
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Spring 5-6-2017 

The Rise and Fall of the Bovine Corpus Luteum The Rise and Fall of the Bovine Corpus Luteum 

Heather Talbott 
University of Nebraska Medical Center 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology 

Commons 

Recommended Citation Recommended Citation 
Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. 
https://digitalcommons.unmc.edu/etd/207 

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It 
has been accepted for inclusion in Theses & Dissertations by an authorized administrator of 
DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=digitalcommons.unmc.edu%2Fetd%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=digitalcommons.unmc.edu%2Fetd%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/693?utm_source=digitalcommons.unmc.edu%2Fetd%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/693?utm_source=digitalcommons.unmc.edu%2Fetd%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/207?utm_source=digitalcommons.unmc.edu%2Fetd%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


THE RISE AND FALL OF THE 

BOVINE CORPUS LUTEUM 
 

 

by 

 

 

Heather Talbott 

 

 

A DISSERTATION 

 

 

Presented to the Faculty of 

the University of Nebraska Graduate College 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

 

 

 

 

 

Biochemistry and Molecular Biology 

Graduate Program 

 

 

 

 

 

Under the Supervision of Professor John S. Davis 

 

 

 

 

 

 

 

University of Nebraska Medical Center 

Omaha, Nebraska 

 

 

 

May, 2017 

 

 

 

 

Supervisory Committee: 

 Carol A. Casey, Ph.D.   Andrea S. Cupp, Ph.D. 

 Parmender P. Mehta, Ph.D.  Justin L. Mott, Ph.D.



i 

ACKNOWLEDGEMENTS 

This dissertation was supported by the Agriculture and Food Research Initiative from the USDA 

National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska 

Medical Center Graduate Student Assistantship; University of Nebraska Medical Center 

Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care 

System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department 

of Obstetrics and Gynecology, Nebraska Medical Center. 

Chapter 1: John S. Davis 

Chapter 2: Crystal Krause, Xiaoying Hou, Pan Zhang, Sheikh M. K. Alam William B. Rizzo, 

Jennifer R. Wood, Robert A. Cushman, Andrea S. Cupp, and John S. Davis 

Chapter 3: Crystal Krause, Xiaoying Hou, Pan Zhang, William B. Rizzo, Dragana Lagundzin, 

Nicholas T. Woods, Jennifer R. Wood, Robert A. Cushman, Andrea S. Cupp, and John S. Davis 

Chapter 4: Xiaoying Hou, Fang Qiu, Pan Zhang, Chittibabu Guda, Fang Yu, Robert A. Cushman, 

Jennifer R. Wood, Cheng Wang, Andrea S. Cupp, and John S. Davis 

Chapter 5: Abigail Delaney, Pan Zhang, Yangsheng Yu, Robert A. Cushman, Andrea S. Cupp, 

Xiaoying Hou, John S. Davis 

  



ii 

The completion of this dissertation would have been impossible without the invaluable 

contributions of so many people, scientifically, educationally, professionally and personally. 

First and foremost, I owe my enduring gratitude to my advisor Dr. John S. Davis who challenges 

me every day to strive to be the best citizen and scientist I can be. 

My committee members, Dr. Carol Casey, Dr. Andrea Cupp, Dr. John Davis, Dr. Parmender 

Mehta, and Dr. Justin Mott. Thank you for your guidance, conversations, support, and 

understanding throughout the entirety of my graduate journey. You continue to remind me that 

success comes with persistent curiosity, thoughtful enquiry, and critical evaluation. 

My husband and partner, Joseph Reed, who provided me with the love, editing, encouragement, 

thought-provoking conversations, and the final motivation that inspired me to complete my 

dissertation. 

Holly Talbott, for her enduring motherly support, commas, and unwavering belief that I can do 

anything I put my mind to. 

Christy Smith and Karen Hankins, for their friendship and assistance with grants, travel, and 

other administrative tasks which allowed me to focus on my work and succeed throughout my 

graduate education. 

Annie Kosmacek, for her no-nonsense advice and friendship throughout which has kept me sane, 

motivated, and excited for life. 

My grandparents, whose love and support will endure: 

Helen Irene Day, 1927-2010; R. Trenton Day, 1926-2004; Donna Johansen, 1936-2017; 

R. Terry Johansen, 1935-2016; Dean Talbott, 1941-2011; Kyong Talbott, John Reed, 1937-

2015; Marie Reed, 1937-2016; and Sherry Walsh. 

My family who have supported me whole-heartedly throughout this entire adventure. 

My lab mates both past and present for their assistance, support and friendship along the way. 

 In particular, Crystal Cordes, Chunbo He, Sharon Hou, Xiangmin Lv, Dulce Maroni, and Pan 

Zhang. 

Collaborators for works both presented and not. Cheng Wang and lab, Andrea Cupp and lab, Jen 

Woods and lab, Bob Cushman and lab, Shyamal Roy and lab, Dr. Geoffrey Thiele and lab, Dr. 

William Rizzo and lab. 

My classmates, for study sessions, humor, practice presentations and advice. 

In particular, Ekta Agarwal, Mona Al-mugatoir, Shalis Ammons, Nick Griffin, Colleen 

Lambo, Raheleh Miralami, Tyler Scherr, Lucas Struble, and Kristin Wipfler. 

McGoogan library staff, EHS staff, and UNMC Security  



iii 

ABSTRACT: THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM 

Heather A. Talbott, Ph.D. 

University of Nebraska, 2017 

Supervisor: John S. Davis, Ph.D. 

This dissertation describes a study of the mechanisms regulating the genesis and subsequent 

involution of the temporary endocrine structure, the corpus luteum (CL), through the use of a 

bovine model. The CL is essential for maintaining a suitable uterine environment for embryo 

implantation and early development through secretion of the steroid hormone progesterone. The 

“Rise and Fall” of the CL occurs within each estrous cycle whereby the CL must form from the 

ruptured follicle, secrete sufficient progesterone for uterine maturation, and at the end of the cycle 

(or pregnancy) regress to allow new follicular development. During the rise of the CL, the 

composition and regulation of lipid droplets (LDs) were studied and it was determined that LDs 

are a common luteal cell structure formed by day 3 post-ovulation, and store both cholesteryl 

esters and triglycerides. Additionally, the LD-associated proteome was examined and established 

that steroidogenic enzymes are enriched in purified LD fractions. Demonstrating that luteal LDs 

may serve as critical mediators of steroidogenesis by storing steroid precursors in close 

association with steroidogenic enzymes. At the fall of the CL, alterations in the luteal 

transcriptome revealed changes consistent with early activation of cytokine signaling. One such 

cytokine, C-X-C motif chemokine ligand 8 (previously IL-8), was assessed for its ability to 

regulate luteal cell function. CXCL8 expression was determined to be induced in bovine luteal 

cells via p38 and JNK signaling and could induce bovine neutrophil migration. However, 

neutrophils had no effect on progesterone secretion unlike activated peripheral blood 

mononuclear cells which could inhibit luteal cell progesterone secretion. In total, the studies 

described herein indicate that both LDs and cytokines play important roles in CL development, 

function, and regression.  
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GRAPHICAL ABSTRACT 

The Rise and Fall of the Bovine Corpus Luteum  

 

Diagram depicting the rise (left) and fall (right) of the bovine corpus luteum (CL). 

Development of the CL begins from a mature follicle (bottom left) with a well vascularized 

theca layer and multi-layered mural granulosa cells.  Ovulation of the follicle begins the 

transformation into a functional CL (top) through angiogenic growth into the granulosa layer 

and differentiation of granulosa and theca cells into large and small luteal cells.  During CL 

development, lipid droplets (LDs) form and store cholesteryl esters. These LDs maybe an 

important source of luteinizing hormone (LH)-stimulated progesterone synthesis.  At the end 

of the estrous cycle, prostaglandin F2alpha (PGF2α) released from the bovine uterus will 

trigger luteal regression, in part through stimulation of cytokine and cytokine signaling events.  

These processes result in decreased progesterone production and involution of the CL. 
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CHAPTER 1: INTRODUCTION 

Luteal Lipid Droplets and Metabolic Pathways 

Regulate Steroidogenesis in the Corpus Luteum * 

Abstract 

This review focuses on recent advances in the understanding of metabolic processes used by 

the corpus luteum to control steroidogenesis and other cellular functions. The corpus luteum (CL) 

has abundant lipid droplets that are believed to store cholesteryl esters and triglycerides. Recent 

studies in other tissues indicate that cytoplasmic lipid droplets serve as platforms for cell 

signaling and interactions with other organelles. Lipid droplets are also critical organelles for 

controlling cellular metabolism. Emerging evidence demonstrates that luteinizing hormone (LH) 

via activation of the cAMP and the protein kinase A (PKA) signaling pathway stimulates the 

phosphorylation and activation of hormone-sensitive lipase (HSL) an enzyme that hydrolyzes 

cholesteryl esters stored in lipid droplets to provide cholesterol for steroidogenesis and fatty acids 

for utilization by mitochondria for energy production. The energy sensor adenosine 

monophosphate (AMP)-activated protein kinase (AMPK) can inhibit steroidogenesis by 

interrupting metabolic pathways that provide cholesterol to the mitochondria or the expression of 

genes required for steroidogenesis. In addition to lipid droplets, autophagy also contributes to the 

regulation of the metabolic balance of the cell by eliminating damaged organelles and providing 

cells with essential nutrients during starvation. Autophagy in luteal cells is regulated by signaling 

pathways that impact AMPK activity and lipid droplet homeostasis. In summary, a number of 

signaling pathways converge on luteal lipid droplets to regulate steroidogenesis and metabolism. 

Knowledge of metabolic pathways in luteal cells is fundamental to understanding events that 

control the function and life span the corpus luteum.   

                                                      
* The material presented in this chapter was previously published: Talbott and Davis. Lipid Droplets and 

Metabolic Pathways Regulate Steroidogenesis in the Corpus Luteum. The Life Cycle of the Corpus Luteum 

2017 161 
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Recent research has provided great insight into mechanisms contributing to corpus luteum 

formation, function, and regression. Many of these studies have focused on changes in gene and 

protein expression and activity. The availability of new techniques for metabolomics, lipidomics, 

and proteomics has renewed interest in determining how cellular metabolic events control 

steroidogenesis. Specifically, there is an interest in understanding how lipids are stored and 

utilized during the lifespan of the corpus luteum. One of the notable features observed during 

luteal development is the acquisition of cytoplasmic lipid droplets (LDs). These unique organelles 

are surrounded by a phospholipid monolayer which coats a core of neutral lipids including 

cholesteryl esters and triglycerides. Lipid droplets have been most extensively studied in 

adipocytes and preadipocytes, for their pivotal role in energy conservation and homeostasis 1,2, 

however, LDs have been observed in nearly all cell types, from prokaryotes 3 to hepatocytes 4, 

cardiac myocytes 5, macrophages 6, and steroid-secreting cells 7,8. In many of these cells, LDs are 

a sign of pathological stress because of an overabundance of environmental lipids (e.g., the foamy 

macrophage seen in atherosclerotic lesions 6). However, LD formation and presence in 

steroidogenic tissues such as the ovarian follicle and corpus luteum appears to be non-

pathological and required for healthy, fully-functional steroidogenic ovarian cells. 

1.1. Lipid droplets 

Recent reviews point to cytoplasmic LDs as critical mediators of metabolic health and disease 

1,9,10. Intracellular LDs store triglycerides and cholesteryl esters as reservoirs for energetic 

substrates (fatty acids) or cholesterol for membrane biosynthesis or sterol production 11,12. They 

also serve to protect cells from lipotoxicity 13. The key to understanding LD size and activity is 

the presence or absence of specific LD coat proteins 14. The family of perilipin (PLIN) proteins 

(PLIN1-5) serves as LD coat proteins and organizing centers for enzymes and transporters in lipid 

metabolism 15–17. The PLIN family of proteins is composed of PLIN1 (also called perilipin), 

PLIN2 (adipophilin or ADRP), PLIN3 (previously Tip47), PLIN4 (previously S3-12) and PLIN5 
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(previously OXPAT). PLIN1 and PLIN4 are highly expressed in white adipose 16; whereas 

PLIN2, PLIN3 and PLIN4 are widely expressed; PLIN2 is abundant in liver and PLIN5 is found 

in oxidative tissues like heart and brown adipose 18. Plin1 null mice have a distinct phenotype of 

reduced fat mass, increased lipolysis and increased β-oxidation 19. Plin2 null mice are resistant to 

high fat diet-induced obesity 20, and Plin3 compensates for the loss of Plin2 in these mice 21. 

Inactivation of Plin4 down-regulates Plin5 and reduces cardiac lipid accumulation in mice 22. It 

seems, therefore, that the level of PLIN proteins in specific cell types regulates lipolysis in target 

tissues. Reports in the monkey 23 and mouse 24 indicate that the ovary expresses PLIN2, an LD 

coat protein associated with cholesteryl ester storage 25. We have found that the bovine corpus 

luteum predominantly expresses mRNA for PLIN2 and PLIN3 with low levels of PLIN1, a 

different pattern of PLIN transcript expression when compared to adipose tissue (Figure 1-1 A). 

Bovine large and small luteal cells express comparable levels of PLIN2 and PLIN3 mRNA but 

different levels of PLIN1 and PLIN4 mRNA (Talbott, Krauss, and Davis, unpublished). Exactly 

how the LD-associated PLINs impact luteal LDs and steroidogenesis are subjects of current 

investigation. 

Hormone-sensitive lipase (HSL) is a key cytosolic enzyme in the regulation of lipid stores in 

adipocytes that translocates to the LD in response to catecholamine stimulation 26–28. A current 

view of the mechanisms regulating lipolysis in adipose tissue suggests that the LD-associated 

PLIN1 coats the LD and functions as a scaffold in the regulation of lipolysis 16,29,30. Under basal 

conditions, PLIN1 acts as a barrier to the hydrolysis of lipids within the LD by preventing access 

of adipose triglyceride lipase (ATGL) and HSL, the major lipases in adipose cells. Following β-

adrenergic stimulation of cAMP and protein kinase A (PKA) signaling, PLIN1 and HSL are 

phosphorylated, which leads to the movement of HSL from the cytosol to the LD 31. The 

phosphorylation of HSL facilitates its association with the LD and with lipid substrates once 

associated with the LD 32 permitting lipid hydrolysis to proceed. Phosphorylation of HSL by PKA 
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occurs on multiple sites, including Ser‐563 and Ser‐660, which stimulate catalytic activity and 

translocation of HSL to LDs 33–36. Phosphorylation of HSL also occurs at Ser-565, a non‐PKA 

site, which is a negative regulator of HSL activity and is believed to be mutually exclusive with 

phosphorylation on the Ser‐563 site 37. Thus, hormonal cues that signal for elevations in systemic 

energy stimulate PKA to phosphorylate HSL which contributes to lipolysis to maintain energy 

homeostasis. 

The presence of both PLIN coat proteins 38 and HSL 39 in the ovary suggests that LH via a 

cAMP/PKA signaling pathway may regulate the phosphorylation of PLINs and HSL to hydrolyze 

cholesteryl esters stored in luteal LDs to produce substrate for synthesis of steroids such as 

progesterone, which is an obligate precursor of all biologically active steroids. Studies with HSL-

null mice revealed that knockout of HSL resulted in decreased steroidogenesis in the adrenals and 

inhibited sperm production in the testis 40,41. These findings suggest that HSL is involved in the 

intracellular processing and availability of cholesterol for adrenal and gonadal steroidogenesis. 

Manna et al. recently reported that activation of the PKA pathway in MA-10 mouse Leydig cells, 

the testosterone-producing cells of testes, enhanced expression of HSL and its phosphorylation at 

Ser-563 and Ser-660 42. Inhibition of HSL activity suppressed cAMP-induced progesterone 

synthesis and resulted in increased cholesteryl ester levels in MA-10 cells. Also of interest is a 

report 43 demonstrating an interaction between StAR (steroidogenic acute regulatory protein) and 

HSL in the rat adrenal following treatment with adrenocorticotropic hormone. Co-expression of 

StAR and HSL resulted in elevated HSL activity and mitochondrial cholesterol content. These 

observations suggest that the proteins that produce and transport cholesterol may co-localize in 

LDs and mitochondria. Furthermore, we have observed that mitochondria are closely associated 

with cytoplasmic LDs in bovine luteal cells (Figure 1-1 B) indicating that luteal LDs and 

mitochondria may interact to facilitate steroidogenesis. While the evidence points to an important 
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role for HSL in steroidogenesis, there is little information concerning the LD and the events that 

control these early steps in ovarian steroidogenesis 44. 

Despite the renewed interest in cytoplasmic LD as platforms for cell signaling, interactions 

with other organelles, and metabolic control 45,46, few studies have characterized the protein and 

lipid composition of the LD. The LD proteome has been characterized to varying degrees in a few 

mammalian tissues or cell lines [mouse mammary epithelial cells 47 and 3T3-L1 adipocytes 48,49, 

rat liver and mouse muscle tissue 50,51, and human cell lines 52–54]. Khor et al. compared the 

proteome of LDs from rat granulosa cells treated in vitro with either high-density lipoproteins or 

fatty acids to enrich cytoplasmic LDs with cholesteryl esters or triacylglycerides, respectively 55. 

When comparing the LD proteomes a large number of proteins (278) were common to the LDs 

prepared from either treatment. These proteins included PLIN2 and were similar to other studies 

on LD proteomes. They also identified 61 proteins unique to the cholesteryl ester-rich LDs and 40 

unique proteins unique to triacylglycerol-rich LDs. Notably, they identified steroidogenesis 

associated proteins, Hsd3b1, vimentin, and voltage-dependent anion channel (Vdac1) proteins 

enriched in the cholesteryl ester-rich LDs. Recent reports on the proteomic analysis of LD 

isolated from the mouse Leydig tumor cell line MLTC-1 56, and mouse testes 57 also revealed the 

presence of PLIN family proteins and enzymes involved in the synthesis of steroid hormones. 

Despite the recent work on characterization of the LD proteome in various tissues, there is still a 

lack of information about the protein composition of luteal LDs and the effects of hormones or 

metabolic alterations on luteal LD properties. In our studies (Talbott, Krauss, and Davis, 

unpublished) the LDs isolated from bovine luteal tissue predominantly contain PLIN2 and PLIN3 

coat proteins, as well as HSL, HSD3B1, CYP11A1, and StAR. Collectively, these studies 

indicate that the LD may serve as a novel hormonally-responsive platform that is essential for 

steroidogenesis. 
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Comprehensive analysis of the lipid composition of LDs in other tissues is just beginning to 

be evaluated 58. The protein composition of LDs, particularly the PLIN family of LD coat proteins 

is believed to influence the type of lipids stored in LDs and metabolic activity of tissues 1,59. The 

lipid composition of ovarian LDs and the effects of hormones on the lipids contained therein are 

currently unknown. Our preliminary studies indicate that compared to granulosa and theca cells, 

the total lipid content of luteal cells is increased. Several studies reported the types and changes 

of lipids in the intact corpus luteum of rats 60, pigs 61,62, sheep 63 and humans 64. These studies 

reported that cholesteryl esters and free fatty acids remain relatively constant during the 

functional phases of the luteal lifespan while triglycerides accumulated in the regressing corpus 

luteum. The increased lipid content of luteal cells is likely to be stored exclusively within the 

LDs; however, this remains to be shown experimentally. Additional studies are needed to 

determine the role and fate of lipids in LDs during both function and regression of the corpus 

luteum. 

Bovine and ovine corpora lutea have two distinct steroidogenic cells, large and small luteal 

cells, with different abilities to produce progesterone 65–67. The small luteal cells respond to LH 

with large increases in progesterone secretion while the large luteal cells have a high basal rate of 

progesterone secretion and respond to LH with a comparatively modest fold increase in 

progesterone secretion. The luteal tissue of women, monkeys, pigs, and rodents also possess large 

and small luteal cells, although the basal and LH-stimulated progesterone secretion differ from 

the bovine corpus luteum 68. Our preliminary data indicate that bovine large and small luteal cells 

have LDs with distinctive morphology. As indicated by BODIPY 493/503 staining of neutral 

lipids (green) and the LD protein ATGL small luteal cells have large LDs, whereas large cells 

have abundant dispersed small LDs (Figure 1-1 C & D). Whether and how the LDs in either cell 

type contribute to the ability to respond to LH or to the basal rate of progesterone secretion is 

currently unknown. Studies in other tissues indicate that PKA-dependent phosphorylation of 
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PLIN1 induces dispersion of clustered LDs in HEK293 cells, fibroblasts, and 3T3L1 adipocytes 

69,70. Based on these findings it seems possible that the dispersed LDs observed in bovine large 

luteal cells may be the result of constitutive PKA activity reported to be present in large luteal 

cells 71. 

Fatty acids (either synthesized de novo or provided by the hydrolysis of stored cholesteryl 

esters, triglycerides or phospholipids) are essential for energy production and the synthesis of 

most lipids, including those found in membranes and lipids involved in cellular signaling. Despite 

their fundamental physiological importance, an oversupply of non-esterified fatty acids can be 

detrimental to the cellular function 10. Fatty acids are transported across the outer mitochondrial 

membrane by carnitine palmitoyltransferase I (CPT1A), the rate-limiting step in fatty acid 

oxidation. Fatty acids are consumed by mitochondria through β-oxidation to produce acetyl-CoA 

and nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) for use 

in the electron transport chain to produce adenosine triphosphate (ATP) 72. The hydrolysis of 

cholesteryl esters by HSL liberates cholesterol and fatty acids (Figure 1-2). The fatty acids are 

either re-esterified and stored in LDs or membranes or used for β-oxidation producing reducing 

equivalents and acetyl-CoA for the citric acid cycle 72. Although little is known about the role of 

fatty acid β-oxidation in luteal cells, recent studies indicate that fatty acid β-oxidation plays a key 

role in cumulus-oocyte complex metabolism and oocyte maturation 73,74. These studies found that 

promoting β-oxidation with L-carnitine improved embryo development and pharmacologic 

inhibition of fatty acid β-oxidation with etomoxir, a CPT1A inhibitor, impaired oocyte maturation 

and embryo development. Steroidogenic tissues use glycolysis to support steroidogenesis 75, 

however, it seems likely that the production of large quantities of progesterone by luteal cells 

would also require β-oxidation of fatty acids to provide the energy needed for optimal 

steroidogenesis under basal conditions, but this remains to be critically evaluated. It seems likely 

that large and small luteal cells may have different energy processing requirements, based on the 
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pronounced differences in the ability of large and small luteal cells to produce progesterone under 

basal and stimulated steroidogenesis. Our preliminary studies indicate that CPT1A mRNA 

expression in large luteal cells is 5.6 fold greater than in granulosa cells, whereas no difference in 

CPT1A mRNA expression was observed between theca and small luteal cells. This data supports 

our idea that β-oxidation may play an important role in the metabolic regulation of large luteal 

cells. Given the intense interest in pathologies that result in lipid accumulation and conditions 

(i.e. obesity, diabetes, metabolic syndrome) that elevate free fatty acids and alter metabolism, 

understanding how LDs, glycolysis, and β–oxidation are regulated in the corpus luteum may 

provide clues for improving ovarian function, treating ovarian disorders, and enhancing fertility. 

1.2. AMP-activated protein kinase 

AMP-activated protein kinase (AMPK) is a master regulator of cellular metabolism 72,76. The 

AMPK complex is a heterotrimer consisting of an α catalytic subunit, and non-catalytic β and γ 

regulatory subunits 77. Studies from a number of investigators demonstrated that AMPK is present 

in the oocyte, granulosa and theca cells as well as luteal cells [reviewed in Bertoldo et al. 78]. As 

its name suggests, AMPK is allosterically activated by adenosine monophosphate, AMP. The 

enzyme is activated by increases in AMP : ATP or ADP : ATP ratios, which occur when cellular 

energy status has been compromised by metabolic stresses that either interfere with ATP 

production or that accelerate ATP consumption 79. AMPK acts to restore energy homeostasis by 

activating alternate catabolic processes generating ATP while inhibiting energy-consuming 

processes, e.g., protein, carbohydrate, and lipid biosynthesis, as well as cell growth and 

proliferation (Figure 1-3). AMPK acts via direct phosphorylation of metabolic enzymes, and by 

longer-term effects via phosphorylation of transcription regulators 80,81. 

AMPK can be activated by a number of synthetic allosteric effectors (A-769662, 991, MT 

63-78) identified by Abbott laboratories using high throughput screens for AMPK. Other 

allosteric effectors are salicylate, the major breakdown product of aspirin, and pro-drugs: 5-
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amino-imidazole-4-carboxamide riboside (AICAR) and C13, which are converted into AMP 

analogs following cellular uptake. For example, AICAR, a widely used AMPK activator, is taken 

into cells and then converted to the monophosphorylated derivative ZMP, which mimics the 

effect of AMP both on the allosteric activation of the kinase and inhibition of the 

dephosphorylation of Thr-172 on AMPK. Pharmacological AMPK activators (e.g., metformin, 

berberine, resveratrol, and hydrogen peroxide) are typically viewed as metabolic poisons that 

inhibit ATP synthesis and stimulate AMPK indirectly by increasing cellular AMP levels 79. 

Activation of AMPK by upstream kinases occurs by phosphorylation of a conserved threonine 

within the ‘activation loop’ of the kinase domain (Thr-172). The primary upstream kinases that 

phosphorylate Thr-172 are the tumor suppressor liver kinase B1 (LKB1) (also known as serine 

and threonine kinase 11 or STK11), and the calcium/calmodulin-dependent protein kinase kinase 

2, CAMKK2. The latter is activated when intracellular Ca2+ is increased by the action of 

hormones. 

The AMPK likely controls multiple aspects of metabolism in ovarian cells. AMPK 

phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and 3-hydroxy-3-methylglutaryl-

CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty 

acids and cholesterol (Figure 1-3). Activation of AMPK also blocks the activation of the 

mechanistic target of rapamycin (MTOR) and protein synthesis by phosphorylating the key 

regulatory proteins, raptor and tuberous sclerosis proteins 81. Another immediate consequence of 

enhanced AMPK activity is the phosphorylation of HSL at Ser‐565, which precludes activation of 

HSL by PKA 82. Conversely, conditions that stimulate PKA‐induced phosphorylation of HSL at 

Ser‐660 and Ser‐563 suppress the phosphorylation of HSL at the AMPK site Ser‐565. In vitro 

kinase assays using purified PKA and AMPK support the notion that phosphorylation of HSL at 

Ser‐563 and Ser‐565 is mutually exclusive. Thus, in steroidogenic tissues, activation of AMPK 

can inhibit HSL-mediated hydrolysis of cholesteryl esters and prevent the release of free 
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cholesterol for steroidogenesis 83. The observation that HSL is a key enzyme in adipocytes and 

steroidogenic cells strategically positions AMPK to control the expression of genes required for 

steroidogenesis and the availability of cholesterol for ovarian progesterone synthesis (Figure 1-4). 

Reports from the DuPont laboratory 84,85 demonstrate that AMPK activators metformin and 

AICAR inhibit the secretion of progesterone and/or estradiol by granulosa cells in a manner 

dependent on the state of cellular differentiation and the species investigated 78,84,86. In rat and 

bovine granulosa cells, AMPK activation induced by metformin reduced the expression of 

mRNA for key enzymes required for progesterone synthesis, HSD3B1, CYP11A1 and StAR 85,87. 

In the human KGN granulosa cell line (Huang, Hou and Davis, unpublished) treatment with the 

AMPK activator metformin inhibited StAR mRNA expression and progesterone synthesis. In 

general, the studies in granulosa cells suggest that the reduction in steroidogenesis was a result of 

a reduction in the transcription of genes in the steroidogenic pathway. Other studies showed that 

metformin impairs proliferation of bovine granulosa cells and rat theca cells via mechanisms 

involving AMPK-mediated inhibition of MTOR signaling and protein synthesis 88–90. 

Bowdridge et al. recently reported increases in the expression of AMPK α, β, and γ subunits 

during the maturation of the bovine corpus luteum, with the exception of AMPK γ1 and γ2 

subunits 91. Other studies from the Flores laboratory provide evidence for increased expression of 

genes encoding distinct protein kinase C isoforms and genes participating in Ca2+ homeostasis 

during luteal maturation 92. Goravanahally et al. 93 reported that CAMKK2, a downstream target 

of Ca2+ and upstream regulator of AMPK is also more highly expressed in mature bovine corpus 

luteum than in newly formed luteal tissue. It should be noted that two important physiologic 

processes occur during this developmental period; 1) the corpus luteum develops its maximal 

capacity for progesterone secretion and 2) the corpus luteum develops the capacity to undergo 

luteolysis in response to PGF2α. Based on the high rate of progesterone production during the 

mid-luteal phase and pregnancy, it seems likely that any factors that influence metabolic activity 
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in steroidogenic cells would increase or decrease AMPK activity and impact steroid secretion. 

Hou et al. 94 reported that treatment of primary cultures of bovine luteal cells with AICAR rapidly 

increased AMPK activity and significantly reduced LH-stimulated MTOR activity and 

progesterone secretion. Additional findings in this report indicated that the inhibition of MTOR 

with rapamycin did not contribute to the reduction in LH-stimulated progesterone secretion. More 

recently, Bowdridge et al. observed that treatment of bovine luteal tissue slices with either 

metformin or AICAR acutely reduced basal progesterone secretion 91. These results indicate that 

AMPK activators acutely inhibit luteal progesterone synthesis indicating that the energy status of 

luteal cells is an important regulator of steroidogenesis. 

1.3. LH inhibits AMPK 

The C-terminal domains of AMPK α subunit isoforms in vertebrates contain a 

serine/threonine (ST)-rich insert of 50–60 amino acids, the so-called ‘ST loop’ 95. 

Phosphorylation of the ST loop serves as a means for negative regulation of AMPK. The amino 

acid residues defining the ends of this loop are close to the Thr-172 residue and contain a number 

of regulatory phosphorylation sites. The best characterized of these sites is Ser-485 on the AMPK 

α1 subunit. The Ser-485 site is phosphorylated by the cyclic AMP-dependent protein kinase, PKA 

96 or AKT 97, which subsequently inhibits the phosphorylation of the AMPK α subunit Thr-172 

residue by upstream kinases, LKB1 or CaMKK2 95. The AMPK-α2 subunit contains a similar 

conserved ST loop and phosphorylation of Ser-491 is likely to exert the same inhibitory effect, 

although Ser-491 is a poor substrate for AKT and appears to be also modified by 

autophosphorylation 95. Additionally, PKA can phosphorylate the Ser-173 residue (adjacent to 

Thr-172 within the activation loop), which can inhibit Thr-172 phosphorylation 98. In a study 

using primary cultures of bovine luteal cells, Hou et al. reported that treatment with LH rapidly 

inhibited AMPK activity as evidenced by reduced AMPK Thr-172 phosphorylation and reduced 
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phosphorylation of the AMPK substrate ACC 94. Treatment with LH also increased 

phosphorylation of AMPK on Ser-485, which is associated with inhibition of AMPK activity 94. 

In contrast to granulosa cells, bovine luteal cells contain the required steroidogenic machinery 

including HSL, which enables luteal cells to respond to LH or cAMP with rapid increases in 

progesterone synthesis. The increases in progesterone occur within 10-30 min 99–101 and precede 

the LH-induced increase in StAR expression, which is typically observed 2-4 hours after 

treatment 102. These changes are associated with reduced phosphorylation of HSL at the inhibitory 

AMPK phosphorylation site Ser-565 and increased phosphorylation of HSL at Ser-563 and 660, 

residues that are required for HSL activity (Krause, Talbott, Hou and Davis, unpublished). Thus, 

the ability of LH to reduce AMPK activity may allow optimal LH- and PKA-dependent activation 

of HSL and provide cholesterol for the already existing steroidogenic machinery. An 

experimental model of the proposed interaction among PKA and AMPK regulation of HSL is 

shown in Figure 1-4. Physiologic conditions that increase the activity of AMPK require 

phosphorylation of the AMPKα subunit on Thr-172 residues 103. This leads to the phosphorylation 

of the AMPK substrates: ACC (Ser-79) and HSL (Ser-565), which could reduce the ability of 

luteal cells to provide cholesterol substrate in response to a pulse of LH. LH or PKA activators 

attenuate AMPK activity through modulation of at least two AMPKα-subunit phosphorylation 

sites, Thr-172 (reduced) and Ser-485 (increased). Reduced HSL phosphorylation by AMPK 

allows PKA to phosphorylate HSL on Ser-563 and Ser-660 resulting in increased HSL activity 

which presumptively provides cholesterol for progesterone synthesis. 

1.4. PGF2α activates AMPK 

Early studies established that PGF2α binds to and activates its cognate Gq protein-coupled 

receptor, the prostaglandin F receptor, PTGFR. This initial event provokes the rapid activation of 

phospholipase C, which leads to increases in both cytoplasmic Ca2+ and activation of protein 

kinase C. These early events contribute to the activation of additional protein kinase cascades like 
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the mitogen-activated protein kinases (ERK1/2, p38, and Jun N-terminal kinase (JNK)) 104 that 

contribute to the induction of early responses genes like Finkel-Biskis-Jinkins murine 

osteosarcoma viral oncogene homolog (FOS), Jun proto-oncogene (JUN ), early growth response 

protein 1 (EGR1), and activating transcription factor 3 (ATF3) 105–108. While these early response 

genes have been implicated in the luteolytic response to PGF2α, it is not clear how or whether they 

impact metabolic events in luteal cells. The developmental-specific expression of protein kinase 

C and CAMKK2 isoforms, proteins involved in Ca2+ homeostasis, and AMPK have been 

implicated in the cellular mechanisms of acquisition of luteolytic capacity by bovine corpus 

luteum 92,93,109. Based on these observations it seems reasonable to predict that PGF2α could 

activate Ca2+/CAMKK2 pathways leading to the activation and phosphorylation of AMPK on 

Thr-172. 

Bowdridge et al. recently reported that PGF2α rapidly (2 min) and transiently stimulated the 

phosphorylation of AMPK on the Ser-485 site in dispersed bovine luteal cells 91. The response 

was prevented by treatment with STO-609, a CAMKK2 inhibitor. Treatment with STO-609 also 

prevented the modest inhibitory effect of PGF2α on progesterone synthesis in overnight 

incubations of dispersed luteal cells91. In recent studies using bovine large luteal cells, we have 

observed that PGF2α rapidly stimulates the phosphorylation of AMPK on the stimulatory Thr-172 

residue as well as the inhibitory Ser-485 residue (Hou, Zhang, Talbott, and Davis, unpublished 

data). The phosphorylation of AMPK was coupled to the phosphorylation of the AMPK target 

ACC, indicating that AMPK was activated by PGF2α. The observation that PGF2α can target 

multiple sites on AMPK is consistent with findings that PGF2α activates multiple protein kinase 

pathways in luteal cells; pathways linked to calcium signaling, protein kinase C, mitogen-

activated protein kinases, and MTOR signaling 110. While additional studies are needed to 

determine exactly how PGF2α regulates AMPK in luteal cells, it seems clear that activation of 

AMPK with pharmacologic tools disrupts luteal progesterone synthesis (Figure 1-5). Studies are 
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also needed to determine whether AMPK is activated in vivo during natural and PGF2α -induced 

luteolysis. It is conceivable that changes in luteal blood flow, hypoxia, and the presence of 

inflammatory mediators all contribute to altering the metabolic status of steroidogenic luteal cells, 

resulting in the activation of AMPK and disrupting progesterone synthesis. 

1.5. Autophagy 

Autophagy plays an important role in cellular and tissue physiology 111–113. The main function 

of autophagy is to protect cells against starvation by allowing cells to salvage nutrients by 

digesting organelles and macromolecules at times of nutrient scarcity as well as to ensure cell 

homeostasis by eliminating damaged organelles and misfolded proteins. Three different types of 

autophagy (macroautophagy, microautophagy, and chaperone-mediated autophagy) have been 

described, based largely on the processes by which cargo is delivered to lysosomes. In general, 

autophagy can be induced by limitations in amino acids, growth factors, energy, and oxygen. The 

formation of autophagosomes requires the activation of a number of protein complexes: the 

autophagy-related 1 (Atg1)–Unc-51-like kinase complex, which is a key signaling intermediate 

that is regulated by MTOR and AMPK; the autophagy-specific class III phosphatidylinositol 3-

kinase Vps34 complex (consisting of Vps34, Beclin 1, Vsp15 and Atg14L), which produce a pool 

of phosphatidylinositol-3-phosphate that is necessary for autophagosome formation; and a 

complex of ubiquitin-like proteins: Atg12, Atg5, Atg16 and LC3-I (Atg8) and their conjugation 

machinery, which leads to the lipidation of microtubule-associated protein light chain 3 (LC3) 

with phosphatidylethanolamine, a process required for autophagosome formation and closure. 

The presence of LC3-II, an LC3 cleavage product, inside the mature autophagosome is generally 

used as a marker of autophagy. 

Autophagy has been shown to occur in oocytes, granulosa cells, and luteal cells and is often 

associated with apoptosis. Genetic mouse models demonstrate that Atg7 (-/-) ovaries 114 or germ 

cell-specific deletion of Atg7 115 compromised autophagy in the perinatal mouse ovary resulting 
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in the early loss of female germ cells. Loss of Beclin 1 (Becn1), which plays a central role in the 

regulation of autophagy through activation of the Vps34 complex, also resulted in a significant 

loss of germ cells at birth 114. These findings indicate that autophagy may promote survival of 

germ cells during ovarian development. Other studies provide evidence for the presence of 

autophagosomes in the granulosa cells of atretic follicles of several species 116,117. Studies in the 

rat support the idea that activation of the AKT/MTOR signaling pathway suppresses autophagy as 

assessed by levels of LC3-II in granulosa cells 116. 

The presence of lysosomes and autophagosomes in the corpus luteum was described over 45 

years ago 118–121. Recent studies have documented the presence of autophagy-related proteins: 

Beclin 1 and LC3 in the luteal tissue of rodents, cows, and humans 122–125. However, in luteal 

cells, it remains unclear whether a certain level of autophagy promotes cell survival versus cell 

death. In the rat, LC3-II positive autophagosomes were identified during the late luteal phase and 

were correlated with luteal cell apoptosis 125,126. Furthermore, treatment of rat luteal cells with 

PGF2α under serum-free conditions increased autophagosomes, LC3-II protein, and luteal cell 

apoptosis, suggesting that autophagy may be involved in luteal cell death. Choi et al. observed 

that although PGF2α increased both ERK1/2 and MTOR activity in rat luteal cells, autophagy 

could be prevented by inhibition of ERK1/2 signaling and appeared to be independent of 

phosphatidylinositol 3-kinase/AKT/MTOR activity 126. It will be important to understand the 

sequence of events in vivo and to determine whether the stimulatory effects of PGF2α on AMPK 

activation are linked in some way to autophagy in the corpus luteum. 

Gawriluk et al. reported that Becn1 deficiency in the mouse ovary resulted in a reduction of 

progesterone production and preterm labor 122. To avoid the loss of germ cells associated the 

Becn1 knockout animal, this group targeted Becn1 deletion to the granulosa cells and as a result, 

they were able to follow luteal function throughout pregnancy. Although ovulation, implantation, 

and progesterone levels during early pregnancy were not affected by Becn1 ablation, they found 
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that Becn1 abrogation resulted in a reduction of circulating progesterone in mid to late pregnancy. 

The reduction in progesterone resulted in early parturition, which was reversed by treatment with 

exogenous progesterone. Of relevance to luteal metabolism were the findings that the numbers of 

LDs were reduced and the mitochondria were smaller in the Becn1 deficient ovaries compared to 

controls. These changes were not accompanied by changes in the expression of genes important 

for the synthesis of progesterone. Exactly how the reduction in LDs and reduced autophagy 

contributed to reduced progesterone synthesis remains to be firmly established, but could be a 

consequence of impaired lipid transport mechanisms and reduced expression of key receptors 

(hormone and cholesterol-uptake) on the luteal cells 122. Studies in other systems indicate that 

Becn1 expression and activity is controlled via transcriptional regulation, miR-30a, and by post-

translational modifications (reviewed in 127). Recent studies in cardiac tissue showed that the 

transcription factor ATF3 binds to the ATF/cAMP response element of the Becn1 promoter and 

that ATF3 is capable of reducing autophagy via suppression of the Becn1-dependent autophagy 

pathway 128. Since PGF2α rapidly increases activation of mitogen-activated protein kinases 

(ERK1/2, p38, and JNK) and ATF3 expression in bovine and rat luteal cells in vivo and in vitro 

104,107, it is important to determine whether PGF2α inhibits autophagy through changes in Becn1 

expression or activity during luteal regression. 

It should also be appreciated that Becn1 directly interacts with B-cell lymphoma 2 (Bcl2) 

family proteins (Bcl2 and Bcl2/XL) in a manner that negatively regulates autophagy. To 

complicate matters, a variety of ligands that regulate intracellular protein kinases, including 

Dapk, Rock1, Mst1, and Mapk8, (death-associated protein kinase 1, rho-associated coiled-coil 

containing protein kinase 1, macrophage stimulating 1, mitogen-activating protein kinase 8, 

respectively), can positively or negatively regulate Becn1/Bcl2 effects on autophagy 127. Beclin 1 

can also secondarily affect apoptosis through regulation of anti-apoptotic and pro-apoptotic BH3 

domain-containing proteins. In addition to the Bcl2 family, the VDAC (voltage-dependent anion 
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channel) family is also involved in ovarian apoptosis and autophagy regulation 129. Vdac2 directly 

interacts with Bcl2-antagonist/killer 1 (Bak1) to inhibit its oligomerization, thus suppressing cell 

apoptosis. Yuan et al. recently reported that Vdac2 inhibits autophagy in the developing ovary by 

interacting with Becn1 and Bcl2L1 to stabilize the Becn1 and Bcl2L1 complex 129. Recent work 

by several groups has found a close relationship between autophagy and LDs 130–132. In particular, 

LC3 131, ATG2 133, ATG7 130 and several VDAC 56,57 proteins are often associated with LDs and 

appear to play important roles in LD formation and function. This suggests that events associated 

with autophagy may also impact the formation and function of ovarian LDs. Further work is 

needed to understand how LDs and autophagosome components influence both autophagy and 

apoptosis and thereby affect luteal function and lifespan. 

1.6. Summary 

Metabolic processes in the corpus luteum are tightly controlled by luteotropic and luteolytic 

factors. Signaling cascades involving LD homeostasis, PKA, AMPK, and autophagy are clearly 

important in the control of steroidogenesis. It remains to be determined how these cellular events 

are integrated into a physiologic context over the lifespan of the corpus luteum. Understanding 

the complex interplay of metabolic and hormonal clues underpinning steroidogenesis is essential 

to understanding and developing new therapies for infertility, particularly in the setting of 

increasing prevalence of obesity and metabolic diseases such as diabetes and polycystic ovary 

syndrome. 
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Figure 1-1 – Lipid droplets in bovine large and small luteal 

cells 

Large and small bovine luteal cells express lipid droplet (LD) 

coat proteins and have unique LDs.  Panel A: Expression of the 

PLIN family of LD coat proteins in bovine white adipose tissue, 

corpus luteum, and centrifugal elutriation-enriched large and 

small luteal cells (LC).  Reverse transcriptase-polymerase chain 

reaction (RT-PCR) analysis of mRNA isolated from bovine fat 

and luteal tissue.  Panel B:  Electron microscopy of LDs and 

mitochondria (Mt) in a bovine luteal cell. Panels C and D: Small 

and large luteal cells were stained with Bodipy 493/503 

(Molecular Probes, 10 μg/ml) to detect neutral lipids (green). 

Nuclei: DAPI (blue).  Cells in Panel D were stained with adipose 

triglyceride lipase (red) showing colocalization with the LDs and 

the difference in LD morphology between small and large luteal 

cells. Previously published in 161. 
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Figure 1-2 – Potential role of hormone-sensitive lipase 

in luteal cells 

Hormone-sensitive lipase (HSL) stimulates the hydrolysis 

of cholesteryl esters (CE) stored in lipid droplets to 

liberate cholesterol and fatty acids.  The cholesterol is 

converted to pregnenolone by the cytochrome p450 side-

chain cleavage enzyme (CYP11A1) in the mitochondria 

and subsequently converted by the enzyme 3β-hydroxy-

steroid dehydrogenase (HSD3B) to progesterone. The 

released fatty acids (FA) are re-esterified and stored in the 

lipid droplets or used for energy production by 

mitochondrial β-oxidation. Previously published in 161. 
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Figure 1-3 – Roles of luteinizing hormone and AMP-activated kinase in progesterone 

secretion 

Luteinizing hormone (LH) stimulates cAMP and protein kinase A (PKA) to activate proteins 

that will supply cholesterol for progesterone synthesis. The master metabolic regulator AMP-

activated protein kinase (AMPK) is a highly conserved metabolic fuel gauge and can influence 

progesterone secretion by luteal cells.  Elevations in AMP to ATP ratios stimulate AMPK to 

restore energy homeostasis by activating alternate catabolic processes generating ATP while 

inhibiting energy-consuming processes, i.e., protein, carbohydrate and lipid biosynthesis, as well 

as cell growth and proliferation.  Activation of AMPK can disrupt steroidogenesis by 

phosphorylating and inhibiting hormone sensitive lipase (HSL) and blocking HMGCR (3-

hydroxy-3-methyl-glutaryl-coenzyme A reductase), the rate-controlling enzyme of the pathway 

that produces cholesterol. AMPK can be activated by the tumor suppressor kinase liver kinase 

B1 (LKB1) and the Ca2+/calmodulin activated protein kinase CaMKK2, which is activated when 

intracellular Ca2+ is increased by hormones like PGF2α. Previously published in 161. 
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Figure 1-4 – Potential mechanisms of activation and 

inhibition of hormone sensitive lipase in luteal cells 

Luteinizing hormone (LH) stimulates protein kinase A 

(PKA)-dependent phosphorylation on Ser-563 and Ser-

660 resulting in activation of hormone sensitive lipase 

(HSL), which hydrolyzes cholesteryl esters (CE) stored 

in lipid droplets (LD) to release cholesterol and fatty 

acids (FA). AMP-activated protein kinase (AMPK) 

suppresses the activation of HSL by phosphorylation of 

HSL on Ser-565.  LH also inactivates AMPK by 

increasing AMPK phosphorylation on Ser-485 and 

reducing phosphorylation on Thr-172. The ability of LH 

to suppress AMPK and activate HSL ensures adequate 

cholesterol availability for progesterone synthesis. 

Previously published in 161. 
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Figure 1-5 – Counteracting mechanisms of luteinizing 

hormone and prostaglandin F2α in luteal cell 

steroidogenesis 

LH and PGF2α have opposite effects on AMP-activated 

protein kinase (AMPK).  LH-dependent activation of 

protein kinase A (PKA) activates of hormone sensitive 

lipase (HSL).  In contrast, activation of AMPK blocks 

activation of HSL.  LH-dependent stimulation of cellular 

metabolism regulates the use of glucose and fatty acids 

(FA) for optimal progesterone synthesis.  Conditions that 

activate AMPK (hormones, cytokines, reduced nutrients, 

reduced blood flow, hypoxia, drugs, and environmental 

insults) reduce the ability of LH to provide cholesterol for 

progesterone synthesis. Previously published in 161. 
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CHAPTER 2: COMPOSITION OF THE LIPID DROPLETS OF THE BOVINE 

CORPUS LUTEUM † 

Abstract 

Establishment and maintenance of pregnancy are dependent on the ability of the ovarian 

corpus luteum (CL) to synthesize progesterone. The ovulatory surge of luteinizing hormone (LH) 

prompts development of the CL and differentiation of the follicular cells. During differentiation, 

there is an increase in expression of steroidogenic enzymes, proteins that transport cholesterol, 

and lipid droplet (LD)-associated proteins important for storing cholesteryl esters (CE). Our 

purpose was to identify the composition of LDs in ovarian steroidogenic cells. We hypothesized 

that LDs are a common feature of steroidogenic luteal cells and could store CE. Bovine ovaries 

with functional CLs at days 3 and 10 after ovulation were used for whole tissue analysis. Further 

analyses were performed on isolated granulosa, theca, small, and large luteal cells. LDs were 

isolated by a step-wise sucrose gradient for subsequent lipid and protein analyses. Luteal LD-

associated proteins were determined by Western blot and included classic LD-associated proteins: 

PLIN2, PLIN3, PLIN5, vimentin, and adipose triglyceride lipase (ATGL). The neutral core of 

luteal LDs was composed primarily of triglyceride (TAG) (168 pmol/μg protein), diglyceride 

(5.62 pmol/μg protein) and CE (2.78 pmol/μg protein). Compared to adipocyte LDs, bovine luteal 

LDs were enriched in CE, and nearly all CE present in the CL tissue were present in the LD 

fraction. The results indicate that bovine luteal LDs are not similar to LDs isolated from adipose 

tissue and contain deposits of CE, although TAGs are still the predominant lipid species.   

                                                      
† The material presented in this chapter is in preparation to be as submitted as a manuscript: Talbott et al. 

Composition of the Lipid Droplets of the Bovine Corpus Luteum. 
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2.1. Introduction 

2.1.1. Formation and function of the CL 

Multiple fertile cycles in mammals depend on the formation of a transient endocrine structure 

in the ovary termed the corpus luteum (CL) 134. The CL forms at the beginning of each estrus 

cycle and synthesizes progesterone, a hormone critical for early embryonic survival during 

pregnancy 135–137. The CL has a tremendous ability to synthesize progesterone, 40 mg/day in 

humans 138,139, and the bovine CL can produce ~10-fold more progesterone than in humans 140. 

Steroids in the bovine CL are derived primarily through high-density lipoprotein (HDL)-derived 

cholesteryl esters 141–143, with smaller amounts from low-density lipoproteins, and minor 

contributions from de novo cholesterol synthesis 144. These cholesteryl esters can serves as 

precursors for steroid synthesis after removal of the fatty acid. The CL provides an ideal tissue for 

studying the mechanisms of steroidogenesis, due to its high steroidogenic output; therefore, 

changes in steroid synthesis are easier to detect that may be masked in other tissues. As well, 

progesterone is a necessary precursor of androgens, estrogens, glucocorticoids and 

mineralocorticoids. 

2.1.2. Luteal LDs 

For over 40 years, luteal cells have been noted as containing LDs 145,146. One report 

determined that LDs made up 1.6-9.2% of identifiable subcellular components (mitochondria, 

granules, etc.) during the functional life span of the CL 147. Armstrong et al. demonstrated that in 

rats and rabbits these LDs were primarily composed of cholesteryl esters and that treatment with 

LH reduced the total amount of cholesteryl esters present 148. As well, several research groups 

showed cholesterol and cholesteryl ester storage using the cholesterol sensing Schultz reagent 149–

154. Reports by Armstrong, Claesson, Gurarya, and others indicated that luteal LDs in various 

species could be altered by treatment with LH and prostaglandin F2 α, which is important in the 

involution of the CL 148,155–157. Additionally, they determined that the small luteal cells contained 

~400 LDs/cell and large luteal cells had upwards of 1250 LDs/cell indicating a likely role for this 
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common luteal cell structure 158. Luteal LDs are postulated to store cholesteryl esters that could 

be used for steroidogenesis 159. 

2.1.3. Functional role of LDs 

Lipid droplets are unique organelles that store neutral lipids within a phospholipid monolayer, 

as opposed to the bilayer surrounding most other organelles 4,160–162. LD-associated proteins coat 

the LD, often through unique domains that allow for interaction with a monolayer 17,29,163,164. 

These proteins can protect the LD-contained lipids from hydrolysis, as well as protect the cell 

from toxic lipid accumulations 16. As well, the LD coat proteins can interact with proteins that 

insert new lipids into the LD core, export and/or modify the neutral lipids for use in the cell. 

Finally, the coat proteins allow the trafficking and association of LDs with other cellular 

structures 165–168. LDs have been most extensively studied in adipose cells, where they form large 

unilocular droplets 31,169, though, LDs have been observed in nearly every tissue, as well as 

organisms from all domains of life 3–5. However, in many of these conditions, other than adipose 

tissue, LD formation is related to pathological conditions, usually due to an oversupply of fats, 

including the foamy macrophage in atherosclerotic lesions, and fatty liver disease due to liver 

damage 4,162,170,171. 

2.2. Materials and Methods 

2.2.1.  Animals 

Post-pubertal multiparous female cattle (n = 15) of composite breeding (½ Red Angus, 

Pinzgauer, Red Poll, Hereford and ½ Red Angus and Gelbvieh) were synchronized using two 

intramuscular injections of PGF2α (25mg; Lutalyse®, Zoetis Inc., Kalamazoo Michigan, MI) 11 

days apart. At day 3 or day 10 after ovulation, 3-5 cows were subjected to a bilateral ovariectomy 

through a right flank approach under local anesthesia 277,278. The CL was removed from the ovary, 

weighed and < 5 mm3 sections were snap-frozen in liquid N2 for subsequent protein and RNA 

analysis. All animal procedures were completed under an IACUC-approved protocol and 
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performed at the University of Nebraska—Lincoln, Animal Sciences Department. Statistical 

differences in animal characteristics were determined using one-way analysis of variance in 

GraphPad Prism (La Jolla, CA). 

2.2.2. Lipid droplet staining in luteal tissue 

Tissue sections were frozen in optimal cutting temperature (O.C.T.) compound (Tissue-Tek) 

transported back to the lab on dry ice. Frozen samples were kept at -80 C until sectioning using a 

Leica CM3050S instrument and attached to silane-coated slides before fixation in 10% 

phosphate-buffered formalin for 1 h. Fixed slides were stained with oil red O and counterstained 

with Harris’ hemotoxin using an automated slide staining setup at the University of Nebraska 

Medical Center Tissue Sciences Facility. Slides were scanned at 40x using Ventana’s Coreo Au 

Slide Scanner. Images were analyzed by Definiens Tissue Studio (Munich, Germany) to count 

nuclei and area occupied by oil red O. 

2.2.3. Transmission electron microscopy 

Coronal sections (through the stomata) of luteal tissue were fixed in 3% (w/v) 

paraformaldehyde and 0.2% glutaraldehyde in phosphate-buffered saline (PBS), pH 7.4, post-

fixed in 2 % OsO4, resin-embedded, and ultra-thin sectioned for electron microscopy. 

Transmission electron microscopy (TEM) images were captured using a Hitachi H7500 at the 

University of Nebraska-Lincoln Center for Biotechnology. Three images (magnification: 8,000x) 

from each CL were used for quantification of LD number and area using ImageJ 172. 

2.2.4. Isolation of large and small luteal cells 

For luteal cell preparations, bovine ovaries were collected during early pregnancy (fetal 

crown-rump length < 12 cm) from a local abattoir (JBS USA, Omaha, NE) and transported to the 

laboratory on a cold pack. The luteal tissue was dissociated with collagenase as described 

previously 173. The cell viability was determined by the trypan blue exclusion test, and luteal cell 

preparations with more than 90% viability were used. Small and large luteal cells (SLC, LLC 
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respectively) were isolated essentially as previously described 104. Briefly, the mixed luteal cells 

were resuspended in elutriation medium (calcium-free Dulbecco’s modified eagle medium 

(DMEM) [US Biological D9800-10], supplemented with 25 mM HEPES, 3.89 g/L sodium 

bicarbonate, and 3 mg/mL glucose). Resuspended cells were subjected to centrifugal elutriation 

with continuous flow using a Beckman Coulter Avanti J-20 XP centrifuge equipped with a 

Beckman JE-5.0 elutriator rotor. The fractions containing SLC and LLC were pelleted and 

resuspended in basal M199 (0.1% BSA, 100 U/ml penicillin-G-sodium, 100 μg/ml streptomycin 

sulfate, and 10 μg/ml gentamicin sulfate). The average purity of SLC was 90% and LLC in were 

75%. 

2.2.5. Isolation of granulosa and theca cells 

Follicular granulosa and theca cells were prepared from bovine ovaries collected from a local 

abattoir (JBS USA, Omaha, NE). Large follicles (> 0.8 cm) were punctured with a 20-gauge 

needle and follicular fluid was removed, the needle was reinserted and the granulosa cells were 

resuspended in an equal volume of elutriation medium containing 20 µg/mL DNase 

(Worthington). After the granulosa cells were removed, the follicle was opened and the theca was 

removed from the surrounding stroma and stored in elutriation medium. Small antral follicles (< 

0.8 cm) were opened with a scalpel and the granulosa cells were gently scraped from the follicle 

wall using the blunt side of the scalpel and resuspended in elutriation medium. Theca were 

removed from surrounding stroma and placed in Elutration Medium. Granulosa cells were 

washed by centrifugation three times at 150 rcf for 5-10 min and filtration through a 70 μm mesh. 

Theca cells were resuspended in 0.2 mg/mL Collagenase 2 (Atlanta Biologicals) in elutriation 

medium and dispersed using constant agitation at 37 °C for 1 h. Dispersed theca were removed 

from the undigested tissue by filtration through a 70 μm mesh then washed by centrifugation 

three times at 150 rcf for 5-10 min. Red blood cells were removed by resuspending theca cells in 

dH2O and immediate addition of 2x PBS. 
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2.2.6. Lipid droplet staining in freshly isolated cells. 

Cells in suspension were affixed to glass slides using Cytofuge (6.5 g, 5 min) and 

immediately fixed in 10% phosphate-buffered formalin. Slides were washed well with PBS, then 

stained with oil red O (ORO) in isopropanol for 15 min, rinsed with dH2O and then the nuclei 

were briefly counterstained using filtered Harris’ hematoxylin. Coverslips were affixed using 

fluromount G. 

2.2.7. Progesterone assay 

Jugular blood samples were collected into heparinized tubes and plasma samples were frozen 

at -80 C until analysis could be performed. Progesterone concentration in plasma was determined 

using a commercial radioimmunoassay (Progesterone CT 07-270102, MP Biomedicals, LLC, 

Solon, OH). The intra-assay coefficient of variation of 9.13% and inter-assay coefficient of 

variation of 7.99%. 

2.2.8. Lipid droplet isolation from tissue 

Tissue (~2.5 g) was washed thoroughly in TE buffer (10 mM Tris, 1 mM EDTA, pH 7.4). 

Minced tissue was resuspended in 10 mL tissue homogenate buffer (60% sucrose w/v in TE 

buffer containing protease and phosphatase inhibitor cocktail) and homogenized with a Teflon 

Dounce homogenizer in a glass vessel. The post-nuclear supernatant (PNS) fraction was obtained 

after centrifugation at 2000 rcf for 10min. The supernatant was loaded into a 30 mL 

ultracentrifuge tube and overlaid sequentially with 40%, 25%, 10%, and 0% sucrose w/v in TE 

buffer containing protease and phosphatase inhibitor cocktails. Samples were centrifuged at 

110,000 x g (ravg) for 30 min at 4 °C with no brake in a Beckman Coulter Avanti J-20 XP 

ultracentrifuge using an SW 32 Ti rotor. The LDs concentrated in a yellow/white band at the top 

of the gradient were harvested and concentrated by centrifugation at 2000 rcf for 10 min at 4 °C 

protocol was modified from 174,175. 
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2.2.9. Western blots 

Tissue samples were weighed and homogenized (~100 mg/mL) in cell lysis buffer (20mM 

Tris [pH 7.4], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton x-100, protease and 

phosphatase inhibitor cocktails) using OMNI Tissue homogenizer then sonicated for 3 s. Lysates 

were centrifuged at 18,350 x g for 15 min at 4 C and the supernatant was collected for SDS-

PAGE analysis. Protein concentration was determined by Bradford reaction (Bio-Rad 500-0006). 

Aliquots of samples (10-30 µg protein) were suspended in protein loading buffer (50 mM Tris pH 

6.8, 300 mM glycerol, 25 mM SDS, 45 mM DTT, 260 mM 2-mercaptoethanol, bromophenol) 

separated on 10% SDS-PAGE gel and transferred to nitrocellulose membranes. Membranes were 

blocked in TBST (10 mM Tris-HCl, 150 mM NaCl, 0.1% Tween 20; pH 7.5) with 5% fat-free 

milk for 1 h at room temperature. Membranes were incubated either overnight at 4 C or for 2 h at 

room temperature with primary antibody diluted in TBST with 1% non-fat milk or 5% BSA. 

After washing, membranes were incubated for 1 h at room temperature with 1:20,000 anti-rabbit 

or anti-mouse HRP-conjugated IgG diluted in TBST with 1% non-fat milk. After washing, 

protein bands were detected with SuperSignal West Femto (Thermo). 

2.2.10. Lipidomics 

Lipids from CL tissue LDs were extracted using a standard Bligh and Dyer extraction 

protocol 176 and then dried and sent to Avanti Polar Lipids for lipidomics analysis. Extracts were 

received as dried residues in glass vials and were immediately stored at -80 °C until analysis. The 

samples were provided for lipidomic profiling of free sterols, cholesteryl esters, triacyl- and 

diacyl-glycerols, phospholipids, and sphingolipids. The molecular species within each class were 

identified, quantified and summed to report the average lipid profile of bovine luteal LDs. To 

provide resolution and quantitative ability beyond the mass resolution of the tandem quadrupole 

mass spectrometers employed, molecular species were resolved by reversed-phase liquid 

chromatography in the presence of class and sub-class specific internal standard compounds 

added to each sample. The compounds were detected by tandem mass spectrometry (MS/MS) for 



30 

mass specific fragment ions according to lipid class and molecular weight of the compound, 

known as multiple reaction monitoring (MRM). Selectivity was further enhanced by scheduling 

the detection of each compound according to its elution from the high-performance liquid 

chromatography (HPLC) column, known as scheduled MRM (sMRM). The semi-quantization 

was calculated using the integrated area of each analytes MRM peak, divided by the appropriate 

internal standard peak area, multiplied by its known concentration. Quantization of cholesterol 

and cholesteryl esters were directly calculated with standards and internal standards from 

calibration response curves. Lipid concentrations were normalized to the corresponding protein 

concentration of each sample. 

2.2.11. High-performance thin layer chromatography (HPTLC) 

For lipid analyses, 0.25 mL of cell homogenate was extracted overnight with 2.5 mL of 

chloroform-methanol (1:1). After removing insoluble material by centrifugation, lipid extracts 

were washed according to Folch, Lees, and Sloane Stanley 177 before analysis. The cholesteryl 

esters and triglycerides were separated by HPTLC on 10 cm plates using a single solvent system 

described by Mangold and Malins 1960 178. The plates were prewashed by development with 

chloroform-methanol-water (60:35:8) followed by chloroform-methanol-acetic acid-formic acid-

water (35:15:6:2:1). Lipids were dissolved in chloroform-methanol (1:1), and 10 uL was spotted 

in a 0.6 cm line at the origin (1 cm above the bottom of the plate). The plate was developed using 

petroleum ether (b.p. 60-70 °C)-ethyl ether-acetic acid (45:5:0.5). The plate was sprayed with 

10% CuSO4 in phosphoric acid, and lipids were visualized by heating at 180 °C for 5 minutes. 

The plates were scanned (instrument) and the images were analyzed using UVP Vision Works LS 

software by calculating the area under the curve after lane specific straight line background 

correction. A mixture of the following standard lipids was co-chromatographed: 

phosphatidylcholine, cholesterol, triglyceride, cholesterol palmitate, oleic acid. Preliminary 

analyses were completed to establish the linearity of detection for each lipid class to ensure that 
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lipids did not exceed the linear range for quantitation. For every plate of cellular lipids, five lanes 

of varying amounts of lipid standards were simultaneously run to generate standard curves for 

quantitation. The amount of each cellular lipid was expressed as µg lipid/mg cell protein. 

Adapted from 179. 

2.2.12. Reverse transcriptase-polymerase chain reaction (RT-PCR) 

Target transcript expression was evaluated by isolating RNA from target tissue, reverse 

transcription of 1 μg RNA using SuperScript II Reverse Transcriptase (Invitrogen, Grand Island, 

NY) followed by RT-PCR using gene-specific primers. 

2.3. Results 

2.3.1. Animals 

Synchronized multiparous cows were subjected to a bilateral ovariectomy at either day 3 or 

day 10 after ovulation. Day 10 CLs weighed significantly more than day 3 CLs (4.7 ± 0.46, 2.8 ± 

0.65 g, respectively). Serum progesterone concentrations were also elevated in day 10 (13.05 ± 

4.14 ng/mL, P = 0.2) compared to day 3 (4.85 ± 1.47 ng/mL) (Figure 2-1). 

2.3.2. Luteal LDs 

Lipid droplets were a prominent feature in both day 3 and day 10 in vivo CLs, oil red O 

staining of frozen section of luteal tissue demonstrated that oil red O occupied an area of 26-36 

µm2 per nucleus regardless of luteal age (Figure 2-2, A- C). Analysis of TEM images did not 

demonstrate a difference in the number of LDs in day 3 and day 10 CLs. As well, TEM images 

demonstrated that LDs are abundant within luteal tissue, but characterization of the size of 

individual LDs indicated no differences between in LD size between day 3 and day 10 CL (0.41 ± 

0.04, 0.41 ± 0.03 µm2/LD, respectively) (Figure 2-2 D, E, & F). Finally, there are no clear 

differences in the luteal tissue architecture (Figure 2-2 G, & H) though the total size of the CL is 

increased and progesterone secretion is increased in day 10 compared to day 3 CLs (Figure 2-1). 
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Discontinuous sucrose gradients were used to separate LDs from whole tissue and created a 

distinct yellow band at the top of the sucrose gradient (Figure 2-2 I). 

2.3.3. Lipid droplets in ovarian cells 

Granulosa and theca cells are precursors to the steroidogenic cells of the CL. Lipid droplet 

content of these follicular precursors was compared to the steroidogenic SLC and LLC. Confocal 

images of isolated cell types demonstrated that granulosa and theca cells have fewer and smaller 

LDs than the luteal counterparts (Figure 2-3 A & B). As well, SLC appeared to have fewer, but 

larger LDs than LLC which contained many small LDs. 

2.3.4. Expression of LD-associated proteins in the CL 

Western blot and RT-PCR analysis of proteins known to associate with LDs from bovine fat, 

liver, heart and CL tissue demonstrated that the bovine PLIN1 expression is greatest in bovine 

adipose tissue. Whereas PLIN2 is greatest in the heart and CL. Both PLIN3 and PLIN5 were 

found in all the tissues examined. Adipose triglyceride lipase (ATGL) expression was greatest in 

adipose and heart tissue where as abhydrolase domain-containing protein 5 (ABHD5), a 

coactivator of ATGL was found in all tissues examined. The cholesteryl ester synthesizer, sterol 

O-acyltransferase1 (SOAT1) protein was highest in bovine liver. Finally, HSL, a cholesteryl 

esterase, was high in luteal tissue and extremely abundant in adipose tissue (Figure 2-4). 

2.3.5. Lipid composition of LDs 

Lipids from CL tissue LDs were extracted and assessed for their relative lipid content. 

Triacylglycerides were the predominant lipid species in luteal LDs (168 pmol/µg protein ± 41.9). 

Other neutral lipids included diacylglycerol (5.62 ± 2.1 pmol/µg protein) and cholesteryl esters 

(2.78 ± 0.70 pmol/µg protein). Sterols were undetectable in all but one LD sample. Polar lipids 

were primarily composed of phosphatidylcholine (5.73 ± 1.49 pmol/µg protein), sphingomyelin 

(2.68 ± 0.28 pmol/µg protein), phosphatidylinositol (1.69 ± 0.61 pmol/µg protein), and 

phosphatidylethanolamine (1.39 ± 0.38 pmol/µg protein) (Figure 2-5 A). The fatty acids of 
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cholesteryl esters were composed primarily of oleic acid (18:1, 15% of total), pentadecanoic acid 

(15:0, 13%), adrenic acid (22:4, 12%), and erucic acid (22:1, 10%) and smaller amount of other 

fatty acids (Figure 2-5 B). 

Analysis of whole tissue lipid content was performed on both bovine CL and adipose tissues 

by HPTLC. Luteal tissue had 7.4-fold more cholesterol over adipose tissue and 8.2-fold more 

cholesteryl esters (Figure 2-5 C). The follicular granulosa and theca cells both had low levels of 

lipids and SLC and LLC had significantly more free fatty acids, cholesterol, cholesteryl esters and 

triacylglycerides than their follicular counterparts. However, there were no differences in major 

lipid classes between granulosa and theca cells or LLC and SLC (Figure 2-5 D). 

Purified LDs were compared to the lipid content of whole tissue, post-nuclear supernatent, 

and post-nuclear supernatant after removal of LDs. Cholesteryl esters and triglycerides were 

found predominately within luteal LDs, and not in other tissue components. Whereas, cholesterol 

was not found in the LDs but elsewhere in the tissue, consistent with the lipidomics data. Free 

fatty acids were stored equally in LDs and other cellular components (Figure 2-6). 

2.4. Discussion 

2.4.1. Overview of study 

Within the bovine CL, LDs are a prominent feature which are established by day 3 post-

ovulation and maintained at mid-cycle (day 10). These LDs are enriched in several proteins 

including classic LD-associated proteins as well as steroidogenic enzymes. Although the major 

constituent of bovine LDs is triglyceride, cholesteryl esters constitute 2.78 ± 0.70 pmol/µg 

protein. Bovine luteal cells are enriched in cholesterol and cholesteryl esters compared to bovine 

visceral adipose tissue, likely for use in steroidogenesis. In contrast, the granulosa and theca cells 

of the follicle have few LDs and have reduced lipid content (of all major classes) compared to the 

steroidogenic luteal cells. Although, there does not appear to be a difference in lipid composition 

of granulosa and theca cells or of the luteal LLC and SLC. 
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2.4.2. Lipid droplets in luteal tissue 

Lipid droplets are a large component of both early (day 3) and mid-cycle CL (day 10) 

comprising approximately 26 - 36 µm2/nuclei, which would be approximately 5-16% of luteal 

cell area based on other group’s luteal cell area measurements (SLC: 201-216 µm2, LLC 566-581 

µm2) in agreement with other studies examining LD /luteal cell area or volume 156,158,180. Lipid 

droplets occupied ~2% of the luteal cell volume in a recent study examining ovine luteal cell LDs 

158. Since LDs are rarely seen in luteal endothelial cells, the percentage of the luteal cells occupied 

by LDs could be even higher. Individual luteal LDs have a mean area of 0.41 µm2 which does not 

differ between day 3 and day 10 CLs. Together this indicates that luteal LDs are an established 

feature of luteal tissue by day 3 and does not differ between day 3 and day 10 CLs. Thus, luteal 

LDs must form prior to day 3 post-ovulation. This is in keeping with studies by Guraya et al. who 

described that granulosa cells in humans developed fine “lipid granules” and “heterogeneous lipid 

bodies” within newly ruptured follicles, and that the theca interna cells of newly ruptured follicles 

are filled with sudanophilic lipids, including cholesterol and its esters 181. As well, LDs are 

increased in granulosa cells of 1 day old CL in rabbits 182. Similarly, treatment of rhesus 

macaques with LH or hCG can induce LD-associated proteins in granulosa cells within 12 

hours 23. Additionally, transcripts of PLIN2 increase significantly in LH treated bovine granulosa 

and theca cells 183 and unpublished data. 

2.4.3. Lipid composition of LDs 

Luteal LDs are composed primarily of triglycerides but have a smaller but likely significant 

amounts of cholesteryl esters which are greater than other bovine tissues, including adipose, 

granulosa, and theca. The cholesteryl esters and triglycerides of luteal cells are stored within the 

LDs and not elsewhere in the cells, unlike cholesterol, which is not located in LDs. Cholesteryl 

esters are likely substrates for steroidogenesis in bovine luteal cells. The function of the 

triglycerides within luteal LDs is uncertain at this time, but may be substrates for β-oxidation 

derived energy production to fuel the steroidogenic output of the CL 184,185. 
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Several groups in the 1960s provided a histochemical evaluation of lipid composition 

throughout the estrous cycle of humans 181, rats 152, and rabbit 182. Despite the few studies of LD 

presence and amount in the bovine CL 147,180,186–189, we know of no studies examining the luteal 

LD lipid or protein composition. Luteal LDs are also known to be regulated by diet 180, LH 

(depletion) 148,190,191 and PGF2α (increase) 61,62,156,192. 

In this study, only two time-points in the estrous cycle were evaluated for presence and 

composition of LDs. Further research examining the onset of the inclusion of LDs in luteal cells, 

as well as examining the presence and composition of the few LDs present in theca and granulosa 

cells could provide novel data on the origin and regulation of LDs within the ovary. Additional 

experiments examining the changes in LD size, number, and composition after luteotropic and 

luteolytic stimulation would benefit the field. Finally, the impact of obesity, undernutrition, and 

polycystic ovarian syndrome on luteal LDs may provide insights into mechanisms of infertility. 

We believe that luteal LDs play a critical role in progesterone production by storing cholesteryl 

esters in bovine luteal cells as a reservoir of substrate in preparation for progesterone synthesis. 
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Figure 2-1 – Luteal performance measures of day 3 and day 10 bovine corpus lutea 

Cows at day 3 (red, n = 4) and day 10 (orange, n = 3) post-ovulation. A) Corpus luteum 

weight in grams B) Serum progesterone concentration. Means ± S.E.M, * P ≤ 0.05. 
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Figure 2-2 – Lipid droplets analysis of in vivo tissue 
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Figure 2-2 – Lipid droplets analysis of in vivo tissue 

(A & B) Representative images of oil red O (ORO) staining of LDs in frozen tissue sections of 

the CL from Day 3 (A, red, n = 4) and Day 10 (B, yellow, n = 3) post-ovulation.  The images 

were acquired using Ventana’s Coreo Au Slide Scanner at 40x, scale bar for both images 

appears in (B).  C) Quantification of the IHC area (in µm2)/nuclei performed using Definiens 

Tissue Studio, bars represent mean ± SEM.  P = 0.65, non-significant.  D & E) Representative 

images of transmission electron micrographs (TEM) of Day 3 (D, red, n = 3) and Day 10 (E, 

yellow, n = 3) bovine CL demonstrating LD presence using a magnification of 8,000x, scale 

bar for both images appears in (E).  F) Each point demonstrates the area (µm2) occupied by 

individual lipid droplets in three randomly chosen images from at n = 3 for each condition, 

mean ± SEM is overlayed in black.  P = 0.84, non-significant.  G & H) Representative images 

of hematoxylin and eosin (H&E) stained Day 3 (G) and Day 10 (H) paraffin embedded 

sections.  Large luteal cells, small luteal cells, and endothelial cells of blood vessels are 

readily apparent at both stages and no morphological differences are apparent.  I) 

Representative image of a discontinuous sucrose gradient  (steps are labeld with % sucross) 

used to isolate luteal LDs, the LDs form a distinct yellow band at the top of the gradient. 
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Figure 2-3 – Lipid droplets of isolated cells 

A) Confocal fluorescent image showing LD staining in freshly isolated bovine granulosa 

(GC), theca (TC) and the steroidogenic luteal cell types: large (LLC) and small luteal cells 

(SLC).  LDs were stained with the neutral lipid dye BODIPY 493/503 (green), and cells were 

immuno-labeled using an aromatase antibody to specifically label granulosa cells (red), and 

the nuclei are counter-stained with DAPI (blue).  All images are equal magnification.  B) 

Light microscope image showing LD staining in freshly isolated GC, TC, LLC, and SLC.  

LDs were labeled with the neutral lipid dye oil red O (ORO) and nuclei are counter-stained 

with Harris’ hemalytoxin.  All images are equal magnification and a scale bar is provided. 
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Figure 2-4 – Lipid droplet-associated proteins in bovine tissue including the CL 

(A) Transmission electron microscopy image of bovine luteal tissue demonstrating the 

presence of LD and the close association with multiple mitochondria (Mt). Scale bar is 

provided. (B) Analysis of perilipin (PLIN) family members mRNA and protein presence in 

various bovine tissues.  (C) Analysis of neutral lipid hydrolysis (ATGL, ABHD5, HSL) and 

forming (SOAT1) mRNA and protein expression in various bovine tissues. 
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Figure 2-5 – Lipid composition of luteal LDs 

(A) Analysis of purified LDs from bovine CL of early pregnancy by ultra-performance liquid 

chromatography system coupled with tandem quadrupole mass spectrometry. n = 3.  TAG-

triacylglycerol; DAG-diacylglycerol; CE-cholesteryl esters; ST-sterols; PC-

phosphatidylcholine; SM-sphingomyelins; PI-phosphatidylinositol; PE- 

phosphatidylethanolamine. (B) Lipidomics determined fatty acid composition of cholesteryl 

esters, X:X - number of carbons in the fatty acid: number of double bounds in the fatty acid. 

High performance thin layer chromatography (HPTLC) analysis of whole bovine CL versus 

adipose tissue FA, free fatty acids. (C) HPTLC analysis of freshly-isolated LLC, SLC, GC, 

and TH cells. Bars represent means ± SEM 
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Figure 2-6 – Lipid composition of subcellular compartments of luteal tissue 

Lipid analysis by HPTLC of whole tissue lysate, post-nuclear supernatant (PNS), lipid droplet 

fraction (LD), and post-nuclear supernatant minus LD fraction (PNS –LD).  Lipid content of 

each fraction was normalized to protein content.  Bars indicate means ± S.E.M, n = 2. 
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CHAPTER 3: LIPID DROPLETS ARE DYNAMICALLY REGULATED BY 

LUTEINIZING HORMONE SIGNALING IN THE BOVINE CORPUS 

LUTEUM ‡ 

Abstract 

Growth and maturation of the corpus luteum is accompanied by accumulation of cytoplasmic 

lipid droplets (LDs). These LDs are proposed to store cholesteryl esters for progesterone 

synthesis. LDs in other tissue can be dynamically regulated, but it is unclear how luteal cells 

regulate LDs. Hormone-sensitive lipase (HSL) and other LD-associated proteins including 

perilipin2 (PLIN2) were assessed during in vivo and in vitro differentiation of luteal cells from 

follicular cell types. In luteal cell cultures, the activation and localization of HSL after hormone 

stimulation and the impact of an HSL inhibitor on progesterone secretion were assessed. Finally, 

the luteal LD proteome was assessed by both proteomics and Western blot. HSL and PLIN2 

increased during in vivo and in vitro differentiation to luteal cell phenotypes. Dose-dependent 

inhibition of HSL activity inhibits luteinizing hormone (LH)- and HDL-stimulated progesterone 

secretion. Stimulation with LH, forskolin, and 8-br-cAMP phosphorylated HSL at the PKA-

sensitive Ser563, which is selectively associated with luteal LDs. Proteomics analysis revealed 

469 bovine-specific proteins which included steroidogenic enzymes StAR, P450scc, and 3B-

HSD, which was confirmed by Western blot analysis of in vivo luteal tissue. The surface of LDs 

may serve as a novel platform for steroidogenesis through the intimate association and potential 

tethering of steroidogenic enzymes present in the mitochondria and endoplasmic reticulum to the 

coat proteins of the LDs to facilitate the handoff of steroid precursors at each step to efficiently 

produce steroids, such as progesterone.  

                                                      
‡ The material presented in this chapter is in preparation to be as submitted as a manuscript: Talbott et al. 

Lipid Droplets are dynamically regulated by luteinizing hormone signaling in the bovine corpus luteum .  
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3.1. Introduction 

Understanding the regulation of luteal function will allow for the development of advanced 

treatment techniques for improving female fertility. We have demonstrated that the corpus luteum 

(CL) has numerous lipid droplets (LDs) within the steroidogenic cells (manuscript in preparation, 

Chapter 2), which are thought to store the steroid precursor cholesterol as cholesteryl esters. The 

formation and breakdown of LDs is known in fat and liver tissue to be regulated by LD-

associated proteins which include perilipins (PLINs) and hormone-sensitive lipase (HSL) 10,160,193. 

PLIN proteins are embedded within the LD surface and stabilize the organelle and facilitate 

interactions with transient LD proteins. Whereas, HSL is an enzyme that can liberate cholesterol 

from cholesteryl esters after protein kinase A (PKA) stimulation. 

3.1.1. Regulation of CL formation 

The CL is responsible for synthesizing the progesterone that supports early pregnancy in most 

mammals 134 and progesterone deficits are associated with early embryonic loss in women 194–196 

and female livestock 197–199. Early embryonic loss of pregnancies is commonly associated with 

luteal insufficiency, which is characterized by deficiencies in progesterone secretion, either in 

amount or duration 200. Luteal insufficiency results in a failure to develop a mature secretory 

endometrium, preventing embryo implantation, and has been found in 3-10% of infertile women 

and up to 35% of women with recurrent abortion 201,202. In cattle, early embryonic loss accounts 

for 30% of infertility cases 197–199, of which, many are believed to be due to a deficiency in 

progesterone secretion 200. Improvement of the understanding of CL function and the biosynthesis 

of the critical steroid hormone, progesterone, could lead to infertility management strategies for 

successful intervention in human and livestock fertility outcomes. 

CL formation begins with the luteinizing hormone (LH) surge, which causes ovulation and 

initiates the differentiation of follicular granulosa and theca cells into progesterone-secreting 

luteal cells. Secretion of progesterone by luteal cells requires direct action of three proteins, 1) 
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steroidogenic acute regulatory protein (StAR), which facilitates transport of cholesterol to the 

mitochondrial matrix, 2) P450 side-chain cleavage (P450scc) which removes the side-chain from 

cholesterol to form pregnenolone, and 3) 3-β hydroxysteroid dehydrogenase (3βHSD) which 

dehydrogenates pregnenolone to form progesterone. Key features of CL development include the 

development of an extensive vascular bed 203,204, recruitment of neutrophils, 205–207 and monocytes 

208,209. Additionally, CL development and function are metabolically regulated both systemically 

210,211, and intracellularly by key regulators such as insulin 212,213, insulin-like growth factors212,214, 

leptin 210,215,216, and adenosine monophosphate-activated protein kinase (AMPK) 88,91,94. In 

addition to overall metabolic status, both dietary lipids 158,180,211,217,218 and tissue lipid contents 

73,219 can impact ovarian function. 

3.1.2. Lipid droplets in the CL 

For over 40 years, luteal cells have been noted as containing LDs 145,146. One report 

determined that LDs made up 1.6-9.2% of identifiable subcellular components (mitochondria, 

granules, etc.) during the functional life span of the CL 147. LDs have been postulated to store 

cholesteryl esters that could be used for steroidogenesis 159. Armstrong et al. demonstrated that in 

rats and rabbits these LDs were primarily composed of cholesteryl esters and that treatment with 

LH reduced the total amount of cholesteryl esters present 148. As well, several research groups 

showed cholesterol and cholesteryl ester storage using the cholesterol sensing Schultz reagent 149–

154. Reports by Armstrong, Claesson, Gurarya, and others indicated that luteal LDs in various 

species could be altered by treatment with LH and prostaglandin F2 α, which is important in the 

involution of the CL 148,155–157. 

Guraya et al. who described that granulosa cells in humans developed fine “lipid granules” 

and “heterogeneous lipid bodies” within newly ruptured follicles, and that the theca interna cells 

of newly ruptured follicles are filled with sudanophilic lipids, including cholesterol and its esters 

181. Additionally LDs are increased in granulosa cells of 1 day old CL in rabbits 182. Similarly, 
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treatment of primates with LH or hCG can induce LD-associated proteins in granulosa cells 

within 12 hours 23. Transcripts of PLIN2 increase significantly in LH treated bovine granulosa 

and theca cells 183 and unpublished data. 

3.1.3. Regulation of LDs 

Neutral lipids, such as triglycerides and cholesteryl esters, can be stored intracellularly in 

specialized LD organelles. These unique organelles store neutral lipids (including cholesteryl 

esters) within a phospholipid monolayer, as opposed to the bilayer surrounding most other 

organelles. Embedded and associated with the monolayer are LD-associated proteins. The major 

LD-associated proteins are the PLIN family which includes, PLIN1 (perilipin), PLIN2 

(adipophilin/ADRP/ADFP), and PLIN3 (previously Tip47/M6PRBP1). The PLIN family of 

proteins can stabilize the lipid droplet surface and can serve as a platform for recruitment or 

sequestration of proteins that insert new lipids into the LD core, as well as exporting and 

modifying the neutral lipids for use in the cell. Additional proteins associated with the LD surface 

regulate the trafficking of LDs throughout the cell (e.g. Rab) and facilitate LD interaction with 

other organelles (PLIN5, vimentin). The LD proteome has been characterized to varying degrees 

in steroidogenic tissues and cell lines including, mouse testes 57, the MLTC1 Leydig cell line 56, 

and rat granulosa cells 55. Studies in the ovary have indicated that LD-associated PLIN coat 

proteins 38,220,221 and HSL, a key enzyme for hormonally-stimulated lipolysis 39,220,221, are 

expressed. 

3.1.4. Hormone-sensitive lipase 

Lipolysis of LD-stored triglycerides and cholesteryl esters can be stimulated by 

catecholamines in adipocytes through the action of HSL, which upon activation, translocates to 

the LD surface 26–28. The proposed mechanism of HSL translocation to the LD involves PKA-

dependent phosphorylation of PLIN1 and HSL, which allows the proteins to interact on the LD 

surface 31. The phosphorylation of HSL facilitates its association with PLIN1 on the LD and the 
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stored lipid substrates 32, permitting lipid hydrolysis to proceed. Stimulation of HSL catalytic 

activity and translocation to LDs occurs by phosphorylation at both Ser‐563 and Ser‐660 by PKA 

33–36. Negative regulation of HSL activity is accomplished by AMPK dependent phosphorylation 

of HSL at Ser-565 37. In adipose tissue, HSL contributes to energy homeostasis through lipolysis 

of LD-stored substrates after hormonal stimulation of PKA. HSL-null mice have aberrant steroid 

production in both the testes and adrenal glands 40,41. Together, these findings suggest that the 

intracellular processing and availability of cholesterol for steroidogenesis may include an HSL-

dependent step. Therefore, we hypothesized that LDs are dynamically regulated in luteal cells, 

particularly by activation of PKA downstream of LH signaling. 

3.2. Materials and Methods 

3.2.1. Isolation and culture of human granulosa cells 

Human granulosa cells were isolated from follicular aspirates of reproductive-age patients 

undergoing oocyte retrieval for in vitro fertilization. This study was approved by the Ethics 

Review Board of the University of Nebraska Medical Center. Tissue was collected through the 

obstetrical and gynecological tissue and fluid bank under an approved Institutional Review 

Board. Signed consent forms were obtained from each patient for use of discarded granulosa 

cells. Tissue was subsequently acquired from the tissue bank under an exemption from IRB 

Review. Ovarian stimulation was induced by treatment with recombinant human follicle 

stimulating hormone (FSH), followed by administration of hCG. Oocyte retrieval was performed 

35 h after hCG administration by aspirating follicular fluid under ultrasound guidance. After 

removal of the oocyte-cumulus complex, all of the follicular aspirates donated from a single 

patient were pooled and centrifuged at 400 g for 10 min. Cells were resuspended in M199, 

layered onto 40% Percoll, and centrifuged at 200 × g for 20 min. Granulosa cells were collected 

from the interphase of the Percoll gradient, washed with M199, and seeded into 24-well plates at 

a density of 100,000/well in M199 containing 10% fetal bovine serum (FBS) for overnight 



48 

plating. After overnight plating, cells were washed and then cultured and luteinized in M199 

containing PenStrep, 0.1% BSA, 1 μg/mL insulin, 2% FBS, and 10 μM forskolin or 1 IU/mL 

hCG. Culture media were changed every 2 d. 

3.2.2. Isolation of large and small luteal cells 

For luteal cell preparations, bovine ovaries were collected during early pregnancy (fetal 

crown-rump length < 12 cm) from a local abattoir (JBS USA, Omaha, NE) and transported to the 

laboratory on a cold pack. The luteal tissue was dissociated with collagenase as described 

previously 173. The cell viability was determined by the trypan blue exclusion test, and luteal cell 

preparations with more than 90% viability were used. Small luteal cells (SLC) and large luteal 

cells (LLC) were separated, essentially as previously described 104. Briefly, the mixed luteal cells 

were resuspended in elutriation medium (calcium-free Dulbecco’s modified eagle medium 

(DMEM) [US Biological D9800-10], supplemented with 25 mM HEPES, 3.89 g/L sodium 

bicarbonate, and 3 mg/mL glucose). Resuspended cells were subjected to centrifugal elutriation 

with continuous flow using a Beckman Coulter Avanti J-20 XP centrifuge equipped with a 

Beckman JE-5.0 elutriator rotor. The fractions containing SLC and LLC were pelleted and 

resuspended in basal M199 (0.1% BSA, 100 U/ml penicillin-G-sodium, 100 μg/ml streptomycin 

sulfate, and 10 μg/ml gentamicin sulfate). The average purity of SLC was 90% and LLC in F4 

were >50%. 

3.2.3. Isolation of granulosa and theca cells 

Follicular granulosa and theca cells were prepared from bovine ovaries collected from a local 

abattoir (JBS USA, Omaha, NE). Large follicles (> 0.8 cm) were punctured with a 20-gauge 

needle and follicular fluid was removed, the needle was reinserted and the granulosa cells were 

resuspended in an equal volume of elutriation medium containing 20 µg/mL DNase 

(Worthington). After the granulosa cells were removed, the follicle was opened and the theca was 

removed from the surrounding stroma and stored in elutriation medium. Small antral follicles (< 
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0.8 cm) were opened with a scalpel and the granulosa cells were gently scraped from the follicle 

wall using the blunt side of the scalpel and resuspended in elutriation medium. Theca were 

removed from surrounding stroma and placed in Elutration Medium. Granulosa cells were 

washed by centrifugation three times at 150 rcf for 5-10 min and filtration through a 70 μm mesh. 

Theca cells were resuspended in 0.2 mg/mL Collagenase 2 (Atlanta Biologicals) in elutriation 

medium and dispersed using constant agitation at 37 °C for 1 h. Dispersed theca were removed 

from the undigested tissue by filtration through a 70 μm mesh then washed by centrifugation 

three times at 150 rcf for 5-10 min. Red blood cells were removed by resuspending theca cells in 

dH2O and immediate addition of 2x phosphate-buffered saline (PBS). Granulosa and theca cell 

viability and concentration were determined by trypan blue exclusion test. 

3.2.4. Luteal cell culture 

Bovine SLC and LLC were plated (SLC: 1 × 105, LLC: 4 x 104 cells/cm2) in basal M199 with 

5% FBS for 18 h at 37 °C in a humidified atmosphere of 5% CO2. Cells were washed with PBS 

and the medium was replaced with serum-free M199 2 h prior to the experiment (treatment 

specifics are described in corresponding figure legends). 

3.2.5. Differentiation of granulosa and theca cells to luteal cell types 

Bovine granulosa and theca cells were plated (2 x 105 and 4 x 104 cells/cm2, respectively) in 

basal DMEM:Ham’s F-12 (F12) (1:1) [100 U/mL penicillin, 100 μg/mL streptomycin, 10 μg/mL 

gentamycin, and 0.1% BSA] containing 10% FBS for 36 h at 37 °C in a humidified chamber with 

5% CO2. Cells were washed with PBS and medium was replaced with basal DMEM : F12 

containing 1% FBS. Cells were treated with either 1% insulin-transferrin-selenium (ITS) or 1% 

ITS + 10 µM forskolin to induce differentiation, controls were unstimulated or treated with 5 

ng/mL FSH, as described in the figure legends. All wells received equal amounts of dimethyl 

sulfoxide (DMSO) and the medium was changed every two days. 
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3.2.6. Western blots 

Tissue samples were weighed and homogenized (~100 mg/mL) in cell lysis buffer (20mM 

Tris [pH 7.4], 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton x-100, protease and 

phosphatase inhibitor cocktails) using OMNI Tissue homogenizer then sonicated for 3 s. Lysates 

were centrifuged at 18,350 x g for 15 min at 4 °C and the supernatant was collected for SDS-

PAGE analysis. Protein concentration was determined by Bradford reaction (Bio-Rad 500-0006). 

Aliquots of samples (10-30 µg protein) were suspended in protein loading buffer (50 mM Tris pH 

6.8, 300 mM glycerol, 25 mM SDS, 45 mM DTT, 260 mM 2-mercaptoethanol, bromophenol) 

separated on 10% SDS-PAGE gel and transferred to nitrocellulose membranes. Membranes were 

blocked in 0.1% Tween 20 in Tris-buffered saline (TBST) (10 mM Tris-HCl, 150 mM NaCl, 

0.1% Tween 20; pH 7.5) with 5% fat-free milk for 1 h at room temperature. Membranes were 

incubated either overnight at 4 °C or for 2 h at room temperature with primary antibody diluted in 

TBST with 1% non-fat milk or 5% BSA. After washing, membranes were incubated for 1 h at 

room temperature with 1:20,000 anti-rabbit or anti-mouse HRP-conjugated IgG diluted in TBST 

with 1% non-fat milk. After washing, protein bands were detected with SuperSignal West Femto 

(Thermo 34095). 

3.2.7. Progesterone assay 

Media from luteal cells was diluted in water (1:150) and assayed for progesterone 

concentration using either RIA (Siemens TKPG1) or ELISA kit (DRG EIA-1561) following 

manufacturers’ instructions and using a 4-parameter regression to interpolate unknowns from the 

standard curve. 

3.2.8. Lipid droplet isolation from cells 

Cells from 6-100 mm2 dishes were washed twice with PBS and then scraped into PBS 

combined and centrifuged for 10 min at 1000 x g, 4 °C. Cells were resuspended in hypotonic lysis 

medium (20 mM Tris [pH 7.4], 1 mM EDTA, 10 mM NaF) and homogenized using a Parr cell 
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disruption bomb at 300 psi for 12 minutes. The post-nuclear supernatant was obtained by 

centrifuging the cell lysate for 10 min at 1,000 x g at 4 °C. The supernatant was mixed with an 

equal volume of hypotonic lysis medium containing 60% sucrose and loaded into a 30 mL 

polypropylene thick-walled ultracentrifuge tube, overlaid sequentially with 5% and 0% sucrose in 

HLM buffer. Samples were centrifuged at 110,000 x g (ravg) for 30 min at 4 °C with no brake in 

Beckman Coulter Avanti J-20 XP.and SW 32 Ti rotor. The LDs concentrated in a yellow/white 

band at the top of the gradient were harvested and concentrated by centrifugation at 2000 rcf for 

10 min at 4 °C with no brake. The protocol was derived from 175. 

3.2.9. Proteomics 

Acetone-precipitated LD proteins were suspended in 2x protein loading buffer (100 mM Tris 

pH 6.8, 600 mM glycerol, 50 mM SDS, 90 mM DTT, 525 mM 2-mercaptoethanol, and 

bromophenol blue) and boiled for 5 min at 100 °C. A 10% SDS-PAGE gel was used to separate 

LD proteins. Coomassie blue-stained gel pieces were manually cut into two pieces using a 

sterile scalpel and kept in sterile microcentrifuge tubes. Gel pieces were washed with 

HPLC water and shrunk by removing all liquid using 100% acetonitrile (ACN). Proteins 

were reduced using 2 mM tris(2-carboxyethyl)phosphine (TCEP) in 50 mM ammonium 

bicarbonate (AmBic) for 1 h at 37 °C. After incubation, ACN was added to TCEP to 

destain gel pieces. After gel pieces were dried by adding additional portion of ACN, thiol 

groups of proteins were alkylated with 55 mM iodoacetamide (IAA) in 50 mM AmBic 

for 20 min in dark. Samples were dried again with ACN and 10 nM MS-grade trypsin 

(Thermo Scientific, Rockford, IL, USA) was added for protein digestion. Samples were 

incubated with trypsin for 30 min on ice. After the excess of trypsin was removed from 

tubes, 25 mM AmBic was added to the gel pieces. Tryptic digestion continued overnight 

at 37 °C. Digested peptides were then extracted from gel with 50% ACN/0.1% 
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trifluoroacetic acid solution. Samples were dried in a Speedvac, dissolved in 15 µL of 

0.1% formic acid (FA) and submitted for LC-MS/MS analysis. 

In-gel digested peptide samples were analyzed using high-resolution mass 

spectrometry LC-MS/MS system (LTQ Orbitrap Elite Velos Pro, Thermo Scientific, 

West Palm Beach, FL, USA), coupled with an Eksigent NanoLC-Ultra 1D plus 

(Eksigent, Dublin, CA, US) and nanoFlex cHiPLC system (Eksigent), equipped with two 

alternating peptide traps. 10 µL of each sample were loaded onto the peptide trap using 

0.1% FA solvent. The samples were eluted using a 1 hour linear gradient of 0–60% of 

ACN in 0.1% FA. The nanospray needle voltage was set to 2400 V in HPLC MS mode 

and linear ion trap scan mode was used for MS/MS. Resolution of the full scan in the 

Orbitrap was set to 120,000 m/z with a range from 300 to 2000 Da. The collision energy 

was set to 35 kV. 

The MS/MS spectra from the peptides were analyzed by assigning the fragments to 

the candidate sequence using MASCOT search engine (Matrix Science, London, UK, 

version 2.5.1) with a Swissprot database (Taxonomy: Mammalia). Parameters on 

MASCOT were set as follows: Enzyme: trypsin, Max missed cleavage: 2, Peptide charge: 

1+, 2+ and 3+, Peptide tolerance: ± 0.8 Da, Fixed modifications: carbamidomethyl (C), 

Variable modifications: oxidation (M), phospho (ST) and phospho (Y), MS/MS 

tolerance: ± 0.6 Da, Instrument: ESI-TRAP. MASCOT results for different gel cuts of the 

same sample were combined and analyzed using Scaffold (Proteome Software, Inc., 

Portland, OR, version 4.4.5), which allows multiple search results to be condensed into a 

single result file. Peptide identifications were accepted if they were established at greater 

than 95.0% probability by the Peptide Prophet algorithm 222 Scaffold delta-mass 
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correction. Protein identifications were accepted if they were established at greater than 

95.0% Protein probabilities were assigned by the Protein Prophet algorithm 223. Proteins 

that contained similar peptides and could not be differentiated based on MS/MS analysis 

alone were grouped to satisfy the principles of parsimony. Proteins sharing significant 

peptide evidence were grouped into clusters. 

3.2.10. Animals 

Post-pubertal multiparous female cattle (n = 15) of composite breeding (½ Red Angus, 

Pinzgauer, Red Poll, Hereford and ½ Red Angus and Gelbvieh) were synchronized using two 

intramuscular injections of PGF2α (25mg; Lutalyse®, Zoetis Inc., Kalamazoo Michigan, MI) 11 

days apart. A bilateral ovariectomy, between 3 and 10 days post-ovulation, was performed 

through a right flank approach under local anesthesia 277,278. The CL was removed from the ovary, 

weighed and 2.5 g was used for LD isolation (Section 3.2.11). All animal procedures were 

completed under an IACUC-approved protocol and performed at the University of Nebraska—

Lincoln, Animal Sciences Department (Lincoln, NE). Statistical differences in animal 

characteristics were determined using one-way analysis of variance in GraphPad Prism (La Jolla, 

CA). 

3.2.11. Lipid droplet isolation from tissue 

Tissue (~2.5 g) was washed thoroughly in TE buffer (10 mM Tris, 1 mM EDTA, pH 7.4). 

Minced tissue was resuspended in 10 mL tissue homogenate buffer (60% sucrose w/v in TE 

buffer containing protease and phosphatase inhibitor cocktail) and homogenized with a Teflon 

Dounce homogenizer in a glass vessel. The post-nuclear supernatant fraction was obtained after 

centrifugation at 2000 rcf for 10min. The supernatant was loaded into a 30 mL ultracentrifuge 

tube and overlaid sequentially with 40%, 25%, 10%, and 0% sucrose (w/v) in TE buffer 

containing protease and phosphatase inhibitor cocktails. Samples were centrifuged at 111,000 x g 

(ravg) for 30 min at 4 °C with no brake in a Beckman Coulter Avanti J-20 XP ultracentrifuge using 
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an SW 32 Ti rotor. The LDs concentrated in a yellow/white band at the top of the gradient were 

harvested and concentrated by centrifugation at 2000 rcf for 10 min at 4 °C, the protocol was 

modified from 174,175. 

3.2.12. Western blots of LDs 

Acetone-precipitated LD proteins were suspended in 2x protein loading buffer (100 mM Tris 

pH 6.8, 600 mM glycerol, 50 mM SDS, 90 mM DTT, 525 mM 2-mercaptoethanol, and 

bromophenol blue) and boiled for 5 min at 100 °C, separated on a 10% SDS-PAGE gel, and 

transferred to nitrocellulose membranes. Membranes were blocked in TBST (10 mM Tris-HCl, 

150 mM NaCl, 0.1% Tween 20; pH 7.5) with 5% fat-free milk for 1 h at room temperature. 

Membranes were incubated either overnight at 4 °C or for 2 h at room temperature with primary 

antibody diluted in TBST with 1% non-fat milk or 5% BSA. After washing, membranes were 

incubated for 1 h at room temperature with 1:20,000 anti-rabbit or anti-mouse HRP-conjugated 

IgG diluted in TBST with 1% non-fat milk. After washing, protein bands were detected with 

SuperSignal West Femto (Thermo 34095). 

3.3. Results 

3.3.1. Formation of LDs during differentiation 

Previously we identified LD-associated protein transcripts for PLIN2, PLIN3, and LIPE (the 

gene encoding HSL) were increased in both steroidogenic luteal cell types over their follicular 

counterparts, as assessed by microarray (GSE83524) (Figure 3-1 A) 220. The protein abundance of 

PLIN2 and HSL was increased in luteal tissue as assessed by Western blot (Figure 3-1 B). In vitro 

differentiation of granulosa cells with 1% ITS + 10 µM forskolin, increased the amounts of HSL, 

PLIN2, StAR, P450scc, and 3βHSD that were intermediate to levels seen in luteal cells (Figure 

3-2 A). As well, progesterone secretion gradually increased over 7 days in culture with treatment 

of ITS + 10 µM forskolin, whereas control treated cells maintained a low level of progesterone 
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secretion ( B). The differentiation protocol of 1% ITS + 10 µM forskolin increased LD formation 

in both bovine and human granulosa cells ( C & D). 

3.3.2. Phosphorylation of HSL at Ser563 by LH and LH signaling intermediates 

Luteal cells were treated with LH, forskolin (an adenylate cyclase activator), and 8-bromo 

cyclic AMP (a protein kinase A activator) to determine whether LH and LH signaling pathways 

phosphorylated HSL at its activation site Ser563. Treatment of mixed luteal cells with LH, 

forskolin or 8-Br cAMP increased phosphorylation of the PKA-sensitive site Ser563 on HSL 

within 5 minutes and was sustained for 4 h (Figure 3-3). 

3.3.3. Regulation of LDs 

Luteal cells were pretreated with an HSL inhibitor, CAY10499, before stimulation with LH 

and/or high-density lipoprotein (HDL) as an exogenous cholesterol source. CAY10499 inhibited 

LH-induced progesterone secretion by bovine luteal cells with pretreatment of 10 and 20 µM 

CAY10499 (Figure 3-4 A). Treatment with LH stimulated progesterone synthesis (SLC: 6-fold, 

LLC: 3.6-fold) which was increased with co-incubation with HDL (SLC: 11.3-fold, LLC: 5-fold). 

CAY10499 pretreatment prevented both the LH- and HDL + LH-induced progesterone secretion 

but had no effect on basal progesterone secretion in either SLC or LLC (Figure 3-4 C & D). The 

influence of off-target effects of CAY10499 was excluded because inclusion of hydroxylated 

cholesterols could still increase luteal progesterone secretion [Appendix A-2] 

3.3.4. PKA stimulation promotes alterations in the luteal LD proteome 

Stimulation of luteal tissue punches with the PKA activator 8-br-cAMP resulted in 

phosphorylation of HSL at Ser563 and an increased HSL localization on luteal LDs (Figure 3-5). 

The LDs isolated from untreated and 8-Br cAMP-treated luteal cells were acetone-precipitated 

and the protein content was analyzed by proteomics. LC-MS/MS analysis determined 469 

bovine-specific proteins were present in bovine LDs isolated from cultured mixed luteal cells; of 

these, 85 proteins were increased in 8-Br cAMP-treated samples, and 48 were decreased. The top 
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ten most abundant proteins in both treated and untreated LDs included 3βHSD, PLIN2, vimentin, 

and P450scc. Proteins with increased abundance on luteal lipid droplets following 8-bromo 

cAMP treatment included LD coat protein PLIN2, trafficking (Rab8A, Rab14), and 

steroidogenesis (StAR, 3βHSD) [Appendix A-3]. 

3.3.5. Luteal LDs are associated with steroidogenic enzymes 

Confirmation of proteomics results was achieved by Western blot analysis of purified LDs 

from functional bovine CLs obtained by ovariectomy. PLIN3, vimentin, P450scc, and 3βHSD 

were all significantly enriched in luteal LDs compared to whole luteal tissue. However, 

mitochondrial marker COX IV and endoplasmic reticulum marker HSP47 were nearly absent 

from luteal LDs (Figure 3-6). Quantification of immunodetection by Western blot is available in 

[Appendix A-5]. 

3.4. Discussion 

Lipid droplets and LD-associated proteins are under regulation by LH signaling in the bovine 

CL. As granulosa cells differentiate to form luteal cells, increases in both LDs and LD-associated 

proteins, HSL and PLIN2 are seen which correlate with luteal differentiation markers and 

progesterone secretion. Signaling by LH causes phosphorylation of HSL at Ser563 and 

translocation of HSL to the LD surface (these changes active HSL). Furthermore, chemical 

inhibition of HSL by CAY10499 prevents LH-induced progesterone secretion even in the 

presence of HDL-supplied cholesterol indicating that cholesteryl esters originating either in LDs 

or delivered by HDL are processed by an HSL-dependent step. Finally, luteal LDs have a high 

content of steroidogenic enzymes including, 3βHSD and P450scc. Furthermore, LD-associated 

StAR can increase by 14-fold after treatment with 8-br cAMP. These data lead us to hypothesize 

that the surface of LDs may serve as a novel platform for steroidogenesis through the intimate 

association and potential tethering of steroidogenic enzymes to the coat proteins of the LD 
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facilitating the handoff of steroid precursors at each step to produce steroids, like progesterone 

(Figure 3-7). 

Differentiation of granulosa cells occurs after ovulation and is accompanied by increases in 

steroidogenic enzymes 3βHSD, P450scc, and StAR, which promote an increase in progesterone 

secretion. As bovine granulosa cells differentiate, LDs form and LD-associated proteins increase 

in correspondence with standard differentiation markers. This is confirmed by the previous work 

of Meidan et al. which examined the in vitro differentiation of theca and granulosa cells into 

luteal-like cells 189. This indicates that LD accumulation may be a natural consequence of 

granulosa to luteal cell differentiation. 

HSL is a key regulator of lipolysis in adipose tissue. In fat tissue, HSL is phosphorylated by 

PKA on Ser563 that is correlated with translocation of HSL to LDs and activation of its lipase 

activities. Activated HSL results in the release of cholesterol and free fatty acids from neutral 

lipid stores within LDs for cellular use. We have shown that HSL can be phosphorylated at S563 

after treatment with LH, forskolin, or 8-bromo cAMP. Pretreatment of luteal cell cultures with a 

chemical inhibitor of HSL activity, CAY10499, could prevent LH- and LH+HDL-stimulated 

progesterone secretion. LH may regulate the phosphorylation of PLINs and HSL via a 

cAMP/PKA signaling pathway allowing for hydrolysis of cholesteryl esters stored in luteal LDs 

to produce substrate for progesterone synthesis. This indicates that stimulated but not basal 

progesterone is processed through an HSL-dependent and likely LD-dependent step. 

Isolated luteal LDs were examined using both a non-targeted and targeted approaches. It was 

determined that the steroidogenic enzymes StAR, P450scc, and 3βHSD were found in the LDs 

fraction in addition to known LD markers such as PLIN2, PLIN3, vimentin, and HSL. However, 

other mitochondrial and endoplasmic reticulum markers were not abundant, indicating a selective 

association with steroidogenic enzymes. Taken together, these data indicate that the surface of 

LDs may serve as a novel platform for steroidogenesis by an intimate association with 
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steroidogenic enzymes, allowing for the handoff of steroid precursors from the LD to the 

mitochondria and endoplasmic reticulum for steroidogenic modifications of cholesterol. Possible 

interactions between LDs, mitochondria, and the endoplasmic reticulum could involve physical 

tethering of the membranes similar to mitochondrial associated membranes, whereby the 

mitochondria and endoplasmic reticulum have microdomains of highly associated membranes to 

facilitate lipid transfer 224. 

We found evidence for enrichment of known LD-associated proteins on luteal LDs including 

HSL, PLIN3, and vimentin. Additionally the steroidogenic enzymes P450scc and 3βHSD were 

enriched in the LD fraction. This is similar for the LD proteome determined for other 

steroidogenic cells including the MLTC-1 Leydig cell line (analogous to the granulosa cells of the 

female reproductive tract), 56 LDs purified from mouse testes, 57 and lipid-loaded rat granulosa 

cells55. The finding of steroidogenic enzymes within the LD proteome by four separate groups 

indicate this is an important feature of LDs within steroidogenic cells and is not simply a matter 

of contamination. Ultrastructural studies have often noted the close proximity of mitochondria 

with LDs 225, and the emerging field of mitochondrial associated membranes offers the possibility 

that there are regionalized areas of contact between mitochondria and LDs 226. 

Khor et al. compared the proteome of LDs from rat granulosa cells treated in vitro with either 

HDLs or fatty acids to enrich cytoplasmic LDs with cholesteryl esters or triacylglycerides, 

respectively 55. When comparing the LD proteomes, a large number of proteins (278) were 

common to the LDs prepared from either treatment. These proteins included PLIN2 and were 

similar to other studies on LD proteomes. They also identified 61 proteins unique to the 

cholesteryl ester-rich LDs and 40 proteins unique to triacylglycerol-rich LDs. Notably, they 

identified 3βHSD, vimentin, and voltage-dependent anion channel proteins enriched in the 

cholesteryl ester-rich LDs. Recent reports on the proteomic analysis of LD isolated from the 
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mouse Leydig tumor cell line MLTC-1 56, and mouse testes 57 also revealed the presence of PLIN 

family proteins and enzymes involved in the synthesis of steroid hormones. 

Previous studies that have examined the LD proteome in steroidogenic tissues have also 

found steroidogenic enzymes 55,57. Reports in the monkey 23 and mouse 24 indicate that the ovary 

expresses PLIN2, a LD coat protein associated with cholesteryl ester storage 25. Manna et al. 

recently reported that activation of the PKA pathway in MA-10 mouse Leydig cells enhanced 

expression of HSL and its phosphorylation at Ser-563 and Ser-660. Additionally, inhibition of 

HSL activity suppressed cAMP-induced progesterone synthesis and resulted in increased 

cholesteryl ester levels in MA-10 cells 42. The data presented herein complements these 

observations and provides mechanisms for regulation of LD-associated proteins in luteal cells. 

Also of interest is a report 43 demonstrating an interaction between StAR and HSL in the rat 

adrenal following treatment with adrenocorticotropic hormone. Furthermore, the co-expression of 

StAR and HSL resulted in elevated HSL activity and mitochondrial cholesterol content 43. These 

observations, suggest that the proteins involved in production and transport of cholesterol may 

co-localize in LDs and mitochondria. We have observed that mitochondria are closely associated 

with cytoplasmic LDs in bovine luteal cells (Figure 1-1 B) 161. These observations, in 

combination with this study, indicate that luteal LDs and mitochondria may interact to facilitate 

steroidogenesis. 

These data improve our understanding of the biochemistry of steroidogenesis. As we learn 

more about how cholesterol is stored and utilized, particularly during steroidogenesis we can gain 

insight into how to manipulate steroidogenesis to either increase or decrease steroid production. 

Our study has focused on non-pathological conditions to gain a clear insight into the role of LDs 

in highly steroidogenic tissues. Future studies into how LDs and flux of cholesterol through cells 

is altered in obesity and polycystic ovarian syndrome could indicate mechanisms by which those 

conditions impair fertility, specifically if steroid production or LD formation is altered. 
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Additionally, further analysis of the additional cholesteryl esterases and activity will clarify how 

the pathways of steroidogenesis within the luteal tissue are regulated. Furthermore, a direct 

investigation into the presence of mitochondrial and endoplasmic reticulum tethering to the LD 

surface is ongoing. 

Formation of LDs during granulosa to luteal cell differentiation appears to be a normal, and 

potentially necessary accumulation. Stimulated, but not basal, progesterone is processed through 

an HSL-dependent, and likely LD-dependent step. The surface of LDs may serve as a novel 

platform for steroidogenesis by an intimate association with steroidogenic enzymes. The close 

proximity of mitochondria and the endoplasmic reticulum may facilitate the handoff of steroid 

precursors at each step to efficiently produce steroids such as progesterone. We postulate that 

progesterone synthesis in enhanced by physical tethering of mitochondria and the endoplasmic 

reticulum to the LD surface using a similar mechanism to mitochondrial associated membranes, 

which tether microdomains of the endoplasmic reticulum to mitochondria to facilitate lipid 

transfer 224. Our results support a growing body of research indicating that LDs play a critical role 

in steroid production and may provide novel biomarkers of infertility and therapeutic targets for 

altering fertility status of humans and other mammals.  
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Figure 3-1 – Lipid droplet-associated proteins were expressed at greater amounts in luteal 

cells at both transcriptional and protein levels 

(A) Microarray-determined relative transcription expression levels of key LD-associated coat 

proteins perilipins 2 and 3 (PLIN2 and PLIN3, respectively), hormone sensitive lipase (HSL, 

gene name LIPE), and luteal differentiation marker steroidogenic acute regulatory protein (StAR) 

fold changes from precursor follicular cells to luteal cell types is written above brackets.  Gene 

expression data was generated in a previous study and is publically available (GSE83524) 220.  

(B) Western blot analysis of freshly-isolated granulosa, theca, or luteal tissue for expression of 

PLIN2, HSL with GAPDH and β-actin as loading controls. ** P ≤ 0.01 
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Figure 3-2 – Lipid droplets and LD-associated proteins HSL and PLIN2 increase during 

differentiation of granulosa cells to luteal cells 

Isolated granulosa cells were differentiated using 1% insulin-transferrin-selenium (ITS) with 

10 uM forskolin for up to 7 days. (A)  Western blot of bovine granulosa cells, differentiating 

granulosa cells, and luteal cells, n = 2 (B) Progesterone concentrations in medium of control 

versus differentiating bovine granulosa cells, mean ± S.E.M, n =3.  (C) Oil red O staining of 

lipid droplets in control versus differentiating bovine granulosa cells after 6 days in culture.  

(D) BODIPY 493/503 staining of LDs in control versus differentiating human granulosa cells 

after 4 days in culture. 
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Figure 3-3 – Phosphorylation of HSL at Ser-563 

is increased by LH and protein kinase A 

activating compounds 

Western blot analysis of time-dependent HSL 

phosphorylation at Ser-563 by LH (top), forskolin 

(middle), and 8-bromo cAMP (8-br cAMP) from 5 

minutes to 2 h post treatment.  Appropriate vehicle 

treated controls for each treatment are shown as 0 

min post-treatment (left-most column). 

p-HSL S563

HSL

Forskolin

p-HSL S563

HSL

LH

p-HSL S563

HSL

5 15 30 120 2400

Minutes post-treatment

8-Br-cAMP



64 

 

  

 

Figure 3-4 – Hormone-stimulated progesterone production can be inhibited when HSL 

activity is blocked 

(A) Quantification of dose-dependent inhibition of LH-induced progesterone secretion of 

cultured bovine luteal cells by pretreatment of CAY10499. Mean ± S.E.M. relative to control, 

n = 4 (B) Diagram demonstrating the known target of CAY10499 action.  FFAs, free fatty 

acids. (C)  Quantification of progesterone secretion by cultured bovine small luteal cells with 

(red) and without (white) 10µM CAY10499 pretreatment and stimulation with high density 

lipoprotein (HDL) supplied cholesterol, LH, or LH + HDL combination.  Mean ± S.E.M., n = 

2 (D) Quantification of progesterone secretion by cultured bovine large luteal cells with and 

without 10µM CAY10499 pretreatment and stimulation with high density lipoprotein (HDL) 

supplied cholesterol, LH, or LH + HDL combination.  Mean ± S.E.M., n = 2. * P ≤ 0.05, ** P 

≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001 
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Figure 3-5 – Phosphorylation of HSL results in its 

translocation to LDs in bovine luteal tissue 

Western blot analysis of total cellular lysate and 

corresponding LD-associated proteins from bovine 

luteal tissue biopsies treated with 8-br cAMP, a PKA 

activator.   
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Figure 3-6 – Western blot analysis of LD associated 

proteins from functional bovine CL confirms 

proteomic identification of LD-associated 

steroidogenic enzymes 

Western blot analysis of  total cellular lysate and 

corresponding LD-associated proteins from fully 

functional bovine luteal tissue.  Each panel is labeled 

with the examined protein and the apparent molecular 

weight of the band based on simultaneously run markers 

follows each protein in parentheses (kDa). 
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Figure 3-7 – Proposed organization of luteal LDs, mitochondria, 

and endoplasmic reticulum to facilitate steroidogenesis 

Scheme depicting potential organization of LDs, mitochondria, and 

the endoplasmic reticulum.  Also depicted is the action of LH, 

through PKA, inducing activation of HSL which supplies newly 

released cholesterol to StAR in the mitochondria for processing into 

the steroid precursor pregnenolone, which is converted to 

progesterone in the endoplasmic reticulum by 3 beta hydroxysteroid 

dehydrogenase (3βHSD). 
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CHAPTER 4: EARLY TRANSCRIPTOME RESPONSES OF THE BOVINE MID-

CYCLE CORPUS LUTEUM TO PROSTAGLANDIN F2 ALPHA 

INCLUDES CYTOKINE SIGNALING § 

Abstract 

In ruminants, prostaglandin F2alpha (PGF2α)-mediated luteolysis is essential for initiation of 

the estrous cycle and is a target for improving fertility. To deduce early PGF2α-provoked changes 

in the corpus luteum a short time-course (0.5–4 h) was performed on cows at mid-cycle. A 

microarray-determined transcriptome was established and examined by bioinformatic pathway 

analysis. Classic PGF2α effects were evident by changes in early response genes (FOS, JUN) and 

prediction of active pathways (PKC, MAPK). Several cytokine transcripts were elevated and 

NF-κB and STAT activation were predicted by pathway analysis. Self-organizing map analysis 

(SOMs) grouped differentially expressed transcripts into ten mRNA expression patterns 

indicative of temporal signaling cascades. Comparison with two analogous datasets revealed a 

conserved group of 124 transcripts similarly altered by PGF2α treatment, which both, directly and 

indirectly, indicated cytokine activation. Elevated levels of cytokine transcripts after PGF2α and 

predicted activation of cytokine pathways implicate inflammatory reactions early in PGF2α-

mediated luteolysis.  

                                                      
§ The material presented in this chapter was submitted as a manuscript: Talbott et al. Early transcriptome 

responses of the bovine mid-cycle corpus luteum to prostaglandin F2α includes cytokine signaling. 

Molecular and Cellular Endocrinology 2017 221. 
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4.1. Introduction 

In mammals, multiple fertile cycles depend on the formation and regression of a transient 

endocrine structure in the ovary termed the corpus luteum (CL) 134,227. The CL forms at the 

beginning of each estrous cycle and synthesizes progesterone, a hormone critical for early 

embryonic survival during pregnancy 135–137,228. However, before the next follicle can develop, the 

steroidogenic luteal cells of the CL must cease the production of progesterone—contingent on the 

absence of a pregnancy—and ultimately undergo apoptosis 123,229. Prostaglandin F2alpha (PGF2α) 

is a recognized lipid mediator that triggers CL regression after an unsuccessful reproductive cycle 

or at parturition in mammals 65,134,230. Thus, PGF2α-mediated luteolysis is a key checkpoint in the 

reproductive cycle and is a useful target for controlling the estrous cycle and fertility. 

Signaling by PGF2α has been studied extensively in vitro, and the classic signaling pathway 

involves the binding of PGF2α to its G-protein-coupled receptor and activating Gαq/11 
231–233

. The 

early intracellular signaling events initiated by PGF2α in luteal cells include the activation of 

phospholipase C 234,235, phospholipase A2 236,237, an increase in intracellular Ca2+ 235, activation of 

protein kinase C (PKC) 105 and activation of mitogen-activated protein kinase (MAPK) signaling 

cascades including extracellular signal-regulated kinase (ERK) 105,238–241. These signaling 

cascades are responsible for the transcriptional and translational induction of several early 

response genes including transcription factors such as, Finkel-Biskis-Jinkins murine 

osteosarcoma viral oncogene homolog (FOS) 105, Jun proto-oncogene (JUN) 105, early growth 

response 1 (EGR1) 106, and activating transcription factor 3 (ATF3) 104. The transcription factors 

induced by PGF2α control the abundance of target messenger RNAs (mRNAs) which, when 

translated, alter the luteal proteome enabling luteolysis to proceed. For example, sustained ATF3 

expression can inhibit luteinizing hormone-induced progesterone production by bovine luteal 

cells 104. As well, EGR1 expression stimulates the synthesis of transforming growth factor beta 

(TGFβ) 106, which coordinates the activities of a number of cell types during luteal regression. 
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Specifically, TGFβ inhibits luteal progesterone secretion 106,242,243, acts on luteal endothelial cells 

to disrupt the microvasculature 244, and stimulates the profibrotic activity of luteal fibroblasts 245. 

The luteolytic process is a well-coordinated series of events similar to an acute inflammatory 

response consisting of a sequential time-dependent infiltration of neutrophils 205,207,246,247, 

macrophages 205,209,248–250, and T lymphocytes 205,209,248,251. Accordingly, there is likely time-

dependent secretion of cytokines to recruit and activate the various leukocytes 203,252–254. Several 

cytokine transcripts are induced by PGF2α in the mid- to late-stage CL including tumor necrosis 

factor alpha (TNF) 255,256, interleukin 1 beta (IL1B) 108,255,257, interferon gamma 255, TGFB1 

106,256,257, and the chemokines; C-C motif chemokine ligand 2 (CCL2, previously known as 

MCP1) 257–259 and C-X-C motif 8 (CXCL8, previously known as CXCL8) 108,207,246,256,257,260. These 

cytokines have pleiotropic effects on luteal cells, including inhibition of progesterone secretion 

261–266, stimulation of PGF2α secretion 263–267, and stimulation of apoptosis of multiple luteal cell 

types 262,263,268–272. The production of luteolytic factors, decrease in progesterone secretion, 

recruitment of immune cells, the release of pro-inflammatory cytokines, reduction in blood 

supply, and the creation of a hypoxic environment 273,274 likely act in concert within the CL to 

cause the functional and structural regression of the CL. 

The purpose of this study was to understand the early PGF2α-elicited changes in the CL 

based on temporal patterns of early transcript expression following in vivo treatment with PGF2α. 

While many studies have examined luteolytic alterations both in vivo and in vitro, most studies 

have focused on changes 3-24 hours after PGF2α administration 256,257 or used targeted rather than 

global approaches 108,275,276. Therefore, little is known about the very early temporal changes in 

global mRNA expression elicited in response to PGF2α treatment in vivo. Examination of the 

early transcriptional responses to PGF2α will provide a context for understanding the events 

responsible for orchestrating the cascade of events required for functional and eventual structural 

regression of the CL. In the present study, a systems biology approach using Affymetrix Bovine 
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Arrays was employed to evaluate gene expression at 0.5 - 4 hours post-PGF2; followed by 

bioinformatics analysis of PGF2α-mediated signals. We hypothesized that the sequence of events 

after in vivo PGF2α administration would include early changes of classical targets of PGF2α 

signaling pathways followed by fluctuations in targets of cytokine signaling at later time-points. 

4.2. Materials and Methods 

4.2.1. Animals 

Post-pubertal multiparous female cattle (n = 15) of composite breeding (½ Red Angus, 

Pinzgauer, Red Poll, Hereford and ½ Red Angus and Gelbvieh) were synchronized using two 

intramuscular injections of PGF2α (25mg; Lutalyse®, Zoetis Inc., Kalamazoo Michigan, MI) 11 

days apart. At mid-cycle (days 9-10), cows were treated with an intramuscular injection of saline 

(n = 3) or PGF2α (n = 12). At each of four time-points post-injection (0.5, 1, 2, and 4 h) three 

cows per treatment were subjected to a bilateral ovariectomy through a right flank approach under 

local anesthesia 277,278. The CL was removed from each ovary, weighed and < 5 mm3 sections 

were snap-frozen in liquid N2 for subsequent protein and ribonucleic acid (RNA) analysis. Plasma 

progesterone concentrations were determined using the ImmuChem Progesterone Coated Tube 

radioimmunoassay kit (MP Biomedicals, Santa Ana, CA) with an intra-assay coefficient of 

variation of 9.13% and inter-assay coefficient of variation of 7.99%. The University of Nebraska-

Lincoln Institutional Animal Care and Use Committee approved all procedures and facilities used 

in this animal experiment and animal procedures were performed at the University of Nebraska—

Lincoln, Animal Science Department. Statistical differences in animal characteristics were 

determined using Kruskal-Wallis test followed by Dunn’s post-test or one-way analysis of 

variance followed by Bonferroni's multiple comparison test as appropriate (GraphPad Prism, La 

Jolla, CA). 
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4.2.2. Steroidogenic luteal cell culture 

Bovine ovaries were collected during mid-cycle or early pregnancy from a local 

slaughterhouse (JBS® USA, Omaha, NE). Steroidogenic cells were prepared from luteal slices by 

enzymatic digestion with type II collagenase (103 IU/mL) as described previously 106. Enriched 

fractions of small luteal cells (SLC) and large luteal cells (LLC) were prepared from CLs of early 

pregnancy using centrifugal elutriation similar to a previous study 104. The unseparated luteal cells 

were resuspended in elutriation medium (calcium-free Dulbecco’s modified eagle medium 

(DMEM) [D9800-10 US Biological, Salem, MA], supplemented with 25 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 3.89 g/L sodium bicarbonate, and 3 

mg/mL glucose). Resuspended cells were subjected to centrifugal elutriation with continuous 

flow using a Beckman Coulter Avanti J-20 XP centrifuge equipped with a Beckman JE-5.0 

elutriator rotor. The first 100 mL fraction containing primarily erythrocytes and endothelial cells 

was collected using 1800 rpm and 16 mL/min flow rate, the next 100 mL were discarded. The 

second 100 mL fraction contained endothelial and SLC (1400 rpm and 16 mL/min). The third 100 

mL fraction contained primarily SLC (1200 rpm, 24 mL/min), and the next 100 mL were 

discarded. The fourth fraction contained primarily LLC (680 rpm and 30 mL/min). The fractions 

containing SLC and LLC were pelleted and resuspended in basal M199 (0.1% bovine serum 

albumin (BSA), 100 U/ml penicillin, 100 μg/ml streptomycin, and 10 μg/ml gentamycin). The 

average purity of SLC was ~90% and LLC was > 50%. 

Cells were seeded at a density of 1 × 105 cells/cm2 for mid-cycle mixed luteal cells, 1 × 105 

cells/cm2 for SLC and a density of 4 × 104 cells/cm2 for LLC. Cells were allowed to attach in a 

5% CO2 incubator at 37 °C in basal M199 medium containing 5% fetal bovine serum. The next 

day, the medium was removed and cells washed with phosphate-buffered saline. The cells were 

incubated in serum-free medium for 3 hours before applying treatments as described in the 

legends to the figures [PGF2α (in ethanol, #16010, Cayman Chemical, Ann Arbor, MI), TNFα 

(210-TA, R&D, Minneapolis, MN), IL-1β (RP0106B), IL-6 (RP0014B), IL-17A (RP0056B, 
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Kingfisher Biotech, Saint Paul, MN)]. Luteal cell cultures were harvested into lysis buffer (20 

mM Tris [pH 7.5], 150 mM NaCl, 1 mM EDTA (ethylenediaminetetraacetic acid), 0.2 mM 

EGTA, 1% Triton X-100, protease and phosphatase inhibitor cocktails) and lysed by sonication. 

Lysates were centrifuged at 18,000 g for 15 minutes at 4 °C and the supernatant collected for 

suspension in sodium dodecyl sulfate (SDS) loading buffer (50 mM Tris [pH 6.8], 300 mM 

glycerol, 25 mM SDS, 45 mM dithiothreitol, 260 mM 2-mercaptoethanol, bromophenol blue). 

Proteins were separated by electrophoresis using 10% SDS-polyacrylamide gels and transferred 

to nitrocellulose membranes. Membranes were blocked with 5% non-fat milk in 0.1% Tween 20 

in Tris-buffered saline (TBST) then incubated overnight with the primary antibody diluted in 1% 

non-fat milk or BSA in TBST at 4 °C. After three, 5-minute washes with TBST, membranes were 

incubated for 1 hour at room temperature with anti-rabbit or mouse (1:20,000) horseradish 

peroxidase-conjugated IgG diluted in TBST with 1% non-fat milk. After three 5-minute washes, 

protein bands were detected with ECL reagent (SuperSignal West Femto Thermo Science, 

Miami, OK, or PerkinElmer, Waltham, MA). Signals were visualized on FluorChem M 

(ProteinSimple, San Jose, CA) or UVP (UVP, LLC, Upland, CA) systems. Phosphorylated 

nuclear factor kappa B (NF-κB) subunit P65 (phospho-P65, 3031 AB_330559) and 

phosphorylated ERK1/2 P44/P42 (phospho-P44/P42, 9101, AB_331646) antibodies were from 

Cell Signaling Technology (Danvers, MA); β-actin (A5441, AB_476744) and β-tubulin (T4026, 

AB_477577) antibodies were from Sigma (St. Louis, MO); and anti-mouse (115-035-205, 

AB_2338513) and anti-rabbit (111-035-003, AB_2313567) HRP-conjugated IgG from Jackson 

(West Grove, PA). Protein band density was analyzed using UVP software (Version 6.7.4), using 

area density of equally sized rectangles encompassing the bands at the appropriate molecular 

weight, normalized to the corresponding β-actin density and compared to control treatment by 

fold change. 

http://antibodyregistry.org/AB_330559
http://antibodyregistry.org/AB_331646
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4.2.3. Affymetrix bovine gene chip microarray 

Each CL from the in vivo experiment described in Section 2.1 was homogenized and RNA 

was extracted using a Stratagene RNA Isolation Kit (Santa Clara, CA) following manufacturer’s 

instructions. Transcriptional changes were analyzed by hybridization of 500 ng biotinylated 

cDNA using Affymetrix (Santa Clara, CA) bovine whole-transcript microarray (Bovine Gene v1 

Array [BovGene-1_0-v1]; GPL17645) at the University of Nebraska Medical Center Microarray 

Core Facility. Validation of target transcripts was performed after reverse transcription of 1 μg 

RNA using SuperScript II Reverse Transcriptase (Invitrogen, Grand Island, NY) followed by 

quantitative real-time PCR (qPCR) using gene-specific primers (Appendix B-1) on a CFX96 

TouchTM Real-Time PCR Cycler (Bio-Rad, Hercules, CA) with SsoFastTM EvaGreen® Supermix 

(Bio-Rad, Hercules, CA). Comprehensive microarray methods and data are available in the Gene 

Expression Omnibus (GEO) database under accession GSE94069 and are described in the 

accompanying Data in Brief article 279. 

4.2.4. Microarray statistics 

The microarray data were preprocessed using the robust multi-array average (RMA) method 

from Affymetrix expression console software (Affymetrix Inc., Santa Clara, CA) to normalize 

data at the exon level. The mean intensities of multiple probe sets of the same gene were 

calculated under each array to obtain the corresponding gene expression intensities. The data was 

filtered to keep the genes with a raw expression value after preprocessing to be 10 or more for at 

least three of the 15 samples. Linear Models for Microarray Analysis 280 in the Bioconductor suite 

281 under the statistical program R 282 was applied to compare the log ratio between each of the 

PGF2α time-points and the saline control after adjusting for the box effect. R code used to 

process the data is available in 279. Transcripts with a fold change of at least 1.5 and a Benjamini-

Hochberg adjusted P-value of less than 0.05 for each treatment condition versus control were 

identified as differentially expressed genes. 
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4.2.5. Self-organizing maps and statistics 

Microarray data was filtered to keep genes with a raw expression value after preprocessing to 

be 30 or more for at least three of the 15 samples. The log ratio between each of the time-points 

and the saline control were compared using Linear Models of Microarray Analysis in the 

Bioconductor suite in R. The self-organizing map (SOM) clustering algorithm GeneCluster 2.0 283 

was applied to differentially expressed genes that had a greater than 1.5-fold change in expression 

and P-value ≤ 0.05 between PGF2α-treated samples and the saline control. The mean normalized 

log2 intensity values from each of the five examined biological conditions were used as transcript 

expression profiles in the clustering analysis. The number of iterations in SOM clustering was set 

to 500,000 to generate SOMs and hierarchical clustering (correlation-based distance, average 

link). 

4.2.6. Dataset comparisons 

Two previously published microarray datasets, GSE23348 257 and GSE27961 256 examined 

the effect of in vivo PGF2α or analog treatment on the bovine luteal transcriptome using 

Affymetrix Bovine Whole Genome Gene Chips (GPL 2112). These datasets were chosen for 

comparison to the transcriptome dataset presented herein based on similarities in the experimental 

protocol comparing mid-cycle control CL expression profiles to CL profiles after treatment with 

PGF2α or analog for 4 hours (GSE23348) or 6 hours (GSE27961). Original.CEL and.CHP files 

were downloaded from the GEO database and processed as described in Section 4.2.4 Microarray 

statistics. The differentially expressed mRNAs at 4 or 6 hours were compared between the three 

microarray datasets to determine the similarities among the datasets. 

4.2.7. Pathway analysis 

Pathway analysis was evaluated using Ingenuity Pathway Analysis (IPA) [Application: Build: 

430520M Copyright 2017 QIAGEN (Redwood City, CA)]. Transcripts found to be differentially 

expressed compared to saline-injected controls with ≥ 1.5-fold change and P ≤ 0.05 were input 
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into IPA for core analysis using Entrez gene IDs for evaluations of the time-course and 

comparison datasets. Unmapped genes ranged from 6.5-20.7% per individual time-points or 

datasets. Datasets were assessed for prediction of upstream regulators and signaling pathways. 

Additional pathway analysis was completed using DAVID (Version 6.8, released: Oct 2016) 

284,285, PANTHER Database (Version 11.1, released: Oct 2016) 286–288, and STRING Database 

(Version 10.0, released: Apr 16, 2016) 289 to validate IPA findings and provide unique 

perspectives based on each tool’s functionality. Functional categorization of genes common to all 

three datasets examined was done by manual annotation of a single major functional category for 

each gene based on National Center for Biotechnology Information and GeneCardsSuite 

descriptions and gene ontology annotations of genes. 

4.3. Results 

4.3.1. Bovine microarray 

The analysis of the Affymetrix gene arrays revealed 1654 gene transcripts that were 

differentially expressed. The number of differentially expressed genes increased throughout the 

time-course (Figure 4-1 A). Up-regulated transcripts predominated at early time-points in 

response to PGF2α (89.6% and 97.1% up-regulated, 0.5 and 1 h, respectively). Similar numbers 

of up-regulated and down-regulated transcripts were observed at 2 hours post-PGF2α (53.4% up-

regulated genes). Conversely, at 4 hours post-PGF2α, 58.2% of differentially regulated transcripts 

were down-regulated. The overlap of altered transcripts among time-points is shown in a Venn 

diagram in Figure 4-1 B. Of note, 14 of the 29 differentially expressed mRNAs detected at 0.5 

hours post-PGF2α were differentially expressed at all 4 time-points. Additionally, at 4 hours post-

PGF2α, there were 1,507 differentially expressed transcripts unique to that time-point. 

Comprehensive microarray data is found in the GEO database under accession GSE94069. A full 

list of differentially expressed genes, fold changes and P-values is provided in Appendix B-2. 
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The top 10 up-regulated and down-regulated transcripts (by fold-change) at each time-point 

along with their fold change and P-values are listed in Table 4-1 & Table 4-2, respectively. 

Transcription factors were particularly prominent early in the time-course response to PGF2α and 

although the number of transcription factors continued to increase, they made up a lower 

proportion of differentially expressed genes as the time-course proceeded. One-half hour after 

PGF2α treatment, 34.5% of the mapped differentially expressed genes had a transcription factor 

classification using DAVID molecular function analysis and at 4 hours post-PGF2α, only 1.9% of 

the differentially expressed genes were classified as transcription factors [Appendix B-4]. 

Transcription factors that were up-regulated at all time-points investigated included ATF3, BTG2, 

FOS, FOSB, EGR3, JUNB, NR4A1, NR4A2, NR4A3, and ZFP36. Verification of microarray 

results was completed using qPCR to verify the stimulation of several immediate-early response 

genes (ATF3, FOS, JUN, JUNB) which peaked between 1-2 hours (Figure 4-1 C). 

Several cytokine and cytokine-related transcripts were up-regulated in response to PGF2α. At 

2 hours post-PGF2α, up-regulated cytokine transcripts included CCL8, IL1A, IL1B, and IL33. 

Lastly, at 4 hours, 25 cytokine-related transcripts were up-regulated including all of the up-

regulated cytokines at 2 hours and additionally including, CCL2, CCL3, CCL4, CXCL2, CXCL5 

CXCL8, CXCL13, and IL18. Validation of selected cytokine transcripts was performed by qPCR 

(Figure 4-1 D) and described by 260. Suppressor of cytokine signaling 3 (SOCS3), which encodes 

a protein important in preventing over-activation of inflammatory conditions, was the first 

inflammation/cytokine-related transcript significantly up-regulated at 1 hour. At the 2- and 4-hour 

time-points, both SOCS3 and SOCS1 were up-regulated [Appendix B-2]. 

Down-regulated genes included NF5A2 (also known as LRH1); however, many of the down-

regulated genes have no known role in CL function or luteolysis. Analysis by IPA of down-

regulated genes indicated activation of ‘decreased size of body’ (z-scores; -4.029 and -8.795 at 2 

and 4 hours, respectively). Upstream regulators included activation of NUPR1 (z-scores; 2.53, 
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4.01 at 2 and 4 hours, respectively) and inhibition of vascular endothelial growth factor (VEGF), 

upstream transcription factor 1 (USF1), and endothelin 1 (EDN1) (z-scores at 4 hours; -4.55, -

2.58, -2.43, respectively). Functional analysis by DAVID of down-regulated genes at 4 hours 

indicated an enrichment in insulin signaling and cyclic adenosine monophosphate signaling and 

metabolic processes. 

4.3.2. Functional luteolysis 

Serum progesterone was significantly decreased by PGF2α treatment at 2 and 4 hours (51% 

and 54%, respectively) compared to saline-treated mid-cycle cows (Figure 4-2 A). Cows from 

different treatment groups were not different in age, weight or number of calves produced. There 

were no significant differences among groups in CL weight, ovary dimensions, and antral follicle 

counts [Appendix B-5]. 

Despite the decrease in progesterone secretion by 2 hours post-PGF2α, there were no changes 

within our time-course in the transcripts that directly control progesterone synthesis (Figure 4-2 

B). The proteins encoded by StAR, CYP11A1, and HSD3B1 (steroidogenic acute regulatory 

protein, cytochrome P450 family 11 subfamily A member 1, and hydroxyl-δ-5-steroid 

dehydrogenase, 3 β and steroid δ-isomerase 1, respectively) are directly responsible for the 

modification of cholesterol to progesterone, but the abundance of the transcripts were not 

changed following PGF2α treatment. Additionally, no changes were observed in the luteinizing 

hormone/chorionic gonadotropin receptor (LHCGR) or lipoprotein receptors: SCARB1, and LDLR 

(scavenger receptor class B member 1, and low-density lipoprotein receptor). 

Conversely, several transcripts associated with cholesterol availability were differentially 

regulated. Transcript abundance of lipase E, hormone-sensitive type (LIPE), was decreased at 2 

and 4 hours; LIPE encodes the cholesteryl esterase hormone-sensitive lipase (HSL). As well, the 

LDLR adaptor protein (LDLRAP1) transcript abundance decreased beginning at 2 hours. Other 

genes that have products influencing cholesterol availability that increased during the time-course 
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included insulin induced gene 1 (INSIG1) and cholesterol 25-hydroxylase (CH25H) transcripts. 

Genes encoding members of the lipid droplet coat protein family, perilipin (PLINs), were also 

altered after PGF2α treatment including a 2.6 fold increase in PLIN2 transcript levels, and -1.9 

fold decrease in PLIN3. Finally, there were no changes observed in transcript abundance of genes 

for reverse cholesterol transport proteins (ABCA1, ABCG1, NR1H2, NF1H3, APOA1, and APOE) 

except ABCA1, which was reduced at 4 hours. 

4.3.3. Pathway analysis of short time-course 

Ingenuity Pathway Analysis identified known PGF2α mediators including PGF2α itself 

(identified in IPA as the synthetic PGF2α, dinoprost), PKC group 105, ERK/MAPK 105,238–241, and 

Ca2+ 290. All of these known PGF2α signaling intermediates were predicted as activated by IPA 

and the activation z-scores for each of these mediators are graphically represented in Figure 

4-3 A. Most of these upstream regulators were predicted to have the greatest effect at 2 hours. 

Upstream regulator analysis predicted TNFα, IL-1β, IL-6 and IL-17A as active upstream 

regulators during the short time-course. Figure 4-3 B displays the activation z-scores of several 

inflammatory cytokines during the 4-hour time-course demonstrating that activation scores for 

these inflammatory cytokines increased throughout the study. Inflammatory cytokine signaling 

often involves activation of NF-κB and signal transducer and activator of transcription (STAT) 

291,292 and both NF-κB and STAT3 were predicted to be activated during PGF2α–induced luteal 

regression. Additionally, inhibitors of cytokine signaling, SOCS1 and SOCS3 were predicted to 

be inhibited (Figure 4-3 C). 

To test whether PGF2α or the predicted cytokines were capable of activating NF-κB, 

dispersed luteal cells from mid-cycle CL or enriched preparations of SLCs and LLCs were treated 

with PGF2α or select cytokines and acute activation of NF-κB and ERK pathways were 

examined. Figure 4-3 D & E shows that PGF2α rapidly stimulated ERK phosphorylation but did 

not alter phosphorylation of the NF-κB subunit P65 in a 5-120 minute timecourse. Figure 4-3 D 
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illustrates that TNFα, IL-1β, and IL-17A consistently stimulated the phosphorylation of NF-κB 

P65 in dispersed mid-cycle luteal cells. The cytokines, TNFα, IL-1β, and IL-17A stimulated 

phosphorylation of P65 in both SLC and LLC, and PGF2α selectively stimulated ERK 

phosphorylation in LLC but had no effect on P65 (Figure 4-3 F). Interleukin-6 did not stimulate 

phosphorylation of ERK or P65 NF-κB as it is known to activate the JAK/STAT signaling 

pathway 293. 

Ingenuity Pathway Analysis highlighted canonical pathways predicted to be activated or 

inhibited within this dataset based on the downstream targets’ differential expression (P-value) 

and direction of change (z-score). The top five canonical pathways identified from each time-

point are listed in Table 4-3. At 0.5 hours post-PGF2α, no pathways had a z-score ≥ |2|, likely due 

to the small number of differentially expressed genes. However, several pathways had P-values ≤ 

0.05, including ‘NRF2-mediated Oxidative Stress Response’. A total of seven pathways were 

predicted as activated at the 1-hour time-point. At 2 hours post-PGF2α, five pathways were 

predicted as activated and at 4 hours post-PGF2α, 20 pathways were identified (5 activated and 

15 inhibited). Two canonical pathways were predicted to be activated in 2 of the 4 time-points 

examined, ‘cholecystokinin/gastrin-mediated signaling’, and ‘Toll-like receptor signaling’. 

Several additional canonical pathways including, ‘Acute Phase Response Signaling’, ‘ILK 

Signaling’, and ‘TGF-β Signaling’ were identified that had z-scores ≥ |1| in at least two time-

points. 

4.3.4. PGF2α activates well-organized transcriptional cascades 

Ten SOMs were generated based on transcripts that had similar changes in their expression 

profiles relative to control throughout all four time-points. The differentially expressed transcripts 

included in each SOM are found in Appendix B-6. Of these, two SOMs reflected the expression 

patterns of early response genes (Figure 4-4 A & F) and reached peak levels in 1-2 hours and then 

returned toward baseline. Four SOMs corresponded to early and delayed-early responsive 
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transcripts with changes in mRNA abundance early in the time-course (but less rapid than the 

immediate-early response genes) which either plateaued (Figure 4-4 B & G) or continued to 

change throughout the examined time frame (Figure 4-4 C & H). Finally, there were two SOMs 

where changes in transcript abundance did not begin until the 2-hour time-point indicative of late-

response genes (Figure 4-4 D & I). Two additional SOMs had biphasic transcript profiles, which 

changed early (either up- or down-regulated), returned to baseline and then rebounded at later 

time-points (Figure 4-4 E & J). 

Up-regulated SOMs had several common IPA-predicted upstream regulators such as TNFα, 

TGFβ, IL-1β, and NF-κB. Down-regulated SOMs had common inhibition predictions of VEGF, 

peroxisome proliferator-activated receptors ligands, and T3 (the thyroid hormone, 

triiodothyronine). Functional analysis by IPA of the genes in each SOM predicted activated 

‘migration of cells’ and inhibition of organismal death in immediately-early up-regulated genes. 

Early and delayed-early up-regulated gene patterns had functional predictions of ‘cell survival’. 

Late up-regulated gene patterns were consistent with increases in ‘migration of cells’ and 

biphasic up-regulated genes had functional predictions of inhibited ‘organismal death’. Down-

regulated SOMs had functional predictions of ‘organismal death’ for immediate-early and down-

regulated gene patterns. Functional annotations predicted activation of ‘organismal death’ in 

delayed-early down-regulated SOM, increased ‘morbidity or mortality’ in late down-regulated 

genes, and death and increased ‘organismal death’ in biphasic down-regulated genes. 

Functional annotations of each SOM revealed that SOMs, which peaked early, had a greater 

proportion of genes with a ‘regulation of gene expression’ biological process annotation by 

DAVID; including, within the immediate-early categories 47.2% of up- and 18.2% of down-

regulated genes. In the early responses, ‘regulation of gene expression’ composed of 31.4% of 

up-regulated and 22.9% of down-regulated genes. Within the delayed-early SOMs, 19.2% of up- 

and 22.3% of down-regulated genes were also annotated with ‘regulation of gene expression’. 
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Whereas, late-response gene patterns had fewer genes classified as ‘regulation of gene 

expression’ compared to earlier gene profiles (18.2% up- and 19.6% down-regulated). Instead, 

delayed-early and late up-regulated SOMs had 7.1% of genes associated with “inflammatory 

reactions” (P-values: 1.50E-05, 9.50E-08, DAVID). Biphasic up-regulated genes had biological 

process annotations including immune response-activating signal transduction. Finally, biphasic 

down-regulated genes had annotations related to fibrosis. Of the down-regulated SOMs, several 

contained components of peroxisome proliferator-activated receptor signaling and VEGF 

signaling. 

4.3.5. Dataset comparisons 

Two previously published microarray datasets examined the effect of in vivo PGF2α 

treatment on mid-cycle bovine CL. The similarities in experimental design allowed direct 

comparison of the microarray data at 4 hours post-PGF2α to the previously published microarray 

analyses from GSE23348 257 and GSE27961 256. Mondal et al. collected luteal tissue from Angus 

crossbred heifers 4 hours after giving an intramuscular injection of 25 mg Lutalyse at day 11 of 

the estrous cycle. Shah et al. treated non-lactating Bubalus bubalis (water buffalo) cows with a 

500 µg dose of Juramate (equivalent to 25 mg of Lutalyse 294) and collected luteal tissue at 6 

hours post-PGF2α. The overlap of differentially expressed transcripts between the three datasets 

is visually represented in a Venn diagram in Figure 4-5 A. Comparison of the three datasets 

revealed 515 genes found by at least 2 of the 3 studies, and 124 genes that were similarly altered 

in all the datasets including 43 up-regulated genes and 81 down-regulated genes. A full list of the 

genes common to all three datasets is available in Table 4-4. 

Independent bioinformatics analysis of each dataset revealed common regulatory elements. 

First, IPA predicted similar upstream regulators in each dataset such as PKC, MAPK/ERK, 

TNFα, IL-1α/β, and IL-17. Canonical pathway analysis of each of the three datasets commonly 

predicted activation of triggering receptor expressed on myeloid cells 1 (TREM1) signaling, an 
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important pathway for activation of macrophages and neutrophils 295. Bioinformatic analysis of 

the 124 genes common to all 3 datasets indicated activation of FOS, JUNB, MAPK/ERK, IL-1β, 

TNFα, TGFβ, IL-6 (Figure 4-5 B) as well as canonical pathways like IL-6 Signaling, Acute Phase 

Response Signaling, and NF-κB Signaling. Pathway analysis of the 124 common genes by IPA, 

DAVID, PANTHER, and STRING consistently reported enrichment of TGFβ signaling (4 of 4) 

and p53 signaling (3 of 4). Finally, the functional analysis indicated groups of genes involved in 

cell-cell interaction (12.9%), cytokine signaling (8.9%), and transcriptional regulation (8.1%) in 

Figure 4-5 C. The genes in each functional category are listed in Table 4-4. 

4.4. Discussion 

4.4.1. Overview of study 

This study uses a systems biology approach to provide a detailed understanding of the early 

(0.5 – 4 h) transcriptional effects that occur during PGF2α-induced luteolysis in vivo. Our 

analysis predicts activation of cytokines (TNFα, IL-1β, IL-6, IL-17A, & IL-33) and cytokine 

signaling intermediates (NF-κB, STAT) early in the time-course. However, changes in cytokine 

transcripts are not apparent until 2 - 4 hours post-PGF2α. The effects of PGF2α in vivo may 

require the activation of secondary mediators, such as cytokines, which activate NF-κB and 

STAT signaling because PGF2α is unable to stimulatephosphorylation of NF-κB P65 in isolated 

luteal cells. The rapid influx of various immune cells in response to the initiation of luteolysis 

207,209,246 and the release of pre-formed cytokines could explain the prediction of cytokine 

signaling effects very early in the PGF2α response. As well, the activation of NF-κB signaling 

could contribute to later responses seen after PGF2α administration. 

Analysis of gene expression changes also confirms changes in the transcriptome that are 

consistent with PGF2α signaling. Evidence of classical PGF2α signaling activation is seen 

directly in the rapid induction of immediate-early response genes (ATF3, EGR1, FOS, JUN, and 

NR4A2), consistent with changes in genes documented to be direct targets of PGF2α signaling 
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92,104,105,108,296,297. Bioinformatics analysis also identifies upstream regulators consistent with 

known PGF2α signaling mediators such as dinoprost (PGF2α), PKC, Ca2+, and ERK. The 

bioinformatics findings indicating activation of classical PGF2α signaling pathways after in vivo 

treatment are an important validation of the predictive power of the bioinformatics tools used in 

this study. Comparison with similar datasets 256,257 yields comparable results, predicting both 

PGF2α signaling and cytokine signaling in the CL after PGF2α treatment. 

4.4.2. Induction of functional luteolysis 

In this study, in vivo administration of PGF2α decreases serum progesterone within 2 hours 

of treatment. However, serum progesterone concentrations are not under 1 ng/mL, a cutoff that 

indicates irreversible functional regression, which typically occurs 18-24 hours after the onset of 

luteolysis 298–301. Additionally, there are no changes in CL weight, indicating that structural 

regression of the CL has not yet begun. The reduction in serum progesterone concentrations is not 

accompanied by reductions in the expression of the steroidogenic enzymes: StAR, CYP11A1, and 

HSD3B1. Furthermore, transcripts for key receptors (LHCGR, SCARB1, or LDLR) intimately 

involved in progesterone synthesis are also unchanged. These findings showing a marked 

reduction in serum progesterone prior to changes in steroidogenic gene transcript abundance are 

similar to other studies 108,255–257. However, it is possible that changes in abundance or function of 

specific proteins may occur prior to down-regulation of the corresponding mRNA 256,302. 

These observations suggest that alternate pathways could contribute to the early reduction in 

luteal progesterone synthesis. Based on our findings, it seems possible that the decrease in LIPE 

could contribute to the decrease in progesterone production because its protein product, HSL, 

interacts directly with lipid droplets to hydrolyze cholesteryl esters to liberate cholesterol for 

steroidogenesis 8,40,42,43. The reduction in LIPE expression together with alterations in LDLRAP1, 

INSIG1, and CH25H transcript abundance could have a combined negative effect on intracellular 

cholesterol availability. Decreases in LDLRAP1 could inhibit progesterone production by 
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reducing the cholesterol available for use in the cell since endocytosis of low-density lipoprotein 

particles requires the LDLRAP1 cofactor 303,304. An increase in INSIG1 concentrations could 

affect steroidogenesis through suppressing transcription of de novo cholesterol synthesis and 

uptake proteins, 305,306; however, de novo synthesis is not a primary source of cholesterol for 

steroidogenesis in the CL 143,307,308. Finally, increases in CH25H could catalyze the hydroxylation 

of cholesterol to 25-hydroxycholesterol which is a potent inhibitor of de novo cholesterol 

synthesis 309. However, 25-hydroxycholesterol can also act as a substrate for steroidogenesis 310 

although it is unclear how physiological concentrations of this oxysterol would act on bovine 

luteal cells or neighboring cells. 

Activation of reverse cholesterol transport could also effectively reduce intracellular 

cholesterol availability for progesterone synthesis. Other studies have reported an increase in 

reverse cholesterol transport transcripts such as ABCA1, ABCG1, NR1H2, NF1H3, APOA1, and 

APOE during luteolysis 311–313. However, in this dataset, only a single transcript of the reverse 

cholesterol transport process, ABCA1, changes compared to control, and it decreases. Thus, 

changes in transcript abundance that contribute to increases in reverse cholesterol transport do not 

appear to contribute to the early reductions in circulating progesterone. 

4.4.3. Cytokine signaling 

The present study implicates IL-33 and IL-17 cytokines as potential regulators of luteal 

regression, although neither have previously been proposed to have a role in luteolysis. 

Nevertheless, transcripts abundance of IL33 increase 17-fold over controls and  up-regulated in 

all three datasets. Two recent reports indicate that IL-33 may play a role in follicular atresia 314,315 

and we propose that IL-33 may play a similar role in luteal regression. Preliminary data in our 

laboratory indicates that IL-33 does not have a direct effect on in vitro primary luteal cell 

cultures, presumably because luteal cells lack or have a low representation of components of the 

IL-33 receptor complex 220,279. In the regressing CL, IL-33 could play a role in macrophage 
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recruitment 314,315, mast cell activation 316, and is likely derived from the endothelial cells rather 

than the steroidogenic cells of the CL 315,316. 

Another novel cytokine highlighted in this dataset is IL-17A, which is identified as an 

activated upstream regulator in three of the time-points examined. There are no reports of a role 

for IL-17 in the CL, however, a recent study by Ozkan et al. demonstrated that elevated serum IL-

17 concentrations predicted infertility and poor responsiveness to in vitro fertilization 317. 

Analysis of this dataset using a more robust method of calling differentially expressed transcripts 

increased z-score predicted activation of IL-17 signaling 318, and our data indicate that IL-17 can 

directly activate NF-κB and ERK1/2 signaling in luteal cell cultures. How IL-33 and IL-17 

contribute to luteal regression is a subject of future investigations. 

Cytokine signaling intermediates such as NF-κB and STAT3 are predicted by IPA to be 

activated in response to PGF2α throughout the time-course. Activation of NF-κB or prediction of 

NF-κB activation is consistently reported after PGF2α treatment in vivo 256,257,319,320. However, in 

vitro PGF2α does not phosphorylate NF-κB in luteal cells (present study) or endometrial 

adenocarcinoma cells 321. Thus, in vivo PGF2α may use secondary mediators, such as cytokines, 

which would activate NF-κB and STAT signaling. This prediction is supported by significant 

increases in expression of SOCS3 transcripts within 1 hour (4-fold) and SOCS1 at 4 hours (1.7-

fold), findings consistent with a well-controlled tissue-specific inflammatory response. However, 

IPA predicts the inhibition of SOCS1 and SOCS3 during the PGF2α time-course, which could b. 

This expands on work by ourselves and others that previously proposed a role for cytokines and 

immune cells in PGF2α-induced luteolysis at 3 or more hours after PGF2α treatment 

106,207,244,246,256,257,260,322. 

We found both direct and indirect evidence for increases in expression of pro-inflammatory 

cytokines and signaling during the early responses to PGF2α. Changes in cytokine-related 

transcripts do not occur until 2-4 hours post-PGF2α treatment; although, IPA predicts upstream 
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cytokine activation and signaling at all 4 time-points. Secretion of cytokines (TNFα, TGFβ, and 

CXCL8) can be stimulated by PGF2α treatment in the ovary 106,207,323, and other tissues 321,324. For 

example, PGF2α treatment in vivo and in vitro induces CXCL8 108,207,246,260,325, a cytokine which 

potentially serves to recruit neutrophils and macrophages to the CL 207,260,326,327. The recruitment 

and activation of immune cells along with the actions of pre-formed cytokines could be 

responsible for the very early gene expression changes that are indicative of cytokine signaling. 

Both neutrophils and mast cells can store and release large amounts of cytokines and other 

bioactive proteins immediately after activation without the need for de novo synthesis of proteins 

328–330. This would allow for immediate responses without requiring transcription or translation; 

therefore, these genes would not be identified in transcriptome-based studies. 

4.4.4. PGF2α activates well-organized signaling cascades 

Analysis of SOMs demonstrates that a coordinated cascade of transcription occurs after 

PGF2α administration and includes immediate-early, early, delayed-early, late, and biphasic 

transcriptional responses. This suggests that a carefully orchestrated succession of gene 

expression changes occurs during PGF2α-induced luteolysis. Our analysis clarifies the early 

temporal responses required for PGF2α-induced luteolysis. As expected, the immediate-early up-

regulated and early down-regulated responses are composed primarily of transcription factors. 

Later signaling waves contain a greater proportion of genes that are non-transcription factors 

suggesting that genes with an immediate-early expression profile could trigger transcription of 

early, and delayed-early type genes which could then alter transcription of late-type genes in a 

transcriptional cascade 331. 

Up-regulated gene patterns are consistent with inflammatory response and activation of 

immune cells. The common upstream regulators TNFα, TGFβ, IL-1β, and NF-κB support this 

prediction. Down-regulated SOMs correspond with the activation of death pathways and 

inhibition of cellular proliferation. Interestingly, up-regulated SOMs had functional annotations 
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such as decreased organismal death whereas down-regulated SOMs noted increased organismal 

death, which highlights that during a complex event such as luteolysis, there are populations of 

cells, which are activated and proliferating (potentially immune cells), and other cell types that 

will be inhibited and primed for apoptosis such as endothelial and steroidogenic luteal cells. 

Notably, the common upstream regulators EDN1 and VEGF support the idea that CL regression 

involves early changes in the vasculature, which has been previously suggested 332–334. Moreover, 

several studies indicate that biphasic transcriptional responses are correlated with fluctuations in 

activation of NF-κB in response to cytokines like TNFα 335–337. These biphasic, oscillatory 

responses that can activate both acute and chronic changes within the target tissues are 

characteristic of cytokine and NF-κB signaling 335–339. In accordance, the cytokines IL-1β, and 

TNFα are predicted as upstream regulators of the up-regulated biphasic response SOM. 

Additionally, Mondal et al. proposed that sustained activation of NF-κB signaling only occurred 

in PGF2α-sensitive luteal tissues, and the biphasic patterns of gene expression could reflect both 

acute activation and the beginning of a chronic activation of target genes. Together these SOMS 

indicate a cascade of events, whereby immediate-early response genes, composed mostly of 

transcription factors alters early and delayed-early gene expressions, which contribute to changes 

in the expression of late-response genes. 

4.4.5. Dataset comparison and relationship to previous studies 

Comparison of our dataset to two other studies, GSE23348 257 and GSE27961 256 that used 

microarray analysis to determine the bovine luteal transcriptome after PGF2α treatment. Our 

dataset comparison reveals 124 differentially expressed transcripts common to all three datasets, 

including BCL6, BMP2, FOSL1, IL33, INHBA, and NR5A2. Bioinformatics analysis of the 

common transcripts predicts activation of cytokine signaling and includes the upstream regulators 

IL-1β, TNFα, and TGFβ. This comparison provides several high confidence transcriptome 

changes that occur in the bovine CL after PGF2α treatment, which vary minimally across study 
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sites and investigation groups, providing an important resource for future studies. Importantly, 

our analysis of the differentially expressed genes common to all three datasets as well as each 

independent dataset are consistent with the activation of both PGF2α and cytokine signaling. 

Additionally, functional annotations of common genes indicate a large proportion of gene 

products function in cytokine signaling and cell-cell interaction, which both play critical roles in 

luteolysis. These findings validate the predictions based on the short time-course and support a 

growing body of literature that suggests that immune cells and cytokines play a key role in CL 

regression. 

4.4.6. Conclusions from the study 

Shortly after PGF2α administration, phospholipase C, PKC, Ca2+, and ERK trigger a variety 

of signaling cascades to begin the luteolytic process. Our data suggests that in vivo, PGF2α 

administration stimulates a series of transcriptional waves likely as a result of classical PGF2α 

and cytokine signaling events, as early as 30 minutes post-PGF2α treatment. This is the beginning 

of a cascade of events that will initiate decreases in progesterone secretion (2-12 hours post-

PGF2α) and result in the structural regression of the CL 12-18 hours post-PGF2α 240,340. The 

earliest decreases in progesterone secretion during luteolysis may be due to changes in protein 

function and in  LIPE/HSL expression and other transcripts which regulate cholesterol 

availability rather than changes in the expression of mRNA encoding the primary steroidogenic 

enzymes. We propose that during the early stages of functional regression in combination with 

PGF2α, the reduction in progesterone, and increase in inflammatory cytokines (potentially 

including IL-33 and IL-17) contribute to luteal regression. As the intra-luteal concentrations of 

PGF2α and inflammatory cytokines increase they may act within an auto-amplification loop 

eventually reaching a critical point from which there is no rescue from the luteolytic cascade 

67,341–344. Future studies to identify the specific transcriptional changes occurring in steroidogenic 
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cells, endothelial cells, immune cells, and fibroblasts is needed to better understand the dynamic 

network of changes that enable functional and structural luteal regression.   
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Figure 4-1 - Time-course of the transcriptomic response to PGF2α 
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Figure 4-1 – Time-course of the transcriptomic response to PGF2α 

Mid-cycle cows (n = 3/time-point) were treated with 25 mg PGF2α for 0.5, 1, 2, and 4 hours 

and control saline injections (n = 3).  Samples were analyzed by Affymetrix bovine whole 

transcript microarray (Bovine Gene v1 Array [BovGene-1_0-v1]; GPL17645) and 

differentially expressed transcripts were identified based on fold change ≥ |1.5| and Benjamini-

Hochberg adjusted P-value ≤ 0.05 compared to saline controls (n = 3). (A) Number of 

upregulated and downregulated differentially expressed transcripts at each time-point graphed 

on a log scale, upregulated transcripts appear in red above the central axis, and downregulated 

transcripts appear in green below the axis.  (B) Venn diagram of the number of differentially 

expressed genes that overlapped between the four time-points examined.  Each oval is labeled 

with the time-point and the total number of differentially expressed genes in the time-point.  

Overlapping parts of the ovals are labeled with the number of transcripts that were 

differentially expressed at the corresponding time-points.  (C & D).  Quantitative PCR 

(qPCR) analysis of target genes normalized to ACTB and GAPDH expression and compared to 

saline controls using fold-change are displayed using bar graphs to represent mean ± SEM and 

plotted on the left Y-axis.  Microarray determined fold-change of the target genes compared to 

control are overlayed using filled circles • to represent the mean (n = 3) and plotted on the 

right Y-axis.  (C)  Selected transcription factor genes (ATF3, FOS, JUN, and JUNB) were 

significantly different from control values (P < 0.0001) as determined by qPCR and 

determined as differentially expressed in the microarray (except JUN at 4 h).  (D).  Target 

cytokine transcripts (CCL2, CCL8, CXCL2, and CXCL8) were all upregulated at 4 h (P < 

0.01).  Additionally, CXCL8 was significantly upregulated at 1 and 2 hours (P < 0.0001, P < 

0.05, respectively) as determined by qPCR.  Determination of differentially expressed 

transcripts by microarray indicated significant upregulation of CXCL2 and CXCL8 at 4 hours 

and CCL8 at both 2 and 4 hours. Submitted for publication as part of 221. 
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Figure 4-2 – PGF2α induced 

reductions in progesterone are 

correlated with reductions in the 

expression of genes controlling 

intracellular cholesterol availability 

(A) Serum progesterone concentrations 

of cows 0.5 - 4 hour post-PGF2α 

treatment (n = 3/time-point). * P ≤ 

0.05, ** P ≤ 0.01 compared to saline-

treated animals. (B) Heat map of genes 

that regulate cholesterol availability, 

progesterone synthesis, and reverse 

cholesterol transport. Green indicates 

decreased and red indicates increased 

transcripts over control. Yellow boxes 

indicate time-points that were 

significantly altered from saline 

controls and fold changes from saline 

controls are indicated in the respective 

boxes. Submitted for publication as 

part of 221. 
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Figure 4-3 – In vivo treatment with PGF2α predicts classical PGF2α and cytokine signaling 
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Figure 4-3 – In vivo treatment with PGF2α predicts classical PGF2α and cytokine 

signaling  

(A, B & C)  The activation z-score of specific upstream regulators, determined by IPA, 

graphed against time.  (A) Classic mediators of PGF2α signaling including, PGF2α itself 

(dinoprost, black), protein kinase C (PKC group, blue), ERK (red), and Ca2+ (green).  (B)  

Cytokine activation scores including, TNFα (black), IL-1β (blue), IL-6 (red), and IL-17 

(green).  (C)  Cytokine signaling molecules: NF-κB (black), STAT3 (blue), and suppressors 

of cytokine signaling, SOCS1 (red) and SOCS3 (green).  (D)  Phospho-P65 quantification 

(mean ± SEM) of non-pregnant mid-cycle luteal cells (n = 3) treated with TNFα, IL-1β, IL-

17A and PGF2α for 30 minutes followed by Western blot analysis, normalized to β-actin and 

compared to untreated controls, representative immunoblots are shown below the bar graph.  * 

P ≤ 0.05 compared to control.  (E) Western blot of non-pregnant mid-cycle luteal cells treated 

with PGF2α for the indicated times immunoblotted for phospho-P65, phospho-ERK1/2, β-

tubulin, and β-actin.  (F)  Western blot of small luteal cells (SLC) and large luteal cells (LLC) 

treated with TNFα, IL-1β, IL-6, IL-17A (10 ng/mL each) and PGF2α (100 nM) for 30 minutes 

and immunoblotted for phospho-P65, phospho-ERK1/2, β-tubulin, and β-actin. Submitted for 

publication as part of 221. 
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Figure 4-4 – Temporal response waves to PGF2α 
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Figure 4-4 – Temporal response waves to PGF2α 

Self-organizing maps (SOMs) graphs were generated as detailed in Methods. Each graph 

shows the average log2 transcript expression intensity ± SEM of the transcripts grouped into 

each SOM.  Red dashed lines demonstrate the average transcript expression intensity at 

baseline. Numbers in the upper right of the individual graphs represent the number of 

transcripts within each SOM. Groups of transcripts that were upregulated during the PGF2α 

time-course are shown on the left (A, B, C, D, & E) and downregulated transcripts on the 

right (F, G, H, I, & J).  (A & F)  SOMs showed responses typical of immediate-early 

response genes, peaked between 1-2 hour and returned to baseline.  (B & G) SOMs 

demonstrated early response genes, peaked at 2 hours and maintained through the 4-hour 

time-point.  (C & H) SOMs demonstrated delayed-early response genes, which gradually 

moved away from baseline throughout the time-course.  (D & I) SOMs showed late-response 

genes, which stayed near the baseline and then began changing at 2-4 hour.  (E & J) Biphasic 

SOMs, which had an early change in transcript expression, returned to baseline and then had a 

second change in transcription levels.  Boxes to the right of the graphs include the top 

upstream regulators predicted to be involved using IPA at the peak of change from controls, 

along with their corresponding IPA determined activation z-score.  Data points in each SOM 

are labeled to indicate the percentage of transcripts that are differentially expressed at each 

time-point: ***** 99-100%; **** 76-98%; *** 51-75%, ** 26-50%, * 1-25%. Submitted for 

publication as part of 221. 
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Figure 4-5 – Common gene alterations in response to PGF2α 

(A) Venn diagrams demonstrate the number of differentially expressed genes that overlapped 

between the three examined datasets GSE94069 (blue, Talbott et al., 2017), GSE23348 (red, 

Mondal et al., 2011), and GSE27961 (green, Shah et al., 2014).  The legend indicates the 

numbers of total differentially expressed genes in parentheses for each dataset.  Overlapping 

parts of the circles are labeled with the corresponding number of transcripts that are 

differentially expressed in that situation. (B) The top 15 IPA-predicted upstream regulators 

based on the 124 common genes with corresponding IPA molecule type designations and z-

scores.  (C)  Functional categorization of the 124 common genes common to all three datasets, 

sections are labeled with both the category and the number of genes in each category. 

Submitted for publication as part of 221. 
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Table 4-1 – Top ten up-regulated genes at each time-point 

 Gene 

Symbol Entrez ID Gene Name 

Fold 

Change P-value 

0.5 h 

FOS 280795 Fos proto-oncogene, AP-1 transcription factor subunit 14.94 8.22E-04 

NR4A1 528390 nuclear receptor subfamily 4 group A member 1 8.56 1.30E-05 

NR4A2 540245 nuclear receptor subfamily 4 group A member 2 7.34 4.94E-06 

NR4A3 528877 nuclear receptor subfamily 4 group A member 3 7.15 2.67E-04 

FOSB 540819 FosB proto-oncogene, AP-1 transcription factor subunit 6.74 2.40E-04 

APOLD1 538827 apolipoprotein L domain containing 1 6.57 8.33E-04 

IER2 525380 immediate early response 2 6.04 4.50E-05 

EGR1 407125 early growth response 1 5.57 2.40E-04 

JUNB 514246 JunB proto-oncogene, AP-1 transcription factor subunit 4.86 1.79E-06 

CYR61 508941 cysteine rich angiogenic inducer 61 4.61 3.03E-03 

1 h 

NR4A3 528877 nuclear receptor subfamily 4 group A member 3 27.85 7.81E-07 

FOSB 540819 FosB proto-oncogene, AP-1 transcription factor subunit 16.65 1.38E-06 

DUSP2 539140 dual specificity phosphatase 2 13.06 7.27E-05 

NR4A1 528390 nuclear receptor subfamily 4 group A member 1 11.36 1.38E-06 

EGR4 407155 early growth response 4 10.81 1.26E-04 

FOS 280795 Fos proto-oncogene, AP-1 transcription factor subunit 10.50 1.38E-03 

ATF3 515266 activating transcription factor 3 9.00 1.22E-05 

NR4A2 540245 nuclear receptor subfamily 4 group A member 2 8.84 9.30E-07 

ARC 519403 activity regulated cytoskeleton associated protein 7.06 4.02E-04 

DUSP5 507061 dual specificity phosphatase 5 6.55 9.51E-06 

2 h 

EGR4 407155 early growth response 4 20.38 1.44E-05 

FOSB 540819 FosB proto-oncogene, AP-1 transcription factor subunit 15.13 2.80E-06 

SERPINB2 505184 serpin peptidase inhibitor, clade B (ovalbumin), member 2 14.42 1.74E-04 

ARC 519403 activity regulated cytoskeleton associated protein 13.90 1.79E-05 

DUSP5 507061 dual specificity phosphatase 5 12.31 4.85E-07 

NR4A3 528877 nuclear receptor subfamily 4 group A member 3 11.77 1.49E-05 

F3 280686 coagulation factor III, tissue factor 11.10 1.89E-02 

ATF3 515266 activating transcription factor 3 11.09 4.85E-06 

INA 532236 internexin neuronal intermediate filament protein alpha 10.41 2.25E-03 

MMP12 526981 matrix metallopeptidase 12 10.26 2.11E-03 

4 h 

MMP12 526981 matrix metallopeptidase 12 41.71 1.06E-05 

SERPINB2 505184 serpin peptidase inhibitor, clade B (ovalbumin), member 2 25.49 1.31E-05 

SERPINE1 281375 serpin family E member 1 17.87 1.01E-06 

CSRP3 540407 cysteine and glycine rich protein 3 17.82 2.31E-04 

SERPINA14 286871 
serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 
antitrypsin), member 14 

17.57 2.58E-04 

IL33 507054 interleukin 33 17.46 1.76E-07 

IL1A 281250 interleukin 1 alpha 16.65 1.77E-05 

TNFSF18 768081 tumor necrosis factor superfamily member 18 15.38 1.60E-06 

DUSP5 507061 dual specificity phosphatase 5 14.52 1.23E-07 

INHBA 281867 inhibin beta A subunit 13.57 1.23E-07 

Submitted for publication as part of 221.  
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Table 4-2 – Top ten down-regulated genes at each time-point 

 

Gene Symbol Entrez ID Gene Name 

Fold 

Change P-value 

0.5 h 

LOC100337120 100337120 T-cell activation Rho GTPase-activating protein-like -3.81 4.47E-03 

LOC783362 783362 uncharacterized LOC783362 -3.81 3.25E-03 

MIR2450B 100313224 microRNA 2450b -3.46 8.13E-03 

1 h 

GBP4 100298387 guanylate binding protein 4 -2.56 3.74E-02 

ARHGAP25 534994 Rho GTPase activating protein 25 -2.06 8.59E-03 

CARD6 520291 caspase recruitment domain family member 6 -1.75 3.74E-02 

2 h 

GRIA1 529618 glutamate ionotropic receptor AMPA type subunit 1 -4.57 3.26E-02 

LOC783362 783362 uncharacterized LOC783362 -4.24 7.48E-04 

CEP295NL 100125412 CEP295 N-terminal like -3.95 3.30E-02 

CALB2 513947 calbindin 2 -3.57 1.63E-02 

LOC510193 527460 apolipoprotein L3 -3.41 4.43E-02 

LOC100337457 100337457 solute carrier family 23 member 2 -3.23 3.33E-02 

FAM13C 540918 family with sequence similarity 13 member C -3.20 2.88E-03 

LOC100337120 100337120 T-cell activation Rho GTPase-activating protein-like -3.04 6.89E-03 

RUNDC3B 525116 RUN domain containing 3B -2.82 7.69E-03 

SDPR 532333 serum deprivation response -2.78 7.24E-03 

4 h 

LOC783362 783362 uncharacterized LOC783362 -4.77 1.44E-04 

APLNR 615435 apelin receptor -4.20 5.10E-04 

FOXL2 281770 forkhead box L2 -4.16 3.35E-06 

ARHGAP20 515501 Rho GTPase activating protein 20 -4.05 3.06E-04 

PIEZO2 522631 piezo type mechanosensitive ion channel component 2 -3.80 2.39E-04 

NPNT 513362 nephronectin -3.69 8.59E-04 

GPAM 497202 glycerol-3-phosphate acyltransferase, mitochondrial -3.55 7.42E-03 

LRIG3 506574 leucine rich repeats and immunoglobulin like domains 3 -3.50 5.31E-04 

MAMSTR 505540 
MEF2 activating motif and SAP domain containing 

transcriptional regulator 
-3.38 9.54E-04 

TNS3 516555 tensin 3 -3.31 8.60E-05 

Submitted for publication as part of 221.  
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Table 4-3 – Top five canonical pathways predictions during each timepoint during the early 

response to PGF2α treatment 

 Ingenuity Canonical Pathways z-score P-value Molecules 

0.5 h 

NRF2-mediated Oxidative Stress Response  1.41E-02 FOS, JUN, DNAJB1, JUNB 

Corticotropin Releasing Hormone Signaling  1.41E-02 FOS, JUN, NR4A1 

IGF-1 Signaling  1.41E-02 FOS, JUN, CYR61 

IL-17A Signaling in Gastric Cells  1.41E-02 FOS, JUN 

PI3K Signaling in B Lymphocytes  1.41E-02 FOS, JUN, ATF3 

1 h 

ILK Signaling 2.449 2.34E-02 FOS, JUN, SNAI1, MYC, SNAI2, RND3 

Cholecystokinin/Gastrin-mediated Signaling 2 3.89E-02 FOS, JUN, SRF, RND3 

HMGB1 Signaling 2 2.45E-02 FOS, JUN, SERPINE1, PLAT, RND3 

Endothelin-1 Signaling 2 8.71E-02 FOS, JUN, MYC, EDNRB 

IL-8 Signaling 2 1.08E-01 FOS, JUN, ANGPT2, RND3 

2 h 

Cholecystokinin/Gastrin-mediated Signaling 2.646 2.99E-01 FOS, JUN, SRF, IL1B, IL1A, RND3, IL33 

Acute Phase Response Signaling 
2.121 4.81E-01 FOS, JUN, IL1B, JAK2, SOCS3, IL1A, 

SERPINE1, IL33 

Toll-like Receptor Signaling 2 2.99E-01 FOS, JUN, IL1B, IL1A, TRAF1, IL33 

TGF-β Signaling 2 5.45E-01 FOS, JUN, INHBA, SERPINE1 

LPS/IL-1 Mediated Inhibition of RXR 

Function 

2 7.43E-01 JUN, IL1B, PPARGC1B, IL1A, NR5A2, IL33 

4 h 

Death Receptor Signaling 

-2.714 3.23E-01 IKBKG, TANK, CFLAR, NFKB1, PARP1, 

PARP4, CASP9, NFKBIA, ACIN1, TNKS, 
BIRC3, SPTAN1 

Integrin Signaling 

-2.683 4.69E-01 ASAP1, TLN1, RRAS2, ITGAV, ITGA2, 

CAPN1, TSPAN4, PXN, PIK3C2B, MYL9, 
PIK3R1, GAB1, ITGA9, SOS1, PIK3CG, 

RHOG, PIK3CA, ARHGEF7, MAP2K2, 

TSPAN5, PPP1CB, PLCG1, ACTN4 

UVA-Induced MAPK Signaling 

-2.496 1.64E-01 SMPD2, MTOR, PARP4, RRAS2, CASP9, 

PIK3C2B, PIK3R1, GAB1, TP53, TNKS, 

PIK3CG, FOS, RPS6KA5, PARP1, PIK3CA, 
PLCG1 

Retinoic acid Mediated Apoptosis Signaling 
-2.449 1.78E-01 CFLAR, PARP1, PARP4, CASP9, RXRB, 

CRABP2, RARG, TNKS 

MIF Regulation of Innate Immunity 2.449 3.44E-01 FOS, LY96, NFKB1, CD14, NFKBIA, TP53 

Submitted for publication as part of 221.  
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Table 4-4 – Common transcripts differentially expressed in response to PGF2α treatment 

  Fold Change 

Gene 
Entrez 

Gene ID 
GSE94069 GSE23348 GSE27961 

Cell-cell interaction 

SERPINB2 505184 25.49 5.27 5.10 

SERPINE1 281375 17.87 28.96 31.00 

AMIGO2 514273 8.27 8.65 8.09 

PLAUR 281983 6.83 5.92 7.39 

SDC4 508133 6.59 8.44 19.13 

HS3ST5 540355 4.77 7.73 9.33 

MMP1 281308 4.11 12.26 6.44 

THBS1 281530 2.89 2.02 3.90 

CLDN1 414922 2.65 3.52 3.23 

CD44 281057 2.49 3.44 8.22 

CLDND1 515537 2.45 1.55 1.79 

ITGAV 281875 1.75 1.93 2.79 

EMCN 616367 -2.05 -1.55 -2.74 

CLIC5 281696 -2.41 -1.69 -2.19 

TMEM204 615464 -2.83 -1.72 -1.89 

NPNT 513362 -3.69 -2.33 -2.51 

Cytokine signaling 

IL33 507054 17.46 6.92 2.96 

INHBA 281867 13.57 19.69 27.25 

SPP1 281499 5.73 7.55 4.65 

MT2A 404070 3.56 4.65 3.99 

BAMBI 530147 3.41 1.57 2.99 

NRG1 281361 3.14 2.15 8.78 

IL18 281249 3.08 2.53 2.50 

BMP2 615037 3.02 5.47 3.92 

STAMBP 532672 1.82 1.98 3.19 

CD14 281048 1.81 2.48 3.68 

PDGFC 613787 1.70 1.77 1.78 

Transcriptional Regulation 

ELL2 782605 2.30 2.15 4.06 

HMGA1 618849 1.86 4.11 3.71 

AGO2 404130 1.75 2.03 2.41 

RPF2 511294 1.59 1.62 1.50 

EIF4A1 504958 1.56 1.53 1.71 

CPEB2 538880 -1.63 -1.95 -1.67 

POLR1E 511587 -1.65 -1.90 -2.53 

DCP1B 514548 -1.71 -1.54 -1.95 

HEXIM1 539696 -2.88 -2.24 -2.37 

ZMYM3 522721 -3.11 -2.18 -2.62 

Metabolism 

ARG2 518752 5.95 2.56 3.95 

GCNT4 782825 4.47 2.84 3.18 

HK2 788926 3.50 3.61 4.24 

LDHA 281274 1.77 1.54 2.32 

PDP1 280891 1.64 1.50 2.02 

RPIA 613376 1.52 1.68 2.04 

METRNL 534297 1.52 1.89 2.11 

PGM5 785045 -1.68 -1.73 -2.02 

MPPED2 540914 -2.35 -1.60 -2.33 
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Table 4-4 – Common transcripts differentially expressed in response to PGF2α treatment 

(continued) 

  Fold Change 

Gene 
Entrez 

Gene ID 
GSE94069 GSE23348 GSE27961 

Transcription factor 

FOSL1 531389 2.85 2.80 3.19 

BCL6 539020 2.69 3.49 2.23 

SRF 533039 2.58 2.42 2.75 

TGIF1 510050 2.29 2.50 1.90 

BZW2 326579 2.11 1.85 2.19 

NR5A2 541305 -1.79 -2.27 -2.58 

ZNF22 768051 -2.29 -1.68 -1.73 

ZNF827 104974573 -2.30 -1.53 -1.67 

Signaling 

PDE8A 506787 1.97 2.31 4.12 

PDE4B 100124505 1.76 2.22 3.60 

PPP4R4 537521 1.72 3.59 10.10 

TMEM64 536822 1.62 1.70 1.69 

PIK3CA 282306 1.54 1.57 1.80 

EVC2 280834 -1.70 -1.52 -1.78 

DACT1 538778 -2.18 -1.90 -1.75 

TMEM88 507172 -2.76 -1.78 -2.75 

Lipid metabolism 

OLR1 281368 9.18 14.54 15.84 

SRD5A1 614612 2.43 2.31 4.57 

SPHK1 618605 2.18 2.27 2.04 

PITPNC1 782067 1.53 1.57 1.55 

ABCD4 515848 -1.80 -1.80 -1.80 

OXSM 513530 -1.86 -2.40 -2.14 

MID1IP1 615572 -1.90 -1.89 -2.68 

GPAM 497202 -3.55 -2.86 -2.34 

Cell cycle/apoptosis 

CDKN1A 513497 4.16 3.67 2.55 

TNFRSF12A 617439 2.63 2.45 4.22 

BTG1 281032 2.58 1.80 2.29 

CCNG2 512960 2.18 1.59 1.90 

STK17A 513665 2.05 1.81 1.90 

BTG3 541054 1.89 1.53 2.11 

CCNYL1 538167 1.70 1.69 1.97 

IFT122 536731 -1.53 -1.71 -1.64 

Small G-protein regulation 

RASA2 533491 3.21 1.74 1.70 

TIAM1 536517 2.28 3.43 2.38 

RHOBTB1 540513 -1.85 -1.57 -2.49 

WIPF3 786606 -1.90 -1.55 -2.13 

AGFG2 510361 -2.08 -2.01 -1.93 

RGL1 522344 -2.23 -1.58 -1.73 

ARHGAP19 526945 -2.34 -2.02 -2.08 

Neuron function 

GAL 280799 10.15 55.44 11.39 

CA8 515918 2.97 3.60 6.36 

STK38L 514787 2.05 1.54 1.85 

SLITRK2 540117 2.01 4.08 6.64 

PNMA1 538718 -1.98 -3.18 -1.83 

SEMA6D 518458 -2.28 -2.05 -1.95 

PTHLH 286767 -2.49 -3.91 -4.55 
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Table 4-4 – Common transcripts differentially expressed in response to PGF2α treatment 

(continued) 

  Fold Change 

Gene 
Entrez 

Gene ID 
GSE94069 GSE23348 GSE27961 

Cytoskeleton regulation 

Cnn1 534583 5.19 6.55 5.80 

MICAL2 534041 3.39 3.45 7.05 

TPM4 535277 2.63 1.66 2.56 

MARCKSL1 539555 2.19 2.84 1.95 

RAI14 525869 1.89 2.24 2.24 

MYO18A 519634 -1.98 -1.51 -1.61 

TNS3 516555 -3.31 -3.03 -3.13 

Post-translational modification 

UFM1 530547 2.63 1.72 1.92 

DPH3 511579 2.62 1.84 1.57 

RWDD3 614557 -1.62 -2.22 -2.16 

KBTBD4 617482 -1.74 -1.52 -1.59 

TRIM68 538657 -2.30 -1.64 -1.54 

Membrane transporter 

TRPC4 282102 4.33 3.33 3.50 

SLC39A8 508193 2.86 2.58 3.73 

SLC20A2 518905 2.79 1.89 1.53 

SLC2A1 282356 2.44 2.43 4.71 

SLC12A2 286845 1.78 2.69 1.57 

DNA regulation and repair 

RBBP8 512977 4.08 1.99 3.10 

H2AFZ 287016 1.61 1.54 1.55 

PAPD7 523016 1.50 1.86 3.36 

ZRANB3 529922 -1.88 -1.82 -1.53 

MUM1 513471 -2.16 -1.71 -1.55 

G-protein coupled receptor 

F2RL2 512581 2.17 1.82 3.34 

AGTR1 281607 -2.16 -2.07 -1.95 

APLNR 615435 -4.20 -2.76 -1.83 

Chaperone 

DNAJA1 528862 2.31 1.60 1.51 

HSPA2 281827 -1.96 -1.65 -1.57 

Unknown 

C23H6orf141 100271839 2.45 1.98 6.27 

LHFPL2 616131 2.35 3.32 2.16 

LOC540312 540312 -1.81 -1.84 -4.54 

CYYR1 768230 -1.98 -1.51 -2.08 

LOC511229 511229 -2.33 -2.08 -1.77 

Submitted for publication as part of 221. 
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CHAPTER 5: EFFECTS OF CXCL8 AND IMMUNE CELLS ON THE 

REGULATION OF LUTEAL PROGESTERONE SECRETION ** 

Abstract 

Recent studies suggest that chemokines may mediate the luteolytic action of prostaglandin 

F2α (PGF2α). Our objective was to identify chemokines induced by PGF2α in vivo and to 

determine the effects of CXCL8 on specific luteal cell types in vitro. Mid-cycle cows were 

injected with saline or PGF2α, ovaries were removed after 0.5 - 4 h and chemokine expression 

was analyzed by qPCR. In vitro expression of CXCL8 was analyzed after PGF2α administration 

and with cell signaling inhibitors to determine the mechanism of PGF2α-induced chemokine 

expression. Purified neutrophils were analyzed for migration and activation in response to 

CXCL8 and PGF2α. Purified luteal cell types (steroidogenic, endothelial and fibroblast cells) 

were used to identify which cells respond to chemokines. Neutrophils and peripheral blood 

mononuclear cells (PBMCs) were co-cultured with steroidogenic cells to determine their effect on 

progesterone production. CXCL8, CXCL2, CCL2, and CCL8 transcripts were rapidly increased 

following PGF2α treatment in vivo. The stimulatory action of PGF2α on CXCL8 mRNA 

expression in vitro was prevented by inhibition of p38 and JNK signaling. CXCL8, but not 

PGF2α, TNFα, or TGFβ, stimulated neutrophil migration. CXCL8 had no apparent action in 

purified luteal steroidogenic, endothelial, or fibroblast cells, but CXCL8 stimulated extracellular 

signal-regulated kinase (ERK) phosphorylation in neutrophils. In co-culture experiments neither 

CXCL8 nor activated neutrophils altered basal or luteinizing hormone (LH)-stimulated luteal cell 

progesterone synthesis. In contrast, activated PBMCs inhibited LH-stimulated progesterone 

synthesis from cultured luteal cells. These data implicate a complex cascade of events during 

luteolysis involving chemokine signaling, neutrophil recruitment, and immune cell action within 

the corpus luteum.   

                                                      
** The material presented in this chapter was previously published: Talbott et al. Effects of IL8 and immune 

cells on the regulation of luteal progesterone secretion. Reproduction 2014 260. 
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5.1. Introduction 

The corpus luteum develops after ovulation and secretes progesterone, a steroid hormone 

essential for the establishment and maintenance of early pregnancy 134,230. In the absence of 

hormonal cues or pregnancy the corpus luteum will regress in a process termed luteolysis. In 

many species, luteolysis is mediated by uterine and/or intra-luteal release of prostaglandin F2 

alpha (PGF2α) 65,67,343,345. PGF2α has been shown to act indirectly at the vascular level to cause 

disruption of luteal capillaries 244 and apoptosis of capillary endothelial cells 346. PGF2α has also 

been implicated in the initiation of luteal cell apoptosis in vivo 65,347; however, PGF2α alone 

cannot directly reduce the viability of luteal cells in vitro 65,348. Thus, other mechanisms must be 

activated for luteolysis to proceed through both the functional (loss of progesterone secretion) and 

structural (apoptosis and tissue remodeling) stages of regression. 

Immune cells and their effector cytokines participate in various reproductive processes 

203,246,349,350 including: ovulation 351,352, endometrial function 353,354, as well as corpus luteum 

formation and regression 203,246,349,354–357. CXCL8 (previously known as IL-8) is a known 

chemotactic cytokine secreted by a variety of cells in response to inflammatory stimuli. CXCL8 

secretion is implicated in the recruitment and activation of neutrophils 358,359, including within the 

corpus luteum 207,246,360. In rabbits, neutralization of CXCL8 suppresses neutrophil activation and 

ovulation 352. Recent studies also indicate that neutrophils and CXCL8 are involved in 

establishment of the corpus luteum following ovulation. CXCL8 and neutrophils are known to 

promote angiogenesis 361,362 findings which have been recently extended to the developing corpus 

luteum 207,246,363. CXCL8 is also capable of stimulating progesterone secretion by luteinizing 

granulosa 326 and theca cells 364. 

Our objective was to identify chemokines induced by PGF2α in vivo and to determine the 

effect of CXCL8 on specific luteal cell types in vitro. We employed co-cultures to evaluate the 

effects of immune cells on luteal progesterone synthesis. The present study demonstrates that 
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PGF2α stimulates the transcription of CXCL8, CCL8, CCL2 and CXCL2. While CXCL8 was 

effective at recruitment of neutrophils, neither CXCL8 nor activated neutrophils reduced 

luteinizing hormone (LH)-stimulated luteal progesterone synthesis. In contrast, activated 

polymorphic mononuclear cells (PBMCs) inhibited LH-stimulated progesterone by luteal cells in 

vitro. Indicating that the activation of immune cells during luteolysis may be involved in the 

regression of the bovine corpus luteum. 

5.2. Materials and Methods 

5.2.1. In vivo studies 

All animal procedures were conducted under an IACUC-approved protocol and performed at 

the University of Nebraska-Lincoln, Animal Sciences Department. Post-pubertal female cattle of 

composite breeding age were given an intramuscular injection at mid-cycle (days 9-10) with 

saline (n = 3) or 25 mg of the PGF2α analog, Lutalyse (Pharmacia & Upjohn Company, New 

York, NY, n = 12). Ovariectomies were performed at 0.5, 1, 2, and 4 h after treatment and RNA 

was isolated from the corpora lutea using an Absolutely mRNA Purification Kit (Agilent 

Technologies Inc., Santa Clara, CA.) according to the manufacturer’s instructions. RNA yields 

were measured using a fluorescence detection kit (RiboGreen; Invitrogen, Carlsbad, CA). 

Screening with whole-transcript bovine microarray (Affymetrix, Santa Clara, CA) revealed 

several chemokines that were induced following treatment with PGF2α. Quantitative real-time 

polymerase chain reaction (qPCR) was used to validate changes in CXCL8, CCL2, CCL8, and 

CXCL2 mRNA using the primers provided in Table 5-1. First-strand cDNA was synthesized from 

1 μg total RNA using iScriptTM cDNA synthesis kit (Bio-Rad, Hercules, CA) according to the 

manufacturers' instructions. qPCR was performed using the CFX96TM Real-Time PCR 

Detection System (Bio-Rad, Hercules, CA) with ssoFastTM EvaGreen® Supermix (Bio-Rad, 

Hercules, CA) with the following parameters: 95 °C for 30 s followed by 40 cycles of: 95 °C for 

5 s, and 55 °C for 5 s. β-actin (ACTB) or glyceraldehyde 3-phosphate dehydrogenase (GADPH) 
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were used as internal standards of mRNA expression. The authenticity of the PCR signal was 

verified by reactions containing no RNA or reactions omitting reverse transcriptase. Melt curve 

analysis was performed to ensure amplification of a single product at the predicted melting 

temperature. 

5.2.2. In vitro studies 

All cell culture experiments described below were done in tissue culture plastic (Corning 

CoStar, Corning, NY) and included penicillin (100 IU/ml, Gibco Life Technologies, Carlesbad, 

CA) streptomycin (100 μg/ml, Gibco Life Technologies, Carlesbad, CA), and amphotericin (50 

μg/ml, MP Biomedicals, Santa Ana, CA) in cell culture medium to prevent bacterial and fungal 

growth. 

5.2.3. Isolation of bovine luteal cells 

Bovine ovaries were collected from a local abattoir (JBS, Omaha, NE). The tissue was 

obtained from cows during early pregnancy (fetal crown-rump length < 10 cm) to assure luteal 

function 365. The luteal tissue was dissected from the ovary and dissociated with 103 IU/mL 

collagenase (Atlanta Biologicals, Norcross, GA) as described previously 366. Luteal cell viability 

was determined using trypan blue exclusion, and luteal cell preparations with more than 90% 

viability were used. Enriched bovine steroidogenic luteal cells (1 × 105 cells/cm2) were plated as 

previously described 94. Cells were incubated overnight in medium 199 (M199, Lonza, Basel, 

Switzerland) supplemented with 5% fetal bovine serum (FBS, Valley Biomedical, Winchester, 

VA). The next day the medium was changed and the incubations were continued for 1 day in 

FBS-free media. On the day of the experiment, the medium was replaced with fresh FBS-free 

medium for 2-3 h to pre-equilibrate before applying the treatments detailed in the figure legends. 

5.2.4. Isolation of bovine endothelial and fibroblast cells 

Endothelial cells were isolated from bovine corpus luteum of early pregnancy and purified as 

described before 245. Endothelial cells were positive for vascular endothelial cell cadherin (VE-
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cadherin) and negative for steroidogenic enzymes and prolyl 4-hydroxylase (antibodies are listed 

in Table 5-2). Cells were grown to ~80% confluence in Dulbecco’s Modified Eagle Medium 

(DMEM, Corning CellGro, Corning, NY) containing 10% FBS and 20 μg/ml endothelial cell 

growth supplement (ECGS, Millipore, Bedford, MA). The medium was changed to serum-free 

DMEM containing 20 μg/ml ECGS for 2 h prior to treatment as described in the figure legends. 

Fibroblasts were isolated from the bovine corpus luteum and characterized as previously 

described 245. The fibroblasts were positive for prolyl 4-hydroxylase and collagen 1 and negative 

for steroidogenic enzymes and VE-cadherin (antibodies listed in Table 5-2). Luteal fibroblasts 

were grown to ~80% confluence and changed to serum-free DMEM for 2 h prior to treatment 

with CXCL8 as described in the figure legends. 

5.2.5. Isolation of bovine neutrophils and migration assays 

Potassium ethylenediaminetetraacetic acid (Sigma-Aldrich, St. Louis, MO)-anticoagulated 

bovine blood samples were collected from a local abattoir (JBS, Omaha, NE), centrifuged, and 

subjected to Percoll gradient (Sigma-Aldrich, St. Louis, MO) separation to isolate neutrophils. 

The remaining erythrocytes were lysed by rapid treatment with dH2O and the remaining cells 

were resuspended in Roswell Park Memorial Institute 1640 medium (RPMI, Thermo Fisher 

Scientific HyClone, Waltham, MA). Cell migration was assayed using the Boyden chamber 

method. Bovine neutrophils (2.5 x 105) were seeded in transparent polyethylene terephthalate 

membrane cell culture inserts with 3 µm pores (B&D Falcon, Franklin Lakes, NJ) placed in 24-

well plates. The lower chamber was filled with 500 µl RPMI with or without 30 ng/mL CXCL8 

(R&D Systems, Minneapolis, MN), 100 nM PGF2α, 10 ng/ml tumor necrosis factor alpha (TNFα, 

R&D Systems, Minneapolis, MN) or 1 ng/ml transforming growth factor beta 1 (TGFβ). Cell 

migration was carried out for up to 24 h at 37 °C. Migrated cells were counted with a 

hemacytometer. 
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To determine the signaling pathways used by CXCL8 in bovine neutrophils, we treated 

neutrophils with CXCL8 or TNFα (R&D Systems, Minneapolis, MN), a modulator of immune 

function and activator of multiple signaling pathways. Western blot analysis was performed to 

examine the mitogen-activated protein kinase (ERK1/2, p38 and JNK), AKT and NF-κB 

signaling pathways using phospho-specific antibodies. See Table 5-2 for a complete list of 

antibodies used. 

5.2.6. Isolation of human neutrophils and degranulation assays 

Human neutrophils were isolated from peripheral blood of healthy donors by density gradient 

centrifugation under an approved IRB at the University of Nebraska Medical Center, using 

polymorphprep (Axis-Shield, Oslo, Norway) in accordance with manufacturer’s instruction. 

Purified neutrophils were resuspended in RPMI + 5% FBS. Neutrophils (3 x 105 cells) were 

incubated with different concentrations of CXCL8 at 37 °C for 1 h. Neutrophil degranulation was 

examined by florescence-activated cell sorting for increased cell surface expression of granule 

molecules carcinoembryonic antigen-related cell adhesion molecule 8 (CD66b); and integrin 

alpha M (ITGAM, also known as CD11b). Cells were stained with fluorescein isothiocynate 

(FITC)-conjugated mouse anti-human CD66b antibody and allophycocyanin (APC)-conjugated 

mouse anti-human CD11b antibody on ice for 30 min. After rinsing, cells were fixed with 

phosphate-buffered saline plus 2% formaldehyde. Flow cytometry analysis was done using a 

Becton Dickinson (Franklin Lakes, NJ) FACSCaliber flow cytometer and was performed at the 

University of Nebraska Medical Center Cell and Tissue Analysis Facility. 

5.2.7. Isolation of bovine peripheral blood mononuclear cells (PBMC) 

Acid citrate dextrose-anticoagulated blood samples from cows were collected from a local 

abattoir (JBS, Omaha, NE). Blood was then diluted 1:2 in cold Hank’s Balance Salt Solution 

(HBSS, Corning CellGro, Corning, NY) with 2 mM EDTA (Sigma-Aldrich, St. Louis, MO) and 

5% FBS. Diluted blood was underlayed with an equal volume of Histopaque (specific gravity = 
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1.083, Sigma-Aldrich, St. Louis, MO) and centrifuged at 900 x g for 30 min. PBMCs were 

collected from interface between the plasma and Histopaque. The cells were then washed in 

HBSS three times before use. 

5.2.8. Co-culture experiments 

Enriched bovine steroidogenic luteal cells were plated (∼1 × 105 cells/cm2) in basal M199 

medium containing 5% FBS in 48-well plates overnight as described above. 

5.2.9. Neutrophil-luteal cell co-culture: 

Neutrophils were isolated on the same day that luteal cells were prepared. Purified 

neutrophils were then cultured in RPMI (10% FBS) with or without 30 ng/ml CXCL8 and 20 nM 

phorbol myristate acetate (PMA, EMD Millipore Calbiochem, Billerica, MA) overnight. After 24 

h the medium was replaced on the luteal cell cultures. Neutrophils (250,000 cells/ml) were then 

added to the luteal cells in M199 and RPMI (1:1) with 10% FBS for 2 h before adding control 

media or 10 ng/ml bLH (Tucker Endocrine Research Institute, Atlanta, GA). Medium from each 

well was collected 6 hours after LH or control treatments for progesterone analysis. 

5.2.10. PBMC-luteal cell co-culture: 

Twenty-four hours after plating the luteal cells, the medium was removed from the culture 

wells and replaced with fresh M199. Then an equal volume of newly isolated bovine PBMCs in 

RPMI (100,000 cells/ml) were added to the luteal cell culture. Co-cultures were incubated for 24 

h in M199 and RPMI (1:1 ratio) + 10% FBS, and with or without 10 µg/ml concavalin A (Sigma, 

St. Louis, MO) to activate the PBMCs. After 24 h of co-culture, medium was replaced with 

M199:RPMI + 10% FBS for 2 h to pre-equilibrate the cells before the addition of control media 

or 10 ng/ml LH. Medium was removed from each well after 6 h of control or LH treatment for 

progesterone analysis. 
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5.2.11. Western blot analysis 

Cultures of neutrophils, steroidogenic cells, luteal endothelial cells, and luteal fibroblasts 

were harvested with ice cold cell lysis buffer [20 mM Tris-HCl (pH = 7), 150 mM NaCl, 1 mM 

Na2EDTA, 1 mM EGTA, 1% Triton X-100 and protease and phosphatase inhibitor cocktails 

(Sigma-Aldrich, St. Louis, MO)]. Protein concentration was determined and 40-60 µg protein 

was subjected to 10% SDS-PAGE. After transfer to polyvinylidene fluoride (PVDF) membranes, 

the membranes were probed with appropriate amounts of primary antibodies and bound 

antibodies were detected with a horse radish peroxidase-conjugated secondary antibody and the 

Femto Western Blotting Detection Kit (GE Healthcare Amersham, Cleveland, OH). Signals were 

visualized using a Digital Sciences Image Station 440 (Kodak, Rochester, NY). 

5.2.12. Progesterone analysis 

Conditioned media were collected for progesterone determination using Coat-A-Count 

progesterone radioimmunoassay kit (Siemens, Deerfield, IL) according to the manufacturer’s 

instructions and as previously reported 94. 

5.2.13. Statistical analysis 

All experiments were performed at least two times using different cell preparations with 

qualitatively comparable results. The data are presented as representative experiments or as the 

means ± SEM of the averages from multiple experiments. The differences in means were 

analyzed by t test or analysis of variance followed by multiple range testing. P ≤ 0.05 was 

considered statistically significant. 

5.3. Results 

5.3.1. PGF2α stimulates chemokine gene expression in vivo 

Treatment with PGF2α in vivo resulted in a 4.3-fold increase in CXCL8 mRNA within 30 min 

and a 9-fold increase in CXCL8 mRNA within 1 h of administration (Figure 5-1 A). Treatment 

with PGF2α also increased CCL8, CXCL2, and CCL2 mRNA after 1 h (fold increases of 2.5 ± 
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0.6; 2.9 ± 0.7 and 3.1 ± 0.6, respectively). After a brief lag the expression of chemokine mRNA 

increased dramatically after 4 h of treatment with PGF2α. A 35 ± 4 fold increase in CXCL8 

mRNA expression was observed in response to a 4 h treatment with PGF2α. At the 4 h mark 

PGF2α also stimulated significant (P ≤ 0.05) increases in CCL8, CCL2 and CXCL2 mRNA 

expression (29 ± 3.8, 12 ± 1.5 and 6.4 ± 1 fold, respectively). 

5.3.2. PGF2α stimulates CXCL8 expression in vitro 

Treatment of steroidogenic luteal cells with PGF2α for 1 h in vitro also increased CXCL8 

mRNA expression (3-fold increase, P ≤ 0.05; (Figure 5-1 B). Luteal steroidogenic cells were 

pretreated in the presence or absence of specific inhibitors of the mitogen-activated protein kinase 

(MAPK) signaling cascade to determine which intracellular signals contribute to the stimulatory 

effect of PGF2α on the induction of CXCL8 gene expression (Figure 5-1 B). Pretreatment with 

the ERK1/2 inhibitor U0126 (Enzo Life Sciences, Farmingdale, NY) failed to prevent the 

stimulatory effect of PGF2α on CXCL8 mRNA (Figure 5-1 B). In contrast, inhibition of the 

stress-activated protein kinase p38 MAPK with SB2037580 resulted in a complete inhibition of 

the response to PGF2α. Treatment with the JNK inhibitor SP600125 also resulted in a significant 

inhibition (77%, P ≤ 0.05) of the PGF2α-induced increase in CXCL8 mRNA. 

5.3.3. CXCL8 enduces migration of bovine neutrophils 

To determine whether CXCL8 would affect the function of bovine neutrophils, we purified 

neutrophils from blood collected at slaughter from non-pregnant cows. As shown in Figure 5-2 A 

neutrophils stained with hematoxylin and eosin had distinct multi-lobular nuclei, a characteristic 

of neutrophils. A Boyden chamber assay (Figure 5-2 A) was used to determine whether CXCL8 

or other factors produced during luteolysis could increase migration of bovine neutrophils. We 

observed that treatment for 18 h with 30 ng/ml CXCL8 caused a 20-fold (P ≤ 0.05) increase in 

neutrophil migration. However, treatment of neutrophils with 100 nM PGF2α under identical 

conditions had no effect on neutrophil migration (Figure 5-2 B). Migration assays were also 
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performed with other chemokines that have been implicated in luteal regression; namely TNFα 

346,367 and TGFβ 244,245. In experiments evaluating neutrophil migration during a 3 h treatment 

period, we found that 30 ng/ml CXCL8, but not 100 nM PGF2α, 10 ng/ml TNFα, or 1 ng/ml 

TGFβ, was capable of stimulating migration of neutrophils (Figure 5-2 C). 

Activation of neutrophils results in the rapid cell surface expression of molecules that allows 

for endothelium attachment for extravasation. Treatment of human neutrophils with increasing 

concentrations of human CXCL8 (0-100 ng/ml) resulted in the rapid expression of the cell 

adhesion molecules ITGAM and as determined by flow cytometry (not shown). 

5.3.4. CXCL8 selectively stimulates signaling in bovine neutrophils 

Treatment with CXCL8 for 15 min stimulated an increase (5-fold, P ≤ 0.05) in ERK1/2 

phosphorylation (Figure 5-3 A). The response was transient and returned to control levels within 

120 min following CXCL8 treatment (Figure 5-3 A & Figure 5-4A). CXCL8 did not stimulate 

either the p38 or the JNK MAPK signaling pathways (Figure 5-3). In contrast to CXCL8, TNFα 

provoked sustained ERK phosphorylation, as well as p38 and JNK phosphorylation in bovine 

neutrophils throughout the 120 min investigated (Figure 5-3). CXCL8 exerted a slight, but 

consistent, increase in the phosphorylation of p65-NF-κB and AKT; whereas, TNFα stimulated a 

robust increase in p65-NF-κB and AKT phosphorylation in neutrophils. To determine whether 

CXCL8 could similarly stimulate other cells of the corpus luteum, we treated bovine luteal 

fibroblasts, endothelial cells and steroidogenic cells with CXCL8 under a various treatment times 

and concentrations. CXCL8 did not stimulate the phosphorylation of AKT, ERK or NF-κB in any 

other cell type examined. As a positive control we observed that TNFα stimulated MAPK and 

NF-κB signaling in each cell type examined; whereas PGF2α only stimulated MAPK signaling in 

luteal steroidogenic cells (data not shown). 

In view of the very prominent effect of CXCL8 on ERK signaling in neutrophils, we tested 

whether the CXCL8-induced increase in ERK phosphorylation was associated with the effect of 
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CXCL8 on neutrophil migration. Pretreatment with 5 μM of U0126, completely blocked the 

induction of ERK phosphorylation (Figure 5-4 A), but did not prevent the stimulatory effect of 

CXCL8 on bovine neutrophil migration (Figure 5-4 B). 

5.3.5. Effect of CXCL8 and immune cells on progesterone secretion 

Experiments were performed to determine whether CXCL8 altered progesterone secretion. 

Pretreatment of steroidogenic luteal cells with increasing amounts of CXCL8 (0-30 ng/ml) did 

not alter basal or LH-simulated progesterone production in luteal cells (Figure 5-3 A). Next, we 

co-cultured neutrophils with steroidogenic cells and evaluated the ability of LH to stimulate 

progesterone secretion. We observed that co-cultures of steroidogenic cells and neutrophils had 

no effect on the ability of LH to increase progesterone (Figure 5-3 B). Furthermore, co-cultures of 

steroidogenic cells and activated neutrophils had no effect on basal or LH-stimulated 

progesterone production. 

Co-cultures of steroidogenic cells and PBMCs had no effect on the ability of LH to secrete 

progesterone (Figure 5-6). However, LH-stimulated progesterone production was completely 

abrogated (P ≤ 0.05) in cultures of activated PBMCs and steroidogenic luteal cells (Figure 5-6). 

5.4. Discussion 

For over 30 years the immune system has been postulated as essential for fertility 368. The 

present study provides additional insight into the expression and function of chemokines during 

luteal regression. We observed that induction of luteal regression in cows with a bolus of PGF2α 

in vivo resulted in a rapid increase in the expression of CXCL8, CCL8, CCL2, and CXCL2. Our 

findings confirm recent findings by Shirasuna et al., 2012 246 that PGF2α treatment of dairy cattle 

increased luteal CXCL8 mRNA by approximately 4-fold within 30 min. In that study, the fold 

increase in CXCL8 mRNA remained constant over 4-hr of treatment with PGF2α. In the present 

study using beef cattle we observed more robust increases in luteal CXCL8 mRNA expression; 9-

fold increases within 1 h and 35-fold increases after 4 h of PGF2α treatment. At present it is not 
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clear whether the differences in the magnitude of the responses are due to differences in the cattle 

breeds since there are reported differences in the responses of beef and dairy cattle to 

synchronization protocols using PGF2α 369 or other factors. Based on the pronounced increase in 

CXCL8 expression, it was selected for further analysis. We found that CXCL8 acted directly on 

neutrophils but had little effect on other cell types in the mid-cycle corpus luteum. Furthermore, 

co-cultures of luteal cells with activated neutrophils did not alter LH-stimulated progesterone 

synthesis; whereas co-cultures with activated PBMCs suppressed LH-stimulated progesterone 

synthesis. 

Activation of the PGF2α receptor rapidly induces calcium mobilization and activation of 

PKC 235. These initial signaling events lead to the activation of ERK1/2 238,239, p38, and JNK 

104,240,241 in vivo and in vitro, with subsequent activation of multiple transcription factors. The 

MAPK signaling family induces early response genes such as FOS and JUN 105, NR4A1 108,134, 

EGR1 106,108, and ATF3 104 in the corpus luteum. To determine which intracellular signals 

contribute to the stimulatory effect of PGF2α on CXCL8 gene expression, luteal cells were treated 

with specific inhibitors of ERK1/2, p38, and JNK. We observed that the ERK1/2 inhibitor U0126 

had no effect on CXCL8 mRNA expression in response to PGF2α, while the p38 MAPK inhibitor 

SB2037580 and the JNK inhibitor SP600125 significantly inhibited the PGF2α -mediated 

upregulation of CXCL8 mRNA. The results indicate that the stress-activated MAPKs: p38 and 

JNK play an important and perhaps overlapping role in the induction of CXCL8 mRNA in 

response to PGF2α. 

Chemokines like CXCL8 are responsible for the recruitment of immune cells to chemokine-

producing tissues. Our findings demonstrate that CXCL8 is chemotactic for bovine neutrophils, in 

agreement with previous literature 207,246,358,359. CXCL8 stimulated a 6-fold increase in neutrophil 

migration within 3 h and after 24 h CXCL8-treatment increased neutrophil migration nearly 20-

fold. In contrast, treatment with PGF2α had no effect on neutrophil migration at either time-point. 
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These findings are consistent the studies by 246,370 showing that immune cells are unresponsive to 

PGF2α because they do not express the PGF2α receptor. In the present study we also report that 

TNFα and TGFβ, two cytokines induced rapidly in the bovine corpus luteum in response to 

PGF2α and implicated in events associated with luteal regression 106,245,257,346, did not increase the 

migration of bovine neutrophils in the Boyden chamber assay. Our observations support the 

recent reports 108,246,257,321 showing that PGF2α induces CXCL8 mRNA and that the expression of 

CXCL8 is associated with the appearance of neutrophils in the bovine corpus luteum 203,207,246. In 

addition, our studies indicate that CXCL8 stimulates the degranulation of human neutrophils 

which supports the studies of Shirasuna et al., 2012 246 indicating that the rapid appearance of E-

selectin on neutrophils follows treatment with CXCL8. Since other chemokines (CCL8, CCL2, 

and CXCL2) are induced concomitantly with CXCL8, it will be important to evaluate the 

contributions of each individual chemokine to the recruitment of specific immune cells into the 

regressing corpus luteum. Future experiments should also address how combinations of these 

chemokines signal the recruitment and activation of immune cells within the corpus luteum 371. 

Treatment of neutrophils with CXCL8 stimulated a robust increase in ERK phosphorylation, 

a slight increase in AKT and NF-κB phosphorylation, and had no effect on p38 and JNK 

signaling. In contrast, TNFα activated all of these pathways simultaneously in neutrophils. Since 

ERK signaling was the most prominent pathway activated following CXCL8 treatment of bovine 

neutrophils, we determined whether neutrophil migration could be blocked by treatment with the 

ERK1/2 inhibitor U0126. Interestingly, we found that inhibition of ERK signaling with U0126 

had no inhibitory effect on CXCL8-stimulated neutrophil migration. These results suggest that 

another signaling pathway is responsible for CXCL8-stimulated chemotaxis, likely the PI3K and 

Rac signaling pathway 372,373. Further studies are required to determine the contributions of other 

signaling pathways to neutrophil activation and migration. 
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CXCL8 has been shown to induce diverse cellular responses in cells other than neutrophils 

358. Recent studies suggest that CXCL8 may contribute the angiogenesis in the newly forming 

corpus luteum 207 and progesterone secretion by granulosa 326 and theca 364 cells. Treatment with 

various CXCL8 concentrations and treatment times revealed no changes in cell signaling in 

steroidogenic cells, endothelial cells, or fibroblasts isolated from the bovine corpus luteum. 

However, CXCL8 stimulated a robust increase in ERK phosphorylation in neutrophils. 

Furthermore, CXCL8 did not affect basal or LH-stimulated progesterone secretion from cultured 

luteal cells. In contrast to the findings by Shimizu et al., 2012 326, we found no evidence 

suggesting that CXCL8 acted directly on bovine luteal cells types that are involved in luteal 

regression (e.g., endothelial cells, fibroblasts and steroidogenic cells). Based on these findings it 

appears that CXCL8 exerts specific effects on ovarian cell types depending on their stage of 

differentiation. Given that the corpus luteum is highly differentiated and undergoes regression in 

response to PGF2α, the lack of a stimulatory effect of CXCL8 on angiogenesis and 

steroidogenesis may be expected since the vasculature and steroid secretion are disrupted during 

regression 65,134,245,374. It is possible that during luteal regression CXCL8-activated neutrophils 

contribute to phagocytosis during structural regression of the corpus luteum. 

The increase observed in multiple chemokines suggests that immune cells other than 

neutrophils could be recruited in to the corpus luteum following administration of PGF2α. In fact, 

studies from multiple laboratories have demonstrated an increase in neutrophils, T cells, or 

macrophages during the regression of the corpus luteum in rodents 375, rabbits 376, ruminants 

209,377, primates 353, and women 205,249,378,379. A previous report indicated that co-culture of rat 

neutrophils with luteal cells resulted in a decrease in progesterone secretion, presumably as a 

result of oxidative stress 380. However, under our experimental conditions co-cultures of bovine 

neutrophils and steroidogenic luteal cells did not alter basal or LH-stimulated progesterone 

synthesis. Treatment of neutrophils with CXCL8 and PMA, alone or in combination, to activate 
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neutrophils was not sufficient to reduce progesterone secretion under co-culture conditions. In 

addition to neutrophils, monocytes are immune effector cells that are also equipped with 

chemokine receptors and adhesion receptors that mediate migration from blood to tissues 381. 

Since we observed that PGF2α rapidly induced the expression of other chemokines (CCL8, 

CCL2, and CXCL2), which could recruit other types of immune cells, we established a co-culture 

system with PBMCs and luteal cells. Although, un-activated PBMCs did not reduce progesterone 

secretion, we observed that activated PBMCs effectively reduced LH-driven progesterone 

secretion. These observations support our earlier findings 370 that activated immune cells may 

contribute a factor (or factors) that impair steroidogenesis in response to LH. It is known that 

activated monocytes produce inflammatory cytokines, nitric oxide, and reactive oxygen species 

381,382 all of which may contribute individually or in combination to the inhibition of progesterone 

synthesis 347,383,384. In the in vivo setting, activated monocytes may also secret matrix 

metalloproteinases that contribute to the degradation of the extracellular matrix 381, which could 

facilitate the recruitment of additional inflammatory cells to the regressing corpus luteum. 

A complex interaction of endocrine and immune cells appears to be required to mediate the 

structural and functional regression of the bovine corpus luteum. Since chemokines act 

synergistically to activate their target cells 371, additional studies are needed to examine the 

actions of chemokines as a complex cocktail rather in isolation as performed in the present study. 

The current findings complement a recent review 385 that postulates that immune cells in the 

developing and functional corpus luteum play a supportive role, but once corpus luteum 

regression is triggered, the immune cells promote apoptosis, debris clearage and tissue 

remodeling. Understanding these endocrine and immune events is important for increasing our 

ability to control reproductive function to facilitate full-term pregnancies in both humans and 

livestock. 
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Figure 5-1 – Induction of chemokines following 

treatment with PGF in vivo and in vitro 

A) Midluteal phase cows were treated with saline or the 

PGF analog Lutalyse (25 mg) for up to 4 h. Ovaries 

were surgically removed and RNA was isolated from 

corpora lutea. Quantitative real- time PCR was carried 

out. Results are shown as means ±S.E.M., n=3. (B) To 

determine the cellular signaling pathway leading to the 

induction of IL8 mRNA, bovine steroidogenic luteal 

cells were pretreated for 60 min with vehicle, the 

ERK1/2 inhibitor U0126 (20 mM), the p38 MAPK 

inhibitor SB207580 (10 mM), or the JNK inhibitor 

SP600125 (20 mM). Luteal cells were then treated with 

control media (open bars) or PGF (100 nM, solid bars) 

for 60 min. Quantitative real-time PCR for IL8 mRNA 

was carried out. Results are shown as means S.E.M., 

n=3. *P≤0.05; **P≤0.01; NS, not significant. 

Previously published in 260. 
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Figure 5-2 – Stimulatory effects of CXCL8 on neutrophils. 

(A) Bovine neutrophils were isolated as described in the Materials and Methods. Hematoxylin 

and eosin stain of the purified bovine neutrophils used in the chemotaxis assay is shown in the 

figure. Neutrophils (105 cells) were placed in the upper chamber of a Boyden apparatus and 

control media or CXCL8 (30 ng/ml) was placed in the lower chamber. Cell numbers in the 

lower chamber were quantified at various intervals. (B) Control media (Control), CXCL8 (30 

ng/ml) or PGF (100 nM) was added to the lower chamber and migration of bovine neutrophils 

was determined after 18 h. Result are shown as mean±S.E.M., n=3. *P≤0.05, vs control. (C) 

Control media (Control), CXCL8 (30 ng/ml), PGF (100 nM), TNF (10 ng/ml), or TGFB1 (1 

ng/ml) was added to the lower chamber and migration of bovine neutrophils was determined 

after 3 h. Results are shown as mean±S.E.M., n=4 for CTL, CXCL8, PGF, and n=2 for TNF 

and TGFB1. *P≤0.05 vs control. Previously published in 260. 
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Figure 5-3 – IL8 stimulates early signaling 

responses in bovine neutrophils. 

A) Bovine neutrophils were treated without or with IL8 

(30 ng/ml) or TNF (10 ng/ml) for 15 or 120 min to 

identify early cell signaling responses.  Western blot 

analysis was performed using phospho-specific 

antibodies for ERK, p38 and JNK MAPKs, AKT, and 

p65 NFκB.  B-actin served as a loading control.  B) 

Cells were treated as above and quantitative analysis of 

phospho-ERK signaling is shown as mean ± SEM, n=4.  

Previously published in 260. 
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Figure 5-4 – CXCL8 stimulated neutrophil 

migration is independent of ERK signaling. 

A) Neutrophils were pre-treated for 60 min with 

vehicle or the ERK1/2 inhibitor U0126 (5 μM) prior to 

treatment for 15 or 60 min with IL8 (30 ng/ml).  

Western blot analysis was performed for ERK and 

phospho-ERK.  β-actin served as a loading control.  B) 

Neutrophils were placed in a Boydon chamber and pre-

treated for 60 min with vehicle or U0126 (5 µM) prior 

to treatment with IL8 (30 ng/ml).  Neutrophil migration 

was determined after 24 h.  Results are shown as mean 

± SEM, n=3.  Previously published in 260. 
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Figure 5-5 – CXCL8 and neutrophils do not inhibit luteal progesterone 

production. 

(A) Steroidogenic luteal cells were pretreated with increasing amounts of CXCL8 (0–

30 ng/ml) for 30 min and then treated without (Control) or with LH (10 ng/ml) for 4 

h. Progesterone in the media was measured by radioimmunoassay (RIA). Results are 

shown as mean ± S.E.M., n=4. (B) Steroidogenic luteal cells were co-cultured with 

bovine neutrophils or activated bovine neutrophils as described in the Materials and 

Methods. Cells were then treated without (Control) or with LH (10 ng/ml) for 4 h. 

Progesterone in the media was measured by RIA. Results are shown as mean ± 

S.E.M., n=3. *P≤0.05 vs control; not significant (NS). Previously published in 260. 
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Figure 5-6 – Cocultures of luteal cells with 

activated peripheral blood mononuclear cells 

(PBMCs) inhibit luteal progesterone production. 

Steroidogenic luteal cells were cocultured with 

bovine PBMCs or activated PBMCs as described in 

the Materials and methods. Cells were then treated 

without (Control) or with LH (10 ng/ml) for 4 h. 

Progesterone in the media was measured by RIA. 

Results are shown as mean ± S.E.M., n=4. *P≤0.05; 

NS, not significant. Previously published in 260. 
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Table 5-1 – Bovine primers for qPCR 

Gene Name Primers for qPCR 

CXCL8 F: TGTGAAGCTGCAGTTCTGTCAAG 

R: TGCACCCACTTTTCCTTGGGGT 

CCL2 F: TGCTCGCTCAGCCAGATGCAAT 

R: GGACACTTGCTGCTGGTGACTCT 

CCL8 F: TCTCAGGCTGAAGCCCCCGT 

R: ACTGAATCTGGCTGAGCGAGCA 

CXCL2 F: GCGCCCGTGGTCAACGAACT 

R: AGACTGGCTATGACTTCGGTTTGGT 

ACTB F: ACACCGCAACCAGTTCGCCAT 

R: AAGACGGCCCGGGGAGCATC 

GAPDH F: AGATGGTGAAGGTCGGAGTG 

R: GATCTCGCTCCTGGAAGATG 

Previously published in 260.  
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Table 5-2 – Antibodies used for cell signaling, Western blots, and flow analysis 

Antibody Vendor 

VE-cadherin 
Pierce (Rockford, IL, USA) 

StAR 
Douglas Stocco, Ph.D. (Texas Tech Univ) 

3β-HSD 
Ian Mason, Ph.D. (Dallas, TX, USA) 

P450scc 
Millipore (Danvers, MA, USA) 

Prolyl 4-hydroxylase 
Acris (Brisbane, QLD, Australia) 

Collagen 1 
Rockland Monoclonal (Gilbertsville, PA, 

USA) 

Phospho ERK1/2 
Cell Signaling (Danvers, MA, USA) 

Phospho p38 
Cell Signaling (Danvers, MA, USA) 

Phospho JNK 
Santa Cruz (Santa Cruz, CA, USA) 

Phospho AKT 
Cell Signaling (Danvers, MA, USA) 

Phospho P65-NF-κB 
Cell Signaling (Danvers, MA, USA) 

IκBα 
Santa Cruz (Santa Cruz, CA, USA) 

β-Actin 
Sigma-Aldrich (St. Louis, MO, USA) 

FITC mouse anti-human 

CD66b 
AbD Serotec (Raleigh, NC, USA) 

APC mouse anti-human 

CD11b  
BD Biosciences (Franklin Lakes, NJ, 

USA) 

Previously published in 260. 
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CHAPTER 6: DISCUSSION 

6.1. Overview 

This dissertation describes a study of the mechanisms regulating the genesis and involution of 

the temporary endocrine structure, the corpus luteum (CL), through use of a bovine model. 

During the rise of the CL, the composition and regulation of lipid droplets (LDs) were studied 

and it was determined that LDs comprise a substantial proportion of luteal cell structures, and 

store cholesteryl esters and triglycerides. As well, the LD-associated proteome was assessed and 

established that steroidogenic enzymes are enriched in purified luteal LD fractions. 

Demonstrating that luteal LDs may serve as critical mediators of steroidogenesis by storing 

substrates for steroidogenesis and a close association with steroidogenic enzymes. At the fall of 

the CL alterations in the luteal transcriptome were determined and revealed changes consistent 

with early activation of cytokine signaling. One target, C-X-C motif chemokine ligand 8 

(previously IL-8), was assessed for its ability to regulate luteal cell function. CXCL8 expression 

was determined to be induced via p38 and JNK signaling and could induce bovine neutrophil 

migration however, only activated peripheral blood mononuclear cells (PBMC) could inhibit 

luteal cell progesterone secretion. Together, these data indicate that LDs and cytokines can play 

important roles in CL development, function, and regression. 

6.2. Composition of the lipid droplets of the bovine corpus luteum 

Within the bovine CL LDs are a prominent feature which are established by day 3 post-

ovulation and maintained at mid-cycle (day 10). Lipid droplets are a large component of both 

early (day 3) and mid-cycle CL (day 10) comprising 26 - 36 µm2/nuclei, which amounts to 5-16% 

of luteal cell area.  These LDs are enriched in several classic LD-associated proteins as assessed 

by mRNA and protein abundance.  Although the major constituent of bovine LDs is triglyceride, 

cholesteryl esters constitute 2.78 ± 0.70 pmol/µg protein.  Luteal cells are enriched in cholesterol 

and cholesteryl esters compared to adipose tissue, likely for use in steroidogenesis.  In contrast, 

the granulosa and theca cells of the follicle have few lipid droplets, and have reduced lipid 
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content (of all major classes) compared to the steroidogenic luteal cells.  There does not appear to 

be a difference in lipid composition of granulosa versus theca cells or of the large luteal cells 

(LLC) versus small luteal cells (SLC).  We propose that luteal LDs play a critical role in 

progesterone production by storing cholesteryl esters, and interacting with steroidogenic proteins 

to efficiently produce steroids. 

6.3. Lipid droplets are dynamically regulated by luteinizing hormone signaling in the bovine 

corpus luteum 

Lipid droplets and LD-associated proteins are under regulation by luteinizing hormone (LH) 

signaling in the bovine corpus luteum.  As granulosa cells differentiate to form luteal cells 

increases in both LDs and LD-associated proteins, hormone sensitive lipase (HSL) and PLIN2 are 

seen which correlate with luteal differentiation markers and progesterone secretion.  Signaling by 

LH causes phosphorylation at S563 and translocation of HSL, which are associated with an 

activated state of HSL.  Furthermore, chemical inhibition of HSL prevents LH-induced 

progesterone secretion even in the presence of HDL-supplied cholesterol indicating that 

cholesteryl esters are processed by an HSL-dependent step.  Finally, luteal lipid droplets have a 

high content of steroidogenic enzymes, 3βHSD and P450scc, and LD-associated steroidogenic 

acute regulatory protein (StAR) can increase by 14-fold after activation of protein kinase A 

(PKA). These data lead us to believe that the surface of lipid droplets may serve as a novel 

platform for steroidogenesis through the intimate association and potential tethering of 

steroidogenic enzymes to the coat proteins of the lipid droplet to facilitate the handoff of steroid 

precursors at each step to produce efficiently steroids like progesterone (Figure 3-7). 

These data have implications for our understanding of the biochemistry of steroidogenesis. 

As we learn more about how cholesterol is stored and utilized, particularly during steroidogenesis 

we can gain insight into how to manipulate the system to either increase or decrease steroid 

production.  Our study has focused on non-pathological conditions to gain a clear insight into the 

role of LDs in highly steroidogenic tissues.  Future studies into how LDs and flux of cholesterol 
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through cells is altered in in obesity, and polycystic ovarian syndrome could indicate mechanisms 

by which those conditions impair fertility.  

LDs are a natural consequence of granulosa-to-luteal cell differentiation.  Stimulated but not 

basal progesterone is processed through an HSL-dependent and likely LD-dependent step.  The 

surface of lipid droplets may serve as a novel platform for steroidogenesis by an intimate 

association with steroidogenic enzymes.  The close proximity of mitochondria and the 

endoplasmic reticulum facilitates the handoff of steroid precursors at each step to efficiently 

produce steroids such as progesterone.  Potentially this could involve physical tethering of 

mitochondria and the endoplasmic reticulum to the LD surface using a similar mechanism to 

mitochondrial associated membranes, which tether microdomains of the endoplasmic reticulum to 

mitochondria to facilitate lipid transfer 224. 

6.4. Early transcriptome responses of the bovine mid-cycle corpus luteum to prostaglandin 

F2 alpha includes cytokine signaling 

This study uses a systems biology approach to provide a detailed understanding of the early 

(0.5 – 4 h) mRNA changes that occur during PGF2α-induced luteolysis in vivo.  Our analysis 

predicts activation of cytokines (TNFα, IL-1β, IL-6, IL-17A, & IL-33) and cytokine signaling 

intermediates (NF-κB, signal transducer and activator of transcription (STAT)) early in the time-

course.  However, changes in cytokine transcripts are not apparent until 2 - 4 hours post-PGF2α.  

The effects of PGF2α in vivo may require the activation of secondary mediators, such as 

cytokines, which activate NF-κB and STAT signaling because PGF2α is unable to stimulate 

NF-κB P65 phosphorylation in isolated luteal cells.  The rapid influx of various immune cells in 

response to the initiation of luteolysis 207,209,246 and the release of pre-formed cytokines could 

explain the prediction of cytokine signaling effects very early in the PGF2α response.  As well, 

the activation of NF-κB signaling could contribute to later responses seen after PGF2α 

administration.  
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Shortly after PGF2α administration, phospholipase C, PKC, Ca2+, and extracellular signal-

regulated kinase (ERK) trigger a variety of signaling cascades to begin the luteolytic process.  

Our data suggests that in vivo, PGF2α administration stimulates a series of transcriptional waves 

likely as a result of classical PGF2α and cytokine signaling events, as early as 30 minutes post-

PGF2α treatment.  This is the beginning of a cascade of events that will initiate decreases in 

progesterone secretion (2-12 hours post-PGF2α) and result in the structural regression of the CL 

12-18 hours post-PGF2α 240,340.  The earliest decreases in progesterone secretion during luteolysis 

may be due to changes LIPE/HSL expression and other transcripts which regulate cholesterol 

availability rather than changes in the primary steroidogenic enzymes.  We propose that during 

the early stages of functional regression in combination with PGF2α, the reduction in 

progesterone, and increase in inflammatory cytokines (potentially including IL-33 and IL-17) 

contribute to luteal regression.  As the intra-luteal concentrations of PGF2α and inflammatory 

cytokines increase they may act within an auto-amplification loop eventually reaching a critical 

point from which there is no rescue from the luteolytic cascade 67,341–344.  Future studies to identify 

the specific transcriptional changes occurring in steroidogenic cells, endothelial cells, immune 

cells, and fibroblasts is needed to better understand the dynamic network of changes that enable 

functional and structural luteal regression.  

6.5. Effects of CXCL8 and immune cells on the regulation of luteal progesterone secretion  

For over thirty years the immune system has been postulated as essential for fertility 368.  The 

present study provides additional insight into the expression and function of chemokines during 

luteal regression.  We observed that induction of luteal regression in cows with a bolus of PGF2α 

in vivo resulted in a rapid increase in the expression of CXCL8, CCL8, CCL2, and CXCL2. Our 

findings confirm recent findings by Shirasuna et al., 2012 246 that PGF2α treatment of dairy cattle 

increased luteal CXCL8 mRNA by approximately 4-fold within 30  min.  In that study, the fold 

increase in CXCL8 mRNA remained constant over 4-hr of treatment with PGF2α. In the present 
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study using beef cattle, we observed more robust increases in luteal CXCL8 mRNA expression; a 

9-fold increase within 1 h and 35-fold increases after 4 h of PGF2α treatment.  At present, it is not 

clear whether the differences in the magnitude of the responses are due to differences in the cattle 

breeds since there are reported differences in the responses of beef and dairy cattle to 

synchronization protocols using PGF2α 369 or other factors.  Based on the pronounced increase in 

CXCL8 expression, it was selected for further analysis.  We found that CXCL8 acted directly on 

neutrophils but had little effect on other cell types in the mid-cycle corpus luteum. Furthermore, 

co-cultures of luteal cells with activated neutrophils did not alter LH-stimulated progesterone 

synthesis; whereas co-cultures with activated PBMCs suppressed LH-stimulated progesterone 

synthesis. 

A complex interaction of endocrine and immune cells appears to be required to mediate the 

structural and functional regression of the bovine corpus luteum.  Since chemokines act 

synergistically to activate their target cells 371, additional studies are needed to examine the 

actions of chemokines as a complex cocktail rather in isolation as performed in the present study. 

The current findings complement a recent review 385 that postulates that immune cells in the 

developing and functional corpus luteum play a supportive role, but once corpus luteum 

regression has been triggered, the immune cells promote apoptosis, clearage of debris and tissue 

remodeling. Understanding these endocrine and immune events is important for increasing our 

ability to control reproductive function to facilitate full-term pregnancies in both humans and 

livestock. 

6.6. Conclusions 

This dissertation describes a study of the mechanisms regulating the genesis and involution of 

the temporary endocrine structure, the corpus luteum, using a bovine model. During the rise of 

the CL, the composition and regulation of LDs were studied and it was determined that LDs 

comprise a substantial proportion of luteal cell structures, and store cholesteryl esters and 
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triglycerides.  Finally, the LD-associated proteome was determined and established that 

steroidogenic enzymes are enriched in purified LD fractions.  This demonstrates that luteal LDs 

may serve as critical mediators of steroidogenesis by storing substrate and a close association 

with steroidogenic machinery.  At the fall of the CL alterations in the luteal transcriptome were 

determined and revealed decreased LIPE levels as well as changes consistent with early 

activation of cytokine signaling.  One target, C-X-C motif chemokine ligand 8 (previously IL-8), 

was assessed for its ability to regulate luteal cell function.  CXCL8 expression was determined to 

be induced via p38 and JNK signaling and could induce bovine neutrophil migration, however, 

only activated PBMCs could inhibit luteal cell progesterone secretion.  Together, these indicate 

that LDs and cytokines can play important roles in CL development, function, and regression.  
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 SUPPLEMENTAL DATA FOR CHAPTER 3 

 

 

Appendix A-1 – Verification of CAY10499 on-target effects 

  

 

Appendix A-1 – Verification of CAY10499 on-target effects 

Hydroxylated cholesterol has increased bioavailability in cells, due to free diffusiblity.  If 

CAY10499 had effects on steroidogenic modification steps it is anticipated that hydroxylated 

cholesterols would not increase progesterone secretion.  (A) Luteal cell cultures in the 

presence of increasing concentrations of 22-OH cholesterol were treated with LH and/or 

CAY10499 (B) Luteal cell cultures in the presence of increasing concentrations of 25-OH 

cholesterol were treated with LH and/or CAY10499 
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Appendix A-3 – Luteal lipid droplet-associated proteins determined by proteomics 

Symbol Name Control 8-br cAMP P-value 

3BHS 3 beta-hydroxysteroid dehydrogenase/Delta 5-->4-isomerase 362 449 0.035 

PLIN2 Perilipin-2 291 433 0.005 

ACTC  Actin, alpha cardiac muscle 1 203 406 0.00072 

VIME Vimentin 256 344 0.46 

ATPB ATP synthase subunit beta, mitochondrial 219 331 0.0057 

ACTG  Actin, cytoplasmic 2 183 363 < 0.00010 

CP11A cholesterol side-chain cleavage enzyme, mitochondrial 166 250 0.017 

ATPA ATP synthase subunit alpha, mitochondrial 145 210 0.089 

CH60 60 kDa heat shock protein, mitochondrial 122 219 < 0.00010 

ERG7 Lanosterol synthase 174 163 < 0.00010 

GRP78 78 kDa glucose-regulated protein 128 147 0.018 

ACON Aconitate hydratase, mitochondrial 104 144 0.33 

MDHM Malate dehydrogenase, mitochondrial 96 136 0.23 

PDIA1 Protein disulfide-isomerase 105 112 0.0026 

NB5R3 NADH-cytochrome b5 reductase 3 79 105 0.51 

BCAT2 Branched-chain-amino-acid aminotransferase, mitochondrial 56 128 < 0.00010 

PDIA3 Protein disulfide-isomerase A3 89 92 0.0018 

ALBU Serum albumin 113 67 < 0.00010 

NSDHL 
Sterol-4-alpha-carboxylate 3-dehydrogenase, 
decarboxylating 80 99 0.19 

ALDH2 Aldehyde dehydrogenase, mitochondrial 80 92 0.051 

ENPL Endoplasmin 67 102 0.078 

AATM Aspartate aminotransferase, mitochondrial 55 94 0.0065 

ADRO NADPH:adrenodoxin oxidoreductase, mitochondrial 58 80 0.38 

ACTN4  Alpha-actinin-4 52 70 0.52 

SERPH Serpin H1 44 69 0.085 

CALR Calreticulin 58 54 0.00072 

HCD2 3-hydroxyacyl-CoA dehydrogenase type-2 31 64 0.00032 

HSP7C Heat shock cognate 71 kDa protein 45 49 0.065 

QCR2 Cytochrome b-c1 complex subunit 2, mitochondrial 35 58 0.047 

H4  Histone H4 37 50 0.52 

THIL Acetyl-CoA acetyltransferase, mitochondrial 24 62 < 0.00010 

TPM1  Tropomyosin alpha-1 chain 34 50 0.21 

VDAC1  Voltage-dependent anion-selective channel protein 1 31 52 0.044 

PPIB Peptidyl-prolyl cis-trans isomerase B 36 44 0.25 

ADT3 ADP/ATP translocase 3 39 41 0.029 

MMSA 
Methylmalonate-semialdehyde dehydrogenase [acylating], 
mitochondrial 37 41 0.099 

PTGIS Prostacyclin synthase 35 41 0.17 

ECHB Trifunctional enzyme subunit beta, mitochondrial 17 58 < 0.00010 

ACTN1 Alpha-actinin-1 32 43 0.45 

VDAC2  Voltage-dependent anion-selective channel protein 2 29 46 0.089 

TBB5  Tubulin beta-5 chain 37 38 0.23 

G3P Glyceraldehyde-3-phosphate dehydrogenase 29 42 0.33 

ODO2 
Dihydrolipoyllysine-residue succinyltransferase component 
of 2-oxoglutarate dehydrogenase complex, mitochondrial 29 41 0.39 

TBA4A  Tubulin alpha-4A chain 36 32 0.024 

PRDX3 Thioredoxin-dependent peroxide reductase, mitochondrial 29 39 0.49 

THIM 3-ketoacyl-CoA thiolase, mitochondrial 25 42 0.07 

OAT Ornithine aminotransferase, mitochondrial 16 49 < 0.00010 

PYGL Glycogen phosphorylase, liver form 33 31 0.0076 

EFTU Elongation factor Tu, mitochondrial 20 44 0.00035 

AL7A1 Alpha-aminoadipic semialdehyde dehydrogenase 22 40 0.034 

SDHA 

Succinate dehydrogenase [ubiquinone] flavoprotein subunit, 

mitochondrial 23 39 0.06 

ATPO ATP synthase subunit O, mitochondrial 21 40 0.012 
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ODPB 

Pyruvate dehydrogenase E1 component subunit beta, 

mitochondrial 22 38 0.038 

SODM Superoxide dismutase [Mn], mitochondrial 16 43 < 0.00010 

ETFA Electron transfer flavoprotein subunit alpha, mitochondrial 25 33 0.44 

HS71A Heat shock 70 kDa protein 1A 31 27 0.0032 

ADT1 ADP/ATP translocase 1 26 31 0.28 

RAB1B  Ras-related protein Rab-1B 20 35 0.046 

ODO1 2-oxoglutarate dehydrogenase, mitochondrial 16 39 < 0.00010 

QCR1 Cytochrome b-c1 complex subunit 1, mitochondrial 22 32 0.33 

A2MG Alpha-2-macroglobulin 27 25 0.0093 

ACADV 
Very long-chain specific acyl-CoA dehydrogenase, 
mitochondrial 21 31 0.24 

ODPA 

Pyruvate dehydrogenase E1 component subunit alpha, 

somatic form, mitochondrial 19 33 0.059 

PDIA4 Protein disulfide-isomerase A4 22 28 0.38 

CISY Citrate synthase, mitochondrial 21 29 0.44 

MPCP Phosphate carrier protein, mitochondrial 17 32 0.021 

AT1A1  Sodium/potassium-transporting ATPase subunit alpha-1 25 23 0.011 

VDAC3 Voltage-dependent anion-selective channel protein 3 20 28 0.35 

NDUS1 

NADH-ubiquinone oxidoreductase 75 kDa subunit, 

mitochondrial 20 28 0.41 

AT5F1 ATP synthase F(0) complex subunit B1, mitochondrial 19 28 0.25 

TBB4B  Tubulin beta-4B chain 22 24 0.13 

ATP5H ATP synthase subunit d, mitochondrial 14 32 0.0012 

LONM Lon protease homolog, mitochondrial 21 25 0.26 

PHB  Prohibitin 18 26 0.33 

CATD Cathepsin D 18 25 0.45 

ECHM Enoyl-CoA hydratase, mitochondrial 12 31 0.0004 

ITAV Integrin alpha-V 24 18 0.0012 

H2B1N Histone H2B type 1-N 16 26 0.13 

HSP72 Heat shock-related 70 kDa protein 2 20 21 0.092 

ETFB Electron transfer flavoprotein subunit beta 15 27 0.057 

PHB2 Prohibitin-2 14 27 0.027 

5NTD 5'-nucleotidase 15 24 0.22 

PCCB Propionyl-CoA carboxylase beta chain, mitochondrial 16 23 0.45 

TMEDA  Transmembrane emp24 domain-containing protein 10 16 23 0.34 

ANXA1 Annexin A1 17 21 0.41 

TPM2  Tropomyosin beta chain 15 24 0.18 

LETM1 

LETM1 and EF-hand domain-containing protein 1, 

mitochondrial 15 21 0.45 

CASA1 Alpha-S1-casein 29 8 < 0.00010 

RAB5C  Ras-related protein Rab-5C 18 18 0.18 

EF1A1  Elongation factor 1-alpha 1 12 23 0.05 

HSPB1 Heat shock protein beta-1 14 22 0.26 

3HIDH 3-hydroxyisobutyrate dehydrogenase, mitochondrial 9 26 0.00033 

SUCB2 

Succinyl-CoA ligase [GDP-forming] subunit beta, 

mitochondrial 13 21 0.21 

SCRB1 Scavenger receptor class B member 1 15 19 0.39 

TSP1 Thrombospondin-1 14 20 0.45 

SCPDL Saccharopine dehydrogenase-like oxidoreductase 14 20 0.45 

GNS N-acetylglucosamine-6-sulfatase 16 18 0.22 

FDFT Squalene synthase 14 20 0.33 

RPN2 

Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 2 13 20 0.35 

CY1 Cytochrome c1, heme protein, mitochondrial 14 19 0.46 

APOA1 Apolipoprotein A-I 6 27 < 0.00010 

HBB Hemoglobin subunit beta 19 14 0.0023 

FINC Fibronectin 9 23 0.00099 

CPT2 Carnitine O-palmitoyltransferase 2, mitochondrial 14 18 0.53 

TRAP1 Heat shock protein 75 kDa, mitochondrial 16 16 0.066 
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NNTM NAD(P) transhydrogenase, mitochondrial 21 11 < 0.00010 

IDHP Isocitrate dehydrogenase [NADP], mitochondrial 9 22 0.0052 

M2OM Mitochondrial 2-oxoglutarate/malate carrier protein 12 18 0.3 

HS90A  Heat shock protein HSP 90-alpha 18 12 0.00037 

DHE3 Glutamate dehydrogenase 1, mitochondrial 9 20 0.018 

SFXN1 Sideroflexin-1 11 18 0.24 

OST48 

Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase 48 kDa subunit 12 17 0.48 

TXTP Tricarboxylate transport protein, mitochondrial 15 15 0.11 

IDH3A 

Isocitrate dehydrogenase [NAD] subunit alpha, 

mitochondrial 7 22 0.00028 

ACLY ATP-citrate synthase 16 12 0.0059 

ITB1  Integrin beta-1 13 15 0.28 

COX41 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial 13 15 0.32 

GSTA1 Glutathione S-transferase A1 12 16 0.51 

COX2 

(+10) Cytochrome c oxidase subunit 2 7 20 0.00068 

HA1B BOLA class I histocompatibility antigen, alpha chain BL3-7 10 16 0.22 

SUCA 

Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, 

mitochondrial 11 15 0.49 

CATA Catalase 11 15 0.45 

KAD2 Adenylate kinase 2, mitochondrial 10 16 0.24 

ENOA Alpha-enolase 13 13 0.13 

GLU2B Glucosidase 2 subunit beta 14 12 0.034 

PBIP1 Pre-B-cell leukemia transcription factor-interacting protein 1 12 13 0.25 

RAB8A Ras-related protein Rab-8A 5 20 < 0.00010 

LG3BP Galectin-3-binding protein 12 13 0.22 

1433Z  14-3-3 protein zeta/delta 9 16 0.28 

PGRC1  Membrane-associated progesterone receptor component 1 10 15 0.3 

ACSS3 

Acyl-CoA synthetase short-chain family member 3, 

mitochondrial 11 13 0.3 

ACDSB 

Short/branched chain specific acyl-CoA dehydrogenase, 

mitochondrial 6 18 0.0017 

RL40 
(+35) Ubiquitin-60S ribosomal protein L40 11 13 0.36 

ANT3 Antithrombin-III 8 15 0.09 

ACADS Short-chain specific acyl-CoA dehydrogenase, mitochondrial 6 17 0.0038 

ML12B  Myosin regulatory light chain 12B 6 17 0.005 

MYL6  Myosin light polypeptide 6 4 19 < 0.00010 

ATPG ATP synthase subunit gamma, mitochondrial 12 10 0.062 

H2AJ  Histone H2A.J 5 17 0.00069 

NDUV2 

NADH dehydrogenase [ubiquinone] flavoprotein 2, 

mitochondrial 8 13 0.31 

GLCM Glucosylceramidase 10 10 0.16 

CH10  10 kDa heat shock protein, mitochondrial 10 10 0.13 

RB11B  Ras-related protein Rab-11B 9 11 0.46 

ACSM1 Acyl-coenzyme A synthetase ACSM1, mitochondrial 11 9 0.067 

NDKB Nucleoside diphosphate kinase B 6 14 0.028 

STAR steroidogenic acute regulatory protein, mitochondrial 1 18 < 0.00010 

NDUA9 

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 

subunit 9, mitochondrial 5 14 0.0055 

NDUA8 

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 

subunit 8 4 15 0.00022 

EF2  Elongation factor 2 7 11 0.34 

RLA0 60S acidic ribosomal protein P0 7 12 0.17 

ERLN2 Erlin-2 8 10 0.45 

GLYM Serine hydroxymethyltransferase, mitochondrial 8 11 0.49 

ABHD6 Monoacylglycerol lipase ABHD6 7 10 0.48 

NDUBA 

NADH dehydrogenase [ubiquinone] 1 beta subcomplex 

subunit 10 5 12 0.05 

ANXA5 Annexin A5 5 12 0.027 
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COX5A  Cytochrome c oxidase subunit 5A, mitochondrial 10 7 0.016 

EZRI Ezrin 10 7 0.0075 

MYO1C Unconventional myosin-Ic 10 7 0.031 

PYC Pyruvate carboxylase, mitochondrial 7 10 0.54 

NCPR NADPH--cytochrome P450 reductase 11 6 0.00082 

DHX9 ATP-dependent RNA helicase A 9 8 0.098 

HNRPK Heterogeneous nuclear ribonucleoprotein K 3 13 0.0012 

RL7  60S ribosomal protein L7 4 12 0.018 

RL18  60S ribosomal protein L18 4 12 0.006 

RL12  60S ribosomal protein L12 6 10 0.26 

SDHB 

Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, 

mitochondrial 5 10 0.17 

CAZA1 F-actin-capping protein subunit alpha-1 5 11 0.058 

PLBL2 Putative phospholipase B-like 2 3 12 0.0032 

H2AZ  Histone H2A.Z 7 8 0.36 

PRDX5 Peroxiredoxin-5, mitochondrial 4 11 0.024 

TMED9 Transmembrane emp24 domain-containing protein 9 5 9 0.24 

BGAL Beta-galactosidase 8 7 0.08 

RCN3  Reticulocalbin-3 7 8 0.42 

RL7A 60S ribosomal protein L7a 3 11 0.006 

ERP29 Endoplasmic reticulum resident protein 29 9 6 0.015 

ARPC4  Actin-related protein 2/3 complex subunit 4 6 8 0.51 

NDUV1 
NADH dehydrogenase [ubiquinone] flavoprotein 1, 
mitochondrial 5 9 0.18 

TRXR2 Thioredoxin reductase 2, mitochondrial 6 9 0.39 

THRB Prothrombin 1 13 < 0.00010 

PGK1  Phosphoglycerate kinase 1 5 9 0.14 

NDUS3 

NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, 

mitochondrial 4 10 0.041 

KAD3 GTP:AMP phosphotransferase AK3, mitochondrial 3 10 0.015 

02-Mar Mitochondrial amidoxime reducing component 2 3 10 0.0082 

ATP5I ATP synthase subunit e, mitochondrial 7 6 0.062 

PRDX4 Peroxiredoxin-4 3 10 0.02 

SAM50 Sorting and assembly machinery component 50 homolog 5 8 0.47 

LACB Beta-lactoglobulin 6 7 0.28 

PTBP1 Polypyrimidine tract-binding protein 1 0 13 < 0.00010 

DHRS4 Dehydrogenase/reductase SDR family member 4 6 7 0.47 

EF1G Elongation factor 1-gamma 2 10 0.0019 

C1QBP 

Complement component 1 Q subcomponent-binding protein, 

mitochondrial 2 11 0.00013 

CYC  Cytochrome c 7 5 0.088 

GRPE1 GrpE protein homolog 1, mitochondrial 4 9 0.072 

CATK Cathepsin K 3 9 0.035 

NDUAD 
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 
subunit 13 5 8 0.33 

ZADH2 

Zinc-binding alcohol dehydrogenase domain-containing 

protein 2 4 9 0.072 

QOR Zeta-crystallin 5 7 0.38 

TGM2 Protein-glutamine gamma-glutamyltransferase 2 8 4 0.0019 

TAGL Transgelin 4 7 0.31 

ADX  Adrenodoxin, mitochondrial 6 6 0.2 

DHCR7 7-dehydrocholesterol reductase 7 4 0.0085 

HBA  Hemoglobin subunit alpha 8 4 0.0079 

RAC1  Ras-related C3 botulinum toxin substrate 1 4 7 0.24 

RS9  40S ribosomal protein S9 3 8 0.037 

MTCH2 Mitochondrial carrier homolog 2 3 8 0.077 

PRDX1 Peroxiredoxin-1 4 7 0.18 

RAB5A  Ras-related protein Rab-5A 6 5 0.2 

SUCB1 

Succinyl-CoA ligase [ADP-forming] subunit beta, 

mitochondrial 3 8 0.049 
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ERAP2 Endoplasmic reticulum aminopeptidase 2 8 3 0.00023 

VATB2  V-type proton ATPase subunit B, brain isoform 5 6 0.39 

GBB1  
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit 
beta-1 3 8 0.15 

GELS Gelsolin 7 4 0.02 

RAP1A  Ras-related protein Rap-1A 4 7 0.21 

FA5 Coagulation factor V 3 7 0.083 

RS3  40S ribosomal protein S3 4 6 0.45 

IDH3B Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial 1 8 0.00083 

1433E  14-3-3 protein epsilon 3 7 0.068 

STT3A  
Dolichyl-diphosphooligosaccharide--protein 
glycosyltransferase subunit STT3A 6 4 0.044 

UCRI Cytochrome b-c1 complex subunit Rieske, mitochondrial 3 7 0.089 

MUTA Methylmalonyl-CoA mutase, mitochondrial 6 4 0.044 

NDUS8 

NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, 

mitochondrial 3 6 0.11 

RL11  60S ribosomal protein L11 3 6 0.21 

RS16  40S ribosomal protein S16 5 4 0.13 

MVP Major vault protein 9 0 < 0.00010 

ATPK  ATP synthase subunit f, mitochondrial 3 5 0.4 

FAF2  FAS-associated factor 2 5 4 0.18 

DAD1 

Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit DAD1 5 4 0.093 

NDUB7 

NADH dehydrogenase [ubiquinone] 1 beta subcomplex 

subunit 7 4 5 0.56 

MMAB 
Cob(I)yrinic acid a,c-diamide adenosyltransferase, 
mitochondrial 2 7 0.015 

THTR Thiosulfate sulfurtransferase 2 6 0.095 

NDUS7 

NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, 

mitochondrial 3 5 0.47 

NNRD ATP-dependent (S)-NAD(P)H-hydrate dehydratase 1 7 0.0064 

TPIS Triosephosphate isomerase 6 2 0.00032 

HSDL2 Hydroxysteroid dehydrogenase-like protein 2 2 6 0.021 

RS8  40S ribosomal protein S8 2 6 0.12 

HIBCH 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial 2 6 0.12 

SND1 Staphylococcal nuclease domain-containing protein 1 2 5 0.16 

APMAP Adipocyte plasma membrane-associated protein 2 6 0.03 

NDUAA 

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 

subunit 10, mitochondrial 1 6 0.014 

TKT Transketolase 5 2 0.015 

ANXA4 Annexin A4 2 5 0.2 

ODBB 2-oxoisovalerate dehydrogenase subunit beta, mitochondrial 3 5 0.35 

FAHD2 Fumarylacetoacetate hydrolase domain-containing protein 2 2 5 0.1 

GSTM1 Glutathione S-transferase Mu 1 3 5 0.35 

SSRA  Translocon-associated protein subunit alpha 3 5 0.35 

STML2 Stomatin-like protein 2, mitochondrial 0 7 < 0.00010 

H31  Histone H3.1 6 1 0.00042 

ANXA6 Annexin A6 2 5 0.26 

VAPA Vesicle-associated membrane protein-associated protein A 4 3 0.14 

RHOA  Transforming protein RhoA 4 3 0.25 

RL13 60S ribosomal protein L13 2 5 0.058 

RS5  40S ribosomal protein S5 2 5 0.13 

NDUB4 
NADH dehydrogenase [ubiquinone] 1 beta subcomplex 
subunit 4 4 3 0.25 

PEBP1 Phosphatidylethanolamine-binding protein 1 3 4 0.58 

NPM Nucleophosmin 0 7 < 0.00010 

SSRD Translocon-associated protein subunit delta 1 6 0.0083 

TCPG  T-complex protein 1 subunit gamma 5 2 0.0037 

RS18  40S ribosomal protein S18 3 3 0.34 

ODB2 
Lipoamide acyltransferase component of branched-chain 
alpha-keto acid dehydrogenase complex, mitochondrial 0 6 < 0.00010 
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HA1A BOLA class I histocompatibility antigen, alpha chain BL3-6 0 6 < 0.00010 

CP51A Lanosterol 14-alpha demethylase 5 1 0.00027 

QCR7 Cytochrome b-c1 complex subunit 7 5 2 0.0065 

TRFE Serotransferrin 5 1 0.00027 

MTX1 Metaxin-1 2 5 0.11 

1433G  14-3-3 protein gamma 2 4 0.39 

ARP2  Actin-related protein 2 1 5 0.059 

HTRA1 Serine protease HTRA1 3 3 0.54 

EF1B  Elongation factor 1-beta 0 6 < 0.00010 

PRAF3 PRA1 family protein 3 0 6 < 0.00010 

NOP56  Nucleolar protein 56 2 3 0.55 

ASAH1 Acid ceramidase 2 4 0.35 

IDH3G 

Isocitrate dehydrogenase [NAD] subunit gamma, 

mitochondrial 0 5 0.00013 

CASA2 Alpha-S2-casein 4 1 0.002 

LDHB L-lactate dehydrogenase B chain 2 3 0.43 

RSSA  40S ribosomal protein SA 2 3 0.43 

PAI1 Plasminogen activator inhibitor 1 1 4 0.041 

PARK7 Protein DJ-1 1 4 0.041 

FAS Fatty acid synthase 4 2 0.033 

NAGAB Alpha-N-acetylgalactosaminidase 2 3 0.43 

AP1B1  AP-1 complex subunit beta-1 3 2 0.2 

ERP44 Endoplasmic reticulum resident protein 44 2 3 0.57 

LRC59  Leucine-rich repeat-containing protein 59 2 4 0.25 

MANF Mesencephalic astrocyte-derived neurotrophic factor 1 4 0.12 

ETHE1 Persulfide dioxygenase ETHE1, mitochondrial 2 3 0.52 

PABP1  Polyadenylate-binding protein 1 1 4 0.12 

EMC2 ER membrane protein complex subunit 2 2 3 0.32 

SRSF1  Serine/arginine-rich splicing factor 1 0 5 0.00039 

ARP3  Actin-related protein 3 0 5 0.00039 

APOD Apolipoprotein D 0 5 0.00039 

GT251 Procollagen galactosyltransferase 1 4 1 0.0074 

ATPD ATP synthase subunit delta, mitochondrial 3 2 0.21 

ETFD 
Electron transfer flavoprotein-ubiquinone oxidoreductase, 
mitochondrial 1 4 0.025 

HEMH Ferrochelatase, mitochondrial 1 3 0.21 

SNAA Alpha-soluble NSF attachment protein 1 4 0.085 

1433T  14-3-3 protein theta 1 3 0.21 

PPGB Lysosomal protective protein 2 3 0.6 

PRDX2 Peroxiredoxin-2 2 3 0.6 

VPS35  Vacuolar protein sorting-associated protein 35 3 2 0.089 

LUM Lumican 0 4 0.00069 

RL6 60S ribosomal protein L6 0 4 0.00069 

PCBP1  Poly(rC)-binding protein 1 0 4 0.00069 

AMPL Cytosol aminopeptidase 4 1 0.0026 

PPIC Peptidyl-prolyl cis-trans isomerase C 2 3 0.49 

ODPX Pyruvate dehydrogenase protein X component 2 2 0.51 

RS25  40S ribosomal protein S25 2 3 0.49 

TIMP1 Metalloproteinase inhibitor 1 2 3 0.49 

KRT81 Keratin, type II cuticular Hb1 0 4 0.0012 

NDUB8 

NADH dehydrogenase [ubiquinone] 1 beta subcomplex 

subunit 8, mitochondrial 0 4 0.0012 

TPP1 Tripeptidyl-peptidase 1 0 4 0.0012 

YBOX1  Nuclease-sensitive element-binding protein 1 0 4 0.0012 

GBB2  
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit 
beta-2 0 4 0.0012 

HNRH2  Heterogeneous nuclear ribonucleoprotein H2 0 4 0.0012 

PGAM1  Phosphoglycerate mutase 1 4 0 < 0.00010 

RGN Regucalcin 3 1 0.025 

NDUC2 NADH dehydrogenase [ubiquinone] 1 subunit C2 2 2 0.21 
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HP1B3 Heterochromatin protein 1-binding protein 3 2 2 0.59 

SC11A  Signal peptidase complex catalytic subunit SEC11A 2 2 0.41 

RS3A  40S ribosomal protein S3a 1 3 0.36 

ODBA 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial 3 1 0.085 

NLTP Non-specific lipid-transfer protein 2 1 0.14 

CN37 2',3'-cyclic-nucleotide 3'-phosphodiesterase 0 4 0.0021 

TAGL2 Transgelin-2 0 4 0.0021 

EF1D Elongation factor 1-delta 0 4 0.0021 

KBL 2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial 0 4 0.0021 

NUCB1 Nucleobindin-1 4 0 < 0.00010 

VA0D1  V-type proton ATPase subunit d 1 2 2 0.31 

CHP1  Calcineurin B homologous protein 1 1 2 0.45 

AASS Alpha-aminoadipic semialdehyde synthase, mitochondrial 3 1 0.045 

SF3B3  Splicing factor 3B subunit 3 2 2 0.31 

NNRE NAD(P)H-hydrate epimerase 2 2 0.55 

C4BPA C4b-binding protein alpha chain 0 3 0.0037 

MOES  Moesin 0 3 0.0037 

TMX1 Thioredoxin-related transmembrane protein 1 0 3 0.0037 

RL5 60S ribosomal protein L5 0 3 0.0037 

ISOC2 Isochorismatase domain-containing protein 2, mitochondrial 0 3 0.0037 

PLAK  Junction plakoglobin 3 0 0.00021 

ATP5L ATP synthase subunit g, mitochondrial 1 2 0.56 

MDHC Malate dehydrogenase, cytoplasmic 1 2 0.56 

MAP4 Microtubule-associated protein 4 2 1 0.22 

RL24  60S ribosomal protein L24 1 2 0.31 

NDUA4  

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 

subunit 4 2 2 0.44 

DNPEP Aspartyl aminopeptidase 2 1 0.079 

CLPP 

ATP-dependent Clp protease proteolytic subunit, 

mitochondrial 0 3 0.0065 

HXK1 Hexokinase-1 3 0 0.00049 

FIS1 Mitochondrial fission 1 protein 3 0 0.00049 

FUCO Tissue alpha-L-fucosidase 2 1 0.33 

RL30  60S ribosomal protein L30 2 1 0.33 

PP1A  
Serine/threonine-protein phosphatase PP1-alpha catalytic 
subunit 0 3 0.011 

HMGB1  High mobility group protein B1 0 3 0.011 

NDUB9 

NADH dehydrogenase [ubiquinone] 1 beta subcomplex 

subunit 9 0 3 0.011 

NB5R1 NADH-cytochrome b5 reductase 1 0 3 0.011 

NDUB6 

NADH dehydrogenase [ubiquinone] 1 beta subcomplex 

subunit 6 0 3 0.011 

SCO1 Protein SCO1 homolog, mitochondrial 0 3 0.011 

SURF4  Surfeit locus protein 4 0 3 0.011 

RBBP7  Histone-binding protein RBBP7 3 0 0.0011 

CASK Kappa-casein 3 0 0.0011 

IDHC Isocitrate dehydrogenase [NADP] cytoplasmic 1 1 0.47 

PRDX6 Peroxiredoxin-6 1 2 0.26 

GSTP1 Glutathione S-transferase P 1 1 0.47 

NDUA2 
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 
subunit 2 1 1 0.47 

AL9A1 4-trimethylaminobutyraldehyde dehydrogenase 2 0 0.0027 

WDR1 WD repeat-containing protein 1 2 0 0.0027 

ITB5 Integrin beta-5 0 2 0.02 

COF1  Cofilin-1 0 2 0.19 

IVD Isovaleryl-CoA dehydrogenase, mitochondrial 0 2 0.02 

RT07 28S ribosomal protein S7, mitochondrial 0 2 0.02 

FKB10 Peptidyl-prolyl cis-trans isomerase FKBP10 2 1 0.13 

CATB Cathepsin B 0 2 0.02 

IF2A  Eukaryotic translation initiation factor 2 subunit 1 0 2 0.02 
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PSA6  Proteasome subunit alpha type-6 1 1 0.64 

RL8  60S ribosomal protein L8 1 2 0.36 

ERG24 Delta(14)-sterol reductase 2 0 0.0062 

ZN326  DBIRD complex subunit ZNF326 2 0 0.0062 

NCEH1 Neutral cholesteryl ester hydrolase 1 1 1 0.48 

CAV1 

(+27) Caveolin-1 0 2 0.035 

AOFA Amine oxidase [flavin-containing] A 0 2 0.035 

FKB11 Peptidyl-prolyl cis-trans isomerase FKBP11 0 2 0.035 

SPCS3  Signal peptidase complex subunit 3 0 2 0.035 

ACTN2  Alpha-actinin-2 0 2 0.035 

CFDP2 Craniofacial development protein 2 0 2 0.035 

DPYL2 Dihydropyrimidinase-related protein 2 2 0 0.014 

PUR9 Bifunctional purine biosynthesis protein PURH 2 0 0.014 

ERO1A  ERO1-like protein alpha 2 0 0.014 

HEXA Beta-hexosaminidase subunit alpha 2 0 0.014 

U5S1  116 kDa U5 small nuclear ribonucleoprotein component 2 0 0.014 

AP2A2 AP-2 complex subunit alpha-2 0 2 0.061 

OCTC Peroxisomal carnitine O-octanoyltransferase 0 2 0.061 

CISD2  CDGSH iron-sulfur domain-containing protein 2 0 2 0.061 

02-Sep Septin-2 0 2 0.061 

PSD11  26S proteasome non-ATPase regulatory subunit 11 1 1 0.37 

SRSF3  Serine/arginine-rich splicing factor 3 0 2 0.061 

RBM14  RNA-binding protein 14 0 2 0.061 

C560  

Succinate dehydrogenase cytochrome b560 subunit, 

mitochondrial 0 2 0.061 

RM01 39S ribosomal protein L1, mitochondrial 0 2 0.061 

UK114  Ribonuclease UK114 0 2 0.061 

EFHD2  EF-hand domain-containing protein D2 0 2 0.061 

TMED1 Transmembrane emp24 domain-containing protein 1 0 2 0.061 

MPPB Mitochondrial-processing peptidase subunit beta 0 1 0.11 

F162A Protein FAM162A 0 1 0.11 

MFGM Lactadherin 1 0 0.034 

CAP1 Adenylyl cyclase-associated protein 1 1 0 0.034 

DCTN2 Dynactin subunit 2 0 1 0.11 

HS105  Heat shock protein 105 kDa 1 0 0.034 

PARP1 Poly [ADP-ribose] polymerase 1 1 0 0.034 

C1TM Monofunctional C1-tetrahydrofolate synthase, mitochondrial 1 0 0.034 

GPX1 Glutathione peroxidase 1 0 1 0.11 

FUND2 FUN14 domain-containing protein 2 0 1 0.11 

COF2  Cofilin-2 0 1 0.11 

NUP93 Nuclear pore complex protein Nup93 1 0 0.034 

PNPH Purine nucleoside phosphorylase 0 1 0.11 

TCPQ T-complex protein 1 subunit theta 1 0 0.034 

CBR4 Carbonyl reductase family member 4 0 1 0.11 

TIM50 
Mitochondrial import inner membrane translocase subunit 
TIM50 1 0 0.034 

PPIA  Peptidyl-prolyl cis-trans isomerase A 1 0 0.034 

1433B  14-3-3 protein beta/alpha 1 0 0.034 

RS7  40S ribosomal protein S7 0 1 0.11 

DHPR Dihydropteridine reductase 1 0 0.034 

PSPC1 Paraspeckle component 1 0 1 0.11 

RL10A  60S ribosomal protein L10a 0 1 0.11 

RL27  60S ribosomal protein L27 0 1 0.11 

RS13  40S ribosomal protein S13 0 1 0.11 

COX5B Cytochrome c oxidase subunit 5B, mitochondrial 0 1 0.11 

RM12 39S ribosomal protein L12, mitochondrial 1 0 0.034 

ABHDB Alpha/beta hydrolase domain-containing protein 11 0 1 0.11 

ORN  Oligoribonuclease, mitochondrial 0 1 0.11 

CALD1 Non-muscle caldesmon (Fragment) 0 1 0.11 
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GILT Gamma-interferon-inducible lysosomal thiol reductase 0 1 0.11 

ARP5L  Actin-related protein 2/3 complex subunit 5-like protein 0 1 0.19 

ARPC2  Actin-related protein 2/3 complex subunit 2 0 1 0.19 

KAD4 Adenylate kinase 4, mitochondrial 1 0 0.079 

TMX2  Thioredoxin-related transmembrane protein 2 0 1 0.19 

FRIL Ferritin light chain 0 1 0.19 

PYRD Dihydroorotate dehydrogenase (quinone), mitochondrial 0 1 0.19 

ACOX1 Peroxisomal acyl-coenzyme A oxidase 1 0 1 0.19 

ESTD S-formylglutathione hydrolase 1 0 0.079 

ADPGK ADP-dependent glucokinase 0 1 0.19 

COPA  Coatomer subunit alpha 1 0 0.079 

RS19  40S ribosomal protein S19 0 1 0.19 

AL4A1 
Delta-1-pyrroline-5-carboxylate dehydrogenase, 
mitochondrial 0 1 0.19 

TCPD T-complex protein 1 subunit delta 1 0 0.079 

TIM21 

Mitochondrial import inner membrane translocase subunit 

Tim21 0 1 0.19 

TOM40 Mitochondrial import receptor subunit TOM40 homolog 0 1 0.19 

CATZ  Cathepsin Z 0 1 0.19 

MACD1 O-acetyl-ADP-ribose deacetylase MACROD1 0 1 0.19 

ASPH Aspartyl/asparaginyl beta-hydroxylase 0 1 0.19 

RL35A  60S ribosomal protein L35a 0 1 0.19 

TFAM Transcription factor A, mitochondrial 0 1 0.19 

RM13 39S ribosomal protein L13, mitochondrial 1 0 0.079 

RM43 39S ribosomal protein L43, mitochondrial 0 1 0.19 

EFTS Elongation factor Ts, mitochondrial 0 1 0.19 

ATAD3  ATPase family AAA domain-containing protein 3 1 0 0.079 

MGST1 Microsomal glutathione S-transferase 1 1 0 0.079 

NDUS2 

NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, 

mitochondrial 1 0 0.079 

ABHGA  Abhydrolase domain-containing protein 16A 1 0 0.079 

ANXA3 Annexin A3 0 1 0.19 

BASP1 Brain acid soluble protein 1 0 1 0.19 

CP20A Cytochrome P450 20A1 1 0 0.079 

ELMD2 ELMO domain-containing protein 2 1 0 0.079 

GPX8 Probable glutathione peroxidase 8 0 1 0.19 

RL9 60S ribosomal protein L9 0 1 0.19 

CNN1  Calponin-1 0 1 0.33 

UBXN4  UBX domain-containing protein 4 0 1 0.33 

ACSF2 Acyl-CoA synthetase family member 2, mitochondrial 1 0 0.18 

COPB2  Coatomer subunit beta' 1 0 0.18 

LGMN Legumain 0 1 0.33 

B2MG Beta-2-microglobulin 0 1 0.33 

PSA1 Proteasome subunit alpha type-1 1 0 0.18 

PSA7  Proteasome subunit alpha type-7 0 1 0.33 

NDUBB 
NADH dehydrogenase [ubiquinone] 1 beta subcomplex 
subunit 11, mitochondrial 1 0 0.18 
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Appendix A-4 – Quantification of LD-associated protein by Western blot 

Relative expression of select proteins in total luteal lysates versus purified LD fractions.  

Proteins were normalized to Ponceau S signal of the corresponding lane and the expression of 

each protein in fat (not shown in figure) was defined as 1.  Graphs display mean ± S.E.M., n 

= 4 * P ≤ 0.05, *** P ≤ 0.001 as determined by two-way ANOVA. 
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 SUPPLEMENTAL DATA FOR CHAPTER 4 

Appendix B-1 – Primers used for qPCR 

Gene name Primers for qPCR 

ATF3 F: AGCACCTCTGCCACCGGATGT 

R: CTTTCAGGGGCTACCTCGGCTTT 

FOS F: TGACACCCTCCAAGCGGAGACA 

R: TTGCAGGCAGGTCGGTGAGC 

JUN F: ACGCCGACCCCTACCCAGTTC 

R: GGTTGGCGTAGACCGGCTGCG 

JUNB F: CCGGAGCCGCCTCCAGTCTA 

R: ATGGTGGCCGTCCGGGTACGA 

CCL2 F: TGCTCGCTCAGCCAGATGCAAT 

R: GGACACTTGCTGCTGGTGACTCT 

CCL8 F: TCTCAGGCTGAAGCCCCCGT 

R: ACTGAATCTGGCTGAGCGAGCA 

CXCL2 F: GCGCCCGTGGTCAACGAACT 

R: AGACTGGCTATGACTTCGGTTTGGT 

CXCL8 F: TGTGAAGCTGCAGTTCTGTCAAG 

R: TGCACCCACTTTTCCTTGGGGT 

ACTB F: ACACCGCAACCAGTTCGCCAT 

R: AAGACGGCCCGGGGAGCATC 

GAPDH F: AGATGGTGAAGGTCGGAGTG 

R: GATCTCGCTCCTGGAAGATG 

 
 

ACTB, actin beta; ATF3, activating transcription factor 3; CCL2, 

C-C motif chemokine 2; CCL8, C-C motif chemokine 8; 
CXCL8, C-X-C motif chemokine 8; FOS, Finkel-Biskis-Jinkins 

murine osteosarcoma viral oncogene homolog; GAPDH, 

glyceraldehyde-3-phsophate dehydrogenase; JUN, Jun proto-
oncogene; JUNB, Jun proto-oncogene B 
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Appendix B-2 – Differentially expressed transcripts from a short PGF2α time-course 

  Up-Regulated Transcripts  Down-Regulated Transcripts  

0.5 h ADAMTS1, APOLD1, ATF3, BTG2, CYR61, DNAJB1, DUSP1, EGR1, EGR2, EGR3, 
FOS, FOSB, IER2, INSIG1, JUN, JUNB, LOC784931, NR4A1, NR4A2, NR4A3, PLK2, 

PPP1R15A, RGS2, RND1, SOWAHC 

ZFP36 

LOC100337120, LOC783362, MIR2450B 

1 h ABT1, ADAMTS1, ADAMTS4, ANGPT2, APOLD1, ARC, ARL5B, ATF3, BAMBI, 
BHLHE40, BTG1, BTG2, C15H11orf96, CCL1, CDC42EP2, CDK8, CDKN1A, CEBPD, 

CH25H, COQ10B, CYR61, DLL1, DNAJB1, DNAJB4, DUSP1, DUSP2, DUSP5, EDNRB, 

EGR1, EGR2, EGR3, EGR4, ERF, FAM43A, FAM46A, FGF18, FOS, FOSB, FOSL1, 
GEM, HOMER1, HSPH1, IER2, IFRD1, INSIG1, JUN, JUNB, JUND, LOC100138911, 

NR4A1, NR4A2, LSMEM1, MCL1, NR4A3, MXI1, MYC, NFIL3, NFKBIZ, NPAS4, 

PPP1R15A, RGS2, OBFC2A, PCF11, PDE4D, PER1, PEX12, PFKFB3, PHLDA1, 
PHLDA2, PLAT, PLK3, PLSCR4, PPP1R10, SOWAHC, PPP1R16B, RAB7B, RASD1, 

RCAN1, RFK, ZFP36, RND3, RNF122, SDC4, SEMA7A, SERPINE1, SIK1, SLC20A1, 
SLCO4A1, SNAI1, SNAI2, SOCS3, SRF, TAF4B, TMEM2, TRAF1, TRIB1, USP2, 

ZC3H12A, ZFAND2A,, MIR2284I,  

ARHGAP25, CARD6, LOC100298387 

2 h 

 

RCAN1, RFK, ZFP36, RND3, RNF122, SDC4, SEMA7A, SERPINE1, SLCO4A1, SOCS3, 

SRF, TAF4B, TMEM2, TRAF1, TRIB1, ZC3H12A, ABL2, AMIGO2, ANGPTL5, AP1S3, 
AREG, ARG2, ARID5B, ATP11B, BACH1, BCL6, BDKRB1, BRIX1, BZW1, BZW2, 

C1H21ORF91, CBFB, CCDC41, CCDC58, CCDC85B, CCL8, CCT2, CD24, CD24, 

CDK17, CNN1, COPS9, CRISPLD2, CSRNP1, CSRP3, DAPP1, DCLK1, DCUN1D3, 
DHX15, DNAJA1, DNAJB11, DNAJC21, DPH3, EIF2C2, EIF3J, EIF4A1, ELL2, EPT1, 

EREG, ERI1, ERICH1, F2RL1, F3, FAM71F1, FAM8A1, FBXO42, FERMT2, FGF2, 

FKBP5, GADD45A, GCH1, GCNT4, GJA1, GMPR, GNE, GOLM1, GPR137B, GPRC5A, 
HAT1, HDGFRP3, HRH1, IER3, IL1A, IL1B, IL33, INA, INHBA, JAK2, JMJD1C, 

KDM7A, KLF5, KLF6, LDHA, LGALSL, LHFPL2, LMCD1, LOC100138700, 

LOC100296849, LOC100336688, LOC784931, LOC100337139, LOC286871, 
LOC782470, LOC788082, LONRF3, LYSMD3, MAFF, MAP3K2, MAP3K8, MAP7D2, 

MARCH3, MARCH5, METAP2, MMP12, MXD1, NDRG1, NET1, NKAIN2, NOP58, 

NPTX2, OLR1, ONECUT2, P2RY6, PDE8A, PFDN6, PIM1, PLAUR, PLPPR4, PMAIP1, 
PPP1CC, PPP4R2, PRDM1, PSME4, PTX3, RAB20, RABEP1, RASA2, RBBP8, RDH12, 

RGS16, RIOK3, RNF125, RRP15, RSBN1, SAMD8, SERPINB2, SERTAD2, SETD8, 

SFPQ, SGMS2, SLC13A3, SLC19A2, SLC2A1, SLC2A3, SLC37A3, SLC41A2, SLC4A7, 
SMARCA1, SMARCA5, SNX18, SOX4, SPSB1, SPTY2D1, SSFA2, STK17B, STK38L, 

STX11, SUB1, SUCLA2,, TBC1D9, TEAD4, TFPI2, TIAM2, TIGAR, TLE3, TMEM30B, 

TMEM65, TNFSF18, TNFSF9, TWF1, UBALD1, UFM1, USP53, UTP15, XCL2, XIRP1, 
YOD1, YWHAZ, ZBTB5, ZFAND5, ZNF385B, ZNF644, ZSWIM6DAZL, LOC782090, 

PRRG4 

ABCA7, ABCC5, ABLIM1, ADAP2, AGTR1, AHDC1, AKIP1, AMIGO1, AMOT, AOC3, 

ARHGAP20, ARHGEF10L, ARHGEF11, ARMCX6, ARRB1, ATAT1, ATP1B2, BCL9L, 
BCOR, BLES03, BORCS5, C13H20ORF27, C16H1orf115, C25H7ORF26, C28H10orf54, 

C5H12ORF4, CACNB2, CALB2, CAMK2G, CBX7, CCDC125, CCDC14, CD34, 

CEP295NL, CFAP126, CNNM3, CRTC1, CTC1, CYYR1, DAPK2, DISP1, DMD, 
DNASE1, DNM3, DPF3, EVA1B, FAM13C, FAM193B, FAM198B, FAM222B,, FIS1, 

FLT3LG, FLVCR2, FOXL2, FSD1L, GAB1, GLTPD1, GRIA1, GRIN2A, HLX, HOXD3, 

HOXD4, IFT52, IRF2, ISYNA1, JUB, KANK2, KANK3, KCNN3, KIAA0232, KIAA1462, 
LDB1, LDLRAP1, LENG8, LIN37, LIPE, LMAN2L, LOC100335495, LOC100336724, 

LOC100337111, LOC100337178, LOC100337457, LOC509283, LOC510193, 

LOC511229, LOC514257, LOC515697, LOC787074,, LRIG3, MAMSTR, MAPRE3, 
MFSD9, MID2, MIR2450A, MIR2475, MIR2485, MPPED2, MSRA, MSS51, MTMR11, 

MTP18, MTSS1, NAIF1, NFIB, NHSL1, NLRX1, NOTCH3, NPHP3, NPR3, NR1D1, 

NR2C2, NR2F1, NR5A2, NUMA1, OGT, PCDH12, PDRG1, PER3, PHACTR4, PHLDB2, 
PIEZO2, PLEKHA2, PNMA1, PODXL, PPARGC1B, PPP1R3B, PPP2R4, PRR12, 

PTGDS, RAB7L1, RARG, RASGRP3, REM1, RFTN2, RFX3, RMND5B, LOC100337120, 

RNF113A, RNF214, RUBCN, RUNDC3B, RUSC2, RXRB, SDPR, SEPW1, SETDB1, 
SF4, SFRS14, SFRS8, SLC29A3, SLC39A14, SMIM10, SNCAIP, LOC783362, SPRY4, 

ST5, ST6GAL1, STARD9, TANC1, TANC2, TBC1D13, TBC1D30, TCN2, TEK, TET1, 

THAP11, TM4SF1, TMEM14C, TMEM42, TNFRSF19, TNFSF10, TNRC6C, TNS3, 
TOR3A, TRIM62, TRIM65, TRIM68, TUBGCP5, USHBP1, VAMP2, VAMP5, VIPR1, 

WDR59, YPEL3, ZBTB4, ZBTB40, ZC2HC1C, ZC4H2, ZEB2, ZFP2, ZMYM3, 
ZMYND15, ZNF12, ZNF22, ZNF362, ZNF43, ZNF462, ZNF581, ZNF585A, ZNF629,, 

ZNFX1APBB3, CABLES1, LOC100138414, LOC100336686, LOC616365, MIR584-7, 

SH3TC2, TRERF1, VSIG2, ZAR1L, ARHGAP25 
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ARC, ARL5B, ATF3, BAMBI, BHLHE40, BTG1, BTG2, C15H11orf96, CCL1, CDK8, 
CDKN1A, CEBPD, CH25H, COQ10B, DNAJB1, DUSP1, DUSP2, DUSP5, EDNRB, EGR3, 

EGR4, FAM43A, FAM46A, FGF18, FOS, FOSB, FOSL1, GEM, HOMER1, HSPH1, IFRD1, 

INSIG1, JUNB, JUND, NR4A1, NR4A2, MCL1, NR4A3, NFIL3, RGS2, OBFC2A, PDE4D, 
PHLDA1, PHLDA2, PLK3, PLSCR4, SOWAHC, RCAN1, RFK, ZFP36, RNF122, SDC4, 

SERPINE1, SIK1, SLCO4A1, SOCS3, SRF, TAF4B, TMEM2, TRIB1, USP2, ZFAND2A, 

ABL2, AMIGO2, ABCE1, ABHD12B, AP1S3, ABTB2, AREG, AEBP2, AGFG1, ARG2, 

ARID5B, AHI1, AHSG, AKAP4, AKIRIN1, ALCAM, BACH1, BCL6, ANKRD1, ANO6, 

BZW1, BZW2, C1H21ORF91, ARF4, CBFB, ARHGAP28, ARHGAP6, CCDC58, CCL8, 

ARL4C, CD24, ASAM, ATAD1, CD24,, CDK17, ATP13A3, CNN1, ATP2A2, ATP2B1, 
ATP5I, ATP6V1C1, B3GALNT2, B4GALT5, COPS9, BCAP29, BCAS2, BCHE, BCL2L11, 

BCL3, CSRNP1, CSRP3, DAPP1, BIRC3, BMP2, BOLA-DYA, BPIFA2A, BRINP1, 

BTBD10, BTG3, DNAJA1, C10H14orf119, C10H15orf65, C12H13orf27, C12H13orf30, 
C15H11orf46, DPH3, C16H1ORF21, C17H12orf52, C19H17orf67, EIF2C2, 

C23H6orf141, EIF3J, C27H8orf4, EIF4A1, C29H11orf73, C2H2orf76, C3H1orf162, ELL2, 

C6H4orf34, C9H6ORF115, CA8, EPT1, EREG, ERI1, CAPZA2, CBARP, ERICH1, F2RL1, 
F3, FAM8A1, CCDC80, FERMT2, CCK, CCL2, CCL3, CCL4, FGF2, CCNC, CCNG2, 

CCNYL1, CCP110, CCRN4L, CD14, GADD45A, GCH1, GCNT4, CD40, CD44, CD83, 

CDC42SE2, CDCP1, CDH1, GJA1, CDKL1, GMPR, CETN3, CFLAR, CGRRF1, CHIC2, 
CHKA, CHSY1, CLDN1, CLDND1, CLEC1A, CLEC1B, CLEC2B, GPR137B, COMMD6, 

GPRC5A, COX6C, CPNE8, CRABP2, CREB5, CRIPT, HAT1, CRYAB, CSF1, HRH1, 

CSRP2, IER3, IL1A, CTLA4, CTNNAL1, CWC22, CXCL13, CXCL2, CXCL5, CXCL8, 
CYB5R4, CYP3A4, CYSLTR2, IL1B, IL33, INA, INHBA, DDX3X, DDX5, DENND5A, DES, 

KDM7A, KLF6, LDHA, DNAJB6, DNAJB9, DNAJC12, LGALSL, LHFPL2, LMCD1, 

DOT1L, LOC100138700, LOC100296849, DRGX, DSTN, DTWD1, DUSP11, DUSP14, 
EDN2, EHBP1, EIF1AX, EIF1B, LOC100336688, LOC784931, EIF4E, LOC286871, 

ENTPD7, LOC782470, LOC788082, LONRF3, LYSMD3, ESYT3, MAFF, EVI2A, EXOSC1, 

F2RL2, MAP3K8, FAM126B, FAM148A, FAM171B, FAM18B, MARCH3, MMP12, MXD1, 
FAM92A1, FBXL14, NDRG1, NET1, FGF7, FGFR1OP2, FGR, NPTX2, FKBP14, OLR1, 

P2RY6, PDE8A, FSHR, PIM1, PLAUR, GADD45G, GAL, GAS1, GCFC2, PLPPR4, 

GDPD1, GLRX2, PPP4R2, GMCL1, GMFB, GMNN, PRDM1, PSME4, GNPNAT1, PTX3, 
RAB20, GPR155, GPR65, GPR68, RASA2, RBBP8, GTF2E2, H2AFZ, HAS2, RDH12, 

HAUS3, HAUS6, HBXIP, RGS16, HGF, HIGD1D, HINT3, HK2, RIOK3, HMGA1, RNF125, 

RRP15, HPCA, HPCAL4, RSBN1, HS3ST5, HSPA13, IBSP, ICOSLG, SAMD8, IFT20, 
SERPINB2, IGF2BP2, IGFBP1, IGFBP3, IL10, IL18, IL18BP, SERTAD2, SETD8, IL1R1, 

IL1RN, IL21R, SFPQ, IL4R, IL7R, SGMS2, SLC13A3, INHBB, INSIG2, IPMK, IRAK2, 

SLC19A2, IRG1, ISCA1, ISG20, ISG20L2, SLC2A1, ITGA2, ITGAV, IVNS1ABP, SLC2A3, 
JARID2, SLC37A3, JPH2, SLC41A2, SLC4A7, KBTBD8, KDM6B, KHDRBS3, SOX4, 

SPSB1, SSFA2, KLHL32, KRT18, KRT73, KRT8, KRTAP3-1, STK17B, STK38L, STX11, 

SUB1,, TBC1D9, LIN7C, LLPH, TFPI2, TIAM2, LMO7, LNPK, LOC100140827, 
LOC100174924, LOC100294784, LOC100294785, LOC100294863, LOC100294865, 

LOC100295254, LOC100295381, LOC100295586, LOC100295757, LOC100295775, 

LOC100296441, LOC100296447, LOC100296475, LOC100296524, LOC100296684, 
LOC100296722, LOC100296944, LOC100297075, LOC100297413, LOC100297468, 

LOC100298628, LOC100300871, LOC100301462, LOC100335253, LOC100335275, 

LOC100335305, TMEM30B, LOC100335936, LOC100336429, LOC100336443, 

PPP1R10, AAK1, AARS, AASDH, ABCA1, ABCF3, ABCG2, ABHD14A, ABHD14B, 
ACACA, ACAD10, ACAP3, ACBD4, ACD, ACIN1, ACP2, ACP5, ACTN4, ADAMTS17, 

ADAMTSL5, ADCK2, ADCY4, ADCY9, ADD1, ADORA2A, ADPRHL2, ADRB1, AEBP1, 

AFF1, AFF2, AFF3, AGAP2, AGFG2, AGK, AGPAT1, AGRN, AHNAK, AKAP11, AKAP13, 
AKAP8L, AKR1A1, ALAD, ALDH3A2, ALDH3B1, ALG8, ANGEL1, ANKHD1, ANKLE2, 

ANXA11, AP1B1, APEG3, APEX2, APLNR, AR, ARAP1, ARAP3, AREL1, ARFGEF2, 

ARHGAP17, ARHGAP18, ARHGAP19, ARHGAP23, ARHGEF40, ARHGEF7, ARID1A, 

ARID1B, ARMCX5, ARRDC1, ARSB, ARSG, ARX, ASAP1, ASXL2, ATF5, ATF6B, ATF7, 

ATF7IP, ATN1, ATP2C2, ATXN2, ATXN7L1, AUTS2, B3GNT3, B3GNT9, B9D2, BAT2, 

BAT2L1, BAZ1B, BAZ2A, BCL9, BNC2, BRPF1, C10H15orf41, C11H9orf114, 
C14H8ORF70, C22H3ORF37, C23H6ORF47, C28H10ORF35, C28H1orf198, C2H2orf24, 

C3AR1, C8H9orf23, C8H9orf91, C9H6ORF203, C9H6ORF70, CABC1, CABIN1, 

CAMKK2, CAPN1, CASC3, CASKIN2, CASP9, CBFA2T2, CBL, CBR4, CBX4, CBX6, 
CC2D1A, CC2D2A, CCDC106, CCDC6, CCDC8, CCND3, CCNJL, CCS, CDC42BPB, 

CDC42EP4, CDON, CEACAM8, CELSR2, CEP110, CEP68, CHD2, CHD8, CHMP1A, 

CHMP4C, CHRNB3, CHST7, CIITA, CIRBP, CIZ1, CKAP5, CLASP1, CLIC5, CLMN, 
CLN6, CMTM4, CNDP2, CNOT3, CNOT4, CNOT8, COG1, COG7, COG8, COPS7A, 

COQ4, CORO2B, CPEB1, CPEB2, CPSF1, CREBBP, CRTC2, CRY2, CSRNP3, CSTF1, 

CTNS, CUL7, CUL9, CUX1, CXORF36, CYB5D2, CYB5R3, DAAM2, DAB2, DAB2IP, 
DACT1, DAG1, DAGLA, DBP, DCAF4, DCP1B, DCTN1, DDX31, DDX42, DEF6, 

DENND1A, DENND4B, DEPDC5, DHRS12, DHX30, DHX37, DHX57, DIP2A, DIP2B, 

DIS3L2, DNAJC16, DNAJC17, DNAJC30, DOCK6, DOCK9, DOPEY2, DPAGT1, DSCR3, 
DTNBP1, DTX2, DUSP10, DUSP15, DVL3, DYNC1H1, DYSF, EEF2K, EFTUD2, 

EGFLAM, EHD2, EHMT2, EIF2B4, EIF2C4, EIF4EBP2, EIF4ENIF1, ELMO1, EMC9, 

EMCN, EMD, EML5, ENG, EP400, EPB41, EPHB3, ERAL1, ERAP1, ERCC3, ERCC5, 
ERN1, EVC2, EXOC3L, EZH1, FADS6, FAM115A, FAM120B, FAM122A, FAM13A1, 

FAM168A, FAM171A2, FAM188B, FAM189B, FAM214B, FAM59A, FAM65A, FAM73B, 

FAM83H, FARP1, FASN, FBLIM1, FBLN5, FBN1, FBRS, FBXL12, FBXL6, FBXL8, 
FBXO10, FBXO42, FBXW12, FBXW4, FES, FGD1, FHOD1, FIGN, FITM2, FKBP15, 

FLAD1, FLOT2, FLYWCH2, FN3KRP, FNTB, FOXJ2, FOXN3, FOXRED1, FOXS1, FRY, 

FTSJD2, FUT1, FUT8, FYCO1, FZD4, FZR1, G6PD, GALNS, GALNT10, GALT, GANAB, 
GATA4, GATSL3, GBA2, GBF1, GCC1, GCN1L1, GEMIN4, GEMIN5, GGA3, GIPC1, 

GIT2, GLE1, GLG1, GLTSCR1L, GNA14, GON4L, GPAM, GPIHBP1, GPR4, GPS2, 

GREB1L, GRN, GTF2I, GTF3C1, GTF3C4, GYS1, H1F0, H1FX, H6PD, HADH, HAUS4, 
HAUS5, HCFC1, HCRTR1, HDAC4, HDAC6, HDGF2, HEATR5B, HEATR7A, HECTD4, 

HECW2, HERC2, HEXIM1, HGS, HIG2, HIP1, HIVEP1, HLCS, HOXC6, HOXD9, HPS1, 

HS1BP3, HSD17B14, HSDL1, HSPA2, HSPG2, HUWE1, HYI, ICMT, ID3, IFT122, IFT88, 
IGF2R, IGFBP2,, IL11RA, IL23A, ILDR2, ILVBL, INADL, INO80D, INPP5B, INPP5D, 

INTS1, INTS3, IPO13, IQGAP2, ITGA9, ITPR3, ITSN1, JMJD2A, KANK1, KANSL1, 

KANSL3, KBTBD4, KCTD21, KDM2A, KDR, KEAP1, KIAA0100, KIAA0182, KIAA0355, 
KIAA0753, KIF13A, KIF16B, KIF3B, KLF12, KLHL18, KLHL25, KLHL26, KMT2B, KPTN, 

LAMB2, LARP1, LASS1, LATS1, LGALS9, LHPP, LOC100137838, LOC100138392, 

LOC100295097, LOC100295263, LOC100296493, LOC100298868, LOC100299799, 
LOC100335642, LOC100336406, LOC100336508, LOC100336568, LOC100336586, 

LOC100336604, LOC100336756, LOC100336769, LOC100336841, LOC100336856, 

LOC100336912, LOC100337052, LOC100337072, LOC100337080, LOC100337088, 
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LOC100336452, LOC100336518, LOC100336625, LOC100336666, TNFSF18, 
LOC100337076, TWF1, LOC100337126, UBALD1, UFM1, LOC100337445, LOC407171, 

LOC508459, LOC509071, LOC509094, XCL2, LOC509506, LOC509911, XIRP1, YOD1, 

YWHAZ, LOC515823, LOC521081, LOC522171, LOC523389, LOC524181, LOC524703, 
LOC613460, LOC613882, LOC613970, LOC614643, LOC615482, LOC616520, 

LOC618696, LOC619061, LOC781102, LOC781142, LOC781416, LOC781462, 

LOC781612, LOC781807, LOC782021, LOC782266, LOC782348, LOC782402, ZFAND5, 

LOC782639, LOC782740, LOC782950, LOC783459,, LOC784207, LOC784704, 

LOC785366, LOC785449, LOC785455, LOC785745, LOC786131,, ZNF385B, 

LOC787187, LOC788284, LOC788496, LOC789095, LOC789126, LOC789920, ZSWIM6, 
#N/A, LRP12, LRRC58, LRRC8B, LRRN3, LSM1, LY96, MAN1A1, MANF, MAP1LC3C, 

MAP2K3, MAP4K5, MAPK6, MAPKSP1, MARCKSL1, MEMO1, METRNL, MEX3C, 

MGC127989, MGC143035, MICAL2, MIER1, MIR19A, MIR21, MIR2434, MIR2469, 
MMP1, MMP1, MOSPD2, MRPL39, MRPL42, MRPS16, MRPS18C, MSC, MT2A, MTCL1, 

MTMR12, MUSK, MYH1, MYL3, Mynn, MZT1, NAB1, NCALD, NDUFAF2, NEXN, 

NFKB1, NFKBIA, NIPAL1, NMU, NOS1AP, NRCAM, NRG1, NUCB2, NUDCD1, NUDT10, 
NUPL2, OAF, ODF2L, OSBPL11, OSTM1, OXT, PAG1, PAK1IP1, PAPD7, PCDH11X, 

PCNP, PDCD10, PDE4B, PDGFC, PDLIM4, PDP1, PELI1, PENK, PEX13, PICALM, 

PIGP, PIK3CA, PITPNC1, PKIB, PKNOX1, PLA2G7, PLEK, PLIN2, RND1, PLN, PLOD2, 
PNP, POLB, POLE4, POLR2K, PPAPDC3, PPARG-TSEN2, PPM1N, PPP1CB, PPP1R2, 

PPP1R3C, PPP4R4, PRKCD, PRORSD1, PSMD14, PSTPIP2, PTGER2, RAB19, RAB40B, 

RABGGTB, RAI14, RASGEF1A, RASSF8, RBM7, RCHY1, RCN2, RDH11, RERG, RGCC, 
RHEB, RIPK4, RNF19B, RNFT1, RPF2, RPIA, RPL34, RPS12, RPS21, RPS23, RRAD, 

RRAS2, RSL24D1, RUBCNL, RUNX1, S100A12, S100A8, S100A9, S1PR3, SAMD4A, SDS, 

SEC61G, SELK, SEMA3C, SERPINA11, SERTAD4, SF3B14, SGPP1, SGTB, SH3GL3, 
SHTN1, SLC12A2, SLC20A2, SLC25A25, SLC25A33, SLC26A2, SLC33A1, SLC34A2, 

SLC38A1, SLC39A8, SLC46A2, SLITRK2, SLMO2, SMG9, SNAP25, SNRPD1, SNRPG, 

SNX13, SNX31, SNX4, SOCS1, SPCS3, SPHK1, SPP1, SRD5A1, SRXN1, SSTR1, STAMBP, 
STEAP1, STK17A, SUCO,, TANK, TBCA, TERC, TET3, TFB2M, TGFBR1, TGIF1, THAP5, 

THBD, THBS1, THEX1, TIAM1, TIMM17A, TIMM8A, TLR2, TMC1, TMEM126A, 

TMEM136, TMEM14A, TMEM165, TMEM188, TMEM189-UBE2V1, TMEM26, 
TMEM41B, TMEM45A, TMEM64, TMF1, TMOD1, TMX1, TNFAIP3, TNFAIP8L3, 

TNFRSF12A, TNFRSF6B, TNFSF4, TPM4, TRAM1, TREM1, TRH, TRPC4, TRPM6, 

TRPM7, TSPAN12, TUBB2A, TXN, TXNRD1, UAP1, UBE2B, UBE2N, UBE2W, UBE3A, 
UCHL3, UPRT, UXT, VAT1L, VBP1, VNN2, WASF1, WDR44, WDR89, XBPP1, YWHAQ, 

ZBTB43, ZNF469, ZNRD1, ACBD7, BCL2A1, CHSY3, GPR87, LOC100294744, 

LOC100297034, LOC100297127, LOC100337296, LOC509074, LOC514319, LOC520180, 
LOC616887, LOC782358, LOC785867, LOC787306, LOC788009, LOC789734, LRRC31, 

MBL2, NPPB, PAG6, PAG9, PAQR9, PDE1C, SERPINI1, TMIGD1, TRIM9, VSX1, 

WFDC11, WNT10B 

LOC100337236, LOC505156, LOC505719, LOC508153, LOC511497, LOC526631, 
LOC526847, LOC529423, LOC534002, LOC539110, LOC539229, LOC540312, 

LOC616014, LOC616063, LOC616198, LOC619000, LOC783493, LOC786942, 

LOC788379, LPCAT1, LPHN1, LRFN3, LRIF1, LRP1, LRRC41, LRRK1, LRSAM1, LTBR, 
LYSMD4, MACF1, MAEA, MAMLD1, MAN2A2, MAP2K2, MAP3K4, MAP3K6, MAP4K2, 

AGTR1, MAPK7, MAPRE2, AHDC1, AKIP1, AMIGO1, MARK2, MARVELD1, MAVS, 

MAZ, MBD6, MBNL2, MCM9, MDC1, MDN1, MECP2, MED12, MED16, MED22, 

MED25, MEF2C, MEPCE, AMOT, MFNG, AOC3, MGC134093, MGC159500, MGME1, 

MIB2, MICAL1, MID1IP1, ARHGAP20, MINK1, MIR1287, MIR2303, MIR2416, MIR2454, 

ARHGEF11, ARMCX6, MKKS, MKS1, MLH3, MLL, MLL2, MLLT10, MMP15, MMP2, 
MMS19, MOBKL2A, MON1B, MORC2, MOSPD3, MOV10, MPDZ, MPP5, ATAT1, 

MRPS24, MSH6, ATP1B2, BCL9L, MTF1, MTHFD1, BCOR, MTMR14, MTMR15, 

MTMR4, MTOR, BLES03, MTRR, BORCS5, MTSS1L, MUL1, MUM1, MXD4, MYCBP2, 
MYH11, MYL9, MYO18A, MYOF, MYST2, MYST4, NAAA, NADSYN1, NAGK, 

C16H1orf115, NAV2, NBEAL2, NCKAP5L, NCOA2, NCOA6, C25H7ORF26, NDST2, 

C28H10orf54, NEU3, NFATC1, NFIA, NFIC, NFIX, NFYC, NHSL2, NIPSNAP1, 
NIPSNAP3A, NISCH, CAMK2G, NOL4L, CBX7, NOSIP, CCDC125,, NOVA2, NPEPL1, 

CCDC14, NPNT, CD34, NR0B2, CFAP126, CNNM3, CRTC1, NR2F2, NR5A1, CTC1, 

NSD1, NUAK1, CYYR1, NUP214, NUP62, NUP85, OGFOD2, DAPK2, OIT3, DMD, 
ORAI1, OSBP, OSBPL7, OXSM, DNASE1, PACS1, PALD1, PAN2, PAPSS1, PARG, 

PARP1, PARP4, PATL1, PATZ1, PBX1, DNM3, PCDHGA5, PCGF2, PCIF1, PCNT, 

PCNXL3, PCYOX1L, PCYT1B, PDE4DIP, PDE7B, DPF3, PDPR, PDZD2, PEAK1, 
PELP1, FAM13C, PEX1, PEX10,, FAM193B, PFKM, PGAP2, PGAP3, PGM5, FAM198B, 

PHC3, PHF14, PHF15, PHF20, PHF21A, FAM222B,, PIK3C2B, PIK3CG, PIK3R1, PIM2, 

PIM3, PIP4K2B, PITPNM2, PJA2, PKD2L1, PKNOX2, FLT3LG, PLCG1,, PLEKHM3, 
PLIN3, PLOD3, PLPP6, FOXL2, PLXNA2, PLXNB2, PLXND1, FSD1L, PMF1, PNKD, 

GAB1, PNPLA2, PNPLA6, POFUT1, POGZ, POLD1, POLD2, POLDIP3, POLL, POLR1A, 

POLR1E, POLR3A, POLR3B, POM121C, POMT1, POU6F1, PPARA, PPIL2, PPP1CA, 
PPP1R13B, HLX, PPP1R9A, HOXD3, PPP2R5D, IFT52, PRDM10, PRDM6, PRELP, 

PRICKLE1, PRKAB1, PRKACA, PRKCE, PRKCSH, PRKD2, PRKDC, PRPF19, IRF2, 

PRR14, PRR3, ISYNA1, PSMF1, PTCH1, JUB, PTH1R, PTHLH, PTPN14, PTPN23, 
PTPRF, PTPRG, PTPRS, KANK2, PXN, PYGB, RAB11B, RAB11FIP5, RAB1B, KANK3, 

RAB37, RAB3A, RABGGTA, RAD52, KIAA1462, LDB1, LDLRAP1, LENG8, RBM47, 

RBM5, LIN37, RECQL5, LIPE, REV3L, RFFL, LMAN2L, RFX1, RGL1, RHBDF1, 
RHOBTB1, RHOG, RNASEN, LOC509283, RNF123, RNF135, RNF145, RNF169, 

LOC511229, RNF26, RNF31, RNF40, RNF44, RPAP1, RPRD2, RPS6KA5, RPTOR, 

RREB1, LOC515697,, RUNX1T1, LRIG3, RWDD3, MAMSTR, SAP130, SAP30BP, SAP30L, 
SARS2, SART3, SCAF1, MFSD9, SEC16A, SEC24C, SELO, SEMA6D, SEPN1, SEPT4, 

SEPT8, SERPINA14, SETD1B, MPPED2, SF3A1, SF3A2, MSRA, MTP18, SFXN2, MTSS1, 

SHPRH, SIAH2, SIN3B, SIPA1, SIRT2, SLC10A5, NAIF1, SLC19A1, NFIB, SLC24A3, 
SLC27A1, NHSL1, NLRX1, NOTCH3, SLC2A9, SLC35A4, SLC35E2, NPHP3, SLC37A4, 

NPR3, SLC41A1, SLC46A3, SLC47A1, NR2C2, SLC7A8, SLC8A1, SLC9A1, SLC9A3R2, 

SLCO2B1, NR2F1, SMARCA2, NR5A2, SMARCC2, SMARCD2, SMC1A, SMG1, SMG6, 
NUMA1, SMPD2, SMYD4, SNRNP200, PCDH12, SOGA1, SORBS3, SOS1, PER3, SPG11, 

SPIDR, SPRY3, PHACTR4, PHLDB2, SPTAN1, SPTBN1, PIEZO2, SRCAP, SRGAP2, 

SRRM1, SRRM2, PLEKHA2, PNMA1, PODXL, STAP2, PPARGC1B, STAT1, STAT2, 
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STBD1,, PPP1R3B, STK36, PPP2R4, STOML1, PRR12, PTGDS, RAB7L1, SUN2, SYNE2, 
SYNPO2, SZT2, TAB1, TACC2, TAF4, TAF6L, TAF8, RARG, RASGRP3, TAOK2, TAPBP, 

TBC1D16, TBC1D2B, TBC1D4, TBC1D8, RMND5B, TBC1D9B, TBCD, TBXA2R, 

TCF7L2, LOC100337120, TCP11L1, TDRD7, RNF214, TENC1, RUBCN, TGFBR2, TH1L, 
RXRB, TIE1, TIRAP, TJP1, TLDC1, TLN1, SETDB1, TMCC1, TMCO4, TMCO6, 

TMEM106A, TMEM127, TMEM138, TMEM204, TMEM214, TMEM265, SFRS14, 

TMEM41A, SFRS8, TMEM51, TMEM52, TMEM62, TMEM63A, SLC29A3, TMEM88, 

TMEM8A, TMEM94, SMIM10, LOC783362, TNKS, TNRC6A, TNRC6B, SPRY4, TNS1, ST5, 

ST6GAL1, TP53, TPCN1, TPCN2, TRAFD1, TRAPPC1, TRAPPC9, TRIB2, TRIL, TRIM11, 

TRIM21, TRIM25, TRIM41, TRIM44, TRIM45, STARD9, TANC1, TRIP10, TRM1L, TRPV2, 
TRRAP, TSC2, TSC22D3, TSNARE1, TSPAN11, TSPAN4, TSPAN5, TSPAN9, TTC21B, 

TTC28, TTC39A, TTC5, TTI1, TTLL12, TTLL4, TUBG1, TBC1D13, TULP4, TXNIP, 

UAP1L1, TCN2, UBAP2L, UBE4B, UBIAD1, UBR4, UFSP1, UNC119, UNC93B1, UNG, 
UNK, UPF1, TET1, USP19, USP20, USP21, USP22, USP24, USP48, THAP11, VAC14, 

TMEM42, VAV3, VIPAS39, TNFRSF19, VIPR2, VMAC, VPS11, VPS13D, VPS37C, VPS39, 

VPS52, VRK3, WDR11, WDR20, WDR34, WDR6, WDR76, WDR81, WDR91, WFDC5, 
WIPF3, WIZ, WNK1, WWC3, WWP2, TNRC6C, XDH, TNS3, XPC, XPNPEP3, XRCC1, 

TOR3A, TRIM62, TRIM65, ZBED5, ZBTB16, ZBTB20, ZBTB24, TRIM68, ZBTB45, 

USHBP1, ZBTB6, ZBTB7B, VAMP2, ZC3H4, ZC3H7B, ZC3HC1, ZCCHC11, VIPR1, 
ZER1, WDR59, ZFHX3, ZFP3, ZFP62, ZFYVE26, ZHX3, ZBTB4, ZBTB40, ZMYND8, 

ZC2HC1C, ZNF142, ZC4H2, ZNF346, ZEB2, ZNF384, ZNF385A, ZNF395, ZNF414, 

ZNF423, ZMYM3, ZNF445, ZNF449, ZNF470, ZNF503, ZNF512B, ZNF518B, ZNF22, 
ZNF592, ZNF605, ZNF618, ZNF362, ZNF652, ZNF687, ZNF689, ZNF704, ZNF710, 

ZNF768, ZNF828, ZRANB3, ZNF585A, ZNF629, ZNF827, CCR10, CD6, CDK18, CEP135, 

ZNFX1, IQSEC2, LOC508648, LOC100138414, LOC100336686, LOC616365, PLEKHH1, 
PMS2, SLFNL1, TRERF1, WDR62, YDJC, ZKSCAN2, ARHGAP25, CARD6 
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Appendix B-3 – Biological process annotation of differentially expressed genes from 

each time point 

(A) Percent of mapped genes with “transcription factor activity, RNA polymerase II core 

promoter proximal region sequence-specific binding” or “protein binding” annotations based 

on DAVID molecular function analysis (GOTERM_MF_ALL) of all differentially expressed 

genes from each time point.  (B) Percent of mapped genes with “transcription factor 

(PC00218)”, “hydrolase (PC00121)”, or “transferase (PC00220)” annotations based on 

Panther Protein Class analysis of differentially expressed genes from each time point. 
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Appendix B-5 – Physiological characteristics of the study animals 
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Appendix B-4 – Physiological characteristics of the study animals 

Mid-cycle cows (n = 3/time point) were treated with 25 mg PGF2α for 0.5, 1, 2, 

and 4 hours or saline (n = 4).  Symbols indicate individuals or each ovary, with 

mean ± SEM overlaid.  (A) Age (in years) of cows at ovariectomy. (B) Number 

of antral follicles present on each ovary from study animals.  (C)  Total weight of 

each ovary from study animals.  (D)  Weight of corpus luteum (CL) from each 

study animal. (E) Previous number of calves from each study animal. (F)  Serum 

progesterone concentrations of cows 0.5 - 4 hour post-PGF2α treatment (n = 

3/time point).  * P ≤ 0.05, ** P ≤ 0.01 compared to saline-treated animals using 

one-way ANOVA followed by Bonferroni's multiple comparison test. 
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Appendix B-6 – Differentially expressed transcripts included within each SOM 

  
 Up-Regulated Transcripts (33) Down-Regulated Transcripts (144) 

Immediate-Early 

Response 

ABT1, ADAMTS1, ADAMTS4, ANGPT2, APOLD1, CCND1, CDC42EP2, CIRH1A, 

CYR61, DLL1, DNAJB1, DNAJB4, EGR1, ERF, FOS, FZD4, IER2, JMJD6, JUN, 

KLF16, LOC100138911, LOC786156, NFKBIZ, NR4A2, PCF11, PDE7B, PER1, 
PLK2, PPP1R10, PPP1R16B, RAB7B, RABGEF1, RGS2, RND1, SNAI1, SNAI2, 

ZC3H12A 

ABCA7, ABCC5, ABLIM1, ADAP2, AHDC1, AKIP1, AOC3, ARHGEF10L, ARMC2, 

ARMCX6, ARRB1, ATP1B2, BCAR3, BLES03, C13H20ORF27, C4H7orf23, 

C8H9orf23, CACNB2, CALB2, CBX7, CCDC125, CCDC14, CDC42EP1, CIRBP, 
CLEC3B, DGCR6L, DISP1, EML5, FAM193B, FAM82A1, FGD6, FIS1, FLVCR2, 

GLTPD1, GRIA1, GTF3C4, HES2, HLX, HOXD4, HSPA12B, IFT52, KCNN3, LBH, 

LDB1, LENG8, LIMS2, LIN37, LMAN2L, LOC100125412, LOC100139577, 
LOC100335299, LOC100335495, LOC100336920, LOC100337457, LOC508354, 

LOC510193, LOC513640, LOC514257, LOC514704, LOC514750, LOC515356, 

LOC522449, LOC540918, LOC616821, LOC618094, LOC618454, LOC786352, 
LOC787074, LOC789977, LOH12CR1, MAPK7, MAPRE3, MAST3, MFSD8, 

MFSD9, MGC139026, MGC151567, MGC165685, MIR2450A, MRM1, MSRA, 
MTMR11, MUSTN1, NHSL1, NPHP3, NPR3, NR1D1, OGT, PATZ1, PDRG1, 

PHF14, PHLDB2, PIGS, PNMA1, PRR3, PRRG3, RAB30, RAB3A, RASA3, REM1, 

RERE, RFTN2, RFX3, RMND1, RMND5B, RNF113A, SAP30L, SDPR, SF4, 
SLC25A42, SLC39A14, SNCAIP, ST5, STK19, SUFU, TADA3, TANC2, TBC1D30, 

TEK, THUMPD2, TMEM145, TMEM42, TNFSF10, TP53I11, TRIM41, TRIM65, 

TSC1, TUBGCP5, URGCP, VAMP2, VAMP5, WDR59, YPEL3, ZC4H2, ZFP2, 
ZFP62, ZMYND15, ZNF26, ZNF260, ZNF319, ZNF366, ZNF43, ZNF462, ZNF581 
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 Up-Regulated Genes (136) Down-Regulated Genes (240) 

Early 

Response 

AATF, ACSL3, AMD1, ANKMY2, ANKRA2, ARC, ARL4C, 
ARL5B, ATF3, B3GALNT2, BAMBI, BCL6, BRIX1, BTAF1, 

BTG2, C27H8orf4, CCDC85B, CCNYL1, CCRN4L, CCT2, CDK8, 

CEBPD, CH25H, CRISPLD2, CSRNP1, DCLK1, DCUN1D3, 
DHX15, DNAJB11, DNAJC21, DUSP1, DUSP2, EDNRB, EGR3, 

EGR4, EIF3B, EIF3J, EIF4A1, FAM49B, FBXO33, FGF18, 

FHOD3, FKBP5, FOSB, FOSL1, GADD45A, GADD45G, GJA1, 
GNE, GOLM1, GPRC5B, HAT1, HSPH1, IFRD1, IGFBP3, 

INSIG1, JUNB, JUND, KIAA0020, KLF5, KLF6, LOC100174924, 

LOC100295476, LOC100295973, LOC100296226, 
LOC100297981, LOC100299027, LOC100336279, 

LOC100337254, LOC524703, LOC529462, LOC539374, 

LOC541159, LOC613882, LOC784070, LOC785063, 
LOC785529, LOC787610, LTV1, LYSMD3, MAP3K2, MAP7D2, 

MCL1, MGC137708, MGC142811, MGC148992, MXI1, MYC, 

MYL6B, NAB1, NEXN, NFIL3, NOP58, NPPC, NR4A1, NR4A3, 
ONECUT2, PDE4B, PEX12, PFDN6, PFKFB3, PHLDA1, 

PHLDA2, PLAT, PLSCR4, PPP1CC, PPP1R15A, RABEP1, 

RASD1, RDH12, RFK, RND3, RNF122, SEMA7A, SFPQ, 
SLC20A1, SLC2A3, SLC4A7, SLCO4A1, SMARCA1, SMARCA5, 

SMOC1, SNX18, SPTY2D1, STC1, TEAD4, TIGAR, TLE3, 

TMEM2, TMEM65, TP53BP2, TRAF1, TRIB1, ZBTB10, ZBTB5, 
ZFP36 

AASDH, ABCA1, ABCC3, ABHD14B, ACP2, ADCK2, AFF2, AKAP11, AKAP8L, AKR1A1, ALDH3A2, ALG8, 
AMIGO1, ANAPC5, ANGEL1, APEX2, ARHGAP19, ARHGAP20, ARHGAP25, ASB16, ATF7IP, ATXN7L1, 

C10H15orf41, C14H8ORF70, C23H6ORF47, C28H10ORF35, C2H2orf24, C9H6ORF203, CARD6, CC2D1A, 

CC2D2A, CCDC8, CCND3, CDON, CEP68, CHD8, CHST7, CIAO1, CLN6, CNOT8, COG1, COG8, CPT2, 
CSTF1, DACT1, DAG1, DBP, DCAF4, DDX31, DENND1A, DEPDC5, DNAJC16, DNAJC30, DPAGT1, DSCR3, 

DUSP10, EHMT2, EIF2C4, EIF4EBP2, ERAP1, ERCC3, ERCC5, FAM120B, FAM122A, FAM33A, FAM73B, 

FARP1, FBXL12, FBXO10, FIGN, FITM2, FKBP15, FLAD1, FN3KRP, FOXL2, GATSL3, GEMIN4, GON4L, 
GPAM, H1F0, HAUS4, HDAC6, HDGF2, HEATR5B, HEXIM1, HIG2, HLCS, INPP5B, IRF2, JMJD2A, KBTBD4, 

KCTD21, KEAP1, KIAA1539, KIF3B, LATS1, LNPEP, LOC100138392, LOC100140430, LOC100295097, 

LOC100295263, LOC100336406, LOC100336473, LOC100336856, LOC506615, LOC508153, LOC508720, 
LOC509858, LOC512910, LOC516630, LOC539472, LOC540169, LOC616198, LOC618190, LOC787062, 

LRIG3, MAP3K7IP1, MAPK8IP3, MARVELD1, MCM9, MEN1, MEPCE, MGC134150, MGC139126, 

MGC155141, MGC159500, MICAL1, MID1IP1, MKKS, MKS1, MRPS24, MSH6, MTHFD1, MTRR, MUM1, 
MYCBP2, MYST2, NCKAP5L, NDST2, NEK4, NEU3, NFYC, NGRN, NIPSNAP3A, NPEPL1, NR0B2, NR1H4, 

NR2F2, NR5A1, NSD1, NUP62, PAPSS1, PARG, PCDHGA5, PCIF1, PDE4DIP, PGAP2, PHF15, PHF20, 

PIK3C2B, PIP4K2B, PJA2, PNPLA6, POFUT1, POLDIP3, POLR1E, POLR3B, PRICKLE1, PRUNE, PSKH1, 
PTCH1, PTHLH, PYGB, RECQL5, RGL1, RHOBTB1, RNF135, RNF145, RNF169, RNF26, RNF31, RNF44, 

RNPEPL1, RPRD2, RWDD3, SEMA6D, SETD1B, SF3A1, SLC16A14, SMARCD2, SMPD2, SOS1, STBD1, 

STOML1, SYNPO2, TAF8, TBC1D13, TBC1D4, THAP11, TMEM164, TMEM214, TMEM62, TNFAIP8, TRIM21, 
TRIM62, TRIM68, TRIP6, TRM1L, TSPAN11, TTC21B, TTC5, TTLL12, TUBG1, TXNIP, UBIAD1, UNG, USP19, 

USP20, USP21, VPS11, VPS52, WDFY2, WDR11, WDR20, WDR76, XPNPEP3, XRCC1, ZBED5, ZBTB24, 

ZBTB45, ZBTB6, ZBTB7B, ZFP3, ZNF142, ZNF22, ZNF346, ZNF449, ZNF624, ZNF652, ZNF689 
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 Up-Regulated Genes (286) Down-Regulated Genes (288) 

Delayed-Early 

Response 

ABCE1, ABL2, AGFG1, AHI1, AMIGO2, AP1S3, AREG, ARG2, ARID5B, ASAM, 

ATP11B, ATP13A3, ATP2A2, BACH1, BCAS2, BCL2L11, BCL3, BHLHB2, 
BTBD10, BTG1, BTG3, BZW1, BZW2, C12H13orf30, C15H11orf46, 

C1H21ORF91, C9H6ORF115, CBFB, CCDC41, CCDC80, CCL3, CCNC, CD83, 

CDC42SE2, CDK17, CDKN1A, CHAC1, CHIC2, CHKA, CHSY1, CLDND1, CNN1, 

COQ10B, CSRP2, CSRP3, CWC22, CXCL5, DAPP1, DDX39, DDX3X, DDX5, 

DNAJA1, DNAJB6, DNAJB9, DPH3, DUSP5, EDN2, EIF1B, EIF2C2, ELL2, 

ENTPD7, F2RL1, F2RL2, F3, FAM8A1, FBXL14, FERMT2, FGF2, FGF7, GAS1, 
GCH1, GDF11, GDPD1, GEM, GLRX2, GPR137B, GPR155, GPR68, GPRC5A, 

GTF2E2, H2AFZ, HAUS3, HGF, HIGD1D, HK2, HMGA1, HOMER1, HPCA, 

HSPA5, ICOSLG, IER3, IFNAR1, IL1A, IL1R1, IL33, CXCL8, INA, INHBA, IRAK2, 
ISG20L2, ITGA2, ITGAV, IVNS1ABP, JAK2, JARID2, JMJD1C, JPH1, JPH2, 

KBTBD8, KRT18, KRT8, LDHA, LHFPL2, LIN7C, LMCD1, LOC100139161, 

LOC100270684, LOC100296849, LOC100297185, LOC100297291, 
LOC100298623, LOC100336688, LOC100336779, LOC100337139, 

LOC100337302, LOC286871, LOC510442, LOC510487, LOC513388, 

LOC515823, LOC521504, LOC533324, LOC538547, LOC540234, LOC540868, 
LOC617407, LOC617986, LOC768081, LOC782348, LOC782470, LOC782740, 

LOC784446, LOC784704, LOC785868, LOC786258, LOC788082, LONRF3, 

LRP12, LRRC8B, LRRN3, LSM1, LYPD2, MANF, MAP1LC3C, MAP2K3, 
MAP3K8, MARCKSL1, METAP2, MEX3C, MGC165939, MIR21, MIR220C-1, 

MMP12, MT2A, MUSK, MXD1, Mynn, NAP1L5, NDRG1, NET1, NFKB1, NIPAL1, 

NKAIN1, NP, NUPL2, OAF, OBFC2A, OSBPL11, P2RY6, PAK1IP1, PCP4L1, 
PDE8A, PDP1, PELI1, PICALM, PIK3CA, PIM1, PITPNC1, PKNOX1, PLAUR, 

PLIN2, PLK3, PLOD2, POLB, PPM1D, PPP1CB, PPP4R2, PPP4R4, PSME4, 

PTX3, RAB20, RAI14, RASA2, RASSF8, RBBP8, RCAN1, RERG, RGS16, RHEB, 
RIOK3, RNF125, RNF19B, RNF24, RPF2, RPS12, RRP15, RSBN1, RSL24D1, 

RUNX1, S1PR3, SAMD8, SBNO2, SDC4, SELI, SERPINA11, SERPINB2, 

SERPINE1, SERTAD2, SETD8, SGMS2, SLC13A3, SLC20A2, SLC25A33, 
SLC26A2, SLC2A1, SLC37A3, SLITRK2, SMG9, SNAP25, SOCS1, SOCS3, SOX4, 

SPCS3, SPP1, SPSB1, SRF, SRXN1, SSFA2, STEAP1, STK17B, STK38L, STX11, 

SUCLA2, TAF4B, TBC1D8B, TBC1D9, TFPI2, THBD, THBS1, TIAM1, TIMM17A, 
TIMM8A, TMEM30B, TMF1, TNFRSF12A, TRAM1, TUFT1, TWF1, TXN, UBE2B, 

UBE2N, UBE3A, UTP15, VAT1L, XCL2, XIRP1, YOD1, YWHAZ, ZBTB43, 

ZFAND2A, ZFAND5, ZNF385B, ZNF644, ZNRD1, ZSWIM4, ZSWIM6 

ACBD4, ACD, ACP5, ACTN4, ADCY4, ADCY9, ADORA2A, ADPRHL2, ADRB1, 

AGAP2, AGFG2, AGTR1, AHNAK, ALAD, AMOT, ARHGAP17, ARHGAP23, 
ARID1A, ARRDC1, ATF7, ATP2C2, B3GNT3, BCL9L, BCOR, BRPF1, 

C22H3ORF37, C25H7ORF26, C28H1orf198, C5H12ORF4, C8H9orf91, CABC1, 

CAMK2G, CASP9, CBFA2T2, CBR1, CBX6, CD34, CDC42EP4, CEACAM8, 

CHAD, CHMP1A, CHMP4C, CMTM4, CNNM3, COL4A3BP, COPS7A, CRTC2, 

CTNS, CYYR1, DCP1B, DEF6, DHRS12, DIP2A, DMD, DNAJC17, DNASE1, 

DTNBP1, DYSF, EIF4ENIF1, ENG, ERAL1, EVC2, EZH1, FAM115A, FBXO42, 
FBXW4, FLT3LG, FOXN3, FOXO4, FOXRED1, FOXS1, FUT1, FYCO1, GAB1, 

GATA4, GGA3, GNA14, GPIHBP1, GPR111, GPS2, GTF2I, H6PD, HAUS5, 

HCRTR1, HIP1, HPS1, HS1BP3, HSDL1, ID3, ILDR2, ILVBL, INPP5K, IPO13, 
JUB, KANK1, KANK2, KANK3, KDR, KIAA1462, KIF13A, KIF16B, KLHL26, 

LASS1, LDLRAP1, LGALS9, LIPE, LOC100294795, LOC100296837, 

LOC100302527, LOC100335169, LOC100335642, LOC100336568, 
LOC100336724, LOC100336733, LOC100336756, LOC100337051, 

LOC100337052, LOC100337088, LOC505156, LOC505719, LOC507983, 

LOC511229, LOC512933, LOC518003, LOC522631, LOC523424, LOC531539, 
LOC540132, LOC540480, LOC614014, LOC615144, LOC616063, LOC617808, 

LOC783807, LOC785034, LOC785776, LOC786652, LOC789017, LPHN1, 

MAMSTR, MAP4K2, MBNL2, MEF2C, MFNG, MICALL1, MINK1, MIR2416, 
MLLT10, MMP15, MMS19, MOBKL2B, MPDZ, MTF1, MTMR4, MTSS1, MYH11, 

NAAA, NBEAL2, NFATC1, NFIB, NHSL2, NIPSNAP1, NME6, NOVA2, NR1H3, 

NR2C2, NR2F1, NR5A2, NUMA1, OSBPL7, PACS1, PCDH12, PEX10, PFKM, 
PGM5, PHACTR4, PHF21A, PIK3CG, PITPNM2, PKDCC, PLCG1, PLEKHA2, 

PNKD, PNPLA2, PODXL, POLD2, PPARA, PPP1R3B, PPP1R9A, PRDM10, 

PRPF19, PRR12, PRR14, PTH1R, PTPN23, RAB11FIP5, RAB7L1, RABGGTA, 
RAD52, RARG, RASGRP1, RASGRP3, RBM5, RHOG, RNF213, RNF214, RPAP1, 

RXRB, SAP30BP, SEMA4C 

, SETDB1, SF3A2, SHANK3, SIPA1, SIRT2, SLC24A3, SLC29A3, SLCO2B1, 
SMARCA2, SORBS3, SPRY3, SPRY4, SPTBN1, ST6GAL1, STAB1, STAP2, 

STARD9, STAT1, STAT2, STK36, STYXL1, TAF6L, TAOK2, TARBP1, TBC1D16, 

TBC1D2B, TBC1D9B, TBXA2R, TCEA2, TCN2, TCP11L1, TDRD7, TENC1, 
TGFBR2, TIRAP, TMCO6, TMEM106A, TMEM204, TMEM51, TMEM88, 

TNRC6C, TNS1, TOR3A, TPCN2, TRIB2, TRIM11, TRIM26, TRIP10, TSC22D3, 

TSPAN4, UBA7, UFSP1, UNC119, UNC93B1, UNK, USHBP1, VMAC, WDR91, 
WIPF3, WWP2, XDH, ZBTB4, ZBTB40, ZC3HC1, ZER1, ZMYM3, ZMYND8, 

ZNF362, ZNF384, ZNF395, ZNF423, ZNF445, ZNF592, ZNF687, ZNF704, 

ZNF768, ZNF827, ZNFX1 
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 Up-Regulated Genes (321) Down-Regulated Genes (320) 

Late-Response ABHD12B, ABTB2, AEBP2, AHSG, AKAP4, AKIRIN1, ALCAM, ANKRD1, ANO6, 
ARF4, ARHGAP28, ARHGAP6, ATAD1, ATP2B1, ATP5I, ATP6V1C1, B4GALT5, 

BCAP29, BCHE, BIRC3, BMP2, BTBD1, C12H13orf27, C16H1ORF21, 

C17H12orf52, C23H6orf141, C29H11orf73, C6H4orf34, CA8, CAPZA2, CCDC58, 
CCK, CCL2, CCL4, CCL8, CCNG2, CD14, CD40, CD44, CDH1, CFLAR, CGRRF1, 

CLDN1, CLEC1A, CLEC1B, COMMD6, COX6C, CPNE8, CREB5, CRIPT, CRYAB, 

CSF1, CTLA4, CTNNAL1, CXCL2, CYB5R4, CYSLTR2, DENND5A, DNAJC12, 
DSTN, DTWD1, DUSP11, DUSP14, EIF1AX, EIF4E, EVI2A, EXOSC1, FAM18B, 

FAM92A1, FBXO32, FGFR1OP2, FGR, FKBP14, GAL, GMCL1, GMFB, GMNN, 

GMPR, GNPNAT1, GULO, HAUS6, HBXIP, HINT1, HINT3, HPCAL4, HS3ST5, 
HSPA13, IBSP, IFT20, IGFBP1, IL18, IL1B, IL1RN, IL21R, IL4R, IL7R, INHBB, 

INSIG2, IPMK, IRG1, ISCA1, ITGB8, KIAA1715, KLHL32, LLPH, LMO7, 

LOC100137875, LOC100138864, LOC100140212, LOC100140827, 
LOC100294784, LOC100294785, LOC100294863, LOC100294880, 

LOC100295254, LOC100295381, LOC100295586, LOC100295656, 

LOC100295757, LOC100295775, LOC100296216, LOC100296447, 
LOC100296475, LOC100296588, LOC100296684, LOC100296722, 

LOC100296944, LOC100297075, LOC100297131, LOC100297413, 

LOC100297496, LOC100297676, LOC100297932, LOC100298628, 
LOC100300164, LOC100301462, LOC100335253, LOC100335275, 

LOC100335936, LOC100336429, LOC100336518, LOC100336625, 

LOC100337076, LOC100337126, LOC100337445, LOC407171, LOC509094, 
LOC516629, LOC520588, LOC521363, LOC532603, LOC538197, LOC613460, 

LOC613970, LOC614438, LOC614643, LOC615784, LOC616520, LOC619061, 
LOC781142, LOC781416, LOC781612, LOC781807, LOC782021, LOC782162, 

LOC782266, LOC782402, LOC782950, LOC783459, LOC783838, LOC784097, 

LOC784207, LOC784931, LOC785449, LOC785455, LOC785745, LOC786131, 
LOC787187, LOC788496, LOC789095, LRRC57, LRRC58, MAGI3, MAN1A1, 

MAP4K5, MAPK6, MAPKAPK3, MAPKSP1, MEMO1, METRNL, MGC127538, 

MGC127989, MGC133504, MGC143035, MGC148938, MGC148942, MICAL2, 
MIER1, MIR147, MIR2469, MMP1, MOSPD2, MRPL39, MRPL42, MRPS16, 

MRPS18C, NCALD, NDUFB1, NUCB2, NUDCD1, ODF2L, OLR1, OSTM1, PAG1, 

PAPD7, PCNP, PDCD10, PDGFC, PDLIM4, PEX13, PKIB, PLA2G7, PLN, POLE4, 
POLR2K, PPAPDC3, PPP1R2, PPP1R3C, PRDM1, PRKCD, PRR5L, PSMD14, 

PSTPIP2, PTGER2, RABGGTB, RBM18, RBM7, RCHY1, RCN2, RDH11, RNFT1, 

RPIA, RPL27, RPL34, RPS21, RRAS2, S100A12, S100A9, SAMD4A, SEC61G, SELK, 
SELP, SEMA3C, SF3B14, SGPP1, SGTB, SH3GL3, SLC12A2, SLC19A2, SLC25A25, 

SLC33A1, SLC38A1, SLC39A8, SLC41A2, SLMO2, SNRPD1, SNRPG, SNX13, 

SNX31, SNX4, SOAT1, SPHK1, SRD5A1, STAMBP, STK17A, SUB1, TAF13, TANK, 
TBCA, TERC, TET3, TFB2M, TGFBR1, TGIF1, THAP5, THEX1, TMEM126A, 

TMEM136, TMEM14A, TMEM165, TMEM188, TMEM189-UBE2V1, TMEM26, 

TMEM40, TMEM41B, TMEM45A, TMEM64, TMOD1, TMX1, TNFAIP8L3, TNFSF4, 
TPM4, TRPC4, TRPM6, TRPM7, TSPAN12, TXNRD1, TYW3, UAP1, UBE2D1, 

UBE2W, UCHL3, UFM1, UPRT, UXT, VBP1, WDR44, WDR89, XBPP1, YWHAQ, 

ZCCHC10 

AACS, AAK1, AARS, ABCF3, ABCG2, ABHD14A, ACACA, ACIN1, ADAMTS17, 
ADD1, AGK, AGRN, ALDH3B1, ANKLE2, APLNR, AR, ARFGEF2, ARHGAP18, 

ARHGEF7, ARID1B, ARSB, ASXL2, ATF5, ATN1, ATXN2, ATXN7, AUTS2, B3GNT9, 

BAT2, BAT2L1, BAZ1B, BAZ2A, BCL9, BNC2, CAPN1, CASC3, CBL, CBR4, 
CEP110, CHD2, CKAP5, CLASP1, CLMN, CNDP2, CNST, COL4A2, COQ4, CPE, 

CREBBP, CUL7, CUX1, CXORF36, CYB5R3, DAAM2, DAB2, DAGLA, DCLRE1B, 

DCTN1, DHX30, DHX37, DIP2B, DOCK6, DOCK9, DUSP15, DVL3, EEF2K, 
EFTUD2, EHD2, EIF2B4, ELMO1, EMCN, EMP2, EPB41, FADS6, FAM59A, FASN, 

FBLIM1, FBLN5, FBN1, FBXL6, FBXL8, FES, FGD1, FIBIN, FLOT2, FLYWCH2, 

FOXJ2, FTSJD2, FUT4, FUT8, GALNS, GALNT10, GANAB, GBA2, GCC1, 
GCN1L1, GIT2, GLG1, GPR4, GTF3C1, GYS1, HCFC1, HECW2, HGS, HSD17B14, 

HSPG2, IFT122, IFT88, IGF2R, IGFBP2, IL11RA, INADL, INPP5D, INTS1, INTS3, 

IQGAP2, ITGA9, ITSN1, KDM2A, KLF12, KPTN, LAMA4, LARP1, LHPP, LNP1, 
LOC100137838, LOC100138783, LOC100295338, LOC100296937, 

LOC100298629, LOC100300734, LOC100336508, LOC100336586, 

LOC100336604, LOC100336651, LOC100336769, LOC100337072, 
LOC100337134, LOC100337236, LOC100337329, LOC507299, LOC509490, 

LOC510855, LOC511523, LOC511901, LOC512110, LOC512168, LOC512286, 

LOC517133, LOC517559, LOC518768, LOC523454, LOC524694, LOC524974, 
LOC527362, LOC527591, LOC529211, LOC533444, LOC537748, LOC538506, 

LOC539067, LOC616014, LOC767865, LOC783344, LOC785548, LOC785659, 

LOC790124, LRRC41, LRRK1, LRSAM1, MAP3K4, MAP3K6, MAPRE2, MCM4, 
MDN1, MECP2, MED12, MED22, MGC138976, MIB2, MLH3, MLL2, MMP2, 

MOBKL2A, MON1B, MORC2, MOV10, MPP5, MTMR14, MTMR15, MTOR, MUL1, 
MXD4, MYO18A, MYOF, MYST4, NAGK, NFIA, NFIC, NFIX, NUAK1, NUP214, 

NUP85, OIT3, OLFML1, OSBP, PAN2, PARP1, PARP4, PATL1, PBX1, PCNXL3, 

PCYOX1L, PCYT1B, PDZD2, PELP1, PEX1, PIK3R1, PKNOX2, PLIN3, PLOD3, 
PLXNB2, PLXND1, PMF1, POGZ, POLD1, POLL, POLR1A, POLR3A, POMT1, 

PPIL2, PPP1R13B, PPP2R5D, PRDM6, PRELP, PRKAB1, PRKACA, PRKCSH, 

PRKD2, PTPN14, PTPRF, PTPRS, RBM47, REV3L, RHBDF1, RNASEN, RNF123, 
RNF40, RPS6KA5, SAP130, SARS2, SART3, SCAF1, SEC16A, SEC24C, SELO, 

SEPN1, SETMAR, SF3B4, SFXN2, SLC12A6, SLC19A1, SLC46A3, SLC47A1, 

SLC7A8, SLC8A1, SMC1A, SMG1, SMYD4, SNRNP200, SPG11, SREBF1, SRGAP2, 
SRRM1, SUN2, TBCD, TH1L, TJP1, TLN1, TMCC1, TMEM41A, TMEM52, 

TMEM63A, TMEM8A, TNKS, TNRC6A, TNS3, TRAPPC9, TRIM44, TRRAP, TSC2, 

TSPAN18, TTC39A, TTLL4, UAP1L1, UBAP2L, UBE4B, UPF1, USP22, USP24, 
USP48, VAC14, VAV3, VPS39, WDR34, WDR81, WFDC5, WIZ, WNK1, XPC, 

YLPM1, ZBTB16, ZC3H4, ZCCHC11, ZNF385A, ZNF503, ZNF518B, ZNF787, 

ZRANB3, ZZEF1 
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 Up-Regulated Genes (26) Down-Regulated Genes (222) 

BiPhasic 

Response 

CRABP2, DES, FAM148A, FCHSD2, IL18BP, LOC100140276, 

LOC100336666, LOC100337178, LOC789021, LY96, MIR2475, 

NFKBIA, OXT, PDE4D, PENK, PTBP2, RUNDC3B, RUSC2, SEPW1, 

SRGN, TM4SF1, TMEM14C, TNFAIP3, UNC50, USP2, XIST 

ACAD10, ACAP3, ADAMTSL5, AEBP1, AFF1, AFF3, AGPAT1, AKAP13, ANXA11, AP1B1, ARAP1, 

ARHGEF11, ARSG, ASAP1, ATF6B, B9D2, C9H6ORF70, CABIN1, CAMKK2, CASKIN2, CCDC106, CCS, 

CELSR2, CIZ1, CLIC5, CNOT3, CNOT4, COG7, CPEB2, CPSF1, CRTC1, CRY2, DAB2IP, DENND4B, 

DHX57, DIS3L2, DOPEY2, DPF3, DTX2, EGFLAM, EMD, EP400, ERN1, EXOC3L, FAM13A1, FANCG, 

FBRS, FBXW12, FHOD1, FNTB, FRY, FZR1, G6PD, GALT, GBF1, GDPD5, GIPC1, GLE1, GRN, HADH, 

HEATR7A, HERC2, HEXDC, HOXC6, HSPA2, HUWE1, IKBKG, INO80D, ISYNA1, ITPR3, KIAA0406, 
KLHL18, KLHL25, LAMB2, LOC100297361, LOC100298868, LOC100336841, LOC100336912, 

LOC100337120, LOC100337133, LOC100337159, LOC100337193, LOC506074, LOC506315, 

LOC508226, LOC508997, LOC510844, LOC511420, LOC513500, LOC515954, LOC520505, LOC522998, 
LOC526847, LOC528987, LOC533805, LOC533894, LOC534002, LOC534434, LOC535053, LOC535946, 

LOC536128, LOC538693, LOC539015, LOC540077, LOC615274, LOC619120, LOC783362, LOC784903, 

LOC788113, LOC789485, LOC789747, LPCAT1, LRFN3, LTBR, MACF1, MAEA, MAMLD1, MAN2A2, 
MAP1S, MAP2K2, MARK2, MAVS, MDC1, MED25, MGC128008, MGC151975, MIR1287, MIR2450B, 

MIR2454, MLL, MOSPD3, MTP18, MTSS1L, MYL9, NADSYN1, NAV2, NCOA2, NCOA6, NGLY1, NLRX1, 

NOSIP, NOTCH1, NPNT, OGFOD2, ORAI1, PCGF2, PDPR, PEX6, PGAP3, PHC3, PIM2, PKD2L1, 
PLCB3, PLEKHM3, PLXNA2, PML, POU6F1, PPP1CA, PPP1R12C, PPP2R4, PRKCE, PRKDC, PSMF1, 

PTGDS, PTPRG, PXN, RAB11B, RAB1B, RFFL, RPTOR, RUNX1T1, SFRS14, SFRS8, SHROOM4, 

SLC27A1, SLC35A4, SLC37A4, SLC41A1, SLC9A1, SLC9A3R2, SMARCC2, SMG6, SNX29, SPTAN1, 
SRRM2, SYNE2, TACC2, TAF4, TAPBP, TBC1D8, TCF7L2, TIE1, TMEM127, TMEM138, TNRC6B, TP53, 

TPCN1, TRAFD1, TRAPPC1, TRIM25, TRIM45, TRPV2, TSNARE1, TSPAN5, TSPYL4, TTC28, TTLL3, 

UBR4, VPS13D, VPS37C, VRK3, WDR6, ZBTB20, ZC3H7B, ZEB2, ZFYVE26, ZHX3, ZNF414, ZNF496, 
ZNF605, ZNF618, ZNF828 
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