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Colorectal cancer (CRC) remains one of the leading causes of cancer related 

deaths in the United States. Currently, there are limited therapeutic options for CRC 

patients, none of which focus on the cell signaling mechanisms controlled by members 

of the cyclin dependent kinase (CDK) family. CDK5 has been implicated in a variety of 

cancers, and most recently as a tumor promoter in CRC. 

As such, we evaluated a compound developed by Pfizer, CP-668863 (a.k.a. 20-

223), that inhibits CDK5 in neurodegenerative disorders. In our CRC xenograft model, 

20-223 reduced tumor growth and tumor weight, indicating its value as a potential anti-

CRC agent. We subjected 20-223 to a series of cell-free and cell-based studies to 

understand the mechanism of its anti-tumor effects. Profiling the CDK family revealed 

that 20-223 was most potent against CDK2 and CDK5 in cell-free and cell-based 

systems. The clinically used CDK inhibitor AT7519 and 20-223 share the aminopyrazole 

core. 20-223 was comparable, or in some cases better, than clinically used AT7519, 

proving it to be a suitable lead compound. 

Next we utilized the new PRoteolysis TArgeting Chimera (PROTAC) strategy to 

develop CDK5 degraders. Synthesis and evaluation revealed that the heterobifunctional 

aminopyrazole-based PROTAC capable of cereblon-mediated proteasomal degradation 

targeted CDK9 while sparing CDK2 and CDK5.  While the degrader (3) did in fact bind to 
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CDK5 and inhibit its kinase activity, it was unable to trigger its degradation, likely due to 

differentially exposed lysine residues. This is the first report of a PROTAC capable of 

degrading a member of the oncogenic CDK family.  

Overall, these studies demonstrate that inhibition of CDK5 is a promising 

therapeutic strategy and warrants further evaluation. 20-223 is a favorable lead 

compound for CRC therapy as it exhibits anti-cancer activity both in vitro and in vivo. 

Additionally, the PROTAC strategy can be applied to develop selective CDK degraders.  
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CHAPTER 1: INTRODUCTION 
  

Colorectal Cancer 

Stages and Survival Rates 

Colorectal cancer (CRC) remains one of the deadliest forms of cancer. In 2017, 

approximately 135,430 individuals will be diagnosed with CRC, making it the fourth most 

commonly diagnosed cancer in the United States. Unfortunately, nearly 50,260 individuals 

will die a CRC-related death this year, making it the second deadliest form of cancer [1].  

Similarly to other cancers, CRC develops from the accumulation of mutations over time. 

As mutations are acquired, the abnormal growth of cells increases and generates a polyp 

on the innermost lining of the colon wall, known as the mucosa, and is classified as Stage 

0. Fortunately, through routine colonoscopies for individuals over 50 years of age, polyps 

can be discovered early and removed before they are able to progress to later stage 

disease.  Gone unnoticed, continued polyp growth facilitates the progression from stage 

0 to stage 1, when the cancer enters the mucosa layer. Stage 2 CRC occurs when the 

malignant cells have entered the submucosal layer of the colon/rectum. CRC is classified 

as stage 3 when the cancerous cells expand through all layers of the colon/rectum wall 

and invade the regional lymph nodes. Finally, the most severe stage of CRC is stage 4, 

wherein the cancer has metastasized to other organs within the body, most often the lung 

or liver [2, 3].  

 The prognosis for patients diagnosed with CRC is often determined by the staging 

at diagnosis. Survival rates for patients diagnosed with local (stage 1 and stage 2) and 

regional disease (stage 3) remain high at 89.9% and 71.3% respectively [1]. The high 5-

year survival rate observed in these patients, which accounts for approximately 74% of 

CRC patients, is likely a result of routine screening that allows physicians to discover the 
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cancer early. Unfortunately, not all patients receive an early diagnosis. Approximately 21% 

of CRC patients are diagnosed with metastatic disease and the predicted survival for these 

individuals decreases considerably. Those diagnosed with metastatic CRC have a 13.9% 

chance to reach the 5-year survival mark [1].  

 

CRC Treatment 

Treatment options for CRC patients are determined by the staging of the disease 

at diagnosis. There are four traditional treatments that are considered when an individual 

is diagnosed with colorectal cancer: surgery, chemotherapy, radiation, and targeted 

therapy [4]. Surgical resection with suitable distal and circumferential boundaries is 

common for stages 0-2. In some cases, patients presenting with mid-stage disease (stage 

2 or 3) may require standard of care chemotherapy or radiotherapy to debulk the tumor 

before surgeons can safely remove the mass [5]. Additionally, adjuvant chemotherapy 

may also be administered to “high risk” patients in order to eliminate lingering malignant 

cells at the margins following surgery, which is determined on a case-by-case basis [4, 6]. 

Presently, the standard cocktail of chemotherapy consists of various regimens and cycles 

of fluoropyrimidines (5-fluorouracil) plus leucovorin combined with oxaliplatin or irinotecan-

based therapies [7]. 5-fluorouracil (5-FU) is an antimetabolite chemotherapy that prevents 

new DNA synthesis specifically by inhibiting thymidylate synthase. Leucovorin is often 

administered with 5-FU, as it has been shown to elongate the effects. Patients are typically 

given a 5-day bolus of 425 mg/m2 5-FU and 20 mg/m2 of leucovorin every 4 weeks. 

Alternatively, patients may instead be given 200 mg/m2 of leucovorin in addition to a bolus 

of 5-FU at 400mg/m2 and a 22-hour 5-FU infusion at 600mg/m2 for 2 straight days. This 

cycle is repeated every 2 weeks [7]. Oxaliplatin or irinotecan therapies have been shown 

to enhance the effect of 5-FU. Oxaliplatin is a cytotoxic agent that induces DNA damage 

and it usually given in a dosage of either 85 mg/m2 (FOLFOX-4) or 100 mg/m2 (FOLFOX-
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6) [7, 8]. Irinotecan chemotherapies inhibit topoisomerase I which stops the unwinding of 

DNA [7]. Irinotecan therapies are typically added to 5-FU regimens at 180 mg/m2 

(FOLFIRI) [8]. A diagnosis of stage 4 CRC complicates the treatment options for patients. 

Individuals with metastatic CRC will often receive a cocktail of therapy, including surgical 

resection, combination chemotherapy, and targeted therapy when applicable [6]. 

 

Targeted Therapy 

Targeted therapy has quickly gained recognition as a way of treating cancer from 

a personalized medicine perspective. Deviating from the original one-size-fits-all approach 

to cancer therapies, this advancement takes the specific genetics of a patient’s tumor and 

uses them to directly target factors that may be driving malignant transformation. Thus, 

targeted therapy relies on defining the molecular drivers found in the diseased tissue [6]. 

Increased understanding of the underlying molecular biology and genetic makeup of each 

individual tumor gives clinicians the opportunity to tailor treatment to that specific patient 

[6, 7]. As basic cancer research has continued to improve target identification, the 

medicinal chemistry field has been able to develop drugs that selectively disrupt target 

function.  

In recent years, the use of targeted therapy has helped patients with late stage 

CRC. Including targeted therapy as part of the treatment regimens has not only prolonged 

patient survival, but has also improved quality of life [6, 7]. In fact, the combination of 

chemotherapy plus target therapy has proven to give metastatic CRC patients the greatest 

chance of survival. An increase in overall survival of 14 months was observed with the 

addition of targeted therapies [7]. Currently, the mainstays of targeted therapy are directed 

at inhibition of the vascular endothelial growth factor (VEGF) and the epidermal growth 

factor receptor (EGFR). Bevacizumab is a monoclonal antibody that targets VEGF, and in 

doing so disrupts the formation of new vascularization in CRC tumors. Cetuximab, another 
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monoclonal antibody, is used to block the epidermal growth factor (EGF) ligand from 

binding to the EGFR, which halts downstream signaling that is important for cell growth, 

differentiation, and angiogenesis. Both agents were approved by the FDA in 2004 and 

have been used frequently in combination with cytotoxic chemotherapy [9]. Despite the 

success of these targeted therapies, the mortality rate amongst CRC patients remains 

high. Consequently, there is continued need for additional therapeutic options that address 

other biologic factors found within CRC tumors. A greater understanding of CRC biology 

will open the door to the development of new therapeutic options to combat CRC [7]. 

 

Cyclin-Dependent Kinases 

The family of serine/threonine kinases known as cyclin-dependent kinases (CDKs) 

has received much attention as therapeutic targets since its discovery in the 1980s [10]. 

Similarly to all kinases, CDKs are structurally comprised of N- and C-terminal lobes linked 

by a hinge region that encompasses the ATP (adenosine triphosphate)-binding pocket 

[10, 11]. The activation domain (T-loop) of CDKs is housed in the C-terminal portion of the 

molecule. CDKs are inactive as monomers and require the binding of activator subunits, 

typically cyclins, to form heterodimer complexes and initiate catalytic activity [10, 12]. In 

some cases, phosphorylation of the T-loop is also required in order to displace the 

autoinhibitory segment that blocks the catalytic cleft. Once phosphorylated, the T-loop 

opens to allow activator binding [10, 13]. The 20 kinases in this family function as catalytic 

enzymes that facilitate signaling by removing the -phosphate from ATP and facilitating its 

transfer to the hydroxyl group on a Ser or Thr of a downstream substrate. CDKs recognize 

a particular consensus sequence (S/T-P-X-K/R) in downstream substrates which helps 

them to identify and phosphorylate their specific targets [14]. CDKs are localized 

throughout the cell and the localization of specific CDKs is dependent on their function 
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[15]. Most CDKs are found in the nucleus, as they play an important role in controlling cell 

cycle transitions or transcriptional regulation [15, 16]. However, a select few members of 

the CDK family are found in the cytoplasm where they are important for cytoskeletal 

regulation [10, 15]. CDKs contribute to a variety of functional roles, such as cell cycle 

control, cell proliferation, transcriptional elongation, cell death, cell migration, and DNA 

damage response [16-18]. Due to their influential role in multiple signaling events, CDKs 

are often deregulated in diseased states [16]. As such, all 20 members of the CDK family 

have been shown to contribute to cancer and therefore are considered potential 

therapeutic targets.  

 

CDK Inhibitors 

ATP-competitive Inhibitors 

Kinases have become increasingly popular as oncology drug targets [19]. As 

protein phosphorylation is a crucial regulatory event in many cellular processes, medicinal 

chemists have developed drugs to disrupt these signaling pathways [20]. Thus far, the 

easiest and most effective way to modulate kinase activity is through the use of small 

molecule kinase inhibitors that mimic ATP, also referred to as ATP-competitive inhibitors 

[11]. The ATP binding site is sandwiched between the N- and C-terminal lobes of kinases 

[21]. Once the kinase is active, ATP recognizes the change in conformation and is able to 

bind through a network of hydrogen bonds formed between its adenine ring and the hinge 

region of the kinase. The triphosphate portion of the molecule points toward the substrate-

binding site, enabling catalysis. ATP-competitive inhibitors act in a similar fashion to ATP. 

They bind within the ATP binding site and imitate the hydrogen bond network [11]. Inhibitor 

association with the kinase disrupts the binding of ATP and subsequent transfer of the -
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phosphate to downstream substrates, and thus perturbs the downstream signaling 

cascade [11]. 

 

First-generation CDK Inhibitors 

As mentioned earlier, the original approach to CDK inhibition, which remains 

popular today, is through the use of ATP-competitive small molecule kinase inhibitors [22, 

23]. First-generation CDK inhibitors were discovered more than 20 years ago. At the time, 

these agents were examined for efficacy in a variety of cancers and considered promising 

CDK inhibitors [24]. A few examples of first-generation CDK inhibitors are olomoucine, 

roscovitine, and flavopiridol [25-27]. 

A panel of CRC cell lines was subjected to treatment with olomoucine and growth 

inhibitory effects were examined. Doses ranging from 17-32 M were required to reach 

50% growth inhibition. Furthermore, olomoucine proved to have a maximum tolerated 

dose of 100 mg/kg compared to other CDK inhibitors [28]. Roscovitine proved to be slightly 

more effective than olomoucine, as evident by IC50 values ranging from approximately 10 

to 20 M in CRC cells [29]. Treatment with roscovitine resulted in approximately 68-80% 

reduction in tumor growth in CRC models [28, 30] and the efficacy of roscovitine was 

enhanced when combined with conventional CRC chemotherapies [29].  Flavopiridol 

showed initial promise in cellular assays, but it was ineffective as an individual agent in 

CRC animal studies [31]. Interestingly, similar to roscovitine, it did prove to be more 

beneficial when combined with cytotoxic compounds, such as 5-FU, irinotecan (SN-38), 

or oxaliplatin [32-34]. While the studies outlined above touch briefly on first-generation 

CDK inhibitors in CRC, a majority of the research has been focused on other tumor types. 

Several of the first-generation agents showed good anti-cancer properties, such 

as decreasing cell proliferation while inducing cell death, however, the concentrations 
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required to achieve substantial response were considered too high (IC50 values > 1M in 

cellular systems). Furthermore, many of these compounds failed in clinical trials as single 

agents [35]. The failure was attributed to the lack of selectivity among the first generation 

CDK inhibitors and these are often referred to as pan-CDK inhibitors [26]. The lack of 

selectivity in a subset of studies resulted in dose-limiting toxicity. While the need to inhibit 

members of the CDK family was clearly recognized as a viable therapeutic option, to be 

successful, substantial improvements were necessary with the next generation of CDK 

inhibitors.  

In recent years, progress in medicinal chemistry has expanded our knowledge of 

not only the chemical structures of inhibitors, but also on the structure of CDKs 

themselves. Together, these two advancements have made it easier to develop new or 

modify pre-existing inhibitors in order to improve the selectively and potency of CDK 

inhibitors.  

 

Aminopyrazole Analogs 

One scaffold that has been shown to have anti-CDK inhibitory activity is the 

aminopyrazole core. ATP-competitive aminopyrazole analogs have shown success both 

in pre-clinical and clinical cancer studies [36-38]. In 2004, this new class of CDK inhibitors, 

containing an aminopyrazole core, was identified from a high throughput screen (HTS) 

guided toward CDK2 inhibition [36]. Due to the small nature of the core and the ability to 

easily modify the substituents, structure-activity relationship (SAR) studies were used to 

generate the CDK2 inhibitor PNU-292137. X-ray crystallographic studies revealed the 

potential for the formation of a trio of hydrogen bonds (donor-acceptor-donor) between the 

nitrogen atoms on the aminopyrazole core and hinge region residues Glu81-Leu83 of 

CDK2 [36]. The substituents flanking the aminopyrazole core occupy the shallow 

hydrophobic pocket on one end and solvent exposed on the other end. Having shown that 
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the aminopyrazole core is a viable scaffold to build CDK inhibitors, medicinal chemists 

have developed an array of aminopyrazole analogs that have been evaluated for efficacy 

as anti-CDK therapeutics.  

 

AT7519 

After the initial discovery of the aminopyrazole analog PNU-292137, others sought 

to study and modify the structure to improve potency and selectivity. As such, Astex 

Therapeutics performed a series of SAR studies and identified AT7519, a 4-

aminopyrazole analog [39]. Preliminary in vitro kinase profiling and growth inhibition 

studies showed AT7519 was a promising lead compound for continued evaluation. While 

the development of AT7519 was aimed at the inhibition of CDK2, kinase profiling revealed 

AT7519 was a potent inhibitor of multiple members of the CDK family, likely due to the 

high homology found within the ATP-binding pocket of CDKs. Cell-free IC50 values were 

derived for the family of CDKs. While AT7519 was indeed most potent against CDK2 (IC50 

= 47 nM), other members, such as CDK1, CDK4 and CDK5, were also potent targets of 

AT7519 (190 nM, 67 nM, and 18 nM, respectively). At the same time, AT7519 was less 

effective against non-CDK kinases, such as Aurora A, IR kinase, MEK, PDK1, and c-abl 

(IC50 values > 10M), perhaps suggesting that the aminopyrazole core is ideal to optimize 

to develop CDK inhibitors [39]. Initial anti-proliferative effects of AT7519 were analyzed 

with the CRC cell line, HCT116. A cell-based IC50 value of 82 nM was observed. Having 

confirmed clinically relevant growth inhibition in HCT116 cells, a panel of approximately 

100 cell lines was subjected to treatment with AT7519. Analyses of the growth inhibitory 

effects showed approximately 75% of cell lines had IC50 values in the nanomolar range 

[39]. Follow-up in vivo studies using an A2780 ovarian cancer xenograft model examined 

the efficacy of AT7519 in BALB/c mice. A dosage of 7.5 mg/kg, administered 

intraperitoneally, resulted in approximately 86% reduction in tumor growth compared the 
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vehicle control [39]. Collectively, this study demonstrated the promise of aminopyrazole 

analogs as potential anti-cancer agents.  

Subsequent studies were carried out to further characterize the mechanism of 

action elicited by AT7519. Phosphorylation levels were examined to evaluate kinase 

inhibition in HCT116 cells. Treatment with AT7519 at low concentrations (0.05M, 

0.25M and 1 M) resulted in a reduction of pPP1a (Thr320) and pRB(Thr821) levels 

suggesting inhibition of  CDK1 and CDK2, respectively. Additional evaluation of the effects 

of AT7519 found a decrease in RNA pol II phosphorylation, indicating inhibition of CDK9 

[40]. Interestingly, while AT7519 was shown to be the most potent against CDK5 in cell-

free systems, the authors did not evaluate AT7519 on CDK5 in cells. As AT7519 was 

identified as a CDK inhibitor, it was also evaluated for its ability to arrest the cell cycle. 

Treatment with AT7519 resulted in accumulation of cells in both the G0-G1 and G2-M 

phases of the cell cycle. To determine if cell growth inhibition was a result of increased 

cell death, AT7519 was investigated for its effect on apoptosis. Colony formation and 

TUNEL staining assays showed induction of apoptosis only after 24-hour exposure to 

AT7519 [40]. Next, a colorectal cancer xenograft model was used to assess efficacy of 

AT7519 in a different model system. Once again, AT7519 proved to be a promising anti-

cancer agent in vivo, as evident by reduction in both early (100 mm3) and late stage (400 

mm3) tumor growth at 4.6 mg/kg and 9.1 mg/kg doses, respectively [40].  

The potent and successful anti-tumor activity of AT7519 ultimately led to evaluation 

of this aminopyrazole compound in clinical trials. A phase I pharmacokinetic (PK) and 

pharmacodynamic (PD) dose-escalation study was carried out for patients with refractory 

solid tumors to determine whether AT7519 would be a safe and effective cancer treatment 

[38]. The 28-patient study included individuals with colorectal, non-small cell lung, 

pancreatic, breast, gastroesophageal, hepatocellular, and skin cancers. Dose-escalation 
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revealed 14.4 mg/m2/day and 28.8 mg/m2/day were, for the most part, well tolerated [38]. 

Unfortunately, two patients presented with severe adverse effects, including hypertension 

and cardiac events, when treated with 40 mg/m2/day of AT7519. This resulted in 

termination of the study prior to determining the maximum tolerated dose. Other patients 

experienced less severe side effects, including nausea, fatigue, vomiting and anorexia, 

constipation, peripheral edema, and hypotension. The symptoms are consistent with those 

seen with other anti-cancer agents. CDK inhibition was observed at doses exceeding 1.8 

mg/m2/day, however the anti-proliferative and apoptotic markers were only altered at 28.8 

mg/m2/day, thus suggesting that 28.8 mg/m2/day was the minimum threshold for a 

biologically effective dose [38]. Consistent monitoring of tumor diameters revealed various 

response rates with the most promising being a partial response. Of the five patients that 

completed at least eight cycles of AT7519, the average increase in survival was ~ 6.6 

months (ranging from 2-13 months) [38]. Overall, AT7519 presented an encouraging 

clinical profile and warranted continued evaluation. Furthermore, it paved the way for 

exploration into similarly structured compounds as potential cancer therapies.    

 

CP-668863 

The success of AT7519 in pre-clinical and clinical studies, as anti-cancer therapy, 

has made it a benchmark for comparison of new therapies. We set out to evaluate another 

aminopyrazole analog as a potential CRC therapy. In 2007, Pfizer first reported the 

development of an aminopyrazole analog (CP-668863) for the selective inhibition of CDK5 

in neurodegenerative disorders [41]. Initial studies performed by Pfizer determined CP-

668863 has a Ki value of 2.9 nM against CDK5, making it more selective than CDK2, and 

a non-CDK family member, glycogen-synthase kinase-3beta (GSK-3 (approximately 

5.7-fold and 103-fold, respectively). CP-66883 had a cell-based IC50 value of 470 nM for 

Chinese hamster ovary (CHO) cells. Co-crystallization studied performed with CDK2 and 
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CP-668863 revealed the aminopyrazole analog was indeed an ATP-competitive inhibitor, 

as it sits within the ATP-binding pocket [41]. While Pfizer found that the in vitro and cellular 

responses to CP-668863 were encouraging, they reported lack of in vivo efficacy. The 

compound showed no signs of CDK5 inhibition in their murine central nervous system 

(CNS) model. Specifically, the treatment with CP-668863 did not reduce the 

phosphorylation of the CDK5 target, tau, in the brains of mice. As a consequence, Pfizer 

discontinued development of the compound [41]. Although CP-668863 did not live up to 

Pfizer’s expectations as a drug for neurodegenerative disorders, we wondered if it would 

show efficacy against CDK5 in other cellular contexts or diseased states. With this in mind, 

we asked whether CP-668863 may have promise as an anti-cancer compound, as CDK5 

has recently been recognized as an emerging oncogenic target [42].  

 

Cyclin-dependent Kinase 5  
 

Cyclin-dependent kinase 5 (CDK5) is often considered the peculiar member of the 

CDK family [43, 44] for a variety of reasons. First, while CDK5 is ubiquitously expressed, 

it is best known for its role in the CNS where it is essential for neuronal development, 

neuronal migration, synaptogenesis, pain signaling, and other additional functions [43].  

Second, CDK5 was originally thought to have no obvious role in cell cycle regulation; 

however, it’s contributions to the cell cycle have been recently discovered and are 

discussed later on in this dissertation. Third, CDK5 requires the binding of a regulatory 

subunit to assume its active conformation, similar to other members of the family, but the 

regulatory subunit is not a cyclin. Instead, CDK5 requires the binding of p35 or p39 [43, 

45-47]. Activators p35 and p39 are anchored to the cell membrane by a myristoylation 

sequence and thus are typically localized in the cytoplasm of the cell [48]. Nevertheless, 

upon calcium-mediated activation of calpain, p35 and p39 are cleaved into their respective 
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counterparts, p25 and p29. These truncated versions of CDK5 activators are then free to 

move about the cell and stimulate CDK5 activity in other cellular locations [49-52]. These 

activators (p35, p39, p25, and p29) are thought to be the limiting factors of CDK5 activity, 

as CDK5 remains inactive in its monomeric form. Fourth, even though almost all members 

of the CDK family require phosphorylation of the T-loop to make the activator binding site 

accessible, CDK5 again is the odd man out and does not follow this general rule [43].  

Despite these unique characteristics, CDK5 still remains a recognized member of 

the CDK family for multiple reasons. First, CDK5 shares high sequence homology and key 

structural features with many members of the CDK family [43, 45, 46]. Second, while p35 

and p39 do not share sequence homology with their cyclin equivalents, they do adopt a 

similar tertiary protein structure, which may suggest that similar protein-protein 

interactions occur between CDKs and their activating subunits [43]. Finally, like other 

members of the CDK family, CDK5 recognizes the same substrate consensus sequence 

(S/T-P-X-K/R) in neuronal and non-neuronal cell types [43].  

 

CDK5 in the Central Nervous System 

CDK5 was originally discovered in 1992 within the CNS due to it’s ability to 

phosphorylate a serine motif similar to CDKs and also due to it’s high homology with 

members of the family [53]. In 1993, Kobayashi et al. identified it as a 30 kDa protein and 

named it CDK5 [54]. The early investigations of CDK5 focused predominately on roles 

within the CNS. Nevertheless, continued efforts to understand all the roles of CDK5 have 

uncovered multiple non-neuronal functions. Through downstream substrate 

phosphorylation, CDK5 has been linked to angiogenesis [55], apoptosis [56-58], 

proliferation [59-62], migration [63-67], and gene expression [59, 68, 69]. Interestingly, 

these processes have all been linked to tumorigenesis and may serve as potential routes 

for CDK5 to play the role of an oncogene [42, 43].   
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CDK5 in Cancer 

To date, CDK5 has been implicated in a variety of cancers, including those of the 

pancreas [70, 71], thyroid [72, 73], prostate [59, 67], breast [64, 74], lung [75], liver [76], 

skin [77], ovary [78], brain [79, 80], and most recently as a tumor promoter in CRC [81]. 

Data accumulated at the messenger RNA and proteomic levels point to CDK5 as an 

important oncogenic target [42].  Furthermore, CDK5 expression may be indicative of 

disease severity. CDK5 levels positively correlate with disease progression in cancers of 

the brain [79, 80], breast [64, 74], and lung [75]. Consequently, CDK5 expression may 

serve as a promising biomarker of patient survival. 

While CDK5 was largely ignored in the cancer field until recently, many studies 

have since focused on elucidating the molecular contributions of CDK5 to carcinogenesis. 

CDK5 activity is tightly regulated, thus keeping its downstream signaling in check. 

However, in the case of cancer, increased expression or aberrant CDK5 activity drives 

tumor development through the hyper-phosphorylation of downstream substrates. 

Substrates often serve as the bridge connecting dysregulated CDK5 activity to its 

oncogenic function, as these functions are guided by specific substrates downstream of 

CDK5 signaling. These substrates contribute to a variety of cellular functions depending 

on their phosphorylation status, which is managed by CDK5. While this CDK5 signaling is 

important during normal physiological conditions, CDK5 signaling is often overactive which 

causes hyperphosphorylation of substrates and thus drives disease states.  

CDK5 was originally classified as the non-traditional member of the CDK family 

predominately due to the fact that it was not thought to be involved in cell cycle regulation 

(Figure 1). Contrary to earlier speculations, CDK5 has been shown to regulate the cell 

cycle in neuronal [82, 83] and non-neuronal cells [84-86]. In the last decade, our 

knowledge of CDK5 regulation of the cancer cell cycle has evolved, yet little effort has 
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been made to fully characterize CDK5’s cell cycle role. CDK5 was first shown to 

phosphorylate and inactivate Cdh1, a co-factor of the anaphase-promoting complex 

(APC). The APC is an E3 ubiquitin ligase that tags cell cycle proteins for degradation [84]. 

CDK5 phosphorylation of Chd1 inactivates APC, therefore allowing premature S-phase 

entry of proliferating cells. Additionally, CDK5 phosphorylation of Cdh1 also resulted in 

decreased expression of p27, an important intrinsic CDK4 inhibitor [85]. Loss of p27 

activates CDK4-CyclinD1 phosphorylation of, which also pushes the neuronal cells into S-

phase [85]. Huang et al. also identified a role for CDK5 in cancer cell cycle regulation by 

finding a direct link between CDK5 and p21CIP1 [86].  p21CIP1 is another important intrinsic 

CDK inhibitor that binds to CDK2 and blocks the progression through the cell cycle at 

inappropriate times [87]. The loss of p21CIP1 expression and activity has been linked to 

cancer [88]. CDK5 phosphorylates p21CIP1 at Ser130 which triggers its proteasomal 

degradation, thus removing a critical cell cycle regulator from the tumor environment. 

CDK5-driven loss of p21CIP1 results in increased CDK2 activity, cell cycle progression, and 

tumor growth [86]. Finally, through phosphorylation of focal adhesion kinase (FAK), CDK5 

was shown to be important for mitosis. FAK is localized at the microtubules, and its 

phosphorylation at Ser732 results in mitotic spindle assembly, thus promoting 

chromosomal segregation [89].  

CDK5 also appears to regulate the growth and proliferation of cancer cells through 

the phosphorylation of transcription factors or their negative regulators (Figure 1). CDK5 

is responsible for the phosphorylation of signal transducer and activator of transcription 3 

(STAT3) at Ser727, which initiates the signaling cascade required for transcription of 

critical signaling molecules such as cyclin D1 and c-Fos [69]. STAT3 phosphorylation by 

CDK5 has been shown to contribute to the proliferation of prostate and thyroid cancers 

[90, 91]. Additionally, CDK5 stabilizes the androgen receptor (AR) through 

phosphorylation at Ser81, which results in the proliferation of prostate cancer in vitro and 
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in vivo [90]. Studies have also shown CDK5 directly phosphorylates the retinoblastoma 

(Rb) protein at multiple residues (Ser780, Ser795, and Ser807/811) [61, 62, 72]. 

Hyperphosphorylation of Rb results in the release of transcription factor E2F which can 

then freely bind to the promoter regions and drive transcription of genes necessary to 

transition from the G0/G1 to S phase of the cell cycle [92]. Specifically, in medullary thyroid 

cancer (MTC), CDK5 phosphorylation of Rb at Ser807/811 contributes to the release of 

E2F thus allowing for the transcription of cell cycle proteins (CDK2, p15INK4b, p21CIP/WAF1) 

necessary for MTC proliferation [72]. 

Another way in which CDK5 is likely contributing to cancer is through its control of 

cancer cell motility (Figure 1). First, transforming growth factor beta (TGF stimulation 

increases the expression of p35 and CDK5 which drives epithelial-to-mesenchymal 

transition (EMT) [64]. Second, CDK5 is responsible for the phosphorylation of multiple 

cytoskeletal proteins such as FAK [63], Talin [65], PIKE-A [93], and PAK1 [94]. CDK5 

phosphorylation of FAK at Ser732 plays an important role in regulating migration of cells. 

Mutation of Ser732 to the nonphosphorylatable Ala732 resulted in a loss of cell migration, 

signifying this residue is crucial for cell migration [63]. Additionally, Ser425 of Talin is a 

direct substrate of CDK5 [65] and has been implicated in cancer cell migration through 

association with 1-integrins [95]. Prostate cancer migration and metastasis were reduced 

in the presence of an S425A mutation, thus demonstrating the importance of Ser425 

phosphorylation [95]. In addition to these two examples, CDK5 has been shown to 

regulate the migration of lung [66], prostate [67], melanoma [77], and breast cancers [64].  

Disruption of CDK5 activity, either through the use of chemical inhibitors or genetic 

modifications, resulted in decreased cell migration both in vitro and in vivo, thus confirming 

a direct link between CDK5 and cancer cell motility [64, 66, 71]. 
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Finally, CDK5 has recently been shown to play a role in the deoxyribonucleic acid 

(DNA)-damage response (DDR) and DNA repair (Figure 1). These two cellular processes 

are vital to maintain genomic integrity and repair DNA damage [96, 97]. Failure of these 

critical repair mechanisms has been shown to contribute to carcinogenesis [98, 99]. In 

cancer, many therapeutic options, such as ionizing radiation (IR) or chemotherapy, are 

aimed at introducing DNA damage to elicit a cytotoxic response [100, 101]. Of late, 

multiple studies have speculated that CDK5 may serve as a potential resistance 

mechanism to DNA damaging therapies through phosphorylation of ataxia-telangiectasia 

mutated kinase (ATM), replication protein A-32(RPA-32) or STAT3 [74, 102, 103].  

Increased expression of p35, p25, and CDK5 have been observed following ionizing 

radiation in glioblastoma and neuroblastoma cells [79, 104, 105]. Moreover, there was a 

marked increase in double strand breaks (DSB) upon blockade of CDK5 activity, which 

suggests that CDK5 contributes to DNA damage repair mechanisms and thus may be 

aiding in cancer cell survival [76, 102, 103]. Furthermore, treatment with several DNA-

damaging agents such as Poly (ADP-ribose) polymerase (PARP) and topoisomerase 

inhibitors resulted in an increase in CDK5 expression and activity [74, 76, 106, 107]. Lastly, 

multiple reports suggest that treatment with a CDK(5?) inhibitor, roscovitine, sensitized 

cancer cells to DNA-damaging chemotherapeutics both in vitro and in vivo [76, 108]. While 

the exact contributions of CDK5 to the DDR and DNA repair mechanisms are not yet fully 

understood, researchers have identified CDK5 as an emerging player in DNA repair and 

drug resistance, thus further validating CDK5 as a critical oncogene. 

Collectively, the studies outlined above describe some of the functional roles that 

CDK5 plays in cancer development and progression. Furthermore, they support the notion 

that inhibition of CDK5 could be a promising therapeutic avenue to explore. Of note, it is 

critical that we understand CDK5’s contributions to specific tumor types, prior to utilizing 

anti-CDK5 therapies. 
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Figure 1: CDK5 in Cancer. CDK5 regulates cancer cell cycle and proliferation, 

migration and motility, and the DNA-damage response through phosphorylation of 

downstream substrates. * Modified from Pozo and Bibb (2016) Trends Cancer. 
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CDK5 in Colorectal Cancer 

As mentioned previously, CDK5 was recently identified as an oncogene in CRC, 

thus CRC may serve as a good model system to test inhibition of CDK5 as a therapeutic 

strategy. Zhuang et al. [81] began their study by examining CDK5 expression in CRC. 

Profiling a cohort of cell lines revealed increased expression of CDK5 and p35 in seven 

CRC cell lines. To relate expression to activity, the phosphorylation levels of FAK and 

PAK1 at CDK5-specific residues were also examined. Phosphorylation of FAK(Ser732) 

and PAK1(Thr212) was observed, which is indicative of functional CDK5 activity. Notably, 

the expression and activity of CDK5 were higher in more aggressive CRC cell lines, such 

as HCT116 and SW480. CDK5 and p35 expression was also analyzed in patient samples 

by western blot and immunohistochemistry (IHC). Data from ten normal and 

corresponding tumor samples showed upregulation of CDK5 and p35 in both tumor 

lysates and tumor tissue sections compared to corresponding normal tissue. CDK5 

expression also positively correlated with disease progression, as evident by the increase 

in CDK5 expression in later stage CRC tissue samples. Further analysis of clinical 

significance found CDK5 expression correlated with tumor differentiation, tumor size and 

metastasis. Of importance, CRC patients who overexpressed CDK5 had shorter overall 

survival compared to individuals with low CDK5 expression (44 vs. 54 months 

respectively)[81].  

The data described above suggest CDK5 as a critical tumor promoter in CRC. 

Follow-up studies, using genetic silencing and overexpression models, have 

characterized the biologic function of CDK5 in CRC. Knockdown of CDK5 reduced 

proliferation, colony formation, migration, and invasion of CRC cells. Treatment with 

roscovitine mimicked the effects of the CDK5 knockdown. Conversely, overexpression of 

CDK5 increased these processes. Evaluation of these genetic silencing and 

overexpression systems in vivo showed CDK5 is important for CRC tumorigenesis and 
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metastasis. CRC cells that expressed CDK5 promoted CRC carcinogenesis while those 

lacking CDK5 expression and activity had the opposite effect [81]. Together, these data 

clearly highlight the oncogenic role of CDK5 in CRC.  

 

Summary 
 

In the United States, the number of annual CRC diagnoses and deaths remain 

high. As such, there is a continued need for the development of new therapeutic options 

for the treatment of CRC. The studies presented above demonstrate the particular role of 

CDK5 in the pathogenesis of cancer.  Zhuang et al. and many others provide evidence 

that CDK5 expression and activity is an important component of tumorigenesis and cancer 

progression. Although extensive knowledge of the contributions of CDK5 to cancer has 

steadily increased in recent years, the identification and application of CDK5 inhibitors has 

not followed suit. With the latest discovery of CDK5 as a tumor promoter in CRC, we 

hypothesize that CDK5 is an ideal therapeutic target for CRC and inhibition of CDK5 may 

therefore be an effective strategy to combat CRC.   
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CHAPTER 2: MATERIALS AND METHODS 
 

Chemical Inhibitors 
 

20-223 

CP-668863 was originally designed, synthesized, and reported by Pfizer 

Pharmaceutical Company [41]. For this project, CP-668863 was synthesized in house by 

Drs. Sandeep Rana and Yogesh Sonawane using a modified scheme (Scheme 1) and 

will be identified as 20-223 from this point forward. AT7519 (SelleckChem #S1524) and 

roscovitine (Apex BioTech #A1723) were used in head-to-head comparison studies with 

20-223. All three inhibitors were dissolved in 100% dimethyl sulfoxide (DMSO) 

(FisherBioreagents CAS # 67-68-5) to a final stock concentration of 10 mM. Chemical 

inhibitors were stored at -20 °C and gradually brought to room temperature before being 

used.  

 

PROTAC 

 All compounds were designed and synthesized in house by Sandeep Rana, Ph.D. 

All inhibitors were dissolved in 100% DMSO to a final stock concentration of 10 mM. 

Inhibitors were stored at -20 °C but used at ambient temperatures for drug studies. The 

synthetic route to compound 1 and 2 are summarized in Scheme 2A. Regioselective t-

butoxycarbamate (Boc) protection of the ring nitrogen atom in the aminopyrazole 5 was 

accomplished following a reported procedure, to yield 6. Coupling of 6 with commercially 

available 4-methoxyphenylacetic acid using propylphosphonic anhydride solution (T3P, 

50% in DMF) and N,N-Diisopropylethylamine gave 7. Removal of Boc protecting group 

under acidic condition resulted in 1. Alkylation of hydroxyl group in 8 with 1,5-

dibromopentane yielded 9. Compound 10 was obtained by hydrolysis under basic 
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conditions, which was then subjected to amide coupling with 6 using T3P to yield 11. 

Removal of the Boc group under acid condition yielded 2. 

 The PROTAC 3 was synthesized following the route described in Scheme 2B. A 

Finkelstien reaction with compound 9 resulted in 12 and a base-catalyzed hydrolysis 

yielded fragment 13. Coupling of aminopyrazole 6 and 13 using T3P yielded 14. 

Condensation of 3-hydroxyphthalic anhydride (15) with 3-aminopiperidine-2,6-dione 

hydrochloride afforded the intermediate 4. Alkylation of the hydroxyl group on 4 with 14 an 

intermediate, which was subjected to Boc group deprotection under acidic condition to 

yield degrader 3.  
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Scheme 1: (i) (BOC)2O, KOH, DCM:H2O (1:1), RT, (88%); (ii) 2-(naphthalen-2-yl)acetyl 
chloride, DIPEA, DCM, 0 °C, (78%); (iii) CF3CO2H, RT, DCM, (92%). 
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Scheme 2: A) (i). (Boc)2O, KOH, DCM: water, 3 h. (ii). 4-methoxyphenylacetic acid, 

50% T3P in DMF, DIEA, 50 °C, 3 h. (iii). TFA, DCM, 0 °C, 3 h. (iv). 1,5-

dibromopentane, K2CO3, acetone reflux, 72 h. (v). LiOH, ethanol: water, 16 h. (vi). 6, 

50% T3P in DMF, DIEA, 50 °C, 3 h. B) (i). NaI, acetone, reflux, 16 h. (ii). LiOH, 

ethanol: water, 16 h. (iii). 6, 50% T3P in DMF, DIEA, 50 °C, 3 h. (iv). 3-

aminopiperidine-2,6-dione hydrochloride, KOAc, Acetic acid, reflux, 24 h. (v). (a) 

NaHCO3, DMF, 70 °C, 6 h; (b). TFA, DCM, 0 °C, 3 h. 
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CRC Cell Lines and Culture Conditions  
 

Cancer cell lines used in this dissertation are CRC cell lines. FET, CBS, and GEO 

cells were cultured in serum-free medium (McCoy’s 5A medium with sodium bicarbonate, 

L-serine, asparagine, sodium pyruvate, MEM vitamins, growth factors (4 μg/mL 

transferrin, 20 μg/mL insulin, and 10 ng/mL EGF), and 1x Penicillin-Streptomycin. SW620, 

DLD1, and HT29 cells were cultured in DMEM high glucose medium (HyClone 

#SH30022.01) supplemented with 10% fetal bovine serum (FBS) (Gibco by Life 

Technologies #26140-079) and 1x Penicillin-Streptomycin (HyClone #SV30010). HCT116 

cells were cultured in RPMI-1640 Medium (HyClone #SH30027.01) supplemented with 

10% FBS and 1x Penicillin-Streptomycin (HyClone #SV30010). All CRC cell lines were 

cultured in 5% CO2 at 37 °C.  

Short Tandom Repeat (STR) Profiling 
 

1x106 cells were collected during routine passage. Cells were washed 1x with 

1xPBS and centrifuged at 2,500 rpm for five minutes to generate a cell pellet. Pellets were 

stored on ice and delivered to the University of Nebraska Medical Center Human DNA 

Identification Laboratory where they performed STR profiling (Figure 2). The DNA report 

generated by the Forensic Lab contained the information for 13 genetic loci, which were 

then cross checked with ATCC to confirm validation. Cell lines exceeding an 80% match 

with the online ATCC database (www.atcc.org) were considered valid [109, 110].  

 

http://www.atcc.org/
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Figure 2: STR profiling for cell line validation. 
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Human Colon Epithelial Cell Line  

Immortalized non-transformed human colonic epithelial cell lines (HCEC) were 

kindly provided by Dr. Rob Lewis’ lab in which he had received them as a gift from Dr. J. 

Shay (University of Texas Southwestern) [111]. HCECs were grown in medium composed 

of 4 parts DMEM to 1 part media 199 (Sigma-Aldrich) with 2% Cosmic Calf Serum (GE 

Healthcare), 25 ng/mL EGF, 1 μg/mL hydrocortisone, 10 μg/mL insulin, 2 μg/mL 

transferrin, 5 nM sodium selenite, and 50 μg/mL gentamycin sulfate. HCECs were grown 

in a hypoxia chamber with 2% O2 and 5% CO2 at 37 °C. 

 

Xenograft Studies 

All animal studies were performed following approval of the Institutional Animal 

Care and Use Committee (# 07-047-08FC) and in accordance with facility guidelines. This 

xenograft model has been used previously in our lab [112]. Briefly, GEO-GFP cells (7x106) 

were subcutaneously injected into the flank of athymic nude mice  [112]. Xenograft tumors 

were allowed to grow until reaching a tumor volume of approximately 100-200 mm3, at 

which point they were separated into two treatment groups: I) DMSO vehicle control or II) 

8 mg/kg 20-223. Each group contained 7 animals (n = 7). Drug or vehicle treatments were 

given by subcutaneous injections daily for the first week and every other day for two more 

weeks for a total of 14 injections. (Figure 3) Throughout the study, animal weight and 

tumor volume were recorded regularly. Tumor volume was measured using calipers and 

calculated using the l2 × h × π/6 equation. The study was concluded when control tumors 

reached maximum size according to facility guidelines (approximately 2000 mm3). Mice 

were euthanized and then full body and excised tumor images were taken using Near-IR 

enhanced Macro Imaging System Plus Cooled with the LT-99D2 with the Dual Tool 
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excitation upgrade. Tumor samples were flash frozen on dry ice and preserved in liquid 

nitrogen prior to western blot analyses (see below for western blot protocol).  
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Figure 3: 20-223 treatment schedule 
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The Cancer Genome Atlas (TGCA) Analyses 

TCGA provisional data was retrieved from cBioPortal on January 19, 2017. CRC 

sample type and mRNA expression (RNA-seq) were downloaded from UCSC Xena 

(https://genome-cancer.soe.ucsc.edu/proj/site/xena/heatmap/). All provisional cancer 

datasets were analyzed for CDK5 mutation. The genomic profile of CDK5 was further 

analyzed in the CRC (Colorectal Adenocarcinoma - TCGA Provisional) dataset for putative 

somatic copy-number alterations from GISTIC, using Onco Query Language (OQL), and 

mRNA expression (RNA-seq). GISTIC predicts copy number alterations according to 

sample specific thresholds generated by comparing chromosomal segments with median 

chromosomal arm copy numbers. All parameters were set at default. 

 

Cell-Free System Analyses  

Samples were sent to Reaction Biology Corporation for cell-free analysis. Kinase 

profiling of 20-223 was carried out in duplicates with a panel of CDKs (CDK1/Cyclin B, 

CDK2/cyclin E, CDK4/cyclin D1, CDK5/p35, CDK6/cyclin D1, CDK7/cyclin H, and 

CDK9/cyclin T1) at a single dose (0.1 μM or 0.01 μM) in the presence of 30 μM ATP. The 

enzymatic activity was determined by measuring of ATP hydrolysis. Dose-response 

studies containing 10 concentrations (beginning at 5 μM at 3-fold dilutions) of 20-223 or 

AT7519 were used. IC50 values were generated through fitting the dose response curves. 

 

Western Blot Analyses 

Cells were lysed using a buffer containing 50 mM Tris, 100 mM NaCl, 1% NP-40, 

2 mM EDTA, 20% SDS combined with 20xPPI (Na3VO4, NAF, β-glycerophosphate), and 

1 mmol/L PMSF. Samples were kept on ice and vortexed prior to centrifugation at 14,000 

rpm for 10 minutes in the 4 °C cold room. Supernatant was collected and protein was 
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quantified using BCA Protein Assay (Pierce # 23225). 40 μg of protein were run on 4-15% 

gradient gels (BioRad) in 1x TRIS-Glycine SDS (sodium dodecyl sulfate) (Research 

Products International Corporation #T32080) at 120 V for approximately 90 minutes and 

separated by SDS-PAGE electrophoresis. Proteins were transferred to a PVDF 

membrane using a Semi-dry transfer method (ThermoScienctific, #35035) at 18 V for 35 

minutes. The membrane was blocked in 5% milk in 1X Tris Buffered Saline with 0.1% 

Tween (1xTBST) for 1 hour at room temperature while gently rocking. Primary antibodies 

(Figure 4) were incubated in 5% milk in 1x TBST and rocked overnight at 4°C. 

Complimentary HRP(horseradish peroxidase)-conjugated secondary antibodies were 

incubated in 5% milk in 1xTBST and rocked for 1 hour at room temperature. Protein 

expression was detected using ECL Prime (GE Healthcare #RPN2236) and developed on 

film (ThermoScientific #34090) using the KODAK X-OMAT 2000 Processor system. 

Developed films were scanned, and the images were saved as jpg images and processed 

using the 2017 Adobe Creative Cloud software (Photoshop and Illustrator).  Kinase activity 

was measured by changes in substrate phosphorylation. Quantification of phosphorylation 

levels representative of the western blots shown were generated using ImageJ. Western 

blots were performed in triplicate (n = 3). 
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Figure 4: Antibody validation.  
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Wound Healing Migration.  

HCT116 cells were plated at 1.25x106 cells in 2 mL medium in a 6-well plate and 

allowed to adhere and grow overnight to reach 90% confluency. Cell cultures were 

scratched using a sterile 10 μL pipette tip down the middle of the well to create a “wound”. 

Scratched cells were washed gently with 1x PBS before being stimulated with a final 

concentration of 100 ng/mL of EGF (Invitrogen # PHG0311L) and immediately treated with 

either 1.5 μM 20-223 or DMSO control. Directly after the start of treatment, cells were 

taken to the live cell imaging facility where they were imaged every 15 minutes over a 36-

hour time course (only the first 24 hours were considered for migration purposes to 

exclude any chance of proliferation). Migration assays were performed in triplicate (n = 3).  

 

Cell Viability  

CRC cells were plated at 4,000 cells/well in a 96-well plate. Cells were treated with 

20-223, AT7519 or roscovitine at 4-fold dilutions starting at 10 μM (20-223 and AT7519) 

or 100 μM (roscovitine) and incubated at 37 °C for 72 hours. The ability of these 

compounds to inhibit cell growth was assessed using the dye PrestoBlue. Following a 15-

minute incubation with PrestoBlue reagent (Invitrogen #A13262), fluorescence was 

measured at 560 nM excitation and 590 nM emission using SpectraMax M5e. Growth 

inhibition was calculated using 100-[100*(Sample – T0)/(T100-T0)] equation, where T0 is 

the control reading immediately following treatment and T100 is the control reading at the 

end of a 72-hour incubation. Each assay was performed in triplicate (n = 3).  
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DNA-Cell Cycle Analyses  

CRC cells were plated at 1x106 cells in a 10-cm plate and allowed to adhere 

overnight. Cells were starved for 24 hours prior to treatments at 2x the growth inhibition 

IC50 values with 20-223, AT7519, or DMSO and were incubated for 24 and 48 hours before 

cell cycle analyses. 1x106 cells were collected and pelleted by centrifugation at 2,000 rpm 

for 1 minute at 4 °C. Supernatant was decanted and pellets were resuspended in 1 mL of 

70% ethanol and incubated at 4 °C for 1 hour. Samples were centrifuged at 2,000 rpm for 

1 minute at 4 °C and ethanol was removed. Pellets were washed 1x with 1 mL of 1xPBS 

then centrifuged. PBS was removed and samples were resuspended in 1 mL of Telford 

Reagent (115 μM EDTA, 27 μg/mL RNAseA, 50 μg/mL Propidium Iodide, 0.1% Triton X-

100, made in 1xPBS) and incubated at 4 °C for 1 hr.  Cells were analyzed for DNA content 

by flow cytometry in the UNMC Flow Cytometry Core Facility. % of cells in the G1, G2, 

and S phases were determined for each treatment. (n = 2). 

 

Statistical Analyses  

Graphs and figures were generated using SigmaPlot 11.0 and Graphpad Prism 

statistical software (GraphPad Software, Inc). Student’s t-test was used to compare 

differences between means between two groups. One-way analyses of variance (ANOVA) 

with a post-test for linear tend was used to compare two or more groups. For all analyses, 

significance was inferred at P < 0.05 and P values were two-sided. 
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CHAPTER 3: CHARACTERIZATION OF 20-223  
 

Introduction 

CRC continues to be a major health concern in the United States, where it 

accounts for 8% of all newly diagnosed cancer cases and is responsible for 8.4% of cancer 

related deaths. In the year 2014, approximately 1.4 million individuals were living with CRC 

[113]. Despite extensive research and numerous attempts at developing promising 

therapies for CRC, few drugs have successfully improved patient outcome.  

The oncogenic family of CDKs have been extensively studied and characterized 

for their roles in cancer. There are 20 members of the CDK family, all of which have been 

linked to cancer. CDKs are often categorized into two major groups, those that contribute 

to tumorigenesis through cell cycle control and those that regulate transcription [114, 115]. 

One peculiar member of the CDK family that does not regulate transcription, and only 

recently has been shown to contribute to cell cycle progression, is CDK5. Uniquely, CDK5 

is not activated in typical CDK fashion i.e., through binding of cyclins, but instead is 

activated by regulatory proteins p35 and p39 or their cleaved counterparts, p25 and p29 

[47]. CDK5 is best known for its role in the central nervous system where it regulates 

development, axon elongation, synaptogenesis and neuronal migration. Recently, reports 

have identified CDK5 as a key player in non-neuronal functions, including apoptosis, 

senescence, angiogenesis, insulin secretion, wound healing, and adhesion/migration [43]. 

These functions associated with CDK5 are believed to contribute to its role in 

tumorigenesis. CDK5 is quickly gaining recognition for its role in a variety of cancers, 

including those of the pancreas [70, 71], thyroid [72, 73], prostate [59, 67], breast [64], 

lung [75], liver [76], and most recently as a tumor promoter in CRC [81]. 
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CDKs have received considerable attention as potential targets for cancer therapy. 

The traditional approach to targeting CDKs, which still remains popular, is through the use 

of ATP-competitive inhibitors that bind within the catalytic sites of CDKs and outcompete 

the binding of ATP. The earliest CDK inhibitors were pan-CDK inhibitors that often 

targeted several members of the family. While they showed promise in targeting CDKs, 

they often required high doses, which resulted in off-target effects and significant toxicity 

in preclinical animal trials [26]. To address these issues, substantial efforts have been 

made to improve upon the potency and selectivity of CDK inhibitors. While CDK inhibitors 

are currently being used to treat a variety of malignancies, few are currently being tested 

for CRC [116]. 

ATP competitive inhibitors typically form hydrogen bonds with the residues in the 

hinge region of the kinase. Aminopyrazole is a privileged scaffold that forms a network of 

hydrogen bonds between 3 nitrogen atoms of the scaffold and the hinge region residues 

of the kinase [36, 37]. AT7519, a well-characterized pan-CDK inhibitor built on a 4-

aminopyrazole core, has shown promise in pre-clinical and clinical studies [38-40].  

Herein, we take a 3-aminopyrazole analog, previously reported by Pfizer (CP-

668863 a.k.a. 20-223) [41], beyond its intended context and describe our findings in 

colorectal cancer model systems. Preliminary xenograft studies showed 20-223 reduced 

tumor growth and tumor weight in vivo, indicating that 20-223 is a suitable lead compound 

for CRC therapy. We subjected 20-223 and AT7519 to a series of cell-free and cell-based 

assays to understand the mechanistic basis of the observed 20-223 anti-tumor effects. 

Docking studies suggested both 20-223 and AT7519 are ATP competitive inhibitors. The 

2 aminopyrazole analogs were compared head-to-head in cell-free kinase assays which 

demonstrated 20-223 was more potent than AT7519. Contrary to a previous report, we 

found 20-223 was equipotent against CDK2 and CDK5 and was selective against other 
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members of the CDK family. Examination of downstream substrate phosphorylation 

showed 20-223 inhibited the kinase activity of CDK2 and CDK5. Migration studies utilizing 

a wound-healing assay showed that 20-223 decreased CRC cell migration. 20-223 was a 

nanomolar inhibitor of cell growth in a panel of CRC cell lines and was more potent than 

AT7519. Finally, 20-223 phenocopied cell cycle effects associated with AT7519. Together, 

our studies suggest 20-223 is a CDK 2/5 inhibitor, an effective anti-CRC agent, and a 

suitable lead for pre-clinical development. 

 

Results 
 

TCGA analyses reveal CDK5 is upregulated in primary colorectal tumors as a 

result of increased copy number 

With increasing evidence suggesting a role for CDK5 in a variety of malignancies, 

we turned to The Cancer Genome Atlas (TCGA – http://cancergenome.nih.gov/) database 

to gain insight into CDK5 expression in patient populations. We found the colorectal 

cancer cohort in the TCGA online database consisted of 50 samples of normal mucosa 

and 347 primary colorectal tumor samples. The mRNA profiles of these samples were 

examined for CDK5 expression. As seen in Figure 5A, CDK5 mRNA levels were 

significantly higher in primary tumor compared to normal colon. Additional analyses that 

compared normal tissue with corresponding primary tumor revealed that of the 31 patients 

examined, all but 2 showed a significant increase in CDK5 levels in primary tumors when 

compared to normal colon tissue (Figure 5B). Next we examined the CDK5 copy number 

to determine whether increased CDK5 levels correspond to increased copy number. Of 

the 616 sequenced CRC samples, few exhibited homozygous deletion or heterozygous 

loss of CDK5 (0.3% and 1.9% respectively). Interestingly, 46.0% of individuals were 



37 
 

diploid for CDK5 while 51.9% of individuals had a copy number gain for CDK5 (Figure 

5C). Additionally, we found that across all 4 groups, there is a significant linear trend. As 

copy number of CDK5 increases, there is a corresponding increase in mRNA expression 

(Figure 5D) thus suggesting that copy number is a contributing factor to the increased 

CDK5 mRNA expression that we observed in CRC. Next, to investigate whether CDK5 

mutation could possibly be contributing to its activity in CRC, we examined the mutational 

frequency of CDK5 in all TCGA cancers. We found that CDK5 is rarely mutated across 

cancers and, more relevantly, is not mutated in CRC (Figure 5E). Collectively, these data 

suggest that CDK5 activity is a consequence of increased expression that results from an 

increase in copy number. Furthermore, it is the increase in CDK5 expression, not a 

mutation, which is likely responsible for its contributions to CRC. These data are consistent 

with a recent report implicating CDK5 as a tumor promoter in CRC, and thus warrant 

investigation into inhibition of CDK5 as a potential therapeutic option for CRC [81]. 
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Figure 5: CDK5 expression in TCGA patient samples. A) CDK5 mRNA expression in 

normal CRC tissue (n=50) and primary tumor tissue (n=374). B) Paired analysis of 

CDK5 mRNA expression of CRC patient (n=31) normal tissue and corresponding 

tumor samples. C) CDK5 copy number status in 616 CRC samples. This diagram 

shows the % of homozygous deletion (dark blue – 0.3%), heterozygous loss (light 

blue – 1.9%), diploid (grey - 46%), and copy number gain (pink – 51.9%) of CDK5 in 

CRC patients. D) CDK5 mRNA expression compared to CDK5 copy number. E) 

CDK5 mutation frequency across TCGA cancers. Arrow indicates CRC. 
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20-223 shows anti-tumor activity in human CRC xenograft tumors 

CP668863, a substituted 3-aminopyrazole analog, was first reported by Pfizer as 

an ATP-competitive CDK5 inhibitor that was explored for the treatment of 

neurodegenerative disorders [41]. With increasing evidence that CDK5 activity contributes 

to CRC tumorigenesis, we synthesized CP-668863 (a.k.a. 20-223) to screen for its efficacy 

against CRC. We utilized our well established CRC xenograft model [112] to determine 

the effects of 20-223 in vivo. As our xenograft model uses GEO cells, we performed an 

initial growth inhibition study to show efficacy of 20-223 in this cell line. We found 20-223 

to have an IC50 value of 79nM in GEO cells (Figure 6A). In preliminary PK studies, mice 

were dosed with 8 mg/kg of 20-223. The plasma concentration was greater than 79 nM 

for 24 hours as determined by LC-MS (Figure 6B). We used a GEO cell line in which GFP 

is stably expressed for our xenograft model. GEO-GFP cells were subcutaneously injected 

into the flank of athymic nude mice and tumors allowed to grow to ~100 mm3. Animals 

with tumors were then randomly divided into two treatment groups (I) DMSO or (II) 8mg/kg 

20-223 (Figure 6C). Subcutaneous treatment injections were given in the shoulder area 

of each mouse daily for the first week and every other day for the following two weeks. 

The mice were weighed and tumor volumes were measured every other day. At the end 

of the three-week treatment period the mice were euthanized and the tumors excised, 

weighed and imaged (Figure 6D). 

Average changes in tumor volume for both treatment groups are summarized in 

Figure 7A. At the end of the first week of treatment, average tumor volume in the DMSO-

treated group was approximately 2-fold greater than average tumor volume in the 20-223-

treated group (~429 mm3 vs. ~197 mm3). The tumor volumes of DMSO-treated animals 

continued to grow rapidly, while the tumor progression in 20-223-treated animals was 

slower (Figure 7A). At the conclusion of the study, tumors from the DMSO-treated mice 
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were significantly larger (~3-fold: 1138 mm3 vs. 386 mm3) than the tumors from the 20-

223-treated mice. We also found a decrease in GFP fluorescence in 20-223-treated 

tumors compared to DMSO-treated tumors, which is consistent with the tumor volume 

trends (Figure 7B). The average tumor weights from DMSO-treated mice were also ~2-

fold greater than tumors from 20-223-treated mice (0.7 g vs. 0.3 g) (Figure 7C). Of note, 

20-223 treated animals did not exhibit any overt signs of toxicity, as there was no change 

in animal weight or behavior (Figure 7D). 

To confirm inhibition of CDK5 in vivo, we performed western blot analyses on the 

tumor lysates from three representative animals from each treatment group (vehicle or 20-

223-treated). 20-223-treated tumors showed a decrease in the pFAK levels, a 

phosphorylation site specific to CDK5 [63], (Figure 7E) suggesting inhibition of CDK5 in 

vivo. In summary, these studies suggest that 20-223 treatment results in anti-tumor activity 

in a CRC xenograft model.  
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Figure 6: Preliminary in vivo studies with 20-223. A) Growth Inhibition of GEO cells 

after 72-h treatment with 20-223. B) PK studies after mice were dosed with 8 mg/kg 

20-223.  C) Schematic representation of CRC xenograft model using GEO-GFP 

cells. D) Tumor images from DMSO- and 20-223-treated mice.  
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Figure 7: 20-223 anti-tumor activity in CRC xenograft model. A) Average tumor 

volume comparison of DMSO- and 20-223-treated tumors throughout the study. B) 

Average GFP fluorescence in DMSO- and 20-223-treated tumors. C) Average tumor 

weight of DMSO- and 20-223-treated tumors. Average animal weight throughout the 

xenograft study. E) Western blot analysis of pFAK(S732) levels in DMSO- or 20-223- 

treated tumor lysates. 

 A) B) C) pFAK (S732) levels from DMSO and 20-223 tumor lysates. 
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20-223 is an ATP-competitive inhibitor 

Our in vivo data suggest 20-223 may be a promising therapeutic agent for CRC, 

therefore we began to evaluate and characterize its mechanism of inhibition in cell-free 

and cell-based studies. We started with docking studies that compared 20-223 to another 

known CDK inhibitor, AT7519, which is currently in clinical trials and shares the 

aminopyrazole core structure with 20-223 [38, 39].  

X-ray crystallographic studies of reported aminopyrazole analogs and CDKs 

showed that they occupy the ATP binding site in the CDKs [36, 37]. Since there is no co-

crystal structure of 20-223, we docked 20-223 into CDK5 using Autodock Vina to explore 

its binding mode. Our docking studies revealed that 20-223 indeed occupied the ATP 

binding site of CDK5 and the 3 nitrogen atoms of the 3-aminopyrazole core are involved 

in a donor-acceptor-donor hydrogen bond triad with Glu81 and Cys83 of the hinge region. 

The cyclobutyl ring occupied a narrow hydrophobic pocket formed by Phe80, Leu55 and 

Val64 and the naphthalene ring of 20-223 is directed towards the solvent-accessible 

region of the kinase (Figure 8A). Since CDK2 and CDK5 share sequence homology of 

~60% [43], we overlaid the co-crystal structure of an aminopyrazole analog PNU-181227-

CDK2 with our docked 20-223-CDK5 and observed similar binding mode (Figure 8B). X-

ray crystallographic studies demonstrated AT7519 to be an ATP-competitive CDK inhibitor 

[39]. Overlay of AT7519 complexed with CDK2 and docked 20-223-CDK5 showed a 

similar mode of binding with similar hydrogen bonding interactions anchoring the 

molecules to the hinge region (Figure 8C). The chemical structures of all three of these 

compounds are compared in Figure 8D 
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Figure 8: Docking studies with 20-223. A) Docking of 20-223 into CDK5 using 

AutoDock Vina software. B) Overlay of 20-223 and PNU181227 in the hinge region of 

CDK5. C) Overlay of 20-223 and AT7519 in the ATP binding pocket. D) Chemical 

structures of 20-223, PNU-181227, and AT7519.  
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Cell free kinase assays reveal 20-223 is a CDK2/5 inhibitor 

In order to determine the selectivity profile of 20-223 for various CDKs, we 

conducted a single dose kinase screen with a panel of CDKs. Members of the CDK family 

bound to their respective activators were incubated with 0.01 μM or 0.1 μM of 20-223 and 

30 μM ATP. The percentage remaining enzymatic activity was determined for each of the 

examined CDKs after inhibition by 20-223. At 0.01 M 20-223, all members of the family 

still had a substantial amount of functional activity (approximately 60-100%) (Figure 9A). 

However, incubation with 20-223 at 0.1 M markedly inhibited the enzymatic activity of 

CDK2 and CDK5 with only 0.26% and 0.39% enzymatic activity remaining (Figure 9B). 

At this concentration, 20-223 was less effective against the enzymatic activity of CDK1, 

CDK4, CDK6, CDK7, and CDK9. These results show that 20-223 is most effective against 

CDK2 and CDK5 in a cell-free system. To determine cell-free IC50 values of 20-223 against 

CDK2/5, we performed a dose-response study. CDK2/CyclinE and CDK5/p35 were 

incubated with 20-223 at various concentrations and IC50 values of 6.0 nM for CDK2 and 

8.8 nM for CDK5 were derived from curve fitting the data (Figure 9C). Similar studies were 

also carried out in the presence of AT7519. IC50 values of 392 nM for CDK2 and 32.8 nM 

for CDK5 were obtained. Results from the dose-response study show that 20-223 is 

equipotent against CDK2 and CDK5 in a cell-free system and is more potent than a 

comparable CDK inhibitor, AT7519.  
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Figure 9: Evaluation of 20-223 and AT7519 in cell-free kinase assays. A-B) % of 

remaining enzymatic activity of a panel of CDKs after incubation with 0.01 μM (A) or 

0.1 μM (B) 20-223 and 30 μM ATP. C) IC50 values (nM) of CDK2 and CDK5 after 

incubation with 20-223 or AT7519 in cell free dose-escalation study.   



47 
 

CDK2 and CDK5 expression and phosphorylation activity in a panel of human CRC 

cell lines 

Having determined that 20-223 targets CDK2 and CDK5, we next examined the 

basal levels of these kinases in a cohort of colorectal cancer cell lines which includes 

seven CRC cell lines and one normal human colon epithelial cell line (HCEC). All the cell 

lines expressed CDK2 and CDK5, albeit at different levels. HCEC cells also expressed 

CDK2 and CDK5 but at lower levels than many of the CRC cell lines (Figure 10). This 

observation is consistent with the TCGA data.  

As a measure of CDK2 and CDK5 activity, we examined basal phosphorylation 

levels of substrates specific to CDK2 and CDK5. Phosphorylation levels of RB 

(Ser807/811) were used as a readout for CDK2 kinase activity. While CDK4 has also been 

shown to phosphorylate RB at Ser807/811 [117, 118], our kinase profile screen showed 

20-223 targets CDK2/5 more effectively than CDK4/6.  Phosphorylation levels of FAK 

(Ser732) were used as a readout for CDK5 kinase activity [63]. We observed differential 

phosphorylation of RB (Ser807/811) and FAK (Ser732), indicating both CDK2 and CDK5 

are active in each of the cell lines (Figure 10). Of importance, the activity as a function of 

RB(Ser807/811) or FAK(Ser732) phosphorylation levels did not correlate with CDK2 or 

CDK5 expression. 

 

  



48 
 

 

  

Figure 10: Basal expression and activity of CDK2 and CDK5 in CRC Cells. A) 

Baseline expression of CDK2 and pRB (Ser807/811) (left), CDK5 and pFAK (Ser732) 

(right), in untreated CRC cells.  
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20-223 disrupts CDK2 and CDK5 kinase activity in cell-based studies 

Since 20-223 was shown to most potently inhibit CDK2 and CDK5 in a cell-free 

system, we next explored the ability of 20-223 to target CDK2 and CDK5 in a cellular 

setting. To characterize the effects of 20-223 on substrate phosphorylation, three CRC 

cell lines were chosen: GEO, HCT116 and HT29. CRC cells were incubated with DMSO 

or various concentrations (20 μM – 2-fold dilutions, 7 doses) of 20-223 for 6 hours prior to 

western blot analyses. In the dose response study, 20-223 did not affect the total levels of 

CDK2 or CDK5 (Figure 11A). As expected, 20-223 induced a dose-dependent decrease 

in pRB (Ser807/811) and pFAK (Ser732) levels in each of the three CRC cell lines (Figure 

11A). Of note, treatment with 20-223 did not affect the total levels of RB or FAK (Figure 

11B). Quantification of phosphorylated RB and FAK levels was performed to reveal the 

effect of the inhibitor on CDK2 and CDK5 kinase activity, respectively. As the 

concentration of 20-223 increased, there was a corresponding increase in percent kinase 

inhibition for CDK2 and CDK5 (Figure 11C). This pattern was consistent for each of the 

three cell lines. Quantification was also used to assess the fold selectivity of 20-223 in 

each of the three cell lines. Figure 11D summarizes the cell-based IC50 values for each 

cell line. 20-223 was ~10 fold more selective for CDK5 over CDK2 in GEO cells (1.44 μM 

vs 15.79 μM) and ~8-fold more selective for CDK5 over CDK2 in HCT116 cells (1.08 μM 

vs 8.76 μM), However, in HT29 cells, 20-223 was equally potent against CDK5 and CDK2 

(2.45 μM vs. 2.25 μM). While the generated IC50 values are based on a qualitative 

observation, these results demonstrated that 20-223 effectively blocks the kinase activity 

of CDK2 and CDK5 in multiple CRC cell lines.  
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Figure 11: 20-223 inhibition in CRC cells. A) Representative western blots of 

target substrate pRB and pFAK phosphorylation levels in GEO (left), HCT116 

(middle) and HT29 (right) cell lines after 6 hour incubation with 20-223. B) 

Quantification of % inhibition of CDK2 and CDK5 kinase activity in GEO cells 

found in Figure 3B. C) Cell-based IC50 values generated from phosphorylation 

levels in Figure 3B of CDK2 and CDK5 in three CRC cell lines. D) Western blot 

analyses of total RB or FAK levels after GEO (left), HCT116 (middle), and HT29 

(right) cells were treated with varying concentration of 20-223 for 6 hours. 
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20-223 reduces migration of CRC cells 

Since 20-223 effectively inhibits CDK2 and CDK5, both of which have previously 

been shown to regulate cell motility [63, 119], we next examined its ability to disrupt CRC 

cell migration.  Wound-healing scratch assays are routinely used to assess the effect of 

small molecule inhibitors on the ability of cells to migrate [120]. EGF-stimulated wound 

healing has previously been shown to enhance migration of cells; therefore, we used this 

ligand to stimulate CRC cells for migration [121]. We checked protein levels of CDK2/5 

and their substrates after EGF stimulation (100 ng/mL) to ensure that treatment with EGF 

would not affect their basal levels or activity. Upon treatment with EGF, no changes in the 

levels of CDK2/5 or pRB/pFAK were observed, indicating that EGF is not affecting the 

expression or activity of these kinases (Figure 12).  HCT116 cells were used to model cell 

migration because they have been used previously in wound-healing scratch assays [122]. 

To assess the ability of 20-223 to inhibit migration, HCT116 cells were stimulated with 

EGF and treated with DMSO or 1.5 μM of 20-223. Live cell imaging was utilized to monitor 

cell motility through the 24-hour incubation period at 15 minute intervals. Still images and 

higher magnification regions of the images emphasize the ability of 20-223 to inhibit cell 

migration (Figure 13A). HCT116 cells treated with DMSO had greater ability to migrate 

into the open wound areas compared to cells treated with 20-223. While cells treated with 

DMSO were able to close approximately 40% of the wound area, cells treated with 20-223 

only closed approximately 10% of the wound (Figure 13B). To confirm that the reduced 

migration was a result of CDK2/5 inhibition, corresponding western blots were performed 

under the same conditions as the migration experiment and pFAK and pRB levels 

determined after treatment with EGF and 1.5 μM of 20-223. Although treatment with 20-

223 effectively reduced the phosphorylation levels of both FAK (Ser732) and RB 

(Ser807/811) (Figure 13C) the effects were more pronounced on the FAK phosphorylation 
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over RB phosphorylation. Collectively, these results suggest that inhibition of CDK2/5 by 

20-223 disrupts CRC cell migration. 
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Figure 12: Effect of EGF stimulation on CDK2 and CDK5. Western blot analyses of 

CRC cells treated -/+ 100 ng EGF. 
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Figure 13: Effect of 20-223 on CRC cell migration. A) Wound gap images taken 

during the 24-hour incubation of HCT116 cells with DMSO or 1.5 μM 20-223. Zero- 

and 24-hour images were further evaluated by outlining the wound area (red lines) 

and zooming in on the wound boundaries (yellow box). B) Quantification of % wound 

closure after treatment of HCT116 cells with DMSO of 1.5-μM 20-223 C) Western 

blot analyses at 6 and 24 hours after stimulation with EGF and treatment with either 

DMSO or 1.5 μM 20-223. 
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20-223 reduces cell growth in a panel of human CRC cell lines 

Since 20-223 effectively targets CDK2 and CDK5, we next examined its effect on 

cell growth. We subjected a panel of CRC cell lines to treatment with three CDK inhibitors 

(20-223, AT7519 or Roscovitine). Roscovitine, which contains a purine core, was one of 

the first CDK inhibitors to enter clinical trials. CRC cells were treated with 20-223, AT7519 

and Roscovitine at four-fold dilutions starting at 10 μM (20-223 and AT7519) or 100 μM 

(Roscovitine). Among the three inhibitors, 20-223 had lower IC50 values when compared 

to the clinically used CDK inhibitors, AT7519 and Roscovitine (Figure 14A). Among the 

CRC cell lines, SW620, GEO and FET cells were the most sensitive to 20-223, whereas 

HCT116 and HT29 were more responsive to AT7519 treatment as evident by lower IC50 

values. It is important to note that a ~10-fold higher dose of Roscovitine was required to 

observe similar growth inhibitory effects. Average IC50 values were calculated across cell 

lines to determine the overall efficacy for each compound (Figure 14B). 20-223 had an 

overall average IC50 value of 362 nM across seven cell lines, while AT7519 and 

Roscovitine had overall average IC50 values of 799 nM and 11481 nM respectively, thus 

suggesting 20-223 is a more potent inhibitor of cell growth compared to the clinical 

compounds. CRC mutational profiles [123-128] (Figure 14C) were examined to determine 

if the presence of any particular mutations made any cell line more or less responsive to 

treatment with 20-223. We did not find any obvious correlation between IC50 values and 

the mutational profiles. Based on these findings, we conclude that 20-223 is a sub-M 

inhibitor of CRC cell growth. Specifically, these data show that 20-223 is ~2.2 fold and 

~31.7 fold more potent than AT7519 and Roscovitine, respectively. Therefore, 20-223 is 

comparable to, or marginally better, than the CDK inhibitors advanced to the clinics. 
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Figure 14: Effect of 20-223 on CRC cell proliferation. A) IC50 values from growth 

inhibition studies after CRC cells were treated with 20-223, AT7519, or Roscovitine 

for 72 hours. B) Average IC50 values across all seven CRC cell lines after treatment 

with 20-223, AT7519, or Roscovitine (P < 0.001). C) Panel containing the seven 

CRC cell lines used in this study and mutational status of important regulatory 

genes. 
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Reduced CRC cell growth and tumor growth induced by 20-223 is probably not 

due to the induction of apoptosis 

To determine if induction of apoptosis was responsible for potent CRC cell growth 

inhibition, we examined the effect of 20-223 on poly(ADP-ribose)polymerase (PARP) 

cleavage. PARP cleavage is one of the hallmarks of cell death and is widely used as a 

read-out of apoptosis in cancer research. To determine the effect of 20-223 on cell death, 

we evaluated the panel of CRC cells treated with 20-223 for PARP cleavage. CRC cell 

lines treated with 20-223 for 24 hours all exhibited PARP cleavage (Figure 15A). Next, 

we performed a dose-response (Figure 15B) and a time-course (Figure 15C) study in 

GEO cells and found that M concentrations of 20-223 and long exposure were required 

to induce apoptosis. This suggests that the reduced tumor growth observed in the mouse 

model is not due to induction of apoptosis.  
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Figure 15: Effect of 20-223 on cell death. A) PARP cleavage in a panel of CRC cells 

treated with 20 μM of 20-223 for 24 hours. B) Dose-response studies examined after 

24-hour treatment with 20-223 in GEO cells. C) Time-course studies to examine 

PARP cleavage after treatment of GEO cells with 20 μM 20-223. 
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Reduced CRC cell growth and tumor growth in mice is probably due to the 

induction of cell cycle arrest by 20-223 

The CDK family has been extensively studied for its regulation of all phases of the 

cell cycle. This kinase family is essential for normal cells to proliferate and divide. CDK2 

has been shown numerous times to be required for progression from G1 and S phase of 

the cell cycle [129]. The role of CDK5 in cell cycle is less understood; however, recent 

reports suggest that it regulates the cell cycle through mitotic control and dysregulation of 

the cell cycle inhibitors p21CIP1 and p27 [85, 86, 89]. Having shown that 20-223 effectively 

targets CDK2 and CDK5 and also decreases cell growth, we sought to understand how it 

may alter cell cycle progression. GEO and HCT116 cells were treated with DMSO, 

AT7519 or 20-223 for 24 and 48 hours and then analyzed for DNA content by flow 

cytometry. The results from the above experiment are summarized in Figure 16A. 20-223 

and AT7519 both effectively arrested the CRC cells in either the G2 or S phase of the cell 

cycle. GEO cells treated with either 20-223 or AT7519 arrested in G2 phase of the cell 

cycle. This is consistent with the previous findings that CDK2 regulates the G2/M 

checkpoint in the absence of functional p53 [130]. Profiling of the GEO cell line indicates 

that GEO cells carry a p53 mutation, therefore the G2/M arrest seen in GEO cells may be 

due to CDK2 inhibition. Alternatively, the G2 arrest could also be attributed to CDK1 

inhibition, as it was the third CDK inhibited in our profiling. On the contrary, HCT116 cells 

treated with either 20-223 or AT7519 resulted in S-phase arrest at the 24- and 48-hour 

time points. Figure 16B shows representative traces from the cell cycle analyses. The 

data clearly show that 20-223 mimics the effects observed with AT7519. These data 

suggest that the observed CRC cell growth inhibition and the tumor growth in mice induced 

by 20-223 were due to cell cycle arrest.   
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Figure 16: Effect of 20-223 on cell cycle. A) % of cells in each phase of the cell cycle 

after treatment with DMSO, AT7519, or 20-223 for 24 (top) and 48 (bottom) hours in 

GEO (left) and HCT116 (right) cells. B) Traces representative of cell cycle analysis in 

GEO (left) and HCT116 (right) cells after treatment with DMSO, AT7519, or 20-223 

after 24 or 48 hours. 
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Discussion 

In the present study, we evaluated 20-223 (CP-668863), a previously identified 

CDK5 inhibitor, for its potential as an anti-CRC agent. In a proof of concept study, we used 

an established CRC xenograft model to show that 20-223 effectively slowed tumor 

progression. Tumors in mice treated with 20-223 had reduced tumor volumes and tumor 

weights compared to the tumors in vehicle-treated mice. Moreover, we observed lower 

levels of phosphorylated FAK, a well-characterized target of CDK5, in 20-223-treated 

tumors as compared to vehicle-treated tumors. These results are consistent with the 

studies reported with a neurodegenerative model [41]. 

Having successfully shown that 20-223 slows tumor progression in vivo, we 

followed up with characterization of the mechanistic basis for the observed anti-CRC 

effects in cell-free and cell-based studies. For these studies, we used AT7519 and 

roscovitine, both CDK inhibitors previously explored as anti-cancer CDK inhibitors in 

clinical trials. Of importance, AT7519 and 20-223 share the same core structure, which 

makes it an optimal compound to benchmark the potency of 20-223. 

We performed a series of studies to gain insight into the mechanism associated 

with the anti-tumorigenic properties elicited by 20-223. The aminopyrazole core found in 

CDK inhibitors has proven successful due to the flat heterocyclic core and a series of 

hydrogen bond donors and acceptors. The positioning of nitrogen atoms in the 

aminopyrazole core enables them to compete with ATP. A hydrogen bond donor acceptor 

donor triad within the aminopyrazole core targets the hinge region residues of the kinase 

and blocks the binding of ATP [130]. Docking studies suggested that aminopyrazole 

analogs 20-223 and AT7519 interact with Glu81 and Cys83 within the hinge region of 

CDK5. Profiling 20-223 against a panel of CDKs revealed that it most potently inhibits 
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CDK2 and CDK5 over other CDKs. Importantly, 20-223 is more potent than the clinically 

used 4-aminopyrazole analog AT7519 in cell-free kinase assays.  

Cell-based studies corroborated cell-free kinase assays as 20-223 effectively 

disrupted the kinase activity of CDK2 and CDK5 in CRC cells. In two of the three cell lines’ 

profiles, 20-223 was selective for CDK5 over CDK2. The observed differential 

sensitivity/selectivity associated with 20-223 in three different CRC cell lines suggests that 

the functional misregulation of CDKs is probably not the same across the cell lines. The 

cell-free and cell-based IC50 values were approximately two orders of magnitude apart. 

This loss of potency when going from cell-free to cell-based activity assays is commonly 

observed in drug discovery programs. For example, Palbociclib, the recently approved 

CDK4/6 inhibitor, has single digit nM potency in cell-free assays and has a single digit M 

potency in cell-based assays [131]. One possible explanation for this observed difference 

is the emerging view that kinases are part of larger protein complexes and evaluating 

selectivity in cell-free conditions does not always reflect the effects observed in the cellular 

context [132]. 

Since 20-223 showed ~8-fold selectivity for CDK5 over CDK2 in HCT116 cells, we 

evaluated its efficacy in inhibiting migration of HCT116 cells in a wound-healing scratch 

assay. 20-223 treated HCT116 cells showed reduced cell migration when compared to 

vehicle-treated HCT116 cells. This is consistent with reported literature that shows that 

CDK5 plays an important role in regulating the migration of cells by phosphorylation of 

Ser732 on FAK [63]. Studies with a CDK2 inhibitor also showed it blocked EMT and 

subsequent cell migration; however, in that study the effect of the inhibitor on CDK5 was 

not determined [119].  

As CDK2/5 have been known to drive proliferation of cancer cells, we investigated 

the effect of 20-223 on cell growth in a larger panel of CRC cell lines. Among these CRC 
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cell lines, 20-223 not only proved to be a nanomolar inhibitor of cell growth across the 

panel, but it was also more potent when compared to AT7519 and Roscovitine. These 

results suggest that 20-223 is comparable to, or in some cases more potent than, the 

benchmark clinical aminopyrazole analog, AT7519.  

Broadly the cause of CRC cell growth inhibition or tumor growth inhibition could be 

either due to induction of apoptosis or due cell growth arrest. A dose and time dependent 

study with 20-223 revealed that CRC cells required M concentrations to induce PARP 

cleavage, a hallmark for the induction of apoptosis. However, at high nM to low M 

concentrations of AT7519 or 20-223, we observed cell cycle arrest. Together our data 

show that 20-223 phenocopies the cell cycle effects of AT7519 in CRC cell lines. The 

observed CRC growth inhibition can be largely attributed to inhibition of proliferation and 

to a lesser extent on the induction of apoptosis. 

It is important to note that our study also unveiled that 20-223 is a potent inhibitor 

of CDK2. As such, this study shed light on the importance of understanding the true 

mechanism of action of small molecule kinase inhibitors. Too often, patients are given 

therapeutic drugs that have not been fully characterized. This is likely a reason we 

commonly see adverse side effects within patients, as we do not know what the drug is 

binding to or interacting with. In taking the time to fully understand the true mechanisms 

of action for 20-223, we found it to not only potently inhibit CDK5, but also CDK2. While 

this was hinted at previously [41], there are no published reports that confirmed this 

mechanism, particularly outside of the CNS. While we did indeed confirm 20-223 is a 

potent inhibitor of CDK5, we also observed potent inhibition of CDK2. Fortunately, the fact 

that 20-223 does disturb CDK2 kinase activity is not detrimental to our studies. In fact, 

CDK2 has also been shown to be a critical oncogenic player [133]. Specifically, CDK2 is 

amplified in CRC [134] and it’s overexpression increases with disease progression [135]. 
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Furthermore, inhibition of CDK2, using a small molecule kinase inhibitor, resulted in cell 

cycle arrest and increased apoptosis in vitro and in vivo [136]. This data suggest that the 

inhibition of CDK2 by 20-223 could prove to be beneficial to CRC patients. More 

importantly, efforts to characterize the full mechanism of action of anti-cancer agents 

should be pursued more often before compounds are pushed toward the clinic.  

In summary, our study argues for the continued preclinical development of 20-223 

for CRC therapy (Figure 17). Collectively, our results reveal that 20-223 exhibits anti-

cancer properties in a CRC mouse model. Mechanism studies indicate that it inhibits 

CDK2/5 in both cell-free kinase assays and in CRC cell lines. Migration of CRC cells was 

inhibited by 20-223, which targeted CDK5 and as a consequence inhibited Ser732 

phosphorylation, a key event in the migration of cells. 20-223 inhibits proliferation of CRC 

cell lines by inducing cell cycle arrest. A recent review article outlined in detail the 

contributions of CDK5 to many types of cancer, supporting its potential as a novel target 

for cancer therapy across many tumor types [42]. While we demonstrated 20-223 is not 

selective for CDK5, it does indeed inhibit CDK5 in vitro and in vivo. 20-223 had 

comparable, or in several assays better, potency than the clinically used aminopyrazole 

CDK inhibitor, AT7519, which is a good benchmark for advancing a compound through 

development. In order to explore this core for improved selectivity, structure-activity 

relationship studies are currently underway in our lab and will be reported in due course.   
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Figure 17: CDK5 and 20-223 activity in CRC. 
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CHAPTER 4: CHEMICALLY INDUCED DEGRADATION 

OF CDK9 BY A PROTEOLYSIS TARGETING CHIMERA 

(PROTAC) 
 

Introduction 

The previous chapter demonstrates the use of an aminopyrazole analog (20-223) 

to inhibit CDK5 as a viable option for CRC therapy. Our work and that of others [36, 37, 

39, 40, 137, 138] have proven this scaffold targets CDKs’ selectivity and can be optimized 

for selectivity among the CDKs. In an attempt to continue our efforts to inhibit CDK5, we 

utilized a new strategy aimed at regulating its protein levels within cells. The PRoteolysis 

TArgeting Chimera (PROTAC) concept has exploded with interest and gained significant 

attention over the last few years. This new technology uses chemical probes to exploit the 

intrinsic cellular mechanisms of the ubiquitin protease system (UPS) to degrade malicious 

proteins that are disease drivers.  

Ubiquitin Proteasome System 

The UPS system plays an important regulatory role in maintaining protein 

homeostasis within cells [139, 140]. This system controls normal protein turnover and 

oversees the destruction of misfolded and damaged proteins that pose a threat [141]. This 

regulatory process requires two critical steps – I) the covalent linking of ubiquitin tags on 

lysine residues of a target protein and II) the degradation of the target protein facilitated 

by the 26S proteasome [139, 142]. Cells have abundant free-floating ubiquitin molecules, 

however, they are unable to attach them to target molecules. Therefore, the ubiquitination 

process requires a series of enzymes to facilitate protein ubiquitination. The activating 

enzyme (E1) snatches a floating ubiquitin and activates it before transferring it to the 

carrier enzyme (E2). The main function of the E2 enzyme is to escort the ubiquitin to the 

ubiquitin ligase (E3). E3 is conveniently bound to the target protein and facilitates the easy 
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transfer of the ubiquitin tag from the E2 to the target protein. When the E2 arrives carrying 

the ubiquitin tag, the E3 ligase can catalyze the covalent binding of the ubiquitin onto the 

lysine residue on the target protein [139, 143]. This ubiquitination process is only able to 

transfer one ubiquitin molecule at a time, therefore the process is repeated numerous 

times to achieve poly-ubiquitination of the target protein, followed by proteasomal 

degradation by the 26S proteasome [143]. This large protease complex sequesters the 

ubiquitinated target protein and chops it into small peptides. The 26S proteasome houses 

two separate subunits. The 19S subunit is believed to be responsible for poly-ubiquitin 

recognition, while the 20S subunit fulfills the catalytic role and cuts the target protein into 

small pieces [139].   

Proteolysis Targeting Chimera 

The UPS system described above can be used by the PROTAC technology to tag 

disease-causing proteins for intracellular protein degradation [144-146]. PROTACs are 

heterobifunctional small molecules that are comprised of two separate ligands that are 

connected by a linker. One ligand is required to bind the target protein, while the other is 

necessary to bind the E3 ubiquitin ligase. If successful, this will form a ternary complex in 

which the target protein and E3 ligase are linked via the PROTAC molecule (Figure 18). 

By “hijacking” the E3 ubiquitin ligase, the PROTAC molecule brings the target protein in 

close proximity to the necessary cellular machinery to initiate protein degradation [145].  
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Figure 18: PROTAC concept. *Modified from Toure and Crews (2017) Angewandte 

Chemi International Edition. 
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This method of drug development puts a new twist on the common use of small-

molecule kinase inhibitors that pharmaceutical companies and medicinal chemists have 

perfected over time. The widely used occupancy-driven pharmacology has long since 

focused on the concept that drugs are more effective the longer they sit in the catalytic 

site and block kinase activity [145]. While this statement holds true, it is not without its 

limitations or challenges. To achieve efficacy, it requires binding to the catalytic site to 

block function and may often require large quantities of drug. Furthermore, the traditional 

small molecule kinase inhibitors are non-covalent compounds, meaning they can 

dissociate, which returns function to the target protein [147]. Interestingly, the PROTAC 

strategy instead utilizes an event-driven model, which results in the irreversible inhibition 

of target function by destroying the protein of interest. Importantly, the degradation of the 

target protein does not result in degradation of the PROTAC molecule itself. Instead, the 

newly released PROTAC is able to find another target and E3 ligase to engage. This 

means the PROTAC mechanism is a catalytic system (Figure 18). That allows for multiple 

rounds of target degradation and thus may require less quantity of drug. Importantly, the 

only way to counteract this inhibition is for new protein synthesis to occur [145, 147, 148].   

While substantial efforts have been made to identify promising therapeutic targets, 

there are still many targets that we are unable to chemically inhibit. In fact, approximately 

85% of the human proteome remains “undruggable” [149]. Not surprisingly, kinases are 

the most commonly inhibited proteins due to the ease of targeting the ATP-binding pocket 

[19, 20]. However, the PROTAC strategy has opened doors to the inhibition of 

“undruggable” targets [147, 148, 150]. As mentioned previously, the target ligand on the 

PROTAC molecule is only required to bind to the protein of interest; it does not necessarily 

have to bind within a catalytic site. This allows researchers to identify small molecules that 

may have alternative binding sites on the protein of interest [147]. This concept opens the 
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door to investigate the inhibition of other influential disease drivers such as non-enzymatic 

proteins, transcription factors, and scaffolding proteins [149, 151].  

Researchers have long since utilized other approaches to study “undruggable” 

targets, such as siRNA or shRNA. While RNAi has been a useful tool to study protein 

modulation and the subsequent cellular effects, investigators have struggled to apply it 

therapeutically [152]. The PROTAC approach provides a similar means to studying protein 

function, such as can be done with siRNA- or shRNA-mediated knockdown. 

There are multiple advantages to using the PROTAC strategy as opposed to RNAi. 

First, PROTACs allow for modifications to be made at the protein level, not just the genetic 

level, thus allowing for modifications to be made to the basal levels of existing proteins. 

Additionally, the amount of degradation can be controlled by the drug concentration, (e.g. 

higher concentrations would result in greater % of degradation) while RNAi lacks this type 

of protein level control. Thus, this allows for direct regulation of protein levels within cells. 

Furthermore, this effect of the PROTAC is seen very rapidly (as early as 15 minutes), 

whereas it takes longer for RNAi to take effect. Finally, PROTAC molecules are now 

proving to be highly permeable and have quick effects on the existing protein of interest 

[152]. Not surprisingly, the evidence presented above has driven researchers to 

investigate the use of PROTACs as therapeutic interventions for a broad range of targets. 

While the PROTAC technology has provided researchers with a new and exciting 

drug discovery platform, it is not without its limitations. First, PROTAC molecules defy 

“Lipinski’s Rule of 5” [147] which predicts that any molecule with more than 5 hydrogen-

bond donors and 10 hydrogen-bond acceptors will have poor absorption and permeability. 

Furthermore, it also states that any molecule which is greater than 500 Da will also have 

difficulty entering cells [153]. Thalidomide alone is approximately 260 Da. The addition of 

a linker as well as a target ligand will certainly exceed the 500 Da rule. Those using the 
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PROTAC strategy have already witnessed some indications of permeability issues mainly 

with their in vivo models and as such, have resorted to administering the PROTAC 

molecules intravenously. However, in the last few months, Arvinas Inc., a pharmaceutical 

company founded by PROTAC pioneer Craig M. Crews (Yale University), was the first to 

generate a potent orally bioavailable PROTAC molecule which exhibited a promising 

absorption, distribution, metabolism, and excretion (ADME) profile and diminished tumor 

growth in vivo [154]. Another limitation of PROTACs that could cause difficulties is the 

specificity and selectivity profiles of the drugs. While PROTACs rely heavily on the 

surface-exposed lysine residues to generate selectivity, there are other ways to potentially 

add an extra layer. Currently, our knowledge of available E3 ubiquitin ligases remains 

small, however, with the discovery of the PROTAC technology, it is likely that exploration 

into new E3 ubiquitin ligases could increase. As such, one way in which to improve the 

selectivity would be to utilize E3 ubiquitin ligases that themselves are unique, for example, 

tissue- or disease- specific E3 ubiquitin ligases, or those with certainly subcellular 

localization. This allows researchers to conditionalize the degradation of target proteins 

[147]. While the PROTAC industry has only recently been conceived and applied, the 

studies thus far regarding potency and efficacy, both in cell culture and in vivo, are 

encouraging. With a few limitations that should be easily overcome, it seems as though 

the PROTAC strategy will continue to have a large impact on the field of drug discovery 

and therapeutics. 

PROTAC applications 

The PROTAC technology has been applied to multiple proteins of interest (Figure 

19) [145, 147]. The ground-breaking proof of concept PROTAC study conjugated a 10-

amino acid peptide of IB to a methionine aminopeptidase-2 (MetAp2) inhibitor, ovalicin, 

for the purpose of recruiting MetAP-2 to SCF (Skp1-Cullin-F box). Through a series of 
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immunoprecipitation and ubiquitination assays in vitro, Sakamoto et al., successfully 

showed that the PROTAC molecule recruits MetAP2 to SCF, and that the PROTAC 

molecule mediates the ubiquitination and eventual degradation of MetAP2 [155]. While 

first-generation peptide PROTACs proved to have difficulties with cell permeability and 

lacked typical drug-like properties (e.g. stability, potency, biodistribution), the overall 

concept proved to be promising [145]. The discovery of improved E3 ligands, particularly 

those aimed at interacting with von Hippel-Lindau (VHL) and cereblon (CRBN), was 

monumental for the broader applicability of the PROTAC technology.  

Cereblon is an important part of a larger E3 ubiquitin ligase complex (Figure 20), 

which is essential for a variety of cellular processes, including cell cycle regulation, DNA 

repair, cell survival, proliferation, and metabolism [156]. The E3 ubiquitin ligase complex 

consist of four interacting proteins: (I) Cullin4 (Cul4), a scaffolding protein that interacts 

with the receptor protein to engage substrate recognition, (II) adaptor protein, DNA 

damage-binding protein 1 (DDB1), (III) ring finger E3 ligase, (Roc1) that binds to the 

ubiquitin-carrying E2 ligase to catalyze the transfer of the ubiquitin molecule to the 

substrate, and (IV) cereblon (CRBN) the substrate receptor which binds directly to 

thalidomide [146, 157].  
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Figure 19: Small molecule PROTAC compounds, targets, and concentrations used 

for maximal degradation. *Modified from Collins et al. (2017) Biochemical Journal & 

Lai and Crews (2017) Nature Reviews Drug Discovery. 
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Figure 20: E3 Ubiquitin Ligase Complex – modified from Collins et al., (2017) 

Biochemical Journal.  
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In 2010, Ito et al. discovered that thalidomide interacts with the E3 ubiquitin ligase, 

cereblon. Thalidomide is an immunomodulatory drug that has a controversial history. 

Throughout the 1950s and 1960s, thalidomide was prescribed to pregnant women as a 

way to combat morning sickness. However, soon after, it was discovered that babies born 

to women taking thalidomide were born with severe birth defects. While physicians were 

able to conclude that treatment with thalidomide led to severe birth defects, many 

questions remained about the true mechanism of action of thalidomide. In 2010, Ito et al. 

published their work detailing the identification of the primary target of thalidomide. 

Through affinity purification they were able to elute two polypeptides. Subsequent 

proteolytic digestion and tandem mass spectrometry revealed the two eluted polypeptides 

were cereblon and damage DNA binding protein 1 (DDB1). Furthermore, through 

coprecipitation assays, they were able to show that thalidomide-bound-cereblon was 

indeed bound to the E3 ligase complex, consisting also of Cul4A and Roc1 [158]. This 

late-breaking discovery proved thalidomide to be a useful ligand to target E3 ubiquitin 

ligases.  
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In light of this discovery, researchers realized that thalidomide could be repurposed 

to target the degradation of disease-driving proteins. In 2015, the Bradner lab at Dana-

Farber Cancer Institute was the first to demonstrate the use of a thalidomide PROTAC 

molecule to degrade a particular protein of interest, specifically bromodomain and extra 

terminal domain 4 (BRD4)[159]. BRD family members are important transcriptional 

regulators. In cancer, BRD proteins have been shown to regulate the transcription of 

critical oncogenes, drive the cell cycle, and serve as important scaffolding players, and as 

such have been implicated in a variety of cancers [160]. The Bradner group took their 

previously published BET bromodomain inhibitor (JQ1) [161] and conjugated it to 

thalidomide (dBET1) to test the PROTAC strategy to hijack the cereblon ubiquitin ligase 

complex [159]. Immunblot studies performed in acute myeloid leukemia (AML) cells 

revealed a substantial loss (~85%) of BRD4 expression. Additional studies confirmed that 

neither treatment with JQ1 or thalidomide alone were capable of degrading BRD4. 

Furthermore, pretreatment with either JQ1 or thalidomide disrupted BRD4 degradation 

confirming both BRD4 and cereblon were required to form the ternary complex and trigger 

targeted degradation. Subsequent treatment with the proteasome inhibitor carfilzomib 

blocked degradation of BRD4, confirming the degradation was indeed caused by the UPS 

system. Systematic comparison studies performed between JQ1 (BETi) and dBET1 

revealed the degrader was a more potent inducer of apoptosis. Additionally, the degrader 

(dBET1) was also a more potent inhibitor of cell proliferation compared to tradition BET 

inhibition with JQ1. In an AML xenograft model, animals treated with dBET1 had reduced 

tumor volumes and tumor weights compared to vehicle control. In summary, this was the 

first proof of concept in which a thalidomide-conjugated PROTAC molecule successfully 

showed targeted protein degradation. Furthermore, it brought to light that extension of the 

PROTAC application could be utilized to regulate the protein stability of numerous 

disease-driving proteins [159].   
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 Since 2015, multiple groups have conjugated thalidomide, or analogs, 

lenalidomide and pomalidomide, to various target ligands, with the goal of hijacking 

cereblon and bringing it in contact with the protein of interest to trigger their degradation.  

A study from the Wang group at the University of Michigan Cancer Center was the 

first group to investigate the degradation of BET proteins as a form of triple-negative breast 

cancer therapy [162]. Through modifications made to a potent BET inhibitor (BETi-211), 

Bai et al. generated a library of analogs conjugated to thalidomide and identified BETd-

246 as a BET degrader. Next, they investigated the mechanism of action and compared 

the therapeutic potential between a BET inhibitor (BETi-211) and the BET degrader 

(BETd-246). BETd-246 degraded BRD2, BRD3, and BRD4 at low nanomolar 

concentrations (30-100 nM) after only 1-hour incubation.  Head-to-head comparison of 

growth inhibitory and apoptotic activity revealed BETd-246 was approximately 50 times 

more potent than the inhibitor, BETi-211. Global analysis of gene expression determined 

that BETd-246 and BETi-211 had distinct transcriptional effects. BETi-211 caused equal 

up- and downregulation of approximately 250-450 genes, while BETd-246 was 

responsible for the downregulation of roughly 500-800 genes. Interestingly, the 

transcriptional analysis identified Mcl-1 as a downstream target of BET degradation and a 

key component responsible for the induction of apoptosis. Not surprisingly then, they 

found BETd-246 was synergistic with B-cell Lymphoma Extra Large (Bcl-xL) inhibitors, 

BM-1197, A-1155463, and ABT-263. The final evaluation of BETd-246 and BETi-211 

compared efficacy in patient-derived and murine xenograft studies. Once again, BETd-

246 (and next generation compound, BETd-260) successfully diminished tumor growth in 

the breast cancer models [162].  
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A second study by the Bhalla group at M.D. Anderson Cancer Center performed 

an in-depth comparison of another BRD4 PROTAC and BET-protein inhibitor [163]. 

Palmolidomide, a close analog of thalidomide, was used as the E3 ubiquitin ligase target. 

Like thalidomide, palmolidomide’s E3 ubiquitin ligase target is cereblon/CUL4. 

Palmolidomide was conjugated to OTX015, a small molecule kinase inhibitor of BET 

proteins. The hetero-bifunctional molecule (ARV-825 – Arvinas, Inc) successfully depleted 

BRD2 and BRD4, while OTX015 actually caused an increase in BRD4 levels. This result 

is not overly surprising as inhibitors have been shown to counteract the initial inhibitory 

response by upregulating target protein levels. As such, this response mechanism is 

avoided with target degradation. ARV-825 also proved to be a more potent inducer of 

apoptosis compared to OTX015, as there was an increase in positive annexin V staining 

after treatment with the PROTAC molecule. Next, RNA sequencing revealed ARV-825 

greatly affected the transcription of a much larger population of genes, compared to 

OTX015. Specifically, treatment with ARV-825 altered the transcription of multiple key 

oncogenes. Treatment with ARV-825 downregulated Myc, Bcl-xL, and PIM1, and it 

upregulated p21. Interestingly, washout experiments that compared the sustained activity 

of ARV-825 and OTX015 found the degrader to have a long lasting effect, while inhibition 

was short lived. As such, expression of downstream oncogenes Myc, PIM1 and Bcl-xL 

returned after washout, suggesting that inhibition alone lacks a sustained effect. In this 

study, in vivo analysis was carried out using a second-generation PROTAC molecule, 

ARV-711, which recruits VHL instead of cereblon by using a VHL ligand. Comparison of 

ARV-711 and OTX015, in an AML mouse model, found ARV-711 to reduce tumor burden 

and improve median survival. While OTX015 also decreased tumor burden, toxicity was 

observed in the form of weight loss. Collectively, this study demonstrated that degradation 

has a more profound anti-tumor effect compared to simple target inhibition [163].  
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 The two proof of concept studies outlined above, along with many others, portray 

a common theme in which small molecule degraders outperform small molecule inhibitors. 

This is likely due to the global effect a PROTAC has on its target of interest. Proteins are 

part of large complexes within cells. While an inhibitor can bind and transiently disrupt 

kinase activity, it does not disturb the protein-protein interactions. Alternatively, the 

destruction of the target protein, using the PROTAC method, means it is no longer present 

to form the critical protein-protein interactions. Thus it is no surprise that researchers are 

attempting the degradation of a variety of disease-causing targets.  

The emergence of this novel new therapeutic strategy is beginning to cause a 

transformational shift from traditional inhibition of kinases to now driving their destruction 

[147]. Therefore, we asked whether the degradation of CDK5 would be more beneficial 

than the traditional kinase inhibition route that we explored in the previous chapter. Hence, 

we set out to develop a PROTAC molecule that would degrade CDK5 and thus might 

serve as an anti-CRC therapy.  

Results 

 Aminopyrazole analogs were synthesized and evaluated as CDK2 inhibitors [36, 

37]. A majority of these inhibitors are ATP competitive in nature due to a unique donor-

acceptor-donor architecture of nitrogen atoms of the aminopyrazole core, which mimics 

the ATP adenine core [36, 37, 137]. Analyses of the X-ray crystal structure reveal that the 

three nitrogen atoms of the aminopyrazole core interact with the hinge region residues of 

CDK [36, 37]. Substituents at the 3’ position on the aminopyrazole core occupy the 

adjacent hydrophobic pocket. Substitutions on the exocyclic amine are solvent exposed 

[36] (Figure 21).  
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The kinase domain and specifically the ATP-binding site of the CDKs are 

structurally similar, which makes it challenging to develop selective CDK inhibitors [164]. 

On the other hand, the shape of the surface and the distribution of lysine residues on the 

surface among the CDKs are different (Figure 22). This provides a unique opportunity to 

develop a selective CDK degrader using the PROTAC strategy because an appropriately 

placed surface exposed lysine residue is required for ubiquitination and proteaosomal 

degradation [165]. We hypothesized that a PROTAC utilizing a pan-CDK inhibitor might 

lead to the development of a selective CDK degrader. 
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Figure 21: Left: Overlay of CDK2 (PDB id 1VYZ, yellow) and CDK9 (PDB id 4BCG, 

green). Right: Hinge region residues of CDK2 interacting with the nitrogen atoms of 

aminopyrazole core. The potential hydrogen bonds between the CDK2 hinge region 

and the inhibitor are shown as dashed lines. 
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Figure 22: Distribution of surface-exposed lysine residues (yellow) for CDK2 (PDB id 

1VYZ), CDK5 (PDB id 1UNG) and CDK9 (PDB id 4BCG). Inhibitor is shown in 

magenta. 
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We designed a focused library of aminopyrazole analogs and screened for CDK 

activities to identify selective inhibitors [138]. Structure-activity relationship (SAR) studies 

revealed that the para position on the phenyl ring that is surface exposed is amenable to 

substitution without loss of activity. To explore this position with a linker to conjugate 

thalidomide, we generated compounds 1 and 2 (Figure 23). HCT116 cells were treated 

with 10 M of 1 and 2 for 6 hours and probed for CDK2, 5 and 9 levels and the 

phosphorylation state of their substrates RB, FAK and RPB1 respectively. We observed 

the inhibition of phosphorylation of FAK and RPB1 indicating selectivity for CDK5 and 

CDK9 over CDK2 (Figure 24). Based on this observation, we synthesized degrader 3 by 

conjugating 2 and thalidomide (4) (Figure 23), which was previously demonstrated as a 

bona fide ligand for cereblon/Cullin4A E3 ubiquitin ligase [157].  
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Figure 23: Structures of aminopyrazole inhibitors (1 and 2), PROTAC degrader (3) 

and thalidomide (4). 
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Figure 24: Effect of the aminopyrazole inhibitors 1 and 2 on CDK2, CDK5, and 

CDK9 expression and activity. 
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 To determine if 3 is a CDK degrader, we treated HCT116 cells with increasing 

concentrations of 3 for 6 hours and the lysates were subjected to western blot analyses 

with antibodies for a panel of 6 kinases (Figure 25A). Thalidomide analog (4) and the 

inhibitor (2) were included as controls in this assay. Remarkably, 3 degraded CDK9 in a 

dose dependent manner. Inhibitor (2) and thalidomide analog (4) showed no effect on the 

levels of any of the kinases (Figure 25A). Interestingly, CDK2 and CDK5 levels and the 

levels of the other kinases (IKK, Akt and FAK) were unaltered, suggesting selective 

CDK9 degradation (Figure 25A). Given the high concentrations of 3 used in these studies, 

the lack of degradation of CDK2, CDK5, FAK, Akt and IKK could be attributed either to 

the inability to form the ternary complex due to steric hindrance or the absence of a 

proximal lysine residue that can be ubiquitinated. 

 RPB1 is a direct substrate of CDK9; therefore, we probed the membrane for the 

phosphorylation status of Ser2 on RPB1 using a phosphospecific antibody. Consistent 

with CDK9 inhibition and degradation, we observed inhibition of phosphorylation with 2 

and 3 respectively (Figure 25B). Since CDK9 activity regulates the levels of pro-survival 

protein Mcl-1 [166, 167], we investigated the effects of 2 and 3 on Mcl-1. As anticipated, 

we observed a dose-dependent decrease in Mcl-1 levels with 3 and reduction of Mcl-1 

levels with 2 (Figure 25C). Quantification of the western blots showed that at 10 and 20 

M degrader 3 reduced the levels of CDK9 by ~56% and ~65%, respectively (Figure 25D). 

In order to determine if the degrader inhibits CDK5, we conducted an in vitro kinase assay 

and show that 3 indeed inhibits the kinase activity of CDK5 (Figure 25E). It is important 

to note that although inhibitor 2 and degrader 3 have similar effects on the kinase activity 

of CDK9 (Figure 25B), the effect of the degrader 3 on the Mcl-1 levels is more pronounced 

than the inhibitor 2 (Figure 25C). This suggests the existence of a potential kinase-

independent function of CDK9 associated with the regulation of Mcl-1.  
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Figure 25: Effect of the aminopyrazole inhibitor (2), thalidomide (4) and PROTAC (3) 

in CRC cells A) Western blot analyses of a panel of kinases with lysates generated 

from HCT116 cells treated with 2, 3 and 4. B) The effect of 2, 3, and 4 on 

phosphorylation status of RPB1. C) The effect of 2, 3, and 4 on Mcl-1 levels. D) 

Quantification of CDK9, p-RPB1 and Mcl- In vitro kinase 

assay for CDK5. 
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Discussion 

In the study outlined above, we set out to investigate whether degradation of CDK5 

could be a potential therapeutic strategy for the treatment of colorectal cancer. Utilizing 

the new PROTAC concept, which manipulates the UPS system, we developed a chemical 

tool comprised of an aminopyrazole ligand that inhibits CDKs, conjugated to a thalidomide 

ligand that interacts with cereblon. Contrary to our original intent, our heterobifunctional 

molecule facilitated the formation of a ternary complex, which consisted of a non-covalent 

linkage between CDK9 and cereblon (Figure 26).  As such, our efforts resulted in the 

selective degradation of CDK9. Interestingly, analogs 1 and 2 inhibited CDK5 and CDK9 

kinase activity, as evident by decreases in target substrate phosphorylation (pFAK-Ser732 

and pRPB-Ser2, respectively). Of note, CDK2 was unaffected by treatment with 1, 2 or 3. 

We also showed that while the degrader (3) is capable of binding to and inhibiting the 

kinase activity of CDK5, it did not result in its degradation (Figure 27). These observations 

led us to multiple theories. First, we postulate that the structure or composition of our 

PROTAC molecule (3) makes it unable to bind or interact with the ATP binding pocket of 

CDK2, as we saw no signs of inhibition or degradation. Second, CDK5 likely does not 

have accessible surface-exposed lysine residues that are reachable by the E3 ligase, 

which is bound by the PROTACT molecule. Thus, when the PROTAC molecule binds to 

CDK5, the length of the linker is not optimal to bring cereblon into an appropriate position 

to ubiquitinate CDK5 and trigger its removal. Additionally, CDK5 and CDK9 must have 

differentially displayed surface lysine residues, as the degrader was capable of selectively 

degrading only CDK9. Collectively, our study suggests that selective CDK degraders can 

be developed by exploiting differentially displayed surface lysine residues.  
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Figure 26: CDK9 PROTAC mechanism of action. 
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Figure 27: Differentially exposed lysine residues and PROTAC (3) mechanism of 

action. 
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In this study, we generated a novel tool (3) that can be used to dissect the role of 

CDK9 in various diseased states. CDK9, similar to other members of the family, has also 

emerged as a potential therapeutic target [115, 168-174]. It is one of the few members of 

the family that are important for transcriptional control [175, 176]. CDK9 is found in two 

different isoforms, the major isoform being 42 kDa, while the minor isoform is 55 kDa [177, 

178]. These two forms of CDK9 have been shown to have different localization and 

expression, which suggests the possibility for distinct functions [177, 178]. Both isoforms 

require the binding of Cyclin T to become active and have full catalytic ability [115, 179]. 

CDK9/Cyclin T, along with other components, forms the positive transcription elongation 

factor b (P-TEFb) which is an important mRNA regulatory complex [115, 180]. Once 

becoming active, CDK9 is able to phosphorylate downstream substrates, particularly the 

C-terminal domain (CTD) of RNA polymerase II (also known as RNAPII or RPB1), an 

essential component of transcriptional control [115, 179]. When CDK9 phosphorylates 

Ser2 on RNAPII, it now allows for the mRNA transcript to be elongated, thus CDK9 is 

required to create mature mRNA [179]. Importantly, CDK9 has been shown to regulate 

the transcription of critical regulatory genes, such as Mcl-1 [181]. Mcl-1 is an important 

anti-apoptotic protein that has also been implicated in a variety of malignancies [182-184]. 

As such, CDK9 has emerged as a potential therapeutic target. Thus far, the most 

promising therapeutic strategy to abrogate CDK9 activity has been through the generation 

of ATP-competitive inhibitors. Multiple CDK9 non-selective inhibitors have shown promise 

in pre-clinical studies and have progressed into clinical trials [115]. Flavopiridol and 

dinaciclib are the two inhibitors triggering the best response in clinical trials. While neither 

compound is considered selective, both are potent inhibitors of CDK9 activity [115, 179]. 

Unfortunately, both compounds underperformed in clinical trials, as there were few reports 

of complete response and many patients (approximately 75-95%) suffered from adverse 

side effects [179, 185-189]. It is believed that the “off-target” effects spanning from 
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inhibition of other members of the CDK family are likely to blame for the toxic effects [168, 

179]. However, both compounds did signify that inhibition of CDK9 is a favorable 

therapeutic avenue to pursue. Thus, our selective CDK9 degrader could serve as a tool 

to dissect the role of CDK9 in a variety of malignancies and is a promising lead compound 

to pursue further.  

Moreover, due to the fact that degrader 3 perturbed Mcl-1 levels, we could pursue 

therapeutic combination strategies that incorporate Bcl-xL inhibitors, such as those 

developed by Abbot Laboratories (ABT-263 and ABT-737). Multiple reports have shown 

that the combined loss of Bcl-xL and Mcl-1 activity results in robust apoptosis in vitro [190-

192]. Additionally, we show blocking these two critical anti-apoptotic components results 

in synergism in cancer cells and mouse xenograft models [138, 193]. Finally, increases in 

expression of Mcl-1 have been observed upon blockade of Bcl-xL, thus suggesting that 

Mcl-1 is a crucial player in resistance [138]. Collectively, these studies support the 

rationale to combine our degrader (3) with Bcl-xL inhibitors.  
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CHAPTER 5: DISCUSSION 
 

Central Theme 

 The overall goal of this dissertation was to investigate the inhibition of CDK5, using 

aminopyrazole analogs, as small molecule kinase inhibitors, as a method for colorectal 

cancer therapy. As many individuals are diagnosed and succumb to the disease each 

year, it is vital that the development and investigation of new therapeutic options be at the 

forefront of CRC research.  

 

Current Standing 

 The work throughout this dissertation has focused on characterizing inhibitors that 

perturb CDK5 activity. We validated a selective CDK5 inhibitor (CP-668863) that was 

originally designed, synthesized, and investigated by Pfizer.  CP-668863 was intended to 

be used against neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s 

disease, and amyotrophic lateral sclerosis, due to the role that CDK5 signaling plays in 

the central nervous system. While CP-668863 failed to effectively perturb CDK5 in the 

CNS setting, we chose to repurpose this compound for CRC therapy.  

In order to determine whether CDK5 inhibition is a promising therapeutic strategy 

to combat CRC, we began our studies by characterizing the Pfizer CDK5 inhibitor, with 

the intent to eventually improve upon the compound (via SAR studies) if proven to be 

effective. Chemists in the Natarajan lab synthesized CP-668863 (a.k.a. 20-223) and we 

characterized its efficacy using cell-free kinase assays, human CRC cell lines, and a 

xenograft mouse model. Currently, we have shown that 20-223 effectively inhibits CDK2 

and CDK5 in CRC systems. It reduces CRC cell migration and proliferation and causes 

cell cycle arrest. 20-223 also slowed tumor progression in an in vivo xenograft model. 

Importantly, 20-223 is comparable to, or in some cases significantly better than, clinically 
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evaluated CDK inhibitors, AT7519 and roscovitine, which serve as good benchmarks for 

advancing a compound through pre-clinical investigations. Collectively, we showed that 

using small molecule aminopyrazole analogs to inhibit the kinase activity of CDK5 is a 

viable therapeutic strategy.  

Subsequently, we attempted to identify a degrader of CDK5 using the novel 

PROTAC strategy. While our efforts resulted in the selective degradation of CDK9, as 

opposed to CDK5, our proof of concept study served as a pioneering effort to show that 

selective degradation of a member of CDK family is indeed possible. We can now improve 

upon our efforts not only to inhibit the kinase activity of CDK5 using ATP-competitive small 

molecule aminopyrazole analogs, but we can also continue our efforts to develop CDK5 

degraders. Both strategies are potential routes to combat CDK5 activity, and interfering 

with CDK5 activity is believed to have therapeutic benefit for CRC patients.  

 

Future Directions 

Structure Activity Relationship  

20-223 

As mentioned previously, our intent was to determine whether disrupting CDK5 

activity could serve as a viable therapeutic option for CRC patients. Efforts by Zhuang et 

al. uncovered CDK5’s contributions to CRC tumorigenesis, thus implicating its role as a 

therapeutic target in CRC [81]. We have now shown that inhibition of CDK5, using an ATP-

competitive small molecule kinase inhibitor, has therapeutic benefit. Our next task would 

be to perform SAR studies to generate the next generation of small molecule inhibitors to 

inhibit CDK5. This study would have two main objectives: I) to improve upon the selectivity 

of 20-223 and II) to improve upon the potency of 20-223. We [137, 138, 194] and others 

[36, 37, 39, 40] have shown the aminopyrazole core engages in critical hydrogen bonds 
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with residues in the hinge region of CDK family members, specifically it interacts with 

Glu81 and Cys83 of CDK5. While these interactions are important to allow the compound 

to occupy the ATP binding pocket, structural modifications can be made on the ends of 

the aminopyrazole core (R1 and R2 positions) to improve the potency and selectivity of 

next-generation CDK5 inhibitors. These two positions extend off of the aminopyrazole core 

and are either embedded within the shallow hydrophobic pocket (R1) or solvent exposed 

(R2). Docking studies performed by our lab have shown that the cyclobutyl moiety of 20-

223 is in the shallow hydrophobic pocket while the naphthalene is solvent exposed [137]. 

Follow-up studies would aim to enhance the efficacy of 20-223 while using it as a structural 

road map. We would work to generate a 3-aminopyrazole analog library with various 

functional groups at the R1 and R2 positions while keeping the aminopyrazole core 

constant. Small hydrophobic functional groups, of varying size (such as hydrogen, methyl, 

isopropyl, cyclopropyl, cyclobutyl cyclopentyl, or phenyl), would be used to probe the 

biological space of the shallow hydrophobic pocket. Bulky hydrophobic functional groups 

would be tested at the surface-exposed R2 position. While our goal is to identify novel 

new compounds, it is possible that we may again run into selectivity issues similar to those 

encountered with 20-223. The ATP-binding pockets of CDK family members are highly 

conserved. In fact, we have shown that CDK2 and CDK5 share approximately 80% 

homology when comparing the ATP-binding pockets [138]. One way to circumvent the 

selectivity dilemma may be to analyze the components within the ATP-binding pocket of 

CDK5 and compare it to other members of the family. Using this approach we would aim 

to identify unique residues that could then be exploited during structure-based design.  
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PROTAC 

While ATP-competitive small molecule drugs have long since been a staple in 

kinase inhibition, the selectivity still remains an issue. As an alternative, we and others 

have begun to utilize the PROTAC strategy to facilitate the destruction of target proteins, 

as opposed to just inhibiting their kinase activity. In doing so, we attempted to generate a 

selective CDK5 inhibitor, but we ended up synthesizing a selective degrader of CDK9. We 

believe our degrader (3) was unable to access the surface-exposed lysine residues on 

CDK5. While the outcome did not satisfy our original intent, it gave us great insight into 

how to make a selective degrader.  

We can now use degrader 3 as a lead compound, which can be modified to attempt 

our original goal of identifying a selective CDK5 degrader. As we reported previously, we 

know the degrader is fully capable of inhibiting the kinase activity of CDK5, however, 

binding did not result in destruction of the target protein. This is likely due to the fact that 

surface-exposed lysine residues are not in close proximity to E3 ligase to drive 

ubiquitination. Therefore, the PROTAC molecule was unable to bring the thalidomide 

ligand to the appropriate position to trigger the poly-ubiquitination that is necessary to 

initiate degradation. Furthermore, in addition to not triggering the degradation of CDK5, 

we also noticed that high concentrations of degrader 3 were necessary to initiate the 

degradation of CDK9 and inhibition of CDK5. This suggests there is room to improve the 

potency of the compound as well. Taken together, these observations suggest we should 

perform SAR studies to improve the potency and selectivity of the compound. We could 

potentially make 4 different structural modifications in order to accomplish our goal of 

generating a potent degrader of CDK5: (I) change the length of the linker; (II) change the 

composition of the linker; (III) modify the E3 ligase binding moiety; and (IV) modify the 

aminopyrazole moiety. 
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As mentioned previously, we believe that the surface-exposed lysine residues on 

CDK5 are not reachable by our current degrader (3). Thus, we can make structural 

modifications to our compound in order to optimize it for CDK5 degradation. One possible 

change to help trigger CDK5 degradation would be to modify the linker length to allow the 

thalidomide component of the PROTAC molecule to reach a shorter or longer distance. 

Chan et al. recently showed that changes in linker length may effect PROTAC efficacy 

[195]. Currently the linker length of degrader 3 spans 5 carbons. Preparing an analog 

library with varied linker length (e.g. spanning 2 – 20 carbons) may generate an optimal 

lead compound that now can reach the necessary surface exposed lysines and trigger 

their polyubiquitination and subsequent proteasomal degradation.  

Second, we could modify the composition of the linker to make it more flexible or 

rigid. Currently, the 5-carbon linker serves as a flexible connection between the 

aminopyrazole and thalidomide ligands. This flexibility allows the PROTAC molecule to 

bend around the CDK structure and put itself in the right configuration to facilitate 

degradation. However, it is possible that changes in the linker composition may make it 

easier for the PROTAC molecule to bend or twist in a precise way that accommodates 

formation of the ternary complex.  

Next, it is possible that modifying the E3 ligand moiety might enhance the efficacy 

of the degrader. In our current study, we utilized thalidomide as our E3 ligand of choice, 

however there are alternative ligands that can be used. Cereblon serves as the E3 

ubiquitin ligase of choice for thalidomide [158], but cells also have another E3 ubiquitin 

ligase, VHL. VHL has been well characterized [196-198] and also used in PROTAC 

studies [148, 163, 199].  VHL is recognized by the VHL-ligand and facilitates proteasomal 

degradation similar to the cereblon-thalidomide route [200]. The use of both cereblon and 

VHL E3 ubiquitin ligands have shown efficacy in PROTAC studies. Lai et al. explored the 
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degradation profiles of several PROTACs by comparing various target ligands and E3 

ligands [199]. While they ultimately showed that VHL outperformed cereblon when 

conjugated to the same BCR-ABL inhibitor [199], there is no evidence suggesting that 

VHL consistently performs better than cereblon. Therefore, the use of either cereblon or 

VHL-mediated proteasomal degradation should be determined on a case-by-case basis. 

As such, we could perform comparison studies using both E3 ligases (cereblon-

thalidomide vs. VHL-VHL ligand) to determine which pairing proves to enhance the 

selectivity or potency of our degrader (3) compound.  

We and others have shown that the aminopyrazole core is a privileged scaffold. 

Making modifications to the R1 and R2 substituents of CP-668863 yielded a 40- 

aminopyrazole analog library which was screened for efficacy against members of the 

CDK family. That study found that placing a cyclobutyl substituent at the R1 position that 

would interact with the shallow hydrophobic pocket, and a biphenyl ring at the solvent- 

exposed position, yielded a potent CDK (2, 5, and 9) inhibitor [138]. Thus, we kept the 

cyclobutyl of our degrader constant and substituted the biphenyl with a phenyl group 

attached to an oxygen to connect the 5-carbon linker and generate our PROTAC molecule 

(3). However, this compound (3) required M concentrations to degrade CDK9. Therefore, 

we could make structural modifications at the R1 and R2 position of the degrader to 

potentially improve the potency and selectivity of a next-generation degrader.  

Collectively, the proposed SAR studies mentioned above aim to generate potent 

molecules that will perturb CDK5 activity, and thus serve as potential therapeutic options 

for CRC patients.  
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Combination Strategies 

 The next phase of investigating whether the inhibition of CDK5 would be a viable 

therapeutic strategy for CRC would be to identify potential combination approaches that 

may enhance the efficacy of CDK5 inhibition. CDK5 inhibition alone is not likely going to 

serve as a fix all for CRC patients. However, it could serve as an additive target therapy, 

which acts in combination with other therapeutic options. To start, we could investigate 

potential combinations of 20-223 or next-generation compounds with chemotherapy. CRC 

patients often receive a complex cocktail as standard therapy. While standard of care 

chemotherapy provides a survival benefit to early stage CRC patients, additive therapy is 

often required for individuals to combat late stage disease [6]. Multiple reports have 

suggested that CDK5 may contribute to cancer therapy resistance and consequently, the 

addition of anti-CDK5 therapy enhances the effect of other cytotoxic agents. Multiple 

groups have observed an increase in CDK5 or activator (particularly p35 and p25) 

expression following treatment with chemotherapeutic agents [79, 102-104]. This 

suggests that CDK5 may be a driving force of resistance to cancer therapy, thus 

abrogating CDK5 activity on top of chemotherapies could have a potentially beneficial 

effect for cancer patients. In fact, some groups have even shown that inhibition of CDK5 

sensitizes cancer cells to chemotherapeutic treatments [76, 102, 106]. Of importance, 

multiple reports have shown that knockdown of CDK5 enhanced the effects of 5-

fluorouracil [74] and irinotecan analogs [76], both of which are part of the standard of care 

chemotherapeutic regimen that most CRC patients receive [7]. Collectively, these data 

suggest that inhibition of CDK5 on top of chemotherapeutic agents may prove to be a 

promising therapeutic strategy that we could explore for CRC patients. 

Another prospective route to explore for combination therapies may be to combine 

immunotherapy with CDK5 inhibition. Recently, CDK5 was shown to serve as a major 



100 
 

roadblock to the immune eradication of medulloblastoma tumor cells [201]. Programmed 

death ligand-1 (PD-L1) is overexpressed in a variety of cancers [202] and serves as a key 

facilitator of immune evasion [203].  Expression of PD-L1 allows tumor cells to suppress 

the anti-tumor immune response and block the eventual cell death cascade that is 

triggered by T cells [204]. T cells are important surveyors in the tumor microenvironment. 

When they identify a cell as foreign, they trigger an immune response to destroy the 

unrecognizable cells. Thus they serve as important players in host immunity [205]. 

Unfortunately, CDK5 helps tumor cells evade circulating T cells by driving the indirect 

expression of PD-L1 [201]. CRISPR-Cas9 mediated knockout of CDK5 resulted in 

decreased PD-L1 expression and tumor incidence [201]. Presumably, the inhibition of 

CDK5 using small molecule inhibitors should result in a similar response. A critical step 

would be to first prove that CDK5 does in fact increase PD-L1 expression on CRC cells. 

Assuming this does occur, inhibition of CDK5 could be an interesting approach to 

counteract immune evasion. Additionally, CDK5 small molecule inhibitors or degraders 

may prove to be synergistic with other immunotherapeutic compounds. At this point, the 

strategy would be to block multiple immune checkpoints with the hopes of inducing a 

strong immune response [206]. While this strategy may prove to be beneficial for some 

patients, it is possible that treatment with multiple immunomodulatory agents may be 

counterproductive and elicit a massive immune response, which could result in adverse 

effects. As such, it may be a better option to use CDK5 inhibitors in place of anti-PD-L1 

therapies, since it will presumably have a similar anti-immune effect, while also disrupting 

other catastrophic CDK5 functions. Either way, we would anticipate that treatment with 

CDK5 modulators (such as 20-223, second-generation analogs, or CDK5 degraders) may 

aid in immune destruction, either as a combination with other immunotherapies or as an 

additive therapy. 
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Finally, it is highly likely that we have yet to uncover the multitude of compounds 

that may prove to synergize with anti-CDK5 therapies. Therefore, it may be wise to perform 

a synthetic lethality screen to identify other agents that would be effective in combination 

with CDK5 blockade. This particular tactic has been applied previously in the context of 

prostate cancer. CDK5 has been shown to be key player in the development and 

progression of prostate cancer [59, 67, 90, 95]; as such, researchers set out to identify 

preexisting compounds that would synergize with CDK5-deficient prostate cancer cells 

[207]. Ultimately, they discovered tilorone analogs exhibited great efficacy in CDK5-

deficient prostate cancer cells, thus identifying this particular subset of compounds as 

agents that may enhance the efficacy of CDK5 inhibition [207]. A similar approach may be 

used to find compounds that would synergize with CDK5 modulators in CRC. We could 

screen chemical libraries (e.g. Selleckchem, Cloud library, NCI-approved oncology drug 

set IV, FDA-approved drug collection, NCI-mechanistic set, etc) in genetically modified 

cell lines that lack functional CDK5 activity. The CRISPR-Cas9 system could be used to 

develop CDK5 knockout or CDK5 loss-of-function mutant (D144N) [64, 71] cell lines. Any 

combination in which the chemical inhibitor enhanced the genetic loss of CDK5 would be 

considered a lead and would warrant further investigation to determine whether it could 

be synergistic with CDK5 inhibitors (20-223 or second-generation analogs). Of note, one 

caveat to this approach is that currently there are no specific CDK5 inhibitors, therefore 

the outcomes from the CDK5 inhibitor screen may differ from the original results observed 

in the CDK5 knockout screen, i.e. the inhibitors may hit additional targets and elicit various 

responses. Thus, an alternative strategy would be to first identify CDK5 selective inhibitors 

(i.e 20-223, second-generation inhibitors, etc.) and then perform an RNAi screen 

(Dharmacon, GeneScript, Sigma-Aldrich, etc.), to identify potential targets that would be 

synergistic with CDK5 inhibition. Next, assuming there are specific inhibitors available for 
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the targets we identified, we could then test these compounds for synergistic effects when 

used in combination with CDK5 inhibitors.  

 While our studies were the first to show that inhibition of CDK5 may hold promise 

as CRC therapy, there is definitely still room to improve upon and enhance the effects of 

anti-CDK5 therapies. In any of the cases proposed above, extensive preclinical studies 

are required to understand drug-drug interactions and to ensure they warrant continued 

pre-clinical and eventually clinical investigation. Additional studies that would identify 

various patient populations that would benefit from these combinations would also be 

useful.  

 

Broad Implications 

 Scientists have dedicated time, energy, and effort to uncover disease drivers that 

promote tumorigenesis and ultimately validate them as therapeutic targets [208].  

Recently, massive commitment to basic cancer research has paved the way for the 

emergence of individualized or personalized medicine initiatives. As such, the focus of 

precision medicine is now geared toward understanding the specifics of each individual 

patient’s tumor. The unique genetic signature that each tumor holds can give clinicians 

great insight into how the patients may benefit from various pharmacological agents. This 

allows physicians to tailor treatment plans to the specific genomic or proteomic makeup 

of patients, to maximize the therapeutic benefit [209]. Molecular profiling of CRC patients 

has improved the understanding of the genetic and epigenetic changes that cause the 

development and progression of CRC [6]. It is likely that CRC patients respond to 

therapies differently, due to the distinct molecular signatures of their tumors. With the 

knowledge that CRC is a very heterogeneous disease, both at the intertumoral and 
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intratumoral levels, it is increasingly important to identify and understand the specifics of 

each individual patient’s tumor, in order to improve the selection of therapies [6].  

 Zhuang et al. identified CDK5 as a tumor promoter in CRC. Survival analysis 

revealed that CDK5 expression is inversely related to survival. Thus, those patients with 

high levels of CDK5 expression had significantly lower overall survival compared to 

individuals with low CDK5 expression [81]. From a personalized medicine standpoint, it 

would make sense to identify a specific patient population that would benefit from anti-

CDK5 therapy. Ideally, those patients that are overexpressing CDK5, which is then likely 

contributing to disease progression, would receive additive anti-CDK5 therapy. This 

concept is not as easy as it sounds. Improvements will need to be made in the form of 

diagnostic testing and screening that have the capacity to easily understand the genetic 

makeup of various tumors so we can assure patients are receiving specific therapies for 

their specific conditions [209].  

Importantly, overexpression of CDK5 is not specific to colorectal cancer. In fact, 

CDK5 has been implicated in a variety of malignancies including those of the breast [64, 

74], liver [76], lung [66, 75], ovary [78], pancreas [70, 71], prostate [59, 67, 68, 95], thyroid 

[72, 73] and skin [77]. Hence, the strategy to inhibit CDK5 can also be applied widely to a 

variety of tumor types. In an era where personalized therapies are becoming the trend of 

modernized medicine [209], cancer patients with any form of CDK5-positive malignancy 

will greatly benefit from CDK5-directed therapy.  
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Final Conclusions 

Shockingly, the World Health Organization predicts that the incidence (77%) and 

number of CRC-related deaths (80%) will increase dramatically by 2030 [5]. Therefore, 

there is a dire need to develop novel new therapies for the treatment of CRC. Evidence 

suggests that CDK5 plays an important role in the progression of CRC [81]. This 

observation led us to ask whether inhibition of CDK5 would be a promising therapeutic 

strategy to fight CRC. From the work in this dissertation, we can conclude that inhibition 

of CDK5 using a 3-aminopyrazole analog (20-223) showed anti-CRC effects both in vitro 

and in vivo. Furthermore, the success shown with 20-223 validates it as a promising lead 

compound and warrants its further investigation and optimization. While our attempts to 

degrade CDK5 using the novel PROTAC approach fell short, we ultimately demonstrated 

it is possible to selectively degrade another member of the oncogenic CDK family (CDK9). 

As with all cancer research, the ultimate goal is to eventually be able to improve patient 

survival. Our work serves as a foundation on which we can continue to build, in order to 

chemically inhibit an often overlooked but critical oncogenic player, CDK5. Our efforts to 

characterize a preliminary CDK5 inhibitor and attempt CDK5 degradation serve as the 

initial findings needed to encourage the continued investigation into inhibition of CDK5 as 

a viable method for cancer therapy. 
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