
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Spring 5-5-2018 

Molecular Mechanism of Early Amyloid Self-Assembly Revealed Molecular Mechanism of Early Amyloid Self-Assembly Revealed 

by Computational Modeling by Computational Modeling 

Mohtadin Hashemi 
University of Nebraska Medical Center 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Biochemistry Commons, Biophysics Commons, Computational Neuroscience Commons, 

and the Structural Biology Commons 

Recommended Citation Recommended Citation 
Hashemi, Mohtadin, "Molecular Mechanism of Early Amyloid Self-Assembly Revealed by Computational 
Modeling" (2018). Theses & Dissertations. 260. 
https://digitalcommons.unmc.edu/etd/260 

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It 
has been accepted for inclusion in Theses & Dissertations by an authorized administrator of 
DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=digitalcommons.unmc.edu%2Fetd%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=digitalcommons.unmc.edu%2Fetd%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/58?utm_source=digitalcommons.unmc.edu%2Fetd%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/6?utm_source=digitalcommons.unmc.edu%2Fetd%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/260?utm_source=digitalcommons.unmc.edu%2Fetd%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


MOLECULAR MECHANISM OF EARLY AMYLOID SELF-

ASSEMBLY REVEALED BY COMPUTATIONAL MODELING 

by 

Mohtadin Hashemi 

A DISSERTATION 

 

Presented to the Faculty of  

the University of Nebraska Graduate College  

in Partial Fulfillment of the Requirements  

for the Degree of Doctor of Philosophy 

 

Pharmaceutical Sciences Graduate Program 

 

Under the Supervision of Professor Yuri L. Lyubchenko 

 

University of Nebraska Medical Center  

Omaha, Nebraska 

April, 2018 

 

Supervisory Committee: 

Howard E. Gendelman, M.D.  Alexey V. Krasnoslobodtsev, Ph.D. 

Luis A. Marky, Ph.D.   Simon Sherman, Ph.D. 

 



 i 

 

Dedicated to my mother, 

“Her hands held me gently from the day I took my first breath. 

Her hands helped to guide me as I took my first step. 

Her hands held me close when the tears would start to fall. 

Her hands were quick to show me that she would take care of it all” 

 

Dedikeret til min mor, 

“Det første billede af en engel man ser,  

er det samme som et billede af mor der ler. 

Det er mor der redder en fra drømme i den mørke nat 

fordi hendes børn er hendes mest værdifulde skat. 

Det er hende der guider og beskytter 

og hende der vejleder og lytter” 

 

 ومهر: قدیم به مادرم، دریای بی کران فداکاریت

 اول به هزار لطف بنواخت مرا

 آخر به هزار غصه بگداخت مر
  باخت مراچون مهره مهر خویش می

 چون من همه از شدم بینداخت مر
 



  ii 

ACKNOWLEDGEMENTS 

The completion of this thesis, and the underlying work, would not have been possible 

without the tremendous help and guidance of many extraordinary people. First and 

foremost, I would like to thank my mentor and advisor, Yuri Lyubchenko, for his consul, 

support, and guidance. His encouragement and mentorship, throughout my research work, 

enabled me to apply my limited knowledge of AFM and computational methodologies to 

investigate biological processes. He, together with Howard Gendelman, Alexey 

Krasnoslobodtsev, Sorin Luca, Luis Marky, and Simon Sherman, have provided, not only, 

invaluable advice but also lent me their considerable knowledge, experience, and valuable 

time during my education. They taught me to be creative in research and made me 

appreciate the very fundamental aspects of science. I appreciate their continuous 

encouragement and will always try to mimic their relentless work ethics and dedication to 

science. 

 I want to express my gratitude and appreciation to all past and present members 

of the lab: Siddhartha Banerjee, Samrat Dutta, Alexey Krasnoslobodtsev, Alexander 

Lushnikov, Zhengjian Lv, Sibaprasad Maity, Ashok Pabbathi, Yangang Pan, Alexander 

Portillo, Apurba Pramanik, Lyudmila Shlyakhtenko, Micah Stumme-Diers, Zhiqiang Sun, 

Yaqing Wang, Galina Warren, Karen Zagorski, and Yuliang Zhang. It has been delightful 

and an honor to spend time in their company, both in the lab and outside. I would like to 

give special thanks to Luda for her kindness and care and apologize for worrying her so 

much. Alex, Galya, Karen, Micah, Yuliang, and Zhiqiang have been steadfast friends and 

made my time in Omaha very enjoyable.  



  iii 

 My thanks are also extended to current and former faculty members and my fellow 

students for their patience and help through my PhD study. I would like to acknowledge 

Ashley Calhoon, Jamie Cook, Renee Kaszynski, Michelle Parks, Elaine Payne, and Katina 

Winters from the College of Pharmacy and Cody Phillips, Terri Vadovski, and Vanessa 

Wilcox from Graduate Studies for their assistance with all administrative aspects of my 

education. 

 I would like to thank David Swanson and his team at the Holland Computing 

Center for advice and training with regards to the NU supercomputers. I am grateful 

towards Phillip Blood, Markus Dittrich, and Marcela Madrid and their colleagues at the 

Pittsburg Supercomputing Center for training and advice on the special purpose 

supercomputer Anton and Anton2.  

 I would like to acknowledge the NSF and NIH funding sources for making my 

research possible. Furthermore, I would like to thank the UNMC Graduate Assistantship, 

Bukey memorial fellowship, and the UNMC Graduate Fellowship for providing financial 

support during my research. 

 Above all, I would like to thank my family for their endless patience and support; 

for taking time out of their busy lives to help me with any issue that arose, and for sharing 

their joy and happiness during the times I needed it the most. I am indebted to my wife for 

her endless and unconditional support, encouragement, love, and the many sacrifices she 

has made; she is the wind that carries my dinghy through the journey that is life.  

 



  iv 

 The simulations in this dissertation were performed using my personal µ−cluster; 

Crane and Tusker at Holland Computing Center of the University of Nebraska, which 

receives support from the Nebraska Research Initiative; Comet at San Diego 

Supercomputer Center and Stampede at the Texas Advanced Computing Center, through 

the Extreme Science and Engineering Discovery Environment (supported by National 

Science Foundation ACI-1053575 for XSEDE); and the special purpose supercomputers 

Anton and Anton2, provided by the Pittsburgh Supercomputing Center through Grant 

R01GM116961 from the National Institutes of Health. Anton machines at PSC were 

generously made available by D.E. Shaw Research. 

 Some passages in this dissertation have been quoted, with permission, verbatim 

from the following sources: DOI: 10.1039/c6nr06850b, DOI:10.1038/s41598-017-02454-

0, DOI: 10.1038/srep45592, and DOI: 10.1101/295782.  

 

  



  v 

MOLECULAR MECHANISM OF EARLY AMYLOID SELF-

ASSEMBLY REVEALED BY COMPUTATIONAL MODELING 

Mohtadin Hashemi, Ph.D. 

University of Nebraska Medical Center, 2018 

Supervisor: Yuri L. Lyubchenko, Ph.D., D.Sc. 

Protein misfolding followed by the formation of aggregates, is an early step in the cascade 

of conformational changes in a protein that underlie the development of several 

neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Efforts 

aimed at understanding this process have produced little clarity and the mechanism remains 

elusive.  

 Here, we demonstrate that the hairpin fold, a structure found in the early folding 

intermediates of amyloid β, induces morphological and stability changes in the aggregates 

of Aβ(14-23) peptide. We structurally characterized the interactions of monomer and 

hairpin using extended molecular dynamics (MD) simulations, which revealed a novel 

intercalated type complex. These finding suggest that folding patterns of amyloid proteins 

define the aggregation pathway.  

 Computational analysis was then used to characterize the dimerization of full-

length Aβ peptide and reveal their dynamic properties. Aβ dimers did not show β-sheet 

structures, as one may expect based on the known structures of Aβ fibrils, rather dimers 

are stabilized by hydrophobic interactions in the central hydrophobic regions. Comparison 
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between Aβ40 and Aβ42 showed that overall, the dimers of both alloforms exhibit similar 

interaction strengths. However, the interaction patterns are significantly different.  

 A novel aggregation pathway, able to describe aggregation at physiologically 

relevant concentrations, was elucidated when aggregation of amyloid proteins was 

performed in presence of surfaces. Computational analysis revealed that interaction of a 

monomer with the surface is accompanied by the structural transition of the monomer; 

which can then facilitate binding of another monomer and form a dimer. Compared to our 

previous data we observed an almost five-fold faster dimer formation.  

 Further investigation of the surface-mediated aggregation revealed that lipid 

membranes promote aggregation of α-syn protein. MD simulations demonstrate that α-syn 

monomers change conformation upon interaction with the bilayers. On POPS, α-syn 

monomer protrudes from the surface. This conformation on POPS dramatically facilitates 

assembly of a dimer that remains stable over the entire simulation period. These findings 

are in line with experimental data. 

 

Overall, the studies described in this thesis provide the structural basis for the early stages 

of the misfolding and aggregation process of amyloid proteins.  
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Chapter 1: Introduction 

Chapter 1. INTRODUCTION 

Proteins have a wide variety of functions within the cell, including structural, biochemical, 

and as components in the signaling pathways (1-3). Most proteins assume a fold, and 

ultimately a structure, in a functional conformation while performing their biological 

function. However, either during folding, or from an already folded structure, proteins can 

form a so-called misfolded structure (4). A unique property of misfolded protein 

conformations is their propensity to self-assemble into nanostructures of various 

morphologies termed aggregates; this can happen in vivo as well as in vitro (4-9). 

Aggregated proteins often lack the biological activity of the correctly folded proteins and 

are often associated with pathological conditions. In humans these diseases are termed 

protein aggregation disorders and include Alzheimer’s (AD), Parkinson’s (PD), and 

Huntington’s diseases (HD) (10-14). 

 Alzheimer’s disease is a fatal chronic neurodegenerative disease, and the most 

common form of dementia, associated with loss of memory and other cognitive abilities 

(12, 15-17). Diagnosis of AD is very difficult and usually happens at later stages of the 

disease through cognitive testing, advanced brain imaging methods, and familial health 

history. At this stage, major parts of the brain are extensively damaged. In the United 

States, AD is the sixth leading cause of death and has seen a ~55% increase in death rate 

from 1999 to 2014 (18).  
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Chapter 1: Introduction 

 Recent data shows that approximately 5.2 million Americans suffer from AD (18), 

accounting for a significant fraction of global AD patients, approximately 46 million (19). 

The incidence of AD is expected to increase dramatically in the next decade, primarily 

because of the aging population and the fact that prevalence of neurodegenerative 

disorders, including AD, increase with age. The medical care provided for American AD 

patients alone are estimated to cost $226 billion per annum, with 68% paid by Medicare 

and Medicaid (20). With the dramatic increase in number of patients and the cost of care, 

a frantic search for interventions is ongoing. However, all efforts so far have failed; there 

is no treatment to arrest or reverse the progression of AD, there is no cure.  

1.1 Amyloid Aggregation Progression 
Alzheimer’s disease is associated with the spontaneous self-assembly and aggregation of 

amyloid β proteins (21). These aggregates form large insoluble inclusions within the AD 

brain, called amyloid plaques, and are the pathological hallmarks of the disease (15, 22). 

Amyloid β is the byproduct of proteolytic cleavage of amyloid precursor protein (APP) 

when processed by β- and γ-secretases (23). There are two principle alloforms of amyloid 

β proteins, Aβ40 and Aβ42, defined by the number of residues; with the former being the 

most abundant and the latter the most aggregation prone and neurotoxic (16, 24-29). The 

amyloid cascade hypothesis implicates the aggregation of Aβ proteins as the causative 

agent of AD (30). However, efforts aimed at understanding this process have produced 

little clarity and the mechanism of self-assembly remains elusive. 

 Evidence of similarities of features of aggregates extracted from AD patients with 

those of Aβ aggregates assembled in vitro provide support for the use of in vitro 
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aggregation studies to understand Aβ structural dynamics in vivo (31-34)005. Several 

studies have shown that Aβ42 is the variant implicated in the development of AD, due to 

its kinetics of aggregation (5, 25, 26, 35-37). These studies demonstrated that Aβ42, 

compared to Aβ40, nucleates much faster and rapidly forms fibrillar aggregates. A 

mechanism for this aggregation has been proposed: the protein, from a monomeric state, 

undergoes transformation and is able to form transient oligomeric species (38, 39). 

008aThese oligomers can aggregate further and ultimately form fibrillar aggregates, termed 

amyloid fibrils (31, 33, 34).  

 Amyloid fibrils are very stable and have been characterized by AFM (40-42), 

electron microscopy (43-45), NMR (33, 34, 46), and X-ray crystallography (6, 47). These 

structural studies revealed that fibrils consist of long, ordered, β-structures that stack in a 

perpendicular fashion. Fibrils are stabilized by H-bonds and van der Waals interactions, 

with most fibrils having a twist along the fibril axis that enhances the side-chain and 

electrostatic interactions (48). Interestingly, Aβ monomers are largely unstructured (49-

51).  

 Solid-state NMR (ssNMR) studies of amyloid fibrils revealed that cross β-

structures with either a parallel or an anti-parallel arrangement of monomers are the 

common structural features of fibrils (52, 53). Another feature of fibrils is the presence of 

β-hairpin motifs (54, 55), such as the turn-like structure from residues 26 to 30 in Aβ42 

fibrils (31). Furthermore, the morphology of fibrils depends on the environmental 

conditions under which they were assembled; geometrical conformations such as S-shape 

(33) and U-turn (31) have been observed in aggregation studies performed in vitro.  
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1.2 Toxicity of Amyloid Aggregates 
Several hypotheses have been proposed to explain the toxicity and role of Aβ aggregates 

in the progression of AD, with the amyloid cascade hypothesis receiving recognitions as 

the principal mechanism of toxicity (56). However, recent findings have caused the 

hypothesis to be revised to account for the toxicity of Aβ oligomers; in fact, recent findings 

implicate oligomers as the most neurotoxic species (38, 57-63).  

 The toxicity of Aβ oligomeric species have been attributed to intracellular, 

membrane, and receptor-mediated mechanisms (64-66). Oligomers can cause synaptic 

dysfunction through specific interactions with essential receptors (67-69), or by 

introducing defects in the plasma membrane through direct interactions, leading to 

formation of pores and or channels (70, 71). In addition, accumulation of intracellular Aβ 

oligomers may happen simultaneously with one or more of the extracellular pathways (64, 

72-75). However, the formation and mechanism of toxicity of the intracellular aggregates 

are not well understood.  

1.3 Oligomeric Species 
One of the elements in the amyloid hypothesis is the progressive increment in aggregation 

order, going from monomers to oligomers and finally to fibrils (39). However, unlike fibrils 

the oligomeric species are very transient and their structural characteristics at molecular 

level are unknown. Various morphologies have been ascribed to oligomers, from spherical 

aggregates to filamentous (76, 77). It is proposed that oligomers form the critical entities, 

called nuclei, needed to transition to proto-fibril states before finally fibrillating (57).  
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 Recent findings show that synthetic Aβ is able to faithfully reproduce the 

characteristics of the oligomers obtained from patients, e.g. resistance to SDS and 

enzymatic degradation (53, 78-84). Spectroscopic characterization of Aβ oligomers 

revealed that they are composed of random coil secondary structure, which is able to 

transition to β-structure as the aggregation progresses (57, 85-87). Furthermore, the 

structure of a Aβ40 monomer, stabilized by an antibody, containing β-structures suggests 

that the β-hairpin structure could be an intermediate during Aβ aggregation (88). It has also 

been proposed that this conformation is an early folding event during Aβ aggregation (89, 

90). Interestingly, comparison between the oligomerization of Aβ40 and Aβ42 led to the 

discovery of a different aggregation pathway depending on alloform (91). For Aβ40 

oligomers up to tetramers were observed, whereas Aβ42 yielded oligomers up to 

dodecamers. These results are in line with previous findings where oligomers had been 

stabilized by cross-linking (35). 

 Recent studies have demonstrated that single-molecule approaches are an 

effective method to study oligomers (92-95). Single-molecule techniques, such as AFM 

(96-100), tethered approach for probing inter-molecular interactions (TAPIN) (101, 102), 

and FRET (86), have shown that the early stage oligomers exhibit prolonged lifetimes and 

stabilities. Novel features of the interaction and self-assembly of Aβ40 and Aβ42 peptides 

were determined using single-molecule AFM-based force spectroscopy (97). It was found 

that the Aβ peptides are stabilized by mutations in the C-terminal region, the VPV (G33V-

V36P-G38V) mutation stabilizes and, for Aβ40, dramatically change the behavior of the 

peptide. Another major discovery of the force spectroscopy studies was the high stability 
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of the amyloid dimers. Findings which suggest that dimerization requires conformational 

transitions within monomers that enable them to form stable complexes (97, 99, 100). 

 Single-molecule fluorescence techniques have been used to characterize in vitro 

aggregation of Aβ40, revealing a heterogeneous distribution of small oligomers with 

dimer-tetramers being the most abundant (103). Furthermore, Sarkar et al. showed that the 

oligomer chemical shifts are very different from fibrils, in particular the N-terminal and 

the central segment (residues 22-29) (86). These finding are in line with data from Ahmed 

et al., which show that oligomers have disordered molecular conformations (57). 

Furthermore, these oligomers were reported to have very solvent accessible N-termini and 

possess turn structures.  

1.3.1 Computational studies 
One of the most challenging tasks in the study of proteins, including amyloid proteins, is 

the determination of structure. Highly dynamic properties of the majority of amyloid 

proteins, and transient features of their oligomeric species, complicate the use of standard 

tools of structural biology, i.e. NMR and X-ray crystallography. In such situations, 

computational tools become indispensable in the pursuit of knowledge about the structural 

and dynamic properties of complex biological molecules. Computer simulations act as a 

bridge between experiment and theory by predicting molecular interactions, dynamics, and 

properties. These predictions can be used to gain insight into experimentally observed 

behaviors or to provide details obscured in experiments, such as dynamics of protein-

protein interactions.  

 Unlike fibrils, there are no structural data available for oligomers; standard tools 

of structural biology fail to characterize the early stages of self-assembly due to their 



M. Hashemi - April 2018   7 

Chapter 1: Introduction 

transient nature and heterogeneity; leaving many questions about their formation 

unanswered (104, 105). Computational simulations have been utilized to supplement the 

novel single-molecule techniques used to probe early stages of aggregation and, in some 

cases, elucidate the dynamics and mechanism of aggregation (100, 106-110). Due to the 

computational cost, the majority of studies of Aβ oligomers have focused on characterizing 

the structures and dynamics of several key segments of amyloid proteins associated with 

aggregation.  

 One of the earliest studies of protein aggregation using an atomistic approach was 

performed on the Aβ(16-22) fragment (111). The study showed that Aβ(16-22) undergoes 

several structural transitions whereupon it is able to form conformations with antiparallel 

β-sheets. Later studies adopted similar approaches to characterize the aggregations of other 

amyloidogenic peptides (100, 112, 113). Common for all these studies was the observation 

that the peptides first collapse into disordered aggregates, and later these aggregates 

undergo structural transitions that reorder the inter-peptide interactions and allow for the 

emergence of conformation with ordered structures, e.g. α-helices and β-sheets.  

 Simulation of the Aβ(16-22) and Aβ(25-35) fragments revealed that the two 

peptides follow different aggregation pathways (114). The Aβ(16-22) initially assumes a 

disordered oligomeric conformation, in which all hydrophobic residues are shielded from 

the solvent, and then undergoes a transition to a β-structured oligomer. The Aβ(25-35) 

peptide on the other hand forms a stable tetrameric oligomer and β-structured aggregates. 

Moreover, these aggregates coexist with less ordered oligomers. A longer fragment, 

Aβ(17-42) primarily showed a fibril like conformation with a strand-turn-strand motif 

(115). Similarly, the Aβ(21-30) fragment forms a hairpin structure (116).  
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 Computational studies of the dynamics of Aβ42 lead to the discovery that, in an 

aqueous environment, the peptide mainly assumes α-helical structure (117). However, the 

helices are not stable and transition between structured and unstructured conformations 

multiple times. Further studies showed that Aβ42 is more structured compared to Aβ40 

and has a less flexible C-terminal segment (107). These findings are in line with the 

comparison of Aβ40 and Aβ42 by Yang and Teplow, which showed that Aβ42 forms more 

stable conformations that tend towards β-structure and stable C-terminus (118). 

 More recent simulations of the full-length Aβ have revealed that the size and 

distribution of the early aggregates for Aβ40 and Aβ42 vary, the most common oligomer 

being dimers for the former and pentamers for the latter (119, 120). These results 

qualitatively reproduce the main features of oligomer size distributions measured 

experimentally. Furthermore, Aβ42 displayed turn and β-hairpin structures that are absent 

in Aβ40. Other differences between the alloforms was an N-terminus β-strand in Aβ40 but 

not in Aβ42.  

1.4 Significance 
Protein misfolding followed by the formation of aggregates, is an early step in the cascade 

of conformational changes in a protein that underlie the development of a number of 

neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Little 

progress has been made in the treatment of these diseases, due to the lack of knowledge 

about the self-assembly process. Moreover, the main toxic species remains disputed, 

primarily due to the lack of a precise mechanism of neurotoxicity. However, recently it has 
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become apparent that oligomers, rather than fibrillar aggregates, are the toxic amyloid 

species.  

 While there have been an increasing number of reports published within the last 

five years about oligomeric species, the structure of amyloid oligomers has yet to be 

elucidated. Consequently, the structures of different oligomers and how specific amyloid 

oligomers contribute to neurotoxicity remain unclear. Leaving the fundamental questions 

related to the mechanism of oligomer self-assembly and dynamics unanswered. Which, in 

turn, has impeded the progress in the development of treatment for these diseases. 

 The results presented in thesis elucidate the molecular mechanism of the initial 

aggregation processes of amyloid peptides and characterize the structural dynamics of the 

early aggregates. Moreover, we identified a novel pathway, involving interactions with 

surfaces, for the spontaneous self-assembly of amyloid proteins in the physiological 

concentration range, that eliminates the discrepancy between protein concentrations in vivo 

and in vitro.  

 The availability of structures of the early oligomers, and their conformational 

dynamics, as well as the surface-mediated aggregation pathway advance our knowledge of 

the aggregation process and helps identify new targets for preventive and therapeutic 

interventions. Furthermore, the available structure and simulation methodologies enable 

the development of therapeutics targeted to specific structures and or aggregation states. 
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Chapter 2. METHODS 

In this chapter a general description of the computational approaches used in the thesis is 

provided. Specifics of each approach, where relevant, have been given in the methods 

section of each subsequent chapter. 

2.1 Molecular Simulations 
Two main branches of simulation techniques exist, molecular dynamics (MD) and Monte 

Carlo (MC) (121). While MD is more resource demanding, it provides the dynamic 

behavior of a system over time. Although MD simulations do not model the underlying 

physics exactly, they provide a close approximation that captures a wide range of critical 

biological processes and reveal the atomistic behavior of biomolecules at microsecond 

timescales (122-127).  

 In MD simulations, a series of step-by-step iterations of computational algorithms 

are used to obtain atomic trajectories by numerically solving equations of motion using 

empirically derived parameters called force field. Force fields describe the atomic 

properties and behavior of molecules using the potential energy of the system as a function 

of its spatial arrangement, and take into account bonded (bonds, angles, and dihedral terms) 

and non-bonded (Coulombic electrostatics and van der Waals interactions) contributions 

(121). The calculations are based on classical law of motion, which has been adopted to 

algorithmically be calculated using the force, 

𝐹𝐹𝚤𝚤��⃗ = 𝑚𝑚𝑖𝑖 ∙ 𝑎𝑎𝚤𝚤���⃗ 𝑖𝑖 = 1, 2, . . .𝑁𝑁 

 which gives the force of the i’th particle. Force can also be derived from the 

gradient of the potential, 
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𝐹𝐹𝚤𝚤��⃗ = −∇𝑉𝑉(𝑟𝑟𝚤𝚤��⃗ ) 

 𝑉𝑉(𝑟𝑟𝚤𝚤��⃗ ) is the potential energy of the system. Combining the two yields, 

𝑚𝑚𝑖𝑖
𝜕𝜕2𝑟𝑟𝚤𝚤��⃗
𝜕𝜕𝑡𝑡2

= −
𝜕𝜕𝑉𝑉(𝑟𝑟𝚤𝚤��⃗ )
𝜕𝜕𝑟𝑟𝚤𝚤��⃗

 

 which is the equation of motion used, in most MD programs, to obtain molecular 

trajectories. The power of this seemingly simple approach becomes apparent when 

studying dynamic processes, such as elongation of an amyloid fibril (128). Nguyen et al. 

utilized atomistic MD simulations to characterize the interactions of a monomeric Aβ(16-

22) with a preformed fibril arranged in an anti-parallel β-sheet. They were able to elucidate 

the process in which the monomer, initially unstructured, interacts with the fibril and 

rapidly undergoes structural transition to an ordered conformation with β-structures. 

Following the transition, the fibril-bound monomer then undergoes a slow conversion to 

an anti-parallel β-structure. Interestingly, the monomers of the fibril also undergo 

conformational changes during the incorporation of the free monomer. The 

characterization of this elongation mechanism, termed the dock-lock mechanism, was 

made possible solely due to MD simulations. 

2.1.1 Force Field Parameters for Amyloids 
Force fields were originally developed to describe the folding and dynamic behavior of 

structured proteins, i.e. proteins that have very stable conformations (122). This is in part 

due to the large body of data available in form of NMR and X-ray crystal structures. Each 

iteration of the force fields has been tailored to better reproduce these data (129). However, 
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amyloid proteins are intrinsically disordered proteins (IDPs) and have very little or no 

regular structure, which may pose a challenge for these force fields (130). 

AMBER Force Field 
One of the most widely used protein force fields is the AMBER family of force fields. 

These force fields have been shown, in several studies, to reproduce experimentally 

observed behavior with a phenomenal degree of accuracy (129). Furthermore, several 

studies have shown that the AMBER force fields are able to reproduce the characteristics 

of amyloid proteins and peptides better than other force fields; in particular the secondary 

structure and arrangement (NMR chemical shifts and coupling constants) of the molecules 

(50, 100, 118, 131-136). Together with the fact that it is one of the best force field for 

structural protein, the AMBER99SB-ILDN force field outperforms other force fields, in 

best describing the behavior of amyloid peptides and proteins (137). 

Water Model 
Another important factor when performing biologically relevant MD simulations is the 

inclusion of a biologically relevant environment, i.e. aqueous environment (138). This is 

critical for amyloid proteins because hydration is very important during for the aggregation 

(139-141). Several studies have shown that the water model used during simulations is 

critical for the aggregation behavior of amyloids (142-144). The different water models 

cause differences in protein structure due to their attributes, e.g. polarity or H-bonding 

capability, which in amyloid proteins translate to different conformations and 

compactness; in the case of more polar water models the proteins will be more compact 

and have less solvent accessible surface.  
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 The choice of water model is not trivial, as most force fields are parametrized 

using a specific water model; using a different model may cause over- or underestimation 

of molecular interactions. The AMBER force fields are parametrized using TIP3P water 

model (145). Recent benchmark studies have shown that this combination of protein force 

field and water model is suited when describing the interaction and dynamics of amyloids 

(144). 

MARTINI Force Field 
Biological ensembles often contain hundreds of thousands of atoms and operate on the time 

scale of microseconds. However, current computational capabilities impose limitations on 

how large or for how long a system can be investigated; either simulate a very small system 

for the timescale of the molecular event or simulate a large system for a very short time. 

To overcome this problem, many approaches have been developed to accelerate the 

sampling of the protein conformational landscape. One such approach is the use of coarse 

grained (CG) descriptions of the molecular system.  

 Coarse graining involves simplification of the molecular system and interactions 

and comes with the trade-off of accuracy for computational efficiency. The MARTINI 

force field is one of the most well characterized CG force fields for proteins and lipids 

(146, 147). Briefly, MARTINI uses a 4:1 mapping scheme, which replaces 4 heavy atoms 

with 1 CG pseudoatom. Each pseudoatom carries the physico-chemical characteristics of 

the heavy atoms it replaces; e.g. hydrogen bonding capability, charge, and polarity.  

 MARTINI has successfully been used to conduct extensive simulation studies of 

the amyloid aggregation process (148, 149). In particular very large systems, e.g. the 



M. Hashemi - April 2018   14 

Chapter 2: Methods 

intermediate processes involved in progression from early oligomers to mature fibrils can 

be investigated (150). 

2.2 Accelerated Molecular Dynamics Simulations 
One of the major hurdles in MD simulations is the fact that simulation rarely reach beyond 

few microseconds, which often leads to an insufficient exploration of the conformational 

landscape, especially if the molecular system is trapped in a local energy minimum. 

Consequently, many properties of the biological system may remain unexplored. This fact 

has led to the development of mathematical algorithms that allow enhanced sampling of 

the conformational space. One such approach is the accelerated MD (aMD) approach 

(151). 

 Accelerated MD is an approach that improves the conformation sampling by 

reducing the energy barriers in a molecular system. This is done by modifying the potential 

energy of the system through application of a boost energy when the system energy has 

fallen below a certain threshold, while leaving the energy levels above the threshold un-

modified (151). As a result, energy barriers that may exist, and act as traps during 

simulation, can be overcome and allow the system to sample conformations that were not 

accessible during conventional MD (cMD). 

 Recent investigation of bovine pancreatic trypsin inhibitor revealed that the 

sampling efficiency of 500ns aMD simulation is equivalent to 1ms unbiased cMD 

simulation (152). Furthermore, comparison with experimental data showed that chemical 

shifts as well as structurally important water molecules were reproduced faithfully.  
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2.3 Monte Carlo Pulling and Validation of the Models 
Single-molecule force spectroscopy is a valuable tool in characterization of amyloid 

protein interactions (97). However, the method does not yield any data regarding the 

molecular structure of the proteins being examined. Traditionally, steered MD (SMD) 

simulations have been used to elucidate the force-dependent behavior of the molecular 

system being pulled in the force spectroscopy experiments (100). However, this poses a 

major problem, because the applied pulling rates (apparent pulling force) are in the range 

of nanometers/nanosecond, while experiments are conducted at typically hundreds of nm/s 

– a 107 difference. Recent development of a Monte Carlo based approach, using the 

PROFASI package (153), allowed pulling simulations at rates of hundreds of ns/nm, which 

led to the structural characterization of amyloid proteins that exhibited high dissociation 

forces (154).  

 The initial MC approach was limited to simulations with only one protein chain 

and worked by measuring the change in energy of a virtual spring attached to the Cα atoms 

of N- and C-terminal residues of the protein chain (153). This was modified, in the lab, to 

extend to two protein chains and any Cα pair; which made possible the characterization of 

force-induced dimer dissociation (108). More importantly, this allowed, for the first time, 

the identification and validation of simulated structures obtained from MD simulations 

based on comparison of characteristic force and rupture patterns. In the modified approach 

two springs are used, each attached to one Cα atom; during simulations the Cα atoms are 

pulled apart via the virtual springs along a vector. The energy of the springs is provided 

by, 
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𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸(𝑥𝑥) +
𝑘𝑘
2

[𝐿𝐿0 + 𝑣𝑣𝑡𝑡 − 𝐿𝐿(𝑥𝑥)]2 

 where 𝐸𝐸(𝑥𝑥) is the energy of conformation x in the absence of an external force, k 

is the spring constant, t is the MC step, 𝐿𝐿0  is the initial distance between the two 

Cα atoms, 𝐿𝐿(𝑥𝑥) is the distance between the two Cα atoms for conformation x, and v is the 

pulling velocity with v=0.1fm/MC step being equal to 600nm/s. 
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Chapter 3. EFFECT OF INTRAMOLECULAR 
FOLDING ON THE AMYLOID SELF-ASSEMBLY 

3.1 Introduction 
The self-assembly of amyloid proteins into aggregates is currently considered the main 

molecular mechanism leading to the development of Alzheimer’s disease and other 

amyloid-type neurodegenerative diseases (155-157). As described in Chapter 1, the 

aggregation process is accompanied by a change in the secondary structure of the 

monomers, eventually leading to the assembly of the fibrillar structures found in amyloid 

plaques (158-160).  

 Recently, Maiti et al. have identified β-hairpin structures in Aβ40 oligomers using 

surface enhanced Raman spectroscopy and solid-state NMR (87). Similarly, a turn like 

conformation has been found in Aβ42 oligomers within residues 25-29 (57). Furthermore, 

the structure of a β-hairpin conformer of an Aβ40 monomer suggests that the hairpin 

structure could be an intermediate during Aβ aggregation (88). Together, these findings 

suggest that the β-hairpin structure is a common motif in amyloid aggregates, however the 

role of the hairpin conformation in the assembly of oligomers and during the aggregation 

process remains elusive. Hence, studying the structure of these aggregates and elucidating 

the mechanism of how the self-assembly process occurs is crucial for the development of 

appropriate diagnostic tools and therapeutics for amyloid diseases.  

 In the current study, we address the question of how the hairpin-type secondary 

structure of amyloid β contributes to the amyloid self-assembly process. A β-hairpin 

structure was constructed by connecting two Aβ(14-23) monomers with a turn forming 

YNGK tetrapeptide. Single-molecule studies revealed that the hairpin fold plays a dramatic 
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role in the self-assembly process of Aβ(14-23) peptides. The Aβ(14-23) hairpin formed 

more stable complexes compared to those formed by Aβ(14-23) monomers. Computational 

modelling of the Aβ(14-23) hairpin and monomer complexes revealed a novel sandwich 

type structure in which the monomer intercalates into the hairpin, which is accompanied 

by an increased stability. The role of such transiently formed hairpin folds on the 

aggregation process of amyloid proteins is discussed. 

3.2 Materials and Methods 

3.2.1 Experimental Approaches 
Sample preparation and experimental characterization procedures are described in detail in 

ref. (161). Briefly, two peptides were used for all experiments: the monomer, 

CHQKLVFFAED, and the hairpin, CHQKLVFFAED-YNGK-HQKLVFFAED. 

Aggregation experiments were carried out using 100µM peptide solutions in 10mM 

sodium phosphate buffer (pH 7.0) and incubating for 3 days at room temperature. Single-

molecule force spectroscopy was carried out on an Asylum Research MFP-3D (Oxford 

Instruments, Santa Barbara, CA) using silicon nitride probes (MSNL, Bruker, CA) with 

spring constants in the range of 20−30pN/nm, and a retraction velocity of 500nm/s. Single-

molecule TAPIN experiments were performed using Cy3-labeled peptides excited by a 

532nm laser at 260mA intensity (ThorLabs Inc., New Jersey, USA). Experiments were 

performed on an objective-through TIRF with 1.40NA objective and 100ms/frame capture 

rate. 
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3.2.2 Computational Modeling 

Simulation of Hairpin Structure 
To generate the initial structure of the hairpin that will be used for the hairpin-monomer 

and hairpin-hairpin complex simulations, we conducted cMD simulations using the 

AMBER99SB-ILDN force field (137) and the TIP3P water model (145). The initial hairpin 

structure was created by placing the amino acids in a linear and fully stretched 

conformation. To mimic the experimental design, a Cys residue was added to the N-

terminus. The structure was then solvated in a cubic box with TIP3P water molecules. The 

minimum distance between the peptide and the edge of the water box was 1.5 nm, so that 

any interactions between periodic copies, due to periodic boundary condition, were 

avoided. The protonation states of Lys and His residues were set to mimic neutral pH 

conditions. Na+ and Cl− ions were added to neutralize the system charge and to keep a 

constant salt concentration of 150mM. This conformation was subsequently simulated for 

1.2µs in an NPT (constant Number, Pressure, and Temperature) ensemble at 1bar and 

300K. Other details of the simulation setup were adopted from our previous work (100). 

This simulation was performed using the special-purpose super computer Anton (162). 

Characterization of Hairpin Interactions 
The hairpin-monomer system was assembled using the structure obtained for the Aβ(14-

23) hairpin in the previous step and the monomer structure identified in ref. (100). The 

hairpin-monomer system was solvated into a cubic box using TIP3P water molecules. In 

order to allow free tumbling before inter-molecular contact, the center-of-mass (CoM) 

distance of the two molecules was set to 2nm. All other parameters were the same as the 

hairpin simulation.  
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 The hairpin-hairpin system was assembled in a similar fashion; however, instead 

of a hairpin and a monomer, the system consisted of two copies of the hairpin randomly 

placed at a CoM distance of 2nm. Both systems were then simulated for 2.4µs in an NPT 

ensemble at 300K and 1bar. These simulations were carried out on Crane at the Holland 

Computing Center (HCC) and Comet at the San Diego Supercomputer Center (SDSC) 

using the Amber14 (163) software package. 

 To further extend conformational sampling, the resulting structures from the cMD 

simulations were subjected to the aMD simulation method (152). The two systems were 

then simulated with a 500ns aMD simulation as an NVT ensemble at 300K. The 

simulations were carried out using Crane and Comet. 

Dihedral Principal Component Analysis 
Dihedral principal component (dPC) analysis (164) was used to acquire the representative 

structures after the MD simulation. The dihedral angles of the terminal residues were 

ignored. Equation 1 (below) was used to calculate the free energy: 

∆𝐺𝐺(𝑉𝑉1,𝑉𝑉2) = −𝑘𝑘𝐵𝐵𝑇𝑇 ln �𝑃𝑃(𝑉𝑉1,𝑉𝑉2)
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

�                         (1) 

where 𝑉𝑉1 and 𝑉𝑉2 are the 1st and 2nd largest principal components; 𝑃𝑃(𝑉𝑉1,𝑉𝑉2) represents 

the distribution obtained from the MD trajectories, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum value of the 

distribution; and 𝑘𝑘𝐵𝐵  and 𝑇𝑇  are the Boltzmann constant and the absolute temperature, 

respectively. The Fortran program written by Dr. Yuguang Mu was used to perform this 

analysis. 
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Validation of Simulated Structures 
The Monte Carlo pulling (MCP) approach with the modified PROFASI package 

(http://cbbp.thep.lu.se/activities/profasi/) was used to investigate the molecular 

conformations of the H-M and H-H complexes. Briefly, the two Cα atoms of the N-

terminal Cys residues of each molecule were defined as the pulling groups. A virtual spring 

was attached to each pulling group and used to pull them along a vector during the 

simulations. A detailed description can be found in ref. (108). We mimicked the 

experimental pulling rate of 500 nm/s, which translates to v = 0.083 for all MCP 

simulations. The experiments were carried out using Crane and Tusker at HCC. 

3.3 Results 

3.3.1 Single-molecule Characterization of Aggregates 
Based on our hypothesis, that structure plays a critical role in self-assembly, we designed 

a hairpin construct using the Aβ(14-23) peptide, known to play a critical role in the 

aggregation of full-length Aβ amyloid proteins. In addition to this peptide, we also used 

Aβ(14-23) monomer. 

 Aggregation studies were carried out with the Aβ(14-23) monomer (100µM), 

hairpin (100µM), and their equimolar mixture (100µM). AFM images for the monomer, 

hairpin, and their 1:1 mixture are shown in Figure 3.1. Consistent with our previous 

observations (100), monomers form fibrils. The hairpin forms globular aggregates, while 

the equimolar mixture of monomer and hairpin assemble into aggregates with a globular 

shape; however, their morphology is different from those formed by the hairpin alone. 

Comparing the stability of hairpin-monomer and hairpin-hairpin complexes, investigated 

using TAPIN experiments and AFM based single-molecule force spectroscopy, showed 
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that the hairpin-monomer is approximately two times more stable compared to the hairpin-

hairpin complex, Figure 3.2.  

3.3.2 Structure and Dynamics of Hairpin 
To characterize the underlying mechanism of aggregation and elucidate the effect of the 

hairpin on the stability of the aggregates we used all-atom MD simulations with the explicit 

TIP3P water model. The dynamics of the hairpin was investigated using the approach 

described in our recent publication (100). The initial structure of the hairpin was a fully 

stretched conformation, which was simulated for 1.2µs to obtain dynamics of the hairpin. 

Time-dependent secondary structure analysis using DSSP (165) revealed that the YNGK 

tetrapeptide very rapidly forms a stable hairpin, shown in Figure 3.3A. In line with DSSP 

results, the gyration radius of the hairpin decreases rapidly, indicating a collapse of the 

initial stretched hairpin, Figure 3.3B. Pairwise backbone Cα interaction map of the 1.2µs 

simulation showed a cross-diagonal pattern, further indicating the formation of a collapsed 

turn motif centered around the tetrapeptide, Figure 3.4A. Dihedral principle component 

analysis revealed the presence of an isolated and deep energy minimum; clustering of 

structures in this minimum showed the presence of a collapsed conformation with a short 

two-strand β-structure, Figure 3.4B. 

3.3.3 Structure and Dynamics of Hairpin-monomer Interactions 
The lowest energy structure of the hairpin, identified from dPC analysis, was then used to 

characterize the interaction of a monomer with the hairpin. Conventional MD simulation 

was run for 2.4µs, followed by 500ns of accelerated MD simulation in order to extend the 

conformational sampling efficiency by several orders of magnitude (152).  
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Figure 3.1. Aggregation study of Aβ(14-23) monomer and hairpin. (a) Shows fibrillar aggregates 
formed by monomers, (b) globular aggregates formed by hairpin, and (c) disk shaped aggregates formed 
by equimolar mixture of monomers and hairpins. All experiments were performed under same conditions 
and at 100µM concentration. The scale bars are 500nm. 
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Figure 3.2. Single-molecule probing of hairpin-monomer and hairpin-hairpin interactions. (a) Lifetime 
measurements performed by TAPIN and (b) rupture force measurements obtained from AFM based 
force spectroscopy experiments analyzed using worm-like-chain model. Asterisks indicate statistical 
significance between the two groups using Kolmogorov-Smirnov test (***p<0.005). Experiments 
performed at room temperature, 10mM sodium phosphate buffer (pH 7.0), and for force measurements 
a retraction rate of 500nm/s. 
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Figure 3.3. Dynamics of hairpin construct during 1.2µs cMD simulation. (a) The time-resolved 
secondary structure of the hairpin as determined by DSSP. The YNGK residues induce a stable β-turn 
at E10-D11-K12 and G14-K15-H16, seen as solid red and yellow segments. (b) The evolution of radius 
of gyration during the MD simulation. 



M. Hashemi - April 2018   26 

Chapter 3: Effect of Intramolecular Folding on the amyloid self-assembly 

 

  

 
Figure 3.4. Characterization of hairpin conformations from cMD simulation. (a) Pair-wise residue 
interaction map showing the average distance between each residue in the hairpin. The cross-diagonal 
map is characteristic of a collapsed hairpin conformation. (b) Free energy landscape of hairpin 
simulation obtained using dihedral principal component analysis. The lowest energy structure is shown 
as cartoon. The colorbar is in units of kBT. 
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 During the aMD simulation, the hairpin-monomer complex assumes a 

conformation rich in β-structure; in particular the LVFFA regions of the hairpin contribute 

with two β-strands, Figure 3.5. The monomer is dynamic, undergoing continuous 

structural transitions, whereas the hairpin remains in a β-sheet conformation for the 

majority of the simulation. Analysis of the free energy landscape plot (FEP), based on the 

dPC analysis, revealed several minima, indicating the conformational heterogeneity of 

hairpin-monomer complexes, Figure 3.6. The structures of some of these minima are 

presented in Figure 3.6; the majority of complexes exhibit β-structure for the hairpin while 

the monomer assumes a plethora of conformations. 

Further investigation of the conformations in each energy minima was performed using 

Monte Carlo pulling simulations. We used four structures, obtained from the dPC analysis 

of aMD results, corresponding to A-D on Figure 3.6. For each conformation, 500 MCP 

simulations were performed. The forces generated from each structure were assembled into 

histograms and compared with experimental data. The MCP results are shown in Figure 

3.7. From the MCP simulations, it becomes clear that the Type D forms the most stable 

complex, with a mean rupture force of 141 ± 12pN. The distribution of forces and the mean 

are consistent with experimentally obtained rupture forces, 164 ± 17pN.  

 Type D structure is a novel conformation with the monomer intercalated inside 

the hairpin. This intercalated structure is formed from four short β-strands, resulting in an 

extended antiparallel arrangement, which is stabilized by three intra-molecular and five 

inter-molecular hydrogen bonds. Moreover, side chain interactions between Phe and His 

residues and a Lys-Asp salt bridge also contribute to the stability of the complex. These 

interactions all contribute to the elevated stability of the intercalated hairpin-monomer  
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Figure 3.5. DSSP analysis of the change in secondary structure during aMD simulation of the interaction 
between hairpin and monomer. 
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Figure 3.6. Free energy landscape according to dihedral principal component analysis for 500ns aMD 
simulation of hairpin-monomer system. Selected minima are highlighted with arrows and the most 
representative structures are shown for the respective minima (a-g). Colorbar is in units of kBT. 
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Figure 3.7. Monte Carlo pulling simulations for hairpin-monomer complexes obtained from energy 
minima in Figure 3.6. The histograms show forces obtained during MCP simulations, while black solid 
curves are Gaussian approximations. Structure of the conformation used in simulation is given in cartoon 
representation above the histograms. 
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complex. Hence, we posit that the interlaced structure is the main structural motif of the 

hairpin-monomer complex. 

3.3.4 Dynamics of Hairpin-hairpin Interactions 
Similar strategy, used for hairpin-monomer interactions, was employed to characterize the 

hairpin-hairpin complex. DSSP analysis revealed that, unlike the hairpin-monomer, the 

complex of two hairpins is structurally more dynamic, with one hairpin undergoing change 

in structure throughout the simulation, Figure 3.8. The energy landscape, based on dPC 

analysis, is rough with several minima clustered together locally and other minima spread 

further apart, Figure 3.9. All minima are separated by large energy barriers.  

 The hairpin-hairpin complex is stabilized by inter-molecular H-bonds and by side-

chains from both hairpins interacting to form a hydrophobic pocket in the complex 

consisting of LVFFA residues from both peptides. MCP simulations revealed that the most 

stable hairpin-hairpin conformation dissociates at a mean force of 75 ± 10pN, Figure 3.10. 

3.3.5 Dissociation of Hairpin Complexes 
Taking a closer look at the dissociation of the hairpin-monomer and hairpin-hairpin 

complexes reveals important details regarding the structural arrangement of the peptides. 

During the force-induced dissociation, the hairpin-monomer complex transitions to a 

horseshoe shape, which allows the monomer to interact with a larger number of residues 

on the hairpin, Figure 3.11A. The re-arrangement of the complex leads to the formation of 

an extended β-sheet. This new sheet of anti-parallel strands remains stable for a period,  
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Figure 3.8. DSSP analysis showing the change in secondary structures of individual hairpins during 
aMD simulation of hairpin-hairpin interaction. 
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Figure 3.9. Free energy landscape, according to dPC analysis, after 500ns aMD simulation of the 
hairpin-hairpin complex. The most representative structures are shown for some of the minima (a-f). 
Colorbar is in units of kBT. 
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Figure 3.10. Monte Carlo pulling force histograms for hairpin-hairpin complexes; corresponding 
structures are shown in the insets. Structures are named according to energy minima in Figure 3.9. The 
black curves indicate Gaussian approximations. 
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Figure 3.11. Rupture processes observed during MCP experiments. (a) The rupture process for hairpin-
monomer complex producing 140pN force. The hairpin transitions to a horseshoe shape, allowing a 
larger number of residues to interact, leading to the formation of an extended β-sheet. Dissociation 
occurs when the sheet is destabilized. (b) Rupture of the hairpin-hairpin complex, requiring 90pN, occurs 
via conformational change in the complex leading to the loss of secondary structure and side-chain 
interactions. Blue and red spheres represent the pulling groups. 



M. Hashemi - April 2018   36 

Chapter 3: Effect of Intramolecular Folding on the amyloid self-assembly 

after which the sheet is destabilized due to re-arrangement of the strands, and the monomer 

is then able to dissociate. 

 For the hairpin-hairpin complex the dissociation is very different, initially the 

complex loses secondary structure as the peptides are pulled apart, Figure 3.11B. 

Gradually, this leads to the re-arrangement of the side-chains, which at the point of rupture 

have become disorganized and unable to maintain the stability of the complex. 

3.4 Discussion 
The data presented in this multifaceted study provides compelling evidence to support our 

hypothesis, that the folding pattern of amyloid protein defines the aggregation pathway. 

Aggregation experiments demonstrate that the morphology of amyloid assemblies is 

sensitive to the structure of the monomeric precursors: While Aβ(14-23) monomers 

assemble into fibrils, like those observed for full size Aβ proteins, the hairpin construct 

forms globular structures, like those for GNNQQNY peptide (166), with no evidence of 

the formation of fibrils or protofibrils. Importantly, the equimolar mixture of hairpin and 

monomer does not produce fibrils; rather they assemble in disk-shaped nanostructures. The 

finding that fibrillar aggregates do not form suggests that the hairpin fold dramatically 

changes the aggregation pattern, despite the presence of the fibril forming monomers. 

Similar results were also obtained from the Aβ42 hairpin, which was stabilized by a 

disulfide bond formed between mutations at A21C and A30C (167). To further elucidate 

the role of these hairpin structures on the assembly processes, extensive computational 

analyses were performed. 

 Extended MDs simulation revealed that the hairpin by itself exists in a collapsed 

turn conformation with minimal secondary structure (Figure 3.4). This is in line with NMR 
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data, which showed that the YNGK tetrapeptide induces a U-shaped geometry (168). 

Interactions of this collapsed hairpin conformation with Aβ(14-23) monomer revealed that 

the hairpin undergoes conformational change. Following the conformational change, the 

hairpin-monomer complex adopts a novel conformation with the monomer intercalated 

inside the hairpin (Figure 3.7). The complex has a high β-structure content, in particular 

the LVFFA regions of the hairpin contribute with two β-strands while the monomer is 

sandwiched between these two regions in an anti-parallel orientation. Interestingly, a 

similar three strand conformation, albeit without a hairpin, was recently proposed for the 

disc-shaped aggregates of the VDSWNVLVAG decapeptide (169). 

 The hairpin-hairpin complex assembles very differently compared to the hairpin-

monomer complex. The hairpins interact in a side-by-side fashion and are stabilized by 

side-chain interactions. The hairpin-hairpin complex does not contain high β-structure 

content, instead the conformation best representing experimentally observed data contains 

segments of α-helical structure. This helps explain why the aggregates are globular instead 

of fibrils; the α-helical conformation significantly hampers the formation of fibrillar 

aggregates (170). Recent observations of α-helical Aβ oligomers further support our 

findings (135, 170, 171). 

 Monte Carlo pulling simulations revealed the stabilizing effect of the collapsed 

hairpin on interactions with monomers. Hairpin-monomer assembly is considerably more 

stable compared to the hairpin-hairpin complex. Comparison with AFM pulling 

experiments demonstrated that the intercalated hairpin-monomer assembly produces a high 

rupture force that is in good correlation with the experimental AFM probing of the hairpin-

monomer interactions.  



M. Hashemi - April 2018   38 

Chapter 3: Effect of Intramolecular Folding on the amyloid self-assembly 

 Altogether, computational analyses reveal that the secondary structure of the 

hairpin provides a novel type of interaction with the monomer. This novel assembly 

explains the results of the aggregation experiments, in which an equimolar mixture of 

monomer and hairpin produced non-fibrillar assemblies. In the mixture of monomers and 

hairpins all the combinations of hairpin-hairpin, hairpin-monomer, and monomer-

monomer are possible, but computational modeling suggest that the hairpin-monomer 

arrangement produces the most stable conformation. As a result, the most stable hairpin-

monomer configuration in the mixture acts to seed the aggregation process. This is in line 

with the findings of Ahmed et al., which showed that Aβ42 is able to form oligomers 

containing turn motif that assemble into disc-shaped morphologies (57). Interestingly, the 

turn is located at residues H13-Q15 and G25-G29 and the overall oligomer is disordered, 

as measured by FTIR.  

 The observation that the morphology of aggregates is highly dependent on the 

secondary structure of Aβ(14-23) peptide suggests that the conformational transitions of 

the full-size Aβ peptides during the aggregation process plays a crucial role in the entire 

aggregation process of amyloids. Given the fact that Aβ(14-23) forms fibrils with 

morphologies similar to those for full size Aβ protein, we assume that this segment in the 

full size Aβ42 monomer should be structured to allow the molecules to assemble oligomers 

capable of fibril formation. Indeed, this seems to be the case, as mutation studies show that 

substitution in the 14-23 region with less hydrophobic amino acids or with proline lead to 

loss of fibril formation ability (78, 172, 173). Alternatively, intra-molecular folding of the 

14-36 segment of Aβ42 protein in the hairpin-type structure can lead to the assembly of 

non-fibrillar aggregates (34, 46). These can be morphologically similar to those found in 
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Figure 3.1B and C, due to the structural heterogeneity of the monomers containing a 

mixture of folded and unfolded molecules, respectively. However, these are hypothetical 

models that need to be verified through future investigations.  

 Increasing evidence suggests that the self-assembly of Aβ protein underlies the 

early onset of AD. Given that small Aβ oligomers are the most neurotoxic species, a shift 

to an aggregation pattern dominated by assembly of non-fibrillar species would shift the 

aggregation process to the disease prone state. Based on our studies, we hypothesize that 

stabilization of the internal hairpin structure within (14-36) segment of the full size of Aβ42 

protein can drive such a process. Furthermore, this assembly can be modulated by 

environmental conditions or interaction of Aβ42 protein with other molecules including 

cellular membranes. Our experimental approaches can be used for testing this hypothesis 

in future studies.  

3.5 Conclusions 
We demonstrated that the hairpin fold induces morphological and stability changes in the 

aggregates of Aβ(14-23) peptide. Using extended MD simulations, we characterized the 

mechanism of aggregation of the hairpin. Interactions of the hairpin with monomers results 

in a novel intercalated conformation with high β-structure content. The intercalated 

structure is stabilized by intra- and inter-peptide H-bonds and side-chain interactions. 

Monte Carlo simulations of the intercalated conformation further revealed that the 

intercalated structure produces a high rupture force that is in good agreement with the 

experimental AFM probing of the hairpin-monomer interactions. These finding suggest 

that the initial structure of amyloid proteins define the aggregation pathway.  
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Chapter 4. SELF-ASSEMBLY OF FULL LENGTH 
AMYLOID 𝜷𝜷 40 INTO DIMERS 

4.1 Introduction 
Despite the small structural difference (two amino acids) between the two most studied Aβ 

alloforms (Aβ40 and Aβ42), they display distinct behavior, although the structural basis 

for this phenotype is unknown (16, 27-29, 35). Furthermore, recent compelling evidence 

show that amyloid oligomers rather than fibrils are the most neurotoxic species (38, 60-

63). Hence, a detailed characterization of these oligomeric forms of Aβ is important for 

understanding neurotoxicity and pathology in AD.  

 Despite extensive effort, the oligomer formation process and the structure of toxic 

and non-toxic oligomers remain largely unknown due to the intrinsic transient nature of 

oligomers, which renders traditional structure determination techniques (e.g. X-ray 

crystallography and NMR spectroscopy) non-amenable under physiological conditions. 

Detailed structural information, presented in the previous chapter, about the effect of the 

hairpin fold on the aggregation behavior of a short Aβ fragment may shed light on the 

effects of different transient conformations during aggregation. However, the hairpin was 

an idealized model, using the most aggregation prone Aβ fragment with the sequence of 

the turn not from the Aβ peptides, making the translation of the observed behavior to the 

full-length peptides problematic; in particular, because self-assembly is a kinetic process 

and the additional amino acids can influence the peptide-peptide interactions and ultimately 

the aggregation pathway. Nonetheless the developed simulation procedures are applicable 

to investigate the interaction of the full-length peptides. 
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We recently characterized the conformational changes in monomers of Aβ(42) 

peptide upon dimer formation using long-time scale MD simulations (174). The 

simulations revealed that the dimer is very dynamic, which resulted in a multitude of 

different conformations being identified. By utilizing the recently developed Monte Carlo 

pulling approach (108), we were able to identify the most likely native conformation of the 

dimer, which generated statistically similar rupture forces and interaction profiles as was 

observed in AFM experiments.  

Here, we applied the developed simulation approaches to analyze the dimer 

formation of full-length Aβ40 peptides. Different types of dimer conformations were 

identified, all with small segments of ordered structures and lacking the characteristic β-

sheet structures found in amyloid fibrils. These dimers structures were then validated using 

MCP simulations and by comparing with stability and interaction data obtained from AFM-

based force spectroscopy experiments. The validated dimer conformations were then used 

to compare Aβ40 and Aβ42 dimers and characterize the differences between the interaction 

of monomers and the resulting dimers. 

4.2 Material and Methods 

4.2.1 Monomer Simulation Procedure 
To generate the initial structure of the monomers used for the dimer simulation, we 

conducted cMD simulation using GROMACS ver. 4.5.5 (175) employing AMBER99SB-

ILDN force field (137) and the TIP3P water model (145). The initial monomer structures 

were adopted from NMR data (PDB ID: 1AML) (49), obtained in trifluoroethanol 

(TFE):water (40:60 vol. ratio). After which 500ns NPT cMD, at 1bar and 300K, were 
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carried out using resources at the HCC. Cluster analysis was then performed using 

g_cluster command in the GROMACS package, with the GROMOS method of clustering 

and the root-mean square deviation (RMSD) for the protein backbone with a 3Å cut-off 

value, as previously described (100). Due to large structural fluctuations of residues 1–9 

and 36–42, only data for residues 10–35 were selected for cluster analysis. 

 We addressed secondary structure dynamics according to the method developed 

by Thirumalai’s group (176). Briefly, if the dihedral angles from two consecutive residues 

satisfy the definition of an α-helix (-80° ≤ φ ≤ -48° and -59°≤ ψ ≤ -27°) and β-strand (-

150° ≤ φ ≤ -90° and 90 ≤ ψ ≤ 150°), the structures are considered to be α and β 

conformations, respectively. The changes of secondary structure over time are monitored 

by, 𝛼𝛼(𝑡𝑡) = 1
∆ ∫ 𝛼𝛼𝑠𝑠(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡+∆

𝑡𝑡  and 𝛽𝛽(𝑡𝑡) = 1
∆ ∫ 𝛽𝛽𝑠𝑠(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡+∆

𝑡𝑡 , where 𝛼𝛼(𝑠𝑠) = 1
41
∑ 𝛿𝛿𝑖𝑖,𝛼𝛼41
𝑖𝑖=1  and 

𝛽𝛽(𝑠𝑠) = 1
41
∑ 𝛿𝛿𝑖𝑖,𝛽𝛽41
𝑖𝑖=1  at t =s and ∆=1ns. When the residues adopt α or β conformations, the 

𝛿𝛿𝑖𝑖,𝛼𝛼 = 1 or 𝛿𝛿𝑖𝑖,𝛽𝛽 = 1. 

4.2.2 Dimer Simulation on the Specialized Supercomputer Anton 
For simulations on the special purpose supercomputer Anton, we used the Maestro-

Desmond software package Version 4.0 (Schrödinger, New York, NY, 2014) to build the 

initial starting configuration using two copies of the most representative structure for the 

monomer. The simulation used the same force field and water model as for the monomer 

cMD simulation. The dimers were created from copies of monomers with different 

orientations from cluster 1 in Figure 4.1, with the angle between the long axes of each 

monomer at 90° or 180°. The dimer systems were then run for 4µs cMD simulations on 

Anton. 
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 The calculation of the time-dependent secondary structure changes follows the 

same methods as described in the monomer simulation section. Here, 𝛼𝛼(𝑠𝑠) = 1
82
∑ 𝛿𝛿𝑖𝑖,𝛼𝛼82
𝑖𝑖=1  

and 𝛽𝛽(𝑠𝑠) = 1
82
∑ 𝛿𝛿𝑖𝑖,𝛽𝛽82
𝑖𝑖=1  at t = s and ∆=1.2ns. 

4.2.3 Accelerated Molecular Dynamics Simulations 
To extend conformational sampling, the resulting structures from the cMD simulations on 

Anton were subjected to the aMD simulation method  using Comet at SDSC. The 

simulation procedures were adapted from ref. (152).and the website (URL: 

http://ambermd.org/tutorials/advanced/tutorial22/). The dimer systems were then 

submitted to a 500ns NVT aMD simulation.  

 The principal component analysis of backbone dihedrals (164), in which the 

artifacts from combining internal and overall motion are minimized, was used to acquire 

the representative structures after the aMD simulation. In total, 1,500,000 unique structures 

were used for the dPC analysis. The dihedral angles of the terminal residues were ignored. 

The following equation for the free energy calculations was used: 

∆𝐺𝐺(𝑉𝑉1,𝑉𝑉2) = −𝑘𝑘𝐵𝐵𝑇𝑇 ln �
𝑃𝑃(𝑉𝑉1,𝑉𝑉2)
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

�     (1) 

where 𝑉𝑉1 and 𝑉𝑉2 are the 1st and 2nd largest principal components; 𝑃𝑃(𝑉𝑉1,𝑉𝑉2) represents 

the distribution obtained from the MD trajectories, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum value of the 

distribution; and 𝑘𝑘𝐵𝐵  and 𝑇𝑇  are the Boltzmann constant and the absolute temperature, 

respectively. The Fortran program written by Dr. Yuguang Mu was used to perform this 

analysis. 

http://ambermd.org/tutorials/advanced/tutorial22/
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4.2.4 Monte Carlo Pulling Simulations 
The Monte Carlo pulling simulations, via the modified PROFASI package, was performed 

using our previously described procedure (108), with FF08 force field and implicit water. 

Dimer structures obtained from dPC analysis of pooled aMD data were used for MCP. 

Briefly, the two Cα of the N-terminal Cys residues of each monomer were defined as the 

pulling groups. A virtual spring was attached onto each pulling group and used to pull them 

along a vector during the pulling simulation. The energy of the springs was calculated by 

the A2A spring function and the total energy in the course of pulling was described by the 

following equation, 

Etot = E(x) +  
k
2

[L0 + vt − L(x)]2    (2) 

where E(x) indicates the energy without an external force, k and t are the spring constant 

of the virtual spring. L0 is the initial distance between two Cα atoms of the N-terminal Cys 

residues of each monomer. L(x) represents the real-time distance between the Cα atoms of 

Cys residues during pulling, and x denotes a protein conformation. Here, v = 0.083, 

equivalent to 500 nm/s, and was used for all MCP simulations. 

 Similar to the dimers obtained during the aMD simulations, we investigated 

dimers assembled from fibril structures. Two fibril conformations were chosen to perform 

MCP simulations, PDB IDs: 2LMN and 2MVX. Chains A and B, excluding hydrogen 

atoms, from the first frame of the PDB files were extracted using VMD (177) and used for 

MCP analysis. For 2LMN, the missing residues, 1-8, were added using YASARA 

molecular modeling and simulation program (178). 
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4.2.5 Analysis Software 
The cluster network for monomer simulations was prepared by Visone (179) using 

g_cluster data obtained from the simulations.  

 The dihedral angle calculations and movies were made with VMD, and the protein 

snapshots were generated by YASARA. 

 The contact map and free energy landscape plots were generated via Python2.7 

(Python Software Foundation. Python Language Reference, version 2.7. Available at 

http://www.python.org) (180, 181).   

 Matlab (MathWorks Inc., Natick, MA, USA) was used to analyze the force curves, 

as well as generate plot and perform statistical analysis.  

4.3 Results 

4.3.1 Aβ40 Monomer Structure.  
As a preliminary step for the simulation of Aβ40 dimerization process, we performed cMD 

simulations of Aβ40 monomers to identify the most representative monomer structure. We 

adopted the approach from our recent simulations of the dimer structures for Aβ42 peptide 

(174). Briefly, the NMR resolved Aβ40 monomer structure (PDB ID: 1AML) was used as 

initial conformation for a 500ns all-atom MD simulation using the explicit TIP3P water 

model. The most representative structure was then identified using cluster analysis by 

calculating the RSMD of backbone atoms between all pairs of structures with a cut-off at 

3Å (182). Only data for residues 10–35 were selected for cluster analysis, due to large 

structural fluctuations in residues 1–9 and 36–40. The results of the cluster analysis are 

shown in Figure 4.1. Twelve clusters were identified, with the 1st cluster comprising 47.5%  

http://www.python.org/
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Figure 4.1. Cluster analysis of 500ns MD simulation of Aβ40 monomer from PDB ID: 1AML. 
Representative structure for each cluster is shown below the cluster node together with the relative 
population percentage. Thickness of connecting links indicate the relative transition frequency. Proteins 
are shown in cartoon representation using the VMD secondary structure color scheme.  
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of the entire population. The representative structure of this cluster contains a large α-

helical segment in the central region of the peptide and is otherwise unstructured. Two 

copies of this representative structure were used to characterize the dimer conformation. 

4.3.2 Characterization of Aβ40 Dimer Formation 
Two dimer systems were generated by randomly placing the obtained monomer structure 

in orthogonal (90o) or parallel orientations, with respect to the long peptide axis, at 4nm 

CoM distance, Figure 4.2 right. Both dimer conformations were then simulated for 4µs, 

using the same force field and water model as the monomer simulation, on the special 

purpose Anton supercomputer.  

 To determine if the dimer simulations had reach equilibrium, we monitored the 

time-dependent change in the secondary structure of the peptides, Figure 4.2 left column. 

The α-helix and β-structure content for both configurations were obtained using the 

method from ref. (176). The graphs show that for the orthogonal configuration the α-helical 

content fluctuates with a decreasing tendency up to the 1µs mark, after which the helical 

portion increases over the next µs, Figure 4.2A. Meanwhile, the β-content remains stable 

at approximately 5%, with minor fluctuations, until approximately 3.5µs. After 3.5µs a 

conversion from α-helical to β-structure is observed, with β-content reaching a maximum 

of ~12% at the end of the simulation. The parallel configuration on the other hand does not 

display similar behavior, both α-helical to β-structure content fluctuate throughout the 

simulation, with averages of approximately 15% and 5%, respectively, Figure 4.2B. This 

suggests that, for both configurations, a local equilibrium state has not been reached.  
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Figure 4.2. Time-resolved change in secondary structure during 4µs cMD simulations of Aβ40 dimers 
on Anton. Data for Aβ40 dimer in the orthogonal (a) and parallel (b) starting configuration. 
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 We then used dihedral principal component analysis, in which the artifacts from 

combining internal and overall motion are minimized, to analyze the energy landscape of 

the dimer. For both dimer configurations, several distinct energy minima were found, 

Figure 4.3. Furthermore, for both configurations we see that only a small portion of the 

energy landscape has been sampled. This, in combination with the time-resolved change 

in secondary structure, suggests the possibility that the dimers are trapped in local energy 

minima, leading to insufficient sampling of the conformational space. To overcome this 

issue, we extended the dimer simulation using accelerated MD simulations (see specifics 

in Methods) to enhance the sampling of the conformational space. It has been shown that 

the sampling enhancement is several orders of magnitude, furthermore, we and others have 

successfully employed aMD to characterize amyloid proteins. 

Accelerated Molecular Dynamics Simulations of Dimers 
The result of the aMD simulations for the dimer is presented in Figure 4.4. Several well-

defined and separated energy minima were identified for the orthogonal system, Figure 

4.4A, while the parallel system only has few energy minima that are clustered in the same 

region of the energy landscape, Figure 4.4B . The aMD results were then pooled and the 

concatenated data set underwent dPC analysis again, Figure 4.5A. The snapshots in the 

figure depict representative structures from the two lowest energy minima. It is evident, 

that the dimer does not adopt long β-structures but has a mixture of short helices and β-

structures.  

 To analyze the conformational diversity of the dimers we performed cluster 

analysis using the pooled aMD data. Similar to the analysis performed for monomers, 

clustering was performed using RMSD of backbone atoms between all pairs of structures  
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Figure 4.3. Free energy landscape of 4µs MD simulations of Aβ40 on Anton. Energy landscapes of 
Aβ40 in orthogonal (a) and parallel (b) configurations. Units of colorbars are in kBT. 
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Figure 4.4. Free energy landscape of Aβ40 dimers. Energy landscapes are from 1.5µs aggregate aMD 
simulations of Aβ40 in orthogonal (a) and parallel (b) configurations. Colorbar units are in kBT. 
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Figure 4.5. Analysis of Aβ40 dimers obtained from 3µs aggregate accelerated MD simulations. (a) Free 
energy landscape based on dihedral principle component analysis of Aβ40 dimers; the two lowest energy 
structures are shown as cartoons. (b) Transition network obtained from cluster analysis of Aβ40 dimers. 
The four most populated clusters have been highlighted; representative structures are shown in Figure 
4.6. Node colors indicate the cluster occurrence frequency (red to magenta, highest to lowest), while link 
color indicates the number of transitions using the same color scheme. Single transitions have been 
colored pastel orange to decrease color overlap. 
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with a cut-off at 3Å and using only data for residues 10–35. In total 1,500,000 unique 

structures were used in the analysis, the results of which is shown in Figure 4.5B as a 

transition map. From the transition map, in addition to identifying groupings of the clusters, 

we were also able to identify several key clusters, clusters 2, 4, 9, and 19, that are important 

for the structural transition of the dimer. Representative structure for the first 20 clusters 

are depicted in cartoon representation and relative populations on Figure 4.6. These 

clusters combined make up approximately 54% of the total structure population. 

Structurally the clusters, with few exceptions, exhibit similar trends of low α-helical and 

β-structural content and high degree of unstructured regions. The main difference within 

the clusters arise from the different configurations of monomers. 

 The secondary structure of the dimers was quantified using DSSP. Each monomer 

was investigated separately with the results being displayed as residue specific 

probabilities, Figure 4.7A. Monomer 1 shows greater than 40% propensity for helix 

formation in residues 3-7, 11-13, and 25-29. β-structures are overall less likely compared 

to helices, however regions 10-30 and 35-38 have on average greater than 20% chance of 

β-structures. Monomer 2 on the other hand is more diverse, the helix probability is 

localized around residues 11-20, while collectively β-structures are more probable in the 

N- and C-terminal segments in residues 3-10 and 21-38, respectively. 

 Geometrical analysis was then performed on the dimer to determine the solvent 

accessible surface (SASA) and the radii of gyration of the monomers within the dimer and 

the dimer itself, Figure 4.7B and C. SASA revealed that residues from the two monomers 

are equally exposed and that the C-terminal segments, from residue 30 and up, are the least 

exposed segments of the peptides. Furthermore, the radii of gyration for both monomers  
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Figure 4.6. Cluster analysis of Aβ40 dimers obtained from 3µs aggregate accelerated MD simulations. 
Representative structures of the top 20 clusters formed by Aβ40 dimers are presented with relative 
populations, as percent, for each cluster displayed below each structure. α-helices are colored blue while 
β-strands are in red. A solid sphere depicts the Cα of Cys residues. 
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Figure 4.7. Conformational analysis of Aβ40 dimers from 3µs aggregate aMD simulation. (a) 
Population of each secondary structure type, determined by DSSP, for each monomer within the Aβ40 
dimer, on a per residue basis. (b) The surface accessible surface area per residue for Aβ40 monomers, 
within the dimer. (c) The normalized probability of radius of gyration for each monomer and the dimer 
of Aβ40. 
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within the dimer are very similar, Figure 4.7C. The dimer is very compact, Rg ~1.3nm, 

and has the main distribution peak very close to the radii of the monomers.  

 To identify segments important for the interaction of Aβ40 monomers, we 

performed analysis of the pair-wise residue interactions. Intra-peptide contact probability 

maps were generated based on Cα atom contacts within the monomers, Figure 4.8. For 

Monomer 1, interactions in three segments stand out, residues 5-12, residues 16-23, and 

residues 30-40, Figure 4.8 top. The interactions within these three segments reveal that 

the monomer during the simulations, with high probability, is found in a compact turn-like 

conformation with C-terminal interacting with the central segment of the peptide. 

Monomer 2 on the other hand is more dynamic with few residues interacting in the N-

terminal and the 16-23 region, Figure 4.8 bottom. The interaction patterns of the two 

monomers reveal that, apart from neighbor residue interactions, the main difference is 

found in the way the two monomers interact with the 16-23 region; for Monomer 1 the 

interaction happens with residues 33-38, while for Monomer 2 it is residue 28-32, Figure 

4.9A.  

 The inter-peptide interactions of the dimer were obtained using the pair-wise 

interactions of Cα atom between the monomers, Figure 4.9B. The contact map reveals that 

the interactions between the two monomers occur in the central region of the peptide as 

well as between the N- and C-terminals and the two C-termini. Comparison of the contact 

data and the dimer structures, revealed by cluster analysis, shows that the 20 most 

populated clusters are a mixture of different conformations that all contain N-C terminal 

interactions, with a few configurations also containing C-C terminal interactions. Further 

investigation of the inter-peptide interactions using heavy atom contacts, within 6Å, reveals  
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Figure 4.8. Analysis of intra-peptide interactions of Aβ40 monomers within the dimers from 3µs 
aggregate aMD. Contact probability maps for Cα atoms of monomer 1, top, and monomer 2, bottom. 
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Figure 4.9. Analysis of inter-peptide interactions of Aβ40 dimers from 3µs aggregate aMD. (a) The 
difference in the contact probability between the two monomers and (b) the inter-peptide contact 
probability map for Cα atoms of dimers. (c) and (d) Show residue specific average number of heavy 
atom contacts (within 6 Å) between monomer 1 and monomer 2 within the dimer of Aβ40, respectively. 
Error bars represent standard deviation. 
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that the trends found in the Cα contacts are corroborated, Figure 4.9C and D. Monomer 1 

primarily interacts through its central and C-terminal segments, while Monomer 2 interacts 

through the N- and C-terminal regions. 

4.3.3 Validation of Dimer Conformations 
To validate the simulation results as well as identify the experimentally relevant 

conformations we performed Monte Carlo pulling simulations on identified dimer 

structures. The rupture force and interaction patterns for the top candidates are presented 

in Figure 4.10. The interaction patterns of the simulated dissociation processes were 

normalized with respect to the experimentally obtained contour lengths. Experimentally 

observed values for the dissociation force was 56.58 ± 20.47pN (STD), approximated using 

a Gaussian distribution, with a two-peak distribution of the interaction pattern favoring 

interaction in the N-terminal and central regions.  

 The dimer obtained following analysis of the cMD simulations, named “No aMD” 

on Figure 4.10, shows a distinct three-peak interaction pattern, with majority of 

interactions located in the N-terminal and central regions of the proteins, while the 

dissociation force is 36.54 ± 18.44pN. Dimer conformations from the two most populated 

clusters following the aMD simulations produce rupture forces of 61.74 ± 27.5pN and 

35.57 ± 17.72pN, respectively. Similar to the cMD dimer, the two aMD conformations 

produce the distinct three-peak interaction pattern. However, Clu 01 shows a very large C-

terminal peak. The dissociation of dimer Clu 01 is statistically similar to the experimentally 

observed results, using a non-parametric two-sample Kolmogorov-Smirnov with 0.05 

significance.  
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Figure 4.10. Experimental and MCP simulation results of force-induced dissociation of Aβ40 dimers.  
Each dataset shows a scatter plot of Normalized Distance vs Force, a histogram of Force (blue), and a 
histogram of Normalized Distance (red); normalization was performed based on the experimentally 
observed contour lengths. Peak values, obtained using Gaussian distribution function, are presented 
above each peak of the histogram. Clu 01 and 02 are conformations from Figure 4.6; “No aMD” the 
most populated cluster before aMD simulations; and the bottom row are dimers from fibrils from the 
PDB. Statistical analysis was performed using two-sample Kolmogorov-Smirnov test with 0.05 
significance level; only Clu 01 was statistically similar to the experimental data set, with p>0.066.  
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 To characterize the interaction pattern and the dissociation force of a dimer with 

high β-structure content, we created two dimer conformations from NMR structures of 

Aβ40 fibrils (PDB IDs: 2LMN and 2MVX). The two are significantly different compared 

to experimental results and the results obtained for the cMD and aMD dimers. Although, 

the fibril dimers contain the three-peak interaction pattern, the patterns are significantly 

different; for the 2LMN dimer the majority of interactions happen within the central part 

of the dimers, while for 2MVX dimer the interactions are dominated by the N- and C-

terminals. 

4.3.4 Comparison with Aβ42 Dimers 
To investigate the effect of the two extra C-terminal amino acids of Aβ42, we performed 

analysis of the Aβ42 dimer using the methodology for Aβ40 dimers. The orthogonal Aβ42 

dimer data was from our recent publication (174) while the parallel dimer was from 

unpublished data.  

 We generated intra-peptide contact probability maps based on Cα atom contacts 

within the monomers of the Aβ42 dimers, Figure 4.11. Monomer 1 of the orthogonal dimer 

primarily forms intra-peptide contacts through interactions between residues 1-5 and 24-

29 and residues 6-11 and 35-41, Figure 4.11A. Monomer 1 also forms a turn structure 

utilizing residues 25-34, while Monomer 2 has strong propensity for N-terminal nearest-

neighbor interactions as well as interaction between residues 30-35 and 14-23. Monomer 

1 of the parallel dimer is compact and interacts through segments 1-5 and 10-15 and 10-16 

and 35-42, Figure 4.11B. Monomer 2 primarily has a U-turn like conformation and forms  
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Figure 4.11. Analysis of intra-peptide interactions of Aβ42 monomers within the dimers from 500ns 
aMD simulations. Contact probability maps for Cα atoms of orthogonal (a) and parallel dimer (b). 
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Figure 4.12. Analysis of inter-peptide interactions of Aβ42 dimers from 500ns aMD simulations.  
Contact probability maps for Cα atoms of orthogonal, top, and parallel, bottom, dimers. 



M. Hashemi - April 2018   64 

Chapter 4: Self-assembly of full length amyloid 𝜷𝜷 40 into dimers 

contacts through residues 1-20 and 25-40, many high probability contacts with neighbor 

residues in the N-terminus are also observed. 

 The inter-peptide contact map for the two Aβ42 dimers were then generated, 

Figure 4.12. The orthogonal dimer is stabilized by interactions in the central region, 

residues 16-23, between the two monomers as well as C-C terminal interactions by residues 

30-36 and 36-42. Other interactions of 10-20% probability also occur between the N-

termini of the two monomers. The monomers in the parallel dimer on the other hand 

primarily interact through N-terminal and C-terminal residues, segments 5-11 and 30-40. 

4.4 Discussion 
Although the behavior of Aβ peptides have been subject to numerous studies, our present 

study adds a substantial amount of data to the discussion. Our computational analysis of 

the aggregation of Aβ40 into dimers reveal a broad range of peptide structures and very 

dynamic dimers. The data show a low propensity for stable secondary structure elements 

in the monomers of the dimers. In particular, we did not identify significant β-conformation 

in the monomers within the dimer, Figure 4.6.  

 The equilibrated monomer structure, used as the initial conformation to 

characterize the dimerization process, is in line with recent data obtained using NMR and 

simulations of the Aβ proteins, which showed that the monomer has unstructured segments 

and can assume helical secondary structure (51, 183). Another interesting feature of the 

monomer structure is the presence of a turn on each side of the central helix, the turn 

conformation is believed to be the first folding event in the structural transition of 

Aβ proteins and important for the aggregation process (31, 89, 90).  
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 Interaction of two monomers lead to conformational transitions within the 

monomers, accompanied by change in local structure of the peptides, leading to the 

formation of a stable dimer. Investigation of the dimer structures showed that the Aβ40 

dimers exhibit a heterogeneous ensemble of conformations that contain a diverse number 

of structures. Dimers are primarily stabilized by interactions in the N-terminal region 

(residues 5-12), in the central hydrophobic region (res. 16-23), and in the C-terminal region 

(res. 30-40); with inter-peptide interactions focused around the N- and C- terminals. The 

20 most populated clusters are a mixture of different conformations that all contain N-C 

terminal interactions, with a few configurations also containing C-C terminal interactions. 

Interestingly, similar observations regarding the interaction pattern of Aβ40 dimers have 

been presented recently (184). Tarus et al. showed that regions, identified in our 

simulations, were also interacting and important for the stability of the dimer. However, 

unlike the dimer conformations identified here, their dimers contained significant β-

structure content. More recent findings, (185), from the same group show that the dimers 

structures are more diverse and do not contain a large extent of β-structure, and that the 

dimer is stabilized by nonspecific interactions. This is in agreement with our findings, and 

also may explain the role of structural plasticity in the interactions of Aβ oligomers with 

binding partners and ultimately their toxicity. The structural flexibility of the dimer may 

also play a role in the aggregation progression, where the free energy cost of transitioning 

from less ordered states is much less compared to dimeric states with high level of ordered 

β-structures. 

 We validated the dimer conformations using MCP approach to simulate the force-

induced dissociation of the dimers and compared the obtained force and interaction patterns 
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with experimental results. The simulations were performed at conditions identical to the 

experimental ones and allowed us to identify the dimer conformation of Clu 01 as the most 

probable dimer probed during experiments. Probing of dimer conformations with high 

degree of β-structure content, adopted from fibril structures, showed that such dimers 

produce dissociation forces significantly different compared to experiment as well as our 

simulated dimers. Furthermore, the interaction pattern of high β-content dimers was 

strongly shifted compared to experiments. 

 Our results indicate that the presence of the two additional C-terminal residues of 

Aβ42 does not provide significant stability to the dimer conformation. However, the spatial 

orientation within the dimer as well as the inter-peptide interaction pattern of the monomers 

are significantly different. These finding are in line with recent finding about the 

monomeric Aβ peptides (183), which show that while the two peptides show similar 

structural elements their conformation are different, and that in turn has a large effect on 

the inter-molecular interactions of the peptides. 

4.5 Conclusions 
We showed, through the use of computer simulations, the initial stages of Aβ40 

oligomerization by examining the transition of monomers to dimers and characterizing 

their dynamics properties. Furthermore, we explored the differences between dimers of 

Aβ40 and Aβ42. 

 All-atom MD simulations allowed us to structurally characterize Aβ40 dimers. 

Structures were organized in clusters, with ~54% represented in the 20 most populated 

clusters. These clusters were further narrowed down to four by the comparison with AFM 
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force spectroscopy results. Dimers are stabilized by interactions in the central hydrophobic 

region (residues 17-21) as well as N-C terminal (res. 1-10 and 30-40) interactions, through 

hydrophobic interactions and H-bonds. Aβ40 dimer did not show parallel in-register β-

sheet structures, as one may expect based on the known structures of Aβ fibrils. 

Comparison of Aβ40 to Aβ42 dimers revealed differences in their conformations. Aβ40 

dimers are stabilized primarily by interactions within the central hydrophobic regions and 

the N-terminal regions, whereas Aβ42 dimers are stabilized by interactions in the central 

and C-terminal regions. Aβ40 dimers are more dynamic compared to Aβ42 dimers. 

Comparison, based on MCP simulations, between Aβ40 and Aβ42 showed that overall, the 

dimers of both alloforms exhibit similar interaction strengths. However, the interaction 

maps, and more importantly the patterns, clearly show differences. 
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Chapter 5. INTERACTION WITH SURFACES 
PROMOTES AGGREGATION OF AMYLOID PROTEINS 

5.1 Introduction 
The amyloid cascade hypothesis remains the major underlying hypothesis of in vitro and 

in vivo studies related to the molecular mechanisms of amyloid aggregation causing 

neurodegenerative diseases, despite the fact that it cannot explain all phenomena related to 

the development of these diseases (186). A strong support for the amyloid cascade 

hypothesis comes from recent studies, that demonstrated that antibody-based 

immunotherapy against Aβ improved cognition in a dose-dependent manner (187). 

Evidence of similarities of structural features of aggregates extracted from amyloid plaques 

with those of Aβ aggregates assembled in vitro provide additional support for the use of in 

vitro Aβ aggregation studies for understanding Aβ structural dynamics in vivo (32). 

However, there is a serious complication with translating current knowledge about amyloid 

aggregation in vitro to understanding the aggregation process in vivo - namely, the 

concentration of amyloidogenic polypeptide are dramatically different in vivo versus in 

vitro. For example, whereas the critical concentration for the spontaneous aggregation of 

Aβ peptide in vitro is in the micromolar range, physiological concentrations of Aβ are in 

the low nanomolar range (188, 189); at such low concentrations of Aβ in vitro aggregation 

cannot occur.  

 Recently, we found that dimers of α-synuclein (α-syn) could be assembled at 

nanomolar concentrations if the target monomer is tethered to a surface (101). These data 

led us to hypothesize that binding to a surface can be a factor dramatically facilitating the 

aggregation process. This hypothesis is supported by recent studies, in which the assembly 
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of large α-syn aggregates on a glass surface was observed with the protein concentration 

in the nanomolar range (190).  

 In the present study, we developed a systematic approach enabling us to directly 

test our hypothesis. We used full-length Aβ protein (Aβ42), its aggregation-prone segment 

Aβ(14-23) peptide, and the full-length α-syn. The experiments demonstrate that, at 

nanomolar concentrations, all peptides assemble into aggregates on mica surfaces, while 

essentially no aggregation occur in the bulk solution. Computational modeling allowed us 

to characterize the mechanism of the accelerated on-surface aggregation process; revealing 

that the interaction of monomers with the surface causes a conformational change in the 

monomer that allow it to rapidly form dimers. The interaction with surface is a dynamic 

process, and once formed, the dimers are able to dissociate and re-associate with the 

surface; this is believed to allow dissociated aggregates to act as seeds for the aggregation 

in bulk solution. Given that the on-surface aggregates are oligomeric in nature, which are 

known to be the most neurotoxic species, we hypothesize that prevention of the on-surface 

aggregation could block the progression of the disease-prone process and can be considered 

a means for the development of future preventions and treatments for Alzheimer’s and 

similar neurodegenerative protein aggregation diseases. 

5.2 Methods 

5.2.1 Aggregation Studies  
Detailed description of the experimental procedures are found in ref. (191). Briefly, Aβ(14-

23) (HQKLVFFAED), Aβ42, and α-syn (A140C mutant) in 10mM sodium phosphate 

buffer (pH 7.4) were incubated in presence or absence of 1-(3-aminopropyl) silatrane 
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(APS) functionalized mica surfaces to determine the effect of surface on aggregation. AFM 

imaging under ambient condition and in situ time-lapse AFM imaging was used to 

characterize the aggregates.  

5.2.2 Molecular Dynamics Simulations 

Interaction with Mica Surfaces 
Molecular dynamics simulations were conducted using NAMD v 2.10 and employing 

CHARMM27 force field (192), extended with INTERFACE FF v1.5  (INTFF) parameters 

for mica (193), and the TIP3P water model (145). A single layer of mica, spanning 52x54Å, 

was constructed using the INTFF provided structures. Two monomers of Aβ(14-23) were 

then placed at CoM distance of 2nm above the mica surface. The initial monomer structure 

was adopted from ref. (100). To mimic the experimental design, a Cys residue was added 

to the N-terminus of the peptide. The index of this Cys residue was set to 0 to keep the 

context of the other residues as the actual Aβ42 protein. Because the behavior of the cations 

on the mica surface is not well understood, we performed simulations of two different mica 

surfaces: one, which allowed the K cations to freely move during the simulation, called 

Mica1, and another system where the K cations were restrained to their crystal positions as 

obtained from (194), called Mica2. Both systems were then solvated with TIP3P water. 

Na+ and Cl− ions were then added to neutralize the charges and maintain an ionic 

concentration of 150mM. Other details of the simulations setup were adopted from our 

previous work (100). 20ns NVT simulation was then performed. After which 520ns NPT 

production simulation, at 1bar and 300K, were carried out for each system using Crane at 

HCC and Comet at SDSC. 
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Interaction with Lipid Bilayer 
An equilibrated bilayer containing 128 1,2- didodecanoyl-sn-glycero-3-

phosphoethanolamine (DLPE) molecules was obtained from 

http://www.fos.su.se/~sasha/SLipids and used together with Slipids force field parameters 

(195) to simulate the interaction of Aβ(14-23) with the bilayer. Three systems were 

simulated, a single monomer, two monomers, and two monomers on each side of the lipid 

bilayer. The Aβ(14-23) molecules were placed 2nm CoM above the lipid head groups. The 

rest of the simulation parameters, steps, and duration were the same as the mica 

simulations. 

Analysis of MD Simulations 
Analysis of interactions with mica was performed on a data set which had discarded the 

first 20ns of the NPT simulation. The interaction between peptides was examined using the 

COM distances between each of the peptides. Likewise, the minimum distance between 

the peptide and the mica layer was also calculated using the CoM of each peptide and the 

Si atoms of the mica surface, this was done using g_distance.  

 Similarly, for the DLPE system, the distances were calculated with respect to the 

PO4 groups. Additionally, the backbone interactions of each of the monomers were also 

monitored using g_mindist. To follow the frequency of interaction of each of the peptides 

as they interact with the surface, the number of contacts between peptide backbone and the 

surface were monitored; contact being defined as distances less than 1nm. Furthermore, 

the area per lipid (APL) for each of the simulated bilayer systems was calculated using 

Dirichlet tessellation to obtain Voronoi diagrams. The GridMAT-MD approach was used 

to perform the tessellation every ns, using the PO4 groups of each bilayer as the reference, 

http://www.fos.su.se/%7Esasha/SLipids
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and with a resolution (grid spacing) of 1Å (196). In addition, membrane thickness was also 

calculated based on the same reference group. 

5.3 Results 

5.3.1 Experimental Characterization of On-surface Aggregation 
To directly test the hypothesis that surface interactions facilitate the self-assembly of 

amyloidogenic polypeptides, we performed systematic AFM studies of the on-surface 

aggregation of Aβ(14-23) peptide, full-length Aβ42, and α-syn protein at the nanomolar 

range, Figure 5.1. Quantitative characterization of the aggregates was performed based on 

total number and volume of aggregates at all incubation time points, and show that the 

presence of surface significantly enhances the aggregation of all peptides while at similar 

concentrations practically no aggregates are formed in bulk experiments.  

 We then performed in situ time-lapse AFM imaging experiments; in which images 

were taken continuously over the same area after injecting the amyloidogenic polypeptide 

solution onto the functionalized mica surface. Analysis of these aggregates show that the 

number of aggregates increases in an almost linear fashion, Figure 5.2. Interestingly, 

comparison of images, adjacent in time, demonstrate the dynamic nature of the aggregation 

process; aggregates are formed, can grow, and are able to dissociate from and re-associate 

with the surface. Aggregates of Aβ42, dissociated from the surface, were quantified and 

compared to the aggregates found on the surface and in bulk, Figure 5.3. Aggregates 

formed on and dissociated from the surface where, at all time points, greater than those 

found in bulk experiments. Moreover, the volumes of the dissociated aggregates were 

significantly larger compared to the bulk aggregation experiments.  
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Figure 5.1. Effect of surface on the aggregation of amyloidogenic polypeptides. Schematic of the 
experimental setup used to investigate surface effect is shown on top. APS-functionalized mica surfaces 
were incubated in protein solutions. At designated time points, mica was removed from the solution, 
rinsed, dried, and then imaged using AFM. Representative AFM images of aggregates of Aβ(14-23) 
peptide, full size Aβ-42, and α-syn protein are shown below the scheme in listed order. Left column 
shows representative images from on-surface aggregation experiments, while right shows images of the 
aggregates obtained from bulk incubation. All images are of the 48hr samples. Aβ polypeptide 
concentrations were 100nM, while α-syn was 10nM for the respective experiments. 
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Figure 5.2. In situ time-lapse imaging of on-surface aggregation. Volume and number of particles 
observed as they appear on topographic AFM images after the addition Aβ(14-23), top, Aβ42, center, 
or α-syn, bottom, protein solution to the functionalized mica surface. 
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Figure 5.3. The effect of surface on the accumulation of Aβ42 aggregates in solution. Two sets of test 
tubes were used in parallel using the same Aβ42 solution. One set contained functionalized mica 
surfaces. At times 0, 24hrs, 48hrs, and 72hrs, 10μl protein solution was removed from each tube and 
deposited on functionalized mica to be analyzed using AFM. The diagram shows number of aggregates 
obtained for bulk incubation (black bars), for the tube containing mica surface (red), and on-surface 
aggregates (blue).  
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5.3.2 Computer Modeling of the On-surface Dimer Formation of Aβ(14-
23) 
In order to understand the effect of the surface on aggregation and reveal the mechanism 

of aggregation, we performed all-atom molecular dynamics simulations of interactions of 

Aβ(14-23) monomers with mica surfaces, Figure 5.4. Two systems were simulated, Mica1 

and Mica2, with initial monomer structure being adopted from ref. (100); for detailed 

description of the simulation parameters please see the Methods section. 

 The interaction of two peptide monomers with each mica surface was simulated. 

In the Mica1 system, an Aβ (14-23) monomer, A, rapidly interacts with the mica surface; 

within the first 50ns of the simulation the monomer approaches the surface. The CoM 

distance to the mica surface and time-dependent secondary structure of the monomers, as 

characterized using the DSSP method (197), were obtained, Figure 5.4B and C. Binding 

of the monomer is accompanied by its structural transformation, going from having a small 

helical segment to assuming a bend structure, as seen with the change in secondary 

structure in Figure 5.4B. Recruitment of the free monomer, monomer B, happens within 

the first 100ns of the simulation; the dimerization causes a structural change in the 

previously free monomer, Figure 5.4C. However, the newly formed dimer is only 

transiently bound to the surface and for the next ~200ns binds and dissociates multiple 

times, as is demonstrated by the fluctuation of the dimer-surface distance plot in Figure 

5.4B.  

 The interaction between the monomers was characterized by the distance between 

them as a function of time, as shown in Figure 5.5. A few snapshots illustrating the peptide 

structures are indicated along the time trajectories. The surface induces a conformation that  
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Figure 5.4. Molecular dynamics simulations of on-surface aggregation of Aβ (14-23) dimers. (a) 
Schematic of the simulation system showing van der Waal representation of the atoms. Grey color is the 
mica structure excluding K cations, K+ atoms are purple, Cl− are green, Na+ are brown, while peptides 
are colored using atomic names in VMD. (b) CoM distance between the dimer and mica surface, blue, 
and the minimum distance of the peptide backbone and the mica surface, red, for Mica1 system as 
determined by g_mindist. Highlight indicates the distance at which dimer is dissociated from the surface. 
(c) Time-dependent change of the secondary structure of the peptides determined using DSSP. Solid 
gray bar separates the two monomers. 
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Figure 5.5. Molecular dynamics simulations of on-surface aggregation of Aβ (14-23) dimers. The plot 
shows CoM distance between the two Aβ(14-23) peptides in the Mica1 system. Key events of the 
simulation are highlighted with a cartoon representation of the dimer, blue represents monomer A and 
red monomer B. 
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is favorable for dimer formation, as is evident from the rapid recruitment of the free 

monomer and the formation of a dimer bound to the surface, Figure 5.5. The dimers 

interact with the surface, primarily staying in contact with the surface, through interactions 

involving a few residues and rarely lie fully on the surface. The behavior of the Aβ(14-23) 

monomers in the Mica2 system is very similar to the Mica1 system, with the exception that 

the interaction of peptides with the surface is not as strong, and the conformation of the 

dimer is less compact, Figure 5.6.  

5.3.3 Modeling of Aβ(14-23) Interactions with DLPE Lipid Bilayer  
We performed MD simulations to characterize the interaction of Aβ(14-23) with a 

biological model surface, namely DLPE lipid bilayer, which mimics cellular membrane 

surfaces (198, 199). Three systems were simulated, containing a single monomer, two 

monomers on the same side of the bilayer, and four monomers, two on each side of the 

bilayer.  

Aβ(14-23) Monomer interacting with DLPE bilayer 

Interaction of Aβ(14-23) monomer with the DLPE bilayer was initiated through the C-

terminal residues within the first 10ns of simulation, Figure 5.7. However, the monomer 

does not stay attached to the upper leaflet; during the ensuing ~40ns the monomer 

dissociates from the bilayer surface, traverses the periodic boundary, and interacts with the 

inner leaflet. Upon interaction with the inner leaflet, the monomer undergoes 

conformational change, Figure 5.7B. Initially, it is attracted through electrostatic 

interactions with the bilayer, Figure 5.7B 47.1ns, followed by a transition to a turn 

conformation with the peptide backbone interacting with the lipid headgroups, 51.5ns 

Figure 5.7B. Change in the secondary structure, mainly between a bend and a turn  
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Figure 5.6. Molecular dynamics simulation of interactions of Aβ(14-23) and Mica2, with K+ atoms 
fixed to their initial positions. (a) CoM distance between the two Aβ(14-23) peptides; key events of the 
simulation are highlighted with a cartoon representation of the dimer, blue represents monomer A and 
red monomer B. (b) Time-dependent change of the secondary structure of the peptides. Solid gray bar 
separates the two monomers, with monomer A being below the separator. 
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Figure 5.7. Interaction between Aβ(14-23) monomer and DLPE bilayer. (a) The initial placement of the 
monomer with respect to the bilayer. Aβ (14-23) monomer backbone is colored black while the side-
chains, bilayer, and ions are colored according to the atom names in VMD. (b) Images depicting the 
initial interaction of the monomer with the bilayer and the following re-orientation of the monomer. Ions 
within 10Å of the protein are shown. (c) Change in secondary structure of the monomer over time. DSSP 
was used to calculate the secondary structure; the legend shows what each color in the plot represents. 
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Figure 5.8. Interaction of Aβ(14-23) monomer with DLPE bilayer. (a) The distance between Aβ(14-23) 
monomer and each leaflet of the bilayer, called upper and lower, are plotted versus time. The number of 
protein backbone contacts with the PO4 head groups of the upper (b) and lower (c) leaflet are plotted 
versus time. 
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structure, was also observed during the interaction with the bilayer, Figure 5.7C. Even 

when bound to the bilayer, the monomer remains highly dynamic, undergoing several 

conformational changes, as seen in the time-dependent secondary structure, Figure 5.7C. 

Furthermore, the time-dependent peptide-bilayer distance also reveals that the monomer 

did not remain statically adsorbed to the bilayer, Figure 5.8A; further evidenced by the 

change in number of backbone contacts between the monomer and the bilayer, Figure 5.8B 

and C. 

Formation of Dimer on DLPE bilayer 
Next, we investigated the possibility of dimer formation in the presence of DLPE bilayer. 

The two monomers were placed on the outer leaflet side of the bilayer, Figure 5.9A, inset. 

The distance between the CoM of the two Aβ(14-23) monomers versus time was 

monitored, Figure 5.9A, and shows that the dimer formation did not happen until ~300ns 

of the simulation had elapsed. The reason for the “lag” period in the dimer formation is 

clear from the peptide-bilayer headgroup distance, Figure 5.9B, which shows that 

monomer B traverses the periodic boundary within the first 10ns of the simulation. During 

this time monomer A binds to the outer leaflet, after ~2ns, in the same manner as the single 

monomer bound the bilayer, Figure 5.7. Likewise, monomer B, once it traversed the 

periodic boundary, interacts with the inner leaflet and binds the bilayer in a similar fashion. 

Similar to the interaction of a single monomer with the bilayer, each of the two monomers 

experience conformational changes during interactions with the bilayer, Figure 5.9C. The 

secondary structure of the monomers primarily transitions between bend and turn 

structures. 
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Figure 5.9. Interaction of two Aβ(14-23) monomers with DLPE bilayer. (a) Time-dependent CoM 
distance between the two monomers. The highlights indicate crossing of the periodic boundary; first a 
monomer moves away from the upper leaflet, next the other monomer leaves the upper leaflet side and 
is recruited by the membrane bound Aβ(14-23) monomer. Inset show the initial configuration of the 
system, with monomer A in black and monomer B in blue. Atoms are colored according to VMD. (b) 
Distance of monomers to the two leaflets of the bilayer versus time. (c) Change in secondary structure 
of the monomers over time, monomer A is below the grey separator. DSSP was used to calculate the 
secondary structure; the legend shows what each color in the plot represents. 
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 Dimer formation occurs when monomer A dissociates from the outer leaflet, 

traverses the periodic boundary, and starts interacting with monomer B, Figure 5.10. The 

dimers forms through the interaction of N- and C-terminal residues of the two monomers 

in an anti-parallel conformation, Figure 5.10A. Over time, the conformation transitions to 

a more compact dimer, 300ns, with both monomers interacting with the bilayer, primarily 

backbone of monomer B and side-chains of monomer A, Figure 5.10A. The dimer is very 

dynamic and undergoes further conformational re-arrangement by extending away from 

the bilayer surface, 450.6ns, followed by re-organization so that the dimer is anchored to 

the bilayer through monomer A, 461.4ns on Figure 5.10B. Finally, the dimer lies in a flat 

conformation on the bilayer in an extended conformation with N-terminal residues of 

monomer A and C-terminal residues of monomer B interacting. 

Interaction of Four Aβ(14-23) Monomers with Lipid Bilayer 

To investigate the effect of the initial Aβ(14-23) monomer orientation, as well as 

symmetrical concentration through the bilayer, we performed characterization of the 

interaction of four monomers with DLPE bilayer. Two monomers were placed on each side 

of the bilayer, with initial orientation of the monomers on the outside and inside facing 

leaflets being opposite of each other, Figure 5.11. Similar to the results for two monomers 

interacting with the bilayer, the monomers on each side of the bilayer assemble into dimers, 

but the process occurs more rapidly. As shown in Figure 5.11, on both sides of the bilayer, 

the monomers interact with the surface within the first 20ns of simulation followed by a 

rapid dimer formation process. Also similar to before, structural changes occur in 

monomers upon interaction with the surface, Figure 5.12, the primary structural features 

being bend and turn conformations. Monomer B, initially assumes a helical conformation  
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Figure 5.10. Formation of Aβ(14-23) dimer on DLPE bilayer. (a) Depiction of the initial interaction 
between the two monomers, 284.8ns, followed by re-arrangement of the monomers from an extended 
dimer, 290ns, to a compact and flat dimer, 300ns. Monomer A in black and monomer B in blue. Atoms 
are colored according to VMD. (b) Monomer A dissociates from the bilayer surface, 428ns, is extended 
and undergoes re-arrangement, 450.6ns, followed by re-attachment to the surface, 461.4ns; and finally 
forms an extended conformation on the surface, 500ns; throughout this process the dimer remains stable. 
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Figure 5.11. Interaction of four Aβ(14-23) monomers with a DLPE bilayer. (a) The CoM distance 
between two pairs of monomer over time. The inset shows the initial placement of the monomers with 
respect to the bilayer. Monomer A is in black and monomer B in blue, monomer C in red, monomer D 
in green, and the side-chains and bilayer are colored according to the atom names in VMD. Monomers 
A and B are on the upper leaflet side of the bilayer. (b) CoM distance of each monomer to the other three 
monomers. (c) Shows the minimum distance of the peptide backbone and the PO4 of the lipid 
headgroups, as determined by g_mindist. 
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Figure 5.12. Interaction of four Aβ(14-23) monomers with a DLPE bilayer. Secondary structure of each 
monomers during the simulation is shown as a function of time, as determined by DSSP. 
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but is rapidly converted into a largely unstructured conformation with some turn and bend 

structure.  

 The individual monomers within the dimer interact with and re-organize on the 

surface throughout the simulation. The re-organization allows the monomers to dissociate 

from and re-associate with the surface – but remain as dimers, Figure 5.11C. This dynamic 

behavior is seen clearly in the fluctuations of the number and duration of contacts during 

the simulation, Figure 5.13. Furthermore, it becomes clear that, for both dimers, a single 

monomer is responsible for the majority of contacts and acts as an anchor for the dimer. 

 Interestingly, toward the end of the 500ns simulation the dimer formed on the 

inner leaflet of the bilayer traverses through the periodic boundary and interacts with the 

dimer present on the outer leaflet. Initially an extended tetramer is formed with one 

monomer from each dimer interacting, Figure 5.14. The tetramer then undergoes structural 

transition that extends the contact interface so that all monomers interact with each other, 

while only the original dimer is interacting with the membrane surface, 477.8ns on Figure 

5.14. Further re-structuring of the tetramer happens and causes an extended tetramer with 

a trimeric core to form as the final configuration during the simulation. The trimer core is 

extended from the membrane surface, with only one monomer interacting with the surface, 

and participates in side-chain interactions with the remaining membrane-bound monomer, 

500ns on Figure 5.14. 

Effect of Aβ(14-23) of DLPE Bilayer 
An important effect associated with amyloid peptides and proteins are their tendency to 

disrupt normal bilayer function. To investigate the effect of the Aβ(14-23) monomers on 

the DLPE bilayers we performed analysis of the bilayer thickness as well as area per lipid.  
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Figure 5.13. The frequency of interaction of four Aβ(14-23) monomers with DLPE bilayer. The number 
of backbone contacts between each monomer and the bilayer PO4 headgroups are plotted for each leaflet 
of the bilayer. 
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Figure 5.14. Formation of tetramer on DLPE bilayer surface. Dimer, formed by monomers C and D, 
traverses the periodic boundary and interacts with surface-bound dimer formed by monomers A and B, 
470.9ns. Monomer A is in black and monomer B in blue, monomer C in red, monomer D in green, and 
the side-chains and bilayer are colored according to the atom names in VMD. Following the interaction, 
the surface-bound dimer undergoes conformational change that brings the tetramer closer to the surface, 
477.8ns. Over the next ~20ns the tetramer experiences conformational changes that increase the 
interaction with the surface, but ultimately leads to the formation of a compact trimer, monomers A-C, 
and a surface bound monomer that interacts with the trimer, 500ns. 
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 For the single and two monomer systems, the majority of the simulation time was 

spent with a single monomer interacting with one leaflet of the bilayer. Area per lipid 

calculations show that the leaflet which was interacting with the Aβ(14-23) monomer 

experienced compression of the lipids, Figure 5.15A and B. For both systems the 

interaction with peptide causes change to the APL in the order of a few Å2, moreover, the 

presence of two monomers does not cause higher compression of the lipids. However, once 

a dimer has formed on the bilayer the lipids become more compressed, with APL changes 

up to 10Å2, ~325ns on Figure 5.15B. Four Aβ(14-23) monomers interacting with the 

membrane cause effects that follow the trends of the previous two systems, larger change 

in APL when larger number of Aβ(14-23) monomers interact with the membrane, Figure 

5.15C.  

 Other changes in membranes were characterized by measuring the mean 

membrane thickness, Figure 5.16. It is clear from the bilayer thickness plots that increase 

in Aβ(14-23) monomer concentration causes an increased inhomogeneity in the membrane 

thickness, with four monomers causing the largest change. Interestingly, the interactions 

do not cause membrane thinning, rather the monomer causes the membrane to become 

slightly expanded, Figure 5.16A, this effect sees a significant increase when two 

monomers interact with the membrane, Figure 5.16B, and is at maximum when four 

monomers interact with the membrane, Figure 5.16C.  

5.4 Discussion 
Time-lapse AFM imaging of the aggregation of amyloid proteins allowed us to directly 

visualize the effect of a surface during the aggregation process. Surface greatly enhanced  
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Figure 5.15. The effect of interaction of Aβ(14-23) monomer on DLPE bilayer. Are per lipid for DLPE 
interacting with a monomer, (a), two monomers, (b), and four monomers, (c), are plotted versus time. 
GridMAT-MD was used to determine the APL, taking into account interactions of the Aβ(14-23) 
monomers with the bilayer, blue curves, or disregarding protein-lipid interactions, red curves. 
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Figure 5.16. The effect of interaction of Aβ(14-23) monomer on DLPE bilayer thickness. Average 
thickness of the DLPE bilayer interacting with a monomer, (a), two monomers, (b), and four monomers, 
(c), were obtained from the 500ns simulation. GridMAT-MD was used to determine the thickness, taking 
into account, right, or disregarding, left, interactions of the Aβ(14-23) monomers with the bilayer. 
Colorbar is in units of nm. 
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the aggregation of Aβ(14-23) peptide, full-length Aβ42, and α-syn protein, compared to 

bulk experiments that showed very few aggregates at the same concentrations.  

 The mechanism of the unique on-surface pathway of aggregation was 

characterized using MD simulations. Interactions of Aβ(14-23) with mica and DLPE 

bilayer surfaces, revealed that interactions of a monomer with the surface is accompanied 

by the structural transition of the monomer that promote interactions with another 

monomer. A free monomer is able to bind to the adsorbed monomer and rapidly form a 

dimer. The newly formed dimer is very dynamic and the monomers within the dimer 

undergo structural transitions. Compared to our previous simulations for dimer formation 

by free Aβ(14-23) monomers, in which no major structural changes were observed during 

the first ~200ns (100), we have an almost five-fold faster structural transition when the 

peptides interact on the surface.  

 With regard to implications of this work to AD development, we propose, in the 

framework of the amyloid cascade hypothesis, that the interaction of amyloidogenic 

polypeptides with cellular membranes plays an important role for the disease-related 

aggregation process. Under normal conditions, the interaction of intracellular or 

extracellular amyloid proteins with intracellular or extracellular membranes is weak, so 

small aggregates assemble. These are unstable and dissociate into monomers either on the 

surface or after dissociation from the membrane. A change in membrane properties, leading 

to an increase in affinity of amyloid proteins to the membrane surface, will shift the process 

to the formation of more stable oligomers that remain intact after dissociation from the 

surface, and this assembly triggers the disease-related aggregation process. This 

mechanism does not require elevation of the amyloid peptide concentration, and indeed the 
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concentration of amyloid beta peptide in blood fluctuates weakly regardless of the disease 

state and does not differ from the controls (200). Also, the Aβ clearance in late-onset AD 

patients drops by about one quarter (201), and only a fraction of the Aβ produced is trapped 

in amyloid plaques (202).  

 Our model is in line with recent findings that demonstrate that the aggregation 

rate of amyloidogenic proteins measured in the presence of membranes of various types 

depends on the membrane composition and mechanical properties (203-206). Indirect 

support for the concept of membrane-induced aggregation comes from findings on the 

elevated yield of Aβ dimers in membrane-containing fractions of blood from AD patients 

compared with controls (207). Note as well our direct observation of α-syn on-surface 

assembly at nanomolar concentrations when the initial monomer was covalently bound to 

the surface (101). Recent NMR studies on the intracellular structure of α-syn showed that 

it primarily exists in cells as monomers in an essentially unstructured, compact 

conformation, but transient interaction of the protein with the membrane was considered 

(187). 

5.5 Conclusions 
We demonstrated that the interaction of amyloid proteins with surfaces allow the proteins 

to assemble into aggregates at concentrations that are non-permissive for aggregation in 

solution. Moreover, we characterized the mechanism of the on-surface aggregation using 

MD simulations. The interaction with surfaces cause amyloid proteins to rapidly undergo 

conformational transitions to unstructured monomers that favor interactions with free 

monomers. Furthermore, we found that aggregates formed on the surface are dynamic and 

can dissociate from and re-associate with the surface. As a result, these dissociated 
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aggregates can play roles as seeds for aggregation in the bulk solution, or start a neurotoxic 

effect such as phosphorylation of the tau protein to initiate its misfolding and aggregation 

followed by neurodegeneration (186). Therefore, we posit that on-surface aggregation is 

the mechanism by which neurotoxic amyloid aggregates are produced under physiological 

conditions. Our proposed model does not require an elevation in amyloid synthesis, as, 

based on simulation results, stable oligomers can rapidly form at low concentrations in 

presence of surfaces.  
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Chapter 6. INTERACTION OF 𝜶𝜶-SYNUCLEIN WITH 
LIPID BILAYERS 

6.1 Introduction 
In the previous chapter on-surface aggregation presented a unique pathway to allow the 

amyloid proteins to assemble into aggregates at physiological concentrations. The 

relevance of this pathway is immediately clear in the case of PD, where the monomeric α-

syn interacts with membranes as part of its normal function through binding to 

phospholipid molecules (208, 209), a property that is neglected in current models involving 

the assembly of toxic aggregates in bulk solution. Past reports suggest that the normal 

membrane-binding function of α-syn is related to regulation of synaptic vesicle trafficking 

(208-210). Moreover, the protein has been shown to undergo accelerated aggregation when 

incubated in the presence of phospholipid vesicles at high protein:lipid ratios (211-213). 

These findings suggest that self-assembly at the surface of cellular membranes is the 

mechanism by which potentially neurotoxic oligomers are assembled at physiological 

concentration of the protein (191). 

 In the current study, this hypothesis is tested by direct visualization of α-syn 

aggregation on the surface of supported lipid bilayers (SLBs) using time-lapse AFM. We 

demonstrate that SLBs promote the aggregation of α-syn at concentrations as low as 10 

nM, which corresponds to the concentration range in the CSF (214). Moreover, aggregates 

are not strongly bound to the surface and are capable of spontaneous dissociation into 

solution. MD simulations revealed that the interaction mechanism with SLBs is different 

depending on membrane composition. α-Syn monomers change conformation upon 

interaction with the bilayers in a composition dependent manner. Furthermore, aggregation 
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propensity also depends on SLB composition, being considerably higher for 1-palmitoyl-

2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) bilayer when compared to 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC) due to the conformations of α-syn after 

binding to the membrane; a property in line with experimental data. Importantly, 

simulations revealed that the interaction and self-assembly of α-syn does not damage the 

membranes. We propose a model for the membrane mediated amyloid aggregate assembly 

and the role of this process in beginning of the disease state. 

6.2 Materials & Methods 

6.2.1 Aggregation of Supported Lipid Bilayers 
SLBs, on freshly cleaved mica, were prepared from POPC and POPS following the 

protocol in ref. (215). In situ AFM imaging was then performed to characterize the SLB 

surface, following which α-syn (A140C mutant) solution was added to the membrane 

surface and images were then acquired at different time points. Between images, the AFM 

tip was placed on idle (electronically retracted, approximately 4µm above the scan area) to 

ensure that it exerted minimum influence on the sample. 

6.2.2 Molecular Dynamics Simulations 
Lipid bilayers of POPC and POPS were prepared using the insane.py script (available at 

http://md.chem.rug.nl) using the MARTINI2.2refP (216) force field together with the 

polarizable water (217) model. The initial bilayer was constructed using, in total, 512 lipids 

placed randomly in a bilayer structure with 40 water molecules per lipid and 150mM NaCl. 

After energy minimization using the steepest decent algorithm, the bilayers were simulated 

as an NPT ensemble for 500ns using a 20fs integration time step. The simulation employed 

http://md.chem.rug.nl)/
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periodic boundary conditions with a semi-isotropic pressure coupling using the Parrinello-

Rahman barostat at 1bar with a 12ps coupling constant. The temperature was kept at 300K 

using the velocity rescaling algorithm. Electrostatic interactions were calculated using the 

particle mesh Ewald algorithm, with a real space cut-off of 1.1nm. All simulations were 

performed using the 2016 version of the GROMACS suite of programs (218). Only the 

final frame of each bilayer simulation was used for further simulations. 

Interaction of α-syn with Lipid Bilayers 
Micelle-bound α-syn (PDB ID: 1XQ8) was used as the initial protein structure. A coarse-

grained structure was generated using the martinize.py script and the PDB structure. The 

coarse-grained α-syn structure was then placed at a CoM distance of 6nm from the bilayer 

core in a parallel orientation (along the long protein axis) to the bilayer. The system was 

then solvated in a box of 13x13x18 nm3 water and 150mM NaCl. The simulation procedure 

was the same as previously described for bilayers alone, with the exception that the 

simulation duration was 4µs for each protein-bilayer system. 

Interaction of Free α-syn with Membrane-bound α-syn 
Simulations with membrane-bound and additional free α-syn were conducted using the last 

frame of the previous 4 µs simulation and adding another α-syn at a CoM distance of 6nm 

from the membrane-bound α-syn. Orientation of the free α-syn was parallel to the bilayer 

using the same protein conformation as the initial α-syn-bilayer simulation. Simulations 

for both POPC and POPS were carried out for 2µs each using the previously described 

parameters. 
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6.2.3 Analysis of Bilayer 
The area per lipid (APL) for each of the simulated systems was calculated using Dirichlet 

tessellation to obtain Voronoi diagrams. The GridMAT-MD approach was used to perform 

the tessellation every ns, using the PO4 groups of each bilayer as the reference, and with a 

resolution (grid spacing) of 1Å (196). In addition, membrane thickness was also calculated 

based on the same reference group. 

6.3 Results 

6.3.1 Experimental AFM studies of α-syn Aggregation on Lipid Bilayers 
Lipid bilayers were prepared on freshly cleaved mica, allowing for direct visualization, 

with AFM, of interactions between the protein and bilayer over many hours. Based on their 

prevalence in neuronal cellular membranes, two types of bilayers were used (Figure 6.1A): 

POPC and POPS. POPS shares hydrocarbon chains with POPC but has a serine head group 

that at physiological pH, renders the surface negatively charged, unlike POPC which has a 

net neutral charge.  

 Aggregation of 10nM α-syn on supported bilayers was investigated over a period 

of 5 hours and the data is shown in Figure 6.1. Aggregates on POPC and POPS surfaces 

at the end of the experiments are shown in Figure 6.1C and D, respectively. The number 

of aggregates and the aggregate sizes (volumes) were quantified and are plotted in Figure 

6.1E and F, respectively. The data show that both parameters gradually increase over time, 

with aggregation on POPS being faster and more pronounced. Aggregates formed on the 

SLBs are very dynamic and are able to appear, grow, and dissociate from the membrane 

surface, Figure 6.2. Importantly, the surface remains undamaged. Thus, aggregates 

assembled on the surface can dissociate back into solution, suggesting that aggregates  



M. Hashemi - April 2018   102 

Chapter 6: Interaction of 𝜶𝜶-synuclein with lipid bilayers 

 

  

 

Figure 6.1. Time-lapse AFM images to characterize α-syn aggregation on supported POPC lipid bilayer. 
(a) Chemical structures for POPC and POPS are shown (left). Schematic of a supported lipid bilayer on 
freshly cleaved mica (right). (b) Image of the POPC SLB surface immediately after buffer exchange 
with 10nM α-syn solution. Images of α-syn aggregates after 5hrs incubation on POPC (c) and POPS (d) 
SLBs. Insets show zoomed images of three representative aggregates. The Z-scale is shown to the right 
of panel (d). (e) and (f) show the evolution of aggregate quantity and mean volume on POPC and POPS, 
respectively. The data are shown as the mean ± STD. 
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Figure 6.2. Dynamics of α-syn aggregates on SLBs. α-Syn aggregates after 6hrs (a) and 6.5hrs (b) on 
POPS SLB. Features that did not change between frames are marked with black arrows. Blue arrows 
correspond to aggregates that have dissociated in panel (b), while new aggregates that appeared are 
highlighted with green arrow. A growing aggregate is highlighted in yellow. (c) A 10nM α-syn solution 
was incubated in the presence of a POPC SLB. 5μl of the solution was removed at different time-points 
(6 h, 24 h, 48 h) and analyzed by AFM. Solid black bars show the number of aggregates, which appeared 
in the bulk from the POPC SLB, at different times. In a parallel experiment, a 10nM α-syn solution was 
incubated in a test tube, and an aliquot of 5μl was taken out at the same time-points and analyzed by 
AFM to check aggregation in the absence of a POPC SLB (striped bars). Aggregates were counted in 
2μm × 2μm AFM images. 
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should appear in the bulk solution above the bilayer. This assumption was tested by direct 

measurement of the time-dependent accumulation of α-syn aggregates in solution above 

the bilayer surface, Figure 6.2C. The data show that the presence of a bilayer produces 

significantly more aggregates (solid black bars) compared to the control (dashed bars) 

supporting the conclusion about dissociating aggregates assembled on the lipid bilayer. 

Note that similar effect were observed in our recent paper (191), in which the assembly of 

α-syn aggregates on mica surface was studied.  

6.3.2 Computational Modeling of Interaction of α-syn with Lipid 
Bilayers 

Interaction of α-syn Monomer and Lipid Bilayers 

To obtain insight into the underlying molecular mechanism of α-syn aggregation on the 

bilayer surface, we conducted molecular dynamics simulations of interactions of α-syn 

with the POPC and POPS bilayers. Briefly, a monomer of α-syn was placed 6nm above 

the center of a 13nm x13nm bilayer patch (512 lipids), and interactions with the bilayer 

were then simulated. A few selected snapshots illustrating the dynamics of the interaction 

of α-syn with the POPC bilayer are shown in Figure 6.3. According to Figure 6.3, α-syn 

initially binds to the POPC membrane through its N-terminal segment (1420ns). Over time, 

the length of the segment of the protein in contact with the POPC surface increases, so that 

the NAC (non-amyloid component, residues 61-95) segment approaches the surface as well 

(1444-1500ns). Graphically this change in binding is illustrated by the kymograph shown 

in Figure 6.4. In fact, α-syn undergoes multiple association-dissociation events, as 

evidenced by the fluctuations of the number of contacts over time (Figure 6.5A).  
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Figure 6.3. Molecular dynamics simulations of α-syn monomer interacting with POPC bilayer. The top 
four panels show the time resolved stable binding event. Initial interactions happen through the N-
terminal, Lys rich, 36-56 segment, following which insertion into the lipid head regions is observed. The 
bottom two panel, show top and side view snapshots of the last frame, at 4µs, of the MD simulation. The 
α-syn N-terminal segment is colored blue, the NAC region is in green, and the C-terminal segment is in 
red. N- and C-terminal residues are highlighted with a sphere. Lipid tails are in grey while the POPC 
headgroups are in purple. 
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Figure 6.4. Kymograph based om molecular dynamics simulation of α-syn interaction with POPC 
bilayer, showing the time dependent residue-wise interaction with the bilayer. The colorbar represents 
number of contacts that each residue of the protein makes with the bilayer. 
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Figure 6.5. Molecular dynamics simulation of α-syn interaction with lipid bilayers. (a) Graphical 
representation of α-syn total contacts (distance <0.6 nm, dashed lines) and contacts with PO4 groups 
(solid lines) of the membranes. (b) Minimum distance between the N- and C-termini of α-syn vs time. 
(c) Time-dependent change in radius of gyration of α-syn. 
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Eventually (after ~1.5 µs, seen as a jump in the graph and increased contact in the 

kymograph), the protein strongly interacts with the bilayer, is inserted in the interfacial 

region, and stays bound to the bilayer for the remainder of the simulation. Throughout the 

simulation the end-to-end distance and the radius of gyration of the α-syn molecule 

experience minor fluctuations (Figure 6.5B and C). 

 A similar analysis was performed for α-syn monomer interacting with a POPS 

bilayer. A few selected frames are shown in Figure 6.6. Similar to the data obtained for 

the POPC bilayer, the N-terminal segment of α-syn binds to the membrane surface, but 

unlike POPC, the interaction with POPS is limited to a short central region (G36-K58) of 

the protein, graphically illustrated by Figure 6.7. As a result, once stably interacting with 

the surface, the protein remains extended out of the plane of the POPS surface throughout 

the simulation. This is dramatically different compared to the interaction with POPC 

bilayer, as can be seen by the number of interactions with the bilayer, Figure 6.5A. 

However, the overall geometry of the conformation of the α-syn monomer is not 

significantly different on the two bilayer surfaces, as measured by N-C distance and the 

radius of gyration, Figure 6.5B and C. 

 We then analyzed if interaction of α-syn monomer with the bilayers caused any 

change in the bilayer itself by measuring the area per lipid as well as the thickness of the 

bilayer during the simulations, Figure 6.8 through Figure 6.10. Prior to the interaction 

with α-syn monomer the POPC bilayer has an APL of ~65.5Å2, however this changed once 

the monomer is interacting with the bilayer, Figure 6.8 top left. For the leaflet that is 

interacting with the monomer, the APL experiences a compression of up to ~8Å2 while for  
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Figure 6.6. Molecular dynamics simulations of α-syn monomer interacting with POPS bilayer. The top 
four panels show the stable binding event to POPS. Initial interactions happen through the N-terminal, 
Lys rich, 36-56 segment, following which the protein is oriented in an extended conformation away from 
the bilayer surface. The bottom two panel, show top and side view snapshots of the last frame, at 4µs, of 
the MD simulation. The α-syn N-terminal segment is colored blue, the NAC region is in green, and the 
C-terminal segment is in red. N- and C-terminal residues are highlighted with a sphere. Lipid tails are in 
grey while the POPS headgroups are in blue. 
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Figure 6.7. Kymograph based on molecular dynamics simulation of α-syn interaction with POPS 
bilayer, showing the time dependent residue-specific interactions with the bilayer. The colorbar 
represents number of contacts that each residue of the protein makes with the bilayer. 
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Figure 6.8. Effect of α-syn monomer interactions on the area per lipid for bilayers. Data for individual 
leaflets of POPC, top, and POPS bilayers, bottom, are plotted. Right column shows the upper leaflets 
while left column the lower. Red curves represent the APL without considering protein interactions 
while blue curves take into account protein interactions, curves were obtained using GridMAT-MD. 
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the lower leaflet, not interacting with the monomer, the APL sees an increase of 

approximately ~2Å2, Figure 6.8 top. Similar compressive behavior is seen for the leaflet 

of POPS bilayer that interacts with α-syn monomer albeit smaller change compared to 

POPC, Figure 6.8 bottom. 

 The thickness of the bilayer is another important property that can be used to 

measure the effect of α-syn monomer interactions. The POPC bilayer thickness 

experiences a change in thickness of approximately 0.45nm during the simulation, Figure 

6.9. Comparing the results of the thickness analysis when including protein interactions, 

bottom, and not including protein interactions, top, it is clear that the change in the bilayer 

thickness is localized in the area directly interacting with the α-syn monomer. As was the 

case for the change in APL, the POPS bilayer does not experience a large change in 

thickness, Figure 6.10. 

Interaction of two α-syn Monomers with Lipid Bilayers 

To investigate the effect of the different binding modalities of α-syn monomer on the 

aggregation properties, we modeled the interaction of membrane-bound α-syn with a 

second free α-syn molecule; the results are shown in Figure 6.11. At the start of the 

simulation the second protein is floating around the bound α-syn on POPC, but later it 

moves away from the bound protein and binds to the other side of the bilayer, gradually 

increasing the number of segments interacting with the bilayer as shown in frames 45ns to 

75ns; reminiscent of the initial interaction of the monomer with the bilayer. Simulations 

with POPS bilayer produce entirely different results. According to Figure 6.12, a free 

protein very rapidly binds to membrane-bound α-syn, and the dimer is formed rapidly after 

only 15ns via interactions involving the two protein molecules’ NAC segments and via  
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Figure 6.9. Bilayer thickness for POPC membrane interacting with α-syn monomer. Left column shows 
the mean thickness of the bilayer without considering protein interactions, top, and considering protein 
interactions, bottom, obtained from 4µs simulations. Right shows the standard deviation for the 
thickness measurements. 
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Figure 6.10. Bilayer thickness for POPS membrane interacting with α-syn monomer. Left column: 
shows the mean thickness of the bilayer without considering protein interactions, top, and considering 
protein interactions, bottom, obtained from 4µs simulations. Right column: shows the standard 
deviation for the thicknesses measurements. 
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Figure 6.11. Results of MD simulations on POPC, showing interaction between a free and a membrane-
bound α-syn. Binding of a free α-syn to the POPC membrane; the free α-syn traverses through the 
periodic boundary to the inner leaflet and stably binds; mode of interaction is similar to the initial α-syn 
interaction in Figure 6.3. The α-syn N-terminal segment is colored blue, the NAC region is in green, 
and the C-terminal segment is in red. N- and C-terminal residues are highlighted with a sphere. Lipid 
tails are in grey while the POPC headgroups are in purple. 
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Figure 6.12. MD simulations, on POPS, of interaction between a free and a membrane-bound α-syn 
protein. The free α-syn rapidly binds membrane-bound α-syn through NAC-NAC and NAC-C-terminal 
interactions. The dimer then undergoes conformational change and finally adopts an extended shape with 
N-terminal helices extended away from the bilayer surface. The α-syn N-terminal segment is colored 
blue, the NAC region is in green, and the C-terminal segment is in red. N- and C-terminal residues are 
highlighted with a sphere. Lipid tails are in grey while the POPS headgroups are in blue. 
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Figure 6.13. MD simulation of a free α-syn molecule interacting with membrane-bound α-syn. (a) 
Radius of gyration for membrane-bound (α-Syn 1) and free (α-Syn 2) α-syn molecules in the POPC 
(left) and POPS (right) systems. (b) Inter-peptide contacts for the α-syn molecules in the POPC (left) 
and POPS (right) systems. Number of contacts (distance <0.6 nm) are plotted for membrane bound α-
syn (1 N-ter, 1 NAC, and 1 C-ter) and segments of the free α-syn (denoted 2) molecules. 
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NAC-C-terminal interactions. The proteins then undergo re-arrangement to a parallel 

orientation with an extended NAC-NAC interaction interface (30ns-60ns), and the dimer 

remains stable for the remainder of the simulation. Comparing the radii of gyration for the 

monomers interacting with POPC and POPS does not show a significant difference in their 

behavior, however that is not the case when other metrics are compared, Figure 6.13. The 

number of contacts between the two monomers interacting with POPC and POPS show 

that, on POPS, the dimer is formed and quickly stabilizes, while on POPC the two 

monomers do not interact at all. Furthermore, on POPS the interactions within the dimer 

primarily occur between the NAC and C-terminal segments of the membrane-bound 

protein and the second free α-syn molecule. 

6.4 Discussion 
Our studies demonstrate that phospholipid bilayers promote α-syn aggregation at 

conditions where no aggregates are assembled in bulk solution. The aggregation process 

was directly observed using time-lapse AFM, showing the number and size of aggregates 

increasing proportionally with incubation time. The efficient assembly of aggregates on 

phospholipid bilayers is in line with other studies (204, 212) in which acceleration of α-

syn fibrils formation on phospholipid vesicles was reported. Moreover, we showed that the 

aggregation efficiency depends on the phospholipid composition, with general aggregation 

propensity on surfaces being greater for POPS compared to POPC. Furthermore, 

computational simulations revealed a number of important features of this self-assembly 

process catalyzed by the membrane bilayers.  

 First, simulations revealed that lysine residues are critically involved in the initial 

interaction with the membrane surface, suggesting that electrostatic interactions contribute 
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positively to the aggregation propensity, in line with (219). This also explains the data 

obtained for aggregation on POPS, which shows greater aggregation propensity compared 

to POPC. Moreover, bilayer composition also contributes to the α-syn conformation, 

inserted into the membrane interfacial region on POPC and extending out from the 

membrane on POPS, which then affects the aggregation propensity of the protein. This is 

evident from the simulations with membrane-bound and free α-syn molecules; in particular 

for POPS, the extended α-syn protein acts as an attachment point for free proteins to rapidly 

assemble the dimer (Figure 6.12). This extended arrangement is in line with recent 

structural data (220), according to which, three regions of membrane-bound α-syn exhibit 

distinct structural and dynamic properties. Thus, that α-syn has differential binding modes 

on different lipid bilayers, which may alter the overall protein structure and contribute to a 

change in aggregation propensity of the protein.  

 Second, it is widely accepted that interaction of amyloid proteins, including α-

syn, with lipid bilayers is accompanied with the change of the bilayer structure and even 

disruption of the bilayer (221-223). The formation of channel-like features assembled by 

amyloid proteins oligomers is reported in (224, 225). We have not observed such changes 

in the bilayer structure in the present study. In fact, simulations showed that α-syn 

interaction with POPC and POPS bilayers occur through the lipid head groups and in the 

interfacial region of the head groups. Moreover, while changes to the APL and thickness 

of the membranes were observed, the changes did not affect the stability of the bilayers 

significantly and where of a nature not associated with membrane disruption, i.e. thinning 

of the membrane or insertion into the lipid tail regions. Furthermore, the absence of defects 

on the SLBs, during aggregation studies and following dissociation of aggregates, suggests 
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that in our experiments α-syn oligomers are not inserted into the bilayer. Explanation can 

be found in the concentration of amyloid protein used. For example, the α-syn pores in 

(224) were assembled with α-syn concentration three orders of magnitude higher than in 

our simulation and aggregation experiments. Another explanation can be found in the 

membrane structure, α-syn aggregates are reported to sense packing defects and induce 

lateral expansion of lipid molecules, by insertion of α-syn into the membranes (226). In 

our study, the bilayers were assembled defect-free and remained so during the entire time-

lapse experiment, similarly the simulated bilayers were extensively equilibrated before 

simulations with α-syn. This is in line with data from Chaudhary and coworkers (227), in 

which homogeneous bilayers remain intact despite the formation of α-syn oligomers. 

 Third, our combined experimental and computer modeling approaches 

demonstrate that the on-surface aggregation is a dynamic process, so the assembled 

aggregate can dissociate from the surface to the bulk solution. As a result, the dissociated 

aggregates can play roles of seeds for aggregation in the bulk solution or act as neurotoxic 

agents. Both processes lead to neurodegeneration. Importantly, we found that aggregates 

formed on the surface are oligomers, which are considered to be the most neurotoxic 

amyloid aggregates.   

 One of critical properties of the on-surface aggregation process is the fact that 

aggregates form at concentrations as low as the nanomolar range, which corresponds to the 

typical physiological concentrations of endogenous proteins such as α-syn (214). 

Spontaneous assembly of aggregates in the bulk solution require concentrations several 

orders of magnitude higher (228). The problem of the high concentration is alleviated if 

the assembly occurs on the membrane bilayers. The second important feature of the on-
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surface aggregation is that the composition of the bilayer contributes to the surface 

aggregation propensity – namely, a higher anionic lipid content favors α-syn-membrane 

interactions and lipid-induced α-syn aggregation. Previously reported findings suggest that 

the levels of anionic lipids in the brain increases with aging (229) and that the ratio of acidic 

to zwitterionic phospholipids increases in PD brain (230). Based on these data, our 

aggregation experiments, and the mechanism revealed by simulations, we hypothesize that 

amyloidogenic aggregates of α-syn assemble on cellular membrane and the membrane 

composition is the factor that controls the aggregation process (213, 231). For membranes 

with normal composition, assembled aggregates are unstable and dissociate as observed by 

computational modeling. A change in the membrane composition, such as switch from 

POPC rich to POPS rich, leads to a dramatic increase of stability of the dimers, facilitating 

the assembly of higher order oligomers. Therefore, we posit that changes in membrane 

composition leads to an increase in affinity of α-syn for the cell surfaces and favors the 

formation of stable oligomers, and thereby triggers development of the disease.  

 We propose the model of amyloid aggregate assembly catalyzed by cellular 

membranes schematically shown in Figure 6.14. Interaction of the protein with the 

membrane changes the protein conformation (panel B), facilitating the interaction with 

other proteins and assembly of the oligomer (panel C). The process repeats as more proteins 

appear leading to the assembly of larger oligomers (panel D). The assembled oligomer can 

dissociate from the surface to the intracellular space starting the neurodegeneration effect 

(panel E). In the framework of our model, the protein concentration is not a critical 

parameter. The property of the membrane, such as its ability to facilitate the aggregate 

assembly mediated by the membrane composition is the factor that defines the disease  
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Figure 6.14. Model for membrane-mediated amyloid aggregation process. (a) A lipid bilayer with free 
α-syn monomers far from the membrane surface. (b) Interaction with membrane induces conformation 
change in the α-syn monomer. (c)-(d) The membrane-bound monomer acts as an anchor and attracts 
free monomers, leading to the formation of oligomers. This process can repeat multiple times, for each 
repeat the oligomer grows. (e) Oligomer dissociates from the membrane to the bulk solution.  
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state, suggesting that preventions and treatments should be focused on the control the 

membrane composition that can be achieved by controlling the lipid metabolism. 

6.5 Conclusions 
We demonstrated that phospholipid bilayers dramatically facilitate aggregation of α-syn 

on surface, with the aggregates forming at concentrations as low as the nanomolar range. 

Simulations revealed that the composition of the bilayer affects the membrane-bound α-

syn conformation, which contributes to the on-surface aggregation propensity. On POPS, 

α-syn protrudes out from the membrane surface and is able to rapidly recruit a free 

monomer and form a stable dimer. Furthermore, α-syn monomers were not inserted into 

the POPC and POPS bilayers, nor did they introduce membrane defects or thinning. Based 

on these observations, we propose that the interaction of amyloidogenic polypeptides with 

cellular membranes play a key role in the early stages of disease-prone aggregation process.  

 Although the data presented in this chapter were obtained for α-syn, the 

membrane aggregation model can be extended to other amloidogenic proteins and hence 

to other diseases. The support comes from our recent paper (191) in which aggregation of 

α-syn along with the full-size amyloid beta protein (Aβ) on mica surfaces were performed. 

For both proteins, interaction with the surface dramatically facilitated the aggregation 

process. Our preliminary data on aggregation of Aβ42 protein revealed a similar property 

for aggregation on both POPC and POPS bilayers and support our membrane-mediated 

model for amyloid aggregation as the molecular mechanism of development of 

neurodegenerative diseases. 
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Chapter 7. CONCLUSIONS 

The research described in this thesis provide a number of important contributions to 

understanding the molecular mechanism of early stages of amyloid self-assembly. 

 We first demonstrated that the hairpin fold, a structure found in the early folding 

intermediates of amyloid β, induces morphological and stability changes in the aggregates 

of Aβ(14-23) peptide. While monomers form fibrillar aggregates, the hairpin only produces 

spherical structures. Meanwhile, AFM force spectroscopy measurements demonstrated 

that the strength of hairpin-monomer interaction is considerably higher than that of hairpin-

hairpin. This trend was also observed for the lifetime measurements, which showed that 

the hairpin-monomer complex has a longer lifetime compared to the hairpin-hairpin. We 

structurally characterized the interactions of the two peptides using extended MD 

simulations, which revealed a novel intercalated type complex for the hairpin-monomer. 

Monte Carlo simulations of the AFM pulling experiments further demonstrated that the 

intercalated assembly produces a high dissociation force that is in good agreement with 

experiments. Together these finding suggest that the initial folding pattern of amyloid 

proteins define the aggregation pathway.  

 We then used computational analysis to characterize the aggregation of Aβ40 into 

dimers and reveal their dynamic properties and compared these dimers to dimers of Aβ42. 

Aβ42 dimer did not show parallel in-register β-sheet structures, as one may expect based 

on the known structures of Aβ42 fibrils, rather dimers are stabilized by hydrophobic 

interactions in the central hydrophobic regions (L17-A21). Similarly, dimer structure for 

Aβ40, that best reproduce the experimentally observed data, are stabilized by interactions 
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in the N-terminal regions, and to a small extent the CHC segments. Comparison between 

Aβ40 and Aβ42 showed that overall, the dimers of both alloforms exhibit similar 

interaction strengths. However, the interaction maps, and more importantly the patterns, 

clearly show differences.  

 To further characterize the initial aggregation stages, we investigated the 

aggregation of amyloid β peptides and α-syn in presence of functionalized mica surfaces, 

based on previous observation of dimerization of α-syn on a PEG surface. All amyloid β 

peptides, Aβ(14-23) and full-length Aβ42, as well as α-syn exhibited dramatic increase in 

aggregation in presence of the surface while virtually no aggregation was observed in the 

absence of surface, at nanomolar concentrations. Computational analysis showed that 

interaction of a monomer with the surface is accompanied by the structural transition of 

the monomer; another monomer can then bind to the surface-bound monomer, form a 

dimer in which both monomers undergo structural transition. As a result, the interaction 

with the surface accelerates the formation of dimers. Compared to our previous data for 

dimer formation in the absence of surface, we observed an almost five-fold faster structural 

transition. Furthermore, on-surface aggregation is a dynamic process and aggregates can 

dissociate from the surface. Dissociated oligomers can play roles as seeds for aggregation 

in the bulk solution or start a neurotoxic effect such as phosphorylation of Tau protein to 

initiate its misfolding and aggregation followed by neurodegeneration. The inclusion of 

surface-mediated aggregation in the amyloid hypothesis eliminates the problems in 

translating knowledge from in vitro aggregation studies to spontaneous appearance of 

aggregates in the AD brain, due to the discrepancy between concentrations of 
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amyloidogenic polypeptides in vivo versus in vitro. Furthermore, our model does not 

require an elevation of amyloid synthesis. 

 Building on the previous results obtained for surface-mediated aggregation, we 

investigated the aggregation behavior of α-syn on supported lipid bilayers, acting as a 

model cell membrane. Our studies demonstrate that phospholipid bilayers promote α-syn 

aggregation at conditions where no aggregates are assembled in bulk solution. The 

aggregation efficiency depends on the phospholipid composition, with general aggregation 

propensity on surfaces being higher for POPS compared to POPC. Computational studies 

revealed that lysine residues play a role in the initial interaction with the membrane surface. 

Moreover, we found that membrane composition has an effect on the protein orientation; 

in particular for POPS, the α-syn protein is extended from the bilayer and acts as an 

attachment point for free proteins to assemble the dimer. In addition to gradual growth of 

the aggregates, some of them can dissociate from the surface to the bulk solution; in 

presence of SLBs, we measured a dramatic increase of aggregates in the solution. As a 

result, the dissociated aggregates can play roles of seeds for aggregation in the bulk solution 

or act as neurotoxic agents.  

 Overall, the studies described in this thesis provide the structural basis for the 

early stages of misfolding and aggregation process of amyloid proteins and introduces a 

new pathway of aggregation, the surface-mediated aggregation. Atomistic models of the 

interactions of amyloids with bilayer membranes lead to the next step in elucidation of the 

oligomerization process and lay a foundation for the development of prevention and 

treatments for AD, PD, and other neurodegenerative diseases based on protein aggregation. 
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7.1 Prospects 
The characterization of the assembly process for Aβ dimers and understanding the role of 

multiple interactions underlying the Aβ self-assembly process provides a fundamental step 

toward elucidating the Aβ oligomer structures. We found that interactions between 

monomers, and the structural transition of monomers, are key to the formation of the early 

dimeric aggregates that exhibit dynamic behavior and lack long β-structures. Furthermore, 

we discovered the catalytic effect of surfaces, mica and lipid bilayers, enabling the 

formation of amyloid oligomers at physiological concentration levels. Our findings also 

eliminate a major problem with understanding the spontaneous appearance of plaques in 

the AD brain without elevation of the protein concentration. These findings are of utmost 

importance, as current drug discovery attempts for potential drugs against Aβ oligomers 

are based on the Aβ structure within highly ordered fibrils, an irrelevant structure for the 

highly toxic oligomers, and only consider elevation of amyloid protein concentrations as 

cause of aggregation; this in turn explains the rather modest progress in the AD drug 

discovery area. Our long-term goals are to elucidate properties of disease-prone states, 

explain mechanisms of their formation, and identify toxic conformations. With the ultimate 

goal being translation of this knowledge for development of early diagnostic markers and 

preventive and therapeutic agents.  

 In the current project, we presented atomistic models for dimeric conformations 

of amyloid proteins, validated by AFM-based force spectroscopy, and showed that 

formation of dimers is greatly enhanced in the presence of mica surfaces and lipid bilayers. 

However, experimental and computational studies undertaken during this project only 

probed the aggregation behavior of the wild-type proteins, and in the case of Aβ, only the 
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Aβ40 and Aβ42 alloforms. Hereditary mutations in α-syn (232) and Aβ (16, 233) have 

been linked with the early onset of PD and AD, respectively. Furthermore, investigations 

showed that the aggregation propensities and pathways are different depending on the 

mutation. Therefore, extension of the current study to include the mutants of α-syn and Aβ 

is the logical future direction. 

 In the current study, the novel surface-mediated aggregation pathway was only 

explored for simple models of cellular membranes, symmetric homogenous lipid bilayers. 

In the cell a plethora of different membranes with a variety of properties are available and, 

depending on the cell type, different membrane compositions are also possible (234). 

Systematic investigation of different homogenous membranes, including important 

constituents e.g. cholesterol, are needed to characterize the behavior of amyloid proteins in 

presence of biologically available and important surfaces. Furthermore, investigation of 

the effect of bilayers formed from lipid mixtures is also an important step towards 

understanding the mechanism of interaction and aggregation of amyloid proteins on 

cellular surfaces. 

 Overall, the combination of single-molecule based methodologies, to 

quantitatively measure protein-protein and protein-membrane interactions, with the 

capabilities of molecular dynamics simulations to elucidate the structural characteristics 

and molecular mechanisms open new venues for pharmaceutical and biomedical research 

for targeting protein aggregation diseases at the earliest stages of development. In addition, 

knowledge generated in such endeavors is crucial for the development of early diagnostic 

markers and preventive and therapeutic agents. 
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