of non-transformed human colon epithelial cells3. 

Using KSR1 as a reference standard in a RNAi-based gene expression high-throughput screen 

termed Functional Signature Ontology (FUSION) 101, we identified and validated the γ1 subunit 

of AMP-activated protein kinase (AMPK) as a contributor to the survival of human colon tumor 

cells 3. 

AMPK belongs to a family of serine/threonine kinases that are highly conserved from 

yeast to humans 327. AMPK functions as a heterotrimeric complex consisting of a catalytic  and 

regulatory β and  subunits 328. Mammalian AMPK acts as an energy sensing kinase that is 

activated by an increasing AMP/ATP ratio and by metabolic alterations, such as hypoxia, glucose 

deprivation, decreased ATP production, or increased energy consumption. AMPK is a substrate 

for kinases such as LKB1 and CAMKK2, which modulate its activity by phosphorylation of the 

activation loop on both alpha subunits at threonine 172. During severe stress, AMP binding to the 

 subunit allosterically activates AMPK, promoting phosphorylation of the  subunit at threonine 

172, and protects it from dephosphorylation 329. 

The role of AMPK in cancer is controversial and has been shown to both support and 

inhibit tumor growth 3,328,330-340. Retrospective population-based studies suggest that AMPK may 

act as a tumor suppressor because metformin, an inhibitor of mitochondrial electron transport 

complex 1 and an indirect AMPK activator, appears to decrease the risk for cancer 341,342. While 

the mechanism through which metformin lowers cancer risk is not fully understood, numerous 
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studies demonstrate the value of metformin as an anti-cancer agent in vitro, in preclinical in vivo 

models, and in patients 332,333,338,341,342. However, the link implicating AMPK as a contributor to 

the metformin-induced anti-cancer effect is controversial. 

One recent study demonstrated that some cancer cells have upregulated cancer-specific 

ubiquitin ligases (MAGE-A3/6) that promote the degradation of AMPK to allow for increased 

mTORC1 signaling 339. Peutz-Jeghers Syndrome, which is characterized by the formation of 

numerous benign and malignant tumors, is characterized by loss of LKB1 kinase activity, a 

known upstream kinase and activator of AMPK 343. However, LKB1 is not the only kinase that 

phosphorylates AMPK, and LKB1 phosphorylates numerous additional downstream targets that 

may contribute to its tumor suppressive role. 

In contrast, AMPK activation was seen in early stages of glioblastoma tumor formation 

344, and AMPK activation was found to be critical for pancreatic cancer cell growth in anchorage-

independent conditions 345. Moreover, both AMPK1-/- and AMPK2-/- MEFs are resistant to 

Ras-induced oncogenic transformation, arguing that Ras-driven transformation requires AMPK 

334,337. Based on the conflicting evidence, AMPK has been described as a “conditional tumor 

suppressor and contextual oncogene” 338. The cause of these conflicting reports may be due to the 

role of AMPK in stress response. In non-transformed cells, AMPK likely contributes to the 

maintenance of a non-transformed phenotype by promoting a controlled stress response. 

However, in transformed cells the stress response function of AMPK may promote survival in a 

suboptimal environment. While AMPKγ1 is required for colon cancer cell survival 3, the 

contribution of other subunit isoforms on cancer cell survival has not been examined. We 

examined the expression and function of the AMPK2 subunit in colon cancer cells and used 

FUSION to detect a competitive inhibitor of AMPK within a natural product library. This study 

highlights the potential of evaluating and targeting specific AMPK isoforms and serves as a 

proof-of-concept for FUSION-based detection of small molecule inhibitors of therapeutic targets. 
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Results 

AMPKγ1 depletion is preferentially toxic to HCT116 colon cancer cells, but not to HCECs.  

To demonstrate that the γ1 subunit of AMPK (AMPKγ1) is required for tumor cell 

survival, the metabolic capacity of cells (alamarBlue® Cell Viability Assay) and PARP cleavage 

(marker of apoptosis) was examined in immortalized, non-transformed human colon epithelial 

cells (HCECs) and HCT116 colon cancer cells following RNAi-mediated depletion of AMPKγ1 

for 72 hours. AMPKγ1 depletion substantially reduced the metabolic capacity of HCT116 cancer 

cells, but did not decrease the metabolic capacity of HCECs (Fig 6.1A). AMPKγ1 depletion for 

the previous assay was verified and PARP cleavage was assessed by immunoblot. AMPKγ1 

protein expression was reduced following RNAi-mediated depletion in both cell lines assessed, 

but PARP cleavage was only increased in the HCT116 colon cancer cell lines following AMPKγ1 

depletion (Fig 6.1B).  

AMPKγ1 depletion caused variable levels of toxicity in colon cancer cell lines, which 

correlated with its ability to inhibit autophagy.  

AMPK is known to regulate autophagy in cells through phosphorylation of ULK1 (Fig. 

6.2A), and this function could contribute to its specific requirement in cancer cells where 

autophagy is known to be upregulated. To evaluate whether this known function of AMPK is 

contributing to its requirement in colon cancer cells, we examined beclin 1 levels following 

AMPKγ1 depletion. In HCT116 cells, beclin 1 levels were decreased, suggesting a decrease in 

autophagy, following AMPKγ1 depletion. In contrast, there was no induction of PARP cleavage 

or decrease in beclin 1 levels in SW480 colon cancer cells with AMPKγ1 depletion (Fig. 6.2B-C), 

which suggests the regulation of autophagy may mediate the detrimental effect AMPKγ1 

depletion has on HCT116 colon cancer cells (Fig 6.2B). When HCT116 cells were starved of 

serum for 16 hours prior to collection to induce autophagy, AMPKγ1 depletion resulted in an 

even more robust decrease in beclin 1 levels and decreased phosphorylation of ULK1 (Fig. 6.2C). 
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Fig. 6.1: AMPKγ1 depletion is preferentially toxic to HCT116 colon cancer cells, but not to 

HCECs. (A and B) Cell viability assay (N=6) (A) and immunoblot (B) of AMPKγ1 and PARP 

following RNAi-mediated AMPKγ1 depletion for 72 hours in HCECs and HCT116 cells. 
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Fig. 6.2: AMPKγ1 depletion induces apoptosis and blocks autophagy in HCT116 colon 

cancer cells, but not SW480 colon cancer cells. (A) Cartoon of AMPK in autophagy. (B) 

Immunoblot of AMPK subunits, PARP, and an autophagy marker (beclin 1) following RNAi-

mediated AMPKγ1 depletion for 72 hours in HCT116 and SW480 cells. (C) Immunoblot of 

AMPK subunits, PARP, and autophagy markers (beclin 1, pULK1) following RNAi-mediated 

AMPKγ1 depletion for 72 hours in HCT116 and SW480 cells with serum starvation for the 16 

hours prior to collection. 
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In contrast, AMPKγ1 depletion did not affect beclin 1 levels or ULK1 phosphorylation in SW480 

colon cancer cells even with serum starvation; however, the level of knockdown was not as robust 

in the SW480 cells as compared to the HCT116 cells, which could also be limiting its effects. 

Interestingly, AMPKγ1 depletion also resulted in a decrease in AMPK2 in HCT116 cells, but 

did not affect AMPK2 levels in SW480s. This observation raises the possibility that AMPKγ1 is 

required for the formation and stabilization of the AMPK heterotrimer in HCT116 cells, but not 

SW480s, and that stabilization of the holoenzyme is required for HCT116 cell survival.  

AMPK2 is differentially expressed in colon cancer cell lines. 

AMPK functions as a heterotrimeric complex consisting of a catalytic  subunit that 

possesses kinase activity and regulatory β and  subunits328. The 2, β2, and 1 AMPK subunits, 

but not the 1 and β1 subunits, promoted the survival of HCT116 colon cancer cells3. However, 

AMPK1 was not required for survival in SW480 colon cancer cells (Fig. 6.2B-C). To further 

evaluate the importance of the individual AMPK subunits, the expression of various AMPK 

subunits in a panel of colon cancer cell lines was examined. AMPK1, AMPKγ1, and AMPKβ1 

expression was relatively consistent across cancer cells lines and was comparable to 

immortalized, non-transformed human colon epithelial cells (HCEC) expression (Fig. 6.3). 

However, the expression of AMPK2 and AMPKβ2 was variable between cancer cell lines. Of 

note, the highest expression of AMPK2 was observed in the SW480 and SW620 cancer cells. 

HCECs, as well as the LoVo and HCT116 cancer cells had moderate expression. While, HCT15, 

DLD1 and SK-CO-1 cells demonstrated very low AMPK2 expression (Fig. 6.3).  

AMPK2, but not AMPK1, is required for colon cancer cell survival.  

To evaluate the role the kinase activity of AMPK plays in promoting colon cancer cell 

survival, the effect of AMPK1 or AMPK2 depletion on colon cancer cells was examined. Cell 

lines with moderate (HCT116) and high (SW480) AMPK1 and AMPK2 expression were 

selected for analysis, and propidium iodide staining followed by flow cytometry analysis and 
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Fig. 6.3: AMPK subunit expression in a panel of colon cancer cell lines as compared 

to immortalized, non-transformed human colon epithelial cells (HCEC).  

(Part of Fig. 6.3 has been previously published in 1).  
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 PARP cleavage assessment were used to evaluate cell death after AMPK1 or AMPK2 

depletion by RNAi for 72 hours. AMPK2 depletion increased cell death in both HCT116 and 

SW480 colon cancer cell lines, while AMPK1 depletion did not (Fig. 6.4A-C). These data 

indicate that AMPK2, and therefore AMPK activity, is required for colon cancer cell survival 

even though individual AMPK subunits (AMPK1) may be dispensable. These data suggest that 

while individual AMPK subunits likely have overlapping roles in cells, they also have unique, 

non-redundant functions. Of note, individual AMPK1 or AMPK2 depletion or combination 

depletion of AMPK1/2 does not induce apoptosis in HCECs (Fig 6.4D), suggesting that colon 

cancer cells have developed a unique dependence upon AMPK activity. Thus, identifying a 

compound that selectively inhibits the functional AMPK heterotrimer may be an efficacious 

therapeutic strategy to selectively target cancer cells regardless of their preference or requirement 

for specific AMPK subunits. 

AMPK2 is required for autophagy and increased metabolic capacity.  

To evaluate the effects of AMPK2 depletion in cancer cells, phosphorylation of ULK-1 

and beclin 1 expression, a marker of autophagy, was examined. Following AMPK2 depletion 

for 72 hours, ULK1 phosphorylation and beclin-1 levels decreased; however, these changes were 

modest and more robustly seen in HCT116 cells and to a lesser extent seen in SW480 cells (Fig 

6.5A). In HCT116 cells, AMPK2 depletion, but not AMPK1 depletion, caused a decrease in 

PGC1β and ERR expression, two proteins that have previously been shown to be required for 

HCT116 colon cancer cell survival (Fig 6.5B), which opens the possibility that AMPK2 has 

multiple mechanisms by which it promotes colon cancer cell survival. 

FUSION identifies a natural product that inhibits AMPK kinase activity. 

Functional Signature Ontology (FUSION) detects functional relationships between genes 

and microRNAs based on changes to a gene expression-based functional signature3,101,346. 

Previously, FUSION identified AMPKγ1 as a genetic functional analog of KSR1 based on   
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Fig. 6.4: AMPK2 is selectively required for colon cancer cell survival, but not HCEC survival. (A) 

Apoptosis (percent of cells in the sub-G1 peak) in HCT116 and SW480 cells after AMPKα1 or AMPKα2 

depletion by RNAi for 72 hours. Apoptosis was evaluated using propidium iodide staining followed by 

flow cytometry analysis. (N=3). (B) Immunoblot of AMPKα2 expression and PARP cleavage in HCT116 

and SW480 cells following RNAi-mediated AMPKα2 depletion for 72 hours. (C) Immunoblot of 

AMPKα1 expression and PARP cleavage in HCT116 and SW480 cells following RNAi-mediated 

AMPKα1 depletion for 72 hours. (D) Immunoblot of AMPKα1, AMPKα2, and PARP cleavage in HCECs 

following RNAi-mediated AMPKα1 or AMPKα2 depletion for 72 hours. (Part of Fig. 6.4 has been 

previously published in 1). 
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Fig. 6.5: AMPK2 depletion reduces phosphorylation of ULK-1 and expression of beclin 1, PGC1β, 

and ERR. (A) Immunoblot of AMPK2, PARP, total- and phospho-ULK1, and beclin 1 following 

RNAi-mediated depletion of AMPK2 for 72 hours in HCT116 and SW480 cells. (B) Immunoblot of 

AMPK1, AMPK2, PGC1β, and ERR following AMPK1 or AMPK2 depletion for 72 hours in 

HCT116 cells. (Experiment 6.5B was done in collaboration with Binita Das and is published in 3. Part of 

Fig. 6.5A has been previously published in 1). 
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unsupervised hierarchical clustering and quantification of similarity metrics (Euclidean distance 

and Pearson correlation) based on reporter gene expression following RNAi-mediated depletion 

of individual genes from a genome-scale human siRNA library. Biological validation 

demonstrated AMPKγ1 is also required for the survival of colon tumor cells, but not 

immortalized, non-transformed colon epithelial cells3. We hypothesized this approach could be 

used to identify small molecule inhibitors that mimic the effects of AMPK inhibition and be 

preferentially toxic to human colon tumor cells. As a proof-of-concept experiment, reporter gene 

expression signatures were generated for 1,186 unique chemical fractions isolated from a natural 

product library derived from a diverse selection of marine bacteria 101. Comparing the gene 

expression signature  of Compound C (also known as Dorsomorphin), a drug known to inhibit 

AMPK333, with fractions isolated from the natural product library, FUSION identified several 

fractions whose biologic activity was similar to Compound C treatment 101,347. 

Several fractions isolated from the Streptomyces bacillaris strain SN-B-004 clustered 

with Compound C (Fig. 6.6A). Based on this observation, we hypothesized that the SN-B-004 

fractions that clustered with Compound C contained an inhibitor of AMPK. Treatment with SN-

B-004 fractions 13-17 decreased viability of colon tumor cell line HCT116 (Fig. 6.6B) and SN-B-

004 fractions 13-16 decreased phosphorylation of two AMPK substrates acetyl-CoA carboxylase 

(ACC) at Ser79 and RAPTOR at Ser792 (Fig. 6.6C). In contrast, SN-B-004 fraction 12, which 

clustered further away from Compound C, but was collected in series with fractions 13-16, did 

not affect cell viability or phosphorylation of AMPK downstream targets (Fig. 6.6B-C). 

SN-B-004 fractions 13-17 appeared pharmacologically and mechanistically distinct from 

Compound C because they demonstrate a limited ability to prevent the phosphorylation of 

AMPK at Thr172 (Fig. 6.6C), which is critical for AMPK activity348, while Compound C was 

able to decrease phosphorylation at Thr172. While Compound C has been shown to inhibit 

AMPK activity by decreasing phosphorylation on downstream targets, the mechanism behind its 

inhibition has not been fully elucidated. Increasing activating AMPK signals (AICAR or 
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Fig. 6.6: FUSION identified natural product fractions that inhibit AMPK. (A) Unsupervised 

hierarchical clustering of fractions isolated from the Streptomyces bacillaris strain SN-B-004 with 

Compound C. (B) Cell viability assay in HCT116 cells treated for 24 hours with the indicated natural 

product fractions. Data are shown as mean relative light units (RLU) ± SD. ***p<0.001 (N=3). (C) 

Immunoblots of total and phosphorylated ACC (Ser79), RAPTOR (Ser792) and AMPK (Thr172) in 

HCT116 cells treated for 48 hours with the indicated natural product fractions. (Experiment 6.6A was 

completed in collaboration with Hyun Seok Kim and Michael White. Experiments 6.6B-C were 

completed by Kurt Fisher and Binita Das. Fig. 6.6 has been previously published in 1). 
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metformin treatment) is sufficient to overcome inhibition of Compound C suggesting that it does 

not directly inhibit the kinase activity of AMPK, but instead may act by regulating the activation 

of AMPK itself, which is likely based on its detrimental effect on AMPK phosphorylation333. In 

contrast, direct inhibition of the kinase activity of AMPK would lead to decreased 

phosphorylation of downstream targets of AMPK without directly affecting AMPK 

phosphorylation, though it may paradoxically increase the phosphorylation of AMPK itself due to 

loss of negative feedback loops. 

The active compound within the impure fraction SN-B-004-16 was isolated and the 

structure was determined using mass spectrometry and nuclear magnetic resonance spectroscopy 

to be 5´-hydroxy-staurosporine349 (5-OH-S, Fig. 6.7A), a derivative of the well-known, non-

specific kinase inhibitor staurosporine 350. To date, 5-OH-S has only been described in one other 

report in the literature in which it was isolated from another marine bacterium Micromonospora 

sp. strain L-31-CLCO-002349. To determine if 5-OH-S directly inhibits AMPK kinase activity, we 

performed in vitro kinase assays of AMPK using SAMS peptide as a substrate, in the presence or 

absence of 5-OH-S. The IC50 of 5-OH-S for recombinant AMPKα1β1γ1 and AMPKα2β1γ1 was 

similar at 517.5 nM and 583.3 nM, respectively (Fig. 6.7B). The Ki for 5-OH-S inhibition of ATP 

binding to recombinant AMPK α1β1γ1 was 347 nM (Fig. 6.7C). 

AMPK inhibition via 5-OH-S treatment is selectively toxic to colon cancer cells. 

AMPKγ1 and AMPK2 were selectively required for colon cancer cell survival, but not 

HCECs survival (Fig 6.1 and 6.4) 3, which led to the prediction that tumor cells would also be 

selectively sensitive to 5-OH-S as an inhibitor of AMPK. Treatment with 5-OH-S inhibited 

anchorage independent growth of HCT116 cells in a soft agar assay (Fig. 6.8A), and 5-OH-S was 

preferentially toxic to the colon cancer cells lines (HCT116 and SW480) as compared to the 

HCECs (Fig. 6.8B). The induction of cell death following 5-OH-S treatment was verified in 

HCT116 and SW480 cells by analyzing PARP cleavage (Fig. 6.8C), which demonstrated 
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  Fig. 6.7. The identified active molecule, 5-OH-S, inhibits AMPK kinase activity. (A) Structure of 5-

OH-S. (B) Dose-dependent inhibition of recombinant AMPKα1β11 and recombinant AMPKα2β11 

kinase activity by 5-OH-S. (C) Lineweaver-Burke plots of AMPK substrate phosphorylation in the 

presence of DMSO or 500 nM 5-OH-S. (Natural product identification in 6.7A was completed by our 

collaborator Youcai Hu and John MacMillan. Experiments 6.7B-C were completed by Binita Das and 

Dee Volle. Fig. 6.7 has been previously published in 1). 

 



194 
 

 

  

Fig. 6.8. 5-OH-S treatment preferentially inhibits colon cancer cell survival by reducing 

phosphorylation of known downstream AMPK targets. (A) Colony formation following 

treatment with 7.5 M 5-OH-S. **** p < 0.0001 (B) Dose-dependent apoptosis in HCT116 and 

SW480 colon cancer cells and HCECs following treatment with 5-OH-S. (N=3). (C) Immunoblots of 

total and phosphorylated ACC (Ser79), RAPTOR (Ser792) and AMPK (Thr172) after 48-hour 

treatment with 7.5 μM 5-OH-S in HCT116 and SW480 cells. (D) Immunoblot of total and 

phosphorylated ACC (Ser79) and beclin 1 after 48-hour treatment with 7.5 μM 5-OH-S in HCT116 

and SW480 cells. (Experiment 6.8A was completed by Binita Das. Experiment 6.8B was completed 

by Drew Gehring. Part of Fig. 6.8 has been previously published in 1). 
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increased PARP cleavage with 5-OH-S treatment. Similar to the SN-B-004 fractions, 5-OH-S 

decreased the phosphorylation of ACC at Ser79 and of RAPTOR at Ser792, known AMPK 

downstream targets, without decreasing the phosphorylation of AMPK at Thr172 in colon cancer 

cell lines HCT116 and SW480 (Fig. 6.8C). Treatment with 5-OH-S decreased AMPK kinase 

activity in all cell lines tested as illustrated by reduced phosphorylation of ACC and RAPTOR 

(Fig. 6.8C); however, 5-OH-S treatment only decreased beclin-1 levels in HCT116s, but not 

SW480s. This correlated with the much higher level of cell death in HCT116 cells following 5-

OH-S treatment. Similarly, 5-OH-S treatment inhibited AMPK activity in HCECs as evidenced 

by reduced phosphorylation of ACC and RAPTOR (unpublished data, Binita Das), but did not 

cause cell death in these cells (Fig. 6.8B). This suggests therapeutic targeting of AMPK could 

lead to efficacious cancer therapeutics as the cancer cells have either developed a generalized 

increased dependence on AMPK activity or depend on AMPK to perform functions that it does 

not normally perform in normal cells.  

In Ras-driven cancer, disruption of ERK signaling increased AMPK dependence.  

Tumor cells evolve in ways such that they develop vulnerabilities. Clinically, these are 

taken advantage of when inhibitors are developed that target characteristics only present in cancer 

cells such as mutations, aberrantly expressed genes, or uniquely required pathways. These are 

called targeted therapies. Unfortunately, however, cells often find ways to develop resistance and 

evade these therapies by further adapting and shedding these targetable characteristics. Ras 

mutations commonly activate the Ras/Raf/MEK/ERK signaling cascade, and a multitude of drugs 

targeting multiple levels of this pathway have been developed. Even though these inhibitors have 

demonstrated selective inhibition on the desired targets, most have shown limited efficacy. This 

suggests cells are able to evolve to avoid the detrimental effects of the inhibitor.  

As described earlier, KSR1 is required for full ERK activation downstream of activated 

Ras. To evaluate the adaptations that cells undergo when ERK signaling is limited as a result of 

KSR1 depletion, gene expression changes were evaluated using an Affymetrix Human Genome 
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U133 Plus 2.0 Array in HCT116 cells with and without KSR1. In HCT116 cells that are stably 

depleted of KSR1, AMPK2 expression is dramatically increased based on an online GEO2R 

analysis (default settings) of the GEO dataset GSE653513 (Fig 6.9A). In fact, probes for the a2 

subunit of AMPK were the top two results of targets that demonstrated altered expression 

between the control (no transfection and shCont) and experimental conditions (shKSR1 #1 and 

#2). This relationship was further confirmed as transient knockdown of ERK in HCT116 and 

SW480 cells caused an increase in AMPK activation based on increased phosphorylation at T172 

and increase in beclin 1 (HCT116 only) (Fig 6.9B). MEK depletion had less of an effect on 

AMPK phosphorylation and beclin 1 levels, which could be due to residual ERK activation being 

sufficient for the cells as phospho-ERK levels are maintained at a level similar to that seen in 

control cells (Fig 6.9B). These results suggested that combination ERK and AMPK inhibition 

could be synergistic and/or prevent the development of resistance to either agent alone.  

Therefore, the effects of ERK inhibition alone and in combination with Compound C, a 

known, non-specific AMPK inhibitor, were evaluated using the linear isobol model 351 to 

investigate the possibility of synergy between ERK and AMPK inhibition. The linear isobol 

model is based on the idea that if a drug has additive effects with another drug, one could plot the 

dose required for one drug to reach the ED50 on the x axis and the other on the y axis. Drawing a 

line between these points would represent the combination doses that would also achieve the 

same ED50 effect. This is called an isobologram. This intuitively makes sense if one considers the 

possibility that treatment actually includes a combination of two agents that in reality contained 

the same active ingredient. Regardless of differing formulations or dilutions, a given percentage 

of the ED50 would still be expected to provide a given amount of effect. For example, if given 

half of the ED50 dose for each of the two drug formulations, one would have received a full ED50 

dose and therefore a response equivalent to the ED50 would be expected. Plotting this point on the 

isobologram would place the point on the line between the ED50 points for each drug. Any other 

fractional combination would also be plotted on this same line provided the fractional doses fit 
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  Fig. 6.9 Disruption of ERK signaling upregulated AMPKa2 activation, and ERK and AMPK 

inhibition were synergistic. (A) AMPK2 expression from probes 227892_at and 238441_at on an 

Affymetrix Human Genome U133 Plus 2.0 Array in HCT116 cells stably-depleted of KSR1 using shRNA 

(N=1). (Data is available on Geo: GSE65351). (HCT116 shKSR1 cells were developed and gene 

expression was assessed by microarray by Kurt Fisher). (B) Immunoblot of ERK, total and phosho-

AMPK, and beclin 1 following RNAi-mediated depletion of ERK for 72 hours. (C) Viability of HCT116 

and SW480 cells following treatment with 1 µM of SCH772984, 20 µM of Compound C, or a 

combination of both SCH772984 and Compound C such that the doses fulfill the following criteria 

Dosesch772984/1 µM SCH772984 + DoseCompound C/20 µM Compound C = 1 to evaluate synergy between the 

two compounds. The horizontal line represents the lower edge of the predicted range of expected drug 

additivity (i.e. 500 nM SCH772984 and 10 μM Compound C (50%/50%), 400 nM SCH772984 and 12 

μM Compound C (40%/60%), 200 nM SCH772984 and 16 μM Compound C (20%/80%), etc.) (N=3).  
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the following formula DoseA/ ED50_A + DoseB/ ED50_B = 1 (i.e., 0.25 of the ED50 of drug A given 

in combination with 0.75 of the ED50 of drug B). If any of these combinations demonstrate 

increased efficacy relative to both individual agents given at the ED50, this suggests a super-

additive effect or synergism in both HCT116 and SW480 colon cancer cells (Fig. 6.9C). 

Combination treatment with SCH772984 (ERK inhibitor) and Compound C (AMPK inhibitor) 

showed super-additive or synergistic results for various doses of combination drug treatments.  

Conclusions 

Our data show that AMPK promotes the survival of multiple human colon cancer cell 

lines and that variable levels of AMPK alpha subunits may contribute to or predict the cells’ 

relative sensitivity to AMPK depletion. Interestingly, human colon epithelial cells (HCECs) do no 

share this dependence on AMPK. This could be exploited for the development of therapeutics 

targeting AMPK that will be selectively detrimental to cancer cells, but less so or not at all lethal 

to normal cells. However, cancer cells that have increased or altered AMPK subunit expression or 

have employed alternative mechanisms to circumvent AMPK-regulated pathways, may overcome 

or lose sensitivity to AMPK depletion or inhibition. 

These data also suggest a role for AMPK isoforms with specific subunit composition and 

expression level in determining the contribution of AMPK toward tumor cell viability. This study 

provides additional evidence that cancer cells evolve diverse mechanisms to overcome obstacles 

limiting survival and proliferation. Cancer cells develop defined dependencies and vulnerabilities 

that offer a basis for their characterization and specific therapeutic intervention. This may reflect 

differing responses to environmental stresses that directed the tumor’s evolution and suggests that 

at least a subset of colon tumors may be highly susceptible to AMPK inhibition. In this study, we 

showed that colon cancer cells have an increased, but variable, requirement for the AMPK 2 

subunit isoform for their survival, more so than a requirement for the 1 subunit. This suggests 

that the individual subunits likely have unique, non-redundant functions that add another layer to 
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the complexity surrounding the role of AMPK in cancer.  This phenomenon is not likely to be 

limited to colon cancer as several other groups have demonstrated a requirement for AMPK or its 

downstream effects in both prostate and breast cancer and have shown that inhibition of AMPK is 

detrimental to cancer cells 352-356. 

In this study, we describe a novel, direct kinase AMPK inhibitor, 5´-hydroxy-

staurosporine (5-OH-S) that has been isolated only from marine bacteria and has yet to be widely 

synthesized or made commercially available349. The effects of 5-OH-S appear to exceed those 

seen with individual AMPK subunit depletion. This is not surprising as 5-OH-S treatment inhibits 

AMPK isoforms containing either  subunit and likely all AMPK trimer complexes. However, a 

detailed kinase inhibitor profiling to assess the effects of 5-OH-S on other targets has not been 

completed. Therefore, the possibility exists that 5-OH-S may have off-target effects that 

contribute to its anticancer effects. A structurally similar compound, 7´-hydroxy-staurosporine 

(also known as UCN-01357), has also previously demonstrated significant anti-cancer effects. Like 

other staurosporine derivatives, 7´-hydroxy-staurosporine has broad intracellular effects and 

inhibits multiple kinases, notably Protein Kinase C358,359. Regardless, 7´-hydroxy-staurosporine 

(7-OH-S) has been examined in numerous phase I and phase II trials for multiple types of cancer 

including T-cell lymphomas, leukemia, breast cancer, small cell lung cancer, melanoma, 

pancreatic cancer, kidney cancer, ovarian/fallopian tube cancer, and many other solid tumors360-

372; however, its use has been constrained due to limited single agent efficacy, in conjunction with 

a less than optimal pharmacokinetic profile, and undesirable side effects. However, comparing 7-

OH-S directly to 5-OH-S demonstrated less toxicity in HCECs and increased lethality in HCT116 

cells (unpublished data, Das and Lewis) suggesting that further evaluation of 5-OH-S is likely to 

reveal its superiority to 7-OH-S. Our data suggest that staurosporine derivatives can act as lead 

compounds for the development of more specific AMPK kinase domain inhibitors with the goal 

of improved target specificity, anti-cancer efficacy, and reduced treatment complications. 

The current study expands upon previous work that used FUSION to identify microRNAs 
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and individual genes as potential therapeutic targets in cancer3,101,346. This study demonstrates the 

ability of FUSION to identify novel small molecules from an unbiased screen of crude natural 

product fractions that inhibit a specific target important for cancer cell survival. In this instance, 

FUSION identified 5-OH-S as an inhibitor of AMPK, which can serve as a lead compound that 

can be used to understand AMPK activity and could be further developed using medicinal 

chemistry for use as a cancer therapeutic.  

These results also demonstrate a connection between KSR1 and AMPK signaling based 

on the increased dependence on AMPK following disruption of KSR1 or ERK. These data 

provide rationale for further studies examining the interconnectedness of these two pathways and 

highlight the potential for synergism or the ability to prevent the development of resistance with 

this combination of targeted therapies. This potential is unfortunately hampered by the lack of a 

specific, high affinity AMPK inhibitor, which further highlights the value of the development of 

FUSION as a novel method that can distinguish genes and compounds with particular cellular 

functions or phenotypes in an unbiased manner. This proof-of-concept study suggests that 

applying FUSION to a larger, more diverse library of small molecules and/or crude natural 

product fractions could identify numerous lead compounds that are more specific inhibitors of 

AMPK or other promising therapeutic targets, leading to the discovery of new, efficacious 

targeted therapies. 
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Chapter 7: Discussion/Conclusions 
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FUSION 

These results demonstrate the value of FUSION as an unbiased function-based screen 

that can be applied to identify functionally-related genes and reveal inhibitors of target genes. 

This study expands upon previous work by Stegmaier et al. that applied a gene expression-based 

signature to identify compounds that induced differentiation in leukemia 103. This original study 

revealed the potential to use a gene expression-based signature as a proxy for a phenotype of 

interest by evaluating approximately 1700 compounds using PCR and mass spectrometry to 

evaluate the expression of five genes that composed the differentiation signature. FUSION further 

developed this concept by applying the Affymetrix Quantigene 2.0 Assay to measure gene 

expression. This allowed for the gene expression of multiple genes to be measured 

simultaneously using a Luminex machine so the screen could be expanded tenfold to evaluate 

more than 17,000 perturbations (individual gene depletions and treatments with microRNA, 

natural product fractions, and drugs). This method has successfully identified several promising 

genetic targets including three genes (TIMELESSS, WDR5, and AMPKγ1) and one natural 

product (5-OH-S) that are the subject of several manuscripts and this dissertation 3,42,101. 

However, the current application of FUSION is limited by several confounding features 

in its implementation that could be eliminated in the future to realize the full potential of this 

approach. First, all of the screens were performed in a single Ras-mutated colon cancer cell line, 

HCT116. HCT116 colon cancer cells have wildtype p53, an unstable genome, and a high level of 

sensitivity to commonly used cancer therapies. This creates the potential of identifying targets in 

the genome-scale RNAi screen that are preferentially toxic to HCT116 cells, but potentially less 

so to other cancer cells. Based on the results contained herein, this appears to be the case as 

HCT116 cells were generally more sensitive to the identified gene depletions (TIMELESS, 

WDR5, and AMPK/5-OH-S) than other cell lines. Importantly, the FUSION screen was 

successful in identifying targets that were preferentially required in cancer as the cancer cell lines 

were more sensitive to the gene depletions than immortalized, but non-transformed human colon 
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epithelial cells. Expanding the FUSION screen to test multiple cell lines, preferably from 

additional cancer types or with different tumor characteristics, is likely to reveal common targets 

that are ubiquitously required for cancer cell survival, but dispensable for normal cell survival. At 

the very least, as new genetic targets or therapeutics are identified that are predicted to be 

selectively required for cancer cell survival, it is extremely important to evaluate their effect in a 

panel of cancer cells early in biological validation in order to focus research efforts on studying 

targets that are not specific to HCT116 cells.  

Based on the issues with off-target effects identified with the individual siRNA oligos 

targeting WDR5 (Fig. 5.6), an additional follow-up screen evaluating the consistency of the gene 

depletion effects using individual oligos could have further helped to prioritize the hits and 

eliminated targets that were likely only hits due to off-target effects. This is a common practice 

where four individual oligos targeting the genes identified as being hits in the initial screen are 

individually tested to evaluate the consistency of the gene depletion effect. However, this follow-

up screen can substantially increase the cost of a screen, even if a more cost-effective assay is 

used in the follow-up screen. Additionally, it is not uncommon for individual oligos to fail to 

decrease target expression despite having sequences that match the target gene such that the 

expected phenotype may not be seen and true positives may inadvertently be excluded from 

further evaluation.  

While two algorithms were applied to identify the potential of off-target seed sequence 

effects, both of these algorithms are based on seed sequences starting with the first nucleotide in 

the siRNA oligo. The experimentally identified likely off-target effects in the WDR5 oligo #6 are 

the result of the oligo almost completely matching another gene, ME1; however, the matching 

sequence actually starts with the second nucleotide in the siRNA sequence providing rationale for 

why both of the seed sequence off-target effect algorithms failed to recognize this potential off-

target effect.  

Finally, when undertaking an experiment of this scale that will require substantial 
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computational analysis to evaluate the results, ideally the individuals that will be performing the 

analysis should be included in the experimental planning from the beginning. This allows them to 

understand the experiment prior to planning their computational approach and provides the 

opportunity for them to contribute to the experimental design to simplify the subsequent 

computational analysis. In this screen, the non-random plating of control wells and grouping of 

functionally related genes on the same plate limited the options for robust normalization. This 

precludes the use of plate-position normalization, and therefore any effects that were caused by 

plate positioning, if present, could not be taken into account. While completely random plating is 

likely impossible, and increasing the randomness of plating would increase the biological 

experiment complexity, the benefits for subsequent computational analysis may have outweighed 

the increased experimental requirements. Therefore, the effort required to complete the biological 

experiment and computational evaluation needs to be balanced and discussed to ensure the most 

appropriate biological and computational approaches are applied to generate the most robust and 

easily interpretable results.  

Finally, FUSION was initially designed based upon a gene expression signature of KSR1 

depletion making it particularly suited to identify targets that are KSR1-like. However, a 

modified FUSION screen has the potential to reveal genes that are functionally similar to any 

specified gene of interest. Ultimately, the success of such a screen would be dependent upon the 

quality of the set of genes used for the gene expression-based signature. Therefore, designing a 

modified FUSION screen that could be used to evaluate the functional similarity between any two 

genes would require the establishment of an expanded or revised panel of genes to be used in the 

gene expression-base signature. Ideally, these genes would be independent and not covary, and 

reveal effects of different downstream pathways. This would include avoiding the inclusion of 

multiple genes with the same or highly similar functions as these would have a high likelihood of 

covarying and would be less likely to provide additional resolving power in the screen. One 

method to identify potential genes would be to individually deplete cells of known key regulators, 
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particularly targets that are implicated in cancer (e.g. Ras, MYC, p53, PI3K, AMPK, ATM/ATR, 

β-catenin, PKCs, hexokinase, BCL-2, TGFβ, NFκB, etc.) and evaluate gene expression using 

microarrays or RNASeq to identify genes whose expression either increases or decreases 

following each perturbation. Identifying changes that are specific to a limited number of 

perturbations and that demonstrate independence would provide a good starting point for a gene 

panel. Genes that would provide additional refinement could be identified by treating with drugs 

known to activate various pathways as an additional mechanism to increase the delineating power 

of the FUSION screen. In the current application of FUSION, all of the genes from the gene 

expression-based signature were decreased following KSR1 depletion. Therefore, selecting genes 

that decrease as well as genes that increase in expression following a given perturbation may 

increase the resolving power of the screen.  

 After the identification of a gene set for the gene expression-based signatures, several 

additional factors would need to be considered in order for an experiment on this scale to be 

fruitful. Multiple cell lines would need to be selected for the screen in order for the results to be 

generalizable. Additionally, performing a screen on this scale would be technically difficult. An 

alternative would be to simulate this analysis bioinformatically.  

 Instead of experimentally screening multiple cells lines for similarities in gene expression 

for a panel of genes, one could analyze publicly available microarray or RNASeq data to simulate 

a similar analysis. In this situation, the gene expression of thousands of genes could be evaluated 

for a given genetic or drug-induced perturbation of interest to identify a subset of genes whose 

expression changed in response to the given manipulation. This could then be used to screen for 

other genetic manipulations or drug treatments that had a similar effect. This computational 

analysis would be limited by the availability of applicable data (i.e. the cell lines or models used 

may not match, the timing may be different for each dataset, the specific assay performed or 

microarray used is likely to be different, and the experiments would have been performed by 

different groups), but this method would benefit from being able to compare a huge number of 
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gene expression changes. Computational screening would also be substantially cheaper than 

biological screening, but would require substantial expertise in bioinformatic analysis, which is 

currently a substantial limiting factor in re-use of data in medical research.  

TIMELESS 

This work expands upon the preliminary studies that have indicated TIMELESS is 

overexpressed in cancer and correlates with poorer patient outcomes and reveals a common 

mechanism by which loss of TIMELESS induces G2/M arrest and slows cancer cell proliferation. 

This work demonstrates that TIMELESS is overexpressed in multiple types of cancer and is 

likely required for increased DNA synthesis and cell proliferation. TIMELESS is overexpressed 

at the mRNA and protein level in cancer. In colon cancer, TIMELESS mRNA overexpression is 

not due to changes in promoter methylation. Transcriptionally, TIMELESS is thought to be 

regulated via transcription factor binding to E-box elements in its promoter in conjunction with 

chromatin modifications including acetylation of K3-K9 and trimethylation of H3K4 (H3K4Me3) 

122,123,373. H3K4Me3 is added by the histone methyltransferase KMT2A/MLL1, which permits 

circadian oscillation 374. This suggests the possibility that WDR5 overexpression in cancer could 

facilitate, if not promote, circadian dysregulation in cancer.  

Independent of a mechanism that upregulates TIMELESS mRNA, oncogenic Ras 

increases ERK activation, which subsequently increases TIMELESS expression. However, ERK 

inhibition did not globally reduce TIMELESS expression in colon cancer cells. In cells that were 

resistant to ERK inhibition-induced changes in TIMELESS expression, mTOR inhibition 

decreased TIMELESS expression. ERK and mTOR are known to regulate translation, which is 

likely the mechanism by which they regulate TIMELESS expression in colon cancer. 

Likely as a result of oncogenic signaling aberrantly driving its expression, TIMELESS 

expression is constitutively high, is no longer circadianly regulated, and is not decreased with 

increasing cell confluency. In contrast, in immortalized, yet non-transformed human colon 
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epithelial cells (HCECs), TIMELESS expression follows a circadian pattern after circadian 

synchronization and is inversely related to cell confluency. TIMELESS expression is known to 

vary based on cell cycle phase and is highest in the S and G2 phases of the cell cycle. Therefore, 

the changes in TIMELESS expression in HCECs relative to their confluency could be the result 

of an accumulation of cells in the G0/G1 phase. Interestingly, this change in expression mirrored 

changes in ERK phosphorylation. Considering this in conjunction with data demonstrating that 

ERK inhibition decreased TIMELESS levels even in HCECs suggests that ERK activation 

downstream of Ras promotes TIMELESS expression even in normal cells. Importantly, Ras/ERK 

and AKT/mTOR signaling has been shown to affect circadian rhythms 375,376. Circadian 

oscillations of ERK phosphorylation have been seen, and AKT/TOR regulates Sgg/GSK3 to 

affect the nuclear accumulation of TIMELESS 376.  

In colon cancer, TIMELESS depletion did not affect ERK phosphorylation as was 

previously predicted 205 or reduce MYC expression in colon cancer as was previously shown in 

breast cancer 207. Instead, TIMELESS depletion decreased cell proliferation and induced G2/M 

arrest in HCT116, SW480, SW620, and RKO colon cancer cells as a result of increased γH2AX 

and downstream CHK1 and CDK1 phosphorylation. This mechanism is preserved in HCECs, but 

is seen to a lesser extent than in the colon cancer cells.  

ERK inhibition induces an increase in γH2AX that cannot be rescued by exogenous 

TIMELESS expression, yet fails to induce CHK1 and CDK1 phosphorylation. ERK inhibition 

may also indirectly inhibit CHK1 phosphorylation as previous studies have shown that CHK1 

nuclear localization is dependent upon p90RSK phosphorylation of CHK1 at S280. This 

phosphorylation by p90RSK and subsequent nuclear localization is a prerequisite for DNA-

damage induced ATR-mediated phosphorylation of CHK1 at S345 222. 

The increased and aberrant expression of TIMELESS represents a unique vulnerability 

downstream of oncogenic Ras signaling and reveals a novel mechanism cancer cells employ to 

circumvent normal proliferative constraints. This suggests circadian dysregulation may be 
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essential within cancer cells for increased cell cycle advancement and implies that the 

development of therapeutics targeting this pathway may be efficacious in the treatment of cancer.  

This work is limited by the lack of an in vivo model to substantiate that TIMELESS is 

playing a vital role for the proliferation of cancer cells, and future work should be applied to 

evaluate the in vivo utility of targeting TIMELESS. This is particularly important as cells lose 

their organism-wide circadian entrainment in vitro. Even though intracellular circadian cycles are 

intact in this context, the potential exists that TIMELESS functions differently or is subject to 

additional regulation in vivo in the presence of constant organism-wide circadian entrainment. 

Additionally, TIMELESS has also been shown to be required for transcriptional upregulation of 

steroid hormone-producing enzymes 377 and regulates bacteria phagocytosis in Drosophila as 

Drosophila lacking TIMELESS are more sensitive to infection by S. pneumoniae 378. 

Phagocytosis is circadianly regulated with a higher level of phagocytosis at night. Loss of PER, 

another circadian gene, has a similar phenotype, and normal Drosophila demonstrate oscillating 

resistance to S. pneumoniae that is absent in TIMELESS mutants. Therefore, the effect of 

TIMELESS depletion on phagocytosis is likely a result of defective circadian cycle, which opens 

the possibility that circadian disruption in cancer may also affect immune system function. Based 

on these observations regarding other cellular functions of TIMELESS, additional mechanisms 

might exist in vivo that either contribute to its requirement for cancer cell survival and 

proliferation or preclude its use as a therapeutic target due to currently unforeseen side effects of 

inhibiting TIMELESS. 

Clearly, TIMELESS represents a novel vulnerability that is present in cancer cells, but 

not normal cells, that can be used to selectively target cancer cells and may be particularly 

effective if paired with a circadian dosing regimen; however, future work is needed to evaluate 

TIMELESS in vivo.  

WDR5 
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KMT2/MLL proteins are commonly mutated in colon cancer, but their role in tumor 

development and maintenance is still being debated. In contrast, WDR5 is rarely mutated in colon 

tumors, and preliminary studies have shown it is pro-tumorigenic. Several colon cancer cell lines 

including HCT116, RKO, and LoVo cells have WDR5 mutations, but their functional impact is 

unknown. WDR5 is also ubiquitously overexpressed in colon cancer cells. This overexpression 

could be the result of oncogenic signaling, but this has yet to be shown. WDR5 depletion or 

inhibition is selectively, but variably, toxic in colon cancer cells, more so than in HCECs. WDR5 

depletion induces γH2AX in HCT116, SW620, and RKO cells and decreases H3K4Me3 in 

HCT116, HCT15, SW620, and RKO cells. WDR5 inhibition with OICR-9429 treatment only 

induced γH2AX in the two cell lines with wildtype WDR5, HCT15 and SW620, and decreased 

H3K4Me3 in HCT116. Combination of WDR5 with ionizing radiation further increased the level 

of γH2AX. Future work is required to evaluate the role of WDR5 within in vivo tumors.  

Interestingly, both TIMELESS and WDR5 depletion induced γH2AX. Two additional 

hits from FUSION were MAP2K7 and MAP4K4, two kinases that phosphorylate JNK1. One 

study demonstrated that JNK1 may also contribute to increased H2AX phosphorylation (γH2AX) 

and DNA damage repair 379. The fact that this common mechanism is shared between multiple 

hits from FUSION suggests that DNA damage repair may be a pathway that is highly required in 

cancer. While this may be true, the genes within the KSR1-depletion gene expression-based 

signature may also have been primed or more likely to identify targets that share this specific 

mechanism of action and/or this pathway could be preferentially necessary in HCT116 cells.  

Further work to evaluate if KSR1 depletion also induces an increase in γH2AX may 

reveal additional mechanisms by which KSR1 promotes Ras-driven tumor formation and 

maintenance. KSR1 is known to be required for cell cycle restart following DNA damage repair, 

but further elucidating the downstream effects of KSR1 depletion on CHK1 and CDK1 

phosphorylation and the mechanism behind the cell cycle arrest could reveal additional functional 

similarities between KSR1 and other hits identified by FUSION.  
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AMPK/5-OH-S 

The gamma 1 subunit of AMPK is selectively required for HCT116 colon cancer cell 

survival, but not HCEC cell survival. In HCT116 cells, AMPKγ1 depletion causes a decrease in 

AMPK2 expression, which likely mediates this effect as AMPK2, but not AMPK1 is 

required for HCT116 and SW480 colon cancer cell survival. AMPK1, AMPK2, or 

combination AMPK1/2 depletion does not cause apoptosis in HCECs.  

AMPK2 depletion decreases P-ULK1 and beclin 1 expression suggesting AMPK2 

depletion decreases autophagy. AMPK2, but not AMPK1 depletion reduced PGC1β and 

ERR expression. FUSION discovered a natural product fraction that inhibited AMPK. The 

active compound was identified as 5-OH-S and was shown to directly inhibit AMPK kinase 

activity. 5-OH-S was preferentially required for HCT116 and SW480 cell survival, but was 

largely dispensable for HCEC survival. A related 7’-hydroxy-staurosporine, aka UCN-01, has 

been examined intensively for its anticancer properties and has been the subject of several clinical 

trials. UCN-01 is known to inhibit several kinases including AKT, PKC, several CDKs, CHK1, 

and AMPK. UCN-01 induces G1/S arrest and prevents DNA damage repair, which is thought to 

be the result of CHK1 inhibition. This suggests that in addition to inhibiting AMPK, 5-OH-S may 

also disrupt DNA damage repair and/or induce cell cycle arrest in addition to inducing apoptosis.  

Disruption of ERK signaling, through KSR1, ERK1/2, or MEK1/2 depletion, caused an 

increase in AMPK expression and/or activation suggesting cells may have an increased 

dependence on AMPK following disruption of Ras signaling. Combination treatment with 

SCH772984 and Compound C demonstrated synergy.  

Synergistic Interactions 

Previous reports indicated that combination inhibition with Torin-2, an ATP-competitive 

inhibitor of mTOR, ATM, and ATR, and AZD6244, a MEK inhibitor, yielded significant growth 

inhibition 380. Another group demonstrated that treatment with UCN-01 (7’-
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hydroxystaurosporine) induces MEK1/2 and ERK1/2 in malignant hematopoietic cells, while 

combination UCN-01 and MEK1/2 or Ras inhibition prevented the ERK activation and induced 

apoptosis 381-384. These reports demonstrate the potential benefit of treating cells with multiple 

targeted therapies to prevent the development of resistance. UCN-01 is structurally similar to the 

FUSION-identified AMPK inhibitor, 5-OH-S. Therefore, considering the previous reports that 

UCN-01 prevented the development of resistance to MEK or Ras inhibition in conjunction with 

results herein that KSR1 or ERK depletion induced AMPK2 expression and phosphorylation, 

the interplay between these two pathways is clearly demonstrated. Further, ERK and AMPK 

inhibition demonstrated additive to synergistic effects on colon cancer cell viability revealing the 

benefit of simultaneously targeting these pathways.  

Combination treatment with TIMELESS depletion and DNA damaging agents or ionizing 

radiation showed little if any increase in efficacy. The effect was most promising with the 

combination of TIMELESS depletion with ionizing radiation. HCT116 cells may not be the best 

cell line to test the potential for synergistic effects either as they have an intrinsically unstable 

genome. Therefore, if TIMELESS is required for DNA damage repair, HCT116 cells would be 

likely to be more dependent upon TIMELESS expression than other more genomically stable cell 

lines, and the addition of a DNA-damaging agent to these cells may not increase their dependence 

on TIMELESS further.   

However, combination treatment with TIMELESS depletion in conjunction with Wee1 or 

CHK1 inhibition had at least additive, if not synergistic, effects on efficacy suggesting this 

combination may be a viable approach for the treatment of colon cancer.  

Final Thoughts 

These results have revealed the importance of genes that sit in between multiple 

regulatory pathways and coordinate communication or signal between these pathways to regulate 

their execution. Clearly, TIMELESS sits at the cross-roads and regulates the balance and 
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coordinated execution of the DNA synthesis, DNA damage repair, circadian rhythm and cell 

cycle pathways. This regulation forces these pathways to be inextricably linked such that cells 

undergo coordinated regulation to ensure balance is maintained. Unfortunately, in cancer, 

oncogenes disrupt the balance by forcing cells to pursue unregulated proliferation. In order to 

maintain some semblance of order and prevent cell suicide, oncogenes simultaneously alter the 

regulation of a subset of genes that are required to allow the cancer cells to survive and thrive 

despite all of the external and internal signals to the contrary. Revealing the key players that are 

required for cancer cells to survive and maintain their transformed phenotype will lay the 

groundwork for the development of selective, efficacious therapeutics to treat cancer. 

Our results demonstrate the ability of FUSION to identify oncogene-induced changes in 

cancer that promote proliferation and cell survival, but also leave the cancer cell vulnerable to 

selective targeting that disrupts these co-opted pathways. The potential exists for all of the 

identified genes, TIMELESS, WDR5, and AMPK, to be required in other types of cancer as their 

identified mechanisms of action are likely to be present in other tissues and favorable for cancer 

regardless of the tissue of origin. Further characterizing these vulnerabilities and demonstrating 

their presence in vivo will determine their potential to serve as selective therapeutic targets for the 

development of targeted therapies for the treatment of cancer.  
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Appendix A: Biological validation of other FUSION hits: 

ECE2, HAS2, DYRK1A, and BMP4 

Rationale:  

FUSION identified 788 genes that are predicted to be required for colon cancer cell 

survival, but not normal cell survival. Preliminary biological validation was performed for several 

of these targets including ECE2, HAS2, DYRK1A, and BMP4.  

Results/Discussion: 

RNAi-mediated ECE2 depletion decreased cell viability in HCT116 colon cancer cells, 

but not in HCECs (Fig. A.1A). Cell count was also decreased in HCT116 cells following ECE2 

depletion (Fig. A.1B). ECE2 mRNA expression, but not ECE1 mRNA expression, is increased in 

colon cancer based on RNASeq evaluation of data from the COAD dataset within TCGA (Fig. 

A.1C). RNAi-mediated HAS2 depletion decreased cell viability similar to KSR1 depletion in 

anchorage-independent conditions when replated on polyHEMA-coated plates (Fig. A.2A). 

RNAi-mediated HAS2 depletion decreased cell viability in HCT116 cells, but not HCT15 colon 

cancer cells in normal culture conditions (Fig. A.2B). Unfortunately, due to a lack of quality 

reagents (particularly a lack of antibodies that could be validated) for ECE2 and HAS2 these 

targets were not pursued further. 

RNAi-mediated depletion of DYRK1A decreased cell counts in HCT116 colon cancer 

cells (Fig. A.3A). However, DYRK1A is known to serve as a scaffold for Ras/Raf/MEK kinase 

cascade. Therefore, DYRK1A was not pursued further.  

 RNAi-mediated depletion of BMP4 decreased cell viability in HCT116, but not in 

HCT15 colon cancer cells (Fig. A.4A). The mRNA expression of BMP4, BMP2, BMP7, 

GREM2, and BMP3 in human tumors was evaluated in the COAD TCGA dataset. BMP4 and 
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BMP7 were increased in colon tumors compared to normal tissue, whereas BMP2, GREM2, and 

BMP3 were decreased in colon tumors (Fig. A.4B). BMP4 and BMP7 mRNA expression was 

increased in a panel of colon cancer cells as compared to human colon epithelial cells (Fig. A.4C 

and D).  

  



215 
 

 

  

Fig. A.1: Biological validation of ECE2. (A) Viability of HCECs and HCT116 colon cancer cells 

measured using alamarBlue following RNAi-mediated depletion of KSR1, TIMELESS, or ECE2 for 72 

hours. (B) Cell counts in HCT116 cells following RNAi-mediated ECE2 depletion. (C) ECE2 and ECE1 

gene expression (RNA-Seq) data from the Colon Adenocarcinoma (COAD) dataset within TCGA for 

unpaired and paired primary colon tumors and normal solid tissue samples. The results published here 

are in whole or part based upon data generated by the TCGA Research 

Network: http://cancergenome.nih.gov/. (Fig. A.1B was completed in collaboration with Eyerusalem 

Lemma).  
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Fig. A.2: Biological validation of HAS2. (A) Viability of HCT116 colon cancer cells measured using 

CellTiter-Glo® following RNAi-mediated depletion of KSR1 or HAS2 that were replated on polyHEMA-

coated plates 48 hours following transfection to simulate anchorage-independent conditions. Cell viability 

is measured immediately after replating (Hrs: 0) and 24 hours later.  (B) Viability of HCT116 and HCT15 

colon cancer cells measured using alamarBlue following RNAi-mediated depletion of HAS2 for 72 hours. 

(Experiments A.2 were done in collaboration with Danielle Frodyma). 
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Fig. A.3: Biological validation of DYRK1A. (A) Cell counts in HCT116 cells 

following RNAi-mediated ECE2 depletion. (B) Western blot of DYRK1A after RNAi-

mediated depletion of DYRK1A with individual siRNA oligos.  
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Fig. A.4: Biological Validation of BMP4. (A) Viability of HCT116 and HCT15 colon cancer cells 

measured using alamarBlue following RNAi-mediated depletion of BMP4 for 72 hours. (B) BMP4, 

BMP2, BMP7, GREM2, and BMP3 gene expression (RNA-Seq) data from the Colon Adenocarcinoma 

(COAD) dataset within TCGA for unpaired primary colon tumors and normal solid tissue samples. The 

results published here are in whole or part based upon data generated by the TCGA Research 

Network: http://cancergenome.nih.gov/. (C and D) RT-qPCR of BMP4 (C) and BMP7 (D) in a panel of 

colon tumor cell lines as compared to immortalized, non-transformed HCECs. RT-qPCR data is shown as 

mean ± SD. ** p < 0.01 *** p < 0.001 **** p < 0.0001 (Experiments A.4C-D were done in collaboration 

with Danielle Frodyma).  
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Appendix B: Other mechanisms regulating TIMELESS 

expression 

Rationale: 

TIMELESS expression appears to be regulated through several mechanisms. The most 

prominent mechanism regulating TIMELESS expression in colon cancer discovered thus far 

appears to be via translation regulation by ERK or mTOR as described in Chapter 4: TIMELESS; 

however, even these mechanisms cannot completely explain the increased level of TIMELESS 

expression. Evaluating the effect of genetic depletions on TIMELESS expression is complicated 

because TIMELESS expression varies with cell cycle with the highest expression being seen in S 

and G2 phases. Therefore, any manipulation that affects the percentage of cells in each phase of 

the cell cycle could indirectly affect TIMELESS expression.  

Results/Discussion: 

RNAi-mediated depletion of MYC in HCEC and HCT116 cells decreased TIMELESS 

expression (Fig. B.1A). RNAi-mediated depletion of WDR5 with individual siRNA oligos in 

HCT116 also decreased TIMELESS expression, but oligos #5 and #6 had a much more dramatic 

effect (Fig. B.1B).  

RNAi-mediated depletion of BMP4 decreased TIMELESS expression at the protein (Fig. 

B.2A). RNAi-mediated depletion of BMP4, but not BMP7, decreased TIMELESS expression at 

the mRNA level (Fig. B.2B and C). RNAi-mediated depletion of CRY1 decreased TIMELESS 

expression at the mRNA level (Fig. B.2D).  
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Fig. B.1: MYC and WDR5 may promote TIMELESS expression. (A) Western 

blot of TIMELESS and MYC following RNAi-mediated MYC depletion for 72 

hours in HCEC and HCT116 cells. (B) Western blot of TIMELESS and WDR5 

following RNAi-mediated WDR5 depletion with individual siRNA oligos for 72 

hours.  
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  Fig. B.2: BMP4 and CRY1 may promote TIMELESS expression. (A-C) Western blot (A) and 

RT-qPCR (B and C) of TIMELESS following RNAi-mediated depletion of BMP4 and/or BMP7 

for 72 hours in HCT116 cells. (D) RT-qPCR of CRY1 and TIMELESS following RNAi-mediated 

depletion of CRY1 for 72 hours in HCT116 cells. (Experiments B.2 were completed in 

collaboration with Danielle Frodyma).  
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Appendix C: Cross-referencing the results from FUSION with 

other datasets 

Rationale: 

Hits identified from the FUSION screen are predicted to be selectively required for colon 

cancer cell survival, but not normal cell survival. Cross referencing these hits with screens 

performed by other groups can reveal additional features or characteristics of the FUSION hits.  

Results/Discussion: 

Cross referencing the 788 FUSION hits with results from ERR ChIP-Seq in A549 cells 

revealed a subset of probably ERR genetic targets that are also predicted to be required for 

colon cancer cell survival. Further limiting this list to targets that have increased mRNA 

expression in colon cancer based on RNASeq analysis in the COAD dataset within TCGA 

identified eleven genes (Fig. C.1).  

Cross referencing the 788 FUSION hits with genes that whose expression was increased 

via increased translation downstream of oncogenic Ras and MYC revealed a subset of genes that 

were predicted to be selectively required for colon cancer cell survival and overexpressed in 

cancer through oncogene-driven increases in translation (Fig. C.2) 
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Fig. C.1: FUSION hits predicted to be regulated by ERRα and upregulated in colon cancer. 

(A)Table with a list of FUSION hits that are also predicted to be targets of ERRα based on publically 

available ChipSeq data that was performed in A549 cells (GSE91793). (B) PIGL, NUDT4, TCFL5, 

DDX47, MAP4K4, PODXL, FUBP3, PLCB4, LTBP2, and TAZ gene expression (RNASeq) data from 

the Colon Adenocarcinoma (COAD) dataset within TCGA for unpaired primary colon tumors and 

normal solid tissue samples. The results published here are in whole or part based upon data generated 

by the TCGA Research Network: http://cancergenome.nih.gov/. Note: EPHB4 is not included in B 

because those results were previously published.  

http://cancergenome.nih.gov/
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Table C.1: FUSION hits that are also predicted to be regulated by Ras- or MYC-driven 

translation.  
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Appendix D: Sequences of qPCR primers and siRNA duplexes 

Target Item # siRNA Target Sequence 

CRY1 J-015421 
5 CAGCAGCUUUCACGAUAUA 
6 GGAGUAGAAGUCAUUGUAA 
7 UAUAUGACCUAGACAAGAU 
8 CAACUGUUAUGGCGUGAAU 

ECE2 J-005858 
6 CAAGCAUCCUGAACAAUUA 
7 CCUACUACCUUCCAACUAA 
8 GGAUGACGCCCUUGGCUUU 
9 GCAUUCGAGUGGCUGGAAA 

HAS2 J-012053 
19 GGGUGUGUUCAGUGCAUUA 
20 GGAUUAAAGUUGUCAUGGU 
21 CCAAACGGAUAAUUACUAU 
22 GGUUUGUGAUUCAGACACU 

ERK1 J-003592 

7 GACCGGAUGUUAACCUUUA 
8 CCUGCGACCUUAAGAUUUG 
9 CCAAUAAACGGAUCACAGU 

10 AGACUGACCUGUACAAGUU 

ERK2 J-003555 

11 UCGAGUAGCUAUCAAGAAA 
12 CACCAACCAUCGAGCAAAU 
13 GGUGUGCUCUGCUUAUGAU 
14 ACACCAACCUCUCGUACAU 

AMPKa1 J-005027 
6 CCAUACCCUUGAUGAAUUA 
7 GCCCAGAGGUAGAUAUAUG 
8 GAGGAUCCAUCAUAUAGUU 
9 ACAAUUGGAUUAUGAAUGG 

AMPKa2 J-005361 
6 CGACUAGCCCAAAUCUUU 
7 GAGCAUGUACCUACGUUAU 
8 GACAGAAGAUUCGCAGUUU 
9 GUCUGGAGGUGAAUUAUUU 

WDR5b LU-013375 
5 CAUCGCAUCAGCAGCAUUA 
6 AAACAUACACUGGUCAUAA 
7 CAAACUAUGCUCUCAAAUG 
8 GGACAACACUCUUAAACUA 

 

Table D.1: siRNA Sequences  
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Target Item # siRNA Target Sequence 

WDR5  L-013383 
5 GACGAAAGCGUGAGGAUAU 
6 GUGGAAGAGUGACUGCUAA 
7 GACGUGAGCUCGGGCAAGU 
8 GAUGGAUCCUUGAUAGUUU 

TIMELESS J-019488 
5 UCAAUCGUCUGCUUAGUGA 
6 CAGGGUAGCUUAGUCCUUU 
7 GAGGGAGACACUUACCAUA 
8 CUACUGCUGGUCAGAAAUA 

BMP4 J-011221 
5 GAGCCAUGCUAGUUUGAUA 
6 UAGCAAGAGUGCCGUCAUU 
7 CGACACUUCUGCAGAUGUU 
8 CAGGAUUAGCCGAUCGUUA 

BMP7 J-011592 
5 GAGGUGCACUCGAGCUUCA 
6 CAUCGAGAGUUCCGGUUUG 
7 GAUCAGCGUUUAUCAGGUG 
8 GCACAACUCGGCACCCAUG 

KSR1 J-003570 
7 GAGCAAGUCCCAUGAGUCU 
8 GGAAUGAAGCGUGUCCUGA 
9 AGAAAGAGGUGAUGAACUA 

PRKAG1 J-009056 
5 GAGGUUCACCGACUUGUAG 
6 UCAAUAUCCUGCACCGCUA 
7 GGAACAAGAUCCACAGGCU 

MAP2K1 L-003571 
6 CCAUGCUGCUGGCGUCUAA 
7 GAGGUUCUCUGGAUCAAGU 
8 CGACGGCUCUGCAGUUAAC 
9 GCACAAGGUCCUACAUGUC 

MAP2K2 J-003573 
8 CGACAGCGCAUGCAGGAAC 
9 GAUCAGCAUUUGCAUGGAA 

10 GGUCCGAGGUGGAAGAAGU 
11 UCUUUGAACUCCUGGACUA 

RBBP5 LU-012008 
5 UAACACGGCAGAUCGAAUA 
6 UAUAGAACUUCAAGGAGUA 
7 GCAAUACCACAGCCAUUAA 
8 GAUGGAACUUUGGAUUGUA 

Non-targeting 
Cont 

D-001810  UGGUUUACAUGUCGACUAA 
 

Table D.1 Continued: siRNA Sequences  
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