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Abstract 

Staphylococcus aureus (S. aureus) is a leading cause of community- and healthcare-

associated infections and has a propensity to form biofilms. Biofilm infections are 

recalcitrant to host immune-mediated clearance as well as antibiotics, making them 

exceptionally difficult to eradicate. The biofilm environment has been shown to skew the 

host immune response towards an anti-inflammatory phenotype, characterized by 

alternatively activated macrophages, recruitment of myeloid-derived suppressor cells 

(MDSCs), and minimal neutrophil and T cell infiltrates. Our laboratory has attempted to 

redirect the host immune response towards one that would favor bacterial clearance by 

employing strategies to augment pro-inflammatory mechanisms. One such approach 

was to utilize lipopolysaccharide (LPS), which was expected to promote pro-

inflammatory activation of peripheral immune cells infiltrating the biofilm and subsequent 

clearance of infection. This theory was partially correct, as pro-inflammatory cytokines in 

the serum were significantly increased, and peripheral immune cells in the blood were 

more effective at killing S. aureus ex vivo following LPS treatment; however biofilm 

infection was exacerbated. Specifically, bacterial titers increased nearly 2-log with 

administration of LPS, and although infiltration of Ly6G+Ly6C+ MDSCs was decreased, a 

new population of Ly6GintLy6C+ cells appeared. Additionally, both Ly6G+Ly6C+ and 

Ly6GintLy6C+ populations were more suppressive with LPS treatment, partially 

explaining the expansion of S. aureus biofilm burdens. This study highlights the resilient 

nature of S. aureus biofilm infections to influence the immune response, particularly 

through MDSCs, even in the face of a strong pro-inflammatory stimulus. Gaining a better 

understanding of the mechanisms that cause this ineffective host immune response to 

staphylococcal biofilms is a necessary step towards eradicating these debilitating 

infections.  
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Staphylococcus aureus and biofilm infection 

Staphylococcus aureus infections and clinical significance 

 Staphylococcus aureus (S. aureus) is a gram-positive bacterium that has 

remained a versatile and dangerous pathogen ever since its discovery in the 1880’s [1]. 

The skin and nasal mucosa of approximately 30% of the world population are colonized 

with methicillin-sensitive S. aureus (MSSA), and approximately 1-2% are colonized with 

methicillin-resistant strains, known as MRSA, while prevalence among healthcare 

workers is closer to 5% [2-6] . According to a 2014 report from the CDC, over 80,000 

invasive MRSA infections and more than 10,000 related deaths occur every year in the 

United States alone. The pathogen is responsible for a wide range of diseases, including 

superficial skin and soft tissue infections, respiratory infections, food poisoning, bacterial 

pneumonia, and sepsis [5]. The microorganism can colonize an individual for a long 

period with no apparent repercussions, until a breach of the skin or mucosal barrier 

introduces the possibility of infection. It is not well understood what determines whether 

an infection is contained or disseminates, and more research is needed to understand 

the complex interplay between S. aureus virulence determinants and host defense 

mechanisms. 

S. aureus biofilms and prosthetic joint infections 

 An important virulence determinant of S. aureus is its ability to form a biofilm on 

biological and artificial surfaces [7, 8]. A biofilm is a community of surface-associated 

bacteria that is enclosed in a complex matrix composed of proteins, polysaccharides, 

and eDNA [7-13]. Staphylococci are among the most frequent cause of biofilm-

associated infections, and biofilm formation allows the bacteria to circumvent antibiotic- 

and immune-mediated clearance to establish persistent infections [8, 14, 15].  
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Biofilm development can be described as a continuous cycle with three distinct 

stages. The process begins by initial attachment of bacterial cells to biotic or abiotic 

surfaces, such as a heart valve or orthopedic device. Next, accumulation of bacteria and 

extracellular matrix (ECM) occurs as the biofilm matures. During the final stage, cells 

begin to detach from the biofilm proper, facilitating biofilm dispersal and possible 

reattachment at another site, continuing the cycle [8, 14, 16, 17]. Although we are 

beginning to understand some of the mechanisms whereby staphylococcal biofilms 

evade immune attack [12, 18-22], it is likely that additional pathways remain to be 

identified. 

The biofilm mode of growth often includes dampening of protein and cell wall 

biosynthesis, thereby allowing the pathogen to avoid eradication by antibiotics that target 

actively growing cells [23-25]. Combined with its capacity for immune evasion and 

antibiotic resistance, staphylococcal biofilms also produce numerous virulence factors 

that target immune cells and damage host tissues. Only a small number of bacteria are 

needed to establish medical device-related infections, and their recalcitrance to 

antibiotics makes biofilms difficult to treat [13, 26]. In most cases, the contaminated 

device must be removed with an ensuing lengthy antibiotic regimen until the site is 

considered sterile, whereupon a new device is placed. This sequence of events prolongs 

recovery time and is an economic burden for the patient [27, 28]. Indeed, approximately 

$1.8 billion is spent annually in the US for the treatment and clinical management of 

orthopedic implant-related infections [29, 30]. The cost will continue to rise, as it is 

projected that from 2005 to 2030, the number of total hip arthroplasty procedures will 

increase 174%, and total knee arthroplasties by 673% [31, 32]. When considering the 

increasing number of device-related procedures [32-34], nosocomial infections that can 

accompany these procedures in the hospital setting, and the continued emergence of 
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community-acquired S. aureus infections [35], a better understanding of the mechanisms 

that staphylococcal biofilms utilize to evade host immunity is one necessary step 

towards eradicating these chronic and debilitating infections. 

Mouse model of orthopedic implant-associated biofilm infection 

 Our laboratory has utilized a mouse model of orthopedic implant-associated 

infection for the study of S. aureus biofilm infections and host-pathogen interactions [12, 

36-39]. The proximity of the chronic biofilm infection and bone marrow make this model 

uniquely suited for the study of the host immune response to the invading pathogen. 

This model is typified by an early pro-inflammatory response resulting in the upregulation 

of IL-12p70, TNF-α, IL-1β, IL-6, and IL-17 [9], but is closely followed by a chronic anti-

inflammatory response. MDSCs are recruited to the site indirectly by IL-12, most likely 

by inducing the expression of a chemokine(s) with actions on MDSCs, which have yet to 

be identified [40]. These cells also increase anti-inflammatory signaling via IL-10 

inhibiting immune-mediated clearance, and the biofilm persists [38, 41]. This model has 

allowed for a clearer interpretation of the mechanisms governing the innate immune 

response to S. aureus biofilms, but much more information remains to be elucidated in 

order to successfully treat these devastating infections. 

Innate immune recognition and evasion of staphylococci 

Innate immune cells recognize conserved pathogen-associated molecular 

patterns (PAMPs) expressed by microorganisms via pattern recognition receptors 

(PRRs) [42]. Toll-like receptors (TLRs) are a subset of PRRs that participate in innate 

immunity by recognizing common bacterial motifs and primarily trigger nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) activation [43-45]. These 

receptors are among the best-described PRRs in mammals, of which thirteen have been 

identified in humans, and ten in mice [42, 46]. TLR signaling, with the exception of TLR3, 
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recruits the adaptor molecule MyD88 to the intracellular TIR domain of the receptor and 

elicits a signaling cascade that induces NF-κB activation, leading to the transcription of 

various cytokines, chemokines, co-stimulatory molecules, and antimicrobial peptides 

involved in defense responses [47].  

NF-κB regulates the expression of several genes associated with proliferation, 

differentiation, and cell death, as well as innate and adaptive immune responses [48], 

and is often targeted by microbes to subvert immune-mediated clearance [49]. As a 

demonstration of its importance during biofilm-mediated S. aureus infections, MyD88 

knockout (KO) mice displayed significant increases in bacterial burdens and 

dissemination, fibrosis, and decreased expression of several pro-inflammatory mediators 

[19]. This prevented the establishment of a robust immune response needed to clear the 

infection, and created an environment disadvantageous to the host, as evidenced by the 

presence of macrophages that were polarized to an anti-inflammatory phenotype in a 

model of catheter-associated biofilm infection compared to wild type (WT) animals [19]. 

Other receptors utilize MyD88, including IL-1R and IL-18R [50], although it remains 

unclear whether one receptor is dominant, or if multiple pathways interact synergistically. 

In agreement with a role for MyD88-dependent signaling in controlling early S. aureus 

biofilm growth, a recent study demonstrated similar increases in bacterial burdens in IL-

1R KO mice in a S. aureus orthopedic implant infection model [51]. Additionally, IL-1β 

has been revealed to play a role in controlling early bacterial burdens during biofilm 

infections. IL-1β KO mice displayed enhanced biofilm formation and decreased 

neutrophil recruitment [38]. Collectively, these studies reveal a role for innate immune 

mechanisms in early biofilm containment; however, it is clear that this response is not 

sufficient to clear biofilm infections due to their persistence in both animal models and 

humans. Indeed, both the MyD88 and IL-1R KO biofilm models only revealed enhanced 



17 
 

bacterial burdens during the early stages of infection, which dissipated over time. Upon 

colonization, bacteria maintain a planktonic lifestyle that elicits more traditional pro-

inflammatory responses until biofilm formation has ensued, whereupon the host immune 

response transitions to an anti-inflammatory milieu dominated by the recruitment of 

myeloid-derived suppressor cells (MDSCs) and anti-inflammatory macrophages, which 

will be described in more detail below. 

In terms of planktonic staphylococci, TLR2-mediated recognition of lipoproteins 

[52-55], polysaccharide intercellular adhesion (PIA), and phenol-soluble modulins 

(PSMs) [56, 57] leads to the production of numerous pro-inflammatory cytokines, 

including TNFα and IL-1β, important regulators of the immune response. Although there 

has been some controversy regarding peptidoglycan (PGN) as a TLR2 ligand due to 

concerns of reagent purity, recent studies using ultra-pure preparations have confirmed 

its ability to engage the receptor [58]. Other staphylococcal PAMPs, such as lipoteichoic 

acid (LTA), are not inherently pro-inflammatory; however, they can augment immune 

activation in the presence of other PAMPs [59]. TLR9 is an intracellular PRR that 

recognizes unmethylated CpG DNA motifs, which occur more frequently in the bacterial 

genome compared to mammalian DNA [60]. Despite harboring several potent TLR 

ligands, staphylococcal biofilms have been reported to evade TLR recognition [12, 38] 

(Fig. 1.1.). Remarkably, TLR9 evasion is a hallmark of S. aureus biofilms [12] despite 

extracellular DNA (eDNA) representing a major biofilm component [61], which may be 

explained by leukocyte inaccessibility to eDNA when shielded by the matrix. 

Staphylococcal biofilms are known to evade TLR2 recognition, as evidenced by patients 

with mutations inactivating TLR2 have no increased incidence of post-arthroplasty S. 

aureus infection [62]. It has been shown that TLR2 activation is inhibited by 

staphylococcal superantigen-like protein 3 (SSL3), preventing neutrophil and monocyte 
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activation, as well as IL-8 production [63, 64]. Although TLR2 and TLR9 are essential for 

S. aureus recognition during planktonic infection [12], the biofilm form of growth 

successfully evades these extracellular sensing mechanisms.  

Besides surface-associated PRRs, phagocytes are equipped with nucleotide-

binding oligomerization domain (NOD) receptors that detect intracellular 

microorganisms, providing a second line of defense to ensure immune activation [65-68]. 

NOD1 is triggered by meso-diaminopimelic acid [69, 70] while NOD2 is activated by 

muramyl dipeptide (MDP) [65]. Both NOD1 and NOD2 recognize PGN degradation 

products; however, staphylococcal PGN does not contain meso-diaminopimelic acid, but 

it does contain MDP, making immune cells rely solely on NOD2 for sensing. MDP must 

reach the host cytosol to stimulate NOD2 and eventual NF-κB activation, which may not 

occur frequently the context of a biofilm infection, due to the complex matrix preventing 

immune cell infiltration [71, 72]. Aside from the molecules produced by staphylococci to 

actively block immune recognition, TLR2 and TLR9 evasion by biofilms may be further 

explained by ligand inaccessibility [11, 12]. For example, few planktonic bacteria are 

exposed at the outer biofilm surface, avoiding detection by PRRs [12, 73] and a S. 

aureus-produced matrix of polysaccharide polymers may prevent potential ligands from 

engaging with TLRs [74]. It is highly likely that staphylococcal biofilms produce additional 

factors that contribute to its ability to evade clearance in an immune competent host; 

however, these remain to be completely defined.  

S. aureus is a common etiological agent of chronic debilitating infections, 

especially with the emergence of methicillin-resistant (MRSA) strains that have proven to 

be a therapeutic challenge. S. epidermidis is often overshadowed by MRSA because it 

encodes fewer virulence determinants by comparison; however, S. epidermidis is also a 

frequent cause of medical device-associated biofilm infections [2, 7, 75]. All humans are 
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colonized with S. epidermidis, while S. aureus is found in approximately 30% of 

individuals [76, 77]. Massey et al. predicted that for species with a high level of 

asymptomatic transmission, like S. epidermidis, less virulent strains out-compete virulent 

strains [78]. This would explain why S. epidermidis is equipped with determinants that 

promote persistence, such as immune evasion molecules, rather than toxins that actively 

attack the host. S. epidermidis generally acts as a commensal on the skin of humans, 

but harbors a limited subset of host defense mechanisms to persist in this environment, 

although a more robust defense is needed after penetration of the epithelial barrier [79]. 

Poly-γ-DL-glutamic acid (PGA) is secreted by S. epidermidis to promote growth and 

survival in the high-salt environment of human skin [80], and can form a capsule that 

shelters the bacteria from antimicrobial peptides and neutrophil phagocytosis [81, 82]. 

The cap gene locus drives PGA production and provides resistance to antibacterial 

peptides from human skin and phagocytosis. Cap mutant strains in a mouse catheter 

biofilm infection model were completely cleared [80], suggesting that PGA is critical for 

persistent S. epidermidis biofilm infection.  

S. epidermidis biofilm formation is partially influenced by products from the ica 

operon. Polysaccharide intercellular adhesion (PIA) crosslinks S. epidermidis cells in a 

biofilm [83], protecting bacteria from IgG, AMPs, phagocytosis, and complement [22, 84]. 

C3b and IgG deposition was diminished on biofilms compared to planktonic cells, 

protecting biofilm-associated bacteria from neutrophil killing [84]. Another molecule, 

accumulation-associated protein (Aap) was shown to contribute to S. epidermidis biofilm 

formation under dynamic conditions. Namely, in a rat jugular catheter model of S. 

epidermidis infection, an Aap mutant displayed impaired colonization of the catheter 

surface compared to WT bacteria [85]. However, this required immunosuppression to 

maintain bacteremia and facilitate biofilm formation. Another study demonstrated that 
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macrophage activity was attenuated by S. epidermidis biofilms, in agreement with S. 

aureus biofilms [86]. IFN-γ production from lymphocytes occurs after stimulation by 

activated macrophages and only minimal levels of IFN-γ were produced following 

exposure to biofilm compared to planktonic organisms [87]. S. epidermidis is also 

capable of sensing host immune factors and enhancing defense systems in response to 

these insults [88]. For example, the antimicrobial peptide-sensing system (aps) is 

activated by a range of AMPs and causes the D-alanylation of teichoic acids [89] and 

phospholipid lysylation by the MprF enzyme [90]. MprF decreases the anionic charge at 

the bacterial surface, inhibiting the attraction of cationic AMPs. The effects of MprF 

expression in the context of biofilm immune evasion has not been investigated; however, 

it is reasonable to assume that modifying the charge at the bacterial surface would likely 

increase biofilm dissemination due to weakened attraction to positively charged 

exopolysaccharides (PIA) and proteins. S. epidermidis successfully utilizes a balanced 

system of surface modifications and secreted factors to remain undetected by host 

immune cells ensuring its success as a commensal and potential as an infectious 

pathogen. Further studies of staphylococcal biofilms and the host response to infection 

are needed in order to determine therapeutic targets of the immune system, and combat 

these persistent infections. 

Immune effector cells and their role during staphylococcal biofilm infection 

Macrophages 

Macrophages represent an immediate line of defense against microbial invasion 

because all organs throughout the body harbor a resident macrophage population that is 

an important source of immune signaling molecules [91-93]. Macrophages also have a 

role in regulating tissue homeostasis by removing apoptotic cells and recycling nutrients 

by eliminating waste products from tissues [94-96]. Derived from bone marrow myeloid 
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precursors of the granulocytic-monocytic lineage, monocytes enter the systemic 

circulation and become macrophages after crossing endothelial venules and entering 

tissues [96]. These resident macrophages can be activated by various stimuli through 

their Toll-like and scavenger receptors, and defend the host against invading microbes. 

While known for their phagocytic abilities and production of antimicrobial reactive oxygen 

species (ROS) and reactive nitrogen intermediates (RNI), macrophages are also a major 

source of cytokines and chemokines that are critical for controlling immune cell 

recruitment/activation following bacterial exposure [97, 98]. Several in vivo models of 

staphylococcal biofilms have demonstrated that macrophages [8] and MDSCs [40, 41, 

99] are the main leukocyte infiltrates, while neutrophil recruitment is mainly observed 

during acute infection and rapidly diminishes thereafter.  

The macrophage inflammatory signature has been generally categorized into two 

distinct activation states, namely classically-activated (pro-inflammatory) and 

alternatively-activated (anti-inflammatory). These populations were originally described 

as M1 and M2, respectively, based on their in vitro responses to defined stimuli and 

three different polarization states have since been identified for M2 (i.e. M2a, M2b, and 

M2c) [100-102]. However, it is now apparent that this clear-cut dichotomy does not exist 

in vivo and macrophage activation states are more of a continuum with a mix of M1/M2 

genes often being expressed, driven by the environment and stimuli the cell encounters 

[100]. Therefore, for the purposes of this thesis we will refer to these cells in descriptive 

terms as pro- or anti-inflammatory macrophages. Pro-inflammatory macrophages are a 

major source of pro-inflammatory cytokines (IL-6, TNFα, IL-1β, IFN-γ, IFN-β) and 

ROS/RNI [103], whereas anti-inflammatory macrophages promote a fibrotic response 

and display attenuated microbicidal activity by expressing arginase-1 (Arg-1), IL-4, and 

IL-10. Inducible nitric oxide synthase (iNOS) competes with Arg-1 for the common 
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substrate arginine, which has been attributed to promoting microbicidal activity versus 

wound healing, respectively. S. aureus biofilms have developed mechanisms to alter 

macrophage phenotypes by attenuating iNOS while inducing high Arg-1 expression [12], 

which has been shown to promote collagen formation and fibrosis, hindering biofilm 

clearance [12] (Fig. 1.1.). In addition, further limiting host pro-inflammatory potential with 

the use of MyD88 KO mice resulted in exaggerated fibrosis in a model of S. aureus 

catheter-associated biofilm infection [19]. Indeed, biofilm-associated device infections in 

animal models and humans typically display strong fibrotic responses [99, 104, 105]. 

The fibrotic capsule may physically prevent immune cells from invading the biofilm, mask 

bacterial antigens, and limit antibiotic penetration, perhaps partially accounting for the 

recalcitrance of staphylococcal biofilms to these drugs. Additionally, fibrosis may 

promote dissemination and adhesion of bacteria via adhesion molecules (extracellular 

fibrinogen binding protein, fibronectin-binding proteins) expressed by staphylococci that 

bind proteins associated with the fibrotic response (i.e. collagen, fibronectin).  

Despite the numerous PRRs expressed by host leukocytes and pro-inflammatory 

mediators induced by staphylococci, the host immune response is often not sufficient to 

clear biofilm infections. Macrophages have been shown to invade biofilm structures to 

some extent, however their ability to phagocytose biofilm-associated staphylococci is 

limited, and the majority of invading macrophages are killed in vitro [11, 12]. This failure 

is likely due to the inability of macrophages to physically engulf or opsonize the intact 

biofilm structure, possibly as a result of its size and complex structure. This hypothesis is 

in part supported by evidence of macrophages successfully phagocytosing bacteria from 

mechanically disrupted biofilms [12]. The death of invading macrophages can be 

attributed to S. aureus toxin action (i.e. Hla and LukAB); however, fluctuations in pH, 

oxygenation status, and release of other toxic byproducts from the biofilm may also play 
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a role [106-108]. Even if some macrophages manage to phagocytose bacteria from the 

biofilm structure, it is not sufficient to have a major impact on biofilm survival (Fig. 1.1.). 

Phagocytes possess many bactericidal effector mechanisms such as, vacuole 

acidification, ROS/RNI, cationic molecules, myeloperoxidase, and lysozyme. S. aureus 

has developed resistance to many of these mechanisms. For example, antimicrobial 

peptides (AMPs) are cationic molecules that destroy bacterial cell membranes by 

targeting the lipid bilayer structure [109]. Staphylococci avoid AMP killing by charge 

modification of cell membranes, proteolytic degradation, and AMP binding and 

inactivation [89, 110]. Alanylation of teichoic acids (via the dlt operon) in the bacterial cell 

wall incorporates positively charged residues, allowing for biofilm formation [111], while 

also causing the electrostatic repulsion of AMPs and resistance to neutrophil killing [89]. 

Lysyl-phosphatidylglycerol modifications of teichoic acids via mprF or lysC can also 

confer AMP resistance [90, 112]. Staphylokinase is an exoprotein produced by S. aureus 

that binds plasminogen, inhibits the bactericidal effects of alpha-defensins [113], and 

induces bacterial detachment from mature biofilms [114]. The S. aureus metalloprotease 

aureolysin cleaves and inactivates the AMP LL-37 in the lysosome of macrophages and 

neutrophils, in addition to degrading many other substrates [115]. While its function in 

biofilms has yet to be studied, aureolysin expression is controlled by the agr system 

[116], a major regulator of biofilm formation [117, 118]. 

Lysozyme is another host lysosomal enzyme that damages the bacterial cell wall 

by catalyzing PGN hydrolysis.  Lysozyme resistance in S. aureus is attributed to 

membrane bound O-acetyltransferase (oatA) that modifies N-acetylmuramyl residues in 

PGN, preventing lysozyme binding and degradation [119], and although its role from a 

biofilm perspective has yet to be investigated, its importance in immune evasion remains 

significant. S. aureus has been shown to escape the phagosome and survive 
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intracellularly in neutrophils and macrophages [120, 121]. This is thought to be due, in 

part, to antioxidant production. For example, S. aureus catalase neutralizes hydrogen 

peroxide (H2O2), which is utilized by leukocytes to kill bacteria, and secreted catalase 

from staphylococcal biofilms may prevent H2O2 from permeating the complex structure 

[122]. Molecules expressed on the surface of S. aureus, such as the surface factor 

promoting resistance to oxidative killing (SOK), also confer resistance to ROS [123]. 

Production of superoxide dismutases and methionine sulphoxide reductases allow S. 

aureus to resist oxidative stress [124, 125]. Reactive oxygen species can damage 

proteins by methionine oxidation, and S. aureus expresses a number of different 

enzymes to combat this destruction [126, 127]. Staphylococci also employ manganese 

(Mn2+) homeostasis as a defense mechanism due to Mn2+ itself acting as a superoxide 

dismutase [128]. It is important to note that the expression of many of these genes 

responsible for ROS resistance and the stress response (described further below) are 

upregulated in biofilm compared to planktonic cells [129]. While the agr global regulator 

is the main driver of α-hemolysin and toxin production, the SaeRS global regulator in S. 

aureus also plays a part in regulating α-hemolysin, coagulase, and fibronectin-binding 

protein A [130-132]. Sae expression is activated by hydrogen peroxide and was found to 

reduce human neutrophil ROS production, allowing intracellular survival of the pathogen 

[133-138]. 

Phagocytosed bacteria that have evaded immune clearance may act as a 

reservoir for infection persistence [139]. S. aureus [140], S. epidermidis [141], and S. 

lugdunensis [142] have all demonstrated the ability to invade host cells and persist in a 

semi-dormant state, effectively avoiding exposure to antibiotic therapy [143]. These 

bacteria have numerous mechanisms to promote intracellular survival, providing a 

protective niche for pathogenic organisms. For example, capsule polysaccharide 
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synthesis was enhanced after phagocytosis [144] and could conceivably limit the 

success of degradative enzymes needed to penetrate the thick capsule. The host 

intracellular environment has also been shown to activate staphylococcal stress 

response genes. The stringent response of staphylococci is composed of two key 

components for the switch to tolerant phenotypes upon environmental stress, namely 

rpoS and the alarmone guanosine tetraphosphate (ppGpp) [145]. Upon amino acid 

deprivation, ppGpp synthesis potentiates the transition to a dormant state by decreasing 

protein synthesis capacity and increasing amino acid biosynthesis [146-149]. The 

stringent response is induced in the biofilm state, as well as after phagocytic uptake by 

neutrophils, allowing for intracellular psm expression, subsequent neutrophil lysis, 

bacterial escape, and survival, having major implications for infection dissemination 

[150].  

In addition to the expression of molecules involved in immune evasion and 

intracellular survival, S. aureus strains also express a number of secreted toxins that kill 

host cells (Fig. 1.1.). Various molecules, such as γ-hemolysin (Hlg), α-hemolysin (Hla), 

and leukocidins, oligomerize and interact with specific receptors on the leukocyte 

surface, producing pores and inducing osmotic lysis [151]. Hlg was found to be 

upregulated after phagocytosis, suggesting it has a role in destroying neutrophils [144]. 

Although the role of Hlg in biofilm immune evasion has not been studied, a role of Hla 

has been defined. Scherr et al. [152] demonstrated cooperation between Hla and the 

bicomponent leukotoxin, LukAB, in inhibiting murine macrophage phagocytosis by S. 

aureus biofilms. Another leukotoxin, β-hemolysin (Hlb), degrades sphingomyelin causing 

lysis of human monocytes and inhibition of IL-8 production from endothelial cells, 

impeding neutrophil transmigration [153]. Hlb has also been shown to form covalent 

homodimers in the presence of eDNA, stimulating biofilm formation [154]. Additional 
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leukocidins of S. aureus (PCL, LukED, LukGH, and LukMF) have been described by 

Naimi et al. [155], Alonzo et al. [156], and Spaan et al. [157], although their specific 

functions in the context of biofilms have yet to be elucidated. The previously mentioned 

sae system as well as agr is responsible for regulating many of these secreted toxins 

and virulence-associated proteins, often increasing expression after leukocyte exposure, 

which contributes to bacterial persistence. Currently, many questions remain regarding 

the role of bacterial-derived factors in altering the host immune response towards one 

that favors biofilm persistence. 

Myeloid-derived suppressor cells (MDSCs) 

Immune responses elicited by staphylococcal biofilms share many similarities 

with tumors, in part, because both display significant infiltration of anti-inflammatory 

macrophages and MDSCs [12, 158, 159]. MDSCs are a heterogeneous population of 

myeloid progenitor cells that are arrested from fully differentiating into mature cells such 

as granulocytes, macrophages, or dendritic cells (DCs) [160-164]. MDSCs can interact 

with a variety of cell types, including T cells, DCs, macrophages, and natural killer cells 

to regulate anti-inflammatory activity and create an immunosuppressive milieu [162, 

165].  It is thought that two signals are required for the differentiation and activation of 

MDSCs. First, MDSC expansion is thought to be induced during infection, tumors, or 

chronic stimulation, in response to cytokines and growth factors, such as G-CSF, GM-

CSF, M-CSF, IL-6, and VEGF [162, 165]. The second signal activates MDSCs, causing 

increased Arg-1, NO, and suppressive cytokine production (i.e. IL-10), which has been 

attributed to pro-inflammatory molecules like IFN-γ, IL-1β, IL-13, TLR ligands, and others 

[162]. In healthy individuals, if the two signals are not present, myeloid progenitor cells 

quickly differentiate and no expansion of the MDSC population occurs [165-168]. 
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However, under inflammatory conditions, such as those created by bacterial infection, 

excessive cytokine production can influence the growth of MDSC populations [161, 167]. 

S. aureus infections have been associated with profound inhibition of T cell 

responses that are not attributed to T regulatory cells [169]. Instead, MDSCs were found 

to have a major role in regulating the immune response to biofilm infection. MDSCs 

inhibit antigen (Ag)-specific and polyclonal T cell activation by robust Arg-1 expression, 

depleting extracellular arginine needed for T cell responses [161, 170-172]. In particular, 

L-arginine regulates the expression of CD3ζ, as well as the cell cycle regulators cyclin 

D3 and cyclin dependent kinase 4 in T cells [165, 173]. Production of ROS by MDSCs 

has also been shown to inhibit CD8 T cell responses to antigens, preventing an effective 

adaptive immune response to invading pathogens [174]. 

A significant MDSC infiltrate is associated with S. aureus biofilms in vivo, and our 

laboratory was the first to demonstrate that MDSCs play an important role in skewing 

monocytes/macrophages towards an anti-inflammatory phenotype during biofilm 

infection [158] (Fig. 1.1.). In addition to Arg-1, MDSCs from S. aureus biofilms displayed 

increased IL-10 expression. IL-10 production by MDSCs induced anti-inflammatory gene 

expression in monocytes, contributing to the persistence of S. aureus orthopedic biofilm 

infections [41] (Fig. 1.1.). IL-12 has also been found to promote MDSC recruitment and 

bacterial persistence [175], indicating a possible target to dampen MDSC infiltrates. 

Attenuating MDSC influx via Ab-mediated depletion at the infection site improved S. 

aureus clearance in a mouse model of orthopedic implant biofilm infection by promoting 

monocyte and macrophage pro-inflammatory activity [158]. These studies have shown 

that IL-12 is critical for MDSC recruitment to the site of infection and that IL-10 is one 

mechanism used by MDSCs to exert immunosuppressive functions that prevent biofilm 

clearance.  
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The evolution of immune responses can vary depending on the strength of the 

initial bacterial challenge, which was recently demonstrated for S. aureus biofilm 

formation. Specifically, our recent study [176] took advantage of IL-12 KO mice that 

displayed impaired MDSC recruitment and improved biofilm clearance to uncover an 

inoculum-dependent influence on subsequent immune responsiveness. This study was 

not feasible in WT animals because MDSC infiltrates and biofilm formation are too 

pronounced to discern differences. A low-challenge dose (103 CFU) of S. aureus in IL-12 

KO mice showed reduced cytokine expression, MDSC recruitment, and improved 

bacterial clearance as compared to WT mice. In contrast, a higher-challenge dose (105 

CFU) negated these differences, demonstrating the importance of bacterial inoculum on 

infection outcome. This is an important point, since some animal models utilize a large 

infectious inoculum or introduce implants that are pre-coated with bacteria [177-182]. By 

extension, a higher bacterial inoculum can accelerate biofilm formation and alter the 

immune response, making it difficult to discern underlying pathophysiological 

mechanisms. In a clinical setting, human PJIs result from colonization with low numbers 

of bacteria, which may provide a survival advantage during acute infection because of 

the inability to trigger a strong pro-inflammatory response [176]. As such, maintaining 

infectious doses as low as possible is desirable when attempting to best model human 

disease. In this regard, our recent study demonstrated similar immune infiltrates in 

human PJI tissues compared to the mouse model, revealing the fidelity of low bacterial 

challenge to reliably represent aspects of human disease [176]. The mechanism 

whereby IL-12 regulates MDSC recruitment and biofilm clearance is unknown, since the 

cytokine is best described for its ability to induce Th1 cells and adaptive immunity [183].  

Information pertaining to adaptive immune responses against staphylococcal 

biofilms is sparse compared to what is known regarding innate immune mechanisms. S. 
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aureus is capable of targeting B cell survival and function through staphylococcal protein 

A (Spa). Spa is involved in biofilm formation [184], and can be found on the bacterial 

surface or secreted into the extracellular space where it can associate with Fc and Fab 

domains of immunoglobulins (Igs) [185, 186]. Immunoglobulins are generated against 

bacterial epitopes and allow recognition by macrophages and neutrophils via the Fc 

domain following opsonization. Spa binds IgG in the incorrect orientation for recognition, 

blocking the Fc domain, thereby preventing staphylococcal phagocytosis and 

complement activation via the classical pathway [187-189]. Binding of the Fab domain 

by Spa promotes B cell superantigen activity [190]. Protein A binds the Vh3 region of 

IgM on the surface of B lymphocytes, initiating proliferation and receptor-mediated 

programmed cell death [190]. Together, these mechanisms enact Spa as an effective 

suppressor of adaptive immune responses.  

Just as with B cells, the known roles of T cell responses to biofilm infections are 

limited. Evaluation of human tissues recovered from orthopedic prosthetic surgery 

revealed that T cells were limited in PJIs, whereas tissues from subjects with aseptic 

prosthetic loosening displayed a noticeable T cell population [175]. Additionally, some in 

vivo studies indicate that T cells may play a role in orthopedic implant biofilm infections 

[177]. Inflammatory cytokines representative of Th1 and Th17 responses, as well as 

Th1-dependent antibodies, were found to be upregulated throughout biofilm infection [9]. 

However, it is important to note that these studies utilized implants that were pre-coated 

with bacteria, which likely elicits a distinct inflammatory cascade compared to low 

numbers of bacteria that establish biofilm infections in humans [176]. This could explain 

the disparity in T cell responses observed between laboratories, as other studies have 

shown the T cell infiltrate and contribution to immune response to be negligible [11]. S. 

aureus may promote T cell lysis by expressing δ-hemolysin, a PSM that is regulated by 
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agr-mediated quorum sensing and may be influenced by the biofilm state, since agr 

action has been associated with biofilm dispersal [117, 191, 192]. Staphylococcal 

superantigens activate vast numbers of T cells by their ability to crosslink MHC Class II 

on antigen presenting cells to the T cell receptor, followed by widespread T cell 

apoptosis that effectively prevents memory cell development [193]. S. aureus biofilms 

have been shown to produce superantigens that caused T cell activation and elicited a 

systemic inflammatory response in the absence of systemic infection [194]. This study 

was performed with transgenic mice expressing human MHC Class II (HLA-DR), since 

staphylococcal superantigens are not highly reactive with mouse MHC molecules [195]. 

S. aureus strains also produce a MHC class II analogue protein (Map) that reduces 

lymphocyte proliferation and shifts the immune response to Th2, suppressing Th1-

dependent bacterial clearance [196]. However, the expression and functional impact of 

these molecules in the context of staphylococcal biofilm formation remain to be 

determined. 

Neutrophils 

Neutrophils are a primary line of defense against planktonic staphylococcal 

infections [5, 197, 198]. These phagocytic cells of the innate immune system are often 

called the “first responders” to an infection due to their rapid migration to sites of 

inflammation [197, 199]. However, unlike macrophages, neutrophil inflammatory 

cytokine and chemokine production is limited, and their short lifespan necessitates 

constant recruitment due to rapid cell turnover, making it difficult for these cells to 

combat a persistent biofilm infection. Engagement of PRRs activates pathways critical 

for bacterial phagocytosis and microbicidal activity, which elicit an oxidative burst within 

the phagosome, mediated by NADPH oxidase and iNOS that generate ROS and RNI, 

respectively. Bactericidal activity is augmented following phagosome-lysosome fusion, 



31 
 

since the lysosome is rich in proteases, cathepsins, defensins, and other antimicrobial 

effectors, creating an inhospitable environment for bacteria [200]. Despite the extensive 

array of antibacterial mechanisms neutrophils employ to combat infection, pathogens 

have evolved to evade these host-defense strategies through various means. 

Staphylococci utilize several antioxidants to counteract ROS action and survive 

within the phagosome, including alkyl hydroperoxide reductase, staphyloxanthin, 

catalase, and SOK, among others [122-124, 201]. Neutrophils have been shown to 

phagocytose biofilm-associated bacteria but at a reduced level compared to planktonic 

bacteria or immature biofilms [12, 202]. Some of the antioxidants produced by S. aureus 

have been shown to be upregulated in biofilm-associated cells; specifically 

staphyloxanthin, catalase, and superoxide dismutase (SOD) [129], indicating that cells in 

a biofilm are better equipped to deal with stressful conditions upon phagocytosis. In 

addition, S. aureus biofilms do not dramatically alter their transcriptional profiles 

following neutrophil exposure [20] and although neutrophils infiltrate sites of early S. 

aureus biofilm infection [158], this occurs at a time when bacteria are still in a planktonic 

growth state (i.e. day 3 post-infection). Once mature biofilms form, around day 7 based 

on recalcitrance to antibiotic action, neutrophils are rare and are replaced by large 

numbers of MDSCs [158] (Fig. 1.1.). 

The fact that few neutrophils are associated with S. aureus biofilm infections [12] 

could be attributed to the many virulence and immune evasion factors produced by S. 

aureus. In order to reach the biofilm and mediate bacterial clearance, neutrophils must 

adhere to and cross the capillary endothelium. This is accomplished through reciprocal 

interactions between endothelial receptors and ligands on the neutrophil surface. 

Neutrophil chemotaxis and extravasation is thwarted by multiple S. aureus secreted 

factors, such as SSLs, PSMs, chemotaxis inhibitory protein of S. aureus (CHIPS), formyl 
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peptide receptor-like 1 inhibitor (FLIPr), and FLIPr-like proteins [5]. Although these 

virulence determinants have been implicated in circumventing neutrophil recruitment 

during planktonic S. aureus infection, their role in preventing neutrophil influx into 

biofilms remains unknown. If similar mechanisms of action exist, this may be one 

explanation to account for the paucity of neutrophils associated with S. aureus biofilms. 

Nevertheless, a recent study from our laboratory demonstrated that the exogenous 

introduction of neutrophils at the site of S. aureus biofilm infection was not capable of 

preventing biofilm establishment [203], further supporting their ineffectiveness against 

biofilm growth. 

Neutrophils are recruited to sites of infection by chemotactic gradients sensed by 

membrane bound G-protein coupled receptors (GPCRs), such as FPR1-3 and CXCRs 

[204-207]. PSMs interfere with these chemoattractants by binding human formyl peptide 

receptor 2 (FPR2) [208]. N-formyl peptides are found on the surface of S. aureus and 

induce chemotaxis, phagocytosis, and oxidative burst of neutrophils and monocytes 

[209]. CHIPS binds C5a and N-formyl peptide receptors on human leukocytes, 

effectively negating chemoattractant activity and preventing leukocyte recruitment to 

sites of infection [210]. The expression of extracellular adherence protein (Eap) by S. 

aureus binds and blocks ICAM-1, the endothelial receptor needed for leukocyte 

adhesion and diapedesis [211]. FLIPr and FLIPr-like inhibit FPR1 and FPR2, thereby 

evading recognition of secreted PSMs [208, 212, 213], and both FLIPr proteins inhibit 

neutrophil Ca2+ mobilization and actin polymerization [214-216]. Staphopain A, a 

protease secreted by S. aureus during biofilm growth, inhibits neutrophil migration 

toward CXCR2 chemokines by cleavage of their N-terminal domain [215]. It is important 

to note that many virulence factors produced by staphylococci, such as staphylococcal 

complement inhibitor (SCIN), extracellular fibrinogen binding protein (Efb), extracellular 
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complement binding protein (Ecb), and CHIPS, are highly species-specific with activity 

mainly limited to human cells, having little to no apparent effect on leukocytes in animal 

models [217]. Together, CHIPS, FLIPr, and SSLs, inhibit chemoattractant-mediated 

migration, effectively promoting planktonic infection; however, their involvement during 

staphylococcal biofilm formation remains to be determined. 

Just as neutrophils have mechanisms to recognize and destroy invading 

pathogens via PRRs, S. aureus strains can respond and produce a plethora of virulence 

factors to counteract neutrophil function, including hemolysins, leukotoxins, iron 

scavengers, and stress response genes [218]. Phagocytosed staphylococci are capable 

of surviving ROS in phagosomes and causing host cell lysis [219]. Genes involved in 

capsule synthesis, gene regulation, oxidative stress, and virulence have also been 

reported to be up-regulated following neutrophil phagocytosis [144]. Physical and 

electrochemical cell wall properties resist secreted neutrophil defensins and lysozyme, 

while neutralizing enzymes (i.e. catalase) and carotenoid pigment confer resistance to 

ROS [5, 119, 220]. Immediately following phagocytosis, catalase, thioredoxin, 

thioredoxin reductase, SOD, alkyl hydroperoxide reductase, and glutathione peroxidase 

levels have been reported to be upregulated in S. aureus, corresponding with maximal 

neutrophil ROS generation [144]. Genes associated with virulence, including 

plasminogen binding protein, epidermin immunity/lantibiotic proteins, FnBPs, 

staphylocoagulase, clumping factors, γ-hemolysins, and exotoxin 2, can be upregulated 

upon phagocytosis [144].The agr quorum sensing system has been implicated in 

intracellular staphylococcal survival in neutrophils and is responsible for the induction of 

many of the aforementioned virulence factors. The concentration of auto-inducing 

peptide (AIP) required for agr activation can reach critical levels within host cells, 

augmenting PSM expression and ultimately neutrophil lysis [221]. Because neutrophils 
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are targeted by staphylococcal virulence factors rather than undergoing programmed cell 

death, staphylococcal-mediated neutrophil lysis has been associated with necrosis [222-

224]. The potent antimicrobial molecules released from neutrophils into the extracellular 

space can also cause local bystander tissue damage, further impairing bacterial 

clearance [225]. Although many of the neutrophil evasion tactics of staphylococci 

described above have yet to be studied in the context of biofilm infections, they are 

important to discuss in order to have a comprehensive view of staphylococcal 

interactions with the immune system. 

In addition to phagocytosis, neutrophils employ extracellular traps to contain and 

destroy bacteria. Neutrophil extracellular traps (NETs), produced in response to S. 

aureus and other bacterial pathogens, are comprised of extruded DNA, histones, and 

microbicidal effectors [226]. Previously, it was thought that neutrophils underwent cell 

lysis to deploy NETs; however, a novel mechanism of NET formation that does not 

require neutrophil lysis has been reported by Pilsczek et al. [227]. In this model, 

neutrophils actively release intact vesicles filled with nuclear DNA into the extracellular 

space where they rupture and release chromatin. Entrapped bacteria are subject to 

peptidoglycan recognition protein S (PGRPS) and proteases, such as elastase [228]. 

These molecules ensnare bacteria to facilitate neutrophil phagocytosis and subsequent 

killing [229]. However, S. aureus harbors additional virulence mechanisms to subvert 

NETs, including nuclease and adenosine synthase that degrade and convert NET DNA 

to deoxyadenosine, allowing for pathogen escape [230]. Adenosine is a potent 

immunosuppressive molecule normally formed by cells after severe damage, such as 

hypoxic stress, ROS exposure, or cell lysis [231, 232]. Additionally, adenosine 

decreases MHC Class II expression in macrophages and dendritic cells and dampens 

IL-12 production [183]. By extension, staphylococcal enhancement of adenosine 
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production may interfere with T cell effector mechanisms and adaptive immune 

responses in infected hosts [233]. Adenosine triggers anti-inflammatory signaling 

cascades that inhibit neutrophil oxidative burst and degranulation, IL-1 production, and 

increase IL-10 production [234, 235]. Thus, AdsA-mediated synthesis of adenosine 

promotes S. aureus survival within neutrophils, presumably by inhibiting the superoxide 

burst and/or degranulation [233]. Deoxyadenosine (dAdo) triggers the caspase-3-

mediated death of immune cells and macrophage exclusion from abscesses [236]. 

Treatment of human cells with dAdo causes intracellular dATP accumulation, which 

stalls DNA synthesis and triggers monocyte and macrophage apoptosis surrounding 

abscesses [237]. Interestingly, a global transcriptome analysis of S. aureus biofilm 

genes that were altered following macrophage exposure found that thermonuclease 

(Nuc) was one of the most strongly downregulated genes following 1 h of biofilm-

macrophage co-culture [238]. Nuc downregulation is surprising due to the potential anti-

inflammatory advantage of adenosine production by the biofilm and the predicted role of 

Nuc to degrade NETs. This is yet another example that much is still unknown with 

regards to biofilm-immune crosstalk during staphylococcal biofilm infections. 

Osteocytes 

S. aureus is a leading cause of bone and joint infections, such as osteomyelitis 

and PJIs, which can result in approximately 10-20% of bone loss near the infectious 

focus [239]. Implanted biomaterials are susceptible to microbial colonization and biofilm 

formation, favoring the onset of infection [240]. S. aureus has been found to affect at 

least two different cell types found in bone, namely osteoblasts and osteoclasts. 

Osteoclasts are bone matrix-degrading cells generated from the fusion of monocyte 

precursors and share conserved signaling pathways with monocytes and macrophages 

[241], while osteoblasts are derived from mesenchymal stem cells and are responsible 



36 
 

for bone formation. To date, staphylococcal interactions with osteoclasts and osteoblasts 

have been investigated using a murine S. aureus osteomyelitis model [242, 243]. Protein 

A, secreted by staphylococci, can bind pre-osteoblastic cells via tumor necrosis factor 

receptor 1 (TNFR1), resulting in osteoblast apoptosis [242-244]. Aside from directly 

preventing bone formation by destroying osteoblasts, S. aureus is also capable of 

altering osteoblast differentiation. Osteoblasts internalize staphylococci by αvβ1 integrin 

interacting with fibronectin binding protein on the bacterial surface. However, after 

internalization, bacteria persist and either induce host cell death or promote the 

secretion of osteoclastic cytokines such as RANK-L, enhancing osteoclastogenesis 

[245]. Osteoclasts are bone-degrading cells, and S. aureus infection of bone marrow-

derived osteoclast precursors induced their differentiation into activated macrophages 

that secrete pro-inflammatory cytokines, enhancing the bone resorption capacity of other 

osteoclasts [246]. Furthermore, infection of mature osteoclasts directly enhanced their 

ability to resorb bone by promoting cellular fusion [246]. The hypoxic nature of healthy 

bone is exacerbated during infection and may explain the incredible persistence of S. 

aureus joint infections. Hypoxic growth of S. aureus resulted in a profound increase in 

quorum sensing-dependent toxin production and cytotoxicity [247]. 

Pro-inflammatory cytokines and biofilm persistence 

A primary research objective of our laboratory is to understand how the host 

innate immune response is altered during biofilm infections with the goal of redirecting 

this response to facilitate bacterial clearance. It is clear that staphylococci evade and 

disrupt many facets of the innate immune response, although biofilm infections still elicit 

the production of a number of pro-inflammatory mediators. Compared to aseptic 

controls, several pro-inflammatory cytokines are elevated in mouse models of S. aureus 

orthopedic implant infection, including IL-12p40, IL-1β, TNF-α, and G-CSF, as well as 
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the chemokines CXCL2, CCL2, CCL3, and CCL5 [40]. Despite the production of pro-

inflammatory cytokines and chemokines, infected individuals are still unable to clear the 

biofilm infection. Instead, the pro-inflammatory response is likely responsible for 

promoting MDSC recruitment and activation, which is supported by our recent study 

where MDSC infiltrates were significantly reduced in IL-12 KO mice, which translated 

into improved biofilm clearance [40]. Recruitment of MDSCs and alternatively activated 

macrophages contribute to the chronicity of the infection [158]. The anti-inflammatory 

cytokine, IL-10, has been shown to have a role in MDSC recruitment [41] and 

interestingly so has the typically pro-inflammatory cytokine IL-12 [40]. Other pro-

inflammatory mediators, such as IL-6, ROS, and cyclooxygenase-2 (COX2), drive MDSC 

activation, inducing the expression of Arg-1 and anti-inflammatory cytokines that drive 

the environment to one that favors bacterial persistence rather than clearance [248]. 

Theoretically, one could overcome the anti-inflammatory environment by eliciting a 

robust pro-inflammatory response that could facilitate bacterial killing. Our approach has 

employed lipopolysaccharide (LPS) treatments administered systemically and locally at 

the site of infection to augment pro-inflammatory activity. 

The response to systemic LPS has been well characterized, and causes the 

production of several pro-inflammatory mediators through activation of the NF-κB 

pathway [249]. Our hypothesis was that LPS activation of peripheral innate immune cells 

would promote their pro-inflammatory properties, which upon invasion would create a 

more hostile environment for the biofilm and promote bacterial clearance. The best laid 

plans of mice and scientists often go awry. Although as expected, systemic LPS 

treatment led to significant increases in systemic cytokine production and enhanced 

leukocyte killing of S. aureus ex vivo, biofilm burdens were increased nearly 2-log 

compared to vehicle treated mice. In addition, preliminary evidence has shown 
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increased expansion of MDSCs in the spleen of LPS treated mice. Collectively, these 

results suggest that systemic LPS elicits a pro-inflammatory cytokine network, which 

subsequently expands and activates MDSCs in the periphery to promote anti-

inflammatory responses. In turn, this hinders innate immune cell recruitment, not only 

preventing biofilm clearance, but actually exacerbating it. Local LPS administration at the 

site of biofilm infection did not display the same phenotype as systemic treatment. 

Specifically, bacterial burdens were similar in local LPS treated and the vehicle control 

group, although the dose of LPS was nearly 10-fold lower than that given systemically, 

so further investigation is necessary. However, if the trends observed to date continue, 

the potential implications for this research are intriguing. Peripheral immune activation 

and subsequent MDSC activation and expansion, may tip the balance towards an 

increasingly anti-inflammatory immune response and dangerously worsen the infection. 
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Figure 1.1. Mechanisms of staphylococcal biofilm immune evasion. Staphylococcal 

biofilms are adept at evading immune recognition and clearance compared to planktonic 

organisms. These biofilms circumvent Toll-like receptor 2 (TLR2) and TLR9, and the 

leukocyte response is dominated by anti-inflammatory macrophages and myeloid-

derived suppressor cells (MDSCs), partially mediated by IL-10 production. Biofilms also 

augment arginase-1 (Arg-1) expression in macrophages and MDSCs, stimulating fibrosis 

and depleting extracellular arginine needed for T cell activation. S. aureus degrades 

NETs via nuclease and adenosine synthase. Phagocytosed S. aureus are resistant to 

ROS via production of several antioxidants, and are capable of intracellular survival and 

host cell lysis. Evasion of B cell adaptive immune responses has been attributed to Spa 

production by the staphylococcal biofilm. 
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Table 1.1. Immune-related molecules pertinent to staphylococcal biofilm infection 

Biofilm 
Component 

 
Abbreviation 

 
Immune Evasion Tactic 

Staphylococcal 
Species 

 
References 

Clumping factors ClfA, Clfb Fibrinogen binding proteins that shield 
bacteria from opsonophagocytosis and 
promote biofilm formation 

S. aureus, S. 
epidermidis 

[5, 250, 251] 

Extracellular 
complement 
binding protein 

Ecb Binds complement and fibrinogen to 
disrupt phagocytosis and facilitate 
biofilm formation 

S. aureus [252] 

Extracellular 
fibrinogen binding 
protein 

Efb Binds fibrinogen to evade 
complement-mediated clearance and 
promotes biofilm formation 

S. aureus, S. 
epidermidis 

[253] 

Fibronectin binding 
proteins 

FnBPA, 
FnBPB 

Promotes cell surface adhesion and 
internalization 

S. aureus [254-256] 

α-toxin Hla Inhibits macrophage phagocytosis and 
promotes cytotoxicity 

S. aureus [152] 

Leukocidin AB LukAB Inhibits macrophage phagocytosis and 
promotes cytotoxicity 

S. aureus [152] 

Nuclease and 
adenosine synthase 

Nuc, AdsA Converts NETs to deoxyadenosine, 
induces leukocyte death, Nuc 
downregulation associated with biofilm 
dispersal 

S. aureus [236] 

Protein A Spa Induces osteoblast apoptosis, binds Ig 
Fc domain blocking recognition by 
phagocytes and complement activation 

S. aureus [184, 188-
190, 242] 

Phenol soluble 
modulins (PSMs) 

PSMα 1-4, 
PSMβ1-2 

Promotes biofilm dispersal, forms 
pores and lyses leukocytes 

S. aureus, S. 
epidermidis 

[208, 257] 

SaeR/S  Regulates factors that reduce 
neutrophil ROS production, expression 
is critical for biofilm formation 

S. aureus [134-138] 

Staphylococcal 
superantigen-like 
protein 

SSL 1 Broad range MMP inhibitor, limits 
neutrophil chemotaxis and migration 

S. aureus [258-260] 

Staphylocoagulase  Binds prothrombin, facilitates biofilm 
formation, stimulates fibrosis 

S. aureus [261, 262] 

Staphylokinase Sak Neutralizes neutrophil α-defensins, 
induces biofilm detachment by 
plasminogen activation 

S. aureus [113, 179] 

Staphopain A ScpA Inhibits neutrophil migration toward 
CXCR2 chemokines by cleavage of 
their N-terminal domain, induces 
biofilm detachment 

S. aureus [215, 263] 

Superoxide 
dismutase 

SodA Neutralizes superoxide production, 
increased expression in biofilms 

S. aureus [129, 264] 
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Chapter 2. Materials and Methods 
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1) Bacterial strains and microbiological techniques 

Bacterial strain 

S. aureus USA300 LAC is a community-associated methicillin-resistant (CA-MRSA) 

strain isolated from a Los Angeles county (LAC) jail inmate with a SSTI and was also 

responsible for the CA-MRSA outbreak of 2002 [265-268]. We received the isolate from 

Dr. Frank DeLeo (National Institute of Allergy and Infectious Diseases Rocky Mountain 

Laboratories, Hamilton, MT) and cured it of its 27 kb LAC-p03 plasmid encoding 

erythromycin (Erm) resistance [269] by screening for spontaneous erythromycin 

sensitivity as previously described and was designated as USA300 LAC 13C. For the 

purposes of this thesis, this wild type strain will be referred to as USA300 LAC.  

Bacterial storage and preparation 

Bacterial strains were stored as glycerol stocks at -80°C, prepared by growing bacteria 

to exponential phase in brain-heart infusion broth (BHI; Fisher Scientific, Pittsburgh, PA) 

followed by centrifugation at 2,400 rpm for 10 min, 4°C. The bacterial pellet was 

resuspended in 1 ml of cold 1X PBS and washed by centrifuging again at 2,400 rpm for 

10 min, 4°C. After discarding the supernatant, the pellet was resuspended in 20% 

glycerol in 1X PBS, and aliquoted into cryovials and stored at -80°C. From the freezer 

stock, a fresh streak plate was prepared for each experiment to avoid mutation of 

bacteria by prolonged storage at 4°C. 

Preparation of bacteria for in vivo experiments 

Overnight cultures were grown by selecting a single bacterial colony from the streak 

plate using a sterile loop and inoculating 25 ml of autoclaved BHI broth in a 250 ml 

baffled flask and incubating at 37°C overnight for 16 h with constant shaking at 250 rpm. 

Aliquots of 1 ml were transferred from the overnight culture into 1.5 ml Eppendorf 
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microcentrifuge tubes and centrifuged at 14,000 rpm, 4°C for 5 min to pellet the bacteria. 

The supernatant was discarded and the pellet was resuspended in 1ml PBS and 

subsequently washed two more times by centrifuging at 14,000 rpm for 5 min, 4°C. The 

washed bacteria were diluted 1:10 in PBS and the number of planktonic bacteria present 

was estimated by measuring the OD (BioMate 3S Spectrophotometer, Thermo Scientific, 

Waltham, MA) at 620 nm. To prepare inoculum for injection, the washed culture was 

diluted in sterile PBS after estimating the CFU/ml of the overnight culture. For example, 

if the overnight culture was estimated at 5.2 x 109 CFU/ml, three subsequent 1:10 

dilutions would follow: 

1:10 dilution = 5.2 x 108 CFU/ml 
1:10 dilution = 5.2 x 107 CFU/ml 
1:10 dilution = 5.2 x 106 CFU/ml 

 

The following equation was then used to determine the amount of diluted culture needed 

to inject 1x103 CFU in 2 µl (5x105 CFU/ml): 

(5.2 x 106 CFU/ml) * x = 5x105 CFU/ml * 1ml 

x = 0.962 ml diluted culture + 0.038 ml PBS  
or 

x = 962 µl diluted culture + 38 µl PBS 
 

The exact concentration of cells/ml in the overnight culture was determined following 

preparation of bacteria for infection by serial diluting the washed culture in triplicate as 

follows: 

10-2 10 µl of the 1ml washed overnight culture into 90 µl PBS 
10-3 10 µl of 10-2 dilution into 90 µl PBS 
10-4 10 µl of 10-3 dilution into 90 µl PBS 
10-5 10 µl of 10-4 dilution into 90 µl PBS 
10-6 10 µl of 10-5 dilution into 90 µl PBS 

 

Bacterial concentration of the inoculum was determined by plating 10 µl of each dilution 

onto blood agar plates, incubating at 37°C overnight. The following day, the number of 
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bacteria was enumerated and plate counts were averaged to identify the actual CFU 

used for infection. 

2) Mouse strains 

C57BL/6 mice (8-10 weeks old) were obtained from Charles River Laboratories 

(Frederick, MD), from which a breeding colony was established. Mice were housed in 

restricted-access rooms equipped with ventilated microisolator cages and maintained at 

21°C under a 12-h light/12-h dark cycle with ad libitum access to water (Hydropac; Lab 

Products, Seaford, DE) and Teklad rodent chow (Harlan, Indianapolis, IN). These 

studies were conducted in strict accordance with the recommendations in the Guide for 

the Care and Use of Laboratory Animals of the U.S. National Institutes of Health. The 

animal use protocol was approved by the Institutional Animal Care and Use Committee 

of the University of Nebraska Medical Center. 

3) Cell culture techniques 

Primary mouse bone marrow-derived MDSC culture 

Adult C57BL/6 WT mice were euthanized with an overdose of inhaled isoflurane 

(Isothesia, VetUS, Dublin, OH) using a euthanasia chamber and cervical dislocation as 

the secondary method of euthanasia. The abdominal surface of each mouse was 

washed with an excess of 70% EtOH to minimize contamination and a subcutaneous 

incision was made near the midline of the abdomen. Skin was separated from the 

peritoneum until the hind limbs were exposed.  Both hind limbs were removed at the hip 

joint and submerged in 1X PBS on ice until excess tissue and muscle were removed 

with Kimwipes. The clean bones were then place in fresh 1X PBS on ice. The following 

steps were performed under aseptic conditions in a biological safety cabinet with sterile 

autoclaved instruments. Both ends of the bones were cut with scissors and bone marrow 
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was flushed with sterile, cold RPMI using a 26-gauge needle into a 50ml conical tube. 

After all bones were flushed, cells were pipetted to disrupt aggregates, filtered through a 

70 μm cell strainer, and centrifuged at 1,200 rpm for 5 min at 4°C. The supernatant was 

aspirated and red blood cells lysed by the addition of 900μl sterile water for 5 s, followed 

by the immediate addition of100μl 10X PBS to prevent the MDSC precursors from 

lysing. Finally, cells were washed with medium, centrifuged, and counted using trypan 

blue (Lonza, Walkersville, Germany) on a hemocytometer. Cells were plated in 175mm2 

tissue culture dishes at a density of 107 cells/plate in 25ml of RPMI-1640 medium 

supplemented with 10% v/v HI FBS, 1% v/v HEPES, 1% v/v L-glutamine, 0.1% v/v 

antibiotic-antimycotic solution, 40 ng/ml G-CSF and 40 ng/ml GM-CSF (both from 

BioLegend). Cells were then incubated for 4 days at 37°C, 5% CO2. The Ly6G+Ly6C+ 

MDSC population was purified from the mixed cell population by FACS and verified to 

possess T cell inhibitory activity. For some experiments, LPS (LPS-EB Ultrapure, 

Invivogen, San Diego, CA) was added at time of cell plating, or 24 h prior to MDSC 

harvest, at final concentrations of 1 ng/ml, 10 ng/ml, or 100 ng/ml. 

4) Mouse model of S. aureus biofilm infection and LPS treatment 

Mouse model of S. aureus orthopedic implant biofilm infection 

To model infectious complications in patients following surgical device placement, a 

mouse model of S. aureus orthopedic implant biofilm infection was used. Age and sex-

matched mice (8-10 weeks old) were anesthetized with a ketamine/xylazine cocktail at 

100 mg/kg and 5 mg/kg, respectively (Hospira, Lake Forest, IL, USA, and Akorn, 

Decatur, IL, USA), and a medial parapatellar arthrotomy was performed with lateral 

displacement of the quadriceps-patella to access the distal femur. A 26-gauge needle 

was used to create a burr hole in the femoral intercondylar notch extending into the 

intramedullary canal, whereupon a precut 0.8 cm long, orthopedic-grade Kirschner wire 
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(0.6 mm diameter, Nitinol (nickel-titanium); Custom Wire Technologies, Port 

Washington, WI, USA) was inserted, leaving approximately 1 mm protruding into the 

joint space. A total of 103 CFU of S. aureus USA300 LAC was inoculated at the exposed 

tip of the titanium implant. In some experiments, control mice received sterile implants 

using an identical procedure. The quadriceps-patellar complex was reduced to the 

midline and the fascia was sutured with 6-0 metric absorbable sutures before the skin of 

the surgical site was closed with 6-0 metric nylon sutures (both from Covidien, 

Mansfield, MA). Immediately following the surgical procedure, animals received 

Buprenex (0.1 mg/kg s.c.; Reckitt Benckiser Health Care, Hull, North Humberside, 

United Kingdom) for pain relief, and were returned to cages under a heat lamp to ensure 

maintenance of core body temperature until fully recovered from anesthesia. Cages 

were labeled with biohazard cards and monitored daily. A second dose of Buprenex was 

administered 24 h after surgery, and after this interval, all mice exhibited normal 

ambulation and no discernable pain behaviors. 

Systemic and local LPS treatments 

Infected mice were treated with 200 µl doses of 12.5 µg LPS systemically via 

intraperitoneal (i.p.) injection, or 5 µg LPS subcutaneously at the site of infection (right 

knee). The appropriate LPS concentrations were prepared by diluting 5mg/ml LPS-EB 

Ultrapure (Invivogen, CA) in 1X PBS immediately prior to injection. Control (vehicle) 

treatment groups received 200 µl of PBS via i.p. injection. All treatment groups were 

dosed at day 5 and day 6 post-infection. Animals were sacrificed at day 7 post-infection 

for quantification of bacterial burdens, as well as Milliplex analysis described below.  

5) Recovery of biofilm infection-associated tissues 

Recovery of orthopedic implant and surrounding tissues for S. aureus 

enumeration 
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For some experiments, prior to isoflurane exposure, approximately 250 µl of whole 

blood was collected from each mouse and immediately placed in lithium heparin tubes 

(Terumo, Elkton, MD) to prevent coagulation. Animals were sacrificed by overdose of 

inhaled isoflurane, followed by cervical dislocation. For collecting inflamed soft tissue 

surrounding the infected knee joint, the flank and right leg were flooded with 70% EtOH 

and an incision was made in the flank so the skin could be removed to expose the 

infection site and leg. Next, the subcutaneous tissue dorsal to the patellar tendon was 

excised, weighed, and placed in 0.5 ml 1X PBS + 2% FBS on ice. Muscle and tendon 

tissues were excluded from the analysis. The tissue was dissociated with the blunt end 

of a plunger from a 30cc syringe and passed through a 35 µm filter (BD Falcon, 

Bedford, MA). An aliquot of 150 µl was removed for quantitation of bacterial burdens 

and Milliplex analysis of the supernatant. The remaining filtrate was then processed for 

flow cytometry as described below. After removal of the right leg at the hip joint, the 

muscle was removed from the knee joint and femur. The knee joint was separated from 

the femur allowing for removal of the implant, which was extracted from the femur and 

vortexed for 5 min at 1200 rpm in 100 µl PBS to dislodge adherent bacteria. Both the 

knee joint and femur were weighed and placed in 500 µl homogenization buffer before 

homogenization. These tissues were homogenized using two sequential procedures 

owing to their resilient nature: initially a 30 second dispersal using a hand-held 

homogenizer, followed by disruption in a Bullet Blender (Next Advance, Averill Park, 

NY) for 10 minutes, using 100-mm stainless steel beads (0.9–2.0 mm stainless steel 

blend). To determine bacterial colonization, serial 10-fold dilutions of tissue, knee, and 

femur homogenates as well as implant solutions were plated on trypticase soy agar with 

5% sheep blood (Remel Products, Lenexa, KS). Titers are expressed as CFU per gram 

of tissue or per milliliter for titanium implants. Remaining homogenates were centrifuged 

(20,000 x g, 20 min) and frozen at -80˚C for further analysis by Milliplex bead arrays as 
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described below. For some experiments, the spleen, and right kidney were collected to 

determine the degree of splenomegaly or bacterial dissemination as described above. 

Whole blood S. aureus killing assay 

Whole blood killing of S. aureus was used to determine systemic immunocompetence of 

infected mice. Overnight cultures were grown by selecting a single bacterial colony from 

the streak plate using a sterile loop and inoculating 3 ml of autoclaved BHI broth in a 14 

ml round bottom tube (Corning, Reynosa, Mexico) and incubating at 37°C overnight for 

16 h with constant shaking at 250 rpm. An aliquot of 1 ml was transferred from the 

overnight culture into 1.5 ml Eppendorf microcentrifuge tube and centrifuged at 14,000 

rpm, 4°C for 5 min to pellet the bacteria. The supernatant was discarded and the pellet 

was resuspended in 1ml PBS and subsequently washed two more times by centrifuging 

at 14,000 rpm for 5 min, 4°C. The washed bacteria were diluted 1:10 in PBS and the 

number of planktonic bacteria present was estimated by measuring the OD (BioMate 3S 

Spectrophotometer, Thermo Scientific, Waltham, MA) at 620 nm. Washed bacterial 

were diluted to an estimated concentration of 5 x 107 CFU/ml. After collection, 150 µl of 

whole blood was removed from each heparin tube and placed into individual wells of a 

96-well non-tissue culture-treated plate, at which point 3 µl washed bacteria (1.5 x 105 

CFU) was added to each well, such that the final concentration of bacteria was 

estimated to be 106 CFU/ml. At 30 min, 1 h, and 2 h post-inoculation, one 30 µl aliquot 

was removed from each well for bacterial enumeration. After removal of the aliquot, the 

96-well plate was immediately returned to the incubator at 37˚C until the next time point 

occurred. To determine bacterial survival, serial 10-fold dilutions (in 1X PBS) of each 

sample were plated onto blood agar plates, counted the following day, and averaged 

among treatment groups for each time point. 
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6) Flow cytometry 

Flow cytometry was used to characterize leukocyte infiltrates in inflamed soft tissues 

surrounding orthopedic implants during S. aureus biofilm infection. Animals were 

sacrificed with an overdose of inhaled isoflurane; tissues were excised as previously 

described and placed in 500 µl FACS buffer (2% FBS in PBS) on ice. Tissues were 

dissociated using the rubber end of a plunger from a 30cc syringe, and passed through 

a 35 µm filter (BD Falcon, Bedford, MA). Following removal of an aliquot for bacterial 

quantitation and Milliplex analysis, the filtrate was washed with 1X PBS and the cells 

were centrifuged at 1200 rpm for 5 min, at 4˚C. After discarding supernatant, the cells 

were resuspended and RBCs were lysed using BD Pharm Lyse (BD Biosciences, San 

Diego, CA) per manufacturer instructions. After lysis, cells were washed and 

resuspended in 500 µl PBS followed by incubation in mouse Fc Block (2 µl/sample, BD 

Biosciences, San Diego, CA) for 20 min at 4˚C, to minimize nonspecific antibody (Ab) 

binding. Aliquots of 100 µl were removed from each sample, pooled, and subsequently 

divided equally into compensation and isotype control tubes to identify gating thresholds 

and assess the degree of nonspecific staining, respectively. The remaining 400 µl of 

each sample was split into two tubes and diluted to 500 µl with 1X PBS. Cells were then 

stained with directly-conjugated antibodies for multicolor flow cytometry analysis, which 

included two separate panels to identify innate immune populations or T cells. 

Antibodies in the innate immune cell panel included CD45-APC, Ly6G-PE, Ly6C-

PerCP-Cy5.5, and F4/80-PE-Cy7. Antibodies in the T cell panel included CD3ε APC, 

CD4 Pacific Blue, CD8a FITC, Ly6C PerCP-Cy5.5, and TCR γ/δ PE. All fluorochrome 

conjugated antibodies were purchased from either BD Biosciences or eBioscience. To 

exclude dead cells from analysis, a Live/Dead Fixable Stain Kit (Life Technologies, 

Eugene, OR) was also used, following the manufacturer’s instructions. Analysis was 
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performed using BD FACSDiva software with cells gated on the live CD45+ leukocyte 

population. From this population, MDSCs were gated on the Ly6G+Ly6C+ cell 

population, non-MDSCs were then designated as monocytes (Ly6C+F4/80-), F4/80+ 

monocytes (Ly6C+F4/80+), or macrophages (Ly6C-F4/80+).  

7) Recovery of biofilm-associated leukocytes and in vitro assays 

Cells were collected from the soft tissue surrounding infected knee joints as described 

above, and leukocyte populations were purified by FACS using CD45-APC, Ly6G-PE, 

and Ly6C-PerCP-Cy5.5. CD45+Ly6C+Ly6Ghigh, CD45+Ly6C+Ly6Gintermediate, and 

CD45+Ly6C+Ly6G- cells were classified as MDSC, intermediate, and monocyte 

populations, respectively. The purity of MDSC cell populations was not examined after 

sorting owing to limited cell numbers. However, cytospins and gene expression analysis 

on sorted populations revealed that sorted MDSCs were highly enriched, as they 

displayed nuclear morphologies and characteristic markers consistent with those 

reported for MDSCs in the literature. 

Polyclonal CD4+ proliferation assays 

Naïve CD57BL/6 WT mice were euthanized with an overdose of inhaled isoflurane, and 

their flanks were flooded with 70% EtOH and spleens were isolated from the peritoneal 

cavity and placed into PBS + 10% FBS on ice. Spleens were dissociated using the blunt 

end of a 30cc syringe, and pressed through a 70 µm filter to generate a single cell 

suspension, centrifuged at 1200 rpm for 10 min, 4˚C and RBCs were lysed using BD 

Pharm Lyse (BD Biosciences, San Diego, CA) per the manufacturer’s instructions. After 

RBC lysis, the remaining cells were washed in 1X PBS, and T cells were isolated by 

autoMACS using a CD4+ T cell isolation kit (Miltenyi Biotec, Germany). CD4+ T cells 

collected by autoMACS were immediately labeled with eFluor 670 cell proliferation dye 

(eBioscience) according to the manufacturer’s instructions. For establishing the 
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functional activity of MDSCs and other leukocytes associated with S. aureus orthopedic 

biofilm infections, T cell proliferation assays were performed. Briefly, eFluor 670–

labeled CD4+ T cells were plated at 1.5 x 105 cells/well in a 96-well round bottom plate 

in RPMI 1640 with 10% FBS, supplemented with 100 ng/ml recombinant mouse IL-2 

(Invitrogen, Frederick, MD). FACS-purified CD45+Ly6C+Ly6Ghigh, 

CD45+Ly6C+Ly6Gintermediate, and CD45+Ly6C+Ly6G- cells were added at 1:1 or 1:5 ratios 

to CD4+ T cells subjected to polyclonal stimulation with 4µl/well CD3/CD28 Dynabeads 

(Life Technologies, Oslo, Norway). Controls of labeled T cells only or labeled T cells 

incubated with Dynabeads were also included. Cell co-cultures were incubated at 37˚C 

for 72 h, whereupon the extent of T cell proliferation was determined by flow cytometry 

and supernatants were saved for cytokine evaluation by Milliplex analysis. 

8) MILLIPLEX multi-analyte bead array 

To evaluate a panel of cytokines/chemokines in the milieu of orthopedic implant-

associated infected tissue, knee joint and femur, a custom-designed mouse microbead 

array was used according to the manufacturer’s instructions (MILLIPLEX; Millipore, 

Billerica, MA). This array allows for the simultaneous detection of 19 different 

inflammatory mediators in a single homogenate, and includes: G-CSF (granulocyte 

colony-stimulating factor), GM-CSF (granulocyte macrophage colony-stimulating factor), 

IL-1α, IL-1β, IL-6, IL-7, IL-9, IL-10, IL-12p40, IL-13, IL-17, CCL2 (monocyte 

chemoattractant protein 1, MCP-1), CCL3 (macrophage inflammatory protein 1α, MIP-

1α), CCL5 (regulated upon activated T cell expressed and secreted, RANTES), CXCL2 

(MIP-2), CXCL9 (monokine induced by IFN-γ, MIG), CXCL10 (IFN-induced protein 10, 

IP-10), TNF-α, and VEGF (vascular endothelial growth factor). Results were analyzed 

using a Bio-Plex workstation (Bio-Rad, Hercules, CA) and normalized to the amount of 
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total protein recovered, determined by a bicinchoninic acid assay (BCA, Bio-Rad), to 

correct for differences in tissue sampling size. 

9) Statistical analysis 

Significant differences between experimental groups were determined using an unpaired 

two-tailed Student t test or a one-way ANOVA with Bonferroni's multiple comparison post 

hoc analysis in GraphPad Prism 4 (La Jolla, CA). For all analyses, a p value <0.05 was 

considered statistically significant.
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Chapter 3: Systemic pro-inflammatory signaling augments  

S. aureus biofilm development 
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Abstract 

S. aureus is a leading cause of nosocomial and community-associated infections, and 

has a propensity to form biofilms on native tissue and artificial surfaces. These infections 

are difficult to treat with antibiotics and evade immune recognition and clearance, placing 

a significant economic burden on the patient and healthcare system. The ineffective 

immune response has been attributed to the skewing of macrophages towards an anti-

inflammatory phenotype and the recruitment of MDSCs. This promotes fibrosis rather 

than bacterial clearance, and biofilm persistence. In an effort to overcome this immune 

evasion, we have used a strong pro-inflammatory stimulus (LPS) to promote the 

infiltration of bactericidal cells into the biofilm. Two modes of LPS delivery were 

examined; namely systemic administration to activate peripheral immune cells and 

promote their recruitment to the biofilm, as well as local LPS treatment in an attempt to 

revert the anti-inflammatory state of resident leukocytes to a pro-inflammatory state. 

Several pro-inflammatory mediators were elevated in the serum following systemic LPS 

administration, which correlated with improved S. aureus killing ex vivo; however 

bacterial titers at the site of biofilm infection were significantly increased by 2-log. This 

was attributed to enhanced suppressive activity of infiltrating MDSCs, and the 

introduction of a Ly6Gint.Ly6C+ population that was also capable of immune suppression. 

These results demonstrate the importance of a pro-inflammatory milieu for promoting 

MDSC expansion and activation, which exacerbates biofilm establishment Therefore, 

methods to augment S. aureus biofilm clearance should proceed with caution to avoid 

inadvertent promotion of biofilm growth. 
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Introduction 

The host immune response to S. aureus biofilms is largely categorized as anti-

inflammatory, with macrophages and MDSCs playing a major role in infection outcome. 

Although an early pro-inflammatory response is evident at the site of infection, 

leukocytes are incapable of effectively clearing the biofilm [40]. Many factors are known 

to contribute to this impaired immune response to biofilms, including S. aureus secretion 

of leukocidins, chemotaxis inhibitors, superantigens, and other proteins and molecules 

that interfere with antimicrobial immunity [5, 12, 270]. Aside from staphylococcal-

produced factors, the immune cell infiltrate consists largely of MDSCs, which dampen 

macrophage pro-inflammatory activity and transform the infection site into an anti-

inflammatory environment [40, 158]. MDSCs produce factors that are capable of 

inhibiting T cell responses, as well as several anti-inflammatory cytokines that play a role 

in macrophage polarization[165]. Macrophages can exhibit different activation states, 

depending on the local microenvironment and the signals they receive. For example, a 

pro-inflammatory macrophage has an increased capacity to eliminate bacteria by 

producing cytokines and chemokines to regulate other immune cells as well as ROS and 

RNI production [271, 272]. However, in the case of S. aureus biofilm infections, 

infiltrating macrophages and the overall immune response, are biased towards an anti-

inflammatory state. It is the goal of our laboratory to reprogram this response towards 

one that favors bacterial clearance. 

Lipopolysaccharide is a potent stimulator of innate immunity in a wide variety of 

species. Only 1 to 2 µg is enough to cause a lethal reaction in humans, whereas rabbits 

and mice can survive doses of up to 10 µg and 50 µg, respectively [273-275]. A larger 

LPS dose induces septic shock through the actions of excessive pro-inflammatory 

cytokines, such as TNF-α and IL-1β; however at lower doses, LPS can trigger numerous 
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physiological immunostimulatory effects [276]. Recognition of LPS through TLR4 leads 

to the activation of several NF-κB-mediated factors and the production of pro-

inflammatory mediators [277, 278]. Therefore, we hypothesized that LPS treatment 

would be an attractive approach to reprogram the immune response to an established 

biofilm infection to promote bacterial clearance.  

Patients undergoing joint replacement surgery are at an increased risk of 

developing a biofilm infection, with S. aureus being the most frequent etiological agent 

[279-281]. Our laboratory utilizes a mouse model of post-arthroplasty joint infection that 

mimics PJI and displays evidence of biofilm formation on the infected implant [39, 158, 

282, 283]. Contrary to our prediction, systemic LPS treatment of infected mice promoted 

biofilm growth rather than clearance, which was associated with significant increases in 

numerous pro-inflammatory cytokines, including CCL2, CXCL9, CCL3, CXCL10. 

Likewise, G-CSF, IL-6, and IL-10 expression was also elevated; factors that are known 

to induce MDSC expansion and activation [284-288]. Indeed, MDSC expansion in the 

blood and spleen of LPS treated mice was evident, yet traditional Ly6G+Ly6C+ MDSC 

populations were decreased at the site of biofilm infection, whereas a novel population of 

Ly6intLy6C+ cells was increased. Additionally, the MDSCs recovered from LPS treated 

mice were found to be more suppressive than MDSCs from vehicle treated animals. In 

contrast to what was observed at the site of biofilm infection, bacterial growth in whole 

blood was inhibited with LPS treatment, indicating that the systemic immune response 

remained bactericidal. These results indicate that an attempt to bolster the immune 

response to biofilm infection can lead to opposite effects locally and systemically. 

Specifically, the immune response at the site of infection appears to become more anti-

inflammatory, while the systemic response becomes hyper-inflammatory. Collectively, 

these studies remind us of the complicated interplay dictating the inflammatory response 
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to S. aureus biofilms, and the need for more research to understand and ultimately 

thwart these dangerous infections. 
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Results 

LPS treatment enhances intrinsic pro-inflammatory cytokine production during S. 

aureus biofilm infection. LPS is the major component of the outer membrane of gram-

negative bacteria and is recognized by the immune system via TLR4 as an indicator of 

bacterial infection, causing a rapid inflammatory response [289-291]. Here we utilized 

LPS administration in a mouse model of S. aureus orthopedic implant-associated biofilm 

infection in an attempt to revert the immune response from an anti-inflammatory to a pro-

inflammatory state. To assess the effects of LPS treatment, we first examined 

inflammatory mediator production in the serum and soft tissue surrounding the joint in 

the mouse model. Aseptic implants elicited transient inflammatory mediator production, 

most likely originating from the trauma generated during the surgical procedure (Fig. 

3.1). In the serum, several pro-inflammatory mediators, including G-CSF, IL-6, CXCL10 

(IP-10), CCL2 (MCP-1), and CXCL9 (MIG) were significantly increased in LPS compared 

to vehicle treated mice (Fig. 3.1). Other cytokines in the serum were also increased 

following LPS treatment, including, GM-CSF, IL-9, CCL3 (MIP-1α), and CXCL2 (MIP-

2α), although these did not reach statistical significance (Fig. 3.1). Unexpectedly, levels 

of the anti-inflammatory cytokine, IL-10, were also increased with LPS treatment, along 

with decreased production of IL-1α and CCL5 (RANTES) (Fig. 3.1). Cytokine production 

was also measured in the tissue surround the implanted device, but was difficult to 

interpret due to a large variation among samples (Fig. 3.2). Collectively, these data 

demonstrate that LPS administration actively augments production of several 

inflammatory mediators. 
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Figure 3.1. LPS treatment alters inflammatory mediator production in serum 

during S. aureus orthopedic biofilm infection. Serum collected at day 7 post-infection 

from sterile and infected mice that were treated with vehicle or 12.5 µg LPS via i.p. 

injection at days 5 and 6, whereupon expression of G-CSF, GM-CSF, IL-1α, IL-1β, IL-9, 

IL-6, IL-10, IL-17, CXCL10, CCL2, CXCL9, CCL3, CXCL2, and CCL5 was quantitated by 

Milliplex. Results were normalized to the amount of total protein recovered to correct for 

alterations in tissue sampling size. Results are representative of 5 mice per group, with 

the number of measurable samples labeled as “X/5”. Significant differences are denoted 

by asterisks (*p < 0.05, **p < 0.01, ****p < .0001; one-way ANOVA with Bonferroni’s 

multiple comparison post-hoc analysis). 
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Figure 3.2. LPS treatment alters inflammatory mediator production in tissue 

during S. aureus orthopedic biofilm infection. Tissue homogenates surrounding 

orthopedic implants were prepared at day 7 post-infection from sterile and infected mice 

that were treated with vehicle or 12.5 µg LPS via i.p. injection at days 5 and 6, 

whereupon expression of G-CSF, GM-CSF, IL-1α, IL-1β, IL-9, IL-6, IL-10, IL-12p40, IL-

17, CXCL10, CCL2, CXCL9, CCL3, CXCL2, CCL5, TNF-α, and VEGF was quantitated 

by Milliplex. Results were normalized to the amount of total protein recovered to correct 

for alterations in tissue sampling size. Results are representative of 5 mice per group, 

with the number of measurable samples labeled as “X/5”. Significant differences are 

denoted by asterisks (*p < 0.05; one-way ANOVA with Bonferroni’s multiple comparison 

post-hoc analysis). 
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LPS treatment enhances S. aureus killing by peripheral blood leukocytes ex vivo. 

To determine if LPS treatment promoted the antimicrobial activity of peripheral blood 

leukocytes compared to S. aureus biofilm infected mice alone, whole blood was 

collected and cultured with planktonic S. aureus ex vivo to assess bactericidal activity. 

Using this approach we were able to distinguish differences in the ability of whole blood 

from different treatment groups to kill S. aureus. Blood from all treatment groups resulted 

in reduced bacterial counts after a 30 min incubation (Fig 3.3). In accordance with 

increased cytokine production, the blood of LPS treated mice was more effective at 

killing S. aureus than the vehicle treated animals (all groups harbored S. aureus 

orthopedic implant infection). After 30 and 60 min, only systemic LPS treatment 

displayed improved killing compared to vehicle treated mice; however, after 2 h of 

incubation, blood from both systemic and local LPS administration groups displayed 

enhanced killing ability (Fig 3.3B). These results indicate that LPS treatment creates a 

hostile systemic environment for S. aureus and prevents bacterial persistence in the 

blood, which is likely due to increased inflammatory mediator production. 
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Figure 3.3. LPS treatment enhances S. aureus killing in whole blood. (A) Time-

course of microbicidal ability of whole blood recovered from mice with S. aureus 

orthopedic biofilm infection that received vehicle, local, or systemic LPS treatments (5 

and 12.5 µg, respectively). (B) Bacterial survival in whole blood at 30 min, 1 h, and 2 h. 

All groups were inoculated at a concentration of 106 CFU per mL. Results are expressed 

as Log10 CFU per mL and are representative of 12 mice per group from two independent 

experiments. Significant differences between treatment groups are denoted as *p < 0.05, 

**p < 0.01, and ***p < 0.001; one-way ANOVA with Bonferroni’s multiple comparison 

post-hoc analysis. 
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LPS treatment increases S. aureus growth during orthopedic implant biofilm 

infection. Previous work from our laboratory has demonstrated that augmenting pro-

inflammatory activity, specifically in macrophages, is critical for biofilm clearance in vivo 

[203]. Along the same lines, LPS treatment increased production of multiple pro-

inflammatory cytokines, leading to improved clearance of bacteria in the blood ex vivo 

(Fig. 3.1 and 3.3). Despite the elevated pro-inflammatory immune response systemically, 

LPS treatment did not facilitate bacterial clearance at the site of infection, but rather 

promoted biofilm growth (Fig. 3.4). Systemic LPS treatment caused nearly a 2-log 

increase in bacterial burdens in the surrounding tissue after 7 days of infection, while 

local LPS treatment displayed a similar increase in bacterial titers, but to a lesser degree 

(Fig. 3.4). Differences in bacterial burdens among groups in the femur, joint, and implant 

were not significant; however, it was interesting to note that more mice in the LPS-

treated groups had bacterial burdens that were below the limit of detection at these sites 

compared to vehicle-treated mice (Fig. 3.4). Collectively, these results suggest that 

immune activation via LPS treatment can improve antibacterial activity in the peripheral 

blood, but dramatically worsens localized infection in tissues surrounding the infected 

joint.  
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Figure 3.4. LPS treatment alters S. aureus biofilm burdens. Bacterial burdens 

associated with the knee joint, surrounding soft tissue, femur, and orthopedic implant at 

day 7 post-infection following local or systemic LPS (5 and 12.5 µg, respectively) or 

vehicle treatment. Results are expressed as CFU per mL for orthopedic implants or CFU 

per gram of tissue to correct for differences in tissue sampling size. Results are 

representative of 5-10 mice per group from three independent experiments, for a total of 

20 mice per group. Significant difference between treatment groups are denoted as *p < 

0.05; one-way ANOVA with Bonferroni’s multiple comparison post-hoc analysis. 
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LPS treatment alters immune cell populations in the blood, spleen, and at the site 

of S. aureus biofilm infection. Pro-inflammatory cytokines have been reported to 

recruit and activate MDSCs [162, 285], as well as regulate macrophage and T cell 

activation [40, 292, 293], which could partially explain the exacerbation of infection in 

LPS treated mice. MDSCs are significantly elevated in the S. aureus orthopedic implant 

infection model compared to aseptic implants, and have been shown to be critical factors 

in attenuating innate immune cell influx and biofilm clearance [40, 41, 158]. Based on the 

unexpected disconnect between pro-inflammatory cytokine production and infection 

outcome, we examined differences in immune cell infiltrates of LPS and vehicle treated 

mice. 

 Examination of leukocyte recruitment revealed that LPS only induced significant 

differences in innate immune cell populations in mice with concurrent S. aureus biofilm 

infection and not with aseptic implants. Specifically, LPS treatment had no significant 

effect on MDSC, monocyte, F4/80+ monocyte, or macrophage populations (Fig. 3.5). In 

agreement with previous reports from our laboratory, S. aureus biofilm infection 

increased MDSC recruitment concomitant with reduced monocyte and macrophage 

populations at the site of infection, compared to sterile implants [40, 41, 158] (Fig. 3.5). 

However, LPS treatment reduced Ly6G+Ly6C+ infiltrates that our laboratory has 

demonstrated to be immune suppressive MDSCs [158] (Fig. 3.5A). Specifically, local 

LPS administration resulted in approximately a 20% reduction of MDSCs, while systemic 

LPS treatment reduced the MDSC infiltrate more drastically, by nearly 60% (Fig. 3.5A). 

In contrast, monocyte populations increased with both LPS paradigms, whereas only 

systemic LPS treatment caused a significant increase in macrophage infiltrates (Fig. 

3.5B and D). F4/80+ monocytes were not significantly different across any treatment 
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group (Fig. 3.5C). Distributions of these Ly6G, Ly6C, and F4/80+ cell populations are 

presented in Figure 3.6.  

 Alterations in leukocyte frequencies in the blood and spleen were also examined 

to elucidate the peripheral immune response to S. aureus and effects of LPS. Despite 

the improved killing ability of whole blood following LPS treatment, MDSCs in the blood 

were actually increased (Fig. 3.7A and 3.8). However, the frequency of other pro-

inflammatory leukocyte populations, including monocytes, F4/80+ monocytes, and Ly6C-

F4/80+ cells were also enhanced with LPS treatment (Fig. 3.7B-D and 3.8), perhaps 

compensating for the increase of MDSCs and enhanced S. aureus bactericidal activity. 

Examination of splenic leukocytes revealed an expansion of MDSCs with LPS treatment 

in infected mice (Fig. 3.9A and 3.10), while all other cell populations remained the same 

(Fig. 3.9B-C and 3.10). Previous studies have shown that under proper conditions, such 

as polymicrobial sepsis or in combination with IFN-γ, LPS administration can lead to the 

expansion and activation of MDSCs in the spleen [164, 294]. This expansion could 

account for increased MDSCs in the blood following LPS treatment (Fig. 3.7 and 3.8). At 

face value, these data appear to be contradictory. Namely, MDSC infiltrates are reduced 

in the joint of LPS treated mice, yet bacterial burdens are increased (Fig. 3.5 and 3.4). In 

contrast, MDSCs are increased in the blood of LPS treated mice, but peripheral blood 

leukocytes display improved killing of planktonic S. aureus (Fig. 3.7 and 3.3). Further 

explanation is needed to reconcile these seemingly contradictory results. 
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Figure 3.5. LPS administration alters leukocyte infiltrates during S. aureus 

orthopedic biofilm infection. Implant-associated tissues from sterile and infected mice 

treated with local or systemic LPS (5 and 12.5 µg, respectively) or vehicle were collected 

7 days after implantation of the orthopedic device, and analyzed by flow cytometry. Each 

bar graph represents quantitation of MDSCs (Ly6G+Ly6C+), inflammatory monocytes 

(Ly6G-Ly6C+), F4/80+ monocytes (Ly6C+F4/80+), and macrophages (Ly6C-F4/80+) in 

each treatment group. Results are expressed as a percentage of the total CD45+ 

leukocyte population. Results are representative of 5 mice per group from three 

independent experiments. **p < 0.01, ***p < 0.001, ****p < 0.0001; one-way ANOVA with 

Bonferroni’s multiple comparison post-hoc analysis, among sterile or infected groups 

separately. 
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Figure 3.6. LPS administration alters leukocyte infiltrates during S. aureus 

orthopedic biofilm infection. Implant-associated tissues from sterile and infected mice 

treated with local or systemic LPS (5 and 12.5 µg, respectively) or vehicle were collected 

7 days after implantation of the orthopedic device, and analyzed by flow cytometry. 

Representative contour plots of MDSCs (Ly6G+Ly6C+), inflammatory monocytes (Ly6G-

Ly6C+), F4/80+ monocytes (Ly6C+F4/80+), and macrophages (Ly6C-F4/80+) present in 

each treatment group. (A) Sterile implant, vehicle treatment, (B) sterile implant, local 

LPS treatment, (C) sterile implant, systemic LPS treatment, (D) infected implant, vehicle 

treatment, (E) infected implant, local LPS treatment, and (F) infected implant, systemic 

LPS treatment.  
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Figure 3.7. LPS administration alters peripheral blood leukocyte populations 

during S. aureus orthopedic biofilm infection. Blood from sterile and infected mice 

treated with local or systemic LPS (5 and 12.5 µg, respectively) or vehicle were collected 

7 days after implantation of the orthopedic device, and analyzed by flow cytometry. Each 

bar graph represents quantitation of MDSCs (Ly6G+Ly6C+), monocytes (Ly6G-Ly6C+), 

F4/80+ monocytes (Ly6C+F4/80+), and Ly6C-F4/80+ cells present in each treatment 

group. Results are expressed as a percentage of the total CD45+ leukocyte population. 

Results are representative of 5 mice per group from two independent experiments. *p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; one-way ANOVA with Bonferroni’s multiple 

comparison post-hoc analysis, among sterile or infected groups separately. 
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Figure 3.8. LPS administration alters blood leukocyte populations during S. 

aureus orthopedic biofilm infection. Blood from sterile and infected mice treated with 

local or systemic LPS (5 and 12.5 µg, respectively) or vehicle were collected 7 days after 

implantation of the orthopedic device, and analyzed by flow cytometry. Representative 

contour plots of MDSCs (Ly6G+Ly6C+), monocytes (Ly6G-Ly6C+), F4/80+ monocytes 

(Ly6C+F4/80+), and Ly6C-F4/80+ cells present in each treatment group. (A) Sterile 

implant, vehicle treatment, (B) sterile implant, local LPS treatment, (C) sterile implant, 

systemic LPS treatment, (D) infected implant, vehicle treatment, (E) infected implant, 

local LPS treatment, and (F) infected implant, systemic LPS treatment. 
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Figure 3.9. LPS administration alters splenic leukocyte populations during S. 

aureus orthopedic biofilm infection. Spleens from sterile and infected mice treated 

with local or systemic LPS (5 and 12.5 µg, respectively) or vehicle were collected 7 days 

after implantation of the orthopedic device, and analyzed by flow cytometry. Each bar 

graph represents quantitation of MDSCs (Ly6G+Ly6C+), monocytes (Ly6G-Ly6C+), 

F4/80+ monocytes (Ly6C+F4/80+), and Ly6C-F4/80+ cells present in each treatment 

group. Results are expressed as a percentage of the total CD45+ leukocyte population. 

Results are representative of 5 mice per group from two independent experiments. *p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; one-way ANOVA with Bonferroni’s multiple 

comparison post-hoc analysis, among sterile or infected groups separately.  



74 
 

 

 

Figure 3.10. LPS administration alters splenic leukocyte populations during S. 

aureus orthopedic biofilm infection. Spleens from sterile and infected mice treated 

with local or systemic LPS (5 and 12.5 µg, respectively) or vehicle were collected 7 days 

after implantation of the orthopedic device and analyzed by flow cytometry. 

Representative contour plots of MDSCs (Ly6G+Ly6C+), inflammatory monocytes (Ly6G-

Ly6C+), F4/80+ monocytes (Ly6C+F4/80+), and macrophages (Ly6C-F4/80+) present in 

sterile and infected animals of each treatment group. (A) Sterile implant, vehicle 

treatment, (B) sterile implant, local LPS treatment, (C) sterile implant, systemic LPS 

treatment, (D) infected implant, vehicle treatment, (E) infected implant, local LPS 

treatment, and (F) infected implant, systemic LPS treatment. 
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LPS treatment augments MDSC inhibitory activity. Our results have demonstrated 

that LPS treatment alters MDSC infiltrates into S. aureus biofilm infections, namely 

causing a shift from a predominant Ly6G+Ly6C+ towards a Ly6GlowLy6C+ population, 

which introduced a Ly6GintermediateLy6C+ population (Fig. 3.6, 3.8, and 3.10). We 

hypothesized that Ly6G expression was downregulated in traditional Ly6G+Ly6C+ 

MDSCs following LPS treatment, nevertheless, these cells remained suppressive, 

accounting for the increased biofilm burdens. To determined the immunosuppressive 

nature of each population, Ly6G-Ly6C+ monocytes, Ly6GintLy6C+ Ly6G intermediates, 

and Ly6G+Ly6C+ MDSCs were purified by FACS and co-cultured with CD4+ T cells to 

determine which cell types could suppress T cell proliferation (Fig. 3.11). As expected, 

monocytes from all treatment groups did not inhibit T cell expansion (Fig. 3.12A). Ly6G 

intermediate cells from mice receiving systemic LPS appeared to possess some 

suppressive activity; however, this did not reach statistical significance (Fig. 3.12B). In 

general, MDSCs from LPS treated animals were more suppressive compared to MDSCs 

from the vehicle treatment mice (Fig. 3.12C). Although these differences were relatively 

modest, it is important to note that differences in total numbers of suppressive cells can 

amplify inhibitory activity in vivo. It is possible that by promoting MDSC activation and 

expansion, LPS treatment enhances anti-inflammatory activity at the site of infection, 

inhibiting immune-mediated clearance, inadvertently augmenting biofilm growth. 
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Figure 3.11. FACS purification of different leukocyte populations after S. aureus 

orthopedic biofilm infection. Leukocyte infiltrates associated with S. aureus-infected 

joints were collected by FACS at day 7  based on Ly6G expression. Contour plots of 

sorted monocytes (Ly6G-Ly6C+), Ly6G intermediates (Ly6Gint.Ly6C+), and MDSCs 

(Ly6G+Ly6C+) in each treatment group: vehicle (A), local LPS (B), systemic LPS (C). All 

cell populations displayed are CD45+. 
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Figure 3.12. Effects of LPS treatment on MDSC T cell suppressive activity. 

Leukocyte infiltrates associated with S. aureus-infected joints were collected by FACS at 

day 7 based on Ly6G expression. Analysis of ex vivo polyclonal CD4+ T cell proliferation 

following a 1:1 co-culture with (A) monocytes (Ly6G-Ly6C+), (B) Ly6G intermediates 

(Ly6Gint.Ly6C+), and (C) MDSCs (Ly6G+Ly6C+) for 72 h. Results are representative of 

one to three replicates. *p < 0.05, **p < 0.01; one-way ANOVA with Bonferroni’s multiple 

comparison post hoc analysis. (- Ctrl) T cells only; (+ Ctrl) T cells incubated with 

CD3/CD28 Dynabeads. 
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Figure 3.13. Impact of LPS on leukocyte abundance during S. aureus orthopedic 

biofilm infection. Abundance of the FACS purified Ly6G populations that were 

examined for T cell suppressive activity in Figure 3.XX above, including (A) monocytes 

(Ly6G-Ly6C+), (B) Ly6G intermediates (Ly6Gint.Ly6C+), and (C) MDSCs (Ly6G+Ly6C+). 

Results represent cells collected from eight animals per treatment group. 
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Transient but not sustained exposure to LPS causes an expansion of bone-

marrow derived MDSCs in vitro. LPS is known to activate mature MDSCs in the 

presence of pro-inflammatory cytokines [294]; however, based on our findings we 

wanted to determine if LPS alone was capable of triggering MDSC expansion. To 

investigate this possibility, bone marrow cells were cultured for 4 days and treated with 

LPS either at the time of plating or the last 24 h prior to cell harvest. During this time, 

media was not changed. Sustained LPS treatment did not significantly affect MDSC 

expansion, even at the highest concentration of LPS examined (Fig. 3.14). Monocyte 

differentiation decreased approximately 20% with the highest LPS concentration; 

however macrophages and F4/80+ monocytes were not significantly altered (Fig. 3.14, 

3.15).  

In contrast, a dose-dependent increase in MDSCs was observed when cells were 

exposed to LPS for the last 24 h, with 100 ng/ml resulting in the greatest expansion (Fig. 

3.16). It is likely that this increase in MDSCs may be attributed, in part, to reduced 

monocytes with increasing LPS concentrations, which are presumably shifting more 

towards an MDSC phenotype, as macrophages and F4/80+ monocytes remain 

unchanged following LPS treatment (Fig. 3.16, 3.17).  
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Figure 3.14. LPS treatment for 4 days does not alter bone marrow-derived 

leukocyte populations in vitro. Bone marrow cells were seeded in non-treated tissue 

culture plates with 1, 10, or 100 ng/ml LPS, or PBS as a control. After 3 days, cells were 

treated with 40 ng/ml IL-6, incubated for another 24 h, and stained for flow cytometry. 

Each bar graph represents quantitation of MDSCs (Ly6G+Ly6C+), monocytes (Ly6G-

Ly6C+), F4/80+ monocytes (Ly6C+F4/80+), and macrophages (Ly6C-F4/80+). Results are 

expressed as a percentage of the total CD45+ leukocyte population. Results are 

representative of 9 replicates from three independent experiments. *p < 0.05, one-way 

ANOVA with Bonferroni’s multiple comparison post-hoc analysis. 
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Figure 3.15. LPS treatment for 4 days does not alter bone marrow-derived 

leukocyte populations in vitro. Bone marrow cells were seeded in non-treated tissue 

culture plates with 1 (B), 10 (C), or 100 (D) ng/ml LPS, or PBS (A) as a control. After 3 

days, cells were treated with 40 ng/ml IL-6, incubated for another 24 h, and stained for 

flow cytometry. Representative contour plots of MDSCs (Ly6G+Ly6C+), monocytes 

(Ly6G-Ly6C+), F4/80+ monocytes (Ly6C+F4/80+), and macrophages (Ly6C-F4/80+) are 

shown.  

 

 

  



82 
 

C
o

n
tr

o
l

1
 n

g
/m

l 
L

P
S

1
0
 n

g
/m

l 
L

P
S

1
0
0
 n

g
/m

l 
L

P
S

0

1 0

2 0

3 0

4 0

2 4 h  M D S C s

%
L

y
6

G
+

L
y

6
C

+

*

* * *
* * * *

C
o

n
tr

o
l

1
 n

g
/m

l 
L

P
S

1
0
 n

g
/m

l 
L

P
S

1
0
0
 n

g
/m

l 
L

P
S

0

2 0

4 0

6 0

8 0

2 4 h  M o n o c y te s

%
L

y
6

C
+

F
4

/8
0

-

*
* *

C
o

n
tr

o
l

1
 n

g
/m

l 
L

P
S

1
0
 n

g
/m

l 
L

P
S

1
0
0
 n

g
/m

l 
L

P
S

0

1 0

2 0

3 0

4 0

2 4 h  F 4 /8 0
+
 M o n o c y te s

%
L

y
6

C
+

F
4

/8
0

+

C
o

n
tr

o
l

1
 n

g
/m

l 
L

P
S

1
0
 n

g
/m

l 
L

P
S

1
0
0
 n

g
/m

l 
L

P
S

0

5

1 0

1 5

2 0

2 5

2 4 h  M a c r o p h a g e s

%
L

y
6

C
- F

4
/8

0
+

 

Figure 3.16. LPS treatment for 24 h expands bone marrow-derived MDSCs in vitro. 

Bone marrow cells were seeded in non-treated tissue culture plates and incubated for 3 

days, whereupon cells were treated with 40 ng/ml IL-6 + 1, 10, or 100 ng/ml LPS, or PBS 

as a control. After incubating for another 24 h, cells were collected and stained for flow 

cytometry. Each bar graph represents quantitation of MDSCs (Ly6G+Ly6C+), monocytes 

(Ly6G-Ly6C+), F4/80+ monocytes (Ly6C+F4/80+), and macrophages (Ly6C-F4/80+) in 

each treatment group. Results are expressed as a percentage of the total CD45+ 

leukocyte population. Results are representative of 9 replicates from three independent 

experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; one-way ANOVA with 

Bonferroni’s multiple comparison post-hoc analysis. 
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Figure 3.17. LPS treatment for 24 h expands bone marrow-derived MDSCs in vitro. 

Bone marrow cells were seeded in non-treated tissue culture plates and incubated for 3 

days, whereupon cells were treated with 40 ng/ml IL-6 + 1 (B), 10 (C), or 100 (D) ng/ml 

LPS, or PBS (A) as a control. After incubating for another 24 h, cells were collected and 

stained for flow cytometry. Representative contour plots of MDSCs (Ly6G+Ly6C+), 

monocytes (Ly6G-Ly6C+), F4/80+ monocytes (Ly6C+F4/80+), and macrophages (Ly6C-

F4/80+) in each treatment group.  
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Chapter 4. Discussion and Future Directions 
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Discussion 

 The immune response to S. aureus biofilms is largely ineffective, leading to 

chronic infections that require a significant amount of time, money, and antibiotics to 

treat. S. aureus evades and manipulates the host immune response through numerous 

mechanisms, including interference with antibody-mediated opsonization and 

complement activation, resistance to cationic antimicrobial peptides and ROS, 

impairment of phagocyte recruitment, and production of several leukocidins and toxins 

[5, 295]. Biofilm formation further protects the bacteria from antibiotics and host-

mediated killing, making these infections particularly dangerous and difficult to eradicate. 

A major goal of our laboratory is to redirect the immune response to the biofilm to 

promote the recruitment and activation of bactericidal cells, rather than immune 

suppressive cells.  

 Prior studies have shown that S. aureus biofilms polarize macrophages toward 

an anti-inflammatory state and facilitate the preferential recruitment of MDSCs [12, 158]. 

MDSCs are notable for their expression of several immune-suppressive factors, such as 

Arg-1 and IL-10. Arg-1 activity depletes extracellular arginine, causing T cell dysfunction, 

and reduces its availability for iNOS function by macrophages [296]. We predicted that 

the introduction of a potent pro-inflammatory stimulus, specifically LPS, would induce the 

recruitment of leukocytes that were already programmed for bactericidal activity, which 

would aid in S. aureus biofilm clearance. Although LPS treatment did augment systemic 

pro-inflammatory mediator production, including G-CSF, IL-6, CXCL10, CCL2, and 

CXCL9, effects on bacterial clearance was mixed. For example, bacterial burdens were 

increased in the tissue surrounding the infected joint following LPS administration; 

however, more mice cleared the infection from sites distal to the primary infection site, 

such as the femur and deeper joint capsule. These findings suggest that LPS-dependent 
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activation could be limiting bacterial dissemination from the initial site of infection while 

simultaneously promoting a local microenvironment that augments biofilm growth. As 

further evidence suggesting that LPS treatment may discourage S. aureus 

dissemination, whole blood collected from LPS treated mice displayed improved killing of 

planktonic S. aureus. Collectively, these results suggest that leukocytes that have yet to 

have direct contact with the biofilm are effectively stimulated by LPS; however, the same 

cannot be said for immune cells located at the site of biofilm infection. 

 Although Ly6G+Ly6C+ MDSCs were decreased following LPS treatment, biofilm 

burdens were increased. This appears to be counterintuitive, as previous studies from 

our laboratory have partially ascribed biofilm immune evasion to MDSC activity, since 

Ab-mediated depletion of MDSCs promotes monocyte/macrophage pro-inflammatory 

activity and biofilm clearance [158]. However, it is important to consider that MDSCs are 

a heterogeneous population of immature monocytes and granulocytes that can be 

divided into different subsets based on their differential expression of Ly6C and Ly6G 

[161, 163, 297]. Namely, polymorphonuclear (PMN) and monocytic (M)-MDSCs are 

defined as CD11b+Ly6G+Ly6Clo and CD11b+Ly6G-Ly6Chi, respectively, and in our model 

of S. aureus orthopedic biofilm infection, the most suppressive cell population was found 

to be Ly6G+Ly6C+, highlighting the variable phenotype of these cells depending on 

environmental context [158, 285, 298]. Due to this variability of phenotypic markers, a 

functional assay, specifically the inhibition of T cells, is the gold standard used to define 

MDSCs [299]. Since LPS administration drastically changed the systemic immune 

environment by increasing pro-inflammatory mediator production, it was reasonable to 

predict that the phenotype and function of MDSCs may be significantly altered from what 

our laboratory has defined previously [40, 158, 276]. 
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 Further examination of Ly6G+Ly6C+ infiltrates revealed that although this 

population decreases in number with LPS treatment, it becomes more suppressive than 

in vehicle treated control animals. Additionally, the Ly6GintLy6C+ population is expanded 

by LPS administration, and displays some suppressive activity, although not significantly 

different from the vehicle control. Direct comparison of these cells is difficult due the low 

numbers that can be collected from vehicle treated mice; however, if the suppressive 

potential of Ly6GintLy6C+ cells can be confirmed in future studies their impact could be 

significant considering their abundance in the tissue of LPS treated mice. The expansion 

of this Ly6G-intermediate population combined with the increased suppressive capability 

of the classical MDSC population at the site of infection likely account, in part, for the 

increased biofilm growth in LPS-treated mice. 

 To explain the altered leukocyte infiltrates with LPS treatment, we examined 

cytokine/chemokine profiles in the different treatment groups. Overall, LPS 

administration appears to elicit a generalized upregulation of numerous pro-inflammatory 

factors, with a few exceptions. Specifically, G-CSF, IL-6, CXCL10, CCL2, and CXCL9 

were significantly increased in the serum of LPS-treated mice, while only IL-1α and 

CCL5 were reduced. Although typically considered pro-inflammatory, these cytokines 

can execute multiple functions, where the environmental context dictates the outcome. 

G-CSF and IL-6 are known to be important for MDSC expansion and activation, while 

CCL2 has been linked to MDSC migration [300-302]. Additionally, IL-10 levels were 

increased with LPS treatment; a pleiotropic cytokine that possesses numerous functions. 

In particular, IL-10 skews macrophages towards an anti-inflammatory phenotype and is 

a known product of activated MDSCs [303-305]. Our laboratory has shown that IL-10 

contributes to S. aureus biofilm infection persistence, since IL-10 KO mice displayed 

reduced MDSC influx, increased monocyte and macrophage infiltrates, and improved 
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biofilm clearance compared to WT animals [41]. Overall, this cytokine profile represents 

an environment that is highly favorable for MDSC recruitment and proliferation, via 

CCL2, IL-6, and G-CSF, as well as heightened MDSC activity through increased IL-10 

production. 

 With increasing distance from the primary site of biofilm infection, another 

conundrum emerges. Namely, although MDSC infiltrates increase following systemic 

LPS administration, whole blood from this treatment group displayed improved bacterial 

killing compared to the PBS-treated control group. This result may be explained by the 

increased recruitment of bactericidal effectors, such as monocytes and Ly6C-F4/80+ 

cells. We propose that these cells remain pro-inflammatory and are minimally inhibited 

by surrounding MDSCs, perhaps because the peripherally expanded MDSC population 

is not fully activated, and may not become activated until coming into contact with 

unknown factors in the biofilm milieu. Meanwhile in the blood, phagocytes are 

hyperactivated by LPS treatment, promoting phagocytosis and bactericidal activity, 

which discourages dissemination. As stated earlier, this is further supported by the 

increased incidence of bacterial clearance in the femur and joint of LPS treated mice. 

These results suggest that LPS alone is not enough to activate MDSCs. Our in vitro 

studies revealed that sustained LPS treatment did expand MDSCs from the bone 

marrow. Previously, it has been reported that LPS in combination with IFN-γ could lead 

to enhanced MDSC functions, such as NO release and T cell suppression; however, 

these effects were not observed with single treatments in vitro [294]. Pertinent to the 

experiments described in this report, IL-6 acts as the second signal rather than IFN-γ, 

and concomitant treatment with LPS and IL-6 leads to an increased expansion of 

MDSCs rather than treatment with IL-6 alone. As we continuously discover in 

immunology, timing is everything. Simultaneous exposure of an immune stimulant and 
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MDSC activators leads to a significant effect on cell populations, while staggered 

treatment has little to no effect.  

Collectively, these studies demonstrate that the immune response and function 

of effector cells can be highly variable depending on the environment in the context of S. 

aureus biofilm infections. Attempts to redirect the anti-inflammatory immune response to 

biofilms towards a more pro-inflammatory response had unexpected consequences. 

Namely, hyperactivation of the immune response through LPS treatment may limit 

bacterial dissemination, but worsens localized biofilm infections. The host immune 

system-biofilm interaction is multi-faceted and complex, and there are still many areas 

that remain to be examined. Identifying the factors that control the immune switch from a 

pro-inflammatory to anti-inflammatory state at the site of biofilm infection is an ongoing 

effort in our laboratory. 
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Future Directions 

Determine the suppressive capability of peripheral MDSCs 

Although the results and conclusions proposed by this study are intriguing, 

further examination of certain aspects is needed to confirm preliminary observations. In 

particular, MDSCs in the blood of LPS-treated mice are suspected to be inactive, due to 

the bactericidal nature of the other peripheral blood leukocyte populations; however, this 

has yet to be confirmed. The activation state of peripheral blood MDSCs can be 

confirmed by analysis of iNOS and IL-10 expression, as well as their ability to inhibit T 

cell proliferation. MDSCs from the blood and biofilm-infected tissues can be collected by 

FACS, and their suppressive capability compared to confirm that peripheral blood 

MDSCs are not fully activated, and require additional signals to promote an anti-

inflammatory environment. Additionally, MDSC expansion was observed in the spleen of 

LPS treated mice but these cells are expected to be non-suppressive, however this 

remains to be determined. 

 

Utilization of CXCR2 KO mice to examine the effect of LPS on S. aureus 

dissemination 

Bacterial dissemination to systemic organs is typically not observed in wild type 

mice during S. aureus orthopedic biofilm infection; therefore, it is difficult to determine if 

LPS treatments truly prevent bacterial dissemination with the current data. Utilization of 

CXCR2 KO mice could be an acceptable alternative to address this question. CXCR2 is 

responsible for the recognition of multiple chemokines including CXCL1, CXCL3, 

CXCL5, and CXCL7 in mice [306-309], which likely regulate MDSC influx into S. aureus-

infected tissues. Recognizing that there are confounding factors with regards to 
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differences in leukocyte infiltrates, CXCR2 KO mice display significant bacterial 

dissemination to systemic organs due to unchecked bacterial expansion, and may be a 

good model to determine if systemic LPS treatment could thwart biofilm dissemination by 

augmenting the bactericidal activity of peripheral blood leukocytes. 

 

Transcriptional analysis of biofilm-associated MDSCs  

 From the unexpected results of this study, and many others, it is clear that there 

is much left to be learned about the immune response to S. aureus biofilm infections. 

Our laboratory has initiated steps towards gathering more information through the 

transcriptional profiling of biofilm-associated MDSCs and macrophages via RNA 

sequencing (RNA-Seq). Differential expression analysis revealed thousands of genes 

that were up- or down-regulated in both immune cell types when comparing responses 

to planktonic S. aureus vs. biofilms. This data set has confirmed previous results 

published by our laboratory [12, 41, 158], including increased IL-10 production by 

biofilm-associated MDSCs, and decreased expression of several pro-inflammatory 

cytokines from biofilm-associated macrophages. Further mining of this data set will likely 

identify other potential processes regulating immune responses to biofilm infections. The 

use of bioinformatics to perform pathway analysis and gene ontology enrichment 

analysis will highlight interesting genetic targets to explore, and will provide plenty of 

future directions in our laboratory for years to come. Understanding the role of immune 

cells during S. aureus biofilm infections, including the signals required to expand and 

activate MDSCs, as well as the signals that inhibit macrophages and other pro-

inflammatory cells, may allow for the development of novel therapeutic targets that will 

improve the immune response and allow the host to clear these infections with minimal 

antibiotic intervention.  
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