
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Fall 12-18-2015 

Classification of Breast Cancer Patients Using Somatic Mutation Classification of Breast Cancer Patients Using Somatic Mutation 

Profiles and Machine Learning Approaches Profiles and Machine Learning Approaches 

Suleyman Vural 
University of Nebraska Medical Center 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Bioinformatics Commons, and the Systems Biology Commons 

Recommended Citation Recommended Citation 
Vural, Suleyman, "Classification of Breast Cancer Patients Using Somatic Mutation Profiles and Machine 
Learning Approaches" (2015). Theses & Dissertations. 50. 
https://digitalcommons.unmc.edu/etd/50 

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It 
has been accepted for inclusion in Theses & Dissertations by an authorized administrator of 
DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unmc.edu%2Fetd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/112?utm_source=digitalcommons.unmc.edu%2Fetd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/50?utm_source=digitalcommons.unmc.edu%2Fetd%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


 

 

CLASSIFICATION OF BREAST CANCER PATIENTS USING 

SOMATIC MUTATION PROFILES AND MACHINE LEARNING 

APPROACHES 

 

by 

 

Suleyman Vural 

 

A DISSERTATION 

 

 
 

 

Biomedical Informatics Graduate Program 

 

 

 

 

Under the Supervision of Dr. Chittibabu Guda 

 

 

 

 

University of Nebraska Medical Center 

Omaha, Nebraska 

 

 

December, 2015 

 

Supervisory Committee: 

Dr. James Eudy 

Dr. San Ming Wang 

Dr. Sanjukta Bhowmick 

Presented to the Faculty of 

the University of Nebraska Graduate College 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 



 

 
CLASSIFICATION OF BREAST CANCER PATIENTS USING SOMATIC 

MUTATION PROFILES AND MACHINE LEARNING APPROACHES 

Suleyman Vural, Ph.D. 

University of Nebraska Medical Center, 2015 

 

Advisor: Chittibabu Guda, Ph.D. 

The high degree of heterogeneity observed in breast cancers makes it very difficult to 

classify cancer patients into distinct clinical subgroups and consequently limits the 

ability to devise effective therapeutic strategies. In this study, we explore the use of gene 

mutation profiles to classify, characterize and predict the subgroups of breast cancers.  

We analyzed the whole exome sequencing data from 358 ethnically similar 

breast cancer patients in The Cancer Genome Atlas (TCGA) project. Identified somatic 

and non-synonymous single nucleotide variants were assigned a quantitative score (C-

score) that represents the extent of negative impact on the function of the gene. Using 

these scores with a non-negative matrix factorization method, we clustered the patients 

into three subgroups. By comparing the clinical stage of patients among the three 

subgroups, we identified an early-stage-enriched and a late-stage-enriched subgroup. 

Comparison of the C-scores (mutation scores) of these subgroups identified 358 genes 

that carry significantly higher rates of mutations in the late-stage-enriched subgroup. 

Functional characterization of these genes revealed important functional gene families 

that carry a heavy mutational load in the late-state-enriched subgroup. Finally, using the 

identified subgroups, we also developed a supervised classification model to predict the 

likely stage of patients, given their mutation profiles, hence provide clinical insights to 



 

 
help devise an effective treatment plan. 

This study demonstrates that gene mutation profiles can be effectively used with 

machine-learning methods to identify clinically distinguishable subgroups of cancer 

patients. Genes and gene families that carry a heavy mutational load in late-stage-

enriched cancer patients compared to early-stage-enriched subgroup were also identified 

from functional analysis of genes. The classification model developed in this method 

could provide a reasonable prediction of the stage of cancer patients solely based on 

their mutation profiles. This study represents the first use of only somatic mutation 

profile data to identify and predict breast cancer subgroups and this generic methodology 

could also be applied to other cancer datasets.                        .
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Chapter 1 

INTRODUCTION 

Cancer is the leading cause of death worldwide accounting for 8.2 million deaths in 2012 

(International Agency for Research on Cancer, 2014). According to the World Health 

Organization’s latest world cancer statistics, breast cancer leads the cancers by being the 

most common reason for female mortality (522,000 deaths in 2012) (International 

Agency for Research on Cancer, 2013). One in four cancers in women is estimated to be 

a breast cancer. Moreover, since 2008, breast cancer incidents have increased by more 

than 20% (International Agency for Research on Cancer, 2013). 

Breast cancer is a genetically and clinically complex and heterogeneous disease, 

comprised of multiple factors that are associated with distinctive histological and 

biological features, clinical presentations and behaviors, and responses to therapy. Hence, 

the effectiveness of a specific treatment greatly varies among patients. This multifaceted 

heterogeneity poses a significant classification challenge in the identification of distinct 

subtypes. 

Breast cancer classification is routinely used for tailoring treatment decisions by 

oncologists, and it is performed according to different schemes based on different criteria. 

Major classification methods are based on histopathological analysis, grade and stage of 

tumor, and analysis of gene expression signatures.  

With recent advancements in next-generation sequencing (NGS) methods, the 

current clinical treatment practices for breast cancer classification may benefit from the 

addition of in-depth understanding of genetic changes in tumors; hence a novel 
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classification may be achieved. As the genome sequencing costs are getting cheaper 

using NGS technology, mutational profiles of tumor samples can be compared against 

those of the normal samples from the same patients to identify somatic mutations that are 

specific to a particular patient. Such information from hundreds and thousands of patients 

could be effective used by computational methods to cluster them into clinically 

distinguishable subgroups and eventually use this information for effective treatment of 

cancer patients. 

In this work we develop a novel breast cancer classification method using 

machine learning methods and NGS data from whole exome sequencing of several 

hundred tumor/normal paired breast cancer samples in the TCGA database. 
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Chapter 2 

BACKGROUND 

Cancer occurs as a result of the accumulation of point mutations in critical genes, 

especially those that repair damaged DNA and control cell growth and division, which 

allows cells to grow and divide uncontrollably to form a tumor. Point mutations may 

occur spontaneously during DNA replication or caused by mutagens that can be physical, 

in the form of radiation from UV rays, X-rays or extreme heat, or chemicals such as 

molecules that can change the base pairs or disrupt the structure of DNA.  

There are a number of cellular processes that affect the expression level of genes 

such as DNA methylation patterns in the genome, histone modifications, transcriptional 

regulators some of which are transcriptional factors and miRNAs. However, majority of 

these factors display a consequential effect to mutations in the DNA, while the somatic 

mutations in a critical set of genes (referred to as driver genes) are considered as the 

causative factors for cancers. Due to this causative effect, studying the mutational profiles 

of tumor DNA is particularly attractive in the current era of personal genomics. With the 

advances made in the field of genome sequencing and computational biology, it is now 

possible and also cost effective to sequence only about 1.5% of the total human genome 

corresponding to the protein coding regions (referred to as Exome) and yet get 

information about 85% of the mutations with large effects on disease-related traits (Choi 

et al., 2009). 

This section will provide the background information about the basic concepts 

that are used throughout the dissertation. We will explain the next-generation sequencing 

technology, which produces the raw sequence information that we use in this dissertation; 
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variant discovery process, followed by explanation about machine learning; and a review 

of available scoring methods that quantify the mutations’ impact on the gene function. 

Next-Generation Sequencing (NGS)  

Since NGS technology was first discovered, DNA sequencing has brought a total 

revolution to our current understanding of molecular biology. Since then these 

technologies have provided tremendous amounts of data, which are full of biological 

insights waiting to be unraveled. Nucleotide sequencing is the name of the process for 

determining the order of nucleotides in a given DNA or RNA molecule.  

Sequencing has had a rapidly advancing history since its first development by 

Edward Sanger in 1975. His technique relies on the chain-termination method referred to 

as Sanger sequencing (Sanger, Nicklen, & Coulson, 1977). Sanger sequencing was 

established as the first generation sequencing technology and is accepted as the gold 

standard. The Human Genome Project was completed using this technology with a cost 

of $3 billion and taking a total of 13 years.  

With a demand for cheaper and faster sequencing in the early 2000s, the 

sequencing field has witnessed rapid improvement with the development of second-

generation sequencing, commonly known as next-generation sequencing (NGS) 

platforms. These platforms can produce high-throughput sequencing, processing millions 

of DNA or RNA fragments from a sample, thus enabling sequencing of a complete 

genome in a single day. Modern Sanger sequencing is typically performed by automated 

capillary sequencing, while the high-throughput NGS technologies are all based on 

evaluating signals generated during DNA synthesis. Illumina sequencers constitute the 
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majority of the NGS sequencing market and are the source of the sequencing data used in 

this dissertation (Zimmerman, 2014), (DeLuca, 2013). 

The most notable drawbacks of NGS when compared to earlier sequencing 

techniques are higher startup costs and the cost of analyzing the generated data, which 

constitutes a majority of the effort. On the other hand, NGS is not limited to analyzing 

predefined regions of a genome and is not vulnerable to the inconsistent nature of 

microarrays. 

NGS methods can target an entire genome or only selected regions of a genome, 

e.g. only coding regions of a genome which is called exome, hence named as either 

whole genome sequencing (WGS) or whole exome sequencing (WES), respectively. To 

summarize the overall sequencing process, small fragments of DNA or RNA are 

sequenced and then either aligned to a reference genome (provided that a reference 

genome exists) or fed into a de novo assembly process to build relatively contiguous 

regions of the genome for further analysis. 

Exome sequencing is the high-throughput sequencing of every exon in the human 

genome which represents about 1% to 2% of the whole genome (depending on definition 

of exome) that corresponds to about 180,000 exons from the coding region, yet contains 

information on 85% of the disease-causing mutations (Choi et al., 2009). When compared 

to WGS, WES has much lower costs, which makes it possible to perform a standardized 

experimental procedure for patients suffering from many diseases, and then help to 

discover the causative factors of the disease. However, this ability is balanced by the 

challenge of properly aligning the reads to the reference genome or de novo assembly, 
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calling the true variants, annotating the effects of the changes, filtering the false positive 

calls, identifying plausible variants and experimental validation of results. 

Variant Discovery 

After the sequence reads are aligned to a reference genome, the next step is variant 

discovery to identify variable sites in a tumor genome. This procedure can suffer from 

high error rates that are due to several factors, including base calling step in sequencers, 

alignment errors or insufficient depth of coverage. Variant discovery, often referred to as 

variant calling, involves the execution of a number of computational steps in a sequential 

order. The whole set of computational steps is called a variant calling pipeline, which 

typically contains an aligner and a variant caller with a number of intermediate data 

processing steps. As the name suggests, the aligner maps reads to a reference genome and 

variant caller identifies variant sites and assigns a genotype to the subject(s). 

Sequence alignment is a string matching problem and most efficient methods are 

based on Burrows-Wheeler Transform (BWT), which uses data compression to gain 

speed and memory efficiency. Among few other aligners, (MOSAIK (Lee et al., 2014), 

and CUSHAW3 (Liu, Popp, & Schmidt, 2014)) BWT based aligners including Burrows-

Wheeler Aligner (BWA) BWA mem (H. Li, 2013), BWA sampe (H. Li & Durbin, 2009) 

and Bowtie2 (Langmead & Salzberg, 2012) are the most commonly used algorithms. 

According to a recent publication, making performance comparison of currently in use 

aligners, BWT based aligners achieve similar results, due to their similar algorithms and 

out performing other aligners (Cornish & Guda, 2015). 

Unlike aligners, there are many variant callers using a variety of algorithms. 

Please refer to the provided a review of widely used variant callers in the following 
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section. Main genomic variations that variant callers aim to identify include: single 

nucleotide variations (SNVs), and small insertion and deletions (INDELs). Based on the 

information from SNVs and INDELs, the consequent effects on transcription such as 

splice junctions and splice variants, and on translation such as synonymous and non-

synonymous mutations, loss or gain of stop codons, frame shifts, etc., can be identified. 

Even with well-mapped, aligned and calibrated reads resolving simple single nucleotide 

variations require sensitive and specific methods and is a challenging task. 

SNVs are categorized based on several criteria. Firstly, variations are 

distinguished by the way they are inherited. If a variation is identified in germline cells 

i.e. sperm or egg cells, it is called as germline variation, and this variation may be 

inherited from a parent to an offspring. Alternatively, the genomic variations found in 

somatic cells are named as somatic mutations. Somatic mutations are not inherited from a 

parent, rather they are acquired by an individual during his/her life time and not passed 

on to progeny. Secondly, variations that cause a change in the translated amino acid are 

called non-synonymous variations, and those that do not change the amino translated 

acid, are called synonymous variations. Lastly, genomic variations with less than 0.05 

minor allele frequency (MAF) are considered rare variants that are associated with 

diseases and hence are called as mutations. 

In this work, we focus on the somatic non-synonymous mutations that occur in 

the coding region of human genome. 
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Machine Learning and Data Mining 

Machine learning (ML) and data mining are research areas in computer science, where 

these names often used interchangeably. ML has gained high attention in recent years due 

to the availability of high-throughput data from biological experiments with parallel 

advances in the computing power to process and analyze the data using sophisticated 

computational tools. 

Machine learning is defined as a computational method, aimed to build models, 

identify patterns and other regularities in data, and using the experience received from 

past information or previous runs available to the learner to improve its performance. The 

origin of machine learning dates back to 1957, when the perception model invented based 

on the human brain neurons. On the other hand, data mining is a much younger field, first 

appeared in early 1990s in the database community, which is closely related to and using 

techniques from machine learning. Data mining aims to extract useful information from a 

data set and transform it into a desirable structure for further use. Machine learning is 

widely used in our daily life, example applications include filtering spam emails, weather 

forecasting and streaming media suggestions based on earlier seen videos, etc. 

Some major problems studied in machine learning and data mining that are used 

in this work include: 

Classification: The task of assigning a class for a sample. The number of classes is often 

small and increasing the number of classes increases the complexity of the task, but it 

even can be unbound in cases such as text classification or speech recognition 

applications. 
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Clustering: Partitioning the samples into homogeneous groups, in such a way that 

samples in a group are more similar in a specified measure to each other than to those in 

the other groups. 

Feature selection: The process of selecting a subset of relevant features to use in model 

building. 

Machine learning algorithms can be separated in two distinct groups, namely 

supervised, and unsupervised learning methods.  

Supervised learning algorithms use labeled data (where each instance of the data 

has a known class) to build models and use these models to predict labels of new unseen 

data points. In case of continuous labels (such as temperature value in weather 

forecasting) the machine learning task is named as regression and for nominal labels 

(such as prediction of it will rain or not) the task is called as classification. A simple 

classification example would be the prediction of whether or not it will rain today, using 

historical values of temperature, humidity and wind speed, which constitute features, and 

the labels are “rain” or “no rain”. In this work, we used supervised machine learning 

techniques with an aim to make class prediction for breast cancer patients using mutation 

profiles. There are many supervised machine learning algorithms available including: 

decision trees, artificial neural networks, and support vector machines (Wagner, 2014). 

Unsupervised machine learning approaches address the problem of discovering 

structure in unlabeled datasets, i.e., the instances of data lack class labels. This problem is 

commonly referred as cluster analysis or clustering. As a simple example, unsupervised 

clustering of genes based on expression levels to identify co-regulated pathways can be 

given. We used clustering in the first step of this work to discover similar patients in 
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terms of genomic mutation profiles. Hierarchical clustering and k-means clustering are 

the most widely used unsupervised machine learning techniques; however in the 

particular case of this dissertation those methods are not sufficient to overcome 

sparseness issue. For a detailed explanation of this issue, please refer to the methods 

section. 

Review of Variation Scoring Methods 

The main significance of this work, as mentioned earlier, is to solely use somatic 

mutations for breast cancer classification purpose. To achieve this goal, first we need to 

convert the text-based somatic mutation data into a meaningful score, which can be used 

for further computation in machine-learning. Quantifying the effect of genomic mutations 

by itself is a complicated task and there are several methods available for this task. Here, 

we present a brief survey of the widely used recent methods. For a detailed review, please 

refer to Ritchie and Flicek, 2014 (Ritchie & Flicek, 2014). 

Modern sequencing methods yield an extensive list of sequence variations, which 

makes manual investigation infeasible; therefore, we need algorithms that can predict the 

effect of the discovered genomic variations. These methods can be categorized according 

to the underlying algorithm strategy. Firstly, there are several methods using annotations 

based on overlap with and proximity to functional elements. These tools consider 

annotations of regulatory elements, including regions of open chromatin, regions marked 

by histone modification and sequences bound by specific transcription factors. Secondly, 

biologically informed rule-based annotation methods use the knowledge of relatively 

better understood functions of particular nucleotide sequences and make allele-specific 

predictions about the effect of variants. There are numerous software available for this 
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analysis which include the Ensembl Variant Effect Predictor (VEP) (McLaren et al., 

2010), ANNOVAR (K. Wang, Li, & Hakonarson, 2010), and SnpEff (Cingolani et al., 

2012). Thirdly, we can group methods using annotations based on sequence motifs and 

constraints estimated from multiple sequence alignments. These methods evaluate the 

variations using their genomic position and employ the fact that if a variation is 

discovered in the proximity of a frequently appearing motif or evolutionary conserved 

region, then it is expected to impart a higher impact on protein function. Examples 

include the widely used the Genomic Evolutionary Rate Profiling (GERP) (Cooper et al., 

2005) and Sorts Intolerant From Tolerant (SIFT) (Ng & Henikoff, 2001) algorithms. 

Finally, integrative approaches, using supervised learning algorithms, employ an 

alternative approach by attempting to learn informative annotations or combinations of 

annotations, by comparing known functional variants with variants for which there is no 

direct evidence of functional consequences. The main idea here is to use a ‘training set’ 

of variants that are labeled as ‘damaging’ or ‘benign’ to identify features or combination 

of features, which can be used to discriminate between two classes and make accurate 

predictions for unseen variants. This approach has been adopted by several tools such as 

PolyPhen (Adzhubei et al., 2010) and MutationTaster (Schwarz, Rödelsperger, Schuelke, 

& Seelow, 2010).  

In this work, we used a more recent method named as Combined Annotation 

Dependent Depletion (CADD) (Kircher et al., 2014), which incorporates both genic and 

regulatory annotations, as described in the last category above. In contrast to other tools 

in its category, CADD uses a training set of variants that have become fixed in the human 

lineage and therefore presumably represent tolerable variations and deleterious variants 
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that are not observed in human populations. Hence, CADD uses a much larger training 

set and avoids sampling (ascertainment) biases associated with existing databases of 

known disease implicated variants.  
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Chapter 3 

LITERATURE REVIEW 

Breast Cancer Staging 

The most basic and widely used approach in evaluating treatment options for breast 

cancer patients involves determining the clinical stage. The stage of breast cancer 

explains the extent of the cancer in the body and determined based on mainly three 

measures including tumor size, lymph node status and incidence of metastatic growth. 

Stage I tumors are measured up to two centimeters and no lymph node involvement have 

been observed. These tumors often called in-situ carcinomas and regarded as a better 

prognosis group. Stage II tumors are considered to be between two to five centimeters, or 

have spread to the lymph nodes under the arm on the same side as the initiating breast. 

Like Stage I tumors, Stage II tumors are also generally effectively treatable. Stage III 

tumors are more than two inches in diameter and lymph nodes are heavily involved, or 

cancer has spread to other lymph nodes or tissues near the initiating breast. And lastly, 

Stage IV tumors are noted with a metastasis that has been identified on underarm, 

internal mammary lymph nodes or other organs of the body ("Breast cancer stages", 

retrieved from http://www.cancercenter.com/breast-cancer/stages/,”, “Breast Cancer 

Stages", retrieved from http://www.nationalbreastcancer.org/breast-cancer-stages,”, 

“Breast Cancer Staging and Stages", retrieved from 

http://ww5.komen.org/BreastCancer/StagingofBreastCancer.html,”). 
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Current Breast Cancer Classification  

The classification of breast cancer currently involves the evaluation of histological 

criteria based on morphology and immunohistochemical (IHC) analyses. The traditional 

parameters such as histological type, tumor size, histological grade and axillary lymph-

node involvement have been shown to correlate with clinical outcome and provide the 

basis for prognostic evaluation (Elston, Ellis, & Pinder, 1999). In addition, IHC markers 

such as the expression of hormone receptors (estrogen (ER) and progesterone receptors 

(PR)) and the overexpression and/or amplification of the human epidermal growth factor 

receptor 2 (HER2) provide additional therapeutic predictive value and have important 

role in the treatment decision (Harris et al., 2007). As a more modern approach, 

microarray-based expression analysis of a select gene panel provides a comprehensive 

molecular taxonomic classification to breast cancer tumors. This approach has emerged 

as a standard to identify clinically distinguishable molecular subtypes for use in the 

current clinical practice.  

Histopathological Classification 

From histopathological perspective, breast cancer can be broadly categorized into in situ 

carcinoma and invasive (infiltrating) carcinoma. Breast carcinoma in situ is further 

categorized into two types as ductal carcinoma in situ (DCIS) and lobular carcinoma in 

situ (LCIS), based on growth patterns and cytological features. DCIS is seen significantly 

more common than LCIS and includes a heterogeneous group of tumors. Moreover, 

DCIS tumors have traditionally been categorized into five well recognized subtypes 

based on their architectural features namely Comedo, Cribiform, Micropapillary, 

Papillary and Solid. On the other hand, invasive carcinoma also includes heterogeneous 
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group of tumors and is sub-classified into several histological subtypes namely 

infiltrating ductal, invasive lobular, ductal/lobular, mucinous (colloid), tubular, medullary 

and papillary carcinomas. From these subtypes the most common is infiltrating ductal 

carcinoma (IDC), which covers 70-80% of all invasive carcinomas (C. I. Li, Uribe, & 

Daling, 2005). Further, IDC is also sub-classified according to tumor grade, which is 

assessed by evaluating the nuclear pleomorphism, glandular/tubule formation and 

proliferative activity (mitotic index). Three main IDC sub-classes by grade are namely 

well-differentiated (grade 1), moderately differentiated (grade 2) or poorly differentiated 

(grade 3) (Lester & Bose, 2009). This classification is done based on three main criteria 

namely, nuclear pleomorphism, glandular/tubule formation and mitotic rate. 

 

 

Figure 1: Histological classification of breast cancer subtypes based on architectural 

features and growth patterns. (Malhotra, Zhao, Band, & Band, 2010) 
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ER, PR and HER2 

In conjunction with histopathological classification, characterization of breast cancers 

based on the expression of strong biomarkers such as ER, PR, and HER2 has a key role 

in guiding therapeutic decisions. About 75-80% of all breast cancers are hormone 

receptor positive, and standardized IHC assays are used to determine the selection of 

patients for hormone-based therapies. In addition, HER2, an oncogene, is the only 

predictive marker checked routinely for clinical purpose. Even though there is an inverse 

association between hormone receptors and HER2, 10-15% of all breast cancers are both 

hormone receptor and HER2 positive, which are considered to be selected for anti-HER2 

based therapies such as the humanized monoclonal HER2 antibody, trastuzumab, which 

targets the extracellular domain of the HER2 receptor (Konecny et al., 2003). Lastly, the 

10-15% of breast cancer patients are recognized by being both hormone receptor 

(ER&PR) negative and HER2 negative, which are known as triple negative breast 

cancers (TNBCs). Unfortunately, this type of the breast cancer has the worst prognosis 

and currently there is not an effective treatment option for TNBCs (Dawson, Provenzano, 

& Caldas, 2009).  

Molecular Classification of Breast Cancers 

As a more recent technology, gene expression analysis based on microarray studies gave 

researchers an opportunity to begin moving towards comprehensive molecular profiling 

of breast cancer tumors. These studies have led to the discovery of clinically relevant 

molecular breast cancer subtypes and provided additional insights about the heterogeneity 

of the disease (Hu et al., 2006; Perou, Sørlie, & Eisen, 2000; Sørlie & Perou, 2001). 

Application of unbiased hierarchical clustering on gene expression assays has led to the 
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identification of five distinct breast cancer subtypes (Figure 2) namely Luminal A, 

Luminal B, HER2 overexpressing, Basal-like and Normal breast tissue-like. Importantly, 

this molecular classification has successfully discovered sub-classes of ER-positive 

and/or PR-positive breast cancers as Luminal A and Luminal B. This is a significant 

achievement because even though clinical assessment of IHC utilizes ER, PR, and HER2 

status, these markers could not let the separation of these two distinct subtypes, which 

have very different clinical outcomes (Sørlie & Perou, 2001; Sørlie & Tibshirani, 2003). 

The differences in gene expression patterns in these subtypes reflect the basic 

alterations in the cell biology of the tumor and are associated with significant variation in 

clinical outcome such as overall survival and disease free survival (Sørlie & Tibshirani, 

2003). Particularly, Luminal A subtype patients are found to have relatively better 

prognosis while basal-like subtype patients having the worst prognosis. 

Following the identification of these intrinsic subtypes, further classification of 

breast cancers has been proposed. For example, a study conducted on ER-negative 

tumors has revealed that basal breast cancers are actually a heterogeneous group with at 

least four main subtypes, and an immune response gene expression module has been 

discovered, which points to a good prognosis subtype in ER-negative breast cancer 

(Teschendorff, Miremadi, Pinder, Ellis, & Caldas, 2007). Likewise, a different study has 

found a new breast cancer intrinsic subtype recognized as Claudin-low or mesenchymal-

like (Prat et al., 2010). A characteristic of this subtype is to show an intermediate 

prognosis between basal and luminal subtypes and to be enriched with cells showing 

distinct biological properties associated with mammary stem cells and tumour initiating 
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potential (Bruna et al., 2012; Hennessy & Gonzalez-Angulo, 2009; Lehmann et al., 2011; 

Lim et al., 2009). 

At first, the high cost of gene expression analysis of an abundant number of genes 

was the obvious obstacle in adoption of the method for clinical purposes. To overcome 

this, researchers narrowed down the gene list by finding distinct gene signatures for 

breast cancer subtypes. In one study, investigators have successfully discovered 50 gene 

signatures, named as PAM50 (Parker et al., 2009; Tibshirani, Hastie, Narasimhan, & 

Chu, 2002), which can effectively differentiate the molecular subtypes using quantitative 

real time PCR (qRT-PCR) and is accepted as a replacement for full microarray analysis 

with the purpose of molecular classification of breast cancers. Moreover, it is 

demonstrated that using the PAM50 gene set for molecular classification had 

significantly improved the prediction accuracy for risk of relapse on ER-positive/node 

negative patients compared to the model that utilizes only clinical variables such as tumor 

size, axillary lymph-node status and histologic grade. 

Besides the identification of intrinsic subtypes, gene expression profiling has also 

been employed in discovery of distinct prognostic signatures by several groups (Paik, 

Shak, Tang, & Kim, 2004; Veer, Dai, & Vijver, 2002; Vijver & He, 2002). Mammaprint, 

which is a microarray-based assay of the Amsterdam 70-gene breast cancer signature, 

and OncotypeDX, which is a PCR-based assay of a panel of 21 genes, have been 

approved for clinical use (Cardoso et al., 2008; Sparano & Paik, 2008). 
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Figure 2: Molecular classification of breast cancer (Malhotra et al., 2010) 

 

Other Hybrid Classification Methods 

More recently, thanks to the ease of accessing breast cancer data through projects such as 

TCGA and organizations like International Cancer Genome Consortium (ICGC), several 

methods proposing integration of multiple approaches for breast cancer clustering have 

been published. In 2012, Curtis et al. demonstrated a method combining genome and 

transcriptome assessments of 2,000 breast cancer patients. By examining the impact of 

somatic copy number aberrations on the transcriptome, they suggested a novel molecular 

stratification of breast cancer and revealed novel subgroups (Curtis et al., 2012). 

Likewise, in 2014, Ali et al. classified breasts cancer into 10 subtypes based on the 

integration of genomic (copy number variation) and transcriptomic (gene expression) 

data (Ali et al., 2014). Also in another study, researchers have shown a computational 

method that combines gene expression and DNA methylation data to implement machine 

learning aided breast cancer patient classification (List et al., 2014). Lastly, in a recent 

publication, researchers have proposed a network-based stratification of tumor mutations 

in which they used somatic mutations as a binary entity in combination with gene 
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interaction networks and applied non-negative matrix factorization to form four subtypes 

(Hofree, Shen, Carter, Gross, & Ideker, 2013). 
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Chapter 4 

MATERIALS AND METHODS 

Datasets 

In development of this project, we downloaded the sequence variation data in variant call 

format (vcf) for the TCGA breast cancer whole exome sequencing data. Since the data in 

TCGA comes from a diverse group of patients, to eliminate the population heterogeneity 

effect, we retrieved a subset of breast cancer patients (n=358) by selecting only white, not 

Hispanic or Latino patients whose clinical and whole exome sequence data are available. 

The sequencing data presented in TCGA is processed using several variant callers 

including, VarScan2 (Koboldt et al., 2012), SomaticSniper (Larson et al., 2012) Samtools 

(H. Li, Ruan, & Durbin, 2008) . Based on our previous experience with variant callers 

and supporting literature (Q. Wang et al., 2013), we used the variants discovered by 

VarScan2. We obtained an average of 17,640 point variations per patient, generated by 

VarScan2, a highly sensitive tool to detection of somatic mutations in exome sequencing 

data from normal-tumor pairs. 

Data Representation 

In this study we used CADD, a method that integrates functional annotations, 

conservation, and gene-model information into a single score called C-score. As 

mentioned in the original publication, (Kircher et al., 2014) C-scores correlate with 

allelic diversity, annotations of functionality, pathogenicity, disease severity, 

experimentally measured regulatory effects, and complex trait associations. This score is 

originally defined to range from negative infinity to positive infinity, where higher score 
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denotes more deleterious effects; however since our clustering (NMF) algorithm requires 

all data entries to be positive, we transformed all the scores by adding the minimum score 

to the original scores. 

Our method uses an extensive data structure (mutation score matrix) to keep track 

of all the deleteriousness scores (C-scores) of somatic mutations used for machine 

learning. The mutation score matrix represents a table that contains the genes in rows and 

the patients in columns, yielding a matrix of size 18,117 rows by 358 columns, with at 

least one mutation in each row. And each cell contains the sum of all C-scores of 

mutations found in a gene for a patient. C-scores in the mutation score matrix ranges 

from 0 to 1417.14 and distribution of scores for top 10 variant genes can be seen in 

Figure 3. (The Python codes developed to build the data structure and apply 

preprocessing steps are provided in the Appendix.) Comparison against the COSMIC 

database shows that nine out of these 10 genes (with the exception of FAM38A gene) 

have evidence of abundant accumulation of somatic mutations in large population screens 

(Forbes et al., 2014). 
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Figure 3: Distribution of total mutational scores for the top 10 variant genes. 

 

Somatic mutation profiles of BC patients exhibit a very sparse data form, unlike 

other data types such as gene expression or methylation in which nearly all genes or 

markers are assigned a quantitative value in all the patients. Even clinically identical 

patients may share no more than a single mutation (Bell et al., 2011; Lawrence et al., 

2013; TCGA, 2012). Therefore, this problem introduces too many zero valued entries to 

the main data structure (96%). On the other hand, from machine learning perspective, 

having a limited number of patients (a far less number of patients than the number of 

effected genes in the cohort) introduces a dimensionality challenge commonly known as 

the “curse of dimensionality” in machine learning. Generally machine learning 

algorithms desire to use a dataset, which has number of cases at least 10 times the 
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number of features, hence giving a minimum 10:1 sample-to-feature ratio. However, in 

this study we are faced with a challenge as we observed the sample-to-feature ratio of 

1:50 (358/18117) in the main data structure.  

In order to overcome the aforementioned challenges, generally there are two 

popular approaches, namely; feature extraction and feature selection. Feature extraction 

transforms the current existing features into a lower dimensional space and widely used 

example methods include principal component analysis (PCA) and linear discriminant 

analysis (LDA), while feature selection selects a subset of features without applying any 

transformation. These methods increase the sample-to-feature ratio and decrease the 

sparseness hence making the clustering both feasible and more effective. In this 

dissertation we used both feature selection and feature extraction in succession, as further 

explained in below. 

Clustering  

We implemented an 𝑚 × 𝑛 mutation score matrix to keep track of the sum of the variant 

scores in all genes, where m is the number of genes (18,117) and n is the number of 

samples (358 patients). The value in entry (i, j) indicates the mutation score of gene i in 

sample j, which is the sum of all C-scores of mutations found in the gene i for the sample 

j. 

We used NMF method for clustering, which aims to find a small number of 

metagenes, each defined as a positive linear combination of all the genes so that the 

method can approximate the mutation load of the samples as positive linear combinations 

of these metagenes. Mathematically, this corresponds to factoring a given non-negative 

matrix A of size 𝑚 × 𝑛, into two smaller matrices, 𝑊 ∈ ℝmxk 
and  𝐻 ∈ ℝkxn

, with positive 
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entries, 𝐴 ≈ 𝑊𝐻 using a positive integer number 𝑘 < 𝑚𝑖𝑛{𝑚, 𝑛}. Matrix W, called as a 

basis matrix and has size 𝑚 × 𝑘, with each of the k columns defining a metagene; and 

entry 𝑤𝑖𝑗  represents the coefficient of gene 𝑖  in metagene  𝑗 . Matrix H is named as 

coefficient matrix and has size  𝑘𝑥𝑛 , with each of the m columns representing the 

metagene expression pattern of the corresponding sample; and entry ℎ𝑖𝑗  represents the 

mutation load of metagene 𝑖 in sample 𝑗. There are multiple solutions to this problem and 

in this study we adopt a method by Brunet et al. (Brunet, Tamayo, Golub, & Mesirov, 

2004) that was shown to perform better. The solution to form factors W and H can be 

obtained as explained in the following. The method starts by randomly initializing the 

matrices W and H and iteratively updates W and H to minimize a divergence function. W 

and H are updated by using the coupled divergence equations shown in Equation 1. 

𝑊𝑖𝑎 ← 𝑊𝑖𝑎

∑ 𝐻𝑎𝑢𝐴𝑖𝑢𝑢 (𝑊𝐻)𝑖𝑢⁄

∑ 𝐻𝑎𝑣𝑣
, 𝐻𝑎𝑢 ← 𝐻𝑎𝑢

∑ 𝑊𝑖𝑎𝐴𝑖𝑢𝑖 (𝑊𝐻)𝑖𝑢⁄

∑ 𝑊𝑘𝑎𝑘
 

Equation 1: Coupled divergence equations to update the W and H matrices 

As a result of factorization, we use coefficient matrix H to group our samples into 

given number (𝑘) of clusters. Algorithm assigns each sample according to the highest 

scored metagene in patients designated column in matrix H; meaning that sample 𝑗 will 

be assigned to the cluster 𝑖 if ℎ𝑖𝑗 is the highest entry in column 𝑗. 

To specify the optimal number of clusters (rank of clustering) and features (genes) 

to use in clustering, we used consensus matrix and average silhouette width of consensus 

matrix.  
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Since the NMF algorithm starts with a random initial class assignment of samples, 

repeated runs over the same sample set with constant input parameters may not result in 

the same sample assigned to the same class between the runs; however, if we observe 

only a little variation in these associations between runs, then we can conclude with 

confidence that a strong clustering was performed for this set of parameters (number of 

clusters and features). This idea forms the basis for our clustering performance 

evaluations. 

Clustering Quality Assessment Methods: Consensus Matrix 

Consensus matrix is a concept proposed by Brunet et al. (Brunet et al., 2004) providing 

visual insights about the performance of clustering. The concept can be explained as 

follows. In each run, sample to class assignments can be represented by a connectivity 

matrix 𝐶  of size 𝑚𝑥𝑚 by entering 𝑐𝑖𝑗 = 1 if samples 𝑖  and 𝑗  are assigned to the same 

cluster and 𝑐𝑖𝑗 = 0  otherwise. Then the consensus matrix, 𝐶̅ , can be calculated by 

averaging the connectivity matrix 𝐶 for many clustering runs. (We selected to use 100) 

The value in 𝐶�̅�𝑗  ranges from 0 to 1 and reflects the probability of samples 𝑖  and 𝑗 

assigned to the same cluster. In the case of a stable clustering then we expect to see most 

of the values in 𝐶̅ to be close to 0 or 1. 

Clustering Quality Assessment Methods: Silhouette Score 

In addition to the consensus matrix, we used average silhouette width of consensus 

matrix (silhouette(consensus)), introduced by Rousseeuw (Rousseeuw, 1987), to 

quantitatively measure the stability of the clustering runs with different parameters. 

Silhouette concept is defined as follows: for each sample we can define 𝑎(𝑖) as the 
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average dissimilarity/distance of sample 𝑖 with all other data within its cluster, the value 

of 𝑎(𝑖) will then indicate how well the sample 𝑖 fits into its assigned cluster by having a 

smaller value showing better assignment. Then we can define 𝑏(𝑖) by the lowest average 

dissimilarity of sample 𝑖 to any other cluster that 𝑖 is not a member. In other words 𝑏(𝑖) 

indicates the average dissimilarity of sample 𝑖 to its closest neighboring cluster or its next 

best fit cluster. Then the silhouette score of a sample can be calculated as in Equation 2 

below. The value of 𝑠(𝑖) can range from -1 to 1, and being close to 1 means that the 

sample is perfectly clustered. And average of 𝑠(𝑖) over all the samples, named as average 

silhouette width, shows how well the data has been clustered. 

𝑠(𝑖) =

{
 
 

 
 1 −

𝑎(𝑖)

𝑏(𝑖)
,  if 𝑎(𝑖) < 𝑏(𝑖)

0,  if 𝑎(𝑖) = 𝑏(𝑖)
𝑏(𝑖)

𝑎(𝑖)
− 1,  if 𝑎(𝑖) > 𝑏(𝑖)

 

  also can be written as  𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max {𝑎(𝑖),𝑏(𝑖)}
 

Equation 2: Equation shows how the silhouette score of sample can be 
computed 

Lastly, among several implementations of NMF in various programming 

languages, we selected to use an R implementation of NMF, published by Gaujoux and 

Seoighe (Gaujoux & Seoighe, 2010), because of its efficient and flexible parallel 

processing design and ease of applicability to our study. (The R script preparing the data 

and running NMF algorithm is provided in the Appendix.) 

Feature Selection and Optimization of Clustering 

As also mentioned earlier feature selection constitutes an essential step in any machine 

learning algorithms. We separately performed feature selection for supervised 

(classification) and unsupervised (clustering) sections of the project. 
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Due to the higher number of features (tens of thousands genes) being much more 

than the number of samples (hundreds of samples), we first used feature selection to 

select only the informative features for clustering; thus to reduce the feature size. We 

ranked the features in decreasing order of their variance values (Equation 3) and selected 

top n features for clustering. 

𝑆2 =
∑(𝑋 − �̅�)2

𝑛 − 1
 

Equation 3: Variance formula 

To find the most accurate clustering case, we iteratively run the clustering 

algorithm over a range of biologically reasonable parameters which is form 2 to 5 clusters 

and for selected top 10 to 1000 variant genes. Since running the algorithm for each 

number of cluster and for each 1000 genes would be computationally intensive and not 

necessary, in finding the correct number of genes we firstly run the algorithm for genes 

that increase 10 each time (10 genes, 20 genes etc.). And in the second step; we run the 

algorithm with all the genes in the range around the point we received the highest 

consensus silhouette score. As an real case example; we receive the highest silhouette 

score for 850 genes with 3 clusters, in the second step we run the algorithm for all the 

genes from 840 to 860 genes and found that 856 is actually producing the best clustering. 

For better and easier understanding, we present this algorithm in the pseudo code below 

in Table. 1. In finding of Later we used the consensus matrix’s silhouette score to 

determine the optimal number of genes and clusters.  
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a for number_of_cluster in 2 to 10: 

  for number_of_features in 10 to 1000 incrementing by 10: 

    Data=select_top_features(Raw_data,number_of_features) 

    NMF (Data,number_of_clusters) 

b number_of_cluster=2 

For number_of_features in 620 to 640 incrementing by 1: 

  Data=select_top_features(Raw_data,number_of_features) 

  NMF (Data,number_of_clusters) 

Table 1: Pseudo code for iteratively applying all potential values for k and 

number of features to keep 
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Characterization of Clusters 

To characterize the clusters we discovered, we correlated the samples in the clusters with 

their clinical features. For simplicity, we defined stage I and II as early stage and stage III 

and IV as late stage. The Fisher’s exact test was used to assess the stage tendency of 

clusters.  

We compared the mutation score of genes between clusters using the Wilcoxon 

rank-sum test, and adjusted the multiple testing with the false discovery rate (FDR). The 

FDR was estimated using the Benjamini-Hochberg procedure (Benjamini & Hochberg, 

1995). We used the R language and environment (RDevelopment, 2012) to run all the 

statistical tests. In addition, we performed functional analysis of the differentially 

mutated genes between the clusters using the Ingenuity Pathway Analysis (“IPA; 

Ingenuity Systems Inc.; Redwood, CA, USA,” n.d.) and the Gene Set Enrichment 

Analysis (GSEA) tools (Subramanian, Tamayo, Mootha, Mukherjee, & Ebert, 2005). 
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Development of Supervised Classification Model 

For running feature selection, classification model generation using ML algorithms and 

performance measurements, we used the Waikato Environment for Knowledge Analysis 

(WEKA) (Hall et al., 2009) framework, which is an open-source, Java-based framework.  

For feature selection, we used the Information gain attribute evaluator (Mitchell, 

1997), and Ranker algorithms implemented in Weka for evaluation and searching of the 

features. We used five diverse and most popular ML algorithms; namely RF (Breiman, 

2001), Naïve Bayes (Rish, 2001), C4.5 (named as J48 in Weka) (Salzberg, 1994), SVM 

(Platt, 1998), and KNN (Stevens, Cover, & Hart, 1967) to build classification models. 

For performance measurements, we used 10-fold cross-validation. In 10-fold cross-

validation, patients are randomly partitioned into ten equal sized parts keeping the class 

ratio const1ant in each part; nine parts are used for training the classifiers and remaining 

part is used for testing. This procedure is repeated ten times, resulting each part is tested 

against the models built using other nine parts. The average of performance 

measurements of all ten iterations is considered as an unbiased estimate of the whole 

classification model. We report the performance of the classifiers using standard 

classification evaluation metrics, including: accuracy, sensitivity (true positive rate, TPR, 

also called recall), specificity (true negative rate, TNR), false positive rate, false negative 

rate, precision (Positive Predictive Value, PPV) and F measure (also called F1 score). In 

Table 2, we show confusion matrix, also called contingency table, which is used to 

calculate performance measures, and Table 3 values making true positives (TP), false 

positives (FP), true negative (TN), and false negatives (FN), are shown And the equations 

to calculate performance measures are presented in Table 3. In addition, we generate 
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ROC curves, which graphically present the performance of classifiers for each class and 

calculate the area under the curve (AUC) as a numeric evaluation of ROC curves. Also, 

we would like to note that even though most of these measures initially defined for binary 

classification (having only two classes); they are applicable to multiclass classification by 

following one-vs.-rest approach. 
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(Sensitivity) 

TPR: TP/(TP+FN) 

(Specificity)TNR: TN/(TN+FP) 

FPR: FP/(FP+TN) or 1- 

FNR: FN/(FN+TP) 

(Precision) PPV: TP/(TP+FP) 

F measure: 2*(PPV*TPR)/(PPV+TPR) 

Table 4: Shows the equations to be used to calculate performance measures. 

 

  

  

Actual label 

  

Cluster 1 Cluster 2 Cluster 3 

Classified as Cluster 1 a b C 

 

Cluster 2 d e F 

 

Cluster 3 g h I 

Table 2: Confusion matrix showing the number of patients predicted to be in a class 

and actual number of patients in that class. As an example value “a” shows the 

number of patients correctly predicted to be in Cluster 1. And value “b” shows the 

number of pa 

    

 

Cluster 

1 

Cluster 

2 

Cluster 

3 

TP: a e i 

FP: b+c e+f h+i 

TN: e+f+h+i d+g+f+i d+e+g+h 

FN: d+g e+h f+i 

Table 3: Shows the definition of basic measures, which are used to calculate 

performance measures. 
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Permutation Test 

Finally, to validate the strength of the achieved prediction accuracy, we run a permutation 

test. For this test we generated 10,000 datasets by randomly shuffling patient labels in our 

dataset, while keeping the number of patients in each class constant. We run 10-fold 

cross-validation with RF classification algorithm together with feature selection step on 

these datasets, in the same way used for the real data in the study. We calculated a p-

value by the number of times this validation produced a better accuracy on randomly 

shuffled dataset divided by 10,000 as seen in Equation 4. 

 

𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑠𝑡 𝑃 − 𝑣𝑎𝑙𝑢𝑒 =
#(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑎𝑛𝑑𝑜𝑚 > 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) 

10000
 

Equation 4: Permutation test 
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Chapter 5 

RESULTS AND DISCUSSION 

Exome Data Analysis and Variant Calling 

We have obtained an average of 17,640 point variations per patient generated by 

VarScan2 (Koboldt et al., 2012) and applied a set of filters to select only those that are 

likely to exhibit an impact on the function and/or the structure of the gene or protein. 

Since the generation of next-generation sequencing (NGS) data and variant calling 

involves several error prone steps, filtration of the variant data constitutes a major step in 

variant analysis. Firstly, we focus only on the somatic (non-inherited) and 

nonsynonymous (cause a change in the translated amino acid) point mutations because of 

their perceived impact on disease initiation and progression. Secondly, even though 

exome sequencing targets only the coding regions of DNA, the exome capture kits often 

amplify off-target non-coding regions such as intergenic, untranslated and intron regions. 

Hence, we filter out all the variations outside of the coding region. We analyze the 

remaining variations by their impact on the function or structure of the resulting protein. 

Finally, we check the population frequency of remaining variations in Single Nucleotide 

Polymorphism Database (dbSNP) (Sherry et al., 2001), which is a public achieve for 

genetic variation developed and hosted by National Center for Biotechnology 

Information (NCBI). In this step, we filter out the variations that are commonly found in 

population and hence are not necessarily associated with a disease. Generally, variations 

with less than 0.05 minor allele frequency (MAF) are considered as phenotype-causing 

variations and hence are called as mutations.  
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Classification of Breast Cancers Based On Somatic Mutations 

As a prior step before clustering, we applied feature selection by ranking the features 

(genes) in decreasing order of their variance value and selected top n features for 

clustering. We optimized the size of n to be 854 genes in our clustering method and 

determined the number of clusters k as explained in “Feature selection and optimization 

of clustering” section to be 3. Later using the NMF clustering algorithm on our dataset, 

we stably clustered the samples into 3 groups using the top 854 genes, which have the 

highest variance values of mutation scores across all the samples. The three groups 

Cluster 1, 2, and 3 involve 169, 121 and 68 patients, respectively. Refer to Materials and 

Methods section for more details about the NMF method and to Optimization results 

section for detailed information on results of the optimization steps. 

Unsupervised clustering is the task of grouping a set of samples that have no label 

information, which results in grouping samples in such a way that samples in the same 

group are more similar in a specified measure to each other than to those in the other 

groups. There are several methods trying to achieve this goal such as k-means clustering, 

hierarchical clustering and expectation maximization (EM) algorithms. However, these 

methods perform poorly or can not come to a solution when applied to sparse data, as is 

the case in our study. Therefore, we selected to use NMF because of its proven superior 

performance when tested on applications that use biological data. (Kim, Seo, Joung, & 

Kim, 2011; Lawrence et al., 2013; Zheng, Zhang, Ng, Shiu, & Huang, 2011). NMF was 

introduced in its modern formulation by Lee and Seung (Lee & Seung, 2001) as a method 

to decompose images.  
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As a factorization method, NMF algorithm takes our mutation score matrix as the 

input and decomposes it to two smaller matrices (basis matrix W and coefficient matrix 

H). The output coefficient matrix (matrix H) is used to make sample cluster assignments. 

Refer to methods for more details. 

In Figure 4 we show a representation of the input data in the mutation score 

matrix with statistically significant genes sorted by their variance in decreasing order; 

since the data is extremely sparse the heat map consists of mostly blue cells. In order to 

make the heat map more readable to human eye, we show the input data in Figure 5 

focusing only the top 50 variant genes. As it can be seen, data still represents a very 

sparse form (most of the cells are colored blue meaning a score of zero) that makes most 

clustering approaches inapplicable. Figures 6 and 7 are the output matrices from 

decomposition of the mutation score matrix, which we input to NMF algorithm. Note that 

multiplication of the two output matrices will approximately yield the input data. In 

Figure 7, we see the basis matrix (W), which is not used in the scope of this study; 

however it could serve for clustering purpose of the genes. Figure 6 displays the 

coefficient matrix (H), where the rows represent the metagenes that are a compact 

representation of all the genes, and columns represent the patients. We use this matrix to 

make sample to cluster associations by assigning the samples to the clusters where we 

observe the highest metagene value, i.e., the dark red color (see methods section for 

details). 
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Figure 4: C-scores of 358 significantly mutated genes in late-stage-enriched 

cluster 
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Figure 5: Input matrix with C-scores of the top 50 variant genes. Columns represent 

patients (358) and rows represent genes. 
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Figure 6: Coefficient matrix (H), 3x358 in size, used for assigning samples to 

clusters. Columns represent patients and rows represent metagenes. 
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We generated 3 metagenes that are used to cluster patients into 3 groups. We 

determined the number of metagenes (rank of clustering) by running the algorithm 

iteratively over a range of biologically reasonable parameters as explained in the methods 

section. 

 

Figure 7: Basis matrix (W), 854x3 in size, clustering the genes. 
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Figure 8 illustrates the stability of the clustering by displaying the consensus 

matrix, which was generated after 100 NMF runs using Brunet’s (Brunet et al., 2004) 

approach (explained in methods section). We used the silhouette score of consensus 

matrix to determine the optimum number of genes and clusters. In an ideal clustering 

case, we expect to observe values either close to 1 or 0, indicating the probability of two 

samples being in the same cluster or not, respectively, which displays solid colored 

blocks. A value of 1 represents the highest probability that two samples are in the same 

cluster (red blocks) and the value of 0 denotes the opposite (blue blocks). In Fig. 4 it can 

be seen that the dataset is clearly clustered into three distinct groups. 
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Figure 8: Consensus matrix, 358x358 in size and illustrating the stability of the 

clustering. In ideal case, all the entries are expected to be either 0 or 1, making solid 

colored blocks. The bar on top indicates the clinical stage of each patient.  

Silhouette (consensus) = 0.958 
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Optimization Results 

NMF clustering algorithm takes number of clusters and features as input hence we need 

to find the optimum number of clusters and genes. Here, we present the results of 

optimization steps. As explained in the “Feature selection and optimization of clustering” 

section under “Methods and Materials”. We run the clustering algorithm over a range of 

biologically meaningful parameters that include from 1 to 5 clusters and 10 to 1000 

genes. Visual inspection shows the quality of clustering in figures shown in Figure 9 to 

Figure 12. As a natural consequence of increasing the number of clusters 𝑘, the clustering 

quality decreases. A visual inspection in Basis, Coefficient and Consensus matrices 

confirms this observation. We observe a decreasing contrast between clusters in Basis 

and Coefficient matrices and increased block fractures in Consensus matrix, thus 

decreasing silhouette score, which indicates the decreasing clustering quality. Based on 

these results, we selected the number of clusters 𝑘 as 3, and the number of genes 𝑛 as 

854, as optimal. Even though we observe the highest silhouette score in the case 𝑘=2, we 

did not select this parameter because of the infeasible clinical differentiation between 

clusters. 
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2 Clusters with 910 genes 

   
Basis matrix (W) 

Dimensions: 910x2 

Coefficient matrix (H) 

Dimensions: 2x358 

Consensus matrix 

Dimensions: 358x358 

Silhouette score: 99% 

Figure 9: Optimal clustering achieved for number of clusters (k) selected as 2 using 

910 top variant genes. Even though this case achieved the highest silhouette score, 

the low number of clusters makes the results biologically unexplainable. 

 

3 Clusters with 854 genes 

   
Basis matrix (W) 

Dimensions: 854x3 

Coefficient matrix (H) 

Dimensions: 3x358 

Consensus matrix 

Dimensions: 358x358 

Silhouette score: 96% 

Figure 10: Optimal clustering achieved for number of clusters (k) selected as 3 using 

854 top variant genes. This case is determined to use for further analysis in the 

project. 
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4 Clusters with 700 genes 

   
Basis matrix (W) 

Dimensions: 700x4 

Coefficient matrix (H) 

Dimensions: 4x358 

Consensus matrix 

Dimensions: 358x358 

Silhouette score: 84% 

Figure 11: Optimal clustering achieved for number of clusters (k) selected as 4 using 

700 top variant genes. The deteriorating clustering quality is visible in consensus 

matrix’s heatmap plot and its silhouette score. 

 

5 Clusters with 930 genes 

   
Basis matrix (W) 

Dimensions: 930x5 

Coefficient matrix (H) 

Dimensions: 5x358 

Consensus matrix 

Dimensions: 358x358 

Silhouette score: 52% 

Figure 12: Optimal clustering achieved for number of clusters (k) selected as 5 using 

930 top variant genes. The deteriorating clustering quality is visible in consensus 

matrix’s heatmap plot and its silhouette score. 
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Characterization of Discovered Clusters 

We investigate the clinical significance of discovered clusters by comparing the BC stage 

of the patients in each cluster. For this purpose, we analyze the distribution of patients 

according to their clinical features provided in the TCGA data.  

We compare the clusters with a number of clinical features including: ER status, 

PR status, HER2 status, age at diagnosis, TNBC or non-TNBC, BC stage, and aggregated 

BC stage. The distribution of patients to groups for two and three cluster cases with p-

values generated by Fisher’s Exact test can be seen in tables Table 5, Table 6, and Table 

7. Even though we observe several significant p-values in the distributions, the mutation 

load comparisons did not confirm this classification, for this reason we focus our 

attention only on the BC stage distribution, which was further confirmed by comparison 

of mutation loads. 
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 ER Status  PR status  HER2 status 

Cluster Negative Positive  Negative Positive  Negative Positive 

cluster1 18 84  24 78  77 25 

cluster2 61 195  91 165  198 58 

 P-value 0.2585  P-value 0.0329  P-value 0.7815 

         

Cluster Negative Positive  Negative Positive  Negative Positive 

cluster1 44 125  59 110  137 32 

cluster2 27 94  40 81  85 36 

cluster3 8 60  16 52  53 15 

 P-value: 0.0496  P-value: 0.2331  P-value: 0.1022 

Table 5: The distribution of patients to clusters according to their ER, PR and 

HER2 status with Fisher’s Exact test p-values 

 

 Age at diagnosis  TNBC or Non-TNBC 

Cluster Mean  TNBC Non TNBC Ratio 

cluster1 60.41  27 279 0.0968 

cluster2 58.17  132 636 0.2075 

 P-value: 0.219  P-value: 0.000399  

       

Cluster Mean  TNBC Non TNBC Ratio 

cluster1 57  33 136 0.2426 

cluster2 59.66  14 107 0.1308 

cluster3 61.79  6 62 0.0968 

 P-value: 0.048  P-value: 0.000137442 

Table 6: The distribution of patients to clusters according to their age and TNBC 

status with Fisher’s Exact test p-values. Even though TNBC distribution resulted a 

significant p-value, it is not used in the project due to comparison of mutation levels 

of patients contradicts to biological expectation. 
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 BC Stage  BC Stage 

Cluster Stage I Stage II Stage III Stage IV  Early Stage* Late Stage* Ratio* 

cluster1 48 153 99 0  201 99 2.0303 

cluster2 174 399 177 9  573 186 3.0806 

 P-value: 0.0008    P-value: 0.005646  

         

Cluster Stage I Stage II Stage III Stage IV  Early Stage* Late Stage* Ratio* 

cluster1 39 92 34 1  131 35 3.7429 

cluster2 24 62 32 2  86 34 2.5294 

cluster3 11 30 26 0  41 26 1.5769 

 P-value: 4.61E-05  P-value: 0.02048 

Table 7: The distribution of patients to clusters according to their BC stage with 

Fisher’s Exact test p-values. This distribution is selected to be further analyzed in 

the project. 

 

Ratio: # stage I-II / #stage III-IV 

Early stage: Stage I-II 

Late Stage: Stage III-IV 

Table 8: Definition early and late stage breast cancer in the project 

 

In comparison of BC stages we defined two aggregated BC stages as Early and 

Late stage BC groups, as shown in Table 8 We found that Cluster 1 was dominated by 

early stage patients while Cluster 3 had much higher proportion of late stage patients 

compared to Cluster 1 (Fisher’s exact test p-value=0.02048, Table 9). As can be seen in 

Table 9, the number distribution of patients in each cluster with stage ratio (number of 

early stage patients over late stage patients) for Cluster1 is more than two-fold higher 

than that of Cluster 3; hence here we call Cluster 1 as the early-stage-enriched cluster, 

Cluster 2 as the mixed cluster and Cluster 3 as the late-stage-enriched cluster. This 
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separation of patients by their disease stage indicates that our clustering method can 

successfully discriminate breast cancer patients by their disease stage using only the 

somatic mutational profiles of patients from their exome sequencing data. 

Cluster Number of 

patients 
a
 

Number of early stage 

patients 
b
 

Number of late stage 

patients 
c
 

Ratio 
d
 

Cluster 1 166 131 35 3.74 

Cluster 2 120 86 34 2.53 

Cluster 3 67 41 26 1.58 

Table 9: Distribution of patients in the clusters discovered. P-value= 0.02048  

a- Five patients were not included due to their unknown stage information; 

b- Sum of stage I and II patients in each cluster; 

c- Sum of stage III and IV patients in each cluster;  

d- Ratio of the number of early stage patients to the number of late stage patients 
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Next, we compared the somatic mutation profiles of patients between the early 

and late-stage-enriched clusters (Cluster 1 vs. Cluster 3). We found that there were 358 

genes, which have significantly higher mean mutation scores in the late-stage-enriched 

cluster (Cluster 3) than in the early-stage-enriched cluster (Cluster 1) (Wilcox rank-sum 

test, FDR<0.1), but none of the genes have significantly higher mean mutation scores in 

Cluster 1 than in Cluster 3. This interesting finding indicates that these genes may have 

accumulated deleterious mutations leading to the progression of breast cancer into 

advanced disease states. We identified that tumor suppressor genes, APC, BRCA2; and 

oncogene, MLL are among the 358 genes used in this comparison. Table 10 shows the 

significant genes that are found to show significantly higher mutation rates in late-stage-

enriched cluster. 
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Gene name p value FDR value 

 

Gene name p value FDR value 

TTN 0 0 

 

NBAS 3.25E-10 5.91E-09 

MACF1 0 0 

 

DNAH6 4.83E-10 8.59E-09 

FSIP2 0 0 

 

CAST 5.00E-10 8.71E-09 

DNAH9 0 0 

 

CCDC18 5.09E-10 8.70E-09 

DST 0 0 

 

MBD5 5.39E-10 9.03E-09 

KIAA1731 0 0 

 

KALRN 6.02E-10 9.88E-09 

DSP 0 0 

 

FLNB 6.15E-10 9.91E-09 

VPS13D 4.44E-16 4.74E-14 

 

NAV3 6.24E-10 9.87E-09 

UBR4 1.55E-15 1.47E-13 

 

BPTF 6.24E-10 9.69E-09 

C10ORF18 1.89E-15 1.61E-13 

 

MMS19 6.62E-10 1.01E-08 

SYNE1 2.55E-15 1.98E-13 

 

OTOGL 6.62E-10 9.92E-09 

HERC1 5.44E-15 3.87E-13 

 

ZFHX4 6.88E-10 1.01E-08 

CSMD1 2.35E-14 1.55E-12 

 

CMYA5 7.51E-10 1.09E-08 

CHD9 2.93E-14 1.79E-12 

 

MIA3 8.20E-10 1.17E-08 

KIAA1109 3.26E-14 1.86E-12 

 

AKAP6 8.62E-10 1.21E-08 

XIRP2 4.04E-14 2.16E-12 

 

SHROOM3 1.23E-09 1.70E-08 

APC 8.06E-14 4.05E-12 

 

DOCK7 2.25E-09 3.06E-08 

GPR98 1.23E-13 5.86E-12 

 

DYNC2H1 2.37E-09 3.17E-08 

DOCK9 4.62E-13 2.07E-11 

 

HECTD1 2.40E-09 3.15E-08 

VCAN 5.78E-13 2.47E-11 

 

PTPRQ 2.83E-09 3.66E-08 

SYNE2 7.90E-13 3.21E-11 

 

WHSC1 2.83E-09 3.61E-08 

RIF1 1.06E-12 4.10E-11 

 

TET1 2.97E-09 3.73E-08 

NOTCH2 1.40E-12 5.21E-11 

 

NBEA 3.07E-09 3.80E-08 

WDFY4 1.70E-12 6.05E-11 

 

COL4A3 4.80E-09 5.85E-08 

MLL 2.28E-12 7.79E-11 

 

LPHN2 7.23E-09 8.69E-08 

PKHD1 2.89E-12 9.49E-11 

 

BRCA2 8.91E-09 1.06E-07 

AKAP9 5.72E-12 1.81E-10 

 

MLPH 1.06E-08 1.24E-07 

PHF3 6.79E-12 2.07E-10 

 

HIVEP1 1.08E-08 1.25E-07 

STARD9 7.47E-12 2.20E-10 

 

C12ORF35 1.08E-08 1.23E-07 

RYR3 7.66E-12 2.18E-10 

 

QSER1 1.13E-08 1.27E-07 

CEP350 1.15E-11 3.17E-10 

 

BIRC6 1.19E-08 1.32E-07 

LRBA 1.39E-11 3.71E-10 

 

FAT1 1.31E-08 1.44E-07 

FAT3 1.43E-11 3.69E-10 

 

ZDBF2 1.72E-08 1.85E-07 

GOLGA4 2.00E-11 5.02E-10 

 

NUMA1 1.78E-08 1.90E-07 

DNAH2 2.05E-11 5.01E-10 

 

N4BP2 1.80E-08 1.90E-07 

ZNF292 2.24E-11 5.30E-10 

 

GCN1L1 2.05E-08 2.14E-07 

WDFY3 2.49E-11 5.74E-10 

 

KCNMA1 4.42E-08 4.55E-07 

EYS 4.58E-11 1.03E-09 

 

HUWE1 4.42E-08 4.49E-07 
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SACS 8.23E-11 1.80E-09 

 

TTC3 4.88E-08 4.90E-07 

FAT4 1.07E-10 2.28E-09 

 

MYCBP2 5.03E-08 4.99E-07 

PRRC2C 1.58E-10 3.29E-09 

 

CEP250 7.33E-08 7.20E-07 

ANK2 1.65E-10 3.36E-09 

 

HYDIN 1.36E-07 1.32E-06 

LRP2 1.68E-10 3.33E-09 

 

RP1 1.40E-07 1.34E-06 

LIMCH1 1.71E-10 3.32E-09 

 

MDN1 1.42E-07 1.34E-06 

FRY 1.75E-10 3.33E-09 

 

EPG5 1.78E-07 1.67E-06 

CENPF 1.95E-10 3.61E-09 

 

PLB1 1.87E-07 1.74E-06 

PMEL 1.87E-07 1.72E-06 

 

LPHN3 1.07E-05 6.54E-05 

KLKB1 1.87E-07 1.70E-06 

 

MLL3 1.14E-05 6.93E-05 

MGA 1.95E-07 1.75E-06 

 

TG 1.18E-05 7.13E-05 

RAPGEF2 2.13E-07 1.90E-06 

 

XKR6 1.23E-05 7.39E-05 

ANKRD12 2.18E-07 1.92E-06 

 

NUP98 1.23E-05 7.34E-05 

LMO7 2.24E-07 1.95E-06 

 

FRAS1 1.25E-05 7.44E-05 

LAMA3 2.45E-07 2.11E-06 

 

ASXL3 1.35E-05 7.94E-05 

PRKDC 2.84E-07 2.42E-06 

 

CSMD2 1.48E-05 8.67E-05 

BRPF1 3.02E-07 2.56E-06 

 

C12ORF51 1.57E-05 9.14E-05 

ADARB1 4.63E-07 3.87E-06 

 

HTT 1.57E-05 9.08E-05 

FHAD1 4.66E-07 3.86E-06 

 

SZT2 2.42E-05 1.39E-04 

WNK1 5.29E-07 4.34E-06 

 

TLN2 2.54E-05 1.45E-04 

TNRC6B 5.32E-07 4.33E-06 

 

DCHS1 2.67E-05 1.51E-04 

HEATR5A 5.57E-07 4.49E-06 

 

RERE 2.72E-05 1.53E-04 

ODZ2 5.97E-07 4.77E-06 

 

NCAPG2 2.78E-05 1.55E-04 

MYO18B 6.52E-07 5.16E-06 

 

TTC28 3.05E-05 1.69E-04 

USP34 6.77E-07 5.31E-06 

 

MAGI1 3.20E-05 1.76E-04 

PDZD2 6.96E-07 5.41E-06 

 

DMXL1 3.22E-05 1.76E-04 

CASC5 7.38E-07 5.68E-06 

 

ARID1A 3.24E-05 1.76E-04 

ALMS1 7.88E-07 6.01E-06 

 

DNAH1 3.41E-05 1.85E-04 

SPEN 8.18E-07 6.18E-06 

 

MAPKBP1 3.49E-05 1.88E-04 

EP300 8.38E-07 6.28E-06 

 

DNAH10 3.63E-05 1.94E-04 

LOXHD1 1.21E-06 9.01E-06 

 

NAV2 3.87E-05 2.06E-04 

C11ORF41 1.38E-06 1.02E-05 

 

ANKRD11 4.00E-05 2.11E-04 

ARNTL2 1.41E-06 1.03E-05 

 

ATP13A1 4.03E-05 2.11E-04 

TRRAP 1.48E-06 1.07E-05 

 

CIT 4.10E-05 2.14E-04 

SEC31A 1.49E-06 1.07E-05 

 

ABCA13 4.53E-05 2.35E-04 

CCDC136 1.87E-06 1.33E-05 

 

ANK1 4.80E-05 2.47E-04 

KIAA0226 2.26E-06 1.59E-05 

 

TACC2 5.42E-05 2.77E-04 

EHBP1 2.80E-06 1.96E-05 

 

FAT2 6.06E-05 3.08E-04 

JMJD1C 2.80E-06 1.94E-05 

 

SASH1 6.68E-05 3.38E-04 
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EDC4 2.87E-06 1.97E-05 

 

SPTBN1 6.73E-05 3.38E-04 

AKAP12 3.18E-06 2.17E-05 

 

TCOF1 7.68E-05 3.83E-04 

COL4A5 3.62E-06 2.45E-05 

 

LAMB2 1.10E-04 5.49E-04 

SYNPO2 3.84E-06 2.58E-05 

 

TEP1 1.17E-04 5.76E-04 

CHD3 4.07E-06 2.71E-05 

 

GRIK5 1.17E-04 5.74E-04 

SPTAN1 4.34E-06 2.87E-05 

 

TRPM3 1.20E-04 5.88E-04 

SRRM2 5.62E-06 3.69E-05 

 

MED12 1.24E-04 6.00E-04 

COL6A3 6.09E-06 3.97E-05 

 

DIP2C 1.29E-04 6.20E-04 

CEP164 6.96E-06 4.50E-05 

 

ZNF407 1.30E-04 6.22E-04 

DNAH14 8.36E-06 5.37E-05 

 

SALL2 1.31E-04 6.26E-04 

PUM1 8.53E-06 5.43E-05 

 

RYR1 1.76E-04 8.37E-04 

DEPDC5 8.70E-06 5.50E-05 

 

CACNA1A 2.22E-04 1.05E-03 

SETD5 9.49E-06 5.96E-05 

 

TRAPPC9 2.41E-04 1.13E-03 

DOCK5 9.70E-06 6.05E-05 

 

DYNC1H1 2.68E-04 1.25E-03 

IPO5 9.70E-06 6.00E-05 

 

SF1 2.83E-04 1.31E-03 

CARD10 2.99E-04 1.38E-03 

 

CDK20 1.76E-03 6.49E-03 

CEP128 3.65E-04 1.68E-03 

 

ARHGEF40 1.77E-03 6.52E-03 

ROBO3 3.81E-04 1.74E-03 

 

RPS6KA4 1.84E-03 6.76E-03 

PCNX 4.25E-04 1.93E-03 

 

UROC1 1.99E-03 7.25E-03 

PLEKHH1 4.26E-04 1.93E-03 

 

NLRC5 2.24E-03 8.14E-03 

ERGIC3 4.30E-04 1.93E-03 

 

SSC5D 2.27E-03 8.20E-03 

COL17A1 4.31E-04 1.93E-03 

 

PKD1L2 2.27E-03 8.19E-03 

HERC2 4.50E-04 2.00E-03 

 

MCF2L 2.36E-03 8.46E-03 

CDC27 4.54E-04 2.01E-03 

 

ODZ4 2.89E-03 1.03E-02 

COL7A1 4.63E-04 2.04E-03 

 

MST1R 2.96E-03 1.05E-02 

CD44 4.75E-04 2.08E-03 

 

KIAA1967 3.05E-03 1.08E-02 

FANCM 5.60E-04 2.44E-03 

 

GBGT1 3.05E-03 1.08E-02 

MTUS2 5.71E-04 2.48E-03 

 

CUX2 3.08E-03 1.08E-02 

SPATA13 5.73E-04 2.47E-03 

 

LRRC16B 3.26E-03 1.14E-02 

ACACB 5.87E-04 2.52E-03 

 

DNAH17 3.45E-03 1.20E-02 

DNHD1 6.66E-04 2.84E-03 

 

MYH9 3.58E-03 1.24E-02 

EPB41L1 6.84E-04 2.91E-03 

 

SON 3.67E-03 1.27E-02 

TLN1 7.55E-04 3.19E-03 

 

PLOD3 3.74E-03 1.29E-02 

RBM33 7.61E-04 3.20E-03 

 

STK36 3.97E-03 1.36E-02 

FANCA 7.79E-04 3.26E-03 

 

LTBP3 4.01E-03 1.37E-02 

TET3 7.86E-04 3.27E-03 

 

COL4A4 4.25E-03 1.45E-02 

RNF213 8.07E-04 3.35E-03 

 

RLTPR 4.74E-03 1.61E-02 

CAMTA1 8.23E-04 3.40E-03 

 

MICAL1 4.80E-03 1.62E-02 

DLEC1 8.26E-04 3.39E-03 

 

RUSC2 4.80E-03 1.62E-02 
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MAP1A 8.28E-04 3.38E-03 

 

PXDN 4.86E-03 1.63E-02 

CCDC108 8.38E-04 3.41E-03 

 

STARD8 5.02E-03 1.67E-02 

CABIN1 8.39E-04 3.40E-03 

 

AD000671.1 5.09E-03 1.69E-02 

PCDH7 8.94E-04 3.60E-03 

 

SEMA5B 5.27E-03 1.74E-02 

NACA 9.62E-04 3.86E-03 

 

ATP11A 5.30E-03 1.75E-02 

KIAA0913 1.00E-03 4.01E-03 

 

P2RX2 5.42E-03 1.78E-02 

LRRK1 1.02E-03 4.04E-03 

 

IGFN1 5.44E-03 1.78E-02 

PIK3CD 1.07E-03 4.25E-03 

 

MYO7A 5.57E-03 1.82E-02 

MLLT4 1.07E-03 4.23E-03 

 

TRPM5 5.75E-03 1.87E-02 

RALGAPA2 1.12E-03 4.40E-03 

 

ESPL1 5.76E-03 1.86E-02 

COL5A1 1.27E-03 4.95E-03 

 

KIAA1274 5.97E-03 1.92E-02 

L1CAM 1.28E-03 4.97E-03 

 

ZNF536 6.39E-03 2.05E-02 

CCDC165 1.29E-03 4.97E-03 

 

AHNAK2 6.41E-03 2.05E-02 

DPP9 1.31E-03 5.05E-03 

 

KIF26B 6.50E-03 2.07E-02 

DOCK4 1.32E-03 5.04E-03 

 

ZFHX3 6.51E-03 2.07E-02 

COL6A6 1.42E-03 5.42E-03 

 

MXRA5 6.61E-03 2.09E-02 

TECTA 1.44E-03 5.46E-03 

 

NCOR2 6.69E-03 2.11E-02 

FAM65A 1.59E-03 6.02E-03 

 

RNF207 6.88E-03 2.16E-02 

SPEG 1.61E-03 6.04E-03 

 

EHMT1 6.98E-03 2.18E-02 

AC136932.2 1.62E-03 6.06E-03 

 

ARAP3 7.01E-03 2.19E-02 

LRP4 1.70E-03 6.34E-03 

 

MPRIP 7.17E-03 2.23E-02 

PCNT 1.71E-03 6.35E-03 

 

ADAP1 7.88E-03 2.44E-02 

KDM6B 7.99E-03 2.46E-02 

 

FER1L5 2.20E-02 5.81E-02 

CUL9 8.75E-03 2.69E-02 

 

SHANK3 2.23E-02 5.88E-02 

COL27A1 8.95E-03 2.74E-02 

 

CELSR3 1.94E-02 5.27E-02 

VWF 8.95E-03 2.73E-02 

 

ATP8B3 1.94E-02 5.27E-02 

GTF2IRD1 9.44E-03 2.87E-02 

 

C20ORF132 1.94E-02 5.26E-02 

ADAMTS10 9.62E-03 2.91E-02 

 

ZNF335 2.02E-02 5.44E-02 

CPAMD8 9.83E-03 2.97E-02 

 

CDH23 2.03E-02 5.45E-02 

NAV1 1.00E-02 3.01E-02 

 

ZNF574 2.08E-02 5.58E-02 

OGG1 1.01E-02 3.04E-02 

 

SCAP 2.12E-02 5.65E-02 

TBC1D9B 1.04E-02 3.09E-02 

 

ARID1B 2.12E-02 5.65E-02 

SFXN5 1.11E-02 3.29E-02 

 

NUP210 2.18E-02 5.79E-02 

MUC16 1.13E-02 3.36E-02 

 

CLU 2.36E-02 6.21E-02 

ITGA2B 1.16E-02 3.42E-02 

 

GUCY2D 2.42E-02 6.35E-02 

NPHP4 1.19E-02 3.50E-02 

 

BAI2 2.46E-02 6.42E-02 

C9ORF79 1.19E-02 3.49E-02 

 

OSBP2 2.53E-02 6.59E-02 

GPR123 1.20E-02 3.51E-02 

 

INPPL1 2.58E-02 6.71E-02 

SREBF2 1.24E-02 3.60E-02 

 

EML3 2.66E-02 6.89E-02 
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DCHS2 1.35E-02 3.91E-02 

 

CASZ1 2.86E-02 7.29E-02 

MAN2B2 1.43E-02 4.14E-02 

 

PTPRS 2.86E-02 7.28E-02 

THADA 1.45E-02 4.18E-02 

 

ABCA2 2.95E-02 7.47E-02 

COL22A1 1.47E-02 4.24E-02 

 

DIP2A 3.03E-02 7.65E-02 

AGAP2 1.48E-02 4.24E-02 

 

PCDH17 3.04E-02 7.66E-02 

SHANK1 1.49E-02 4.26E-02 

 

SLC12A3 3.28E-02 8.23E-02 

FADS3 1.51E-02 4.29E-02 

 

SLC9A5 3.36E-02 8.42E-02 

DLK2 1.56E-02 4.41E-02 

 

KCNQ4 3.44E-02 8.59E-02 

DYSF 1.56E-02 4.41E-02 

 

FLII 3.45E-02 8.59E-02 

PXDNL 1.58E-02 4.44E-02 

 

RGS14 3.49E-02 8.67E-02 

URB1 1.60E-02 4.50E-02 

 

PROC 3.52E-02 8.71E-02 

HEATR2 1.64E-02 4.60E-02 

 

FKBP10 3.55E-02 8.76E-02 

IRAK1 1.66E-02 4.63E-02 

 

B4GALNT4 3.57E-02 8.79E-02 

EHBP1L1 1.71E-02 4.77E-02 

 

RGS3 3.61E-02 8.87E-02 

D2HGDH 1.72E-02 4.76E-02 

 

COL2A1 3.68E-02 9.00E-02 

COL16A1 1.73E-02 4.79E-02 

 

ZNF541 3.72E-02 9.07E-02 

SCNN1D 1.79E-02 4.93E-02 

 

ALPK3 3.80E-02 9.24E-02 

ZC3H18 1.83E-02 5.03E-02 

 

ARHGAP33 3.91E-02 9.48E-02 

BRD1 1.87E-02 5.12E-02 

 

TNS3 3.94E-02 9.53E-02 

IFFO1 1.91E-02 5.21E-02 

 

EPHA1 3.96E-02 9.55E-02 

ITGB5 2.75E-02 7.09E-02 

 

INTS1 4.00E-02 9.61E-02 

RHBDF1 2.80E-02 7.20E-02 

 

CCDC88C 4.00E-02 9.60E-02 

AEBP1 2.81E-02 7.20E-02 

 

TPO 4.17E-02 9.98E-02 

GATAD2A 2.82E-02 7.20E-02 

 

PTCH2 4.20E-02 1.00E-01 

Table 10: Significant genes that show higher mutation rates in late-stage- enriched 

cluster (cluster 3) 
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We stratified these 358 genes into different gene families using the Gene Set 

Enrichment Analysis (GSEA) (Subramanian et al., 2005) tool as shown in Table 11. We 

observe that a significant proportion of the genes belong to transcription factor and 

protein kinase gene families, which are well known to be related to the progression of BC 

(Adeyinka, Nui, Cherlet, & Snell, 2002; Subramanian et al., 2005) Table 12 shows the 

assignment of these genes to functionally distinct gene families. 
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GSEA gene families Cytokines

/growth 

factors 

Transcriptio

n factors 

Homeodom

ain proteins 

Cell 

differentiation 

markers 

Protein 

kinases 

Translocate

d cancer 

genes 

Oncogenes Tumor 

suppressors 

Tumor suppressors 0 1 0 0 0 1 0 4 

Oncogenes 0 3 0 0 0 11 12  

Translocated cancer 

genes 

0 4 0 0 0 12   

Protein kinases 0 0 0 1 16    

Cell differentiation 

markers 

0 0 0 4     

Homeodomain proteins 0 3 3      

Transcription factors 0 25       

Cytokines and growth 

factors 

3        

Table 11: GSEA classification of 358 genes that have significantly higher mean mutation scores in cluster 3 compared to 

cluster 1. Note that some of the genes in our gene list are not found in any GSEA gene family. 
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Transcription 

factors 

Protein 

kinases 

Translocated 

cancer genes 

Oncogenes Cell differentiation 

markers 

Tumor 

suppressors 

Homeodomain 

proteins 

Cytokines and 

growth factors 

ARID1B ALPK3 AKAP9 AKAP9 CD44 APC CUX2 LTBP3 

BPTF CDK20 CASC5 CASC5 ITGA2B BRCA2 ZFHX3 SEMA5B 

BRD1 CIT EP300 MLL L1CAM EP300 ZFHX4 TG 

BRPF1 EPHA1 MLL MLLT4 MST1R FANCA   

CASZ1 GUCY2D MLLT4 MYH9     

CHD3 IRAK1 MYH9 NACA     

CUX2 KALRN NACA NOTCH2     

EP300 LRRK1 NUMA1 NUMA1     

HIVEP1 MST1R NUP98 NUP98     

LMO7 PRKDC RNF213 RNF213     

MED12 RPS6KA4 TET1 TET1     

MGA SPEG WHSC1 WHSC1     

MLL STK36       

MLLT4 TRRAP       

NCOR2 TTN       

PHF3 WNK1       

RERE        

SALL2        

SF1        

SPEN        

SREBF2        

UBR4        

WHSC1        

ZFHX3        

ZFHX4               

Table 12: Distribution of genes to functionally distinct gene families by GSEA 
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Network Analysis of Differentially Mutated Genes 

We carried out the network analysis of the top 25 highly mutated genes (Table 2) in the 

late-stage-enriched cluster compared to the early-stage-enriched cluster patients, to 

understand the functional relationship among these genes. The network in Figure 13 

generated using the Ingenuity Pathway Analysis (IPA) program shows several interaction 

hubs, where the genes highlighted in purple color are highly mutated in the late stage 

cluster patients. Most of the genes in our list interact with the central hub protein, UBC, 

which is expected because most of the proteins (especially the unneeded or damaged 

ones) are ubiquitinated before proteosomal degradation. It has been known that ubiquitin-

proteasome system regulates the degradation of a number of cancer-associated genes 

(Adams, 2003). APC (adenomatous polyposis coli) is another key tumor suppressor seen 

in this network that acts as an antagonist of the Wnt signaling pathway, with a number of 

roles in cancer development and progression such as cell migration, adhesion, apoptosis, 

etc. The role of APC mutations in breast cancers has been well documented in the 

literature (Furuuchi et al., 2000).  It is noteworthy to mention two transcriptional 

regulator genes in our list, NOTCH2 and KMT2A (MLL). NOTCH2 is a key regulator of 

Akt, and its role is well documented in several cancers including in apoptosis, 

proliferation and epithelial-mesenchymal transition (EMT) pathway (Güngör et al., 

2011). Several somatic mutations in NOTCH2 are also associated with different cancers 

in COSMIC database (Forbes et al., 2014). MLL is a transcriptional regulator and an 

oncogene with a variety of roles in cell proliferation and apoptosis (Won Jeong, 

Chodankar, Purcell, Bittencourt, & Stallcup, 2012). 
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Figure 13: Interaction network analysis of the top 25 genes showing the highest 

mutation load in the late-stage-enriched cluster compared to the early-stage-

enriched cluster of patients. 
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Class Prediction of Breast Cancers Based On Somatic Mutations 

Using the aforementioned BC clusters, we developed a classification model to see how 

accurate we can predict them based on somatic mutations. With this model, we can 

identify the stage of a given patient, given the mutation profile of a patient. As an 

example; if the model predicts a new patient to be in the Cluster3, than we can expect this 

patient to be in late stage with certain genes be more likely to carry higher mutation 

loads. 

We labeled each patient with its assigned cluster and tested five popular machine 

learning (ML) algorithms; Random Forest (RF) (Breiman, 2001), Support Vector 

Machine (SVM) (Platt, 1998) , C4.5 (Salzberg, 1994), Naïve Bayes (Rish, 2001) , and k-

Nearest Neighbor(KNN) (Stevens et al., 1967) to find the most appropriate algorithm for 

our dataset.  

We used a 10-fold cross-validation for evaluation of classifier performances. In 

each loop of the 10-fold cross validation, after withdrawal of the test set, we did feature 

selection using the information gain feature selection method (Mitchell, 1997) and 

selected the top 500 genes, which provide the highest information gain based on the 

training set. Therefore, in total, we selected 10 sets of 500 genes in the 10-fold cross 

validation. Out of the aforementioned ML algorithms, we selected to further use the RF 

method in this study as it achieved the best 10-fold cross-validation accuracy with 70.86 

%. We believe that the sparseness of the data along with the low sample to feature ratio 

are the reasons behind this moderate accuracy. 
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Also we observe that SVM algorithms achieved a very close accuracy but with a 

loss in TPR, FPR and F measure. And KNN method yielded the worst accuracy of all the 

methods we used. Table 13 shows the performance measures of each ML algorithm. 

 Classifier Accuracy TPR FPR TNR FNR F measure 

RF 70.86 0.58 0.19 0.81 0.42 0.59 

SVM 69.16 0.49 0.16 0.84 0.51 0.53 

J48 (C4.5) 60.11 0.47 0.26 0.74 0.53 0.47 

Naïve Bayes 57.24 0.45 0.29 0.71 0.55 0.44 

k-NN 49.17 0.25 0.16 0.84 0.75 0.31 

Table 13: 10-fold cross-validation performance results of five classifiers. 

Figure 14 shows the receiver operating characteristic (ROC) curves for each class 

that illustrate the relationship between TPR (sensitivity) and FPR (1-specificity) for each 

class. In the perfect case, an ROC curve goes straight up on the Y-axis and then to the 

right parallel to the X-axis; thus maximizing the area under the curve (AUC). An AUC 

close to 1 indicates that the classifier is predicting with maximum TP and minimum FP. 

We calculated the AUC for clusters 1, 2 and 3 (used interchangeably as class in this 

section) as 0.88, 0.8 and 0.95, respectively, indicating that the classification model can 

better differentiate the late stage patients against the remaining patients. 

We also used a permutation test, by running the same class prediction procedure 

with RF on 10,000 randomly labeled datasets and none of the 10-fold cross-validations 

gave us a better accuracy, yielding a very significant p-value (p-value<10
-4

) (see methods 

for more details). This supports the robustness of our model and the predication accuracy. 
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Figure 14: ROC curves showing the relationship between TPR (sensitivity) and FPR (1-

specificity) for each class. 
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Chapter 6 

CONCLUSIONS 

Breast cancer is a highly heterogeneous disease; therefore, accurate classification of BCs 

is an important step towards making accurate treatment decisions. Next generation 

sequencing has opened up new venues to better understand the genomic background of 

BC at the molecular level. In this study, we developed a novel BC classification system 

that solely uses somatic mutational profiles of BC patients, generated by whole exome 

sequencing, to identify clinically distinguishable subgroups together with a class 

prediction model. 

We used the TCGA breast cancer somatic mutation dataset including 358 patients 

and applied necessary filtration to the reported variations. Following, we used NMF 

clustering method to discover subgroups in the dataset, which yielded 3 clustered groups 

of patients. We investigated the clinical significance of discovered clusters by comparing 

the BC stage of the patients in the clusters and found that there exists a significant 

separation of patients according to their disease stage; hence we named Cluster 1 as 

early-stage-enriched and Cluster 3 as late-stage-enriched. Then we compared the mean 

mutation scores of early and late-stage-enriched clusters and found that late-stage-

enriched cluster patients carry a significantly higher rate of mutations in 358 genes. We 

also identified important networks, biological functions and pathways regulated by these 

genes. Finally, we used RF classification algorithms to develop a classification model, to 

make cluster predictions for unknown BC patients, which can provide insights about the 

disease stage and significantly mutated genes. 
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In conclusion, this study demonstrates that clinically distinguishable breast cancer 

subtypes can be identified solely based on somatic mutation profile data from breast 

cancer patients. Further, our classification model can be used to predict the unknown 

subtypes of breast cancers, given the somatic mutation profile of a patient. This generic 

methodology can also be applied to classify and predict other cancer types. 

Future Directions 

Our work presented here attempts to demonstrate that somatic mutation data alone could 

be used to classify clinically distinguishable breast cancers. However, additional types of 

structural data such as copy number variations (CNVs) and insertions/deletions (indels) 

could also be added to augment the classification accuracy. The main limitation of this 

work is the lack of clinical data on patients such as survival information or molecular 

subtype, which directly limit our ability to correlate the identified clusters to clinical 

features. Hence in our future work, we plan to use a bigger cohort of patients from cancer 

registries that document longitudinal history of clinical parameters. It will also help us to 

improve the prediction accuracy of the supervised learning models, which would allow us 

to build an accurate prediction tool that can be offered to the research community as a 

web server. As more genomic data becomes available, we expect to use other types of 

structural data (indels, CNVs, etc.) for improving the prediction models and developing a 

better breast cancer classification system. 

  



67 

 

APPENDIX 

Here we present a selected set of programs that were developed to carry out the main 

tasks in this project 

Building The Main Data Structure 

Here, we present the Python code developed to build the main data structure. Basically 

code collects each patient’s mutations, applies some filters and compiles all the data in a 

big table, which is later used in NMF clustering. 

#!/usr/bin/python 

import sys,os,argparse,time,glob,csv 

import functions 

start_time=time.time() 

 

######################### 

skip_header_lines=functions.skip_header_lines  

get_patients_list=functions.get_patients_list 

 

CADD_raw=5            #range: -inf,+inf 

CADD_raw_rankscore=6  #range: [0,1] 

CADD_phred=7          #range: [0,1] 

 

#Config------------------- 

no_mutation_score=0 #round(overall_min_score)-2  

score_type=CADD_raw_rankscore 

######################### 

 

wanted_patient_list=get_patients_list() 

 

#Note: main_dict[sample_id][gene]=[cadd_score] 

main_dict={} 

all_genes=set() 

overall_min_score=0 

overall_max_score=0 

 

vcf_files_path='/storage/gudalab/svural/TCGA_based_works/TCGA_BRCA_protected_d

ata/WUSM__Automated_Mutation_Calling/final_vcfs/' 

 

for vcf_file in glob.glob(vcf_files_path+'*.vcf'): 
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  path,vcf_file_name = os.path.split(vcf_file) 

  sample_id=vcf_file_name.split('.')[0].split('-')[2] 

 

  if not sample_id in wanted_patient_list: continue 

 

  vcf_file=open(vcf_file) 

  skip_header_lines(vcf_file) 

  #-------one sample_id------------ 

  for line in vcf_file: 

    line=line.split() 

    ###################################### 

    gene  =line[4].upper() 

    score =float(line[score_type])  

    ###################################### 

 

    #----------------------------------- 

    if float(score) < overall_min_score: 

      overall_min_score=score 

    if float(score) > overall_max_score: 

      overall_max_score=score 

    #----------------------------------- 

 

    all_genes.add(gene) 

 

    if not sample_id in main_dict:            main_dict[sample_id]={} 

    if not gene in main_dict[sample_id]:      main_dict[sample_id][gene]=[] 

       

    main_dict[sample_id][gene].append(score) 

 

stop_time=time.time() 

 

print 'main_dict is loaded, ', 

print 'took %.2f minutes' % ( (stop_time-start_time)/60.0 ) 

print 'number of genes:',len(all_genes) 

print 'min value:',overall_min_score, 'no mutation score:',no_mutation_score 

print 'max value:',overall_max_score 

#********************************************************************** 

 

if score_type==CADD_raw:   

  score_offset=abs(overall_min_score) 

  for sample in main_dict: 

    for gene in main_dict[sample]: 

      main_dict[sample][gene]=[score+score_offset for score in main_dict[sample][gene]] 

 

#write output 
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#make header 

header='Sample_id\t' 

for gene in all_genes: 

  header+=gene+'\t' 

header=header[:-1]+'\n' 

 

text=header 

count=0 

for sample in main_dict: 

  count+=1 

  print str(count)+' of '+str(len(main_dict))+' is done\r', 

  line=sample+'\t' 

  for gene in all_genes: 

    if not gene in main_dict[sample]: # if gene does not have any mutations in this sample 

      score=no_mutation_score 

    else: 

      score=sum(main_dict[sample][gene]) 

    line+=str(score)+'\t' 

  line=line[:-1]+'\n' 

  text+=line 

 

open('raw.tsv','w').write(text) 

 

 

stop_time=time.time() 

print 'whole proceses took %.2f minutes' % ( (stop_time-start_time)/60.0 ) 

 

 

Running NMF algorithm 

The following R script loads clinical information (stage) of the patients, runs some 

preprocessing steps and applies NMF algorithm. Here NMF algorithm is set to use 100 

CPUs in parallel to run the algorithm for 100 iterations. Finally R script plots some 

essential NMF figures, saves patient-to-cluster assignments and clustering metrics, and 

exits.  

Rscript used to run NMF algorithm 

#!/usr/local/bin/Rscript --vanilla 

 

suppressMessages(library(NMF)) 
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##load phenotype data------------------------------------------ 

phenotype_file="/storage/gudalab/svural/TCGA_based_works/TCGA_BRCA_protected_

data/clinical/patient_stages.tsv" 

phenotype_data=read.csv(phenotype_file,header=TRUE,sep="\t") 

covariates <- data.frame( Stage=phenotype_data$stage ) 

 

#load mutation data-------------------------------------------- 

args<-commandArgs(TRUE) 

my_file=args[1] 

r=as.numeric(args[2]) ##number of clusters 

data <- read.csv(my_file,header=TRUE,sep="\t") 

 

#data preprocess----------------------------------------------- 

rownames(data) <- data[,1] 

data <- data[,2:ncol(data)] 

data <- t(data) ##because of naming difference 

#-------------------------------------------------------------- 

 

#run nmf 

my_res <- nmf(data,r,nrun=100,seed=123456,.opt="v1p100")  

 

#---------------Plot matrices---------------------------------- 

#Specify colors 

Stage=c("red","green","black") 

names(Stage)=c("Late Stage","Early Stage","Other") 

ann_colors= list(Stage= Stage) 

 

#plot consensus matrix 

consensusmap(my_res, 

             annCol=covariates,annColors=ann_colors, 

             Rowv=F,Colv=F, 

             tracks=NA, 

             filename=paste(my_file,".consensus.jpg",sep=''),width=10,height=10 

             ) 

 

#plot coefficient matrix 

coefmap(my_res, 

        Rowv=F,Colv=F, 

        tracks=NA, 

        filename=paste(my_file,".coefmap.jpg",sep=''),width=10,height=10 

        ) 

 

#plot basis matrix 

basismap(my_res, 

         Rowv=F,Colv=F, 

         tracks=NA, 
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         legend = FALSE, 

         filename=paste(my_file,".basis.jpg",sep=''),width=10,height=10 

         ) 

#-------------------------------------------------------------- 

 

#write clusterring stats 

my_summary<-summary(my_res) 

summary_table <- rbind(dim(data)[1],as.data.frame(my_summary)) 

rownames(summary_table)[1] <- "num_features" 

write.table(summary_table,paste(my_file,'.summary.tsv',sep=''),col.names=my_file) 

 

cat("done\n") 

 

Filter and Sort Data by Variance 

The following Python script is used for feature selection by gene variance. The script 

accepts two command line input arguments. The first argument indicates the file name 

and the second argument is used to select the top variant genes (e.g. top 100 genes).  

 

#!/usr/bin/python 

import sys,os,argparse,time,glob,csv 

import numpy 

import functions 

start_time=time.time() 

 

load_data=functions.load_data 

 

argument_parser = argparse.ArgumentParser() 

argument_parser.add_argument('input_file') 

argument_parser.add_argument('number_of_genes') 

 

args = argument_parser.parse_args() 

 

input_file=open(args.input_file) 

 

data,patient_id_list,gene_list=load_data(input_file) 

 

data_variance_values=data.var(axis=0).tolist()[0] 

gene_variance_dict=dict(zip( gene_list , data_variance_values))  

#gene_variance_dict[gene]=variance_value 

 

data_column_sums=data.sum(axis=0).tolist()[0] 
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gene_column_sum_dict=dict(zip( gene_list , data_column_sums))  

 

zero_percentage_dict={} 

num_rows=float(numpy.size(data,axis=0))  #axis=0 -> y axis (num. of patients)    axis=1 

-> x axis (num. of genes) 

num_cols=numpy.size(data,axis=1) 

for i in range(num_cols): 

  gene_name=gene_list[i] 

  zero_percentage_dict[gene_name]=(1-

(numpy.count_nonzero(data[:,i])/num_rows))*100 

 

sorted_gene_list=sorted(gene_variance_dict.items(), key=lambda x: x[1], reverse=True) 

#[ ('gene1',9.0),('gene2',8.1),('gene3',5)] sorted by variance value 

 

 

##f_out=open('feature_variance_colSum_zeroPercent.tsv','w') 

##f_out.write('Gene\tVariance\tCol.Sum\tZero_Percentage\n') 

##for item in sorted_gene_list: 

##  gene_name                =item[0] 

##  gene_variance            =str(item[1]) 

##  column_sum               =str(gene_column_sum_dict[gene_name]) 

##  gene_zero_percentage =str(zero_percentage_dict[gene_name]) 

## 

##  f_out.write(gene_name +'\t'+ gene_variance +'\t'+ 

column_sum+'\t'+gene_zero_percentage+'\n' ) 

##f_out.close() 

## 

##sys.exit() 

### 

#for number_of_genes in range(1,1001): 

#print str(number_of_genes)+'\r', 

#combine output data------------------------------------------------ 

number_of_genes=int(args.number_of_genes) 

out_data=data[:,gene_list.index(sorted_gene_list[0][0])] 

for i in range(1,number_of_genes): 

  wanted_column_data=data[:,gene_list.index(sorted_gene_list[i][0])] 

  out_data=numpy.append(out_data,wanted_column_data,axis=1) 

#------------------------------------------------------------------ 

 

#write output ------------------------------------------------------ 

header='PATIENT_ID\t'+'\t'.join([item[0] for item in 

sorted_gene_list[:number_of_genes]])+'\n' 

text=header 

for row in range(len(patient_id_list)): 

  patient_id=patient_id_list[row] 

  data_line ='\t'.join( str(item) for item in out_data[row,:].tolist()[0]) 
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  text+=patient_id+'\t'+data_line+'\n' 

text=text[:-1] 

open(str(number_of_genes)+'.cluster','w').write(text) 

#------------------------------------------------------------------- 

 

stop_time=time.time() 

print 'whole proceses took %.2f seconds' % (stop_time-start_time)  

 

 

Order Data  

This Python scripts orders the data according to various parameters. 

 

#!/usr/bin/python 

''' 

takes a cluster formated data file orders samples by thier clusters and orders columns 

(genes) by chromosomes and by variance/location in chromosome inside the 

chromosomes 

''' 

import argparse,functions,os,sys,numpy 

 

chr_gene_mapping_file='/storage/gudalab/svural/TCGA_based_works/TCGA_BRCA_pr

otected_data/WUSM__Automated_Mutation_Calling/chr_gene_mapping/uniq_sorted_all

_genes_with_pos' 

 

argument_parser = argparse.ArgumentParser() 

argument_parser.add_argument('input_file')  #cluster file, to be ordered 

argument_parser.add_argument('sample_prediction_file') 

args = argument_parser.parse_args() 

 

input_file=open(args.input_file) 

data,patient_id_list,gene_list=functions.load_data(input_file) 

 

#========================================================== 

chr_gene_dict,ordered_all_genes_list=functions.read_gene_chromosome_mapping(chr_g

ene_mapping_file) #chr_gene_dict[chr1]=[gene1,gene2,gene3, ...]   genes are sorted by 

chromosomal location 

#---------------------------------------------------------------- a trick to get a list of genes in the 

chromosomal order 

for gene in  ordered_all_genes_list: 

  if gene not in gene_list: 

    ordered_all_genes_list[ordered_all_genes_list.index(gene)]=0 

ordered_gene_list=[i for i in ordered_all_genes_list if i!=0] 

#----------------------------------------------------------------------------------------------------------

-------------- 
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#first order genes 

out_data=data[:,gene_list.index(ordered_gene_list[0])] 

for item in ordered_gene_list[1:]: 

  wanted_column_data=data[:,gene_list.index(item)] 

  out_data=numpy.append(out_data,wanted_column_data,axis=1) 

#========================================================== 

 

 

#========================================================== 

sample_predictions_dict=functions.get_clusters_patients_list( 

args.sample_prediction_file )  #d[cluster1]=[patient1, patient2, patient3 ...] 

ordered_patient_list=[] 

for i in sorted(sample_predictions_dict): 

  ordered_patient_list+=sample_predictions_dict[i] 

 

#then order rows/patients 

out_data2=out_data[patient_id_list.index(ordered_patient_list[0]),:] 

for item in ordered_patient_list[1:]: 

  wanted_row_data=out_data[patient_id_list.index(item),:] 

  out_data2=numpy.append(out_data2,wanted_row_data,axis=0) 

 

sample_predictions_dict=functions.read_sample_predictions( 

args.sample_prediction_file ) #d[cluster1]=[patient1, patient2, patient3 ...] 

 

#========================================================== 

 

 

#write output ------------------------------------------------------ 

header='PATIENT_ID\t'+'\t'.join( ordered_gene_list )+'\t'+'PATIENT_CLUSTER'+'\n' 

text=header 

for row in range(len(patient_id_list)): 

  patient_id=ordered_patient_list[row] 

  data_line ='\t'.join( str(item) for item in out_data2[row,:].tolist()[0]) 

  patient_cluster=sample_predictions_dict[patient_id] 

  text+=patient_id+'\t'+data_line+'\t'+patient_cluster+'\n' 

text=text[:-1] 

 

head,tail=os.path.split(args.input_file) 

if head=='': head='.' 

new_file_name=head+'/'+tail.split('.')[0]+'_ordered.cluster' 

open(new_file_name,'w').write(text) 

#------------------------------------------------------------------- 

 

print 'Done' 
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