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Molecular mechanisms of C-terminal Eps15 Homology Domain containing (EHD) 

protein function 

Kriti Bahl, Ph.D. 

Advisor: Steve Caplan, Ph.D. 

Endocytic trafficking is not only an essential process for the maintenance of 

cellular homeostasis but also plays a vital role in regulating diverse cellular processes 

such as signaling, migration and cell division. The C-terminal Eps 15 Homology Domain 

proteins (EHD1-4) play pivotal roles in regulating distinct steps of endocytic trafficking. 

Among the EHDs, EHD2 is disparate both in terms of sequence homology (70%) and its 

subcellular localization at the caveolae. The crystal structure of EHD2 has been solved 

and it contains an unstructured loop consisting of two proline-phenylalanine (PF) motifs: 

KPFRKLNPF. However, the other paralogs EHD1, EHD3 and EHD4 contain a single 

KPF or RPF motif, but no NPF motif. In this study, we sought to elucidate the precise 

role of the two PF motifs of EHD2 in homo-dimerization, binding with the protein 

partners, and subcellular localization. We demonstrated that an EHD2 NPF-to-NAF 

mutant that mimics the homologous sequences of EHD1 and EHD3, lost its ability to 

dimerize and bind to Syndapin2. However, it continues to localize primarily to the 

cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants 

maintained their ability to dimerize and bind to Syndapin2, but exhibited markedly 

increased nuclear localization and decreased association with the plasma membrane. 

Hence, the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the 

plasma membrane, whereas the proline residue is essential for EHD2 dimerization and 

binding. These studies also support the recently proposed model in which the EHD2 N-

terminal region may regulate the availability of the unstructured loop for interactions with 

neighboring EHD2 dimers, thus promoting oligomerization. We further hypothesized that 

the single PF motif of EHD1 might be responsible for both binding and localization 
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functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, 

interaction with MICAL-L1 and Syndapin2, as well as localization on tubular recycling 

endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was 

incapable of supporting normal receptor recycling. The biogenesis of tubular recycling 

endosomes (TRE), their role in cargo-sorting and subsequently their vesiculation are 

essential for receptor recycling. EHD proteins have been implicated in the bending and 

fission of TRE, thus regulating endocytic recycling. Recent studies from our lab have 

demonstrated that asparagine-proline-phenyalanine (NPF)-containing binding partners 

of EHD1 and EHD3, such as molecules interacting with CasL-like1 (MICAL-L1) and 

Syndapin2, are indispensable for TRE biogenesis. Also vital for TRE biogenesis is the 

generation of phosphatidic acid (PA), an essential lipid component of TRE that serves as 

a docking point for MICAL-L1 and Syndapin2. EHD1 and EHD3 have 86% amino acid 

identity; they homo-and heterodimerize and partially co-localize to TRE. Despite 

remarkable identity between EHD1 and EHD3, they have disparate mechanistic 

functions. EHD1 induces membrane vesiculation, whereas EHD3 supports TRE 

generation and/or stabilization by an unknown mechanism. While using 

phospholipase D inhibitors (which block the conversion of glycerophospholipids to PA) to 

deplete cellular TRE, we observed that, upon inhibitor washout, there was a rapid and 

dramatic regeneration of TRE, as observed by immunostaining with MICAL-L1 

antibodies. This “synchronized” TRE biogenesis system has enabled us to determine 

that EHD3 is involved in the stabilization of TRE rather than in their biogenesis. 

Moreover, we have identified residues Ala-519/Asp-520 in the EH domain of EHD1 and 

Asn-519/ Glu-520 in the EH domain of EHD3 as being important for that dictating the 

preference of these two paralogs for NPF-containing binding partners. Overall, we have 

delineated a model to explain the atomic basis for understanding the differential roles of 

EHD3 and EHD1 in stabilization and vesiculation of TRE, respectively.  
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1. Endocytic trafficking 

 

1.1 Overview 

The plasma membrane (PM) is a lipid bilayer that forms a permeability barrier 

between the interior of the cells and the extracellular environment (Conner and Schmid, 

2003). The PM not only regulates the selective transport of ions and macromolecules in 

and out of the cell but also mediates communication with neighboring cells and the 

extracellular environment. Hence, the composition of the PM needs to be tightly 

regulated to generate appropriate responses to the cues from the extracellular 

environment. The dynamic interplay between endocytic trafficking and exocytic events is 

crucial for the precise regulation, and maintenance of the surface area and composition 

of the PM (Doherty and McMahon, 2009). 

Endocytosis or endocytic trafficking refers to the process of internalization of 

receptors, proteins, and nutrients along with extracellular fluid enclosed in an 

invaginated portion of the PM, which culminates in pinching off of the membrane to form 

a vesicle (Conner and Schmid, 2003). The internalized lipids and proteins are returned 

to the PM by the process of exocytosis. Internalization of PM containing lipids, proteins, 

and receptors can occur through mechanistically diverse pathways regulated by distinct 

molecular players (detailed explanation in section 2). Irrespective of the mode of 

internalization, endocytosed cargo is packaged into a vesicle and delivered to a common 

“sorting station” known as the sorting endosome (SE) or the early endosome (EE) 

(Mayor et al., 1993; Mellman et al., 1996), where initial sorting events decide the fate of 

incoming cargo (Hauotari and Helenius, 2011). From here, cargo destined for 

degradation is transported to the late endosome (LE) and the lysosome, bound for 

recycling to the PM, or transported to the trans-Golgi network (TGN). While the receptors 
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and some of the lipids are destined for recycling; the ligands, soluble proteins of the PM 

are generally transported for degradation (Maxfield and MacGraw, 2004) (Fig 1.1). 

Endocytic trafficking plays a vital role in regulating diverse processes, including 

nutrient uptake, regulation of surface receptors, cellular signaling, cytokinesis (Schmid 

and Conner, 2003; Skop et al., 2001), maintenance of cell polarity, cell adhesion and 

migration (Wang et al., 2000; Caswell and Norman, 2008), and synaptic vesicle retrieval 

in neurons (Kjaerulff et al., 2002). In addition, elegant studies have confirmed that 

pathogens exploit distinct endocytic pathways for their internalization in the cell (Mercer 

et al., 2010). Dysregulation of endocytic transport is related to diverse diseases including 

cancer, neurodegeneration, and heart disease (Conner and Schmid 2003; Stein et al., 

2003). Thus, elucidation of the underlying mechanisms of endocytic trafficking will 

ultimately provide novel avenues for developing innovative therapeutic strategies and 

drug discovery.  

 

2. Routes of Internalization 

Internalization can occur through various mechanisms primarily governed by the 

size of the molecules and particles that the cell uptakes. Small molecules including 

amino acids, sugars and ions can enter through the channels and protein pumps. 

However, the macromolecules are endocytosed through the membrane invaginations 

and budding of the PM. Endocytosis is broadly classified into two main types based on 

the size of the endocytic vesicle: 1) phagocytosis involves large particles (>250) nm 

including microbial pathogens and cellular debris (Addermen and Underhill, 1999) 2) 

pinocytosis involves the uptake of fluid and low-molecular-weight solutes (<150) nm  
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Figure 1.1. Pathways of endocytosis and endocytic recycling.  
 
Itinerary of cargo proteins and lipids internalized in cells by clathrin-mediated endocytosis 
(CME) (blue cargo) and clathrin-independent endocytosis (CIE) (red cargo) and 
subsequent routes of cargo to the early endosome (EE), endocytic recycling compartment 
(ERC) and recycling endosome (RE) is shown. 
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Figure 1.1 
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(Schmid and Conner, 2003). Pinocytosis, also known as “cell drinking” can be further 

classified based on the endocytic machinery recruited by the cargo molecules into 

clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE). CIE is 

further subdivided into caveolae-mediated endocytosis, clathrin-independent 

endocytosis and caveolae-independent endocytosis (CCIE) (Conner and Schmid, 2003; 

Mayor and Pagano,2007) (Mayor, Parton and Donaldson, 2014). 

 

2.1 Clathrin-mediated endocytosis (CME) 

CME is the most extensively characterized route of internalization from the PM. 

The seminal discovery of clathrin and purification of clathrin-coated vesicles (CCVs) by 

Barbara Pearse forms the basis of our current understanding of CME (Pearse, 1987). 

Over the past 40 years, much work has shed light on the mechanism by which receptors 

and their bound ligands are internalized into clathrin-coated pits (CCPs) and eventually 

form the CCVs (Sorokin, 2004; Robinson, 2015). CCV formation is divided into a five-

stage process: initiation, cargo selection, coat assembly, scission, and uncoating. The 

first stage of pit formation (CCP) is the assembly of a putative “nucleation module” 

consisting of Fps/Fes/Fer/CIP4 homology (FCH) domain only (FCHO) proteins, EGFR 

pathway substrate 15 (Eps15) and Intersectins at the PM (McMahon and Boucrot, 2011; 

Boucrot and McMahon, 2011). Furthermore, recent studies have demonstrated, proteins 

in the “nucleation module” are responsible for recruiting a tetrameric Adaptor Protein-2 

(AP-2) that is a hub of interactions as it binds to both cargo and lipids in the PM 

(preferentially phosphatidylinositol (4, 5) bisphosphate (PIP2)). AP-2 is a complex 

composed of two large adaptin subunits-α and β2, one medium-μ2 and one small σ2 

subunit (Owen et al., 2004). The AP-2 complex recognizes two types of motifs on the 

cytoplasmic tail of receptors (cargo): tyrosine-based motifs with a consensus sequence 

YXXΦ, where Y is a tyrosine residue, X stands for any amino acid residue and Φ is a 
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bulky hydrophobic amino acid residue, and the dileucine-based sorting signals with a 

consensus sequence [aspartic acid-glutamic acid]-X stands for any amino acid residue-

X-X-leucine- [leucine-isoleucine] [DE] XXXL [LI] (Bonifacino and Traub, 2003). The 

binding site for the tyrosine-based motifs is on the carboxyl terminus (C) of the μ2 

domain (Ohno et al.,1995), while the α/σ2 hemi-complex and potential β2 subunit bind to 

the dileucine-based sorting signal sequence (Chaudri et al., 2007; Doray et al., 2007). 

There are other specialized adaptor proteins known as clathrin-associated sorting 

proteins (“CLASPs”), that recognize diverse sorting signals on the respective cargo 

receptors thus facilitating a large repertoire of distinct cargo to be endocytosed (Linton 

and Bonifacino, 2013). For instance, cargo receptors such as the low-density lipoprotein 

receptor (LDLR) have an phenyalanine-X stands for any amino acid residue-asparagine 

-proline-X-tyrosine (FXNPXY) motif, that doesn’t directly bind to AP-2; hence the 

cooperation with CLASPs containing a phospho-tyrosine binding (PTB) domain such as 

disabled homolog 2 (Dab2) or autosomal recessive hypercholesterolemia protein (ARH) 

contributes to the process (Maurer and Cooper, 2006; Hawryluk et al., 2006). Post-

translational modifications such as phosphorylation and ubiquitination can also recruit 

adaptor proteins to receptor tails as in the case of binding of Epsin to the ubiquitinated 

Epidermal Growth Factor Receptor (EGFR). Epsin is another example of a CLASP and it 

primarily regulates EGFR internalization (Polo et al., 2002; Kazazic et al., 2009). Once 

the cargo is selected and packaged by AP-2 or CLASPs, the assembly of the clathrin 

coat is initiated. AP-2 and accessory proteins recruit clathrin on the nascent CCP. 

Clathrin is a trimer of a dimers of three heavy chains and three light chains assembled 

as a triskelion (three-legged) that has an intrinsic ability to form cage-like structures, 

which facilitate membrane invagination (Kirchhausen, 2000). Next, accessory proteins 

such as Bin-Amphiphysin-Rvs (BAR) containing proteins are recruited to generate and 

stabilize the curvature of maturing CCPs (Quallmann B et. al, 2011). In addition, a large 



   - 8 - 
 

and modular guanosine tri-phosphatases (GTPase) known as Dynamin, together with 

other curvature sensing proteins including Amphiphysin, Endophilins and Sorting nexin 9 

(SNX9), facilitates the release of CCVs from CCPs (Lee et al., 1999; Vallis et al., 1999; 

van der Bliek et al., 1993; Yoshida et al., 2004). Dynamin oligomerizes as collar-like 

structures around the neck of CCPs and undergoes guanosine tri-phosphate (GTP) 

hydrolysis to mediate membrane fission and generate CCVs. After vesicle scission, the 

clathrin coat is disassembled by the action of an adenosine tri-phosphatase (ATPase) 

known as Heat shock cognate 70 (Hsc70) and its cofactor Auxillin (Braell et al., 1984; 

Prasad et al., 1993; Ungewickell et al., 1995). LDL receptor and the iron-laden 

transferrin receptor (Tf) are examples of signature cargo internalized by CME. 

 

2.2 Clathrin-Independent Endocytosis (CIE) 

CME is the predominant endocytic paradigm by which receptors are internalized; 

however, cells utilize mechanisms beyond clathrin-coated pits, collectively known as 

CIE. A common feature of CIE is their dependence upon cholesterol (Sandvik and 

vanDeurs, 1994; Mayor and Pagano, 2007).  

 

2.2.1 Caveolae-mediated pathway 

The caveolae-mediated pathway is the best-characterized clathrin-independent 

endocytic pathway (Rothberg et al., 1992). Caveolae are flask-shaped invaginations of 

50-100 nm that are concentrated in microdomains of PM enriched in cholesterol, 

sphingolipids, and phosphatidylinositol (4,5)-bisphosphate (PIP2) (Andereson 1998; Pitto 

et al., 2000; Simone et al., 2014). Caveolin-1, an integral membrane protein that 

oligomerizes as well as inserts itself as a loop in the PM to generate the framework of 

caveolae (Bastini and Parton, 2010). At the PM, caveolin-1 recruits multimeric 

complexes of cavin proteins (cavin 1-4) that aid in shaping and stabilizing the caveolar 
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invaginations (Hill et al., 2008; Hansen et al., 2009; et al., 2009. Additionally, Syndapin2 

(also known as Pacsin2), a BAR domain-containing protein that can sense and modulate 

membrane curvature, shapes the caveolar invagination (Senju et al., 2011 and Koch et 

al., 2012). Syndapin2 also has a Src homology 3 (SH3) domain that facilitates its binding 

to the proline-rich domain (PRD) of Dynamin and a tripeptide sequence containing, 

asparagine-proline-phenylalanine (NPF) motif that mediates binding with C-terminal 

Eps15 homology domain containing (EHD) protein 2 (EHD2). Recently, a series of 

reports have firmly established the caveolar localization of EHD2 and caveolar 

stabilization occurs in an adenosine triphosphate (ATP)-dependent manner. Previous 

studies from our lab have shown that the localization of EHD2 on caveolae is 

independent of its interaction with Syndapin2 and dependent on PIP2 in the PM (Moren 

et al., 2012; Stoeber et al., 2012; Simone et al., 2013). Caveolae are specifically 

enriched in certain cell types including smooth muscle cells, fibroblasts, adipocytes, and 

endothelial cells (Parton and Simons, 2007). The cargo that are internalized in caveolin-

positive structures include simian virus 40 (SV40) virions, cholera toxin B subunit 

(CTxB), and glycosylphosphatidylinositol (GPI)-linked proteins (Cheng et al., 2006; 

Kirkham and Parton, 2005; Parton and Simons, 2007).  

 

2.2.2 Clathrin-Independent Carriers/GPI-AP-enriched early endosomal compartment 

(CLIC/GEEC) 

Proteins that are attached to the membrane by GPI-anchor-linked proteins (GP1-

AP) are internalized independent of clathrin and caveolin coats however they require 

cholesterol enriched microdomains (Sabharjanek et al., 2002). GPI-APs are internalized 

through specialized EE-like structures termed, GPI-AP-enriched early endosomal 

compartment (GEEC). They are formed by the fusion of cell surface-derived clathrin 

independent (CI) tubulovesicular intermediates termed CLICs (Kirkham et al., 2005). 
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CLIC formation is regulated by small GTPases including cell cycle dependent 42 

(Cdc42) and adenosine di-phosphate (ADP)-ribosylation factor1 (Arf1) (Kumari and 

Mayor, 2008). These structures are Dynamin-independent and their budding mechanism 

is not clear. However, recently a specific marker and regulator of these CLICs has been 

identified, a protein called GTPase regulator associated with focal adhesion kinase-1 

(GRAF1). GRAF1 has distinct domains capable of regulating membrane deformation, a 

scission-BAR domain (membrane and curvature sensing), a pleckstrin homology (PH) 

domain (directly interacts with PIP2 in PM) and an SH3 domain (which can bind to a 

PRD domain in Dynamin) (Lundmark et al., 2008). Furthermore, previous work from our 

lab has led to a model that suggests the formation of a vesiculation complex that 

comprises Molecules Interacting with CAsL-Like1 (MICAL-L1) and C-terminal Eps15 

homology domain containing (EHD) protein 1(EHD1) on tubular recycling endosome 

(TRE) and supports TRE vesiculation (Cai et al., 2012; Cai et al., 2014). Thus, GRAF1 

could also be a potential vesiculator of this pathway. Cargo that are internalized by this 

pathway are GPI-APs, CTxB and fluid phase markers (Mayor and Pagano, 2007; 

Doherty and MaMahon, 2009). 

 

2.2.3 Arf6 Associated Pathway 

Another clathrin-independent pathway for the internalization of cell surface 

integral proteins lacking adaptor protein recognition sequences is associated with 

ATPase, ADP-ribosylation factor 6 (Arf6). Arf6 is localized at the PM and it regulates the 

flow of trafficking into and out of the cell, and the actin cytoskeleton at the PM. Arf6 is 

responsible for activating phosphatidylinositol 4,5 kinase (PIP5K) for generation of PIP2. 

The tubule-vacuolar carriers of cargo in this pathway are enriched in PIP2. Furthermore, 

PIP2 can also stimulate the actin polymerization machinery and drive the endocytic 

pathway. Thus, Arf6 indirectly regulates endocytic events through PIP2. The GPI-AP, 
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CD59, CD55 and major histocompatibility complex class I (MHC I) proteins are the 

primary cargo internalized by this pathway (Naslavsky et al., 2003). 

 

2.2.4 Flotillin-Dependent Pathway 

Flotillins are proteins localized to specific microdomains or lipid rafts in the PM 

and mediate yet another clathrin-independent endocytosis pathway that is regulated by 

the Src family tyrosine kinase Fyn (Gleebov et al., 2005; Otto and Nicholas, 2005). The 

flotillin family comprises flotillin 1 and flotillin 2 proteins, which are highly homologous 

(sharing 50% sequence identity). Flotillin 1 and flotillin 2 assemble in almost equal 

amounts at the PM for generation of the transport carriers (Otto and Nicholas, 2005). 

The cargo that utilize this pathway are CTxB, GPI-AP CD59, and fluid-phase markers. 

 

2.2.5 Other routes 

Another clathrin-independent pathway is the endocytic mechanism used by the 

interleukin-2 (IL-2) receptor. The concentration and internalization of IL-2 receptors 

occurs via small non-coated invagination (Mayor et al., 2014). The process is dependent 

upon RhoA and consequently ras-related C3 botulinum toxin substrate 1(Rac1) (Lamaze 

et al., 2001; Gesbert et al., 2004)(Fig 1.1).  

 

3. Sorting of Cargo at EE/SE 

Regardless of which of the many pathways receptors are internalized in mammalian 

cells, the internalized cargo enters a well-defined endomembrane or organellar system. 

The endocytic system decides the direction of flow and ultimately the fate of the cargo. 

Accordingly, a unique mechanism has evolved to converge differentially internalized 

cargo to a common sorting station for the initiation of sorting. This common sorting 

station localized to the cell is known as the EE or SE (see Fig 1.1) (Mayor et al., 1993; 

https://www.mechanobio.info/uniprot/P06241/
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Maxfield and McGraw, 2004). Rab5 is a key component of the cytosolic surface of EE, 

and together with its effector Vps34/p150, forms a phosphatidylinositol 3-kinase (PI(3)K) 

complex. Activation of PI(3)K complex leads to phosphorylation of phosphoinositidyl 

inositol (PI) and its conversion to phosphatidylinositol (3) Phosphate (PI(3)P), 

PtdIns(3)P, which is the most abundant phosphoinositide in the EE membrane. The 

simultaneous presence of Rab5 and PtdIns(3)P helps to EE to initiate a signaling 

cascade, which regulates the homotypic fusion in EE and motility of EE on actin and 

microtubular tracks(Zerial and Mcbride, 2001; Behnia and Munro, 2005). 

  EE have a mildly acidic luminal pH (≈6.3-6.5), thereby facilitating the uncoupling 

of ligands from their receptors within minutes of internalization. The uncoupling of 

receptors from the ligands is the first step of sorting (Maxfield and McGraw, 2004). 

Additionally, the EE is a highly dynamic structure with a strong propensity to undergo 

homotypic fusion (Gruenberg et al., 1989). It is a highly complex and pleomorphic 

organelle that consists of morphologically distinct elements, thin tubules (≈60 nm 

diameter) and large vesicles (≈300-400 nm diameter) with membrane invaginations and 

a multi-vesicular appearance. This precise subdomain morphology provides a platform 

for efficient “geometric sorting” of the cargo (Mayor et al., 1993). The tubular elements 

that have a high surface-to-volume ratio preferentially cluster cargo targeted for 

recycling. On the other hand, cargo concentrated in large vesicles (that eventually form 

multi-vesicular bodies (MVBs)) is shunted for degradation (Mellman, 1996). In most 

cases, the receptors are recycled back to the PM for additional rounds of ligand binding 

and the ligand is transported to lysosomes for degradation (Maxfield and McGraw, 

2004). For instance, Tf and LDL receptors are recycled from EE, whereas the LDL itself 

and EGFR coupled to its ligand are transported for degradation (Jovic et al., 2009).  

 

3.1 Sorting to the lysosomes for degradation 
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EE is responsible for sorting the soluble ligands and signaling receptors for 

degradation in a regulated manner. The soluble ligands are automatically sorted for 

degradation as the EE matures into LE. However, the sorting of signaling receptors for 

degradation in lysosomes requires specific sorting signals in the cytosolic domain. The 

signaling receptors are targeted to the lysosomes through the LE in order to attenuate 

their signals. Epidermal growth factor (EGF)-laden EGFR is a prototypic receptor 

tyrosine kinase (RTK) having specific cytosolic domain recognized by the sorting 

machinery for degradation (Haglund et al., 2003; Mosseson et al., 2003). The mono-

ubiquitinylation of one or more lysine residues in the cytoplasmic tail of EGFR serves as 

an important intracellular sorting signal for the degradative pathway (Barriere et al., 

2006; Haglund et al., 2003; Huang et al., 2006; Levkowitz et al., 1999; Umebayashi et 

al., 2008).  The ubiquitylated receptors are recognized by several ubiquitin-interacting 

motif (UIM)-containing proteins, endosomal sorting complexes required for transport-0 

(ESCRT-0) component, hepatocyte growth factor regulated tyrosine kinase substrate 

(Hrs), Eps15R, signal transducing adaptor molecule 2 (STAM2) and the ESCRT-I 

component, tumor susceptibility gene 101 (Tsg101) (Raiborg et al., 2002). Hrs also 

interacts with the flat clathrin lattice to form clustered Hrs microdomains for specialized 

recognition of ubiquitylated membrane proteins and their efficient sorting for degradation 

(Raiborg et al, 2002). Concomitantly, the ESCRT-I component, Tsg101, promotes the 

recruitment of ESCRT-II complex and initiation of the budding process of the MVB. Upon 

recruitment ESCRT-II initiates the oligomerization of the ESCRT-III complex on the 

endosomal membrane (Raiborg et al., 2009). ESCRT-III complex sequesters the cargo 

in nascent MVB and catalyzes the scission of MVB (Babst et al., 2002 a and b; 

Bonifacino and Hurley, 2008; Schmidt and Ties, 2012). Once the MVB formation is 

completed, Vps4, an ATPases associated with various cellular activities (AAA ATPase) 

is recruited, which catalyzes the disassembly of ESCRT-III from the MVB membrane. 
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The disassembly of ESCRT-III is essential for termination of cargo sorting and MVB 

release. Newly formed MVB fuses with either LEs or lysosomes and results in 

degradation of EGFR and other sorted receptors (Shestakova et al., 2010). A recent 

study from our lab has highlighted the role of C-terminal Eps15 homology domain 

containing (EHD) protein 4 (EHD4) in the trafficking of receptors from EE to the 

lysosomes (Sharma et al., 2008). 

 

3.2 Sorting for Recycling 

The majority of the internalized receptors from the surface of mammalian cells 

are recycled back to the PM via EE. Simplistically, the recycling of receptors from EE 

has been divided into two distinct pathways: “fast recycling” and “slow recycling”. 

Recycling kinetics of TfR confirmed the existence of a faster route (t1/2 = 5 min) and a 

slower route (t1/2 = 15-30 min) for recycling (Daro et al., 1996; Mayor et al., 1993). While 

some of the receptors are directly returned to the PM from EE through the fast recycling 

pathway, the majority of receptors traversing the slow recycling pathway are first 

transported to an additional organelle, endocytic recycling compartment (ERC) localized 

near the microtubular organizing center (MTOC) in the perinuclear area (Maxfield and 

McGraw, 2004; Grant and Donaldson, 2009). Rab4 and Rab11 are the most prominent 

markers for the fast and slow recycling processes, respectively (Van der Suljs et al., 

1992; Ulrich et al., 1996). The process of efficient recycling through the ERC is 

coordinated through an elaborate network of endosomes known as TREs (detailed 

explanation in section 3.2.1). 

Previously, it was thought that no sorting motif is necessary for receptor 

recycling. However, recent studies have demonstrated that a GTPase-activating protein 

(GAP) for ADP ribosylation factor (Arf6), Arf GAP with coiled-coil ankyrin repeat and PH 

domains 1 (ACAP1), serves as a sorting molecule involved in direct binding to two 
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phenylalanine-containing sorting motifs in the TfR; leucine-phenylalanine (LF) or 

arginine-phenylalanine (RF) (Dai et al., 2004). Indeed, there was delay in the recycling of 

TfR upon disruption of the binding between Tf and ACAP1 (Dai et al., 2004). Recent 

studies have demonstrated that Sorting Nexin 17 (SNX17) directly binds to an 

asparagine-X stands for any amino acid-proline-tyrosine (NPXY) motif in the cytoplasmic 

domain of LDLR-related proteins (LRPs) and promotes LRP recycling (Van Kerkhof et 

al., 2005). Another study demonstrated that SNX27 acts as an adaptor that links the coat 

protein retromer to a prototypical G-protein coupled receptor (GPCR) cargo, the 

β2 adrenergic receptor (B2AR), by recognizing its PDZ domain (named after the first 

three proteins in which it was identified, PSD-95, DLG and ZO-1) to sort for recycling 

(Lauffer et al., 2010). Thus, there are clearly instances where recycling can be dictated 

by select sorting motifs.  

 

3.2.1 Significance of TREs in Recycling 

The composition, structure, and mode of functioning of ERC in endocytic 

recycling are poorly understood, despite the importance of the recycling process. Recent 

studies from our lab employing Structured Illumination Microscopy (SIM), dual channel 

2D-direct Stochastic Optical Reconstruction Microscopy (dSTORM), and 3D dSTORM, 

have shed new light on the ERC morphology and cargo segregation. The ERC is 

composed of an array of dynamic, densely situated, yet independent, tubular and 

vesicular recycling endosomes radiating from the MTOC (Xie et al., 2015). It has been 

well established that the high surface area-to-volume ratio of tubular carriers effectively 

serves to segregate the integral membrane proteins from the luminal content (Maxfield 

and Macgraw, 2004). However, our recent studies suggest that the ERC maintains cargo 

segregation acquired upon exit from the SE. Hence, the ERC serves as a focal point for 

vesicular transport to the PM (Xie et al., 2015). TREs are crucial for the recycling of 
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internalized receptors and lipids. Previous studies from our lab have demonstrated that 

MICAL-L1-decorated TREs can be generated from regions of SE that are enriched in a 

Rab-5 effector, Rabenosyn-5, indicating that TREs are responsible for the movement of 

CIE cargo from peripheral SE to the perinuclear ERC (Xie et al., 2015). Moreover, 

current models from our lab support the finding that the fission of TREs leads to 

formation of vesicle carriers (vesiculation) that carry recycled receptors back to the PM 

(Cai et al., 2012; Cai et al., 2013; Cai et al., 2014). 

Owing to the significance of TRE in endocytic recycling, multiple studies from our 

lab have focused on identifying the molecular players involved in TRE generation, 

fission, fusion, and function. Previous studies from our lab have demonstrated that 

MICAL-L1 is a protein localized to the outer TRE leaflet (Sharma et al., 2009). MICAL-L1 

acts as a hub that recruits and stabilizes a battery of proteins that directly impact 

membrane shaping. For instance, the F-BAR domain containing protein Syndapin2 

(Giridharan et al., 2013). MICAL-L1 also interacts with the C-terminal Eps15 homology 

domain containing (EHD) protein 3 (EHD3) and EHD1 (Sharma et al., 2009; Kieken et 

al., 2010), which are involved in TRE stabilization and vesiculation, respectively (Cai et 

al., 2013; Bahl et al., 2016). Also crucial for TRE biogenesis is the high local 

concentration of phosphatidic acid (PA), an essential lipid component of TRE tubules, 

which binds and recruits MICAL-L1 and Syndapin2. Syndapin2 has an SH3 domain, 

which mediates stable interaction with the PRD domain of MICAL-L1. Syndapin2 also 

has an F-BAR domain that can sense and bend the membranes to induce tubulation 

(Giridharan et al., 2013). EHD1 subsequently joins this complex on TRE, where it 

interacts with both MICAL-L1 and Syndapin2 and initiates vesiculation, giving rise to 

newly formed vesicles (Cai et al., 2012; Giridharan et al., 2013; Cai et al., 2013; Cai et 

al., 2014).  

 

http://journal.frontiersin.org/article/10.3389/fcell.2014.00022/full#B32
http://journal.frontiersin.org/article/10.3389/fcell.2014.00022/full#B23
http://journal.frontiersin.org/article/10.3389/fcell.2014.00022/full#B23
http://journal.frontiersin.org/article/10.3389/fcell.2014.00022/full#B6
http://journal.frontiersin.org/article/10.3389/fcell.2014.00022/full#B6
http://journal.frontiersin.org/article/10.3389/fcell.2014.00022/full#B14
http://journal.frontiersin.org/article/10.3389/fcell.2014.00022/full#B6
http://journal.frontiersin.org/article/10.3389/fcell.2014.00022/full#B14
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3.3 Sorting for TGN 

EEs not only serve as stations to sort receptors for recycling and degradation but 

also function as a common junction that connects various endocytic and biosynthetic 

routes. Trafficking from the EE to the biosynthetic routes is known as retrograde 

transport. Retromer-mediated tubulation is required for the retrograde transport from EE 

to the TGN and these retromer-mediated tubules are distinct from the TREs that 

facilitate the recycling process from EE to ERC (Bonifacino and Rojas, 2006). Retromer 

machinery is preferentially recruited to EEs which are maturing towards LE and contain 

increasing concentrations of phosphatidylinositol 3,5 bisphosphate (PI(3,5)P2), 

generated by phosphoinositide kinase (PIKfyve) (Rutherford et al., 2006) and an 

increasing number of intralumenal vesicles (ILVs) (Arighi et al., 2004). 

Pioneering studies by Seamen et al., 1998, in the yeast endolysosomal system 

were instrumental in the identification of the protein coat “retromer”. Retromer was 

shown to mediate the endosome-to-Golgi retrieval of the vacuolar hydrolase receptor 

(Vps10p), the yeast functional equivalent of the mannose 6-phosphate (M6PR) receptor. 

Retromer is a heteropentameric complex consisting of a sorting nexin (SNX) dimer 

composed of SNX 1/2 and SNX 5/6 and a trimer consisting of Vps proteins namely, 

Vps26, Vps29 and Vps35 (Bonifacino and Hurley, 2008; Bonifacino and Rojas, 2006; 

Seaman, 2005; Rojas et al., 2007). The SNX protein dimer possesses a phox-homology 

(PX) domain and a BAR domain. While the PX domain is involved in binding to PI(3)P 

and other phosphoinositides in the EE membrane, the BAR domains (that can sense 

and induce membrane curvature) mediate dimerization and attachment to the curved 

membranes (Bonifacino and Rojas, 2006). The Vps26, 29 and 35 heterotrimer is 

involved in recognizing cargo proteins and is therefore termed as the cargo-selective-

complex (CSC). Vps35 provides the interface for the recognition of cargo. Vps29 is 

indispensable for the interaction of the CSC with the SNX dimer and functions as a 
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scaffold for retromer assembly by binding the carboxyl (C)-terminal half of Vps35. Vps26 

binds to the amino (N)-terminal half of Vps35 (Seamen et al., 2007). The CSC, unlike the 

SNX dimer, lacks lipid-binding domains; hence, its recruitment on the endosome is 

dependent on the interaction of Rab7 with Vps35. Furthermore, Rab7/Vps35 interaction 

not only stabilizes the CSC on the endosome membrane, but also synchronizes the 

timing of cargo export with endosome maturation (explained in detail in section 3.1) (van 

Weering et. al, 2012). The mechanism by which CSC recognizes cargo is also poorly 

understood. However, it is well established that the cargo destined for retromer-

dependent sorting possesses at least one simple hydrophobic motif 

phenylalanine/tryptophan-leucine-methionine/valine (F/W-L-M/V) (Seamen et al., 2007). 

Recent studies have also implicated the involvement of Vps26 in recognizing cargo by a 

FANSHY sorting signal and the role of SNX27 in cargo sorting (Fjorback et al., 2012; 

Steinberg et al., 2013). The best-studied examples of cargo proteins transported through 

the retromer-mediated pathway include the vacuolar hydrolase transport receptors, 

Vps10 in yeast and M6PR in mammals (Bonifacino and Rojas 2006; Johannes and 

Popoff 2008). 

EHD1 is yet another important regulator of retromer-mediated transport. EHD1 

colocalizes and interacts with Vps26 and Vps35 on retromer tubules, and affects the 

retrieval of M6PR mediated by the retromer (Gokool et al., 2007). However, no direct 

binding between EHD1 and the retromer has been detected. We have identified 

Rabankyrin-5, a Rab5 effector, as a novel NPF-interaction partner for EHD1. 

Rabankyrin-5 also interacts with Vps26 and Vps35 thus facilitating the association of 

EHD1 with the retromer complex (Zhang et al., 2012 (a) and (b))(McKenzie et al., 2012). 

EHD3, another member of the EHD protein family and the closest paralog of EHD1, also 

mediates endosome-to-Golgi transport and retromer trafficking (Naslavsky et al., 2009). 
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4. Regulators of Endocytic Trafficking 

The endosomal system is an elaborate and dynamic network of membrane-

bound organelles interconnected by vesicular “vehicles” that transport lipids and 

proteins. The process of endosomal transport can be divided into four distinct steps: 

vesicle budding from the donor organelle, transport, tethering with the acceptor organelle 

and finally, fusion of the lipid bilayers of the vesicle and the acceptor organelle (Fig 1.2) 

(Bonafacino and Glick, 2004). A conserved arsenal of regulatory proteins coordinates 

these fission and fusion events.  

The budding process is initiated by recruitment of coat proteins onto the donor 

membrane to induce the formation of the vesicle. Coat subunits are involved 

simultaneously in incorporating the cargo and deforming the donor membrane into the 

budding vesicle (Cai et al., 2007). After budding, the vesicles are transported to their 

destination donor compartments by molecular motors such as dynein, kinesin, and 

myosin along cytoskeletal tracks (Hammer and Wu, 2002; Matanis et al., 2002; Short et 

al., 2002). Once the vesicle reaches the acceptor organelle, tethering of the vesicle to  

the acceptor organelle occurs by the joint action of tether complexes and Rab-GTPases 

(Sztul and Lupashin, 2006; Whyte and Munro, 2002). The final step is fusion, which 

involves the soluble NSF attachment protein receptor (SNAREs), where NSF stands 

for N-ethyl-maleimide-sensitive fusion protein (Numrich and Ungermann, 2013). 

 

4.1 Regulation by Rab GTPases 

The Rab family of small Ras-like GTPases constitutes a critical group of 

endocytic regulators. In mammalian cells, over 60 different members of the Rab family- 

function as multifaceted regulators of distinct trafficking pathways. Rab-GTP-binding 

proteins function as molecular switches, which are either in the guanosine triphosphate  
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Figure1.2 Schematic representation of the steps of vesicle transport. 

  
a. Coat proteins are recruited to the cytoplasmic face of the donor membrane and induce 
the formation of a vesicle. The coat recruits SNAREs and transmembrane receptors bound 
to their cargo. b. After uncoating, motor protein can be recruited to enable the vesicle to 
travel along microtubules or actin filaments. c. Once at its destination, the vesicle becomes 
tethered to the acceptor membrane, probably by long coiled-coil proteins or multimeric 
tethering complexes. d. The SNAREs on the vesicle and acceptor membrane form a 
complex that drives membrane fusion and hence delivery of the contents of the vesicle 
(Image used with permission from Behnia and Munro, 2005). 
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Figure 1.2 
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(GTP)-bound “active” form or the guanosine diphosphate (GDP)-bound “inactive” form 

(Zerial and McBride, 2001; Grosshans et al., 2006). As shown in Fig 1.3, the membrane 

association/dissociation of Rabs is intimately associated with the nucleotide/hydrolysis 

cycle (“active” and “inactive” forms) and is regulated by specific cofactors. Exchange of 

GDP with GTP is catalyzed by guanyl nucleotide exchange factors (GEFs), which 

facilitate the release of GDP by inducing a conformational change in the Rab proteins 

(Delparto et al., 2004). In the GTP-bound state, Rabs are stably associated with the 

membrane via the membrane affinity endowed by the prenyl anchor. The prenyl anchor 

is generated by the attachment of geranyl-geranyl groups to one or two cysteine 

residues in the C-terminal cysteine-alanine-alanine-X stands for any amino acid (CAAX) 

motif (Colicelli 2004; Lueng et al, 2006). GDP-dissociation inhibitor (GDI) maintains the 

GDP-bound Rab in a soluble state by masking the C-terminal prenyl anchor. In order to 

recruit Rab proteins to the membrane, the GDI has to be released by GDI displacement 

factor (GDF). However, recent reports suggest that GEF may be sufficient to remove the 

GDI, as well as function as a GDF (Itzen and Goody, 2011). 

Different GTP-bound Rabs serve as distinct membrane scaffolds to coordinate 

three major steps: vesicle budding, cytoskeletal transport, targeted docking and fusion. 

Accordingly, Rabs sequentially interact with specific types of effector molecules, 

including sorting adaptors, tethering factors, kinases, phosphatases and motor proteins, 

to regulate each step in a spatiotemporal manner (Grosshans et al., 2006; Stein et al., 

2003). Therefore, Rabs act as membrane domain organizers that can locally change the 

environment of the membrane (Miaczynska and Zerial, 2002). Once the individual 

transport step catalyzed by a particular Rab is completed, the specific GAPs accelerate 

GTP hydrolysis, converting the Rab protein to inactive GDP-bound state. The GDP-

bound Rabs can be extracted from the membrane by the effector GDI and recycled back 

to the cytosol (Goody et al., 2005 and Grosshans et al., 2006)(Fig 1.3).  
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4.1.1 Rab5 and the early endosome 

Rab5 is the best-characterized and most extensively studied Rab of the early 

endocytic pathway (Zerial and McBride, 2001; Grosshans et al., 2006). Rab5 is the most 

prominent identity marker and a regulator of the EE. Rab5 regulates the entry of cargo 

from the PM to the EE, generates PI(3)P lipid, which is enriched on EE membrane 

(Christoforidis et al., 1999; Murray et al., 2002), catalyzes homotypic fusion (Gorvel et 

al., 1991), and facilitates the motility of EE on actin and microtubular tracks (Nielsen et 

al., 1999; Pal et al., 2006). Rab5 is activated on the EE membrane by the recruitment of 

its effector, Rabex-5 (Horiuchi et al., 1997). Another Rab5 effector, Rabaptin-5, further 

promotes the GEF activity of Rabex-5, and these both together with Rab5 form a 

complex known as the “Rab5 domain” (Stenmark et al., 2009). This complex is required 

to establish a feedback loop for maintaining and stabilizing Rab5-GTP on the EE 

membrane (Lippe et al., 2001). These transient but high levels of Rab5-GTP are 

sufficient to recruit effector proteins to the EE, where they can carry out their specialized 

functions in trafficking and sorting (Grosshans et al., 2006). Additionally, this complex 

also triggers the rapid recruitment of other Rab5 effectors, PI(3)P-kinase/hVPS34/p150 

(VPS34), and forms a complex. This complex generates PI(3)P, the most abundant 

phosphoinositide in the EE membrane. The concomitant presence of Rab-GTP and 

PI(3)P acts as a signal to recruit a spectrum of effector proteins such as EEA1 (Lawe et 

al., 2000, 2002; Pfeffer, 2001) and Rabenosyn-5 (Nielsen et al., 2000).  

EEA1 and Rabenosyn-5 bind to the PI(3)P-enriched membrane through their 

FYVE (named after 4 cysteine-rich proteins-Fab1, YOTB, Vac1, and EEA1) zinc finger 

domains (Nielsen et al., 2000) (Lawe et al., 2000; Nielsen et al., 2000; Stenmark and 

Aasland, 1999). EEA1 interacts with SNARE proteins Syntaxin 13 (McBride et al., 1999) 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810677/#R75
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810677/#R118


   - 24 - 
 

Figure 1.3. The Rab switch and its circuitry.  
 
Conversion of the GDP-bound Rab into the GTP-bound form occurs through the exchange 
of GDP for GTP, which is catalysed by a guanine nucleotide exchange factor (GEF) that 
leads to a conformational change. The GTP-bound 'active' conformation is recognized by 
multiple effector proteins and is converted back to the GDP-bound 'inactive' form through 
hydrolysis of GTP, which is stimulated by a GTPase-activating protein (GAP) and releases 
an inorganic phosphate (Pi). A Rab escort protein (REP) recognizes the newly synthesized 
Rab, in the GDP-bound form. The REP presents the Rab to a geranylgeranyl transferase 
(GGT), which geranylgeranylates the Rab on one or two carboxy-terminal Cys residues. 
The geranylgeranylated, GDP-bound Rab is recognized by Rab GDP dissociation inhibitor 
(GDI), which regulates the membrane cycle of the Rab. Targeting of the Rab–GDI complex 
to specific membranes is mediated by interaction with a membrane-bound GDI 
displacement factor (GDF) (Image used with permission from Stenmark et al., 2009). 
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Figure 1.3 
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 and Syntaxin 6 (Simonsen et al., 1999), which regulate vesicular fusion at the EE. EEA1 

also facilitates the fusion of transport vesicles with recycling endosomes (REs) and the 

Golgi, respectively.  

Rabenosyn-5 is regarded as a dual Rab5 and Rab4 effector, as it can bind to 

both of these Rabs in their active states. Rabenosyn-5 also interacts with EHD1 and 

EHD3. EHD1 regulates recycling of cargo from the perinuclear ERC back to the PM 

(Caplan et al., 2002; Naslavsky et al., 2004) and EHD3 is involved in the transport of 

cargo from EE to the ERC (Naslavsky et al., 2009). Thus, Rabenosyn-5 might serve as 

the Rab5 effector that is the link between sorting events at the EE and the recycling of 

cargo back to the PM either directly from EE (fast recycling) or via the ERC (slow 

recycling).  

  Rabankyrin-5, another Rab5 effector is required for macropinocytosis and EE 

fusion (Schnatwinkel et al., 2004). Our studies have identified a novel role of 

Rabankyrin-5 in the regulation of retromer localization, which is contingent upon its 

specific interaction with EHD1 (Zhang et al., 2012). 

 

4.1.2 Rab7 and the maturation of late endosomes 

Rab7 is the best-known regulator and organelle identifier of late endosomes (LE). 

Although Rab7 localizes to both the EE and the LE/MVB, it regulates the late steps of 

endocytic trafficking and lysosomal degradation (Wichhmann et al., 1992). The 

prerequisites for the generation of a new LE are: the generation of a Rab7 domain, and 

the removal of Rab5 (Rink et al., 2005; Vonderheit and Helenius, 2005). The current 

model, which is known as the “Cascade Model” is used to describe the Rab5-to-Rab7 

switch. The level of Rab5 on the EE membrane is not constant but fluctuates 

dynamically. As the EEs grow in size due to frequent homotypic fusion events and 

accumulation of cargo destined for degradation, the surface density of Rab5 increases 
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until it reaches its maximum concentration (Rink et al., 2005; Lakadamyali et al., 2006). 

At this stage, a further increase in Rab5 levels triggers rapid recruitment of Rab7 on the 

endosomal membrane via class C core vacuole/endosome tethering (CORVET)/ 

homotypic fusion and protein sorting (HOPS) complexes. Once Rab7 reaches a 

threshold level, it starts to repress Rab5. Mon1-Ccz1, an evolutionarily preserved protein 

complex, physically interacts as a stable pair and facilitates the Rab5-Rab7 exchange by 

simultaneously displacing Rabex-5 and activating a GEF of Rab7 (Wang et al., 2002; 

Kucharczyk et al., 2009; Kinchen and Ravichandran, 2010). VPS39, a HOPS complex 

subunit acts as a GEF for Rab7. Additionally, Mon1/Ccz1 complex binds to Rab7 on the 

membrane and controls the localization of Rab7 on LE and subsequent activation (Rink 

et al., 2005; Hutanglang and Novick, 2011). Rab7-GTP also recruits its own effectors, 

such as, Rab7-interacting lysosomal protein (RILP), which interacts with Rab7 on LEs 

and lysosomes (Cantalupo et al., 2001). RILP then connects dynein-dynactin motor 

complexes to Rab7-containing LEs and lysosomes (Jordens et al., 2001). Dynein 

transports LE to the minus end of microtubules by the motor complexes towards the 

lysosomes (Johansson et al., 2007). 

 

4.1.3 Rabs in Fast Recycling  

Rab4 is required for the fast recycling of Tf and glycophospholipids from the EE 

to the PM (Sonnichsen et al., 2000; Maxfield and MacGraw, 2004). Rab4 regulates fast 

recycling through interaction with various effector proteins, including Rabenosyn-5 and 

Rabapatin-5/Rabex-5 complex (Vitale et al., 1998; de Renzis et al., 2002; Mattera and 

Bonifacino, 2008). Recent studies have identified that Rab35 localizes to the PM as well 

as to the EE, and is an important regulator of rapid recycling (Sato et al., 2008). Rab35 

also associates with Arf6 and EHD1-positive TREs carrying cargo back to the PM. The 

GAP for Rab35 is TBC domain member 10C (TBC1D10C) (Walseng et al., 2008). 
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Furthermore, Rab35 recruits the EHD1 binding protein MICAL-L1 to the Arf6 positive 

recycling tubules (Rahajeng et al., 2012). Moreover, Rab35 recruits multiple Rabs, 

Rab8, Rab13 and Rab36 at the recycling tubules through MICAL-L1 during nerve growth 

factor (NGF)-induced neurite outgrowth (Kobayashi et al., 2014). 

 

4.1.4 Rab11 and Slow Recycling 

Slow recycling occurs through the ERC and is facilitated by the recycling 

endosomes (REs) that originate from the ERC (Grant and Donaldson, 2009; Stenmark, 

2009; van Ijzendoorn, 2006). Rab11 is the signature marker for the REs that originate 

from the ERC. The Rab11-decorated REs selectively transport CME cargos from the 

ERC to the PM and are distinct from the TREs that preferentially transport CIE cargoes 

from the ERC to the PM. The Rab11-family interacting proteins (Rab11-FIPs) constitute 

an evolutionarily conserved family of proteins (Hales et al., 2002; Prekeris et al., 2001). 

There are several members in this family including FIP1, FIP2, FIP3 (Hales et al., 2001), 

FIP4 (Wallace et al., 2002a), FIP5 (Prekeris et al., 2000), RCP (Wallace et al., 2002b; 

Lindsay et al., 2002), Rabphilin-11/Rab11BP (Mammoto et al., 1999; Zeng et al., 1999). 

Each of the FIPs is characterized by the presence of a highly conserved coiled-coiled 

alpha-helical Rab11-binding domain at the C-terminus (Horgan and McCaffrey, 2009). 

Rab11-FIP5 mediates transport from EEs to REs through binding with Kif3B, a 

component of the kinesin II motor protein (Schonteich et al., 2008). We have recently 

demonstrated in our studies, another Rab11 effector, Rab11-FIP2, which facilitates the 

recycling of receptors through its specific interaction with EHD1 and EHD3 by its NPF 

motifs (Naslavsky et al., 2009). Thus, Rab11-FIP2 serves as a link between EHDs and 

Rab11. Furthermore, Rab11-FIP2 forms a ternary trafficking complex with Rab11, and 

the motor protein myosin Vb for the regulation of the recycling process (Hales et al., 

2001; Hales et al., 2002).  

http://jcs.biologists.org/content/125/17/4049#ref-21
http://jcs.biologists.org/content/125/17/4049#ref-21


   - 29 - 
 

 

4.2 Arf GTPases 

The Arf family of proteins, like the Rabs, belongs to the Ras superfamily of small 

GTPases (Jackson and Cassanova, 2000). The Arf proteins cycle between their active 

GTP-bound states and inactive GDP-bound states like other GTPases. Exchange of 

GDP for GTP is catalyzed by GEFs, and GTP hydrolysis to GDP is mediated by GAPs. 

Several specific Arf GAPs and GEFs have been identified. The membrane tethering of 

Arf proteins is facilitated by myristoylation at the N-terminus (Jackson and Cassanova, 

2000; Randazzo and Hirsch, 2004). 

In mammals, there are six members of the Arf family, which are divided into three 

classes (Kahn et al., 2006). Class I Arf proteins (Arf1, Arf2, and Arf3) share 96% 

sequence homology (Bonifacino and Glick, 2004). There are two Class II Arf proteins 

Arf4 and Arf5; Arf5 has been implicated in early Golgi transport and in recruiting coat 

components to trans-Golgi membrane (Claude et al., 1999; Takatsu et al., 2002). Class 

III has a single member known as Arf6 that regulates endosomal trafficking and 

structural organization of the cell surface (D’Souza Schorey et al., 1995; Grant and 

Donaldson, 2009).  

Arf1 and Arf6 are the most studied mammalian Arf proteins whose primary 

localization in cells is at the Golgi and PM respectively. In cells, Arf1 reversibly 

associates with Golgi membranes during its activated state, Arf1-GTP. Arf1-GTP recruits 

coat protein complex I (COPI) on to pre-and cis-Golgi structures through the recruitment 

of heterotetrameric complex (AP1, AP3, and AP4) and monomeric Golgi-localized γ-ear-

containing ARF-binding protein (GGA) on to TGN and endosomal membranes 

(Bonifacino and Glick, 2004).  

On the other hand, Arf6 is mainly localized at the PM and to some extent on the 

endosomal membranes (Donaldson, 2003). Arf6 primarily functions in CIE-mediated 
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internalization and recycling. Arf6 promotes the recycling of MHCI molecules back to the 

PM (Naslavsky et al., 2003). Moreover, Arf6 forms a ternary complex with Rab11, 

Rab11-FIP3, and Rab11-FIP4 (Fielding et al., 2005), which regulates the recycling of β1-

integrin (Powelka et al., 2004).  Arf6 regulates recycling at the molecular level by 

activating phospholipase D2 (PLD2) that generates phosphatidic acid (PA) and 

diacylglycerol (DAG), and PIP5K that generates PIP2 (Jonavic et al., 2006; Brown et al., 

2001). Furthermore, the Arf6 GTPase regulates EHD1-containing TRE. Indeed, the 

cycling of Arf6 between its GTP-and GDP-bound forms impacts the localization of EHD1 

on the tubular membranes (Caplan et al., 2002). Co-expression of the GTP-locked Arf6-

Q67L mutant with Myc-EHD1 led to altered EHD1 localization, loss of EHD1-associated 

tubular structures and recruitment of EHD1 to enlarged Arf6 endosomes. Furthermore, 

overexpression of Arf6-GEF, EFA6, or the Arf6-GAP, ACAP1 in HeLa cells, leads to loss 

of EHD1 from the tubular membranes (Caplan et al., 2002). In addition, our recent 

studies have demonstrated that PA is an essential component of TREs (Giridharan et 

al., 2013). Moreover, PIP2 is primarily localized to the PM, where it mediates vesicular 

fusion and recruits Arp2/Arp3-actin polymerization machinery (Santy and Cassanova, 

2001; Vitale et al., 2002). Hence, Arf6 mediates the recycling process by regulating the 

lipid dynamics of the membranes involved in recycling and the PM. 

 

4.3 SNAREs 

 SNAREs are a highly conserved family of membrane proteins primarily 

regulating vesicular fusion events in membrane trafficking pathways (Bennett et al., 

1995; Sollner, 1995). The hallmark of SNARE proteins is the presence of a heptad 

SNARE motif: an evolutionarily conserved domain of 60-70 amino acids arranged to 

form a coiled-coiled region (Fasshauer, 2003). A SNARE on the transport vesicle (v-

SNARE) pairs with its cognate SNARE-binding partner (t-SNARE) with the acceptor 



   - 31 - 
 

membrane, which drives fusion and delivery of cargo (Chen and Scheller, 2001). The 

interaction of cognate v-and t-SNAREs leads to the formation of a trans-SNARE 

complex or SNAREpin, in which four SNARE motifs assemble as a twisted parallel four-

helix bundle. The formation of a SNAREpin is not only important for the specificity of the 

initial interaction but also for bringing opposing membranes together and eventually 

membrane fusion. The energy released during the formation of SNAREpin drives the 

fusion of lipid bilayers (Lin and Scheller, 1997). After the fusion process is complete, the 

remaining part of the SNARE complex on the fused membranes is called the cis-SNARE 

complex. This complex undergoes recycling upon disassembly catalyzed by AAA 

ATPase NSF and its cofactor soluble NSF attachment protein (SNAP) (Sollner et al., 

1993; Mayer et al., 1996; Hanson and Whiteheart, 2005). 

The structural studies of SNAREs have revealed that the helical core contains 

three highly conserved glutamine (Q) residues and one highly conserved arginine (R) 

residue. Consequently, the SNARE proteins are classified as Qa-, Qb-, Qc- and R-

SNAREs. Four SNAREs, with one member each of Qa-, Qb-, Qc- and R-SNARE 

subfamilies form a functional SNARE complex that drives membrane fusion (Fasshauer 

et al., 1998; Bock et al., 2001). The Rab5 effector protein EEA1 can recruit Syntaxin13 

and Syntaxin6 on the EE membrane (McBride et al., 1999; Simonsen et al., 1999). 

Syntaxin13-Vps10p tail interactor 1 and (Vti1a)-Syntaxin6-VAMP4 are the key SNARE 

complexes involved in the homotypic fusion of EEs (Brandhorst et al., 2006; Zwilling et 

al., 2007). The SNARE complex Syntaxin 13-SNAP23/25-VAMP2/3 has been implicated 

in the trafficking of cargo from RE to the PM (Kubo et al., 2015). The Syntaxin16-Vti1a-

Syntaxin 6-VAMP3/4 SNARE complex functions between EE and the TGN, whereas the 

Syntaxin 16-Vti1a-Syntaxin 10-VAMP3 complex operates between LE and the TGN 

(Ganley et al., 2008). The lysosomal degradation pathway involves Syntaxin4-SNAP23-

VAMP7 for the fusion of the LE and lysosomes to the PM (Williams et al., 2014). 
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5. C-terminal Eps15 Homology Domain containing proteins (EHDs) 

A novel group of endosomal scaffolding proteins, the EHDs, regulates specific 

steps of endocytic trafficking pathway. Mammalian cells express four EHD protein 

paralogs, EHD1, EHD2, EHD3, EHD4 having a high level of amino acid sequence 

similarity and showing about 70-86% identity (Naslavsky and Caplan, 2005). The 

genomes of many invertebrate organisms, including Caenorhabditis elegans (C. 

elegans) and Drosophila melanogaster, contain a single EHD family gene, most closely 

resembling EHD1/EHD3. C. elegans homolog of EHD1, receptor mediated endocytosis-

1(RME-1), displays 67% identity with EHD1 and is a component of the recycling 

machinery regulating the return of yolk receptors back to the PM (Grant et al., 2001). 

Drosophila has a putative achaete-scute target 1 (PAST1) protein that is evolutionarily 

closest to EHD2 displaying 70% homology and is involved in regulating endocytosis. The 

flies lacking PAST1 are infertile and die prematurely (Olswang-Kutz et al., 2009). Recent 

studies have further highlighted the role of PAST1 in the development of the neuro-

muscular junction and differentiation of rod and cone cells of the fly eye ommatidia 

(Koles et al., 2015; Dorot et al., 2017). 

 

 5.1 Domain Architecture, Structure and Organization of EHD Proteins  

The four EHD protein (EHD1-4) paralogs have conserved domain architecture. 

The structural studies by McMahon’s group, which solved the first crystal structure of 

mouse full-length EHD2 protein have been instrumental in our understanding of the 

domain architecture and structure of EHD proteins (Daumke et al., 2007). The domain 

architecture of EHD proteins consists of a nucleotide binding domain (G-domain) 

enclosed between helical domains at the N-terminus, followed by a linker region, and a 
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C-terminal Eps15 homology (EH) domain (Fig. 1.4A) (Grant and Caplan, 2008; 

Naslavsky and Caplan, 2011) (Fig 1.5).  

One of the trademark characteristics of EHD proteins is their distribution to the 

cytosolic face of long tubular endosomal membranes.  Electron microscopy studies have 

determined that the tubular structures containing EHD1 are 200 nm wide and up to 10 

μm long (Caplan et al., 2002). Consistent with the high degree of homology between 

EHD proteins, all four paralogs are capable of localizing to tubular membranes when 

overexpressed. However, the extent of tubulation varies between different paralogs 

(Blume et al., 2007; George et al., 2007). Both EHD1 and EHD3 localize primarily to 

tubular membranes, which emanate from the perinuclear ERC and from the peripheral 

SE, while EHD2 and EHD4 are mostly present on vesicular membranes with very few 

tubules (Caplan et al., 2002; Naslavsky et al., 2006; Sharma et al., 2008). Since EHD 

proteins lack a transmembrane domain, the recruitment of EHD proteins is dependent 

upon EH domain lipid-binding ability. The positively charged lysine 483, which is very 

well conserved, has been hypothesized to mediate the EH-domain/lipid-binding. Indeed, 

charge reversal mutation of this lysine to glutamate (K483E) completely abrogates the 

tubular localization of the mutant EHD1, resulting in redistribution to endosomal vesicles, 

a phenotype similar to the truncation of the entire EH-domain (Naslavsky et al., 2007). 

Sequence alignment analysis led to the prediction that EHD proteins have a putative 

phosphate binding (P)-loop motif in the G domain, an ATP/GTP-binding site found in 

GTPases such as Dynamin and Ras. 
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Figure 1.4 Domain architecture of EHD proteins, structure of EHD2 and, solution 
structure of EH domain of EHD1  
 
(A) Domain architecture of EHD proteins consists of a N-terminal and central α-helices 
together form a single helical domain that mediates lipid binding (Daumke, et al. 2007), a 
dynamin-like G-domain binds ATP and serves as a platform for homo-dimerization and a 
C-terminal EH-domain exhibits preferential binding to NPF motifs. (B) The crystal structure 
of full-length mouse EHD2. EHD2 exists as a homo-dimer and the EH-domains of two 
monomers cross over to align themselves with the N-terminus of the opposing monomer 
(see the ribbon structure in red denoting a monomer). The primary lipid-binding site is on 
the opposite face from the EH-domains (Image used with permission from Daumke, et al. 
2007). (C) Solution structure of EH domain of EHD1, stereoview of the ribbon diagram of 
the lowest energy EHD1 EH domain structure showing the location of the calcium binding 
site. 
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Figure 1.4 
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When the crystal structure of EHD2 was solved in the presence of the non-

hydrolysable ATP analog adenylyl imidodiphosphate (AMPPNP), it was confirmed that 

EHDs bind to ATP instead of GTP (Lee et al., 2005; Daumke et al., 2007). Indeed, the 

Km value also depicts the stronger preference of EHDs for ATP compared to GTP (Km 

of 80 μM for ATP vs. no detectable Km for GTP-binding) (Daumke et al., 2007). The 

functional importance of the nucleotide binding was demonstrated by endocytic assays 

in C. elegans oocytes that displayed impaired yolk receptor recycling in the G65R 

mutant. RME-1 nucleotide binding ability affects its oligomerization ability and 

endosomal binding (Grant et al., 2001). Additionally, the equivalent mutation in 

mammalian EHD1 of the critical glycine residue in the nucleotide-binding domain to 

arginine (G65R) rendered the protein cytosolic, suggesting that membrane binding is 

contingent upon nucleotide binding status of the EHDs (Caplan et al., 2002). Further 

support for the interaction with membranes upon binding with the nucleotide, came from 

fluorescence recovery after photobleaching (FRAP) studies, which displayed recovery of 

EHD1 on tubular membranes within a few minutes upon photobleaching (Caplan et al., 

2002). The ability of EHD proteins to undergo nucleotide hydrolysis and membrane 

fission has also been demonstrated in recent studies (Lee et al., 2005; Naslavsky et al., 

2007).  

Even though EHD proteins bind ATP and not GTP, there are similarities with the 

Dynamin superfamily GTPases. Similar to Dynamin, EHD2 has the ability to tubulate 

negatively charged liposomes in vitro, forming spiral ring-like oligomers around lipid 

tubules. ATP hydrolysis was also observed with purified mouse EHD2 and was 

stimulated up to ten-fold in the presence of lipids (Daumke et al., 2007; Pant et al., 

2009). However, the rate of nucleotide hydrolysis of EHD2 is 600-fold slower as 

compared to that of Dynamin. This slow rate of ATP hydrolysis facilitates conformational 

changes leading to membrane destabilization and tubulation or release of vesicular 
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structures. Furthermore, another unique capability of EHD proteins to undergo homo-

dimerization and hetero-dimerization is invaluable for the trafficking process. The two 

helical regions fold to form a coiled-coiled region that mediates lipid binding and 

facilitates homo-and hetero-oligomerization of EHDs (Daumke et al., 2007).  All the EHD 

family members are capable of hetero-dimerization except EHD2. Moreover, binding of 

the EHD proteins to the NPF-containing binding partners is also facilitated by 

oligomerization in some cases (Naslavsky et al., 2006).  

 

5.2 EH Domain 

The EH domain present at the C-terminus is the hallmark of EHD proteins, since 

this domain is generally present at the N-terminus of other proteins (Paoulazi et al., 

1998). The EH domain was first identified as three copies of ≈100 residues repeat 

regions at the N-terminus of the epidermal growth factor receptor tyrosine kinase 

substrate, Eps15 (Fazoli et al., 1993; Wong et al., 1995). EH domains are well 

conserved evolutionarily in species as diverse as yeast and humans. Accumulating 

evidence supports a high level of structural homology of EH domains as well. Each 

domain contains two calcium-binding helix-loop-helix motifs (EF-hands) connected by a 

short antiparallel β-sheet in between the loops, canonically only the second loop can 

bind to calcium (Ca2+). However, the functional importance of the EH domain as a 

protein interaction module was discovered when innovative nuclear magnetic resonance 

(NMR) studies demonstrated that the EH domain of Eps15R has the ability to interact 

with proteins that contain the tripeptide, NPF motif (Salcini et al., 1997 and De Beer et 

al., 1998). The NPF residues attain a conformation of a type I β turn for binding and 

access a conserved hydrophobic pocket that is deeply buried within the EH domain. This 

allows close contact between the asparagine and a conserved tryptophan in the pocket 

and provides stability of interaction (Kieken et al., 2007). It is not surprising that mutating 
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this tryptophan in EHD proteins (W485 in the case of EHD1) abrogates the binding with 

the NPF-containing binding partners (Naslavsky et al., 2004). 

In collaboration with Dr. Sorgen’s group, we solved the NMR solution structure of 

the EH domain of EHD1 (Fig 1.4 C). As compared to the EH domains of Eps15 proteins, 

the EH domain of EHD proteins has a highly positively charged surface area (Kieken et 

al., 2007). Hence, the positively charged surface of the EH domain of EHD protein 

predisposes the EHDs to preferentially bind with the proteins containing an NPF motif 

followed by acidic residues (Kieken et al., 2010, Henry et al., 2010). Moreover, the NMR 

solution structure was solved in the presence of bound MICAL-L1 peptide 

(NPFEEEEED). The sequence of MICAL-L1 peptide provided advanced insight on the 

stability of binding of the EH domain-NPF, which can be attributed to the fact that the 

first two glutamate residues of the peptide are located close to the lysine residues of the 

EH domain, thus favoring the formation of salt bridges (Kieken et al., 2010). 

 

5.3 Interaction Partners of EHD proteins 

About 30 different direct and indirect interaction partners of EHD proteins have 

been reported. In most cases, the mode of interaction of the binding partners with the 

EHDs is through the EH domain that preferentially binds to NPF-containing proteins 

followed by acidic residues. Rabenosyn-5 (Naslavsky et al., 2004), Rab11-FIP2 

(Naslavsky et al., 2006), Syndapin2 (Braun et al., 2005; Xu et al., 2004), and 

synaptosome-associated protein 29 (SNAP29) (Xu et al., 2004) are examples of 

interaction partners utilizing this mechanism of interaction with EHDs. Previously, using 

mass spectrometry (MS) studies, we identified a novel binding partner of EHD1, known 

as MICAL-L1 (Sharma et al., 2009). A common feature between Rabenosyn-5, Rab11-

FIP2, Syndapin2 and MICAL-L1 is that they all contain multiple NPF motifs (human 

Rabenosyn-5 has five NPF motifs, mammalian Rab11-FIP2 has three NPF motifs, 
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Syndapin2 has three NPF motifs and MICAL-L1 has two NPF motifs). We also identified 

a novel interaction partner Rabankyrin-5 for EHD1 (Zhang et al., 2012). 

Despite the high level of identity between the EHDs, the EHD proteins display 

different selectivity for binding to NPF-containing proteins. MICAL-L1 binds to EHD1 and 

EHD3 but not to EHD2 and EHD4 (Sharma et al., 2009). Rabankyrin-5 binds only to 

EHD1 and not to EHD2-4 (Zhang et al., 2012). Although the individual EHD proteins 

interact with unique subsets of binding partners, EHDs can also bind to the same partner 

in some cases. For instance, Syndapin2 is a protein with three different NPF motifs and 

all four EHDs interact with Syndapin2 (Braun et al., 2005). Hence, Syndapin2 serves as 

a unique model to identify the different amino acid residues surrounding its three 

different NPF motif responsible for the binding selectivity of each EHD protein. Strikingly, 

one intriguing factor governing differential binding to the NPF-containing binding partners 

is the oligomerization state of the protein. For instance, oligomerization of EHD1 and 

EHD3 is required for binding to Rab11-FIP2, but not for Rabenosyn-5 (Naslavsky et al., 

2006). More details of binding partner selectivity of EHD1 and EHD3 will be discussed 

later, in Chapter IV.  

Rabenosyn-5, Rab11-FIP2, Rabankyrin-5 and MICAL-L1 are all Rab effectors 

and through EH domain-NPF interactions, EHD1 cross-talks with various Rabs. Thus, 

Rabs and EHDs provide a network for endocytic regulation that is bridged by “Rab 

effectors” (Naslavsky and Caplan, 2011; Zhang et al., 2012). SNAP29 forms a complex 

with clathrin, AP-2, and EHD1, indicating its involvement in the endocytic machinery 

(Rapaport et al., 2010). A current model holds that EHD1 is recruited to TRE 

membranes by a complex formed by the stable interaction of MICAL-L1 and Syndapin2 

to perform fission of TREs and give rise to newly formed vesicles (Giridharan et al., 

2013). We have further demonstrated that Rabankyrin-5 and EHD1 play an important 

role in regulating localization of the retromer complex (Zhang et al., 2012).  
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The atomic and molecular mechanisms underlying this differential EHD partner 

binding are not understood. We propose two models describing the binding partners to 

understand the nuances of binding with the EHD proteins. 

In the “Downstream” Number Model, we propose that a number of sequential 

acidic residues are needed after the phenylalanine (F) of the NPF motif. Rabankyrin-5 

has a motif composed of negatively charged residues at the +1 and +2 positions 

(NPFED) but binds to EHD1 and not EHD3 (Schnatwinkel et al., 2004; Zhang et al., 

2012). On the other hand, MICAL-L1 has 6 negatively charged residues immediately 

following its phenylalanine (NPFEEEEED), and it interacts robustly with both EHD1 and 

EHD3. 

In the “Upstream” Residue Model, we postulate that the residues just prior to the 

NPF motif might dictate the selectivity of binding. MICAL-L1 has KPY residues 

immediately upstream to the NPF motif that might allow more promiscuous binding than 

the QSV upstream to the Rabankyrin-5 NPF motif (Schnatwinkel et al., 2004). 

We have further discussed these models in Chapter IV for understanding the 

fine-tuning of partner binding with EHD proteins. Moreover, the differences in the EH 

domain could also be responsible for differential binding. Other interaction motifs have 

also been observed, aside from the typical NPF-EH interface. One such atypical 

interaction motif is the YPXL motif found in the RME-1 interaction partner, is the C. 

elegans protein ALX-1/Alix, Alix the V domain (the structure of the residues spanning 

360-702 amino acids of Alix has the shape of the letter “V”) of which binds to YPXL motif 

in the extreme C-terminus of RME-1 (Lee et al., 2007; Shi et al., 2007).  

 

5.4 Distinct features of EHD proteins 

Despite having such high level of identity, EHD proteins have unique subcellular 

localizations and regulate distinct steps of trafficking. EHD1 is localized mainly at the 
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tubular components of the endosomal recycling compartment (ERC), punctate 

membranes and cytoplasm. The primary function of EHD1 is to carry the receptors from 

ERC back to the PM (Grant et al., 2001; Caplan et al., 2002). EHD2 is recruited to the 

PM by PIP2 and where it interacts with molecular components of caveolae and regulates 

caveolar mobility (Daumke et al., 2007; Stoeber et al., 2012; Simone et al., 2013). EHD3 

facilitates the trafficking of receptors from EE to the ERC and the Golgi (Galperin et al., 

2002; Nasvalsky et al., 2006). EHD4 localizes to the Rab5 and EEA1 positive EEs and 

regulates the trafficking of receptors from EE to the ERC with EHD3 and primarily to the 

lysosomes for degradation (Sharma et al., 2008) (Fig 1.5). EHD4 has also been  

implicated in regulating nerve growth factor receptor (TrkA) internalization and 

L1/neuron-glia cell adhesion molecule (NgCAM) trafficking in neuronal cells (Shao et al., 

2002; Yap et al., 2010). Given that EHD proteins have an indispensable role in the 

regulation of trafficking process, it is not surprising that aberrant function or expression 

of EHD proteins would lead to a host of diseases (Table 1). 

 

6. EHD1 

EHD1 is the best-characterized and most extensively studied member of the 

EHD protein family. The primary role of EHD1 is to promote the recycling of receptors 

from the ERC back to the PM (Caplan et al., 2002). EHD1 regulates the recycling of an 

extensive array of receptors that have been internalized by both CME and CIE. Some of 

the examples of receptors recycled by EHD1 are transferrin receptor (TfR) (Caplan et 

al., 2002), major histocompatibility complex I (MHCI) (Jovic et al., 2009), glucose 

transporter type 4 (GLUT4) receptor (Guilherme et al., 2004), and 2-amino-3 (3-hydroxy-

5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptors (Park et al., 2004). 
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Figure 1.5 Endocytic transport and regulatory proteins. 
 
EHD family members regulate endocytic trafficking at different steps. EHD1 regulates 
trafficking at the endocytic recycling compartment and also localizes to the retromer 
tubules during retrograde transport to the trans-Golgi network. Rab5 regulates the of entry 
cargo from plasma membrane to the early endosome. Rab4 and Rab11 regulate fast 
recycling and slow EHD2 regulates caveolin assembly and trafficking to the early 
endosome; whereas EHD3 regulates the transport from the Early Endosome to the 
Endocytic Recycling Compartment and to the trans-Golgi network; EHD4 and Rab7 
regulate the movement from early endosome to the late endosome and lysosomes.  
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Figure 1.5 
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EHD1 localizes to a distinct array of tubular and vesicular membranes (Caplan et al., 

2002). The EH domain of EHD1 interacts with lipids and localizes EHD1 to the tubules. 

Indeed, mutating lysine (K) at position 483 (present within the EH domain) affects the 

binding of EHD1 to lipids and abrogates its tubular localization, thereby rendering the 

protein cytosolic (Naslavsky et al., 2007a). Recent studies have demonstrated that the 

loss of tubular localization leads to accumulation of cargo in the ERC. Thus, the function 

of EHD1 is contingent upon localization to tubular endosomes. Recent studies from our 

lab have highlighted the role of EHD1 in release of cargo-containing vesicles from the 

TREs by the process of vesiculation.  

 

6.1 EHD1 as a vesiculator 

Vesiculation is the process of generation and release of vesicles from the tubular 

endosomes. This process requires the recruitment of an array of proteins that 

orchestrate the inward bending of the PM to form a deeply invaginated budding vesicle 

and subsequently promote its fission (Ferguson and DeCamilli, 2012). One of the most 

extensively studied proteins that directly catalyze the process of fission of vesicles is the 

GTPase Dynamin. Accumulating evidence has suggested that GTP-bound Dynamin 

assembles as helical polymers around the necks of invaginated membrane and upon 

GTP hydrolysis, Dynamin polymer constricts and releases the budding endocytic vesicle 

from the PM (Takei et al., 1995; Hinshaw and Schmid, 1995) 

EHD proteins are thought to share common features with Dynamin. Indeed, 

EHD2 forms spiral-like oligomers around the negatively charged liposomes and 

stimulates ATP hydrolysis upon lipid binding, consequently tubulating the liposomes in 

vitro (Daumke et al., 2007; Pant et al., 2009). This led to an initial conclusion that EHD 

proteins can tubulate membranes. However, our studies in cells seem to suggest that 

EHD proteins are not capable of generating tubules. Our initial evidence came from the 
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observation that EHD1 localizes to pre-existing tubular membranes (Jovic et al., 2009). 

Furthermore, identification of MICAL-L1 as not only a novel direct interaction partner of 

EHD1 but also as a protein that co-localizes with EHD1 on the TREs, has augmented 

our understanding of TREs (Sharma et al., 2009). Interestingly, MICAL-L1 functions as a 

membrane hub and is capable of interaction with a battery of proteins that have an 

impact on TRE membrane shaping. MICAL-L1 is capable of direct interaction with 

Syndapin2, which can induce membrane curvature and also directly interact with EHD1 

(Braun et al., 2005). We also identified phosphatidic acid (PA) as a lipid indispensable 

for the generation of TREs. Both MICAL-L1 and Syndapin2 preferentially bind to 

membranes having a high concentration of PA. Subsequently, the MICAL-L1-PRD (2 of 

the 14 PRDs) interacts with the SH3 domain of Syndapin2, and this stable interaction 

leads to the generation of TREs. Upon completion of TRE generation, EHD1 is recruited 

to the TRE membranes and it leads to the fission of vesicles containing cargo from the 

TREs by the process of vesiculation (Giridharan et al., 2013). Evidence for this model 

came from the knockdown of EHD1 in HeLa cells, which led to the generation of long, 

more elaborate and extensive TREs in the cells in the absence of EHD1. Furthermore, 

the addition of purified EHD1 to a novel semi-intact cell system in the presence of ATP 

fostered the release of vesicles from TREs, reinforcing the notion of EHD1 as a 

vesiculator (Cai et al., 2013). EHD4 also behaves as a vesiculator like EHD1 in a semi-

intact cell system. In agreement with our notion of EHD1 as a vesiculator, studies in 

Lampetra fluviatilis have also demonstrated that the EHD ortholog, l-EHD1, is present on 

presynaptic sites and co-operates with Dynamin2, to promote the release of synaptic 

vesicles (Jakobsson et al., 2011).  

Furthermore, we have previously shown that the lipid modifier cytosolic 

phospholipase A2α (cPLA2α) cooperates with EHD1 in the vesiculation of GPI-AP-

containing endosomes, using endogenous CD59 as a cargo for GPI-APs. We 
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hypothesize that cPLA2α might act by locally modifying lipids and ultimately promoting 

the membrane curvature, to generate a template for EHD1 to cleave vesicles (Cai et al., 

2012). Furthermore, we also discovered that TRE vesiculation is supported by a 

synergistic role of GRAF1 and EHD1 (Cai, Xie et al. 2014). Chapter IV of this 

dissertation describes the studies which have been performed to elucidate the molecular 

and atomic basis of EHD1 function as a vesiculator. 

 

 7. EHD2  

EHD2 is the most diverse member of the EHD family in terms of sequence 

homology that is (>70%) and function. EHD2 is recruited to the PM by the lipid PIP2 

(Simone et al., 2013). At the PM, EHD2 localizes to small cave-like structures known as 

caveolae. The structure of caveolae comprises the integral membrane caveolin proteins 

and cavin proteins coat it. A recent model by Stoeber et al., 2016 proposes that caveolin 

and cavin proteins form a well-defined decahedron, a structural unit of the caveolae, 

which provides stability and membrane confinement (Stoeber et al., 2016). In addition, 

Syndapin2 is recruited to caveolae and functions in shaping the caveolae. Through its 

NPF motif Syndapin2 binds to the EH domain of EHD2 (Braun et al, 2005); however, it is 

not responsible for recruiting EHD2 to the caveolae. ATP and the unstructured loop 

containing the sequence KPFRKLNPF are required for recruiting EHD2 to the caveolae. 

EHD2 primarily functions in restricting the mobility of caveolae (Stober et al., 2012; 

Moren et al., 2012). EHD2 is also present in the actin-rich regions of the PM and is 

connected to the cytoskeleton. EHD2 is connected to the actin cytoskeleton by the 

EHD2 binding protein 1 (EHBP1) (Guilherme et al., 2004). Further, it has been 

hypothesized that EHD2 behaves as a vesiculator in the caveolae (similar to the role of 

EHD1 in TREs and Dynamin in CME) and gives rise to caveolar vesicles. Hence, EHD2 
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regulates caveolar mobility by interaction with the actin cytoskeleton and possibly by 

releasing caveolar vesicles (Stoeber et al., 2012). 

 

7.1 Structure of EHD2 

EHD2 crystallizes as a dimer; the dimerization is mediated by a highly conserved 

hydrophobic interface. The crystal structure was solved as a dimer in the presence of 

AMPPNP (Fig 1.4 B). The two G-domains along with the helical domains adopt a 

compact scissor-shaped orientation, such that the C-termini of the two monomers cross 

each other, orienting the EH domains on top of or on the same axis as the G-domains of 

opposing monomers (Daumke et al., 2007). The stretch of polybasic residues close to 

the helical tip is involved in lipid binding. EH domains were proposed to mediate homo-

oligomerization by binding to intrinsic NPF motifs in adjacent EHD2 dimers (Daumke et 

al, 2007). This internal NPF is a part of a partially conserved unstructured loop with the 

sequence KPFRKLNPF (Daumke et al., 2007).  

Recent studies focusing on the structural analysis of EHD2 have highlighted the 

role of N-terminus of EHD2 in governing the conformation of EHD2 and subsequently 

targeting EHD2 to the caveolae. The N-terminus of EHD2 is a switch region and it exists 

in two states, dependent upon the localization of EHD2. When EHD2 is in solution, it 

exists in a highly ordered state that is stabilized by the interaction of its N-terminus with 

the G domain specifically the KPFRKLNPF motif. This state is called the “auto-inhibited” 

state. However, in the presence of membrane, there is a flexible state of the N-terminus 

also known as the “open conformation”. The N-terminal residues are buried in a 

hydrophobic pocket of the G domain in the crystal structure. In the presence of lipid 

membranes, N-terminal residues relocate and insert into the lipid bilayer; hence, the 

“open conformation” is a prerequisite for the membrane insertion of EHD2 and 

conformational change in helical domains. Upon insertion of the N-terminus of EHD2 into 
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the membrane, the KPFRKLNPF loop is free and can interact with the EH domain of the 

neighboring dimer, facilitating oligomerization (Shah et al., 2014; Alves Melo et al., 

2017). Furthermore, another recent study has firmly established that ATP binding is 

indispensable for partial insertion of the N-terminus of EHD2 into the membrane 

enabling G-domain-mediated oligomerization. Upon completion of this step, ATP 

hydrolysis occurs and the EHD2 oligomers are disassembled, released and 

subsequently EHD2 detaches from the membrane (Hornecke et al., 2017). 

 

7.1.1 Homo-and Hetero-oligomerization of EHDs 

C-terminal EHD proteins have a unique ability to homo- and hetero-oligomerize. 

Initial evidence of EHD1 existing in a large oligomeric complex and not as monomers in 

HeLa cells came from the sedimentation velocity analysis of EHD1 (Caplan et al., 2002). 

In addition, hetero-oligomerization of EHD1 and EHD3 was demonstrated by yeast two-

hybrid analysis and overexpression studies (Galperin et al., 2002). A previous study from 

our group has demonstrated the hetero-oligomerization of EHD1 and EHD3 with EHD4 

in physiological conditions (Sharma et al., 2008). Interestingly, EHD2 is the only EHD 

protein that is not capable of hetero-oligomerization with the other three paralogs 

(George et al., 2007; Sharma et al., 2008). The coiled-coiled region in EHDs was 

predicted to be the region of dimerization and oligomerization (Lee et al., 2005). 

Interestingly, we were able to identify a conserved valine in EHD1, EHD2, and EHD3 in 

the coiled-coiled region using Paircoil-coil prediction program 

(http://paircoil.lcs.mit.edu/cgi-bin/paircoil) that is critical for mediating dimerization. 

Mutation of this valine residue (at 203 positions in EHD1 and EHD3, and 297 positions in 

EHD2) to a proline residue prevents dimerization and renders the protein insoluble 

(Naslavsky et al., 2006; Bahl et al., 2015). 
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7.1.2 Role of KPFRKLNPF loop in EHD2 oligomerization 

The crystal structure of EHD2 had shed new light on the putative region involved 

in oligomerization. The crystal structure of EHD2 was solved as a dimer and it led to the 

identification of a partially conserved unstructured loop KPFRKLNPF in the G-domain. 

The unstructured loop has an intrinsic NPF motif, which mediates the oligomerization of 

EHD2 dimers by interacting with the EH domain of the neighboring EHD2 dimer 

(Daumke et al., 2007; Shah et al., 2014). This serves as a unique case of EH-NPF 

interaction involved in mediating self-interaction, in addition, to the well-established role 

of EH domain of EHDs in mediating interaction with NPF containing binding partners. 

Structural data also demonstrate that EHD2 forms dimers through the previously 

proposed G-domain hydrophobic interface (Daumke et al., 2007), but the conserved 

KPFRKLNPF loop in the G domain plays a role in oligomerization (Moren et al, 2012). 

Recent studies have also demonstrated the role of the KPF motif on caveolar targeting; 

however, its exact function remains elusive. The current model holds that the assembly 

of EHD2 into ring-like structures creates the scaffold that generates and/or stabilizes at 

the membrane. As discussed in the previous section, oligomerization of EHD2 was 

significantly enhanced in the presence of ATP, suggesting that the membrane-inserted 

open conformation of EHD2 provides an optimized template for oligomerization, and the 

KPFRKLNPF loop is available for EH-binding (Hornecke et al., 2017). Studies described 

in Chapter III have defined the precise role of the KPFRKLNPF loop in homo-

oligomerization, localization to PM and binding to the interaction partners. We have also 

delineated the function of the single RPF motif of EHD1 in homo and hetero-

oligomerization, localization on the TREs and binding to interaction partners. 

 

8. EHD3 
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EHD3 shares the highest level of homology with EHD1, about 86% identity at the 

amino acid level (Galperin et al., 2002). EHD3 is involved in the regulation of transport 

from the EE to the ERC and the absence of EHD3 leads to failure of transport of cargo 

to ERC (Naslavsky et al., 2006). Moreover, EHD3 is involved in retrograde transport 

from the EE to the TGN and maintenance of Golgi morphology (Naslavsky et al., 2009). 

Thus, it is obvious that absence of EHD3 leads to trapping of cargo in the EE, a 

characteristic phenotype of EHD3 knock-down (KD) (Naslavsky et al., 2006). EHD3 is 

capable of heterodimerizing with EHD1 and colocalizes with EHD1 on the tubulo-

vesicular endosomes (Galperin et al., 2002). Similar to EHD1, EHD3 binds to Rab 

effectors, such as Rab11-FIP2, Rabenosyn-5, and MICAL-L1 (Naslavsky et al., 2004; 

Naslavsky et al., 2006; Sharma et al., 2009).  

The knockout mouse of EHD1 did not show a discernable phenotype and we 

hypothesized that EHD3, being so similar to EHD1, would be responsible for 

compensation of the protein (Rapaport et al., 2006). However, an additional mouse 

model revealed that EHD1 is required for normal spermatogenesis and fertility of male 

mice (Rainey et al., 2010). These differences in the phenotypes of two mouse models 

might be subject to a different strain of the background mouse used for the crosses. 

 Since EHD3 has such a high level of homology with EHD1, one would expect 

EHD1 and EHD3 to have a similar function. However, our knockdown studies 

demonstrated that loss of EHD3 has an opposing effect on TREs, namely the loss of 

TRE in cells as compared with EHD1. This finding was further corroborated by our semi-

intact cell system, wherein upon addition of purified EHD3, rapid induction of tubules 

was observed (Cai et al., 2014). The in vitro experiments using purified liposomes also 

demonstrated that EHD3 is required for membrane tubulation. However, liposomes 

come with a caveat that they have an innate propensity towards tubulation (Henmi et al., 
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2016). Although, our findings suggest that EHD3 is involved in tubulation, its precise role 

is unclear. 

Regardless of the disparate functions of EHD3 and EHD1, EHD3 does display 

functional redundancy in some aspects of cellular regulation. For instance, EHD1 and 

EHD3 are both required for the formation of ciliary vesicles (Lu et al., 2015).  

 

8.1 Curvature and tubule generation 

The generation of a tubule from a flat lipid bilayer requires the dynamic interplay 

of proteins and lipids that sense and stabilize the local regions of membrane curvature 

(McMahon and Gallop, 2006). The phospholipid bilayer can be deformed causing 

positive or negative membrane curvature. There are five main categories: 1) changes in 

lipid composition 2) influence of integral membrane proteins that have intrinsic curvature 

or have curvature upon oligomerization 3) changes in cytoskeletal polymerization and 

pulling of tubules by motor proteins 4) direct and indirect scaffolding of the bilayer and 5) 

active amphipathic helix insertion into one leaflet of the bilayer (McMahon and Gallop, 

2005). 

One important class of membrane curvature sensor and generating proteins is 

the BAR-domain containing protein. The BAR domain bears a dimeric, crescent-shaped 

membrane binding region that senses curved membranes and generates a positive 

curvature upon binding (Peter et al., 2004). Based on sequence homology and structural 

analysis, BAR domain-containing proteins are classified into several types: classical 

BAR, N-BAR, BAR-PH, PX-BAR, F-BAR and I-BAR (Frost et al., 2009; Suetsugu et al., 

2010). The BAR domain includes elongated homo-dimers of 6-alpha-helical coiled coils 

and is often referred to as a crescent-shaped or banana–shaped structure (Frost et al., 

2008; Peter et al., 2004). 
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Recently, we have linked one of the three isoforms of Syndapin, Syndapin2, to 

TRE biogenesis (Braun, et al., 2005; Giridharan et al., 2013). Syndapin2 also contains a 

C-terminal SH3 domain (Kessels et al., 2004) along with three NPF motifs (Braun et al., 

2005), which serve as protein binding modules. Some of the Syndapin2 SH3 domain-

interacting proteins are: dynamin, synaptojanin, synapsin, Rac1 and neural Wiskott-

Aldrich syndrome protein (N-WASP) and MICAL-L1 (de Kreuk et al., 2011; Kessels and 

Qualmann, 2004; Giridharan et al., 2013). Syndapin2 interaction with the EH domain of 

EHD1 is mediated by its NPF motifs (Braun et al., 2005). The current proposed model 

for the generation of TREs suggests that local high concentration of PA is a prerequisite 

for the generation of tubules. Localized high concentration of PA leads to the formation 

of microdomains and supports slight positive curvature (Faraudo and Travesse, 2007). 

The F-BAR domain of Syndapin2 binds to the slightly curved surface and preferentially 

recruits other TRE generation proteins MICAL-L1 and EHD3 (See Figure 1.5 for the 

proposed model depicting the function of Syndapin2 in TRE biogenesis). Once TRE 

biogenesis is completed, EHD1 is recruited to release cargo-containing vesicles by the 

process of vesiculation. This biogenesis process is vital for cargo sorting into the 

recycling pathways because depletion of MICAL-L1 and EHD1 results in significant 

accumulation of cargo in the ERC (Giridharan et al., 2013). The function of EHD3 in the 

process of TRE generation remains unclear. We hypothesize that there are two alternate 

possibilities: 1) EHD3 can induce tubulation (the prerequisite for tubulation is the ability 

to sense and generate curved membranes, for instance, functioning similar to BAR 

domains) or 2) EHD3 stabilizes the newly synthesized MICAL-L1 and Syndapin2-

decorated TRE, according to our current understanding of TRE biogenesis (Giridharan 

et al., 2013). Studies described in chapter IV of this dissertation test the two alternatives 

to delineate the precise role of EHD3 in the process of TRE generation.  



   - 53 - 
 

Figure1.6 Model for biogenesis of tubular recycling endosomes.  
 
(A) Phosphatidic acid is generated or enriched on membranes. (B) MICAL-L1 (via its CC 
domain) and Syndapin2 (via its F-BAR domain) are recruited to PA-enriched membranes. 
(C) The MICAL-L1 PXXP motifs interact with the SH3 domain of Syndapin2 to stabilize 
both proteins on the membranes (D) Next, facilitate the generation of tubular endosomes 
by Syndapin2. (E) Syndapin2 and MICAL-L1 bind to the EH domain of EHD1 via their NPF 
motifs and recruit EHD1 to these tubular membranes, potentially facilitating vesiculation 
(Image used with permission from Giridharan et al., 2013). 
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Figure 1.6 
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9. Conclusion 

In recent years, there has been an intense interest in the EHD protein family and 

many studies have focused on EHD proteins. Major advances have been made towards 

gaining insight into structure-function relationship of EHD2.  A partially conserved 

unstructured loop, KPFRKLNPF loop in the G-domain, which is primarily responsible for 

oligomerization and targeting of EHD2 to caveolae has been characterized. Strikingly, 

EHD2 is the only family member that has 2 proline-phenyalanine (PF) (KPF and NPF) 

motifs in this loop and with an internal NPF motif. However, the exact role of the 2PF 

motifs in the unstructured loop remains unknown. In this dissertation, we focus on 

delineating the precise role of 2PF motifs in oligomerization, targeting to the PM and 

binding to the interaction partners. 

EHD1 and EHD3 have the highest level of homology amongst the members of 

the EHD family. Despite hetero-dimerizing and co-localizing at TRE membranes, 

surprisingly, EHD1 and EHD3 have distinct, even opposing functions in the TRE 

biogenesis/stabilization and vesiculation. EHD1 is involved in the release of vesicles by 

the process of vesiculation and EHD3 has been implicated in the tubulation and/or 

stabilization of TREs. In this dissertation, we set out to determine the precise 

mechanistic role of EHD3 in TRE generation and/or stabilization. Furthermore, we aimed 

to elucidate the molecular and atomic basis of the differential function of two such similar 

proteins likely evolved through gene duplication and divergent evolution. 
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Table 1: Relationship between EHD proteins and disease 

 

 

 

 

 

  

EHD protein Disease Abberant 
Phenotype 

Reference 

EHD1 and EHD3 Alzheimer’s 
Disease 

Loss of EHD1or 
EHD3 

Buggia-Prévot et 
al., 2013 

 
EHD1 Non-small lung 

cancer 
Overexpression Meng et al., 2016 

EHD1 Breast Cancer Overexpression Tong et al., 2017 

EHD1 Sickle Cell Anemia 4.9 fold increased 
expression 

Ammann et al., 
2009 

 
            EHD2 Breast Cancer Overexpression Yang et al., 2015 

             EHD3 Gliomas Overexpression Chukkapalli et al., 
2014 

EHD3 Small-cell lung 
carcinoma 

Overexpression Taniwaki et al., 
2006 

EHD4 Systemic onset 
juvenile idiopathic 

arthritis 

Overexpression Allantaz et al., 2007 
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10 Materials and Methods 

 

10.1 Recombinant DNA Constructs 

The following constructs were used for studies conducted in chapter III and 

chapter IV. Cloning of EHD1, EHD2, EHD3, EHD4, MICAL-L1, Rabankyrin-5, Syndapin2 

into yeast two-hybrid vectors pGBKT7 and pGADT7, glutathione-S-transferase (GST)-

EH1 and GST-EH3 vectors as well as cloning of green fluorescent protein (GFP)-Myc–

EHD1, GFP-Myc-EHD2, GFP-Myc-EHD3 in expression vectors and their SiRNA- 

resistant versions have been described previously (Caplan et al., 2002; Sharma et al., 

2009; Giridharan et al., 2013; Zhang et al., 2013). The SiRNA-resistant-GFP-Myc-

EHD3/EH1 chimera was generated, by cloning amino acid residues 1-434 of EHD3 and 

435-450 of EHD1 in eGFP-C3 vector. Two-hybrid control vectors (Gal4ad-SV40 large T-

antigen and Gal4bd-p53) were purchased from (BD Biosciences Clontech, Palo Alto, 

CA). The following constructs were generated for the studies described in chapter III 

using QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA): in the 

pGADT7 vector (yeast-two hybrid vector), in the GFP-Myc-EHD1 and in the GFP-Myc-

EHD2 vectors (mammalian expression vectors); pGADT7 EHD2 and GFP-Myc-EHD2 

(NPF-to-NAF), pGADT7 EHD2 and GFP-Myc-EHD2 (NPF-to-NPA), pGADT7 EHD2 and 

GFP-Myc-EHD2 (NPF-to-APA), pGADT7 EHD2 and GFP-Myc-EHD2 (KPF-to-KAF), 

pGADT7 EHD2 and GFP-Myc-EHD2 (KPF-to-APA), GFP-Myc-EHD2 (NPF-to-NPY), 

GFP-Myc-EHD2 (NPF-to-NFP), pGADT7 EHD1(RPF-to-APA),  pGADT7 EHD1(NAF-to-

NPF), pGADT7 EHD1(RPF-to-APA+NAF-to-NPF) and GFP-Myc-EHD1 (RPF-to-APA). 

The following mutations were introduced by site-directed mutagenesis for studies 

described in chapter IV: pGADT7 EHD3 (AHLL523PHLV), pGADT7 EHD3 (D459N), 

pGADT7 EHD3 (M447T), pGADT7 EHD3 (KVAE523RHE), pGADT7 EHD3 (N519A), 

pGDAT7 EHD3 (NE519AD), pGADT7 EHD1 (AD519NE), pGBKT7 MICAL-L1 



   - 59 - 
 

(NPFDEEEEE to NPFDEEEEA), pGBKT7 MICAL-L1 (NPFDEEEEE to NPFDEEEAA), 

pGBKT7 MICAL-L1 (NPFDEEEEE to NPFDEEAAA), pGBKT7 MICAL-L1 (NPFDEEEEE 

to NPFDEAAAA), pGBKT7 MICAL-L1 (NPFDEEEEE to NPFDAAAAA), pGBKT7 MICAL-

L1 (NPFDEEEEE to NPFAAAAAA), pGADT7 Rabankyrin-5 (NPFEDV to NPFEDE), 

pGADT7 Rabankyrin-5 (NPFEDV to NPFEDEE), pGADT7 Rabankyrin-5 (NPFEDV to 

NPFEDEEE), pGADT7 Rabankyrin-5 (QSV to KPY), pGADT7 Rabankyrin-5 (QSV to 

KSV), pGADT7 Rabankyrin-5 (QSV to QPV), pGADT7 Rabankyrin-5 (QSV to QSY) and 

GST-EH3 (NE519AD). 

 

10.2 Antibodies and Reagents 

The primary antibodies used in the studies described in Chapter III and IV were: 

the affinity-purified rabbit polyclonal antibodies directed against the C-terminus of human 

EHD1 (DLPPHLVPPSKRRHE), EHD2 (VERGPDEAMEDGEEGSDDEA) (Anaspec, 

Fremont, CA) have been described previously (Naslavsky et al., 2004). Mouse 

polyclonal anti–MICAL-L1 (Novus Biologicals, Littleton, CO), rabbit polyclonal anti-

Syndapin2 used for immunofluroscence (IF) (Abgent, San Diego, CA) and for western 

blot (WB) (ProteinTech, Chicago, IL), goat anti-GST conjugated to horseradish 

peroxidase (HRP) (GE life sciences, Piscataway, NJ), mouse anti-Rabankyrin-5 (Novus 

Biologicals, Littleton, CO), rabbit anti-HA (Signalway Antibody, Pearland, TX), rabbit anti-

HA (Bethyl, Montgomery, TX), and rabbit anti-caveolin1 (Cell Signaling Technology, 

Danvers, MA). The following secondary antibodies were used in studies described in 

Chapter III and Chapter IV: Alexa-Fluor-568-conjugated goat anti-mouse, Alexa-Fluor-

488-conjugated goat anti-mouse, Alexa-Fluor-568-conjugated goat anti-rabbit 

antibodies, and Alexa-Fluor 568–labeled transferrin (Tf-568) (Life Technologies, 

Carlsbard, CA). Goat anti-mouse HRP was obtained from (Jackson ImmunoResearch 

Laboratories, West Grove, PA). Donkey anti-rabbit HRP was obtained from (GE Life 
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Sciences, Piscataway, NJ). CAY 10593 and CAY 10594 were purchased from (Cayman 

Chemical Company, Ann Arbor, MI).  

 

10.3 Cell culture, transfections and SiRNA treatment 

The HeLa cervical cancer cell line (ATCC-CCL2; Manassas, VA) was maintained 

in high-glucose Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% 

(v/v) fetal bovine serum (FBS) (Sigma-Aldrich, St.-Louis, MO), 200 U/ml penicillin, 200 

μg/ml streptomycin. On-Target-plus SMART pool SiRNA for EHD3, MICAL-L1, 

Syndapin2, and SiRNA duplexes for EHD1 (base pairs gaaagagatgcccaatgtc) and 

synthesized by Dharmacon, Lafayette, CO were transfected using Lipofectamine 

RNAiMax (Life Technologies, Carlsbad, CA) to perform knockdown studies as previously 

described (Naslavsky et al., 2006 and Sharma et al., 2009) for 48 hour (h) or 72 h 

depending on the efficiency of the SiRNA duplexes. For transfection, HeLa cells, plated 

on 6-well plates, were transfected using 6 μl X-tremeGENE 9 (Roche Life Sciences, 

Indianapolis, IN) or 6 μl Lipofectamine 2000 (Life Technologies, Carlsbad, CA) with 2 μg 

of DNA for 16-18 h at 37°C according to manufacturer’s protocol. 

 

10.4 Protein Purification 

The EH domains of EHD1, EHD3 and EHDNE519AD mutant were cloned into 

bacterial expression vector pGEX-6p-2 and transformed into BL-21 cells. A single colony 

from the transformed cells was cultured overnight in 50 ml LB medium containing 10% 

glucose. The next day, 20 ml of the culture was transferred to 2 L Super Broth medium 

and grown at 37°C. When the optical density (O.D.) reached 0.6-0.7, the cells were 

induced with 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and transferred to an 

18°C incubator shaker for 3 h. Cells were then pelleted and lysed using Emulsiflex-C3 
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homogenizer (Avestin, Ottawa, Canada). The EH1, EH3 and EH3 (NE519AD) proteins 

were purified from the lysate using the gluthathione-agarose resin.  

 

10.5 Immunoblotting  

For immunoblotting experiments described in both Chapter III and Chapter IV, 

HeLa cells were harvested and lysed on ice for 30 minutes (min) in lysis buffer 

containing 50 mM tris(hydroxymethyl)aminomethane(Tris), pH 7.4, 150 mM NaCl, 1% 

Triton-X, 1.8 mg/ml iodoacetamide, and protease inhibitor mixture (Roche Life Sciences, 

Indianapolis, IN). Total protein levels in the lysate were calculated by BioRad protein 

assay reagent (Bio-Rad Laboratories, Hercules, CA) and normalized for equal protein 

loading on gels. Protein samples were separated on 8%, 10% or 13% sodium dodecyl 

sulphate (SDS)- polyacrylamide gel electrophoresis (PAGE) depending on the molecular 

weight of the protein of interest. The separated proteins were transferred to 

nitrocellulose membrane and detected by immunoblotting with appropriate antibodies. 

 

10.6 GST pull-down and co-immunoprecipitation 

For the co-immunoprecipitation experiments between EHD2 and Syndapin2, 

HeLa cells were transiently transfected with either GFP-Myc-EHD2, or GFP-Myc-EHD2 

mutants (NPF-to-NAF, NPF-to-APA, KPF-to-KAF, KPF-to-APA), lysed 24 h later in a 

buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton-X, 1:1000 of 1 

mg/ml protease inhibitor cocktail (Calbiochem, San Diego, CA) and subjected to 

immunoprecipitation with antibodies against Syndapin2. Separated proteins were 

transferred on to nitrocellulose membrane and then immunoblotted with anti-EHD2 

antibodies. Input lane contains 5% of the total lysate immunoprecipitated. 

In order to address the binding of EH domains of EHD1, EHD3, and EHD3 

NE519AD proteins with Rabankyrin-5, in chapter IV, we performed GST pull-down 
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experiments: 50 μg of purified GST-fusion proteins EH1, EH3 or EH3 (NE519AD) were 

incubated with GST beads, in buffer containing 20 mM Tris and 300 mM NaCl containing 

0.1% Triton-X-100, leupeptin and incubated for 4 h as previously done (Giridharan et al., 

2013). GST beads were then washed 4X in 20 mM Tris and 300 mM NaCl containing 

0.1% Triton-X-100 and leupeptin. HeLa cells were transiently transfected with HA-

Rabankyrin-5 for 24 h and lysed in buffer containing 50 mM Tris-HCl, pH 7.4, 150 mM 

NaCl, 0.5% Triton-X-100, 1.8 mg/ml iodoacetamide and protease inhibitor cocktail. GST 

beads were then incubated with the HeLa lysate overnight, washed 4X in 20 mM Tris 

and 300 mM NaCl containing 0.1% Triton-X-100 and leupeptin, eluted with 4X sample 

buffer, and analyzed by immunoblotting with the anti-HA antibody. 

 

10.7 Yeast Two Hybrid 

The yeast two-hybrid assay was utilizing the Saccharomyces cerevisiae (S. 

cerevisiae) strain, AH109 (BD Biosciences Clontech, Palo Alto, CA) maintained on yeast 

extract, peptone and dextrose (YPD) agar plates. A loop full of yeast was grown 

overnight at 30°C with shaking at 250 rpm in liquid YPD medium. The transformation 

was done by the lithium acetate procedure as described in the instructions for the 

MATCHMAKER two-hybrid kit (BD Biosciences Clontech, Palo Alto, CA). For colony 

growth assays AH109 co-transformants were streaked on plates lacking leucine and 

tryptophan. Co-transformants were allowed to grow at 30°C, usually for three days, or 

until the colonies were large enough for further assays. An average of three to four 

colonies were selected and suspended in water, equilibrated to the same optical density 

at 600 nm, and replated on plates lacking leucine and tryptophan (+HIS, -2 plates), as 

well as plates also lacking histidine (-HIS, -3 plates). The interaction between p53 and 

SV40 was used as positive control. 
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10.8 Transferrin uptake and recycling assays 

The rate of recycling of transferrin (TfR) was measured for experiments 

described in Chapter III and Chapter IV. HeLa cells were plated on 35-mm plates 

containing five coverslips each. Cells were approximately 75% confluent by the time of 

experiment. The cells were starved in DMEM containing 0.5% bovine serum albumin 

(BSA) for 1 h. After starvation, the cells were “pulsed” with 1 μg/ml of Tf-568 for 15 min 

and chased for 15 min in complete media, to allow the Tf-568 to be recycled. The 

coverslips were then fixed in 4% (v/v) paraformaldehyde in PBS and imaged by confocal 

microscopy. 

 

10.9 CAY inhibitor washout assay 

HeLa cells were grown on coverslips in 6-well plates and were subjected to 

SiRNA treatment using SiRNA duplexes against Syndapin2, EHD1 and EHD3. After 48 

h, the cells were subjected to100 μM PLD inhibitors (CAY10593 and CAY10594) for 30 

min at 37°C. The cells were then washed 3X with complete medium and allowed to 

recover after the washout of the inhibitors for 20 min, 1 h, 4 h, and 6 h. The coverslips 

were fixed in 4% (v/v) paraformaldehyde in PBS and stained with anti-MICAL-L1 

antibodies for the assessment of TRE. 

 

10.10 Isothermal Titration Calorimetry (ITC)   

Heat produced by the binding of MICAL-L1 peptide with the EH domains of 

EHD1 and EHD3 was measured by ITC using the MicroCal iTC200 isothermal titration 

calorimeter (Malvern, Worcestershire, UK). All proteins were equilibrated in 1X 

phosphate-buffered saline (PBS) at pH 7.4 by overnight dialysis. ITC binding isotherms 

were collected at 25°C by injecting 20 x 2 μL of peptide (930 μM) into a solution of each 

of the EH domains (90 μM), representing a 1:10 molar ratio. The heat from each 
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injection was measured by integrating the area of the injection peak, corrected for the 

background heat produced by the dilution of the peptide into the buffer, and plotted as a 

function of the EH domain/MICAL-L1 peptide molar ratio. Dissociation constant (KD) 

values were calculated by fitting the titration curves according to a single binding site 

mode with Origin 7 software with ITC add-ons supplied by Malvern. 

 

10.11 Confocal microscopy imaging 

HeLa cells were grown on cover slips and fixed with 4% (v/v) paraformaldehyde 

in PBS. The fixed cells were then incubated with primary antibodies prepared in staining 

solution (0.2% (w/v) saponin and 0.5% (w/v) bovine serum albumin (BSA) in PBS) for 1 

h at room temperature. After washing in PBS, the cells were incubated with the 

appropriate fluorochrome-conjugated secondary antibody mixture in staining solution for 

30 min at room temperature. Images were acquired with a Zeiss LSM 5 Pascal confocal 

microscope (Carl Zeiss, Thornwood, NY) using a 63 X 1.4 numerical aperture (NA) 

objective with appropriate filters. 

 

10.12 Structured illumination microscopy (SIM) imaging 

SIM images were collected on samples obtained as described above with a Zeiss 

ELYRA PS.1 illumination system (Carl Zeiss, Thornwood, NY) using a 63 X objective 

lens with a NA of 1.4 at room temperature as we have done previously (Reinecke et al., 

2014; Xie et al., 2015). Three orientation angles of the excitation grid were acquired for 

each z-plane, with z-spacing of 110 nm between planes. SIM processing was performed 

using the SIM module of the ZEN BLACK software (Carl Zeiss, Thornwood, NY). The 

processed SIM images were then exported in TIFF format. 

 

10.13 Quantification of MICAL-L1-containing tubular recycling endosomes 
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Tubular recycling endosomes (TREs) were quantified as described previously 

(Cai et al., 2013). Briefly, using NIH ImageJ software, threshold was adjusted to reduce 

the background in the image. The particle size was set between 5 μm2 and 150 μm2. All 

MICAL-L1-containing particles (tubules and vesicles) in this range were counted. Ten 

fields of images from each treatment were analyzed for statistical analysis. 

 

10.14 Statistical analysis 

The data sets (n=100 unless otherwise indicated) presented were collected from 

three independent experiments and were analyzed by one-way ANOVA, with one star 

for p < 0.01, and three stars for p < 0.05. The p-values are shown for each experiment. 

 

10.15 Sequence homology and Identity Analysis 

Sequence homology and identity between EHD1, EHD2, EHD3, MILCAL-L1, 

Rabankyrin-5 and their respective mutants generated by site-directed mutagenesis, was 

analyzed using AlignX program of Vector NTI. Vector NTI performs multiple sequence 

alignments using a modified Clustal W algorithm.  

 

  



   - 66 - 
 

 

 
 
 
 

 

 

 

 

 

CHAPTER III 

Role of the EHD2 Unstructured Loop in Dimerization, 
Protein Binding and Subcellular Localization 

 

 

The following chapter has been published in PLoS One. 2015 Apr 15;10(4):e0123710 
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11 Introduction 

The C-terminal Eps15 homology domain-containing (EHD) proteins coordinate 

various endocytic membrane regulatory events in mammalian cells (Naslavsky and 

Caplan, 2011). All four EHDs (EHD1-4) share a common domain architecture that 

includes three characteristic domains: 1) a Dynamin-like-G-domain that binds and 

catalyzes hydrolysis of ATP (Caplan et al., 2002; Naslavsky et al., 2006; Lee et al., 

2005; Daumke et al., 2007; Simone et al., 2014), 2) a coiled-coiled domain n formed by 

two helical regions that facilitates EHD oligomerization and lipid binding, 3) a C-terminal 

Eps15 Homology (EH) domain with a positively charged electrostatic surface that 

preferentially binds to proteins containing an asparagine-proline-phenylalanine (NPF) 

motif followed by acidic residues (Kieken et al., 2007; Kieken et al., 2009; Kieken et al, 

2010; Henry et al., 2010), that is a hallmark of these proteins. The most diverse EHD 

both in terms of sequence homology and function is EHD2 (Marg et al., 2012). A series 

of recent studies has established the involvement of EHD2 in regulating a variety of 

important functions that include sarcolemmal repair (Marg et al., 2007), myogenesis 

(Posey et al., 2011; Doherty et al., 2008), and control of Rac1 and the actin cytoskeleton 

(Stoeber et al., 2012; Benjamin et al., 2011; Park et al., 2004; Guilherme et al., 2004). 

Unlike EHD2, EHD1, EHD3 and EHD4, all of which play roles in regulating endocytic 

transport from sorting and recycling endosomes (Naslavsky and Caplan, 2011; Grant 

and Caplan, 2008; Naslavsky and Caplan, 2005). However, EHD2 is recruited to the 

cytoplasmic interface of the plasma membrane (PM) by phosphatidylinositol 4,5 

bisphosphate (PIP2) (Simone et al., 2013) where it interacts with caveolin and regulates 

caveolar mobility (Benjamin et al., 2011; Hansen et al., 2011; Moren et al., 2012).  

EHD2 was the first family member whose crystal structure was solved and the 

structure indicates that this protein contains a partially conserved region with two proline-

phenylalanine (2 PF) motifs KPFRKLNPF in an unstructured flexible loop near the G-
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domain (Daumke et al., 2007) (Fig 3.1A). This unstructured KPFRKLNPF region was 

proposed to link EHD2 dimer pairs through interactions with neighboring EH domains 

(Daumke et al., 2007). This is a unique situation where the NPF motif is intrinsic and the 

NPF-EH interaction facilitates the self-interaction of the protein. Recent studies have 

firmly established that N-terminus plays an indispensable role in targeting of EHD2 to the 

membrane (Shah et al., 2014), and provide support for the notion that both PF motifs 

play an important role in EHD2 localization and function (Moren et al., 2012). However, 

the degree to which both of these closely situated PF motifs impact EHD2 function, and 

particularly how each motif affects dimerization and interactions with binding partners 

remains obscure. The function of the PF motifs in the unstructured loop in EHD proteins 

is further complicated because while EHD2 has two PF motifs in its KPFRKLNPF 

sequence, the other three EHD paralogs all contain only one PF motif (Fig 3.1B); either 

a KPF or RPF motif at the N-terminal side of the unstructured loop. Indeed, both EHD1 

and EHD3 have a NAF motif (instead of NPF), whereas EHD4 has a SRF motif. In this 

study, we sought out to determine the significance of the two proline-phenylalanine 

(2PF): KPF and NPF motifs of EHD2 for their ability to dimerize, interact with protein 

partners and localize to caveolae. To test the role of the NPF motif, we generated an 

EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. 

While the EHD2 NPF-to-NAF mutant lost its dimerization potential and protein binding 

ability, this motif had little impact on its localization within the cell. On the other hand, 

mutation of the NPF motif to APA had little or no impact on dimerization or partner 

binding, but shunted EHD2 localization away from the PM primarily to the nucleus. We 

further examined EHD1 as a representative of the other three more closely related 

EHDs; we found that a single RPF motif of EHD1 is essential for (i) its dimerization, (ii) 

interaction with protein partners, and (iii) its localization to tubular recycling endosomes.  

Overall, our data suggests that the phenylalanine residue in the NPF motif is 
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crucial for EHD2 localization to the PM, whereas the proline residue is essential for 

EHD2 dimerization and binding. These studies support the recently proposed model 

suggesting that the EHD2 N-terminal region regulates the availability of the unstructured 

loop for interactions with neighboring EHD2 dimers, thus promoting oligomerization. 

 

12 Results 

 

12.1 Alteration of the EHD2 NPF motif to NAF impairs dimerization and binding 

with interaction partners, but does not affect EHD2 localization 

EHD2 is the only member of EHD protein family that homo-dimerizes but does 

not hetero-dimerize (Simone et al., 2013). This homo-dimerization potential may be 

required for interaction with NPF-containing protein binding partners. Accordingly, our 

goal was to first determine the requirement of the EHD2 NPF motif for homo-

dimerization (Fig 3.1A and 3.1B). By selective two-hybrid binding assay, we 

demonstrated that while wild-type EHD2 proteins homo-dimerize, they were not capable 

of interacting with wild-type EHD1, EHD3 or EHD4 (Fig 3.2A). On the other hand, when 

the EHD2 NPF motif was perturbed by introduction of a point mutation to convert to a 

NAF, the homo-dimerization was no longer observed. EHD2 binds to specific subsets of 

NPF-containing protein partners through its EH domain. Indeed, wild-type EHD2 

interacted with Syndapin2, but not MICAL-L1, even though both proteins contain NPF 

motifs followed by acidic clusters (Fig 3.2B). In vivo, co-immunoprecipitation analysis 

between EHD2 and Syndapin2 further confirmed the interaction (Fig 3.4A and Table 

3.1). However, the EHD2 NPF-to-NAF mutant lost its ability to interact with Syndapin2, 

suggesting that the EHD2 NPF motif is required for both homo-dimerization and for 

protein partner binding. Despite these data in yeast two-hybrid binding studies, the NAF 

mutant retained its ability to bind to Syndapin2 by co-immunoprecipitation, suggesting 
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the involvement of bridging proteins in the cells (Fig 3.4A and Table 3.1). In our previous 

studies, we demonstrated that interaction of EHD2 with PIP2 is responsible for 

recruitment of EHD2 to the PM and is independent of interaction with other binding 

partners through its EH domain (Simone et al., 2013). Recent findings by Moren et al. 

showed that EHD2 caveolar localization was independent of its protein-binding EH 

domain, which supports our conclusions (Moren et al., 2012). Furthermore, using 

selective yeast two-hybrid studies we have demonstrated that the EH domain is not 

required for EHD2 (or EHD1) homo-dimerization (Fig 3.2A-3.2C). Accordingly, we 

wanted to test the impact of EHD2 NPF-to-NAF modification on the localization of 

protein to the PM. Confocal microscopy demonstrated that both wild type and EHD2 

NPF-to-NAF primarily displayed PM localization (Fig 3.3C and 3.3D). We further 

analyzed both the wild-type and EHD2 NPF-to-NAF mutant using Structured Illumination 

Microscopy (SIM) and also observed both the wild-type and EHD2 NPF-to-NAF mutant 

partially co-localized to structures positive for caveolin-1 (Fig3.3E-3.3H); (see insets, 

asterisks indicate transfected cells). These data support the notion that the EHD2 NPF 

motif plays an essential role in EHD2 dimerization and binding to NPF-containing 

interaction partners. However, normal localization of EHD2 to the PM and colocalization 

of EHD2 with caveolae are not contingent upon the homo-dimerization ability of EHD2.  

 

12.2 Modification of the EHD2 NPF motif to APA induces loss of PM localization, 

but does not affect homo-dimerization and interactions with binding partners. 

Recent studies by Moren et al. demonstrated that upon mutating the coding 

sequence of phenylalanine 128 of the EHD2 NPF motif (see Fig 3.1A) to that of alanine 

(NPF-to-NPA), there is no significant effect on the subcellular localization of EHD2 

(Moren et al., 2012). In order to recapitulate the homologous sequence found in both 

EHD1 and EHD3, we decided to initially disrupt the NPF motif by substituting the proline 
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for alanine (NPF-to-NAF). Furthermore, we aimed at delineating the functional role of 

EHD2 when the proline residue of its NPF motif is left intact. To this aim, we assessed 

homo-dimerization of EHD2 NPF-to-APA mutants as well as its interaction with 

Syndapin2 (Fig 3.5A and 3.5B). Surprisingly, unlike the EHD2 NPF-to-NAF mutant, the 

NPF-to-APA mutants retained both homo-dimerization and binding to Syndapin2. On the 

other hand, despite normal dimerization and binding, EHD2 NPF-to-APA displayed a 

dramatic relocation to the nucleus (Fig 3.5D). Previous studies have demonstrated 

EHD2 has a bipartite nuclear localization sequence and many cells display a portion of 

their EHD2 in the nucleus (Fig 3.5C) (Pekar et al., 2012). Interestingly, the NPF-to-APA 

mutant displayed primarily nuclear localization (Fig 3.5D). Accordingly, despite the yeast 

two-hybrid binding data, we were unable to detect EHD2 NPF-to-APA interactions with 

Syndapin2 by co-immunoprecipitation, likely due to the mislocalization of the mutant 

exclusively to the nucleus (Fig 3.4A and Table 3.1). However, Moren et al. used a 

subtler EHD2 NPF-to-NPA mutant (rather than NPF-to-APA) and did not report such 

relocation to the nucleus (Moren et al., 2012). Consequently, we resolved to compare 

the functional role of EHD2 NPF-to-APA mutant to EHD2 NPF-to-NPA. As demonstrated 

in (Fig 3.6A and 3.6B), similar to the APA mutant, EHD2 NPF-to-NPA continued to 

homo-dimerize and interact with Syndapin2. Furthermore, the subcellular distribution of 

EHD2 NPF-to-NPA was also similar to that of EHD2 NPF-to-APA, with most of the 

mutant localizing to the nucleus and diminished localization at the PM (compare Fig 

3.6C and 3.6D). Taken together, these results suggested that the NPF phenylalanine 

residue contributes to the localization of EHD2 at the PM, either by preserving EHD2 at 

the PM, or by possibly preventing it from transporting to or exporting out of the nucleus. 

However we cannot entirely reconcile the differences we observed in EHD2 NPF-to-NPA 

localization (largely nuclear) compared to those of Moren et al. (Fig 3.6B; GFP-EHD2 

F128A) (Moren et al., 2012), where EHD2 continued to localize at the caveolae on the 



   - 72 - 
 

PM and a small fraction was localized to the nucleus (data not shown).  

 

12.3 The phenylalanine residue of NPF motif plays a key role in the PM localization 

of EHD2. 

We then proceeded to analyze the precise role of phenylalanine 128. To this end, 

we engineered an EHD2 NPF-to-NPY mutant. The rationale behind this mutant protein 

was that tyrosine is structurally the closest residue to phenylalanine, with the only 

difference being the additional hydroxyl group on the aromatic ring. Interestingly, the 

EHD2 NPF-to-NPY mutant displayed an intermediate cellular distribution (compare Fig 

3.7A with 3.7C and 3.7D). Although PM association was not abrogated, a significant 

portion of the EHD2 NPF-to-NPY EHD2 mutant was observed in the nucleus. However, 

the NPF-to-NPY mutant continued to homo-dimerize with wild-type EHD2 and maintains 

binding with Syndapin2 (Fig 3.4A and Table 3.1). We further posited that the spatial 

localization of phenylalanine 128 is essential for its function in facilitating EHD2 

localization, primarily to the PM. Accordingly, we engineered EHD2 NPF-to-NFP by 

swapping the proline and phenylalanine residues at positions 127 and 128. Although 

some EHD2 was clearly localized to the PM, the majority of this NFP had a subcellular 

localization in the nucleus (Fig 3.7F). Furthermore, the NPF-to-NFP mutant failed to 

either homo-dimerize or interact with Syndapin2 (Fig 3.4A and Table 3.1). These data 

firmly establish that the position of phenylalanine at residue 128 within the unstructured 

loop is highly significant and is crucial for the localization to the PM.  

 

12.4 Disruption of the EHD2 KPF motif induces relocalization of EHD2 to the 

nucleus, but does not alter its oligomerization and partner binding ability. 

Previous studies by Moren et al. have implicated the role of the KPF motif in the 

unstructured loop of EHD2 (Fig 3.3A and 3.3B) in caveolar binding and stable 
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association of EHD2 with the membrane (Moren et al., 2012). However, the impact of 

the KPF motif on EHD2 homo-dimerization and interactions with binding partners has 

not been studied. Hence, we turned our attention to the KPF motif of EHD2 and 

accordingly, we generated EHD2 KPF-to-APA or KPF-to-KAF mutants. EHD2 KPF-to-

APA or KPF-to-KAF mutants had no effect on dimerization or binding to Syndapin2 (Fig 

3.9A–3.9D) by yeast two-hybrid binding assays. Both KPF mutants reduced the level of 

EHD2 on the PM and increased the level of nuclear-localized EHD2 compared to wild-

type EHD2 (Fig 3.9E–3.9G). Furthermore, the co-immunoprecipitation experiments did 

not detect binding between the mutants and Syndapin2, possibly because the mutants 

are localized primarily to the nucleus (as opposed to the normal PM localization). 

Overall, these studies help elucidate the complicated functional role for the unstructured 

loop and its two PF motifs, which is in agreement with both the initial structural model 

(Daumke et al., 2007; Moren et al., 2012) and the revised model (Shah et al., 2014) 

proposed for dimer pair PF-EH domain interactions and EHD2 oligomerization (see 

model for further elaboration Fig 3.12).  

  

12.5 A single EHD1 PF motif (RPF) controls its homo- and hetero-dimerization, 

binding to interaction partners, and localization to Tubular Recycling Endosomes 

(TRE). 

Given that EHD1 contains a single PF motif, namely the RPF motif that aligns 

with the EHD2 KPF motif (see Fig 3.1B), we evaluated the role of this motif on EHD1 

dimerization and partner binding. The ability to homo-and heterodimerize was lost in the 

EHD1 RPF-to-APA mutant (Fig 3.10A). Furthermore, EHD1 RPF-to-APA had abrogated 

binding to MICAL-L1, and decreased binding to Syndapin2 (Fig 3.10B). Moreover, the 

typical subcellular localization of EHD1 to an array of tubular and vesicular recycling 

endosomes (Fig 3.10C) was lost and the EHD1 RPF-to-APA mutant was mislocalized to 
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the cytoplasm (Fig 3.10D). These data suggest that the single RPF motif in EHD1 is 

necessary and sufficient to successfully carry out functions that the dual NPF and KPF 

motifs present in EHD2 execute.  

 

12.6 The NAF motif of EHD1 is dispensable for homo- or hetero-oligomerization, 

and for its association with binding partners. 

Additionally, since EHD1 has a “non-functional” NAF motif aligned with the NPF 

motif of EHD2 (depicted in Fig 3.1B) we hypothesized that the EHD1 NAF motif would 

still function if its lone existing PF motif (RPF) was impaired. To begin with, we 

engineered EHD1 NAF-to-NPF mutants as a control and showed that as expected, 

homo- and hetero-dimerization along with MICAL-L1 and Syndapin2 binding remained 

stable (Fig 3.11A and 3.11B). Next, we generated double mutants where the EHD1 RPF 

motif was disrupted (RPF-to-APA) and the NAF motif was ‘corrected’ to NPF. Compared 

to the EHD1 RPF-to-APA single mutants, which lost all of their dimerization and protein 

interactions, the additional NAF-to-NPF mutation partially rescued homo- dimerization 

(Fig 3.11C) and binding to MICAL-L1 (Fig 3.11D).  

 

12.7 The EHD1 RPF motif is essential for receptor recycling. 

To evaluate the functional role of the EHD1 RPF motif, we utilized a siRNA 

approach combined with rescue by transient transfection. As demonstrated, EHD1-

siRNA treatment was successful in depleting more than 90% of EHD1 from HeLa cells 

(Fig 3.12C). HeLa cells on coverslips were either mock-treated or treated with EHD1-

siRNA and subjected to “pulse-chase” experiments with fluorochrome-labeled transferrin 

(Tf-568). After the pulse with Tf-568, both mock- and EHD1-siRNA treated cells 

exhibited a similar subcellular distribution of internalized Tf-568 (Fig 3.12C). However, 

after a 20 min chase, mock-treated cells had recycled most of their internalized Tf-568 
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back to the PM, whereas EHD1 depleted cells exhibited significant accumulation of Tf in 

the ERC (compare Fig 3.12B with control Fig 3.12A). This accumulation was ‘rescued’ in 

EHD1-depleted cells where a siRNA-resistant form of the wild-type EHD1 (siEHD1) had 

been transfected (Fig 3.12D and 3.12E; see yellow borders for transfected cells). 

However, when an EHD1 RPF-to-APA mutant (that is mislocalized to the cytoplasm) 

was reintroduced into EHD1-depleted cells, the Tf and its receptor remained 

accumulated in the perinuclear region of the cell (Fig 3.12F and 3.12G; see yellow 

borders for transfected cells). Quantification of these data (from 3 independent 

experiments) demonstrated that wild-type EHD1 rescued the recycling defect in > 85% 

of the EHD1-depleted cells whereas the RPF-to-APA mutant displayed less than 15% 

rescue (Fig 3.12H).  

 

13 Discussion 

Despite being the first EHD protein whose crystal structure was solved (Daumke 

et al., 2007), and important structural characterizations of its interaction with membranes 

(Shah et al., 2014) and its recruitment by PI(4,5)P2 to the PM (Simone et al., 2013), 

nonetheless many of the mechanistic aspects by which EHD2 functions have remained 

obscure. In this study we have identified intriguing differences in the function of the 

proline and phenylalanine residues of the NPF motif that is found within the 

KPFRKLNPF region of the unstructured loop present in the G-domain of EHD2 (Fig 

3.1A). Our data suggest that the phenylalanine is crucial for localization of EHD2 to the 

PM. Indeed, mutation of this residue leads to the translocation and accumulation of 

EHD2 in the nucleus. On the other hand, mutation of the proline residue of this same 

NPF motif not only leads to loss of homo-oligomerization and presumed loss of 

oligomerization, but also loss of protein partner binding without impacting localization to 

the PM. Given the elegant structural studies that propose the PF-EH domain interactions 
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for EHD2 oligomerization (Shah et al., 2014), how does our data contribute to the current 

model? Shah and colleagues recently proposed that upon membrane sensing, the EHD2 

N-terminus disrupts its interaction with the unstructured loop in the G-domain and moves 

away (illustrated in Fig 3.11A–3.11B), rendering the KPFRKLNPF unstructured loop in a 

conformation that is competent for interactions with EH domains of nearby EHD2 dimer 

pairs, thus promoting oligomerization and caveolar localization (Fig 3.11C) (Shah et al., 

2014). 

Based on this model, we hypothesize that the N-terminus of the EHD2-NPF-to-

NPA mutant (Fig 3.11D), even in the presence of the membrane, may not completely 

detach from the G-domain regions flanking the unstructured loop and thus fail to insert 

properly into the PM. We rationalize that under conditions where membrane binding is 

partially impaired, the string of lysine residues in the EHD2 helical domain, which 

perform the dual function of being membrane contact sites (Daumke et al., 2007) and a 

bipartite nuclear localization sequence (Pekar et al., 2012), are now free to act in the 

latter capacity and facilitate the transport of EHD2 to the nucleus. The support for this 

notion also comes from previous studies that have described the role of EHD2 as a 

transcriptional repressor (Pekar et a., 2012). On the other hand, we predict that with the 

EHD2 NPF-to-NAF mutant, the EHD2 N-terminus is nonetheless freed from the G-

domain to interact with the PM. However, despite its correct localization to the PM, the 

NAF motif abrogates EH binding and consequently the dimerization and oligomerization 

potential is impaired. Overall, our study provides support and additional novel details that 

further clarify the complex structural model of EHD2 localization, membrane binding, 

protein binding, dimerization, oligomerization, and function. 
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Figure 3.1. EHD protein domain architecture and sequence homology. 
 
(A) The Eps15 Homology Domain (EHD) proteins have a conserved domain architecture 
comprised of four domains: two helical domains, a G-domain, and a C-terminal EH 
domain. The G domain of EHD2 contains an unstructured loop containing the following 
amino acid sequence, KPFRKLNPF, which is required for oligomerization. (B) The four 
EHD isoforms share 67–86% residue identity. The amino acid sequence alignment of the 
unstructured loop for all four EHDs (see green frame) shows that only EHD2 has two 
successive PF motifs: NPF and KPF, whereas the other EHD proteins have only one PF 
motif. 
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Figure 3.1 
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Figure 3.2 EHD dimerization requires an intact α-helical region, but not the 
presence of EH domains. 
 
(A) Schematic diagram of EHD2 domain organization. (B–C) Yeast were co-transformed 
with Gal4bd fusion constructs: Gal4bd-p53 (control), EHD2 (wt), EHD2 (ΔEH) along with 
Gal4ad-SV40 (control), EHD2 (wt), EHD2 (ΔEH), EHD1 (wt), EHD1 (ΔEH), and EHD1. 
All co-transformants were plated on non-selective (+HIS) and selective (-HIS) media. 
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 Figure 3.2 
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Figure 3.3. Modification of the EHD2 NPF motif to NAF impairs dimerization and 
binding with interaction partners, but does not affect EHD2 localization. 
 
(A) S. cerevisae yeast were co-transformed with the following Gal4 binding domain 
(Gal4bd) fusion constructs (see Materials and Methods): p53 (control), -Syndapin-2 and -
MICAL-L1. Gal4 activating domain (Gal4ad) fusion constructs were either-SV40 (control), 
-EHD2 (wt) or -EHD2 (NPF-to-NAF). Cotransformants were plated on non-selective 
(+HIS) and selective (-HIS) agar plates. (B) As in (A), co-transformation was with Gal4bd-
p53 (control), -EHD2 (wt), -EHD1 (wt), -EHD3 (wt), and -EHD4 (wt) and with Gal4ad-SV40 
(control), -EHD2 (wt) and -EHD2 (NPF-to-NAF). (C–H) HeLa cells were grown on 
coverslips, transfected with GFP-myc-EHD2 (wt) (C, E, G) or with GFP-myc-EHD2 (NAF-
to-NPF) (D, F, H) and fixed. (C–D) are transfected cells imaged by confocal microscopy, 
whereas (E–H) does Structured Illumination Microscopy (SIM) obtain micrographs. 
Asterisks indicate transfected cells. Bar;10 μm. 
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Figure 3.3 
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Figure 3.4 Co-immunoprecipitation of EHD2 and mutant EHD2 proteins with 
Syndapin2. 
 
(A and B) HeLa cells were transfected with either GFP-Myc-EHD2, or GFP-Myc-EHD2 
mutants (NPF-to-NAF, NPF-to-APA, KPF-to-KAF, KPF-to-APA), lysed 24 h later and 
subjected to immunoprecipitation with antibodies against Syndapin2. Separated proteins 
were transferred onto nitrocellulose and then immunoblotted with anti-EHD2 antibodies. 
Input contains 5% of the total lysate immunoprecipitated. 
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       Figure 3.4 
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Figure 3.5. Modification of the EHD2 NPF motif to APA induces loss of plasma 
membrane localization, but does not affect interactions with binding partners.  
 
(A) S. cerevisae yeast were co-transformed with thefollowing Gal4bd fusion constructs: 
Gal4bd-p53 (control), -Syndapin-2 and -MICAL-L1 along with Gal4ad fusion constructs 
Gal4ad-SV40 (control), -EHD2 (wt.) and -EHD2 (NPF-to-APA). (B) As in (A) 
cotransformationwas with Gal4bd fusion constructs: Gal4bd-p53 (control), -EHD2 (wt) 
along with Gal4ad fusion constructs: Gal4ad-SV40 (control), -EHD2 (wt) and -EHD2 (NPF-
to-APA). Co-transformants from A-B were plated on non-selective (+HIS) and selective (-
HIS) agar plates. (C–D) HeLa cells were grown on coverslips, transfected with GFP-myc-
EHD2 (C) or GFP-myc-EHD2 NPF-to-APA (D). Bar; 10 μm. 
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               Figure 3.5 
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Figure 3.6. The NPF phenylalanine residue is responsible for the plasma membrane 
localization of EHD2.  
 
(A) S. cerevisae yeast were co-transformed with the following Gal4bd fusion constructs: 
Gal4bd-p53 (control), -Syndapin-2 and -MICAL-L1 along with Gal4ad fusion constructs: 
Gal4ad-SV40 (control), -EHD2 (wt) and -EHD2 (NPF-to-NPA). (B) As in (A), yeast were 
co-transformed with the Gal4bd fusion constructs: Gal4bd-p53 (control), -EHD2 (wt) 
alongwith Gal4ad fusion constructs: Gal4ad-SV40 (control), -EHD2 (wt.) and -EHD2 (NPF-
to-NPA). Co-transformants were plated on non-selective (+HIS) andselective (-HIS) agar 
plates. (C–I) HeLa cells were grown on coverslips and transfected with: (C) GFP-myc-
EHD2 (wt), (D) GFP-myc-EHD2 (NPF-to-NPA), (E) GFP-myc-EHD2 (NPF-to-NPY), (F) 
GFP-myc-EHD2 (NPF-to-NPA), (G) GFP-myc-EHD2 (NPF-to-NFP). Bar;10 μm. 
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      Figure 3.6 
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Figure 3.7. Wild-type and EHD2 NPF-to-NPY homo-dimerize and interact with 
Syndapin2, whereas EHD2 NPF-to-NFP does not. 
 
(A and B) S. cerevisae yeast were co-transformed with the following Gal4bd fusion 
constructs: Gal4bd-p53 (control), -EHD2 (wt), -MICAL-L1, and -Syndapin-2 along with 
Gal4ad-SV40 (control), -EHD2 (wt), -EHD2 NPY, and EHD2 NFP. Co-transformants in 
were plated on non-selective (+HIS) and selective (-HIS) agar plates.  
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 Figure 3.7 
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Figure 3.8. Disruption of the EHD2 KPF motif induces relocalization of EHD2 to the 
nucleus, but does not alter its binding ability.  
 
(A–D) S.cerevisae yeast were co-transformed with the following Gal4bd fusion constructs: 
Gal4bd-p53 (control), -Syndapin-2 and -MICAL-L1 along with Gal4ad fusion constructs: 
Gal4ad-SV40 (control), -EHD2 (wt), -EHD2 (KPF-to-APA) and—EHD2 (KPF-to-KAF). Co-
transformants were plated on non-selective (+HIS) and selective (-HIS) media. (E–H) 
HeLa cells were grown on coverslips, transfected with GFP-myc-EHD2 (wt) (E), GFP-myc-
EHD2 (KPF-to-APA) (F), or GFP-myc-EHD2 (KPF-to-KAF) (G) and analyzed by confocal 
microscopy. Bar;10 μm. 
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Figure 3.8 
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Figure 3.9. A single EHD1 PF motif (RPF) controls its homo- and hetero-
dimerization, binding to interaction partners, and localization to Tubular Recycling 
Endosomes (TRE).  
 
(A) S. cerevisae yeast were co-transformed with Gal4bd fusion constructs: Gal4bd-p53 
(control), -Syndapin-2 and-MICAL-L1 along with Gal4ad-SV40 (control), -EHD1 (wt.) and 
-EHD1 (RPF-to-APA). (B) As in (A), yeast were co-transformed with Gal4bd-p53 (control),-
EHD1 (wt), -EHD3 (wt), -EHD4 (wt), along with Gal4ad-SV40 (control), -EHD1 (wt) and 
EHD1 (RPF-to-APA). Co-transformants from A-B were plated on non-selective (+HIS) and 
selective (-HIS) agar plates. (C–D) HeLa cells were grown on coverslips, transfected with 
GFP-myc-EHD1 (wt) (C), GFP-myc-EHD1 (RPF-to-APA) (D, arrows point to TRE). Bar; 
10 μm. 
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Figure 3.9 
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Figure 3.10. The NAF motif of EHD1 is dispensable for homo- or hetero 
oligomerization, and for its association with binding partners.  
 
(A) S. cerevisae yeast were co-transformed with the following Gal4bd fusion constructs: 
Gal4bd-p53 (control), -MICAL-L1, and -Syndapin-2 along with Gal4ad-SV40 (control), -
EHD1 (wt.) and -EHD1 (NAF to NPF). (B) As in (A), yeast were co-transformed 
withGal4bd-p53 (control), -EHD1 (wt), -EHD2 (wt), -EHD3 (wt) and -EHD4 (wt), along with 
Gal4ad-SV40 (control), -EHD1 (wt) and -EHD1 (NAF-to-NPF). (C) As in (A), yeast were 
co-transformed with Gal4bd-p53 (control), -EHD1 (wt), -EHD3 (wt), and -EHD4 (wt), along 
with Gal4ad-SV40 (control), -EHD1 (wt) and -EHD1 (NAF-to-NPF). (D) Yeast were co-
transformed with Gal4bd-p53 (control), -Syndapin-2, and -MICAL-L1, along with Gal4ad-
SV40 (control), EHD1 (wt) and EHD1 (NAF-to-NPF). Co-transformants in A-D were plated 
on non-selective (+HIS) and selective (-HIS) agar plates. 
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Figure 3.10 
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Figure 3.11. The EHD1 RPF motif is essential for receptor recycling.  
 
(A–B) HeLa cells grown on coverslips were mock-treated (A) or treated with EHD1-siRNA 
(B–F). For A–B, After a 30 min. serum-starvation, cells were allowed to uptake Tf-568 for 
15 min., and then chased in complete media for 15 min. to permit Tf- 568 recycling to the 
PM. (C) Immunoblot analysis of Mock- or EHD1-siRNA-treated cells depicting levels of 
actin (control) or EHD1. (D–G) During the EHD1-siRNA treatment, cells were transfected 
with the siRNA-resistant EHD1 constructs: siRNA-res-GFP-myc-EHD1 (wt) in (D), and 
siRNA-res-GFP-myc- EHD1 (RPF-to-APA) in (F). Following serum-starvation, Tf-568 was 
internalized for 15 min , and chased in complete media for 15 min. Note the typical 
concentration of Tf in the ERC in untransfected cells treated with EHD1-siRNA. (H) 
Quantitative analysis of 100 cells from 3 independent experiments as in (E and G). Cells 
that recycled Tf-568 (“empty of Tf”) were scored and calculated as % of total cell number, 
and portrayed with standard error bars. Stars represent significance of p < 0.01 (one star) 
or p < 0.05 (three stars) for one-way ANOVA tests. Bar; 10 μm. 
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Figure 3.11 
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Figure 3.12. Model for the role of the EHD2 unstructured KPFRKLNPF motif in 
subcellular localization.  
 
(A) In the absence of PIP2-containing membrane, the N-termini interact with regions 
flanking the unstructured loops (U.L.) of EHD2 dimer pairs. (B) PIP2-binding by the N-
terminus facilitates a-8 helical binding to the membrane and frees the U.L. (C) the U.L. 
NPF motif is now capable of interacting with an EH domain of a neighboring EHD2 dimer 
pair, inducing oligomerization. (D) For EHD2 NPF-to-NPA mutants, we hypothesize that 
the N-terminus may not insert into membranes, thus preventing the U.L. from 
oligomerizing and maintaining the lysine residues on α-8 helix free to serve as a nuclear 
localization sequence. 
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Figure 3.12 
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Table 3.1 Comparison of wild-type EHD2 and mutants in homo-dimerization, 
Syndapin2-binding and sub-cellular localization. 
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Chapter IV 

EHD3 Protein Is Required for Tubular Recycling 
Endosome Stabilization, and an Asparagine-Glutamic 

Acid Residue Pair within Its Eps15 Homology (EH) 
Domain Dictates Its Selective Binding to NPF Peptides 
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14 Introduction 

Endocytic trafficking entails internalization, sorting, degradation, and recycling of 

macromolecules in mammalian cells (Conner and Schmid, 2003). These processes are 

not only essential for the maintenance of cellular homeostasis, but also key for the 

regulation of a variety of cellular events, including nutrient uptake, cell adhesion, cell 

migration, cell polarity, cytokinesis, and signal transduction. In this process, receptors 

encounter ligands, the ligand-receptor complexes are internalized and enter peripheral 

sorting endosomes (SE). While some receptors are fated for degradation, others are 

sent back to plasma membrane to partake in subsequent rounds of internalization (Jovic 

et al., 2009).  The latter process is known as endocytic recycling, which can occur 

through distinct routes (Grant and Donaldson, 2009). Recycling of receptors can occur 

either directly from the SE known as fast recycling, or indirectly in a process known as 

slow recycling (Hao and Maxfield, 2011). For slow recycling process, receptors are first 

trafficked to a transitory perinuclear organelle adjacent to the microtubule-organizing 

center (MTOC), known as the endocytic recycling compartment (ERC) (Maxfield and 

McGraw, 2004).  

The ERC maintains cargo segregation, acquired upon exit from the SE, and 

serves as a focal point for vesicular transport to the plasma membrane (Xie et al., 2016).  

The Rab family of small GTP-binding family proteins has been characterized as a key 

group of endocytic regulatory proteins. Rabs interact with specific effectors to promote 

SNARE-based membrane fusion. Although each pathway requires a multitude of 

regulatory proteins, Rab4 and Rab11 are among the best-characterized Rabs involved in 

fast and slow recycling, respectively (van der Sluijs et al., 1992; Ullrich et al., 1996). The 

ERC is comprised of an array of dynamic, densely situated yet largely independent, 

tubular and vesicular recycling endosomes (Jovic et al., 2009). Efficient recycling via the 

ERC relies on the integrity of an elaborate network of elongated, non-symmetrical 
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endosomes known as tubular recycling endosomes (TRE) (Jovic et al., 2009). 

Furthermore, TREs are defined as tubular endosomes with lengths of up to 10 μm and 

diameters of up to 200 nm. Some of the TRE also originate from the SE and carry cargo 

towards the ERC (Xie et al., 2015). Current models hold that fission of TRE containing 

receptors facilitates the formation of vesicle carriers that carry receptors to be recycled 

back to the plasma membrane (Cai et al., 2012; Cai et al., 2013; Cai et al., 2014; 

Daumke et al., 2007).  

  Because of the significance of TRE in membrane recycling, a growing number of 

studies have addressed a family of proteins known as the C-terminal Eps15 homology 

domain (EHD1–4) proteins that have been implicated in TRE generation and fission and 

control membrane recycling (Naslavsky and Caplan, 2011). EHD1–4 are hetero/ 

homodimeric ATPases that oligomerize and influence endocytic trafficking by promoting 

the bending and/or fission of endosomes. Despite their high level of amino acid identity 

(70–86%), the EHD proteins display unique subcellular localizations and regulate distinct 

steps of endocytic trafficking. EHD3 and EHD1 are the most closely related members of 

the EHD protein family. While EHD1 induces the vesiculation of TRE, EHD3 supports 

the process of membrane tubulation (Cai et al., 2013). The hallmark of EHDs is their C-

terminal Eps15 Homology (EH) domain (Grant and Caplan, 2008; Naslavsky and 

Caplan, 2005). These EH domains contain a positively charged electrostatic surface that 

preferentially binds to proteins containing NPF motifs followed by acidic residues (Kieken 

et al., 2007; Kieken et al., 2009; Kieken et al., 2010). Over the last decade, we have 

identified a variety of important EHD interaction partners, including molecules interacting 

with CasL-like1 (MICAL-L1) and Syndapin2 (Giridharan et al., 2013; Sharma et al., 

2009). Both MICAL-L1 and Syndapin2 are essential for TRE biogenesis, and impaired 

recruitment of either protein to membranes causes a failure of TRE biogenesis and 

impaired recycling (Giridharan et al., 2013; Sharma et al., 2009). Indeed, TRE 
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biogenesis involves the recruitment of MICAL-L1 and Syndapin2 to membranes that 

have a high local concentration of phosphatidic acid, a lipid essential for TRE biogenesis 

(Giridharan et al., 2013; Sharma et al., 2009). MICAL-L1 and Syndapin2 stably interact 

with each other via the Syndapin2 Src homology 3 (SH3) domain and proline rich 

domain (PRD) of MICAL-L1. The MICAL-L1-Syndapin2 interaction leads to membrane 

bending and tubulation. EHD3 is subsequently recruited to these membranes through 

the interaction of its EH domain with the NPF motifs of MICAL-L1 and/or Syndapin2. A 

recent model holds that EHD1, thereafter, joins this complex on TRE, where it binds to 

both MICAL-L1 and Syndapin2, possibly replacing EHD3 within the complex to perform 

fission and give rise to newly formed vesicles (Cai et al., 2013). Given the 86% amino 

acid identity between EHD1 and EHD3, and their disparate cellular functions, these 

findings frame new questions of outstanding biological significance. What is the 

mechanism by which two such remarkably similar proteins play opposing roles in the 

generation and vesiculation of TRE? What is the specific role of EHD3 in the process of 

TRE biogenesis? Does EHD3 directly promote membrane bending as proposed or via its 

interaction with Syndapin2 (Daumke et al., 2013)? Or does EHD3 play a role in 

stabilization of MICAL-L1-Syndapin2 complexes on the TRE membranes? Here we 

demonstrate that EHD3 is dispensable for TRE biogenesis but that it serves to stabilize 

these membrane structures after their generation. Moreover, we characterize the 

molecular and atomic bases for the differential interactions of EHD1 and EHD3 with 

binding partners, providing new insights into their differential roles in vesiculation and 

tubulation, respectively.  

 

15 Results 

 

15.1 TRE can undergo biogenesis in the absence of EHD3.  
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We have previously delineated the model required for TRE biogenesis  

(Giridharan et al., 2013) and our previous studies have lent support for the disparate 

functions of EHD3 and EHD1 in the tubulation and vesiculation of TRE, respectively (Cai 

et al., 2013). Furthermore, our prior studies have established a strong consensus for the 

function of EHD1 as membrane vesiculator (Cai et al., 2012; Cai et al., 2013; Cai et al., 

2014; Jakobsson et al., 2011), recruited by MICAL-L1 and Syndapin2, with the latter 

proteins directly implicated in TRE biogenesis (Giridharan et al., 2013). Although, both 

MICAL-L1 and Syndapin2 interact directly with EHD3, the mechanistic role of EHD3 in 

the process of TRE biogenesis is not well understood (Cai et al., 2013; Naslavsky and 

Caplan, 2011). Because chronic depletion of EHD3 leads to a loss of MICAL-L1 and 

Syndapin2 containing TRE, we hypothesized two potential distinct roles for EHD3 in 

TRE biogenesis: 1) EHD3 is directly required for membrane bending and TRE 

generation (together with Syndapin2 and MICAL-L1), or 2) EHD3 is not required for TRE 

biogenesis but instead serves to stabilize TRE when they have been generated. To 

address the definite functional role of EHD3 in TRE biogenesis, we took advantage of 

our recent observation that, upon treatment of cells with 100 μM phospholipase D (PLD), 

inhibitors CAY 10593 and CAY 10594 (that inhibit the two mammalian PLD isoforms 

PLD1 and PLD2, respectively) for 30 minutes (min) at 37°C, TRE were depleted 

(Giridharan et al., 2013). Remarkably, upon washout of the inhibitors, we observed a 

rapid, synchronized de-novo regeneration of TRE (“burst”), providing us with a system to 

temporally monitor the role of EHD3 in acute TRE biogenesis. However, it was not 

feasible to repeat these findings using a different PLD inhibitor, 5-fluoro-2-indolyl des-

chlorohalopemide (FIPI) because previous studies indicated that washout of this PLD 

inhibitor led to only 29% recovery of PLD activity 1 h after removal (Su et al., 2009). As 

depicted in Fig 4.1, 75% of mock-treated cells contained some visible MICAL-L1 

decorated TRE (Mock; the pretreatment, mean tubule area is quantified in Fig. 4.2 B). 
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We have demonstrated in our previous studies that upon PLD inhibitor treatment, TRE 

were almost entirely depleted from cells. Interestingly, we made an important discovery 

that within a 20 min washout of the inhibitor, there was a dramatic recovery of TRE 

levels that returned to (and exceeded) baseline levels (Fig. 4.1, Mock; quantified in Fig. 

4.2B). In comparison, as anticipated, upon Syndapin2 knockdown (efficiency of 

knockdown calculated at 90%, Fig. 1B), no TRE were observed either at pretreatment, 

after inhibitor treatment, or even following washout (20 min to 1 h). Therefore, this further 

validated the essential role of Syndapin2 in TRE biogenesis (Fig. 4.1,Syndapin2-KD; 

quantified in Fig. 4.2B). On the other hand, although no TRE were observed upon 

chronic EHD3 knockdown (efficiency of knockdown calculated at ≈85%, Fig. 4.1B), or 

following PLD inhibitor treatment, a dramatic recovery of TRE was documented following 

inhibitor washout (20 min to 1 h). This indicated that TRE can be generated even in the 

absence of EHD3 (Figs. 4.1 and 4.2, EHD3-KD; quantified in Fig 4.2B). Upon EHD1 

knockdown in pretreated cells (efficiency of knockdown calculated at 90%, Fig. 4.1B), we 

observed increased TRE, consistent with its role in TRE vesiculation (Fig. 4.1, EHD1-

KD; quantified in Fig. 4.2B). As expected, PLD inhibitors depleted cellular TRE in EHD1 

knockdown cells, but upon inhibitor washout, TRE levels were recovered (Fig. 4.1), 

(EHD1-KD; quantified in Fig. 4.2B). Collectively, these data suggest that Syndapin2 is 

required for the generation of MICAL-L1-decorated TRE, but EHD3 (and EHD1) is not 

required.  

 

15.2 EHD3 stabilizes TRE 

EHD3 interacts directly with both MICAL-L1 and Syndapin2. This interaction has 

lent support to the notion that EHD3 may be required to stabilize MICAL-L1 and 

Syndapin2 on the membranes, consequently stabilizing TRE. To assess the role of 

EHD3 in TRE stabilization over time, we monitored TRE levels 1–6 h after PLD inhibitor 
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washout in the absence of EHD3 (Fig. 4.2). In mock-treated cells, for up to 6 h after PLD 

inhibitor washout, the mean TRE levels continued to increase (Mock, quantified in Fig. 

4.2B). In cells lacking Syndapin2, as anticipated, no TRE generation was observed at 

any point of time (Syndapin2 KD, quantified in Fig. 4.2 B). Surprisingly, despite the 

recovery of TRE generation in EHD3-depleted cells immediately following PLD inhibitor 

washout, within 1–4 h after washout, the TRE levels in these cells declined to 

pretreatment levels (EHD3-KD, quantified in Fig. 4.2B). These data suggest that 

although EHD3 is dispensable for TRE generation, it is required for continued stability of 

tubules within the cell. It is important to note, however, that these data do not provide 

direct information on the TRE half-life, because TRE could be undergoing multiple cycles 

of biogenesis and vesiculation in the course of recovery. On the other hand, in the 

absence of EHD1, as anticipated, the mean TRE area continued to increase 4–6 h after 

washout, further validating the role for EHD1 in TRE vesiculation (EHD1-KD, quantified 

in Fig. 4.2B). The transient recovery of TRE in EHD3 knockdown cells immediately 

following PLD inhibitor washout, followed by loss of TRE over 4–6 h time point post-

washout and are consistent with a role for EHD3 in stabilization of TRE but indicate that 

this protein is not involved directly in TRE biogenesis. 

 

15.3 The EH domain is responsible for the differential function of EHD1 and EHD3 

in vesiculation and TRE stabilization, respectively. 

Despite 86% amino acid identity between EHD3 and EHD1, remarkably these 

proteins display distinct cellular functions. Given that their ATP hydrolysis domains are 

highly conserved, and that the two proteins differentially interact with partners through 

their EH domains, we hypothesized that the EH domains may determine whether these 

proteins affect TRE stabilization or vesiculation. To evaluate the role of the EH domain in 

the stabilization or vesiculation of TREs, we knocked down EHD3 or EHD1 in HeLa cells 
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and respectively, rescued the expression with wild-type EHD3 (Fig. 4.3, A and B), wild-

type EHD1 (Fig. 4.3, A and C), or a chimera of EHD3 containing the EH domain of EHD1 

(EHD3-EH1, Fig 4.3D) and assessed their effect on mean TRE length. Endogenous 

Syndapin2 served as a bona fide marker for TRE. Average TRE length is quantified in 

Fig. 4.3E, which demonstrates that, although wild-type EHD3 localized to long TRE that 

were positive for Syndapin2 (Fig. 4.3B and 4.3E), EHD1 was associated with shorter and 

more fragmented TRE (Fig. 4.3C, quantified in Fig. 4.3E). Surprisingly, upon the 

expression of the EHD3-EH1 chimera, the TRE observed were not only shorter than 

those observed for wild-type EHD3, but also for those observed for wild-type EHD1 (Fig. 

4.3D, quantified in Fig. 4.3E). These data support the notion that the EH domains are the 

prime determinants of differential EHD function.  

 

15.4 Comparison of the binding affinity of the EHD1 EH domain and EHD3 EH 

domain for a MICAL-L1 NPF peptide by isothermal titration calorimetry (ITC) 

 Because both EHD1 and EHD3 interact with some of the same NPF-containing 

proteins, such as MICAL-L1 (Sharma et al., 2009; Sharma et al., 2010) and Syndapin2 

(Braun et al., 2005), we hypothesized that their EH domains may have different affinities 

for these binding partners. Our rationale was that, initially, EHD3 might reside on TRE to 

stabilize these structures. Subsequently, EHD1, with a potentially higher affinity for 

MICAL-L1 and Syndapin2, might interact with these proteins and replace EHD3 in the 

complex. Eventually, EHD1 might play a more predominant role on the TRE, possibly 

leading to the onset of vesiculation. Accordingly, we used ITC to test the affinity of EH1 

and EH3 for a MICAL-L1 NPF peptide. As demonstrated, the KD for EH1 binding was 

calculated at 23.2 ± 3.2 μM  (Fig. 4.4), very close to that observed previously for an NPF 

peptide from Rabankyrin-5 (Zhang e al., 2012). Interestingly, the KD for EH3 binding is 

not significantly different from that of EH1 and was measured at 17.8 ± 3.7 μM (Fig. 4.4). 
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Nevertheless, based on these data, we cannot rule out different binding affinities for full-

length EHD proteins or differences in affinity resulting from additional in vivo interactions 

and/or localizations. However, it appears unlikely that the recruitment of EHD1 and 

EHD3 to TRE is governed by simple differences in the binding affinity.  

 

15.5 Identification of EH1 and EH3 residues responsible for their differential 

interactions with NPF-containing partners. 

Given the role of the EH domain in dictating EHD1 versus EHD3 function, we set 

out to determine the specific residues in the EH domain that mediate differential function. 

On comparing the amino acid sequences of EH1 and EH3, we identified fourteen distinct 

residues between EH1 and EH3 and further divided them into six potential stretches of 

non-conserved amino acid residues for analysis (Fig. 4.5A, white highlights). As readout 

of differential function, we assessed the ability of EHD1, EHD3, and the substitution 

mutants to interact with binding partners using a selective yeast two-hybrid assay. For 

instance, wild-type EHD1 normally interacts with both Rabankyrin-5 and MICAL-L1, 

whereas wild-type EHD3 binds only to MICAL-L1 (Sharma et al., 2009; Zhang et al., 

2012; Sharma et al., 2010) (Fig. 4.5B). We methodically swapped all the six non-

conserved regions of EH3 with those found in EH1 (Fig. 4.5A), and then tested whether 

the EHD3 mutant protein displayed gain-of-function binding to Rabankyrin-5 (Fig. 4.5C). 

As expected, the selective two-hybrid binding assay showed that wild-type EHD1 bound 

to both MICAL-L1 and Rabankyrin-5, whereas EHD3 interacted exclusively with MICAL-

L1 (Fig. 4.5C, dashed red rectangle). Of the six substitution mutations to render the EH3 

domain similar to EH1, remarkably, only the NE519AD change resulted in a gain-of-

function binding to Rabankyrin-5 (Fig. 4.5C, dashed red rectangle). Additionally, each of 

the single mutants (EHD3 N519A and EHD3 E520D) were also capable of inducing gain-

of-binding of EHD3 to Rabankyrin-5 (Fig. 4.5E). We performed complementary GST 
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pulldown experiments to demonstrate that the GST-EH3 NE519AD mutant gained the 

ability to bind to Rabankyrin-5 in vitro. However, the binding was not as robust as that 

seen with wild-type GST-EH1 (Fig. 4.5D). This suggested that other residues in EH1 

might carry out additional regulation. Indeed, the reverse substitution mutation in EHD1 

(EHD1 AD519NE, Fig. 4.5E) was insufficient to cause a loss of binding to Rabankyrin-5. 

This observation further hints at involvement of additional residues in the EH domain of 

EHD1 in regulating the interaction between EHD1 and Rabankyrin-5.  

 

15.6 The EHD3 NE519AD mutant is not competent to rescue the impaired 

transferrin trafficking phenotype observed in EHD3 knockdown cells. 

Given that the EHD3 NE519AD mutant is capable of binding to an EHD1-specific 

interaction partner (Rabankyrin-5), we next asked whether the mutant EHD3 retains 

EHD3 function, or if the NE-to-AD mutations render it incapable of carrying out the 

function of EHD3. To test this, we used previously characterized functional assays in 

which labeled transferrin (Tf-568) is internalized continuously for 20 min in the presence 

or absence of EHD3 (Naslavsky et al., 2006). As depicted in the representative 

micrographs, in mock treated cells, internalized Tf-568 displayed clear accumulation at 

the ERC (Fig. 4.6, A, C, and F) regardless of whether wild-type EHD3 or EHD3 

NE519AD was transfected (Fig. 4.6, B–D and E–G). However, upon EHD3 knockdown, 

consistent with our previous observation (Naslavsky et al., 2006), Tf-568 failed to reach 

the ERC and instead was maintained in the periphery in somewhat enlarged endosomal 

structures (Fig. 4.6, I and L; untransfected cells without yellow borders). Reintroduction 

of wild-type EHD3 restored the function of EHD3, allowing Tf-568 to accumulate at the 

ERC (Fig. 4.6I transfected cells with yellow borders and arrows indicating ERC 

accumulation). However, introduction of EHD3 NE519AD did not restore EHD3 function 

because transfected cells failed to show ERC accumulation and the Tf-568 remained 
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largely in the periphery (Fig. 4.6L, transfected cells with yellow borders). These data 

from three independent experiments were scored and quantified (Fig. 4.6, graph). In 

mock-treated cells, Tf-568 reached the ERC in almost 90% of cells. Upon EHD3 

knockdown, less than 15% of the cells displayed Tf-568 at the ERC. Whereas, when 

wild-type EHD3 was reintroduced into the cells 75% of the cells had perinuclear Tf-568. 

However, upon transfection the EHD3 NE519AD mutant, only about 20% of the cells 

displayed Tf-568 at the ERC suggesting the mutant failed to rescue transferrin trafficking 

(Fig. 4.6, graph). These data led us to argue that residues 519 and 520 of EHD3 not only 

regulate its binding to NPF-containing protein partners, but also dictate its function in 

vivo.  

 

15.7 The number of acidic residues after the NPF motif does not dictate binding to 
EHD3 or EHD1  
 

Having identified residues in the EH domain responsible for the binding 

selectivity to Rabankyrin-5, we next wanted to assess the residues in Rabankyrin-5 and 

MICAL-L1 that mediate selective binding to EHDs. Previous studies from our laboratory 

and others identified a requirement for an NPF motif, followed by acidic residues for 

binding to EHDs (Kieken et al., 2007; Kieken et al., 2009; Kieken et al., 2010; Henry et 

al., 2010). Because the MICAL-L1 NPF motif is followed by six acidic residues (and 

binds to both EHD1 and EHD3), whereas the Rabankyrin-5 motif is followed by only two 

acidic residues (and binds only to EHD1), we postulated that for binding, EHD3 might 

require a NPF motif followed by more than two acidic residues (Fig. 4.7A). To this end, 

we first engineered Rabankyrin-5 proteins containing three, four, or five acidic residues 

after its single NPF motif. As shown by selective yeast two-hybrid binding assays (Fig. 

4.7B), wild-type Rabankyrin-5 and the mutants with additional acidic residues all bound 

to EHD1 as anticipated. However, in the case of EHD3, even in a Rabankyrin-5 mutant 
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with five acidic residues following its NPF motif, no gain-of-binding was observed (Fig. 

4.7B). We then decided to test whether reducing the number of acidic residues following 

the NPF motif of MICAL-L1 would lead to loss of binding to EHD3 (Fig. 4.7C). As 

demonstrated, although both EHD1 and EHD3 displayed loss of binding to MICAL-L1 in 

the absence of any acidic residues (NPFAAAAAA), EHD3 continued to bind to MICAL-

L1 even when it contained only a single acidic residue after its NPF motif. On the other 

hand, EHD1 showed decreased binding to MICAL-L1 with only a single acidic residue 

after its NPF motif (NPFEAAAAA). Overall, these data suggest that the number of acidic 

residues following the NPF motif is not the factor governing binding selectivity of EHD1 

and EHD3.  

 

15.8 The binding difference between EHD1 and EHD3 is governed by residue 

differences upstream of the NPF motif. 

Because our studies suggest that the binding selectivity of MICAL-L1 and 

Rabankyrin-5 for EHD proteins does not lie distal to the NPF motifs, we addressed the 

possibility that residues upstream of the NPF motif might dictate binding selectivity. We 

first hypothesized that the KPY residues immediately upstream of the MICAL-L1 NPF 

motif (Fig. 4.8A) might be responsible for more promiscuous binding than the QSV 

upstream of the Rabankyrin-5 NPF motif. Accordingly, we generated a mutant of 

Rabankyrin-5 with the QSV residues substituted with KPY. Next, we tested the binding 

of wild-type MICAL-L1, wild-type Rabankyrin-5, and a Rabankyrin-5 mutant containing 

KPYNPF instead of QSVNPF to EHD1 and EHD3 (in Fig. 4.6B). As expected, 

Rabankyrin-5 bound exclusively to EHD1, whereas MICAL-L1 bound to both EHD1 and 

EHD3. However, replacing the QSV with KPY upstream of the Rabankyrin-5 NPF motif 

led to a gain of binding to EHD3 (Fig. 4.8B). To further delineate the amino acid 

requirements upstream of the NPF motif for binding to EHD3, we then mutated individual 
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residues in the Rabankyrin-5 QSV motif (Fig. 4.8C). Substituting QSV to either KSV or 

QSY prior to the Rabankyrin-5 NPF motif was sufficient to induce gain of binding to 

EHD3 (in addition to EHD1). However, modifying QSV to QPV did not lead to gain of 

binding to EHD3. Indeed, even binding to EHD1 was lost. Together, these data suggest 

that although NPF followed by at least one to two acidic residues is required for EHD 

binding, the residues upstream of the NPF motif dictate the “fine-tuning” of binding to 

individual EHD proteins.  

 

15.9 Atomic basis for the differential interaction of EHD1 and EHD3 with NPF-

containing binding partners. 

Since changing the Rabankyrin-5 QSVNPF motif to QSYNPF was sufficient to 

allow gain-of-function binding to EH3, we examined the three-dimensional structure of 

the EH1 domain and its binding to the NPF motif of MICAL-L1 (Kieken et al., 2007; 

Kieken et al., 2009; Kieken et al., 2010). The EH1 binding pocket is predicted to interact 

with the tyrosine of the NPF peptide via hydrogen bonds with glycine 494. We 

hypothesized that the valine residue of the Rabankyrin-5 QSVNPF motif, being a 

branched-carbon-chain containing amino acid, may display a weakened interaction with 

glycine 494. Accordingly, we predicted that including the non-branched alanine in the 

NPF peptide, and changing QSVNPF to QSANPF might allow gain-of-function binding to 

EH3. Indeed, as shown in Fig. 4.9A, yeast two-hybrid binding assays demonstrated that 

mutating the Rabankyrin-5 NPF motif from QSVNPF to QSANPF led to binding to EHD3.  

 

16 Discussion   

The EHDs are membrane curvature-sensing proteins that can induce membrane 

bending (Daumke et al., 2007), and are involved in promoting vesiculation through their 

intrinsic ATPase activity (Daumke et al., 2007; Naslavsky et al., 2006; Lee et al., 2005) 
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(Cai et al., 2012; Cai et al., 2013; Cai et al., 2014; Jakobsson et al., 2011). Indeed, 

chronic knockdown of EHD3 (over 48 h) leads to lack of cellular TRE, as determined by 

immunostaining with antibodies for either endogenous MICAL-L1 or Syndapin2, 

seemingly supporting a role for EHD3 in TRE biogenesis (Cai et al., 2013). Since we 

examined the TRE after chronic EHD3 loss, such studies do not allow us to differentiate 

between two distinct possibilities: failure of TRE to undergo biogenesis in the absence of 

EHD3, or loss of TRE stability over time upon EHD3 depletion. Recycling tubules (van 

Weering and Cullen, 2014) enhance the efficiency of membrane sorting by providing a 

high surface-to-volume ratio, and thus play an important role in endosomal trafficking 

(Maxfield and McGraw, 2004). Indeed, TRE are required for efficient recycling of a 

variety of receptor cargos, including integrins and major histocompatibility complex class 

I (MHCI) proteins, which often take tens of minutes to recycle (Jovic et al., 2009; Caplan 

et al., 2002; Jovic et al., 2007). MICAL-L1-, Syndapin2-, and EHD-decorated TRE 

display greater stability than most endosomal tubules (Sharma et al., 2009). Typically, 

we have observed that ≈75% of non-synchronized cells at steady state contain TRE 

decorated by endogenous MICAL-L1. Although we do not understand why all cells do 

not display such TRE, recent work from our laboratory leads us to suggest the possibility 

that the cell cycle is a factor in TRE biogenesis. Fittingly, it was recently shown that, in 

the course of mitosis, cells dramatically decrease their endocytic recycling (Boucrot et 

al., 2007). Although we can only speculate that 25% of unsynchronized cells lacking 

TRE may be entering mitosis, whether this is indeed the case, merits further 

investigation.  

In this study, we describe a unique method of inducing acute TRE biogenesis 

that has allowed us to address the mechanistic role of EHD3. Having observed that 

inhibition of phosphatidic acid generation with PLD inhibitors causes TRE depletion from 

cells, we also noticed that washout of the inhibitors promotes a rapid recovery (burst) of 



   - 116 - 
 

TRE within 20–30 min that goes on for several hours. Taking advantage of the acute and 

“synchronized” TRE biogenesis under these conditions, for the first time, we were able to 

determine that EHD3 is not required for TRE generation (unlike MICAL-L1 and 

Syndapin2 (Giridharan et al., 2013)). Because these experiments were performed under 

conditions where 85–95% of EHD3 was depleted, and because we have seen that 

chronic EHD3 knockdown of even 50% efficiency leads to loss of TRE after 48 h, TRE 

recovery following washout in EHD3-depleted cells is unlikely to result from residual 

EHD3. On the other hand, although EHD3 depletion did not prevent TRE generation 

upon inhibitor washout, the TRE remained stable for only 1–2 h, suggesting that EHD3 

has a role in TRE stabilization. However, even though upon EHD3 depletion, TRE 

generation was possible after inhibitor washout, the TRE remained stable for only 1–2 h, 

suggesting that EHD3 has a role in TRE stabilization. 

We do not anticipate that the very same tubules are maintained for many hours, 

but instead that overall TRE stability is enhanced in the presence of EHD3. We have 

demonstrated previously that TRE-decorating proteins such as EHD1 and 

MICAL-L1 can remain stably associated for 5–10 min (Sharma et al., 2009), measuring 

the TRE life span is difficult because of dynamic fusion and fission events that may 

occur at the TRE tips or along the length of the tubule. Although we cannot pin down the 

precise mechanism for TRE stabilization by EHD3, we rationalize that the ability of 

EHD3 to interact with both MICAL-L1 and Syndapin2 via NPF-EH interactions, it 

physically stabilizes these two proteins on TRE membranes, preventing their 

dissociation and degradation.  

Another open question is what differences in NPF-containing proteins, such as 

MICAL-L1 and Rabankyrin-5, determine their ability to interact with different EHD 

proteins. Our initial hypothesis was that the number of acidic residues following the NPF 

motif might influence the ability to bind to certain EHDs. Indeed, six acidic residues 
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follow the first NPF motif of MICAL-L1, and it interacts with both EHD1 and EHD3. On 

the other hand, Rabankyrin-5 has only two acidic residues after its NPF motif, and it 

binds only to EHD1. However, neither reducing the number of acidic residues following 

the NPF motif of MICAL-L1, nor increasing the number of acidic residues following the 

NPF motif of Rabankyrin-5 had any impact on the binding pattern to EHD1 and EHD3. 

This indicates that, although NPF motifs flanked by acidic residues are necessary for 

EHD binding (Kieken et al., 2010; Henry et al., 2010), the precise number of acidic 

residues is not a factor in fine-tuning the binding to select EHDs.  

The remarkable likeness of EHD1 and EHD3 raises interesting questions of how 

two proteins that share 86% identity carry out such disparate functions. Given that their 

ATP hydrolysis domains are nearly identical, we predicted that the distinct function of 

these EHD proteins may be attributed to differences in their EH domains, possibly 

resulting in binding to distinct subsets of interaction partners. Although both EHD1 and 

EHD3 bind to MICAL-L1 (Sharma et al., 2009) and Syndapin2 (Braun et al., 2005), 

Rabankyrin-5 binds exclusively to EHD1 (Zhang et al., 2012). Hence, binding to 

Rabankyrin-5 is a distinguishing factor between EHD1 and EHD3. We were able to map 

this differential binding to a pair of residues (Ala-519/Asp-520 for EHD1 and Asn- 

519/Glu-520 for EHD3). Remarkably, of the entire 534 EHD residues, a simple reversal 

of EHD3 Asn-519/Glu-520 to AD (as found in EHD1) led to its ability to bind to 

Rabankyrin-5. Notably, the switching of EHD3 residues 519 and 520 from NE to AD had 

a direct functional effect on EHD3. Depletion of EHD3 normally causes a failure of 

internalized receptors, such as the transferrin, to reach the perinuclear ERC from 

peripheral sorting endosomes (Fig. 4.6, I and L). Remarkably, the NE-to-AD EHD3 

mutant failed to rescue this phenotype (as did wild-type EHD3), highlighting the 

significance of these residues functionally. Nonetheless, it remains to be determined 

what connection, if any, exists between Rabankyrin-5 binding and the membrane 
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trafficking functions of these EHD proteins. 

The possible explanation for the significance of these two residues is provided by 

the examination of the EH1 NMR solution structure. Both Ala-519 and Asp-520 reside 

within 5 Å of Leu-487, likely forming a hydrogen bond. Although Leu-487 does not 

localize to the surface of the EH1 binding pocket, it does compose the back part (helix 3) 

of the binding pocket (helix 3 of the helix 2-loop-helix 3 pocket) (Fig. 4.9B). Indeed, such 

an interaction might alter the alignment of amino acids that make direct contact with the 

NPF peptide, the Lys-486 and the critical Trp-485. Thus, we hypothesize that hydrogen 

bonds between Ala-519/Asp-520 and Leu-487 impact the crucial Trp-485 and serve to 

stabilize the pocket in a conformation that maintains affinity for both the MICAL-L1 

KPYNPF motif and the Rabankyrin-5 QSVNPF motif. Indeed, it appears as though 

reversal of Asn-519 of EHD3 to Ala or Glu-520 to Asp was sufficient to induce gain of 

binding to Rabankyrin-5. However, the lack of the Ala-519/Asp-520 residues in the 

EHD3 EH domain and the absence of the upstream tyrosine prior to the Rabankyrin-5 

peptide NPF motif to interact with Gly-494 likely lead to low binding affinity between 

EHD3 and the peptide. It is intriguing that, upon mutating EHD1 from AD to NE (at 

residues 519/520), we did not discern a loss of EHD1 binding to Rabankyrin-5 as we 

initially anticipated (Fig. 4.5E). Although further experimentation will be needed to fully 

understand the reason for this anomaly, it is clear that other residues that are distinct 

from EHD3 within the EHD1 EH domain must play a role in maintaining EH1 binding 

pocket affinity for the Rabankyrin-5 NPF peptide.  

Surprisingly, we observed that the residues immediately upstream of the NPF 

motif are able to dictate binding to select EHDs. The QSVNPFED motif of Rabankyrin-5 

bound to EHD1 but not EHD3. However, when mutated to KPYNPFED (the KPY is 

upstream to the MICAL-L1 NPF motif), binding was observed with both EHD1 and 

EHD3. What is the atomic mechanism to explain the differential binding? Based on our 
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previous NMR solution structure of EH1 with NPF-containing peptides (Kieken et al., 

2007; Kieken et al., 2009; Kieken et al., 2010), there are hydrogen bonds between 

glycine 494 of the binding pocket and the tyrosine (and potentially lysine) residue of the 

KPYNPF motif of MICAL-L1. We anticipate that a similar mechanism explains the 

binding between the QSVNPF motif of Rabankyrin-5 and EH1. In the case of EH3, it is 

plausible that the weakened affinity of the pocket (resulting from Asn-519/Glu-520 

instead of Ala-519/Asp-520) causes a failure of EH3 binding to QSVNPF. However, we 

also considered that the branched valine residue of the QSVNPF peptide might create a 

geometry that is not conducive to hydrogen bonds with the backbone at Gly-494. Indeed, 

mutation of the Rabankyrin-5 to QSANPF without the branched valine induces a gain of 

binding to EH3.  

Although Rabankyrin-5 binding only serves as a model to illustrate how subtle 

residue changes can lead to differential binding, and additional studies will need to be 

done to determine how such binding might affect EHD function in vesiculation and/or 

TRE stabilization, our findings provide a unique window to understand how two proteins 

that were likely generated through gene duplication evolved in higher eukaryotes to 

perform distinct functions. Based on our findings in previous studies by our group and 

others and the current study, a basic model for TRE function is emerging. TRE are 

essential for efficient recycling (Jovic et al., 2009) and appear to regulate trafficking 

steps both from sorting endosomes to the ERC (Xie et al., 2016) and from the ERC to 

the plasma membrane (Caplan et al., 2002). The biogenesis of TRE occurs when 

phosphatidic acid is generated on membranes by one of several pathways (Cai et al., 

2012; Giridharan et al., 2013; Xie et al., 2014). The phosphatidic acid binding proteins 

MICAL-L1 and Syndapin2 are then recruited to the membrane, where they interact. 

Syndapin2 also has an F-BAR domain that induces membrane curvature (Giridharan et 

al., 2013). Although the loss of TRE by chronic depletion of EHD3 initially suggested that 
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this protein is required for TRE biogenesis, and a recent study maintains that EHD3 

binds directly to phosphatidic acid and induces curvature (Henmi et al., 2016), this study 

reveals that EHD3 is not required for TRE biogenesis and likely plays a role in stabilizing 

TRE, possibly by strengthening the MICAL-L1-Syndapin2 interactions. Following cargo 

sorting within the TRE, the most likely scenario, based on various studies supporting a 

role for EHD1 in TRE fission (Cai et al., 2013; Cai et al., 2014), is that TRE stability is 

decreased by a temporal replacement of EHD3 by EHD1. The mechanism and specific 

triggers for this EHD switch and recruitment of EHD1 remain unknown and appear to be 

unrelated to EHD affinity for the MICAL-L1 NPF motif because both EH1 and EH3 bind 

with similar affinities (Fig. 4.4). We speculate that post-translational modifications, such 

as EHD3 sumoylation (Cabasso et al., 2015) and potentially, desumoylation may 

regulate this process. Alternatively, specific signaling triggers through receptors (i.e.,  

epidermal growth factor receptor) may also promote EHD1 replacement of EHD3 and 

TRE fission (Reinecke et al., 2015; Reinecke et al., 2014). Ultimately, TRE are cleaved, 

either at their tips or potentially along the entire membrane, and the resulting vesicles 

are transported along microtubules back to the plasma membrane.  

In summary, we provide a deeper understanding of the mechanism of EHD3 

function. First, we have demonstrated that EHD3 is not required for TRE biogenesis but 

instead is involved in maintenance of TRE stability over time. Next, we characterized the 

differential function of EHD1 and EHD3 and found important differences in EH domain 

residues that led to differential binding with NPF-containing proteins. These residues 

likely promote optimal hydrogen bonds with hydrophobic residues immediately upstream 

of the NPF motifs. Although future studies will be needed to determine how differential 

binding partners control TRE vesiculation versus stability, these results provide novel 

insight into the atomic mechanisms of EHD function. 
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Figure 4.1. TRE biogenesis occurs in the absence of EHD3.  
 
A, using MICAL-L1 as a marker, TRE biogenesis was assessed in mock-treated cells (first 
column), Syndapin2 knockdown cells (second column), EHD3 knockdown cells (third 
column), and EHD1 knockdown cells (fourth column). Top row, pretreatment shows TRE 
status under the corresponding knockdown conditions. Center row, 30-min treatment with 
PLD inhibitors (100 µM CAY 10593 and CAY 10594 for 30 min at37°C). Bottom row, 30-
min treatment with PLD inhibitors followed by 20-min washout of the inhibitor. A 
representative field of cells (in the top half of each micrograph) is also depicted by an 
inverted-contrast image (bottom) to better visualize TRE. Note that there is initiation of 
TRE formation (burst) at the 20-minwashout for all treatments except Syndapin2-KD. 
Scale bar=10µm. B, immunoblot analysis depicting the efficiency of knockdown for 
endogenous EHD1 and Syndapin2 and transfected EHD3. Actin is shown as a loading 
control. 
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Figure 4.1 
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Figure 4.2. EHD3 stabilizes TRE.  
 
A, mock-treated cells (first column), Syndapin2 knockdown cells (second column), EHD3 
knockdown cells (third column), andEHD1 knockdown cells (fourth column) were 
subjected to PLD inhibitor treatment and washout (as described in Fig. 1) and then 
incubated for 1 h (top row), 4 h (center row), or 6 h (bottom row) after washout. A single 
red asterisk depicts the maximum biogenesis of TRE in EHD3 knockdown cells after 1-h 
washout. Two red asterisks (4 h after washout, center panel) highlight the disappearance 
of the newly formed TRE in EHD3 knockdown cells, whereas TRE in mock-treated and 
EHD1 knockdown cells are increasingly abundant 4–6 h after washout. A field of cells (in 
the top half of each micrograph) is also represented as an inverted contrast image to better 
visualize TRE (bottom half of each micrograph). B, quantitative analysis of 100 cells from 
three independent experiments, measuring mean TRE area in PLD inhibitor washout 
experiments. The red and purple dashed lines denote the increase in mean TRE length 
for EHD1 knockdown cells over time, whereas the black dashed line depicts the increase 
and subsequent decrease in mean TRE length over time for EHD3 knockdown cells. 
Significance was assessed by analysis of variance*, p < 0.01. Scale bar =10µm. 
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Figure 4.2 
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Figure 4.3. The EH domain is responsible for the differential function of EHD1 and 
EHD3 in vesiculation and TRE stabilization, respectively.  
 
(A), the C-terminal EHD proteins EHD1 and EHD3 share 86% identity and have a 
conserved domain architecture comprised of four domains: two helical domains, a G 
domain, and a C-terminal EH domain. (B—D), HeLa cells were treated with EHD3 siRNA 
(B and D) or EHD1 siRNA C for 48 h. Cells were then transfected with (B) siRNA-resistant 
GFP-myc-EHD3 (WT), (C) siRNA-resistant GFP-myc-EHD1 (WT), and (D) siRNA-
resistant GFP-myc-EHD3-EH1. TRE morphology was assessed by immunostaining with 
endogenous Syndapin2. Note that untransfected cells in C and D lack TRE. E, quantitative 
analysis of mean TRE length was measured in 100 cells from three independent 
experiments as in B–D. Significance was assessed by analysis of variance.*, p <0.01. 
Scale bar = 10m. 
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Figure 4.3 
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Figure 4.4. Comparison of the binding affinity of the EHD1 EH domain and EHD3 EH 
domain for a MICAL-L1 NPF peptide by isothermal titration calorimetry.  
 
Solutions containing 90 µM purified EH domains of EHD1 or EHD3 were injected with 930 
µM MICAL-L1 peptide, and ITC binding isotherms were collected. KD values obtained by 
fitting the titration curves are indicated for each EH domain. 
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Figure 4.4 
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Figure 4.5. Identification of EH1 and EH3 residues responsible for their differential 
interactions with NPF-containing partners.  
 
A, comparison of EH1 and EH3, exhibiting homologous (green) and non-homologous 
(white) residues. Six key regions containing non-conserved residues chosen for analysis 
are depicted. B, schematic showing the interaction of EHD1 with both Rabankyrin-5 and 
MICAL-L1, whereas EHD3 interacts only with MICAL-L1. C, the S.cerevisiae yeast strain 
AH109 was co-transformed with the following Gal4bd fusion constructs: Gal4bd-p53 
(control), MICAL-L1 and Rabankyrin-5 along with Gal4ad fusion constructs Gal4ad-SV40 
(control), Gal4ad-EHD1 (WT), Gal4ad-EHD3 (WT), Gal4ad-EHD3 (NE519AD), Gal4ad-
EHD3 (AHLL523PHLV), Gal4ad-EHD3(D459N), Gal4adEHD3(M447T), Gal4ad-
EHD3(A437V), and Gal4ad-EHD3(KVAE523RHE). D, HeLa cells were transfected with 
HA-Rabankyrin-5 (R-5) and lysed after 24 h. The GST-EH domains indicated were used 
to pull down Rabankyrin-5 from HeLa cell lysates. The protein pulled down was detected 
by immunoblotting with anti-HA, and anti-GST was used as a control for equal loading of 
proteins. The immunoblot shown is a representative of four individual experiments. E, the 
S.cerevisiae yeast strain AH109 was co-transformed with the following Gal4bd fusion 
constructs: Gal4bd-p53 (control), MICAL-L1, and Rank-5 along with the Gal4ad fusion 
constructs Gal4ad-SV40 (control), Gal4ad-EHD1 (WT), Gal4ad-EHD3 (WT), Gal4ad-
EHD3 (NE519AD), Gal4ad-EHD1(AD519NE), Gal4ad-EHD3(N519A), and Gal4ad-
EHD3(E519D). Co-transformants from C and E were plated on non-selective (+HIS) and 
selective (-HIS) agar plates. Dotted white lines indicate where two different scanned agar 
plates have been compiled into the same image. The dashed red rectangle in C shows 
the gain of binding by the EHD3 NE519AD mutant. A representative from four experiments 
is depicted. 
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Figure 4.5 
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Figure 4.6. Wild-type EHD3, but not the EHD3NE519AD mutant, rescues the 
impaired transferrin trafficking phenotype observed in EHD3 knockdown cells.  
 
HeLa cells were either mock-treated (A–G) or treated with EHD3 siRNA oligonucleotides 
(H–M) for 48 h. After the first 24 h, cells were transfected with either WT GFP-EHD3 (B–
D and H–J) or GFP-EHD3 NE519AD (E–G and K–M) and then subjected to a 20-min 
uptake with Tf-568 prior to fixation and microscopic analysis. Mock-treated cells typically 
display accumulation of Tf-568 in the perinuclear ERC (A, C, and F). Upon EHD3 
knockdown, Tf-568 failed to reach the ERC (I, non-labeled cells). I, wild-typeGFP-EHD3-
transfectedcells are marked with a yellow border, and arrows highlight the rescued Tf-568 
trafficking and arrival at the ERC.L, yellow borders indicate EHD3 KD cells transfected 
withGFP-EHD3NE519AD. Arrows are not shown because Tf-568 does not reach the ERC. 
The graph (top right) displays quantification of the percentage of cells in which Tf reaches 
the ERC (within 20 min), comparing wild-type and EHD3 NE519 AD-transfected cells. At 
least 50 cells from each treatment were scored from three individual experiments. 
Confirmation was done by “blind scoring.” Significance was assessed by analysis of 
variance. *, p<0.01. 
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Figure 4.6 
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Figure 4.7. The number of acidic residues after the NPF motif does not 
discriminate between binding to EHD1 or EHD3.  
 
A, comparison of the number of acidic residues (blue letters) following the NPF motif (red 
letters) of MICAL-L1 (NPFDEEEEEE) and Rabankyrin-5 (NPFED). B, the S. cerevisiae 
yeast strain AH109 was co-transformed with the following Gal4bd fusion constructs: 
Gal4bd-p53 (control), Gal4bd-Rabankyrin-5 (WT) (NPFEDV), Gal4bd-Rabankyrin-
5(NPFEDV to NPFEDE), Gal4bd-Rabankyrin-5 (NPFEDV to NPFEDEE), and Rabankyrin-
5 (NPFEDV to NPFEDEEE) along with the Gal4ad fusion constructs Gal4ad-SV40 
(control), Gal4ad-EHD1 (WT), and Gal4ad-EHD3 (WT). Co-transformants were plated on 
non-selective (+ HIS) and selective (- HIS) agar plates. C, the S. cerevisiae yeast strain 
AH109 was co-transformed with the following Gal4bd fusion constructs: Gal4bd-p53 
(control), Gal4bd-MICAL-L1 (WT) (NPFDEEEEE), Gal4bd-MICAL-L1 (NPFDEEEEE to 
NPFDEEEEA), Gal4bd-MICAL-L1(NPFDEEEEE to NPFDEEEAA), Gal4bd- MICAL-
L1(NPFDEEEEE to NPFDEEAAA), Gal4bd-MICAL-L1(NPFDEEEEE to NPFDEAAAA), 
Gal4bd-MICAL-L1(NPFDEEEEE to NPFDAAAAA), and Gal4bd- MICAL-L1(NPFDEEEEE 
to NPFAAAAAA) along with the Gal4ad fusion constructs Gal4ad-SV40 (control), Gal4ad-
EHD1 (WT) and Gal4ad-EHD3 (WT). A representative from four experiments is depicted. 
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Figure 4.7 
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Figure 4.8. Residue differences upstream of the NPF motif govern binding 
difference between EHD1 and EHD3.  
 
A, comparison of the residues upstream of the NPF motif (green) between MICAL-L1 
(KPY) and Rabankyrin-5 (QSV). B, the S. cerevisiae yeast strain AH109 was co-
transformed with the following Gal4bd fusion constructs: Gal4bd-p53 (control) and 
Gal4bd-EHD1 (WT), Gal4bd-EHD3 (WT) along with the Gal4ad fusion constructs Gal4ad- 
SV40 (control), Gal4ad-MICAL-L1 (WT), Gal4ad-Rabankyrin-5 (WT), and Gal4ad-
Rabankyrin-5 (QSV to KPY). C, the S. cerevisiae yeast strain AH109 was co-transformed 
with the following Gal4bd fusion constructs: Gal4bd-p53 (control), Gal4bd-EHD1 (WT), or 
Gal4bd-EHD3 (WT) along with the Gal4ad fusion constructs Gal4ad-SV40 (control), 
Gal4ad-MICAL-L1 (WT) and Gal4ad- Rabankyrin-5 (WT), Gal4ad-Rabankyrin-5 (QSV to 
KPY), Gal4ad-Rabankyrin-5 (QSV to KSV), Gal4ad-Rabankyrin-5 (QSV to QPV), and 
Gal4ad-Rabankyrin-5 (QSV to QSY). Co-transformants were plated on non-selective (+ 
HIS) and selective (- HIS) agar plates. A representative from four experiments is depicted 
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Figure 4.8 
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Figure 4.9. Atomic basis for the differential interaction of EHD1 and EHD3 with NPF-
containing binding partners.  
 
A, the S. cerevisiae yeast AH109 strain was co-transformed with the following Gal4bd 
fusion constructs: Gal4bd-p53 (control), Gal4bd-EHD1 (WT), and Gal4bd-EHD3 (WT) 
along with the Gal4ad fusion constructs Gal4ad-SV40 (control), Gal4ad-MICAL-L1 (WT) 
and Rabankyrin-5(WT), and Gal4ad-Rabankyrin-5 (QSV to QSV). Co-transformants were 
plated on non-selective (+ HIS) and selective (- HIS) agar plates. A representative from 
four experiments is depicted. B, model of the EHD1 EH domain with the MICAL-L1 
KPYNPFEEEEED peptide, based on the NMR solution structure. Red depicts oxygen 
atoms in the Asp-520 side chain. 
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Figure 4.9 
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Chapter V 

Summary and Future Directions 
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17 Summary 

Endocytic trafficking, which involves the internalization, sorting, degradation and 

recycling of macromolecules, is an integral process for maintaining cellular homeostasis 

and the regulation of diverse cellular processes such as signaling, migration, and cell 

division. The C-terminal Eps 15 Homology Domain proteins (EHD1-4) play an important 

role in regulating distinct steps of endocytic trafficking. EHD1, EHD3 and EHD4 are 

localized to intracellular tubular/vesicular membranes (Naslavsky and Caplan, 2011). In 

contrast, EHD2 localizes to the cytoplasmic interface of the plasma membrane, 

specifically the plasma membrane invaginations, caveolae. While EHD1, EHD3 and 

EHD4 are capable of forming hetero-oligomers, EHD2 exclusively forms homo-oligomers 

(Simone et al., 2013). Indeed, EHD2 is the most distinct of the four EHDs.  

The crystal structure of EHD2 has been solved and it contains a partially 

conserved unstructured loop consisting of two proline-phenylalanine (PF) 

motifs: KPFRKLNPF (Daumke et al., 2007). Despite EHD2 having nearly 70% amino 

acid identity with its paralogs, EHD1, EHD3 and EHD4 (Naslavsky and Caplan, 2011), 

the latter proteins contain only a single KPF or RPF motif, but no NPF motif in their 

unstructured loop. We wanted to delineate the precise role of the KPFRKLNPF 

unstructured loop, in dimerization, protein binding, and subcellular localization.  

Overall, in this study, we have demonstrated that the phenylalanine residue of 

EHD2 NPF is crucial for the localization of EHD2 to the plasma membrane and the 

cavolae. On the other hand, the proline residue is essential for the EHD2 dimerization 

and binding to NPF-containing protein partners. Furthermore, these studies support the 

recently proposed model, in which the EHD2 N-terminal region may regulate the 

availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus 

promoting oligomerization. Interestingly, EHD1 has a single RPF motif that aligns with 

the KPF motif of EHD2. This led to the hypothesis that the RPF motif might be crucial for 
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binding and localization functions of EHD1. Indeed, EHD1’s single RPF motif has a 

critical role in dimerization, binding to MICAL-L1 and Syndapin2, and localization to the 

tubular recycling endosomes (TRE). Moreover, recycling assays demonstrated that 

EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. 

The elaborate network of dynamic lipid membranes known as TRE orchestrates 

the process of endocytic recycling in mammalian cells (Jovic et al., 2009). Electron 

microscopy studies have determined that the tubular structures containing EHD1 are 

200 nm wide and up to 10 μm long (Caplan et al, 2002). The EHD proteins have been 

implicated in the bending and fission of TREs, thus regulating endocytic recycling (Cai et 

al., 2013). EHD proteins have a C-terminal EH domain that preferentially interacts with 

proteins containing an asparagine-proline-phenylalanine (NPF) motif followed by acidic 

residues (Kieken et al., 2010; Henry et al., 2010). We had previously demonstrated that 

NPF-containing EHD1 interaction partners, such as molecules interacting with CasL-

Like1 (MICAL-L1) and Syndapin2, are essential for TRE biogenesis (Sharma et al., 

2009; Giridharan et al., 2013). Also crucial for TRE biogenesis is the generation of 

phosphatidic acid (PA). PA is an essential lipid component of TRE that serves as a 

docking point for MICAL-L1 and Syndapin2 (Giridharan et al., 2013). EHD1 and EHD3 

have 86% amino acid identity; they homo- and hetero-dimerize, and partially co-localize 

to TRE (Galperin et al., 2002). Despite their remarkable identity, they have distinct 

mechanistic functions: EHD1 induces membrane vesiculation, whereas EHD3 supports 

TRE biogenesis and/or stabilization by an unknown mechanism. While using 

phospholipase D inhibitors (which block the conversion of glycerophospholipids to PA) to 

deplete cellular TRE, we observed that upon inhibitor washout there was a rapid and 

dramatic regeneration of MICAL-L1-marked TRE. Using this “de-novo synchronized” 

TRE biogenesis system, we determined that EHD3 is involved in the stabilization of TRE 

rather than their biogenesis. Moreover, we identified the residues Ala-519/Asp-520 of 



   - 142 - 
 

EHD1 and Asp-519/Glu-520 of EHD3, governing the selectivity of these two paralogs for 

NPF-containing binding partners, and we presented a model to explain the atomic 

mechanism and provide new insight into their differential roles in vesiculation and 

tubulation, respectively.  

In addition, our study has broader scientific relevance. It serves as a general 

model to resolve how highly similar proteins, which are likely to have evolved through 

gene duplication, have diverged within mammalian cells to carry out distinct, but related 

functions.   

 

18 Future Directions  

 

18.1 Role of NPF motif of KPFRKLNPF loop in caveolar mobility 

Recent studies have demonstrated that EHD2 forms dimers with the previously 

proposed G-domain interface (Daumke et al., 2007) and the conserved KPFRKLNPF 

loop in the G domain plays a role in oligomerization. Furthermore, EHD2 is assembled 

into oligomeric ring-like structures (Melo et al., 2017). These structures create a scaffold 

that generates and/or stabilizes membrane curvature. Another study demonstrated the 

contribution of ATP in enhancing the oligomerization of EHD2 (Hoerneke et al., 2017). 

Recent evidence also supports a role of EHD2 in controlling the movement of small 

vesicles under the plasma membrane that are enriched in sphingolipids and cholesterol 

and known as caveolae (Stoeber et al., 2012; Moren et al., 2012). Moreover, regulating 

the formation of functional EHD2 oligomers at the membrane plays a key role in 

maintaining caveolae in a static and immobile state (Melo et al., 2017). We have recently 

demonstrated that EHD2 NPF to NAF mutants display impaired dimerization of EHD2 

and binding with interaction partners. The effect of this mutant on caveolar mobility 

remains unknown. We will test whether the EHD2 NAF is required to regulate caveolar 
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mobility or more precisely, their stabilization. Our readout will use transfected GFP-

caveolin1 to measure the mobility of caveolae by fluorescence recovery after 

photobleaching (FRAP), as we have previously done (Pelkmans et al., 2005; Sharma et 

al., 2009). 

 

18.2 How does EHD2 link caveolae to the actin cytoskeleton? 

Our previous studies have suggested that the binding of EHD2 to PIP2 connects 

caveolae to the actin microfilaments (Simone et al., 2013). Additionally, EHD2 interacting 

proteins may contribute to the tethering of caveolae to actin. Indeed, we show that 

caveolin1 is dispersed across the plasma membrane in EHBP1-depleted cells, 

suggesting that EHBP1 may co-operate with EHD2 in linking caveolae to actin 

microfilaments (Simone et al., 2013). However, the dimerization of EHD2 is not required 

for binding to EHBP1. The multifaceted relationship between the unstructured loop, 

localization of caveolae and the binding partners EHBP1 and Syndapin2 remains 

unclear. We will focus on understanding the connection between EHD2 oligomerization 

and actin cytoskeleton. 

 

18.3 Spatio-temporal regulation of EHD1 and EHD3 

EHD1 and EHD3 are capable of hetero-dimerization; it is possible that EHD1 is 

on TRE, but initially inactive until it receives a signal to induce vesiculation. This is a 

competing idea to the one proposing temporal binding, and if necessary, we will address 

potential post-translational modifications. The role of SUMOylation of EHD3 on TRE has 

already been addressed (Cabasso et al., 2015). We will address the effect of 

deSUMOylation of EHD3 and phosphorylation of EHD1. There is also a possibility that 

since EHD1 binds to a wider range of NPF-containing proteins than EHD3, including 

Rabankyrin-5 (Zhang et al., 2012), and that such proteins might ‘sequester’ EHD1 in vivo 
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(away from TRE) and prevent it from competing with EHD3 for TRE binding. To this aim, 

we will knock-down Rabankyrin-5 and determine whether the TRE become shorter, 

fewer, and/or less elaborate. 

 

18.4 Identification of Residues in EH1 that govern binding of EHD1 with 

Rabankyrin-5 

We have previously demonstrated that upon mutating EHD1, from AD to NE (at 

residues 519/520), did not discern a loss of EHD1 binding to Rabankyrin-5, as we 

initially anticipated. It is clear that other residues that are distinct from EHD3 within the 

EHD1 EH domain must play a role in maintaining EH1 binding pocket affinity for the 

Rabankyrin-5 NPF peptide. In order to evaluate the role of other residues in the EH1 

binding pocket, we will generate double mutants of the six cassettes of the residues that 

are distinct between EH1 and EH3. Our readout will be the loss-of-binding of EHD1 with 

Rabankyrin-5. 

 

18.5 Structure of EH-3 

In order to gain insight into the structure-function relationship of EH3, we plan to 

do structural studies of EH3 with MICAL-L1 NPF peptide, which we used previously. In 

that regard, the solution structure of EH domain of EHD1 has already been solved 

(Kieken et al., 2010). The chemical shift resonances for the EH3 have been assigned 

(Spagnol et al., 2014). Solution of the structures of EH3 domains will be extremely useful 

in analyzing the mechanisms responsible for the functional role played by EHD3 and its 

localization. 
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