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COMPARATIVE MOLECULAR CHARACTERIZATION OF TYPICAL AND 

EXCEPTIONAL RESPONDERS IN GLIOBLASTOMA 

Kristin Wipfler, Ph.D. 

University of Nebraska, 2017 

Supervisor: Chittibabu Guda, Ph.D. 

Glioblastoma (GBM) is the most common and the deadliest type of primary brain tumor, 

with a median survival time of only 15 months despite aggressive treatment. Although 

most patients have an extremely poor prognosis, a small number of patients survive far 

beyond the median survival time. Investigation of these “exceptional responders” has 

sparked a great deal of interest and is becoming an important focus in the field of cancer 

research. To investigate the molecular differences between typical and exceptional 

responders in GBM, comparative analyses of copy number, methylation, gene expression, 

miRNA expression, and protein expression data sets from The Cancer Genome Atlas were 

performed, and the results of these analyses were integrated via correlation studies and 

pathway analyses to assess the functional significance of the differential aberrations. 

Typical responders are characterized by upregulation of NF-κB signaling and of pro-

inflammatory cytokines and their associated pathways, while exceptional responders are 

characterized by upregulation of Alzheimer’s and Parkinson’s disease pathways, as well 

as of genes involved in synaptic transmission and plasticity. The upregulated pathways 

and processes in typical responders are consistently associated with more aggressive 

tumor phenotypes, while those in the exceptional responders suggest a retained ability in 

tumor cells to undergo cell death. 
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INTRODUCTION 

 

Glioblastoma 

 Glioblastoma (GBM) is the most common and the deadliest type of primary brain 

tumor. GBM is highly malignant and nearly uniformly fatal, with a median survival time 

of only approximately 15 months despite aggressive treatment, including surgical 

resection followed by concurrent radiation and chemotherapy with temozolomide.1–3 

GBM tumors are particularly aggressive due to their high degree of heterogeneity and 

tentacle-like projections that infiltrate surrounding brain tissue, making them extremely 

difficult to fully excise.4,5  

 The central nervous system is comprised of neurons and glia (including astrocytes, 

oligodendrocytes, and microglia).6 GBM arises from astrocytes, star-shaped glial cells that 

play a variety of diverse roles in the central nervous system, including maintenance of 

homeostasis, regulation of blood flow, and synaptic transmission.5,7 GBM usually arises 

in the cerebral hemispheres, but can be found anywhere in the brain or spinal cord. Most 

cases occur sporadically, without genetic predisposition. The only known risk factors are 

some specific genetic diseases (neurofibromatosis, tuberous sclerosis, Li-Fraumeni 

syndrome, retinoblastoma, and Turcot syndrome) and some environmental exposures 

(ionizing radiation, vinyl chloride, pesticides, smoking, petroleum refining, and synthetic 

rubber manufacturing). The most common symptom is a progressive neurological deficit 

resulting in personality changes or memory loss, but headaches and seizures may occur 
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as well. The incidence of GBM is higher in men than in women and presents at a median 

age of 64 years.2  

 There are three pathways that are consistently dysregulated in GBM: the p53 

pathway, the receptor tyrosine kinase/Ras/phosphoinositide 3-kinase signaling pathway, 

and the retinoblastoma pathway. Other common alterations include overexpression of 

EGFR (epidermal growth factor receptor), mutations in PTEN (phosphatase and tensin 

homolog), and loss of chromosome 10.2 Treatment options targeting these genes and 

pathways have been explored, primarily anti-EGFR agents, but their efficacy is limited by 

drug resistance.8 

 

The Cancer Genome Atlas 

 The Cancer Genome Atlas (TCGA) was a project led by the National Cancer 

Institute (NCI) and the National Human Genome Research Institute that began in 2005. It 

was a database that contained genomic data obtained from a variety of high-throughput 

genome analysis techniques for 33 different cancer types. Data types investigated in the 

TCGA project included gene expression profiling, copy number variation, SNP 

genotyping, DNA methylation profiling, and many more. The primary goal of the project 

was to demonstrate that genomic data from a variety of sources could be integrated and 

utilized to identify statistically and biologically significant alterations in cancer.9,10 

 The TCGA project has now concluded, but the more than two petabytes of 

genomic data generated in the project have been made publicly available through the 

Genomic Data Commons (GDC). This massive amount of data provides a unique 
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opportunity to analyze a variety of data types for a large number of cancer patients. By 

the end of the TCGA project, the GBM dataset included data for 528 patients. The different 

data types included in the GBM dataset were clinical information, gene expression, exon 

expression, miRNA expression, copy number arrays, methylation arrays, SNP arrays, 

trace files, somatic mutations, protein expression, and RNAseq (Table 1).10–12  

 

Exceptional Responders Initiative 

 With the end of the TCGA project, NCI is now developing multiple new genomics 

databases, one of which is the Exceptional Responders Initiative (ERI). The goal of this 

project is to identify molecular features that predict whether or not a particular drug or 

class of drugs will help patients live longer. In many cases, a treatment is deemed 

unsuccessful after a clinical trial, but 10% or fewer of the patients still have a favorable 

response. The ERI project intends to identify markers that predict positive responses in 

such cases. The database will include patients that receive standard treatments as well, 

not just patients in clinical trials.13,14 

 The idea for the ERI came about based on the concept of exceptional responders, 

patients who have a unique response to treatments that are not effective for most other 

patients. The exact definition of “exceptional” varies by specific disease, stage, and 

treatment. In general, exceptional responders achieve a complete or partial response that 

only up to 10% of patients experience, and they sustain that response for a much longer 

duration than the median response.13–15 
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Data Type N (full dataset) N (subset) 

Clinical 499 75 

Copy Number (SNP array) 493 72 

Methylation (27k) 287 32 

Gene Expression (DNA microarray) 440 67 

miRNA Expression 474 72 

Protein Expression 210 20 

Table 1: Number of patients in each data type in the TCGA GBM dataset. Of the data types 

available for GBM, seven were analyzed, six of which are discussed in this dissertation. The 

number of patients for each of these data types is listed for the full dataset (499 Total) as well as for 

the dataset analyzed in this work (75 total). The selection of this subset of patients is discussed in 

Chapter 1. The exon expression and copy number array data types were excluded due to 

redundancy with gene expression and SNP arrays, respectively. RNAseq was excluded because 

the available data files were highly processed with a methodology that is not preferred, while the 

gene expression data type was available in a raw format. Trace files were excluded as they are 

outdated, having a been replaced by GAM files. When data were available from multiple platforms 

for a single data type, the most comprehensive option was chosen for analysis whenever possible. 
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 Investigating these exceptional responders has become an important focus for the 

future of cancer research. There is a great deal of interest in studying these rare patients 

to learn how to improve therapies for patients who have a more typical response. Several 

studies of exceptional responders have already been published, and they have helped 

uncover molecular alterations and mechanisms of resistance. With the huge amount of 

interest and funding being directed at this topic, it is expected that studies of exceptional 

responders will be a major focus of cancer research in the near future.16–19 

 

Hypothesis 

 Analyzing and integrating the information from the variety of next generation 

sequencing and array-based data available in TCGA (now the GDC) for typical and 

exceptional responders will reveal aberrations that produce more aggressive tumors in 

typical responders as well as protective effects in exceptional responders. This will 

provide a clearer picture of the molecular basis of GBM and also reveal possible 

therapeutic targets and markers for a positive or negative response to standard therapy. 
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CHAPTER 1 

SURVIVAL ANALYSIS AND DEFINING THE RESPONSE GROUPS 

 

Introduction 

 With current therapies, the median survival time for GBM patients is 

approximately 15 months. Although most patients have an extremely poor outcome, a 

small number of patients survive far beyond the median survival time.1 Survival analyses 

in the current literature often have a very small sample size and look specifically at a very 

small set of genes, such as IDH1 and MGMT or EGFR and TP53.20–23 These studies often 

have arbitrarily chosen survival time cutoffs, typically >36 months for long survival and 

<36 months for short survival. These cutoffs are not appropriate for the study of survival 

outcomes in GBM, as the resulting short survival groups would include many patients 

who survive well beyond the median survival time. Defining survival groups to compare 

based on specific characteristics of GBM and the survival curve of TCGA GBM patients 

would be a vast improvement over the commonly used arbitrary methods described 

above. 

 In addition to an improved method of defining survival groups, a main focus of 

this study is an investigation of so-called “exceptional responders” in GBM. NCI 

researchers conducting the ERI study define exceptional responders as “patients who 

have dramatic and long-lasting responses to treatments for cancer that were not effective 

for most similar patients.” The precise definition of exceptional is specific to the disease, 

stage, and treatment.13–15 For GBM, defining what constitutes an exceptional response may 
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be more straightforward than for most cancers, since all primary GBM tumors are 

classified as grade IV and most patients receive the same standard treatment of tumor 

resection followed by radiation and chemotherapy with temozolomide. The response to 

this treatment is also very consistent, with most patients surviving very close to the 

median survival time and a relatively small number of patients surviving a substantially 

longer time.1–3  

 Due to the shortcomings in the methodology of defining survival groups in 

current GBM studies, there is a need for a GBM survival analysis utilizing cutoff 

parameters specific to characteristics of this disease. With the recent shift of focus to 

exceptional responders in cancer research, it is also important to incorporate this concept 

into survival studies in cancer, particularly in cancers like GBM, where most patients 

respond poorly to treatment but an exceptional few respond very positively. This study 

addresses both of these needs, utilizing an improved method of defining survival groups 

guided by the concept of exceptional responders. 

 

Methods 

 Inclusion criteria were applied utilizing clinical information contained within the 

TCGA Biotab files for GBM. Only untreated primary GBM samples from patients with 

known survival times were included in the survival analysis. A Kaplan-Meier survival 

curve was generated based on the survival times of the patients remaining after the 

application of the inclusion criteria. The top 10% of patients with the longest survival 

times were designated as “exceptional responders.” The 10% cutoff was chosen based on 
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the survival curve and loosely based on the ERI definitions of exceptional responders.15 

The median 10% of patients were classified as “typical responders” in order to have 

comparable sample sizes between the two groups. Linear regression models were 

generated with XLSTAT to investigate possible confounding variables that may influence 

survival, including sex, race, ethnicity, diagnosis method, age, and Karnofsky score. The 

term with the highest non-significant p-value was removed and the model was 

regenerated until the overall model and each term were significant (p < 0.05). An age 

cutoff was applied and linear regression models were generated again using the reduced 

number of samples in order to identify any remaining confounding variables. 

 

Results 

 After the application of the inclusion criteria, 408 patients remained in the dataset. 

The Kaplan-Meier survival curve (Figure 1) for those 408 patients shows a steep drop in 

the first two years, with the survival time for the vast majority of patients within one year 

of the median 345 days. The curve levels off between two and three years, and a relatively 

small number of patients survive beyond that time. The patients within that range are in 

roughly the top 10% for survival time, which was the defining factor for the exceptional 

responders group. 

 Age and sex were determined to be confounding variables in the linear regression 

models. An age cutoff of ≥30 years was applied, which reduced the exceptional responders 

group by five patients and corrected for the confounding variable of age. Ethnicity was 

the same for all patients in this group (not Hispanic or Latino) and Karnofsky score, age,  
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Figure 1: Survival curve for TCGA GBM dataset. This curve includes the 408 TCGA GBM patients 

that met the inclusion criteria. The curve is characterized by a steep drop off centered around the 

median of 345 days, with a small number of patients surviving beyond approximately 2.5 years. 

Typical responders are labeled in blue and exceptional responders are labeled in green. 
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race, and diagnosis method were not significant predictors of survival time. However, sex 

was predictive of outcome, with female patients enriched in the exceptional responders 

group (regression model p=0.021, chi-squared test p=0.034). Sex is only associated with 

survival in the typical and exceptional response groups, not in the full dataset of 408 

patients. 

 The final dataset included 40 typical responders and 35 exceptional responders 

(Table 2). Males are more highly represented in the typical response group, and the 

exceptional responders tend to be a bit younger with a mean age of 49.8 years compared 

to the typical responders’ mean age of 58.7 years. However, this age difference is not 

statistically significant. The median survival for the typical group is the same as the full 

dataset (345 days) with a range of 320-378 days. Median survival for the exceptional group 

is 1282 days (approximately 3.5 years) with a range of 864-3881 days (approximately 2.4-

10.6 years).  

 

Discussion 

 Although the current median survival time for GBM is approximately 15 months, 

the 12 month median in the full dataset and the typical responders group is consistent 

with the time period in which most of these samples were obtained.24 The characteristics 

of the survival curve are as expected based on previous GBM survival studies. 

 While the confounding variable of age was addressed with an age cutoff, the only 

way to fully address the confounding variable of sex is to completely exclude either males 

or females from the study. Rather than sacrificing such a large number of samples and  
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Table 2: Descriptive statistics for the full dataset and response groups. Statistics on sample size, 

age, and survival time are included for the full group of patients that met the inclusion criteria as 

well as for the typical and exceptional response groups. Typical responders closely resemble the 

norm for GBM in general, while exceptional responders tend to be younger (though this is not 

statistically significant) and have an equal representation of males and females as opposed to the 

usual higher proportion of males (this is statistically significant). 
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restricting the relevance of this study to only one sex, this issue was addressed in each 

individual analysis for all data types, as described in subsequent chapters. 

 In order to ensure that no samples in the study had been exposed to radiation or 

other treatments that may corrupt results, only untreated tumor samples were included 

in the dataset. The dataset also includes only primary GBM samples in order to avoid 

statistical noise from secondary GBM samples, which develop through progression of 

low-grade astrocytomas and should be approached as a different disease.25 

 The typical and exceptional response groups defined in this chapter were utilized 

throughout the entirety of this study. 
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CHAPTER 2 

COPY NUMBER 

 

Introduction 

 A variety of copy number variations have been identified in GBM, the most 

prevalent of which is amplification of chromosome 7, particularly of EGFR.26–28 Other 

frequently occurring copy number changes include losses of chromosomes 9p 

(particularly of CDKN2A, cyclin-dependent kinase inhibitor 2A)26,28,29 and 1026,27,29 as well 

as gains in chromosomes 19 and 2026,30. Some studies have associated these copy number 

alterations with prognosis, while others have determined that they are not significantly 

associated with outcome.27,30–32 

 Copy number alterations across the genome can be assessed with comparative 

genomic hybridization (CGH) arrays as well as single nucleotide polymorphism (SNP) 

genotyping arrays. The Affymetrix Genome-Wide Human SNP Array 6.0, which was the 

type of array utilized in this study, assesses more genetic variation than any other array. 

It includes over 1.8 million markers, including over 946,000 probes that detect copy 

number variation.33 

 

Methods 

 Affymetrix Genome-Wide Human SNP Array 6.0 CEL files were obtained from 

the GDC Legacy Archive on April 15, 2017 for 38 typical and 34 exceptional responders 

(Table 3). The files were divided into four groups based on response group and sex and 
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 Typical Exceptional 

Female 11 17 

Male 27 17 

Table 3: Sample number by sex and response group in copy number analysis. Nearly all of the 

patients in the two response groups had copy number data available. As expected, there is a higher 

proportion of males in the typical response group and an equal number of males and female in the 

exceptional response group. 
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processed with the R tool Rawcopy.34 Log2 ratio values (relative to normal) obtained from 

the genelist files generated by Rawcopy were compared between typical and exceptional 

responders to identify any differential gains or losses. A log2 ratio cutoff of +/- 0.25 was 

used to define a copy number gain/loss, and only probes where the mean log2 ratio 

indicated a gain or loss for at least one of the response groups were included in the 

analysis. An additional cutoff was applied in which the difference in the mean log2 ratio 

between typical and exceptional responders must be > 0.2. Redundant probes (probes for 

the same gene with the same log2 ratio value) were removed. Welch’s unequal variances 

t-tests were performed for each remaining probe and a multiple testing correction was 

performed using the Benjamini-Hochberg false discovery rate (FDR) method (q < 0.1). This 

process was repeated for sex-specific analyses (typical male versus exceptional male and 

typical female versus exceptional female) with sex chromosomes excluded. A subset of 

results from this analysis were investigated with respect to the distribution of gains/losses 

and amplifications/deletions (log2 ratio cutoff +/- 0.8) between typical and exceptional 

responders. Significance was determined with chi-squared tests (p < 0.05) when the 

distributions of gains/amplifications and losses/deletions were compared. 

 

Results 

 Copy number heatmaps for each patient (Figure 2) show consistent alterations 

regardless of response group or sex. These include gains in chromosomes 7, 19, and 20 as 

well as losses in chromosomes 9p, 10, 13, and 14, all of which have been described 

previously in the literature.26–32 A plot of the mean log2 ratios across the genome for each  
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Figure 2: Copy number heat maps by sex and response group. Heat maps generated by Rawcopy 

for typical and exceptional responders, separated by sex. For each response group, female patients 

are grouped above and male patients are grouped below. All groups are characterized by gains in 

chromosomes 7 (particularly around EGFR in 7p), 19, and 20 as well as losses in chromosomes 9p 

and 10. 
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response group (Figure 3) also indicates that those gains and losses occur consistently in 

both response groups, although the magnitude of the gain or loss typically appears to be 

greater in typical responders. 

 The Rawcopy analysis generates log2 ratios relative to normal for each probe in each 

array. After applying the cutoffs described above to the mean log2 ratios for each response 

group, 10 probes associated with alterations at 10 genes remained. Following the t-tests 

and multiple testing correction, 5 of these were determined to be differentially altered 

between the response groups (Table 4). The 5 genes identified are the olfactory receptors 

OR4M2 (p = 0.018) and OR4N4 (p = 0.022), as well as LOC285878 (p = 0.026), VSTM2A (p 

= 0.025), and CDKN2A-AS1 (p = 0.048). VSTM2A and LOC285878 were both characterized 

by gains, while OR4M2, OR4N4, and CDKN2A-AS1 were characterized by losses. The 

sex-specific analyses did not yield any significant results. 

 Utilizing a log2 ratio cutoff of +/-0.25 to define copy number gains/losses, several 

regions as well as specific genes were identified as altered relative to normal (Table 4). 

Most of these changes have already been implicated in GBM, and most of them were not 

significantly differentially altered between typical and exceptional responders. These 

included gains in chromosome 7p (Figure 4), losses in chromosome 9p (Figure 5), losses 

in chromosome 13q, and losses across the entirety of chromosome 10. Smaller regions of 

altered copy number included losses at LCE3C, ADAM3A, OR52N5, OR4M2, and OR4N4 

as well as gains at FKBP9, PRSS3P2, AND PRSS2. 

 Based on three of the genes identified as significantly differentially altered 

between the two response groups, in combination with regions of gain/loss that were  
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Figure 3: Genome-wide mean copy number for each response group.  Mean log2 ratios assessed 

at approximately 40,000 probes are shown in blue for typical responders and green for exceptional 

responders across the genome, excluding sex chromosomes. The most prominent alterations are 

gains in chromosome 7 and losses in chromosomes 9p and 10. Peaks tend to be of a greater 

magnitude in the typical response group. 
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Gains 

Region and Gene(s) Response Group Affected 

7p11.2 

HPVC1, VSTM2A*, LOC285878*, SEC61G, 

EGFR, EFGR-AS1, LANCL2, VOPP1, FKBP9L, 

SEPT14, MRPS17, GBAS, PSPH, CCT6A, 

SNORA15, SUMF2, PHKG1, CHCHD2, and 

NUPR1L 

typical; exceptional to a lesser extent 

7q21.2 

AKAP9, CYP51A1, LRRD1, KRIT1, ANKIB1, 

GATAD1, PEX1, RBM48, MGC16142, 

FAM133B, and CDK6 

typical 

7q34 

PRSS3P2 and PRSS2 
typical 

Losses 

Region and Gene(s) Response Group Affected 

1q21.3 

LCE3C 
exceptional 

8p11.22 

ADAM3A 
typical 

9p21.3, 9p21.2 

FOCAD, MIR491, PTPLAD, IFNB1, IFNW1, 

IFNA21, IFNA4, IFNA7, IFNA10, IFNA16, 

IFNA17, IFNA14, IFNA22P, IFNA5, KLHL9, 

IFNA6, IFNA13, IFNA8, IFNA1, MIR31HG, 

IFNE, MIR31, MTAP, CDKN2A-AS1*, 

CDKN2A, CDKN2B-AS1, CDKN2B, 

DMRTA1, FLJ35282, ELAVL2, IZUMO3, 

TUSC1, LOC100506422 

typical; exceptional to a lesser extent 

entirety of chromosome 10 typical and exceptional 

11p15.4 

OR52N5 
typical 

13q14.2 

DLEU2, MIR16-1, MIR15A, DLEU1, and 

ST13P4 

exceptional 

15q11.2 

OR4M2* and OR4N4* 
exceptional 

Table 4: Regions of copy number gain and loss. Regions of copy number gain (mean log2 ratio > 

0.25) and loss (mean log2 ratio < -0.25 ) are shown with lists of specific genes affected in each region. 

The affected response group is described for each region. Genes in bold and labeled with a * 

reached statistical significance based on t-tests comparing typical and exceptional responders. 

 

 



20 

 

 

 

 

 

 

 

Figure 4: Copy number gain in 7p11.2. Mean log2 ratios for typical (blue) and exceptional (green) 

responders in the region of chromosome 7p11.2 described in Table 3. Both groups are characterized 

by gains (log2 ratio > 0.25) and amplifications (log2 ratio > 0.8) in this region, but the magnitude is 

greater in typical responders. VSTM2A and VSTM2A-OT1 (marked with stars) have differential 

copy numbers between the two groups that reach statistical significance. 
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Figure 5: Copy number loss in 9p21.2 and 9p21.3. Mean log2 ratios for typical (blue) and 

exceptional (green) responders in the region of chromosome 9p21 described in Table 3. Both groups 

are characterized by losses (log2 ratio < -0.25) in this region, but the magnitude is generally greater 

in typical responders. CDKN2A-AS1 (marked with a star) has differential copy numbers between 

the two groups that reach statistical significance. 
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found, EGFR and CDKN2A/B were investigated more closely due to their proximity to 

VSTM2A, LOC285878, and CDKN2A-AS1 as well as their previously established 

relevance to GBM.35 Chi-squared tests examining the distribution of gains/amplifications 

and losses/deletions among all patients in each response group indicate that typical 

responders are more likely than exceptional responders to experience loss or deletion of 

CDKN2A. The distributions of EGFR gain/amplification and CDKN2B loss/deletion were 

not significantly different between the response groups. 

 Of the 1812 probes that meet the definition of copy number gain/loss, 1752 of them 

are losses, and 1201 of those have a greater magnitude in typical responders. Only 60 

probes indicate copy number gains, and the magnitude is greater in typical responders 

for all 60 of them. Overall, 69.6% of the alterations have a larger magnitude in typical 

responders. 

 

Discussion 

Defining Cutoff Values 

 There is no standardized log2 ratio cutoff to define copy gain and loss or 

amplification and deletion. However, a cutoff of ±0.25 for gain/loss and ±0.8 for 

amplification/deletion is commonly utilized for copy number studies in cancer, which is 

why those definitions were applied in this study.36–38 

 The vast majority of log2 ratios in this study are between 0 and 1, making a fold 

change cutoff at worst misleading and at best uninformative. Rather than apply a fold 

change cutoff to identify regions of differential copy number alterations between the 
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response groups, a cutoff was applied in which the absolute value of the difference 

between the mean log2 ratios for typical and exceptional responders must be greater than 

0.2. This is the same value that is typically chosen for a Δβ cutoff in methylation studies, 

which also have values between 0 and 1.39–41  

 

Differentially Altered Genes Between the Response Groups 

 Two of the significantly differentially altered genes identified were olfactory 

receptors. This is likely an artifact and not actually associated with survival in GBM, 

because there is huge variation in copy number in the general population for 

approximately 50% of olfactory receptors.42 

 The other significant results include LOC285878 and VSTM2A, both of which are 

immediately upstream of EGFR, and CDKN2A-AS1, which overlaps slightly with 

CDKN2A and precedes CDKN2B. It is likely that these genes are significantly 

differentially altered between the response groups due to their very close proximity to 

EGFR and CDKN2A/B. Copy number alterations in GBM in both of those regions are very 

well characterized. It is for this reason that those genes were investigated further. Chi-

squared tests indicate that loss or deletion of CDKN2A is more likely to occur in typical 

responders than in exceptional responders, suggesting that copy number alteration of 

CDKN2A could serve as a prognostic factor in GBM, associated with a poorer outcome. 
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Other Gains and Losses 

 Several regions of copy number gain or loss relative to normal were identified in 

this analysis. Most of these met the definition of gain or loss for one response group and 

not the other, but did not reach statistical significance. Nevertheless, these may still be of 

clinical interest and are worth further exploration in larger studies in the future. Some of 

these alterations include loss of LCE3C, MIR16-1, MIR15A, and ST13P4 in exceptional 

responders, loss of ADAM3A in typical responders, and gain of PRSS2 in typical 

responders. Upregulation of MIR16 and MIR15a is associated with adverse prognosis and 

poor overall survival in multiple myeloma.43 Loss of these miRNAs in exceptional 

responders suggests reduced expression and lower tumorigenic potential in that response 

group. PRSS2 (protease, serine 2) is thought to play a role in tumor invasion in multiple 

cancers44–46 and may be contributing to more aggressive tumors in typical responders.  

 

Rates of Gains and Losses 

 Losses occurred much more frequently than gains in both response groups, and 

these alterations were consistently of a higher magnitude in typical responders (Figures 

3, 4, and 5; Table 4). This is consistent with previous studies showing that losses occur 

more frequently than gains in GBM, as well as cancers in general. This suggests that 

typical responders have more frequent or more severe copy number alterations, possibly 

contributing to more aggressive tumors and a poorer prognosis. 
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CHAPTER 3 

METHYLATION 

 

Introduction 

Methylation and β Values 

 DNA methylation is an epigenetic mechanism in which a methyl group is added 

to a CpG site in the DNA. Methylation is typically associated with gene silencing, 

particularly when the CpG site is located within a promoter.47 The level of methylation at 

any given site is reported as a β value, which is the ratio of intensities between methylated 

and unmethylated alleles. This value ranges from 0 (unmethylated) and 1 (fully 

methylated). A β value greater than 0.7 is indicative of hypermethylation, while a β value 

under 0.3 is defined as hypomethylation.48–50 

 In glioblastoma, a recurrent methylation aberration occurs in the promoter for 

MGMT (O-6-methylguanine-DNA methyltransferase). Methylation in this region silences 

expression of MGMT, which leaves tumor cells susceptible to alkylating agents. 

Methylation of MGMT is therefore a marker of a positive response to chemotherapy 

treatment with temozolomide in GBM.51 

 

HumanMethylation27 Array 

 The HumanMethylation27 array utilizes Infinium genotyping technology to assess 

the methylation level at 27, 578 CpG sites covering 14,495 genes. This method begins with 

bisulfite conversion, which converts unmethylated cytosine into uracil and leaves 
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methylated cytosine alone. The DNA is then amplified, and uracil is matched with 

adenine, which then pairs with thymine for subsequent replications. The DNA is then 

hybridized to a chip, which has two probes for each locus (one for the methylated version 

and one for the unmethylated version). The different probes are then stained with 

different fluorescent agents and the level of methylation is determined with the 

calculation of β values.48,52 

 

Methods 

 Illumina HumanMethylation27 idat files were acquired from the GDC Legacy 

Archive on September 27, 2016 for 16 typical responders and 16 exceptional responders 

(Table 5). The analysis was performed with RnBeads, an R package designed to perform 

an analysis of DNA methylation at single nucleotide resolution in a more comprehensive 

manner than other methylation tools.53 The arrays were normalized with the beta-mixture 

quantile normalization method and the Greedycut algorithm was utilized for filtering. 

RnBeads includes a module that addresses batch effects. There was not an adequate 

number of samples to complete separate analyses to address the confounding variable of 

sex. Sex chromosomes were not included in the analysis to address this issue. The 

resulting lists of CpG sites and promoters were narrowed further with a Δβ (the absolute 

value of the difference between the mean β value for each response group) cutoff of 0.2, 

which is a commonly used cutoff for studies of differential methylation.39–41  The 

Benjamini-Hochberg multiple testing correction54 was performed (q < 0.1) to identify 

differentially methylated sites and promoters. The “normal” dataset was obtained from a  
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 Typical Exceptional 

Female 3 13 

Male 10 6 

Table 5: Sample number by sex and response group in methylation analysis. Nearly half of 

patients had methylation data available. The distribution of sex in this group does not follow the 

proportions of the full response groups, with nearly all of the typical responders being male and 

nearly all the exceptional responders female, rather than a slight male majority and an even split, 

respectively. Because of this, there was an insufficient sample size for sex-specific analyses. 
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2013 study on methylation in neuronal and glial cells in which Illumina 

HumanMethylation450 experiments were performed for non-neuronal cells of 6 different 

subjects, with 2 experiments for each subject.55 Mean β values were calculated from the 

signal intensities for all 12 sets. Kolmogorov-Smirnov (KS) tests were performed to 

compare the distributions of beta values for typical, exceptional, and normal groups. 

 

Results 

 The RnBeads report includes a differential methylation file comparing the mean 

degree of methylation between the typical and exceptional response groups at each of the 

approximately 27,000 CpG sites assessed by the Illumina assay. After applying the cutoffs 

and a multiple testing correction, 41 differentially methylated CpG sites corresponding to 

37 unique genes were identified (Table 6), 39 of which had a higher degree of methylation 

in the exceptional response group. A modified volcano plot (Figure 6) indicates which of 

these sites are outliers with the highest Δβ values and the lowest p values, with PCDHB12 

(protocadherin beta 12), LY6K (lymphocyte antigen 6 family member K), and NKX2-5 

(NK2 homeobox 5) among the top results. 

 The RnBeads report also includes a differential methylation file comparing the 

mean degree of methylation across promoter sites between the two response groups. In 

this case, data from multiple CpG sites in the same promoter (1.5 kb upstream and 0.5 kb 

downstream of the transcription start site) are combined to reflect the overall methylation 

level across the region. Utilizing the same cutoffs and multiple testing correction from the 

site analysis, 5 differentially methylated promoters, all with a higher degree of  
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cgid gene name mean β exceptional mean β typical Δβ p value 

cg12343638 PCDHB12 0.5078026 0.262902748 0.244899925 0.000792036 

cg08569678 LY6K 0.441856355 0.178005278 0.263851077 0.000901718 

cg12052765 CHAT 0.351379153 0.140280129 0.211099024 0.001210066 

cg03294619 NKX2-5 0.363597909 0.088957022 0.274640887 0.001724144 

cg21480743 PTEN 0.381009425 0.18046069 0.200548735 0.00232438 

cg04369341 C20orf100 0.63529373 0.426659616 0.208634114 0.002811554 

cg11532513 LRTM1 0.406058029 0.630219234 0.224161205 0.002811802 

cg17651821 HIST1H4L 0.513744205 0.256118974 0.257625231 0.003395508 

cg25957124 DNAH3 0.705059137 0.476860941 0.228198195 0.003418798 

cg01888566 MEST 0.74056681 0.521977296 0.218589514 0.003421299 

cg23519022 CAPZB 0.534783267 0.74339535 0.208612083 0.003806896 

cg24101578 CDH22 0.618165843 0.406560371 0.211605472 0.003809712 

cg25946389 MGMT 0.394523362 0.179592629 0.214930733 0.003829408 

cg25509184 CFTR 0.600842388 0.382027484 0.218814904 0.004066663 

cg09522147 KRT7 0.588742794 0.36717856 0.221564233 0.004232271 

cg10303487 DPYS 0.431869687 0.181799459 0.250070228 0.006518306 

cg09595479 PRPH 0.732006613 0.52721146 0.204795153 0.007883096 

cg18676237 SERPINB9 0.474358981 0.201989707 0.272369273 0.009013391 

cg12558519 KLHL26 0.34932085 0.099339316 0.249981535 0.009626013 

cg26980692 SLC15A3 0.401463369 0.190110148 0.211353221 0.010153909 

cg00949442 ABCA3 0.424217955 0.221278093 0.202939862 0.012334811 

cg24264506 TTC12 0.455964348 0.192059252 0.263905096 0.013005415 

cg16363586 BST2 0.679897957 0.474140835 0.205757122 0.01303555 

cg27090216 TNFRSF10C 0.323192125 0.115625389 0.207566736 0.013564396 

cg13067215 CGI-38 0.317780555 0.106700898 0.211079656 0.01374847 

cg20050826 K6IRS2 0.412443387 0.211270568 0.201172819 0.014985767 

cg21215336 LRRC8E 0.595433055 0.390559013 0.204874042 0.016306681 

cg12981137 MGMT 0.376274797 0.150035143 0.226239654 0.017000628 

cg01009664 TRH 0.460950967 0.249015311 0.211935657 0.018029927 

cg09160477 SUSD3 0.274926433 0.067484552 0.207441881 0.01810372 

cg07753583 LRRC61 0.62589652 0.417196705 0.208699815 0.01842675 

cg07952391 FLJ10916 0.409459146 0.184952884 0.224506262 0.018626547 

cg23244913 HCG9 0.543443874 0.332649804 0.21079407 0.018700098 

cg12177743 TTC12 0.331577699 0.116007362 0.215570337 0.019122814 

cg06274159 ZFP42 0.630768539 0.422974537 0.207794002 0.019292771 

cg25057743 PTHR2 0.385272981 0.183412711 0.201860269 0.022032263 

cg07260592 LPA 0.653635527 0.435082623 0.218552904 0.022092278 

cg17965019 HIST1H3J 0.352617133 0.142842183 0.20977495 0.024151396 

cg17860158 CNTN2 0.394115837 0.183061088 0.21105475 0.025666055 

cg12768605 LYPD5 0.498629758 0.298008361 0.200621398 0.033938924 

cg00630164 KCNQ4 0.489497043 0.277459749 0.212037294 0.042287698 

Table 6: Significantly differentially methylated CpG sites. These 41 CpG sites were determined 

to be differentially methylated between typical and exceptional responders following a Δβ cutoff 

of 0.2 and multiple testing correction (q < 0.1). The raw p values are shown. 
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Figure 6: Modified volcano plot of significantly differentially methylated CpG sites. This 

includes the 41 CpG sites listed in Table 5. Each axis is skewed to reflect the cutoffs made to assess 

significance (p < 0.05 and Δβ > 0.2). Sites with a lower degree of methylation in typical responders 

are shown in blue and sites with a lower degree of methylation in exceptional responders are 

shown in green. Sites in the upper right hand side have the largest Δβ values and the smallest p 

values. Outliers and both green sites are labeled with their associated gene name. 
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methylation in exceptional responders, were identified (Table 7). These include SLC15A3 

(solute carrier family 15 member 3), TTC12 (tetratricopeptide repeat domain 12), LRRC8E 

(leucine rich repeat containing 8 family member E), SUSD3 (sushi domain containing 3), 

and LRRC61 (leucine rich repeat containing 61). 

 There are 45 CpG sites with a Δβ value greater than 0.2 between the typical and 

exceptional response groups, 41 of which are also present in the normal dataset. 

Histograms for each of these groups (Figure 7) show larger proportions of 

hypomethylated (β < 0.3) sites in the typical and normal groups and more moderate β 

values in the exceptional group. This observation was investigated further with KS tests 

and cumulative distributions plots for each group (Figure 8). There is no difference in the 

distribution of β values between typical responders and normal glial cells (p=0.127), but 

the exceptional response group β value distribution is significantly different from both of 

the other groups (p<0.0001 in both cases). The D statistic (a measure of the magnitude of 

the difference between two datasets) is 0.622 for the typical versus exceptional comparison 

and 0.734 for the normal versus exceptional comparison.  

 

Discussion 

Addressing the Confounding Variable 

 The distribution of sex between the typical and exceptional response groups is 

quite skewed in the methylation dataset. For the other data types in this study, analyses 

were typically performed three times: once for typical versus exceptional responders 

overall, and then one analysis for each sex in order to address the confounding variable.  
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gene name mean β exceptional mean β typical Δβ combined p value 

SLC15A3 0.401463369 0.190110148 0.211353221 0.010153909 

TTC12 0.393771023 0.154033307 0.239737716 0.01224649 

LRRC8E 0.595433055 0.390559013 0.204874042 0.016306681 

SUSD3 0.274926433 0.067484552 0.207441881 0.01810372 

LRRC61 0.62589652 0.417196705 0.208699815 0.01842675 

Table 7: Significantly differentially methylated promoters. The promoters of these five genes 

were determined to be differentially methylated between typical and exceptional responders 

following a Δβ cutoff of 0.2 and multiple testing correction (q < 0.1), based on the degree of 

methylation of all the CpG sites that fall within the promoter range (1.5 kb upstream and 0.5 kb 

downstream of the transcription start site) for each gene. The raw combined p values are shown. 
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Figure 7: Histograms of β values in normal glial cells and each response group. The response 

group histograms include mean β values for the 45 CpG sites with Δβ values larger than 0.2, and 

the normal histogram includes β for 41 of those sites (the remaining 4 were not assessed in the 

normal arrays). The distribution of β values in typical responders closely resembles the normal 

distribution, while the exceptional responders are characterized by a shift towards larger β values. 
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Figure 8: KS tests and cumulative distribution plots of β values. KS tests indicate that the 

distribution of β values for the CpG sites with Δβ > 0.2 is significantly different from both the 

typical and normal distributions (p < 0.0001). There is no difference between the distributions for 

the typical and normal groups. Cumulative distribution plots are shown for each of the three 

groups, indicating a clear shift in exceptional responders toward higher β values. The D statistic, a 

measure of the magnitude of the difference between two datasets, is shown for each comparison 

at the point of greatest difference. The distance between the exceptional and normal distributions 

is slightly larger than the distance between the typical and normal distributions. 
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In the case of methylation, this was not possible due to an insufficient number of samples. 

Instead, sex chromosomes were removed from the analysis in an effort to control for 

methylation differences between sexes. When this step was not taken, 44% of significant 

sites and 57% of significant promoters were on the X chromosome, which was likely due 

to X-inactivation and the large difference in the number of female patients between the 

response groups. This method seems to have been effective as many of the results are 

associated with GBM specifically or with other cancers and are often prognostic factors. 

 

Determination of an Appropriate Δβ Cutoff 

 A log2 fold change cutoff is not appropriate for comparing β values since they are 

all between 0 and 1 and very large fold change values could result from very small 

changes in beta values, and vice versa. Instead, a Δβ cutoff was applied. A cutoff value of 

0.2 was selected based on the literature and on the 27k assay technology. Most methylation 

studies that use Δβ values select 0.2 as the cutoff39–41, and the Infinium I technology used 

in the HumanMethylation27 arrays can detect a Δβ of approximately |0.2| with 99% 

confidence.56   

 

Differentially Methylated Regions 

 Although there are many genes implicated in the site-specific analysis that did not 

appear in the results of the promoter analysis, this does not necessarily indicate that the 

site-specific results are not important. There are many more CpG sites than the 27k 

technology assesses, so it is entirely plausible that the promoters for those genes have 
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more sites that are differentially methylated between the response groups that simply 

were not interrogated with the 27k arrays. A similar study with data from the Illumina 

450k or EPIC (which assesses methylation status at over 850,000 CpG sites) platform 

would be a significant improvement. Unfortunately, there was not a sufficient number of 

patients that had 450k results to perform such an analysis. 

 As expected, MGMT was present in the results and is characterized by a higher 

level of methylation in exceptional responders. Several other genes present in the top 

results with a higher degree of methylation in exceptional responders are associated with 

cancer prognosis and/or treatment response, including LY6K (lymphocyte antigen 6 

family member K)57,58, DPYS (dihydropyrimidinase)59, and SERPINB9 (serpin family B 

member 9)60,61. The reduced methylation of those genes in typical responders suggests 

increased transcription, and expression of each of those genes is associated with more 

aggressive tumors in various cancers.  

 Only two of the significantly differentially methylated sites had a higher level of 

methylation in typical responders. Those two sites are associated with the genes CAPZB 

(capping actin protein of muscle Z-line beta subunit) and LRTM1 (leucine rich repeats and 

transmembrane domains 1). LRTM1 is not well-characterized, but CAPZB is known to be 

an actin-capping protein that plays a role in cell morphology and differentiation. CAPZB 

is a metastasis-suppressor in hepatocellular carcinoma62 and its lower methylation levels 

in exceptional responders suggest that it may be more highly expressed than it is in typical 

responders, possibly providing a protective effect to exceptional responders. 
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Differential β Value Distribution 

 Among CpG sites that have a Δβ greater than 0.2, the typical group closely 

resembles the normal beta value distribution, while the exceptional group is characterized 

by a higher level of methylation. Nearly all (95%) of the differentially methylated CpG 

sites and 100% of the differentially methylated promoters have a higher degree of 

methylation in exceptional responders. Histograms and cumulative distribution plots 

show a strong shift towards higher β values in exceptional responders, and the KS tests 

indicate that this difference is statistically significant. This hypermethylation in 

exceptional responders relative to typical responders and normal glial cells suggests an 

increased level of transcriptional control that may confer a protective effect to exceptional 

responders. 
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CHAPTER 4 

GENE EXPRESSION 

 

Introduction 

Gene Expression Microarrays 

 Gene expression levels can be assessed with multiple methods, but the gene 

expression data in this study was generated with Affymetrix microarrays. This technology 

enables the analysis of gene expression across the whole genome, including more than 

45,000 probe sets to assess relative expression levels of more than 39,000 transcripts and 

variants.63 

 

Analysis Packages 

 Guanine Cytosine Robust Multi-Array Analysis (GCRMA) is a Bioconductor 

package that performs normalization of microarrays. This tool implements a background 

correction, followed by a normalization step to make measurements between different 

arrays comparable, and then a summarization step to calculate a final expression 

measurement. It also adjusts for background intensities including optical noise and non-

specific binding. It is an improvement upon the commonly used Robust Multi-Array 

Analysis (RMA) algorithm, which does not adjust well for non-specific binding.64,65 

 Another tool utilized in this analysis is nsFilter, which is part of the genefilter 

package and removes non-informative genes to reduce noise in the analysis. This tool 

removes genes with little variation, consistently low signals, and control probe sets.66 
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 Limma is a software package for the analysis of gene expression. It utilizes linear 

models to assess differential expression for a variety of technologies, including 

microarrays, RNA sequencing, and quantitative PCR.67–69 

 

Aberrant Gene Expression in GBM 

 The most well-known and most frequently occurring gene expression change in 

GBM is the overexpression of EGFR. Other hallmark genes in GBM include IGFBP2 

(insulin like growth factor binding protein 2), IGFBP5 (insulin like growth factor binding 

protein 5), VEGF (vascular endothelial growth factor), VCAM1 (vascular cell adhesion 

protein 1), MCM2 (minichromosome maintenance complex component 2), and TNC 

(tenascin C).70 

 

Methods 

 Affymetrix HT Human Genome U133 DNA microarray CEL files were obtained 

from the GDC Legacy Archive on August 5, 2016 for 33 exceptional responders and 34 

typical responders (Table 8). Three comparisons were performed: all exceptional 

responders vs all typical responders, male exceptional responders vs male typical 

responders, and female exceptional responders vs female typical responders. For each of 

the three analyses, the arrays were normalized with GCRMA and filtering was performed 

using the nsFilter function of the genefilter package in R. All experiments were performed 

at the same location, which should minimize batch effects. Quality control tests, including 

boxplots of probe intensities and density vs intensity histograms were generated in R  
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 Typical Exceptional 

Female 11 17 

Male 23 16 

Table 8: Sample number by sex and response group in gene expression analysis. Most patients 

in both response groups had gene expression data available. The distribution of sexes between the 

two groups is consistent with the full groups, with a male majority in the typical group and a 

roughly equal number of males and females in the exceptional group. 
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before and after normalization. Differential expression analysis was performed using 

limma. A log2 fold change cutoff of 1.5 was applied to the resulting list of probes before 

the multiple testing correction was performed. Only genes that were implicated in all 

three analyses or in the full analysis but not in the sex-specific analyses were considered 

to be significantly differentially expressed between the two response groups. Linear 

regression models were generated with XLSTAT to investigate the prognostic value of 

some of the differentially expressed genes. These models were generated using the full 

TCGA GBM dataset, including 385 patients. Utilizing the same CEL files that were 

analyzed with limma, version 2.2.4 of the Broad Institute’s Gene Set Enrichment Analysis 

(GSEA) tool was used to detect enrichment of gene sets between exceptional and typical 

responders as well as male and female patients. The CEL files were converted to Gene 

Count files using the ExpressionFileCreator module found in GenePattern. Normalization 

was performed with GCRMA in conjunction with quantile normalization. GSEA was run 

using the c5.all.v6 database, with 1000 permutations performed using “phenotype” as the 

permutation type. 

 

Results 

 Quality control assessments indicate that all arrays included in the analysis were 

normalized properly and none need to be excluded. Box plots of the log intensity 

distributions for each array (Figure 9) are extremely consistent following normalization, 

indicating that between-array comparisons can be made with this dataset without 

removing any arrays. Density plots of log intensity distribution (Figure 10) also show very  
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Figure 9: Quality control assessment by log intensity distributions. Log intensity distributions 

were generated in R before normalization (top) and after normalization (bottom) to determine if 

between-array comparisons could be made or if any arrays needed to be removed. The consistent 

distributions following normalization indicate that all arrays in the analysis could be compared 

and none needed to be removed. 

 

 

 



43 

 

 

 

 

 

Figure 10: Quality control assessment by density plot. Density plots of log intensity distribution 

were generated in R before normalization (top) and after normalization (bottom) to identify any 

arrays with an abnormal distribution. Following normalization, all the arrays had consistent log 

intensity distributions and none needed to be removed from the analysis. 
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consistent distributions following normalization, meaning that there are no outliers that 

need to be excluded. 

 The analysis identified 4 significantly differentially expressed genes (Table 9). 

ETNPPL (ethanolamine-phosphate phospho-lyase) and SH3GL2 (SH3 domain containing 

GRB2 like 2, endophilin A1) were more highly expressed in exceptional responders, while 

CXCL8 (interleukin 8) and CCL20 (chemokine ligand 20) were more highly expressed in 

typical responders. There were 13 additional genes determined to be significantly 

differentially expressed in the full analysis, but they were all also identified in one sex-

specific analysis and not the other. These were excluded from the final results because 

they may only be present due to sex being a confounding variable. 

 Linear regression models indicate that CXCL8 is predictive of survival time. 

Increased expression of CXCL8 is associated with reduced survival time. The overall 

model is statistically significant (p < 0.001), as is the CXCL8 term (p < 0.001). The equation 

for the model is: 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 (𝑑𝑎𝑦𝑠) = 812 − 40.1 ∗ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝐶𝑋𝐶𝐿8. 

 GSEA identified 4 gene sets enriched in exceptional responders and 1 gene set 

enriched in typical responders (Table 10). The leading edge analysis revealed which genes 

contributed to the enrichment of which gene sets in the exceptional responders (Figure 

11). NLGN1 and STXBP1 contributed to the enrichment of all four gene sets and RAB3A, 

RIMS3, SNCA, SYN1, RAB5A, RAB3GAP1, and PFN2 contributed to the enrichment of 

three of them. All of the other implicated genes were associated with only one or two of 

the gene sets. There were no significantly enriched gene sets identified when the analysis 

was divided by sex. 
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Gene 
log2FC 

(all) 

log2FC 

(female) 

log2FC 

(male) 

p value 

(all) 

p value 

(female) 

p value 

(male) 

ETNPPL 1.553 1.931 1.659 0.0225 0.0703 0.0560 

SH3GL2 1.771 2.301 1.758 0.0018 0.0089 0.0210 

CXCL8 
-1.735 

-1.863 

-3.094 

-2.345 
-1.904 

0.0038 

0.0045 

0.00076 

0.0133 
0.0330 

CCL20 -1.751 -2.383 -1.520 0.0042 0.0155 0.0487 

Table 9: Significantly differentially expressed genes. Four genes were determined to be 

significantly differentially expressed between typical and exceptional responders following 

multiple testing correction (q < 0.1) and comparison to the sex-specific analyses. Log2 fold change 

(log2FC) and p values are shown for the full analysis and for each sex-specific analysis. ETNPPL 

and SH3GL2 are more highly expressed in exceptional responders and CXCL8 and CCL20 are more 

highly expressed in typical responders. 
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Name Enriched in 

Normalized 

Enrichment 

Score 

p value FDR q value 

regulation of synaptic vesicle 

transport 
exceptional 2.062 p < 0.001 0.124 

regulation of neurotransmitter 

transport 
exceptional 2.025 p < 0.001 0.113 

positive regulation of calcium 

ion dependent exocytosis 
exceptional 2.008 p < 0.001 0.109 

neurotransmitter secretion exceptional 2.006 p < 0.001 0.078 

negative regulation of 

cytokine biosynthetic process 
typical -2.068 p < 0.001 0.154 

Table 10: Enriched gene sets identified by GSEA. GSEA identified five enriched gene sets, four 

of which are enriched in exceptional responders. 
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Figure 11: Leading edge analysis of gene sets enriched in exceptional responders. Leading edge 

analysis of the four gene sets enriched in exceptional responders indicated which genes contributed 

to each result. The color gradient indicates the range of expression values (red, pink, light blue, and 

dark blue correspond to high, moderate, low, and lowest expression, respectively). Two genes 

contributed to all four results and seven genes contributed to three of the four, but most of the 

genes contributed to just one or two of the enriched gene sets. 
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Discussion 

Addressing the Confounding Variable 

 A majority of the genes identified as being significantly differentially expressed in 

the full dataset were excluded because they were also present in the results of only one of 

the sex-specific analyses and may only appear to be significant due to the confounding  

variable of sex. In several of the cases, at least, this seems very likely. Some of the genes 

excluded for potentially being the result of differential expression between males and 

female include XIST, RPS4Y1, and DDX3Y. XIST is expressed in females as the major 

effector of the X inactivation process, and RPS4Y1 and DDX3Y are both found on the Y 

chromosome and should therefore only be expressed in males. That these were excluded 

from the final results by the methodology for this analysis suggests that this method was 

successful in controlling for sex-specific results. 

 

Significantly Differentially Expressed Genes 

 The four genes included in the final results list are CXCL8, CCL20, ETNPPL, and 

SH3GL2. CXCL8 is an angiogenic factor in GBM, gliomas, and many other cancers and 

CCL20 promotes malignancy in various cancers and has been implicated in glioma.71–77 

Both of those genes were overexpressed in typical responders relative to exceptional. 

CXCL8 and CCL20 are often implicated in diseases together, particularly in colorectal 

cancer, in which they synergize to promote a poor survival outcome via a collaborative 

induction of the epithelial-mesenchymal transition.78 Overexpression of these two genes 

are likely contributing to the poorer prognosis of typical responders. In vivo studies of 
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overexpression of these genes in GBM cell lines would be necessary to confirm that they 

contribute to a more tumorigenic phenotype. 

 The other two significant genes were more highly expressed in exceptional 

responders. ETNPPL is a lyase that is downregulated in hepatocellular carcinoma, and 

SH3GL2 is a positive prognostic factor in head and neck squamous cell carcinoma.79 

SH3GL2 is targeted by mir330, which promotes malignancy in GBM cell lines, suggesting 

that reduced expression of SH3GL2 results in more aggressive tumors.80 The 

overexpression of these two genes is consistent with a more positive prognosis. 

 

CXCL8 is Predictive of Survival Time 

 Based on the established relationship between CCL20 and CXCL8 in the literature, 

these two genes were investigated as possible prognostic factors for GBM with linear 

regression models. While the term for CCL20 was not statistically significant in the model, 

when it was removed and the model was regenerated with CXCL8 only, it was found to 

be significantly predictive of survival. The equation for the model suggests that for every 

one unit increase in CXCL8 expression, there is an associated 40 day reduction in survival. 

CXCL8 is a chemokine and potent angiogenic factor that may contribute to 

tumorigenesis81, so its overexpression in typical responders relative to exceptional 

responders is indicative of more aggressive tumors in typical responders, which may 

explain the significant association between higher CXCL8 expression and shorter survival 

in the full GBM dataset. 
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GSEA 

 GSEA identified 5 enriched gene sets, 4 of which were enriched in exceptional 

responders and 1 of which was enriched in typical responders. The four gene sets enriched 

in exceptional responders are all very similar and are related to synaptic transmission, 

suggesting that exceptional responders have an increased ability to maintain synaptic 

transmission functions and that it might be granting them some advantage over typical 

responders. 

 Interestingly, 6 of the genes contributing to the enriched gene sets in exceptional 

responders (STXBP1, DNM1, SYNJ1, KCNB1, PLCB1, and CACNA1A) are among a group 

of genes that have been implicated in early infantile epileptic encephalopathy (EIEE)82, an 

extremely debilitating disorder characterized by uncontrollable seizures and severe 

mental retardation.83 Mutations in these genes are associated with EIEE, but it appears 

that overexpression of these genes is associated with a positive prognosis in GBM. All of 

these genes are associated with synaptic transmission. 
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CHAPTER 5 

miRNA EXPRESSION 

 

Introduction 

 Micro RNAs (miRNAs) are a class of regulatory molecules that have been 

implicated as important players in tumorigenesis.84 A subset of miRNAs have been found 

to be consistently dysregulated in GBM (Table 11) and some of these can also be used to 

predict prognosis or therapeutic response. Aberrant expression of these miRNAs can 

impact tumorigenic pathways in GBM such as induction of angiogenesis, resistance to 

apoptosis, and sustained proliferation signaling.85 

 The miRNA expression data for this study were generated with the Agilent 

Human miRNA Microarray 8x15K platform. These microarrays contain probes with high 

sensitivity and specificity for all human miRNAs reported in the Sanger miRBASE 

database.86 

 

Methods 

 Files containing the calculated expression values of 534 miRNAs for 38 typical and 

34 exceptional responders (Table 12) were retrieved from the GDC Legacy Archive on 

September 1, 2016. Welch’s unequal variances t-tests were performed for each miRNA to 

identify which ones are significantly differentially expressed between the response 

groups. The multiple testing correction was performed using the Benjamini-Hochberg  
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Upregulated 

miR-9 miR-10a miR-10b miR-15b miR-17-5p 

miR-25 miR-21 miR-26a miR-92b miR-93 

miR-106a miR-130a miR-155 miR-182 miR-196b 

miR-210 miR-221 miR-222 miR-296 miR-451 

Downregulated 

miR-7 miR-34a miR-124* miR-125b miR-128* 

miR-129-5p* miR-132 miR-136 miR-137 miR-139-5p* 

miR-146b miR-153 miR-181* miR-184 miR-218 

miR-323 miR-326 miR-328 miR-495  

Table 11: Consistently dysregulated miRNAs in glioblastoma. These miRNAs have been 

established as frequently upregulated or downregulated in GBM85 and were used as a guide to 

reduce multiple testing in the analysis. miRNAs labeled with a * were not assessed by the arrays 

in this study. 
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 Typical Exceptional 

Female 11 17 

Male 27 17 

Table 12: Sample number by sex and response group in miRNA analysis. Nearly all of the 

patients in both response groups had miRNA expression data available. The distribution of sexes 

in the two groups is similar to the full groups, with most a majority of typical responders being 

male and an even number of males and females in the exceptional responders group. 
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FDR method (q < 0.1). The t-tests and corrections were performed again on a reduced 

dataset after the miRNA list was restricted to only those miRNAs that appear in Table 11. 

 

Results 

 No miRNAs were significantly differentially expressed between typical and 

exceptional responders following the multiple testing correction, even when multiple 

testing was reduced by restricting the results to only miRNAs known to be consistently 

dysregulated in GBM. Prior to correcting for multiple testing, there were 37 miRNAs with 

p < 0.05 in the full dataset and 2 in the reduced dataset (Table 13). 

 

Discussion 

 Although quite a few miRNAs have been associated with GBM, including some 

that are specifically associated with prognosis or treatment response85, no significantly 

differentially expressed miRNAs were identified in this study. This does not necessarily 

mean that the miRNAs analyzed are not important in GBM. They may be differentially 

expressed in both response groups relative to normal expression, but simply not be 

differentially expressed between the response groups themselves. 

 Several of the top results have previously been associated with GBM prognosis or 

with prognosis and/or treatment response in other cancers. However, these results did 

not reach statistical significance after a multiple testing correction was applied, so they 

were not included in any downstream analyses. 
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Hybridization REF p value 

hsa-miR-621 0.0026 

hsa-miR-490 0.0070 

hsa-miR-191 0.0094 

hsa-miR-330 0.0097 

hsa-miR-200b 0.0100 

hsa-miR-128a 0.0102 

hsa-miR-767-3p 0.0114 

hsa-miR-574 0.0124 

hsa-miR-200a 0.0154 

hsa-miR-128b 0.0156 

hsa-miR-510 0.0158 

hsa-miR-367 0.0186 

kshv-miR-K12-7 0.0192 

hsa-miR-429 0.0199 

hsa-miR-801 0.0224 

hsa-miR-648 0.0233 

hsa-miR-204 0.0242 

hsa-miR-586 0.0243 

hsa-miR-422a 0.0245 

hcmv-miR-US5-1 0.0250 

hsa-miR-222* 0.0258 

hsa-miR-550 0.0305 

hsa-miR-200a 0.0315 

ebv-miR-BART17-5p 0.0324 

kshv-miR-K12-4-3p 0.0330 

hsa-miR-548c 0.0336 

hsa-miR-603 0.0344 

hsa-miR-339 0.0356 

ebv-miR-BHRF1-2 0.0378 

hsa-miR-604 0.0412 

hsa-miR-296* 0.0415 

hsa-miR-581 0.0416 

hsa-let-7b 0.0434 

hsa-miR-20a 0.0444 

hsa-miR-19a 0.0455 

hsa-miR-520a 0.0455 

hsa-miR-345 0.0458 

Table 13: Differentially expressed miRNAs. This includes the top results of the miRNA analysis 

(all miRNAs with p < 0.05). miRNAs labeled with a * also appeared in the reduced analysis based 

on the list in Table 10. None of these results reached statistical significance following a multiple 

testing correction (q < 0.1). 
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CHAPTER 6 

PROTEIN EXPRESSION 

 

Introduction 

 Reverse Phase Protein Array (RPPA) is a high throughput assay in which 

antibodies are printed across slides to quantify the amounts of various proteins in 

multiple samples simultaneously. This method allows for sensitive and accurate 

quantification of proteins, including phosphoproteins, from a small amount of sample 

material as long as high quality antibodies are available. The TCGA protein expression 

data is generated by the MD Anderson RPPA Core Facility, which currently utilizes a 

panel of 304 antibodies in its experimental protocol.87,88 The GBM dataset includes results 

for 222 antibodies. 

 

Methods 

 Files containing relative protein expression data were obtained from the GDC 

Legacy Archive for 7 typical and 13 exceptional responders (Table 14) on September 24, 

2016. Mann-Whitney U tests were performed for each of the 222 antibodies to identify 

which proteins are significantly differentially expressed between the response groups. 

The multiple testing correction was performed using the Benjamini-Hochberg FDR 

method (q < 0.1). 
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 Typical Exceptional 

Female 2 6 

Male 5 7 

Table 14: Sample number by sex and response group in protein expression analysis. Very few 

patients had protein expression data available. The sex distribution across response groups was 

consistent with the distribution in the full groups, however. 
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Results 

 No proteins were significantly differentially expressed between typical and 

exceptional responders following the multiple testing correction. Without correcting for 

multiple testing, there are five proteins with significant p values (p < 0.05). These proteins 

are associated with the genes ITGA2, BCL2, BCL2A1, RPS6KB1, and RAD51 (Table 15). 

 

Discussion 

 Unlike most of the other data types investigated in this work, the protein 

expression arrays assess a relatively small number of data points. While most of the other 

analyses were genome-wide, the protein expression data type includes results for just 222 

antibodies.  Being limited to this comparatively small panel substantially diminishes the 

likelihood of identifying differential aberrations between typical and exceptional 

responders for this data type, which may be part of the reason why no statistically 

significant results were identified. 

 The protein expression analysis was also characterized by a much smaller sample 

size than most of the other analyses, with only 7 typical and 13 exceptional responders. 

Perhaps with a larger sample size, there would be more definitive and statistically 

significant results. 

 Of the top results, both BCL2 (B-cell lymphoma 2) and RAD51 (RAD51 

recombinase) have been associated with GBM prognosis.89,90 However, because these 

results did not reach statistical significance following the multiple testing correction, they 

were not included in any downstream analyses. 
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Antibody Gene p value 

CD49b-M-V ITGA2 0.0027 

Bcl-2-M-V BCL2 0.0198 

Bcl2A1-R-V BCL2A1 0.0252 

P70S6K-R-V RPS6KB1 0.0324 

RAD51-M-C RAD51 0.0329 

Table 15: Differentially expressed proteins. This includes the top results of the protein expression 

analysis (all antibodies with p < 0.05). The gene associated with the protein that each antibody 

labels is listed. None of these results reached statistical significance following a multiple testing 

correction (q < 0.1). 
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CHAPTER 7 

INTEGRATION AND PATHWAY ANALYSES 

 

Introduction 

 Pathway analysis techniques are used to help interpret the results of omics studies 

by identifying genes that play a role in the same cellular process, disease, signaling 

pathway, or other biological pathway. This can provide a global perspective on the results 

generated and can help with understanding the results in terms of biological relevance.91 

Two commonly utilized pathway analysis tools are Gene Ontology (GO)92 and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG).93 

 The GO project is a tool used to describe gene products in terms of gene product 

properties, including molecular functions and associated biological processes.92 ClueGO is 

a Cytoscape plug-in that utilizes Cytoscape’s visualization capabilities to generate a GO 

term network. This tool includes a Fusion feature to reduce redundancy by combining 

related GO terms into the most representative term.94  

 KEGG is a comprehensive database that represents the current knowledge of 

molecular interaction and reaction networks and is usually utilized to understand 

biological pathways and systems, especially in large-scale genomic datasets. This resource 

can be used to derive a systems-level understanding of molecular-level information and 

gain insight into the functional significance of the results of high-throughput analyses.93 
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Methods 

 In order to integrate the results from the individual analyses of this study and 

derive some functional significance, genes contributing to enriched gene sets, 

differentially expressed or methylated genes, and genes with differential copy number 

gains/losses (Table 16) were combined and used as the input for GO and KEGG analyses 

for each response group. The GO analysis was performed using the Cytoscape plug-in 

ClueGO with all four GO types selected, GO Term Fusion enabled, and results restricted 

to pathways with p<0.05 after Benjamini-Hochberg FDR multiple testing correction. All 

other parameters were left as the default. In the KEGG analysis, only pathways with at 

least 3 associated genes were included for further consideration. Heat maps were 

generated with Heatmapper. Both Pearson (r) and Spearman (ρ) correlation coefficients 

were calculated to assess the degree and direction of correlation between gene expression 

and copy number as well as gene expression and methylation. 

 

Results 

 Three enriched GO terms were identified from the gene list that is upregulated in 

typical responders (Table 17). These include regulation of lipid storage, regulation of 

interleukin-10 production, and regulation of cytokine biosynthetic process. The 

exceptional responders, however, had 105 enriched GO terms which ClueGO GO Term 

Fusion reduced to 12 enriched GO terms (Table 18 and Figure 12). Almost all of the 

enriched GO terms are associated with synapse formation or function.  
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 Typical Responders Exceptional Responders 

 Copy Number 

 

VSTM2A 

LOC285878 

OR4M2 

OR4N4 

 

CDKN2A-AS1 

CDKN2A 

 Methylation 

 

SLC15A3 

TTC12 

LRRC8E 

SUSD3 

LRRC61 

 

 

 Gene Expression 

 

CXCL8 

CCL20 

 

ETNPPL 

SH3GL2 

 GSEA 

LAG3 

SFTPD 

INHBA 

TRIB2 

KLF4 

NMI 

NFKB1 

INHBB 

IL6 

RNF128 

BCL3 

 

NLGN1 

STXBP1 

DNM1 

PINK1 

SYNJ1 

CDK5 

SCAMP5 

CACNA1I 

SYT1 

KCNB1 

PLCB1 

CDK5R2 

NOS1 

CPM6B 

TOR1A 

CAMK2A 

 

CACNA1A 

RIMS1 

KCNMB4 

SNCG 

MEF2C 

SNCAIP 

SYT11 

ACCN2 

NF1 

RAB3A 

RIMS3 

SNCA 

SYN1 

RAB5A 

RAB3GAP1 

PFN2 

Table 16: Significantly upregulated genes across all analyses. Genes with statistically significant 

alterations between the two response groups are included. “Upregulated” for each data type is 

defined as follows: copy number gains, lower promoter methylation, increased gene expression, 

and enrichment in GSEA. The only significant results not included are differentially methylated 

CpG sites. Only promoters were included from the methylation results because promoter 

methylation is consistently negatively correlated with gene expression, while methylation of sites 

in other regions is not. 
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GO Term p value Associated Genes 

regulation of cytokine 

biosynthetic process 
1.50x10-22 

BCL3, CCL20, IL6, INHBA, INHBB, KLF4, 

LAG3, NFKB1, NMI, RNF128, SFTPD, TRIB2 

regulation of interleukin-10 

production 
1.50x10-05 BCL3, IL6, TRIB2 

regulation of lipid storage 1.90x10-05 IL6, NFKB1, VSTM2A 

Table 17: Significantly enriched GO terms in typical responders. Three GO terms were identified 

as significantly enriched in typical responders following Benjamini-Hochberg FDR multiple testing 

correction. The p values are adjusted. Each group identified with GO Term Fusion only has one 

associated GO term. 
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GO Term p value Associated Genes 

presynaptic process 

involved in chemical 

synaptic transmission 

2.9x10-31 

ASIC1, CACNA1A, CAMK2A, CDK5, 

KCNMB4, MEF2C, NF1, NLGN1, PFN2, 

RAB3A, RAB3GAP1, RAB5A, RIMS1, RIMS3, 

SNCA, SNCAIP, SNCG, STXBP1, SYN1, SYNJ1, 

SYT1, SYT11, TOR1A 

regulation of 

neurotransmitter transport 
4.6x10-29 

ASIC1, CACNA1A, CAMK2A, KCNMB4, 

MEF2C, NF1, NLGN1, NOS1, PFN2, RAB3A, 

RAB3GAP1, RAB5A, RIMS1, RIMS3, SNCA, 

SNCAIP, SNCG, STXBP1, SYN1, SYT11, TOR1A 

synaptic vesicle exocytosis 4.9x10-27 

CACNA1A, CDK5, NLGN1, PFN2, RAB3A, 

RAB3GAP1, RAB5A, RIMS1, RIMS3, STXBP1, 

SYN1, SYNJ1, SYT1, SYT11 

regulation of synaptic 

vesicle recycling 
3.0x10-24 CDK5, DNM1, NLGN1, SNCA, SYT11, TOR1A 

regulation of synaptic 

vesicle exocytosis 
6.1x10-22 

NLGN1, PFN2, RAB3A, RAB3GAP1, RAB5A, 

RIMS1, RIMS3, STXBP1, SYN1 

neuron-neuron synaptic 

transmission 
2.5x10-21 

CACNA1A, CDK5, DNM1, MEF2C, NF1, 

NLGN1, PINK1, RAB3GAP1, SNCA, STXBP1, 

SYT1, TOR1A 

regulation of synaptic 

plasticity 
1.2x10-15 

CAMK2A, CDK5, KCNB1, MEF2C, NF1, 

NLGN1, RAB3A, RAB3GAP1, SNCA, STXBP1, 

SYT11 

acid secretion 1.5x10-15 
CACNA1A, NF1, RAB3A, RAB3GAP1, RIMS1, 

SNCA, STXBP1, SYT1 

positive regulation of 

synaptic transmission 
2.1x10-15 

NF1, NLGN1, PINK1, RAB3GAP1, RIMS1, 

SNCA, SYT1, SYT11 

regulation of amine 

transport 
6.8x10-13 

CACNA1A, KCNB1, PINK1, RAB3GAP1, 

SNCA, SNCG, SYT1, TOR1A 

positive regulation of 

protein targeting to 

membrane 

2.3x10-5 CACNA1A, CDK5, KCNB1 

voltage-gated calcium 

channel complex 
5.0x10-5 CACNA1A, CACNA1I, NOS1 

Table 18: Significantly enriched GO terms in exceptional responders. Twelve GO term groups 

were identified as significantly enriched in exceptional responders following Benjamini-Hochberg 

FDR multiple testing correction. The p values are adjusted and based on the groups identified by 

GO Term Fusion, not individual GO terms. 
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Figure 12: GO Term Fusion results in exceptional responders. The 12 GO term groups identified 

with GO Term Fusion are associated with 105 enriched GO terms. The pie graph indicates the 

number of GO terms included in each group. 
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 KEGG analysis for the typical responders identified quite a few pathways based 

on 5 subsets of the upregulated genes (Table 19). The top results are the IL-17 signaling 

pathway and the TNF signaling pathway. The KEGG analysis for the exceptional 

responders gene list yielded 5 enriched pathways, including synaptic vesicle cycle, MAPK 

signaling pathway, calcium signaling pathway, Alzheimer’s disease, and Parkinson’s 

disease (Table 20). 

 The relationships between the data types with significant results (copy number, 

methylation, and gene expression) was further investigated with heat maps and 

correlation analyses (Figure 13 and Table 21). Among only the genes identified in Table 

16, there is a weak to moderate positive correlation between copy number and gene 

expression for both response groups, with similar coefficients resulting from both the 

Pearson and Spearman tests. A strong negative correlation between methylation and gene 

expression was indicated by both correlation tests for that same gene list. When 

comparing methylation and gene expression genome-wide, there is a moderate to strong 

negative correlation for both the typical responders (r = -0.356, ρ = -0.363) and the 

exceptional responders (r = -0.365, ρ = -0.387). 

 

Discussion 

Spearman versus Pearson Correlation 

 Both the Spearman and the Pearson correlation methods are utilized in the 

literature to assess the relationship between methylation and gene expression, but most 

studies include only one or the other. The Pearson test is more suited to continuous  
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Genes Pathways 

 CCL20 

IL6 

CXCL8 

NFKB1 

 

IL-17 signaling pathway 

 BCL3 

CCL20 

IL6 

NFKB1 

 

TNF signaling pathway 

 

IL6 

CXCL8 

NFKB1 

 Pathways in cancer 

Non-alcoholic fatty liver disease 

Chagas disease 

Legionellosis 

Pertussis 

Salmonella infection 

Amoebiasis 

Kaposi’s sarcoma-associated herpesvirus infection 

Transcriptional misregulation in cancer 

Toll-like receptor signaling pathway 

Cellular senescence 

Hepatitis B 

NOD-like receptor signaling pathway 

AGE-RAGE signaling pathway in diabetic complications 

Influenza A 

 CCL20 

IL6 

CXCL8 

 
Rheumatoid arthritis 

Cytokine-cytokine receptor interaction 

 CCL20 

CXCL8 

NFKB1 

 

Chemokine signaling pathway 

Table 19: Significantly enriched KEGG pathways in typical responders. KEGG analysis 

identified multiple pathways enriched in typical responders that are associated with five groups 

of genes. 
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Genes Pathways 

 CACNA1A 

DNM1 

RAB3A 

RIMS1 

STXBP1 

SYT1 

 

Synaptic vesicle cycle 

 CACNA1A 

CACNA1I 

MEF2C 

NF1 

 

MAPK signaling pathway 

 CACNA1A 

CACNA1I 

NOS1 

 

Calcium signaling pathway 

 CDK5 

NOS1 

SNCA 

 

Alzheimer’s disease 

 PINK1 

SNCA 

SNCAIP 

 

Parkinson’s disease 

Table 20: Significantly enriched KEGG pathways in exceptional responders.  KEGG analysis 

identified enriched pathways in exceptional responders. 
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Figure 13: Heat maps for methylation and gene expression. Heat maps were generated with all 

genes from Table 15 that had data for both methylation and gene expression. Heat maps for both 

typical and exceptional responders indicate a negative correlation between methylation and gene 

expression. This correlation appears to be stronger in the list of genes that are upregulated in 

typical responders. 
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Typical 

 Copy Number & Gene Expression Methylation & Gene Expression 

Pearson (r) 0.2333 -0.4484 

Spearman (ρ) 0.2496 -0.5174 

Exceptional 

 Copy Number & Gene Expression Methylation & Gene Expression 

Pearson (r) 0.2120 -0.6065 

Spearman (ρ) 0.2370 -0.5857 

Table 21: Correlation between copy number/methylation and gene expression. Each correlation 

test was performed for the list of genes in Table 15, excluding those that did not have data available 

for the relevant data type. The results indicate a weak to moderate positive correlation between 

copy number and gene expression and a strong negative correlation between methylation and gene 

expression. 
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variables, while the Spearman test is more suited to categorical variables.95 β values are a 

continuous variable, so the Pearson test seems more appropriate, but the Spearman test 

generally gives results of a larger magnitude for correlations between methylation and 

gene expression, which is perhaps why it is used so often for those types of studies. It is 

possible that the Spearman test typically gives better results because methylation may be 

more categorical than continuous in reality, functioning more like an on/off switch than 

in a linear manner. In any case, both tests were utilized in this study to provide a clearer 

understanding of the relationship between methylation and gene expression for this 

dataset. 

 

Enriched GO Terms 

 The main contributors to the enriched GO terms for typical responders are IL6 

(interleukin 6), which is associated with all three terms, and BCL3 (B-cell lymphoma 3), 

NFKB1 (nuclear factor kappa B subunit 1), and TRIB2 (tribbles pseudokinase 2), which are 

associated with two terms each. All four of these genes are associated with NF-κB, a 

protein complex that acts as a transcription factor and plays a role in cytokine production 

and cell survival. NF-κB is constitutively active in many cancers, causing cells to 

proliferate and protecting them from death by apoptosis.96 Activation of NF-κB in GBM 

has been shown to contribute to angiogenesis and temozolomide resistance.97 Typical 

responders are characterized by a significant upregulation of key players in NF-κB 

signaling relative to exceptional responders, which may explain their poorer prognosis. 

An alternative way to view this is that exceptional responders are characterized by less 
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NF-κB signaling, allowing them to remain more sensitive to temozolomide and resulting 

in longer survival times. 

 Nearly all of the GO terms enriched in exceptional responders are associated with 

synaptic plasticity. The process of autophagy intersects with many of the pathways 

known to underlie synaptic plasticity, and it has been proposed that autophagy plays a 

direct role in synaptic plasticity.98,99 Perhaps the tumors of exceptional responders are 

more susceptible to cell death by autophagy, or some other consequence of increased 

synaptic plasticity may confer some advantage. 

 SNCA (synuclein alpha), which is associated with eight of the enriched GO terms, 

may be of particular interest as it has been shown to increase the vulnerability of the GBM 

cell line U373 to cell death.100 SYT11 is of interest as well, as its depletion is known to block 

autophagy.101 The upregulation of SYT11 in exceptional responders may allow autophagy 

to occur. 

 

Enriched KEGG Pathways 

 The top enriched pathways in typical responders are IL-17 and TNF. IL-17 is a pro-

inflammatory pathway that can contribute to tumor progression and metastasis as well as 

resistance to chemotherapy.102 TNF activates the NF-κB pathway and can promote cell 

growth, proliferation, invasion, and angiogenesis.103 Enrichment of either of these 

pathways could contribute to the poorer prognosis seen in the typical response group. 

Cytokine-cytokine receptor interaction and chemokine signaling pathways are also 

implicated, much like in the GO analysis. 
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 In exceptional responders, synaptic transmission appears again, along with MAPK 

signaling, calcium signaling, Parkinson’s disease, and Alzheimer’s disease, all of which 

are related to synaptic plasticity.104–107 Parkinson’s disease pathways being enriched in 

exceptional responders is of particular interest, as several epidemiological studies indicate 

an inverse association between cancer risk and Parkinson’s disease.108 Like synaptic 

plasticity, the enrichment of Parkinson’s and Alzheimer’s pathways also implicates 

autophagy since both of those diseases are characterized by neurodegeneration in which 

autophagy plays a role.109,110 Perhaps the upregulation of these pathways in exceptional 

responders makes the tumors more susceptible to autophagic cell death. 

 

Correlation Results 

 No gene was identified as statistically significant among the results of more than 

one data type. However, the trends seem to match and the correlation results corroborate 

this. In many cases, the r and ρ values reported in this study would be considered weak 

to moderate, but in the case of the correlation between methylation and gene expression, 

correlation coefficients with the magnitudes identified in this study are quite good. 

Typically, correlation coefficients for methylation and gene expression are rather modest, 

right around -0.3, which has been attributed to noise, sample heterogeneity, and other 

regulatory events besides methylation.111 This means that the relationship between 

methylation and gene expression in this study is a strong negative correlation, as the 

correlation coefficients are of a larger magnitude than 0.3, especially when the gene list 

being assessed is narrowed to only the significant results list. The correlation between 
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copy number and gene expression is not as strong, but this is not surprising given the 

large number of other regulatory mechanisms that could be affecting gene expression, as 

well as the fact that nearly all of the significant copy number aberrations were only gains 

or losses and not whole duplications or deletions. 
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DISCUSSION 

 

Sex as a Confounding Variable 

 Although sex was a confounding variable for survival between the typical and 

exceptional response groups, it was not confounding in the full dataset. Although the 

incidence of GBM is higher in males, sex has not been found to be predictive of prognosis 

or survival in GBM.112 For these reasons, it seems likely that the identification of sex as a 

confounding variable is an artifact or just occurred by chance for this particular dataset. 

 Although it is unlikely that sex is truly predictive of survival in GBM, the 

distribution of sexes between the two response groups was significantly skewed 

nonetheless, and this had to be accounted for. When possible, this problem was addressed 

by performing sex-specific analyses in addition to the full analysis of typical versus 

exceptional responders (as in the copy number and expression analyses), and then only 

results identified in all three analyses or only in the full analysis and not in the sex-specific 

analyses were included in the final results. When there was not a sufficient number of 

samples available to perform sex-specific analyses (as in the methylation analysis), sex 

chromosomes were excluded from the analysis. These efforts seem to have been successful 

in controlling for the differential distribution of sex in the response groups. Prior to 

performing the methods to control for sex, many results were genes on the X or Y 

chromosome or were otherwise associated with sex. This was particularly true in the 

methylation analysis, in which most of the results were on the X chromosome prior to 

controlling for sex. This was likely due to X inactivation in females, which is the process 
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by which one X chromosome is silenced via heavy methylation.113 After the methods to 

control for the differential distribution of sexes were applied, the final results for all the 

data types were largely biologically relevant and not associated with any sex-specific 

biological processes. 

 

Data Types with No Significant Results 

 Of all the data types analyzed, the miRNA expression analysis and the protein 

expression analysis were the only ones that did not yield any significantly differentially 

expressed results. In the case of protein expression, this is likely largely due to both the 

small sample size and the relatively small number of proteins assessed. While RPPA 

assesses expression of quite a large number of proteins compared to other techniques such 

as western blots, it is still only a very small fraction of the proteome (222 antibodies). The 

only overlap between the significant results from other data types and the list of proteins 

assessed by RPPA is CDKN2A, which had a greater magnitude of copy number loss in 

typical responders. Protein expression results indicate that typical responders had a lower 

mean relative expression of CDKN2A (0.496 for typical and 1.095 for exceptional), as 

expected based on the copy number analysis, but this result was not statistically 

significant. Between the low degree of overlap and the small number of patients for whom 

protein expression data were available, it is not surprising that no significant results were 

identified. As for the miRNA expression, the sample size was suitable and the number of 

miRNAs assessed was reasonable, and yet no significant results were identified. While it 

has been established that aberrant expression of a variety of miRNAs relative to normal 
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expression is characteristic of GBM overall, it is possible that these are simply not 

differentially expressed between the response groups in this dataset. 

 

Trend of Disorder in Typical Responders 

 The results from several analyses suggest that typical responders are characterized 

by a loss of transcriptional control and aberrations of a greater magnitude than 

exceptional responders. The copy number analysis revealed that while most copy number 

alterations are consistent across both response groups, the magnitude is consistently 

larger in the typical responders. Methylation levels at CpG sites with a large degree of 

variation between the response groups are almost invariably lower in typical responders, 

suggesting that exceptional responders have increased gene silencing and transcriptional 

control. While both response groups tend to be characterized by many of the same 

alterations, the changes tend to be more severe in typical responders. The somewhat less 

severe alterations in exceptional responders may be contributing to their better prognosis. 

 

Correlation Trends 

 No single gene was identified as statistically significant in more than one data 

type. However, the trends for most of the significant results are concordant. For example, 

genes with significantly higher promoter methylation tend to have lower expression 

levels even though the expression comparison does not reach statistical significance. 

Genes with copy number gains tend to have higher expression, genes with copy number 

losses tend to have lower expression, and so on. The negative correlation between 
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methylation and gene expression among the significant results list is particularly 

convincing, with r and ρ values ranging from -0.4484 to -0.6065, indicating a strong 

relationship between increased methylation and reduced gene expression among genes 

that are altered between typical and exceptional responders.  

 

Frequently Affected Pathways and Biological Processes 

NF-κB 

 NF-κB was determined to be upregulated in typical responders relative to 

exceptional responders in several analyses. Four of the five groups of genes associated 

with enriched KEGG pathways in typical responders include NFKB1, a key player in the 

NF-κB pathway. One of these enriched pathways is the TNF signaling pathway, which 

activates NF-κB signaling, resulting in proliferation and protection from death by 

apoptosis.103 NFKB1 was also an important player in two of the three enriched GO terms 

in typical responders. Several other genes associated with NF-κB signaling were present 

in the significant results, including IL6, BCL3, and TRIB2. Enrichment of this pathway in 

typical responders may be partially responsible for their worse prognosis. Upregulation 

of the NF-κB pathway is common in many cancers, including GBM, so perhaps a better 

way to view this result is that exceptional responders tend to have less upregulation of 

NF-κB than most GBM patients, providing them with a survival benefit. 
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Synaptic Plasticity 

 The top KEGG pathway result, nearly all of the GO terms, and all of the GSEA 

gene sets enriched in exceptional responders are directly related to synaptic plasticity, 

which is the ability of neurons to change the quantity and strength of their synapses. 

Astrocytes are heavily involved in this process.114 Autophagy pathways and synaptic 

plasticity pathways have a lot of overlap, and it has been proposed that autophagy plays 

a direct role in synaptic plasticity.98,99 Perhaps the upregulation of genes related to synaptic 

transmission in exceptional responders leaves their tumor cells more susceptible to 

autophagy. Glioblastoma cells are more likely to respond to autophagy-inducing 

therapies than to apoptosis-inducing therapies115, and it is possible that this characteristic 

of expectational responders increases this positive response even further. It may also be 

the case that some other aspect of synaptic transmission and synaptic plasticity confers a 

benefit to exceptional responders. 

 

Neurodegenerative Diseases 

 Both Alzheimer’s disease and Parkinson’s disease pathways were enriched in 

exceptional responders based on the KEGG analysis. Both of these diseases are 

characterized by cell death through autophagy and/or apoptosis.109,110 Some studies 

indicate that higher risk of Parkinson’s disease is inversely associated with cancer risk.108 

While activation of these pathways is certainly detrimental in neurodegenerative diseases, 

in cancer it may result in increased sensitivity to treatment. Tumors of exceptional 
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responders with upregulation of these pathways may retain the ability to undergo cell 

death in response to treatment, granting exceptional responders a better prognosis. 

 

Cytokine Signaling 

 Cytokines are a group of small proteins that are important in cell signaling and are 

especially important in the immune system. Pro-inflammatory cytokines are known to 

promote cancer cell proliferation in many cases.116 Several pro-inflammatory cytokines 

and associated pathways were implicated in typical responders throughout this study, 

including IL6, CCL20, CXCL8, TNF signaling, and IL-17 signaling. The top enriched GO 

term in typical responders was the regulation of cytokine biosynthetic processes and 

enriched KEGG pathways in typical responders included cytokine-cytokine receptor 

interaction and chemokine signaling pathway, in addition to the aforementioned TNF and 

IL-17 signaling pathways. CXCL8 and CCL20 are perhaps the most prominent of these 

results, as they were the only two genes with significantly higher expression in typical 

responders compared to exceptional, and at least one of them is present in every group of 

genes associated with the enriched KEGG pathways in typical responders. CXCL8 was 

also found to be predictive of survival outcome in the full TCGA GBM dataset of 408 

patients, with increased expression associated with significantly shorter survival times. 

Typical responders are characterized by upregulation of pro-inflammatory cytokine 

signaling, and exceptional responders do not share this trait. This lack of pro-

inflammatory signaling in exceptional responders may give them a better prognosis. 

 



81 

 

Final Remarks 

 The significant results generated in the copy number, methylation, gene 

expression, and pathway analyses conducted in this study have provided some insight 

into the molecular differences between typical and exceptional responders in GBM. 

Upregulated pathways and processes in typical responders are consistently associated 

with more aggressive tumor phenotypes that may be partially responsible for the poor 

response to treatment that most GBM patients exhibit. Upregulated pathways and 

processes in exceptional responders may indicate that the small number of patients who 

respond very well to treatment have tumors that have retained the ability to undergo cell 

death by autophagy, which may make the standard GBM treatment of temozolomide 

more effective for this group. 
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