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Role of Endothelin Axis in Pancreatic Tumor Microenvironment (TME) 

Suprit Gupta, PhD. 

University of Nebraska Medical Center 2017 

Supervisor: Maneesh Jain, PhD. 

Endothelins (ETs) are a family of three 21 amino-acid vasoactive peptides ET-1, 

ET-2 and ET-3 that mediate their effects via two G-protein couple receptors ETAR and 

ETBR which are expressed on various cell types. Apart from their physiological role in 

vasoconstriction, there is emerging evidence supporting the role of endothelin axis (ET-

axis) in cancer. Due to the expression of ET receptors on various cell-types, ET-axis can 

exert pleotropic effects and contribute to various aspects of cancer pathobiology. 

Several studies have provided a fragmented picture of the diverse roles or ET-axis in 

various tumors. However, the comprehensive picture of the pathobiological role of this 

axis in any given cancer is poorly understood.  

Given that PC epitomizes the complexity of tumor microenvironment (TME), 

which is an active player in disease progression and therapy resistance, the overarching 

goal of this dissertation was to define the role of ET-axis in this lethal malignancy. 

Specifically, the dissertation was aimed at defining the expression pattern of ET axis in 

PC TME and elucidating the pathobiological significance of ET axis in PC. 

Immunohistochemistry (IHC) analysis of surgically resected tumor tissues from PC 

patients indicated expression of ECE-1, ET-1, ETAR and ETBR expression in both 

primary and metastatic lesions. In addition to tumor cells, ETAR and ETBR expression 

was observed on blood vessels (BV), stromal cells including stellate cells and infiltrating 

immune cells. The expression of ETAR and ETBR in various cellular compartments was 

also analyzed using marker for tumor cell (CK19), blood vessel (CD31), stellate cell 

(alpha SMA) and macrophages (CD68 and F4/80). Importantly, analysis of survival data 

showed ETBR positivity on BV is correlated with poor prognosis of the PC patients. 



iv 
 

Bioinformatics analysis of TCGA database revealed high positive correlation of the pro-

fibrotic gene signatures with both ETAR and ETBR particularly Collagen I (Col1A2, 

Col3A1, Col5A2, Col6A3), Platelet derived growth factor receptor beta (PDGFRβ), 

Fibroblast activation protein (FAP), suggesting a pro-fibrotic role of ET axis in PC. 

In the second part of the dissertation, we studied the impact of ET-axis inhibition 

in autochthonous tumors that develop in genetically engineered mouse model (KPC). 

Treatment with dual ET receptor antagonist Bosentan induced cell death in the 

autochthonous tumors, decreased IHC signal for extracellular matrix proteins (α-SMA, 

Collagen I, Fibronectin and CTGF). Transcriptomic analysis using fibrosis gene array 

indicated anti-fibrogenic effects of Bosentan in KPC tumors. Further, treatment of murine 

pancreatic stellate cells (PSCs) and human cancer associated fibroblasts (CAFs) with 

recombinant ET-1 in vitro induced the expression of pro-fibrotic genes was abrogated by 

selective inhibition of ETAR (BQ123) and ETBR (BQ788) signaling with synergistic effects 

observed with dual receptor inhibition. Further, ET-1 stimulation induced a significant 

increase in the p-ERK and p-AKT in a time dependent manner and dual receptor 

antagonist Bosentan significantly attenuated the ET-1 mediated induction. Our study 

also demonstrates that targeting ETAR with a specific inhibitor BQ123 enhances 

perfusion selectively in the tumor and reduces hypoxia in xenograft PC tumors. 

The third part of the dissertation describes a possible involvement of ET axis in 

inflammation associated pancreatic tumor progression in presence if mutated KrasG12D. 

The expression of ET axis components initially is restricted to pancreatic acinar and islet 

cell compartment in physiological conditions. However, during inflammation or injury the 

acinar expression is abrogated and is seen in early pre-cancerous lesions and 

neoplastic cells. The reprogramming of acinar phenotype into early pre-neoplastic 

lesions indicates an essential role of ET axis in pancreatic acinar to ductal metaplasia. 

This trans-differentiation is followed by excessive accumulation of ECM proteins and 
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inflammatory reaction in the pancreas, indicating further involvement of ET axis in 

influencing micro-environmental factors in initiation and progression of pancreatic 

cancer. 

The fourth part of the dissertation describes the generation of the mouse model 

aimed at delineating the role of ET-1 in PC progression. Genetically engineered mouse 

model of PC (K-rasG12D; Trp53R172H/+; Pdx-1-Cre) that harbors a Kras and p53 mutation in 

the pancreas were crossed with the ET-1 flox/flox mice.  

Taken together, studies in this dissertation demonstrate that ET axis plays a 

pleotropic role in the TME, and targeting ET axis can modulate the obstructive and 

immunosuppressive TME and make it potentially more amenable for chemotherapy and 

immunotherapy. 
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1. Synopsis 

Pancreatic cancer (PC) represents one of the deadliest malignancies with high 

incidence worldwide and poor survival. Despite recent advances in the treatment, 

modest benefits have been achieved. The complex tumor microenvironment of PC 

including desmoplasia, poor and heterogeneous blood flow, and a hypoxic environment 

limits the delivery and efficacy of therapeutic drugs. Endothelin (ET) isoforms, endothelin 

converting enzymes (ECEs) and receptors (endothelin A receptor, ETAR and endothelin 

B receptor, ETBR) referred to as the ET axis, plays a vital role in vascular homeostasis 

and tumor progression. Recently, role of ET axis is regulating various aspects of the 

tumor microenvironment has gain considerable interest such as a potential target for 

clinical opportunities and improving the clinical cancer management. The presence of 

well-characterized antagonist(s) for each of the molecular components of the axis holds 

promise for the treatment of cancer, however, the application of ET antagonists in PC 

therapy warrants further investigation. This review outlines and discusses the multiple 

roles of the ET axis in cancer progression, with major emphasis on pancreatic 

inflammation, cancer and cancer microenvironment.  
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2. Introduction to Endothelin(s) 

PC is among the most aggressive and intractable human malignancies and is a 

leading cause of cancer related deaths worldwide. Despite intensive clinical research 

efforts the last decade, we have witnessed the failure of many clinical trials with only 

marginal increase in survival benefit [1] [2]. A striking histological feature of PC is a 

pronounced desmoplastic tumor stroma comprised of cancer-associated fibroblasts, 

pancreatic stellate cells, infiltrating immune cells, macrophages and perturbed vascular 

network. The interactions between these cell types makes a dynamic reactive 

microenvironment around the pancreatic ductal cells which serves as physical barrier for 

drug delivery [3] [4]. In PC, the microenvironment under goes constant change in its 

composition during the course of tumor progression and the stromal compartment out 

numbers the tumor cells [5]. The autocrine and paracrine secretions of these cellular 

components with the tumor cells facilitate tumor progression. In the micro ecology of 

tumor progression, growth factors exchange between these participating players 

stimulate proliferation, migration, extracellular matrix synthesis, invasiveness, 

angiogenesis and metastasis of cancer cells [6] [7] [8]. One such mediator that is 

secreted by the cancer cells and tumor microenvironment components, is endothelins 

(ET) family members, first identified by Yanagisawa et al in 1988 form the porcine 

endothelial cells [9]. The ETs comprise three, 21 amino acids, endogenous, vasoactive 

isoforms ET-1, ET-2 and ET-3. ETs are characterized by a single alpha helix and two 

intra-molecular disulfide bridges produced by endothelial and epithelial cells and are 

widely distributed in various tissues. The pleiotropic effects attributed to this family of 

endothelin ligands are mediated by two G protein couple receptors, ETA receptor (ETAR) 

and ET B receptor (ETBR) [10] [11]. Collectively, endothelins, their receptors and the 

endothelin converting enzymes are referred as “endothelin (ET) axis” which participates 
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in physiological functions such as vaconstriction vasoconstriction, vasodilation, cell 

growth, differentiation and hormone production. Pathophysiological implication of the 

axis is seen in aberrant expression of the ET-1 and the receptors in congestive heart 

failure, pulmonary hypertension, diabetes, and renal failure [12] [13]. Recently, the ET 

axis was implicated in signaling and formation of signaling complexes by coupling to 

other G family of proteins as well as scaffold proteins like β-arrestin [14]. In addition to its 

potent vasoconstrictive ability, aberrant expression of ET axis is also reported in many 

solid tumors such as breast, ovarian, prostate, bladder and lung cancers [15]. The 

autocrine and paracrine feedback loops between tumor cells and stromal cells facilitated 

by ET axis promotes tumor growth by activation of diverse array of signaling networks 

such as proliferation, apoptosis, formation of new vessels, immune modulation, invasion 

and metastatic dissemination [16]. As a result, the cellular behavior of ET axis depends 

on environmental cues and insults from the microenvironment. This review outlines the 

role of ET axis in physiological and pathological conditions of the pancreas with potential 

implications for future therapy  
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3. The Endothelin System 

ET isoforms are synthesized in a three-step process. The primary translation 

product is a 212 amino acid pre-proendothelin and is cleaved by furin proteases to yield 

a biologically inactive 38 amino acid (pro-peptide) endothelin-1. The pro-peptide form is 

then processed by endothelin converting enzymes (ECEs) to yield the biologically active 

21 amino acid cyclic peptide (Figure 1). Of the three isoforms, ET-1 is the most well 

characterized which is synthesized and released continuously from endothelial cells. In 

humans ET-1 gene maps to chromosome 6, contains five exons, four introns and 5’ and 

3’ flanking regions that spans approximately 6.8 kb of DNA. The mature ET-1 peptide 

has two disulfide bridges. Its carboxy terminus is for receptor binding and the amino 

terminus is required for determining the receptor binding affinity, which makes it unusual 

compared to other bioactive peptides. The expression of the pre-proET-1 is determined 

by transcription activation of EDN1 gene and is under the control of TATA box containing 

promoter [17]. Regulation of the EDN1 gene occurs at the level of transcription and is 

induced by different stimuli including hormones (insulin, cortisol, aldosterone, leptin, and 

adrenaline), growth mediators (angiotensin II, transforming growth factor beta, and 

inflammatory mediators), shear stress and hypoxia. Various transcription factors are 

known to stimulate the transcriptional activation of EDN1 gene such as functional 

activator protein-1 (AP-1), proto-oncogenes (c-fos, c-jun), hypoxia inducible [17, 18] 

factor-1 (HIF-1), GATA protein binding-2, transforming growth factor-β (TGF-β) at the 

proximal promoter and nuclear factor-κB (NF- κB), interferon-γ (IFN- γ), tumor necrosis 

factor-α (TNF- α), E box and nuclear factor of activated T cells (NFAT) at the distal 

promoter. Once activated, ET-1 activates several signaling pathways such as protein 

kinase C (PKC), c-JUN terminal kinase, insulin like growth factor, mitogen activated 

protein kinase (MAPK) and epidermal growth factor receptor (EGFR). In addition, the 
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tissue specific regulation of ET-1 is accomplished by epigenetic modifications. For 

example, in renal duct cells and fibroblasts, EDN1 is hypo methylated and hyper 

methylated respectively to influence transcriptional activity [19]. Also, in embryonic stem 

cells using a stable reporter gene system, methylation increased the level of EDN1 in 

endothelial cells [20]. In renal epithelial cells Stow et al showed that aldosterone 

stimulated ET1 expression by methylation at H3 lysine 4 residues [21]. In breast cancer 

cells, Matteucci et al demonstrated an impairment of ET-1 expression and decreased 

mRNA level due to epigenetic disturbances [22].The presence of AUUUA motifs at the 

3’-untranslated region of EDN1 mRNA is responsible for regulating mRNA stability [23] 

[24]. The ET-1 mRNA has a short half-life and half-life of secreted ET-1 peptide in 

circulation is 1 min [15]. In endothelial cells, dual pathways synthesize ET-1. In regulated 

pathway, ET-1 is stored in the secretory granules known as Weilbel-Palade bodies, 

which are responsible for maintaining the vascular tone. Once activated in response to 

external stimulus, these bodies de-granulate and fuse with the plasma membrane, 

releasing its contents causing further vasoconstriction [25]. ET-1 is also released from a 

constitutive secretory pathway that appears to be the prime secretory mechanism 

operating at the level of transcription in most cell types [26]. Additionally, the clearance 

of ET-1 is a dynamic process and is governed by two pathways. Using Chinese Hamster 

Ovary (CHO) and COS cells, Bremnes and colleagues demonstrated that both ET 

receptors follow different routes of intracellular trafficking following a clathrin dependent 

endocytosis [27]. After co-localization in early Rab5 endosome upon ET-1 stimulation, 

ETAR recycling progressed through a pericentriolar dependent pathway and appeared 

on the plasma membrane whereas ETBR is subject to degradation through the 

lysosomal pathway and is responsible for clearance of ET-1. Abassi et al studied the 

metabolism in vivo and suggested the catabolism of ET-1 is by neural endopeptidase 

EC.3.4.24.11 [28]  
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ECEs belong to the M13 group of proteins and has three isoforms: ECE-1, ECE-

2 and ECE-3. These enzymes share 59% homology with each other and their function is 

inhibited by phosphoramidon [29]. ECE-1 and ECE-2 are most prominent ECEs, belong 

to the type II membrane bound metalloprotease family and show preference for cleavage 

of ET-1 over ET-2 or ET-3 [30]. While ECE-1 is predominantly expressed on the cell 

surface and has broader tissue distribution, ECE-2 exhibits primarily neuroendocrine 

distribution [31] [32]. In addition, Nakano et al reported that conversion of pro-ET-1 by 

chymase cleavage of the Tyr31-Gly32 bond to generate a novel 31 amino acid ET 

peptide, that causes constriction of smooth muscle cells [33] [34]. ECE-1 is comprised of 

a short cytoplasmic N terminal tail, is localized to chromosome 1 and has four isoforms 

(ECE-1a-d) derived from single gene from differential gene splicing [35] [36] [37]. The 

ECE-1a isoform is mainly responsible for generating the functional secreted ET-1 after 

cleavage of pro-ET-1 [35]. All these isoforms differ in their N-terminal amino acid 

sequences and reveal different subcellular localization [38]. ECE-1c is the predominant 

isoform expressed on the cell surface, with ECE-1a and ECE-1d, whereas ECE-1b is 

found intercellular [36]. In addition, Kuruppu and co-workers reported that the expression 

and localization of the ECE1 is the rate-limiting step in the generation of ET-1 [39].  

Further insights in the biology of ECE-1 come from the study of Muller et al who 

demonstrated different subcellular localizations of ECE-1 isoforms [40]. In 

neuroendocrine AtT-20 cells, ECE-1b and ECE-1d are present in late endosomes and 

early recycling compartments respectively. Additionally, in human endothelial cells, both 

ECE-1a and ECE1c isoforms are present, however ECE-1a shows nuclear 

immunoreactivity and co-localization with nucleolin [41]. Interestingly, difference in the 

sub-cellular localization of these isoforms has opposing effects on cellular behavior. 

ECE-1a and ECE-1c promote and suppress invasion respectively, whereas 

overexpression of ECE-1a abolishing the activity of ECE-1c in prostate cancer cells [42]. 
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The other two isoforms ET-2 (EDN2) and ET-3 (EDN3) are present on chromosome 1 

and chromosome 2 respectively [43]. The kidney and the intestine primarily express ET-

2, ET-3 is found in brain, intestine, lung and kidney [12]. ET-2 differs from ET-1 by two 

amino acids and both isoforms has equal affinity for both ETAR and ETBR. In contrast, 

ET-3 differs from ET-1 by six amino acids and is selective for ETBR compared to ETAR 

[10]. Interactions of all three isopeptides with receptor controls several fundamental 

processes of cell growth, tissue differentiation and repair. The gene for ETAR and ETBR 

is located on chromosome 4 and 13 respectively and shows a high degree of 

conservation between human and animal species. Both receptors share 63% sequence 

homology with each other over a 420-residue match length. The EDNRA gene contains 

427 amino acids and has eight exons and seven introns while EDNRB gene contains 

442 amino acids and has 7 exons and 6 introns [10] [44]. The differences in the C-

terminal sequences of two ET receptors allow G-protein coupling and results in divergent 

effects following ligand activation [45]. Both receptors are present in variety of cell types 

including vascular smooth muscle cells, endocrine cells and reproductive cells whereas 

the ETBR is also abundantly expressed in endothelial cells [46] [47] [48]. The 

vasoconstriction response is through ET-1/ETAR interaction in the vascular smooth 

muscle cells. In the absence of smooth muscle, binding of ET-1 to ETBR causes 

vasodilation by the release of vasodilator such as nitric oxide (NO) [49]. In addition, 

Karne et al reported the presence of a third ET receptor subtype (ETCR) specific for ET-

3, in Xenopus laevis. ETCR is comprised of a 424 amino acids and shares 47% and 52% 

sequence similarity to ETAR and ETBR respectively [50]. Receptor activation is complex 

exhibiting diverse cellular outcomes by interaction with different G-protein coupled cells 

surface receptors. Extracellular binding of ET-1 to ETAR induces activation and coupling 

to Gαq/11 and stimulation of phospholipase C. This in turn leads to increase inositol 

triphosphate and diacylglycerol levels and enhance protein kinase C expression with 
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rapid elevation in Ca2+ levels which are responsible for vasoconstriction. On the 

contrary; engagement of ETBR with ET-1 stimulates vasodilation by Gαq/11 to induce 

phosphoinositide hydrolysis [35]. In the context of cancer, ET-1 and its receptors are de-

regulated in many solid tumors and melanoma which contribute to tumor growth and 

progression. Studies have also indicated that autocrine signaling across the ET-1 axis 

plays a vital role in tumor cell proliferation. The interaction of the ET-1 ligand to its 

cognate receptor in turn activates a sequence of intracellular events that act in a 

synergistic fashion to foster cell proliferation [15]. Interestingly, ET-1 also promotes cell 

proliferation and act as a protective factor by inhibiting apoptosis in different cell types. In 

ovarian and prostate carcinoma cells, ET-1 modulates phosphatidyinositol 3-kinase 

activation and protects cells against paclitaxel-induced apoptosis by significantly 

inhibiting the levels of pro-apoptotic proteins such as Bad and Bax [51] [52]. In addition 

to contributing in tumorigenic potential, ET-1 also regulates the tumor microenvironment 

interactions that are important in maintenance and metastatic spread of the disease. 

Through autocrine and paracrine signaling across the axis and amplification of the cross 

talk between different components of microenvironment, ET-1 facilitates tumor-stroma 

interactions, angiogenesis and lymphangiogenesis, epithelial to mesenchymal transition, 

stemness and therapy resistance [10]. In contrast, the role of other two isoforms in 

human cancer is not much explored and few studies have attempted to define their 

possible role in cancer biology. In basal cell carcinoma aberrant activation of Hedhehog 

(HH) signaling is associated with ET-2 over-expression and the presence of Gli-1 

binding sites at the 3’ promoter of EDN2 gene indicate that the expression is under the 

influence of HH signaling pathway [53]. Moreover, in human breast cancer 

pathogenesis, EDN2 is overexpressed and co-localizes with the hypoxic areas within the 

tumors [54]. Both ET-1 and ET-2 enhance the invasive and metastatic potential of tumor 

cells when co-cultured in presence of macrophages, suggesting ET-2 would mimic the 
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actions of ET-1 [55]. In addition, ET-2 is a potent chemo-attractant for macrophages and 

leads to increased activation dependent on ETBR signaling [56]. Interestingly, in breast 

and cervical cancers, epigenetic inactivation of the EDN3 gene is associated with 

reduced expression and gene silencing [57] [58] [59]. Also, hyper-methylation of both 

ET-2 and ET-3 is reported in human colon cancer suggesting that silencing of these 

genes is essential step and pre-requisite for cancer development to evade competition 

with ET-1 for both receptors [60] [61]. Recent evidence indicates that a reciprocal 

relationship exists in expression of ET-1 and ET-3 in glioblastoma stem cells and 

glioblastoma tumors [62] inferring different isoforms are expressed in distinct cell 

populations. Evidence indicates that ET-3 (expressed by the metastatic melanoma cells) 

promotes survival, proliferation and invasion via ETBR signaling and interaction with HIF-

1α dependent machinery [63] [64].  

 

4. Endothelin in Inflammation 

Rudolf Virchow first observed the presence of leukocytes within tumors and 

indicated a possible association between inflammation and cancer [65]. To date, several 

lines of evidence support this notion that inflammatory insults are a trigger and are pre-

requisite for cancer initiation In physiological conditions, in response to tissue damage or 

attack by pathogens, neutrophils first infiltrate the inflamed site, followed by 

macrophages and mast cells via activation of diverse array of signaling pathways and 

various soluble and insoluble mediators. The orchestrated actions of inflammatory cells 

strengthen the host defense, participate in tissue repair and pathogen elimination to 

decrease inflammation and regain normal tissue homeostasis. However, if the 

inflammation continues or it is not decreased, the cellular response changes to chronic 

inflammation, which leads to dysplasia and metaplastic changes thereby promoting the 
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risk of cancer initiation and progression. Epidemiological and clinical studies suggest 

that 15-20% of all cancer deaths are correlated with chronic inflammation and infection 

[66]. In the gastrointestinal tract, prolonged infection by Helicobacter pylori is coupled 

with gastric cancer and mucosa-associated lymphoid tissue with lymphoma. In the liver, 

chronic infection caused by Hepatitis C and B viruses increases the risk of hepatocellular 

carcinoma. Infection with Schistosoma haematobium and human herpes virus type 8 

induces chronic inflammation and increases the risk in urinary bladder and Kaposi’s 

sarcoma respectively [67] [68]. Also, cholangiocarcinoma and nasopharyngeal 

carcinoma are preceded by chronic inflammatory infiltrate stimulated by Clonorchis 

sinensis and Epstein Barr virus infection respectively [69]. In addition to microbial 

infection, some chemical irritant or immune deregulation and autoimmunity can also 

contribute to chronic inflammation and contribute significantly to tumor development. For 

example, in inflammatory bowel disease (IBD) the pro-tumorigenic niche created by 

effector CD4+ T cells and IL-6 increases the risk of colorectal cancer [70]. Similarly, 

inflammatory diseases such as chronic pancreatitis, barrett’s metaplasia, chronic 

cholecystitis, chronic asthma and endometriosis may increase the risk of pancreatic 

cancer, esophageal cancer, gall bladder cancer, bronchial cancer and endometrial 

carcinoma respectively [69] [71] signifying the critical role of inflammation in cancer 

growth. In contrast, a chronic cutaneous inflammatory condition, psoriasis depicts an 

inflammatory state that is rarely associated with cancer risk [72]. On the other hand, 

exposure to environmental cues can also potentiate chronic inflammation. Long-term 

exposure to cigarette smoke can cause chronic obstructive pulmonary disease (COPD), 

a potential risk factor for lung cancer by activating IKK-β/NF-κB and JNK-1 dependent 

inflammation [73] [74]. Dostert et al demonstrated that the Nalp3 inflammasome present 

in asbestos/silica particulate matter contribute to hepatic fibrosis and lung cancer by 

release of pro-inflammatory cytokine IL-1β [75]. Also, obesity can play a role in 
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development of hepatocellular carcinoma by release of inflammatory mediators like IL-6 

and TNF-α [76].  

Several studies showed the pro-inflammatory role of ET-1 in the pathogenesis of many 

infectious diseases like bacterial meningitis, cerebral malaria, HIV encephalitis, sepsis 

and chagas disease in addition to its function as a potent vasoconstrictor [77]. ET-1 is 

ubiquitously expressed by the endothelium throughout the body in normal physiological 

conditions, however, in response to external stimuli such as hypoxia, cytokines, reactive 

oxygen species, angiotensin II or shear stress exerted on the endothelium facilitate 

increase secretion of ET-1 [78]. Elevated levels of ET-1 is found in macrophages [79], 

fibroblasts [80], mesenchymal stem cells [81] neutrophils and leukocytes [82]. 

Interactions of these cell types with each other and with the tumor cells is believed to 

drive inflammation associated cancers. The cellular cascade of events mediated by ET-1 

within the tumor microenvironment releases various cytokines and chemokines, 

promotes trafficking of immune cells and play a crucial role in tumor growth and 

progression.  

4.1. ET in fibroblasts 

The strength and elasticity provided by the extracellular matrix components play 

a major role in maintenance of cellular architecture and tissue homeostasis. In normal 

wound healing, inflammatory cells are recruited to the site of injury to remove necrotic 

and apoptotic cells followed by limited deposition of ECM. In pathological conditions, due 

to excessive scarring or repeated injury, the conditions persist and inflammation fails to 

decrease and eventually contribute to development of fibrosis, which is commonly 

observed in idiopathic pulmonary fibrosis, hepatic fibrosis and systemic sclerosis [83] 

[84]. An increasing body of evidence indicate the induction to various cell types such as 

resident fibroblast, stellate cells, vascular pericytes, circulating bone marrow derived 
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monocyte to a myofibroblast like phenotype upon ET-1 stimulation [85]. The role of ET-1 

as a pro-fibrogenic factor in the pathologies of various organs has gained considerable 

attention and interest as witnessed during the last decade. Mechanistic and 

experimental evidences implicate the regulation of ET-1 at the transcriptional level. 

Several factors such as shear stress, hypoxia, TGF-β, IFN-γ, angiotensin II and thrombin 

up-regulate; whereas, nitric oxide down regulate the expression of ET-1 mRNA [86] [87]. 

The involvement of ET-1 in diverse biological processes can be attributed to its 

interaction with various transcription factors such as GATA, Smad, TGF-β and activator 

protein-1 (AP-1) [23] [88].  

The pro-fibrotic role of ET-1 in lung pathology is well studied. Elevated levels of 

ET-1 peptide and ET receptors are associated with scleroderma associated lung 

disease. In addition, increased concentrations of ET-1 in the plasma and 

bronchoalveolar lavage (BAL) fluids of patients with scleroderma and idiopathic 

pulmonary fibrosis is reported [89] [90]. Fibroblasts isolated from the lungs of systemic 

sclerosis patients showed elevated levels of ET-1; and ET-1 applied to lung fibroblasts 

induced a contractile phenotype with enhanced expression of alpha smooth muscle actin 

(α-SMA) that could be reversed by antagonizing ET-1 signaling [91]. In a lung fibroblast 

cell line, ET-1 via ETA receptor showed a dose and time-dependent increase in the 

CTGF and α-SMA by a JNK-AP1 dependent pathway [92] or by acting downstream of 

TGF-β signaling pathway [93]. In vivo evidence suggests increased ET-1 

immunoreactivity in the epithelium surface and inflammatory cells of bleomycin-induced 

lung fibrosis has a significant effect on collagen deposition upon treatment with dual ET 

receptor antagonist, Bosentan [94] [95], suggesting the ET-1/ET receptor axis an 

attractive target for treatment of lung fibrosis. The first large, multinational, double blind 

clinical study to test the efficacy of Bosentan in IPF patients was BUILD-1 (Bosentan 

Use in Interstitial Lung Disease). Pharmacologial inhibition of the axis in patients with 
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IPF did not show superiority over placebo [96]. Compare to BUILD-1, a second clinical 

trial BUILD-3 failed to provide any improvement in the length of life using the primary 

end point analysis in IPF patients [97]. In context of liver fibrosis, activation of hepatic 

stellate cells is a central event, which subsequently progresses to cirrhosis from 

prolonged injury, results in excessive scarring. ET-1 is constantly produced by liver 

parenchymal cells and stellate cells in response to injury and induces a pro-fibrogenic 

response in an autocrine and paracrine manner [98]. ET-1/ET receptors signaling in 

stellate cells promotes proliferation, enhanced contraction, increase hepatic resistance 

and blood flow, which is abrogated by the mixed ETA/ETB antagonist Bosentan and 

ROCK inhibitor [99] [100] [101] [102]. In fact, ET-1 increases TGF-β expression and 

collagen synthesis by eliciting Ca2+ release, however selective blockade of ETAR 

inhibits collagen deposition [103] [104] [105]. Further, pre-clinical studies also indicate 

the anti-fibrotic effects of ETAR antagonism by ambrisentan and darusentan by inhibiting 

the activation of stellate cells, extracellular matrix synthesis and ischemia respectively in 

animal models [106] [107]. The pro-fibrotic actions of ET-1 and its ability to promote 

major phenotypic transformation in hepatic fibrosis are regulated by many factors. Tumor 

necrosis factor-α (TNF- α) has shown to increase ET-1 levels in rat hepatic stellate cells 

through an IKK-JNK dependent signaling [108]. In human stellate cells, treatment with 

angiotensin II and TGF-β stimulate ET-1 release by stabilization of ET-1 mRNA by a 

PI3K/AKT dependent pathway which was abolished by ETAR (BQ123) and Ang-II 

(losartan) blockers [109] [110]. In addition, studies by Zhan and co-workers 

demonstrated the effects of ECM protein fibronectin in enhanced ET-1 release from 

activated stellate cells in an integrin and ERK dependent fashion [111]. The beneficial 

effects of ET axis antagonism encourage the use of testing of antagonists in clinical 

settings; however liver toxicity observed in patients with pulmonary hypertension limits 

it’s use [112]. In a double-blind randomized study, treatment with BQ123 and BQ788 on 
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hemodynamics in liver cirrhosis patients fails to provide significant benefit over palcebo 

control; suggesting the use in clinical settings warrants further investigation [113].  

All three ET isoforms and both receptors are present in the kidney and the 

expression of ET-1 and ETAR progressively increase with nephritis [114]. The podocytes 

cells present in the Bowman’s capsule, and mesangial cells express increased levels 

ET-1 and receptors in response to cytoskeletal remodeling and glomerular permeability 

[115] [116] [117] [118]. In renal physiology and pathophysiology, ET-1 plays a pleiotropic 

role in cell proliferation, podocyte dysfunction, inflammation, fibrosis and pathobiology of 

the chronic kidney disease [119]. Enhanced expression of ET-1 and the ETBR is 

reported in glomerular endothelial cells in patients with renal disease, with no difference 

in ETA receptor expression [120] [121]. From the perspective of fibrosis, over expression 

of ET-1 and ET-2 in transgenic mice and rats respectively is associated with kidney 

pathophysiology, pronounced renal fibrosis, collagen accumulation and 

glomerulosclerosis [122] [123]. Increased production of ET-1 in renal vessels is 

correlated with increase resistance and collagen I formation in hypertensive rats [124]. 

Treatment with recombinant TGF-β2 increase tissue ET-1 levels and fibrosis, however, 

systemic treatment with TGF-β2 neutralizing antibody, CAT-152 ameliorates the disease 

[125] [126]. Inhibition of ET signaling has pronounced effects in various renal injury 

models; with attenuation of fibrosis, hypo cellularity, a decrease in the ECM matrix 

components, and regression of vascular fibrosis. [127] [128] [129]. Compare to hepatic 

fibrosis, the pro-fibrogenic outcomes of ET-1 are mediated by Ang II where increased 

accumulation of collagen I is observed, and treatment with either ET receptor or Ang II 

inhibitors reduces the renal fibrogenic response by blocking TGF-β signaling [130] [131]. 

Despite of their encouraging results in pre-clinical settings, ET axis antagonists achieved 

moderate success in clinical trials. In diabetic nephropathy patient treatment with ETAR 

inhibitor Avosentan was associated with congestive heart failure, although a reduction in 
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proteinuria was observed [132]. In a randomized double blind study, a protective effect 

of avosentan in combination with sitaxsentan (ETAR selective) was observed in kidney 

and hearts in patients [133]. In a separate study, another ETAR antagonist, Atrasentan in 

combination with a renin-angiotensin system blocker reduces albuminuria and provided 

better renal outcome than Atrasentan alone [134] [135].  

 4.2. ET in Immune System 

The biological role of ET-1 in immune response and regulation of the immune 

microenvironment is well documented. The classic antigen presenting cells, dendritic 

cells (DC), which are responsible for anti-tumor immunity, also produce ET-1 ligand and 

express both functional ET receptors, at significantly increased levels during DC 

maturation. However, in the context of DC maturation, both receptors display reciprocal 

effects, posing a unique target for immunotherapy [136]. Guruli et al. showed that 

selective targeting of ETAR using Atrasentan promotes DC apoptosis, decrease 

expression of DC marker CD83 and cytokine IL-12, and abrogates the ability of DCs to 

stimulate T cells. However, ETBR blockade by A192621 counteracted the effects of 

ETAR antagonism and promoted DC survival, implicating the involvement of autocrine 

and paracrine loops in DC function and maturation. Additionally, stimulation of human 

monocyte derived DCs with TLR2 and TLR4 agonists enhanced ET-1 production in a 

dose and time dependent manner, which could subsequently be inhibited by a HIF-1α 

inhibitor [137]. In addition to DCs, both ET receptors are present in B-lymphocytes, a 

subset of T cells (CD4 and CD8), monocytes and neutrophils isolated from normal and 

systemic sclerotic patients [138] [139]. Compared to normal B cells, over expression of 

ET-1 and ETAR is reported in circulating chronic lymphocytic leukemia B cells. Moreover, 

ET-1 mediated survival; proliferation and drug resistance was abolished by ETA receptor 

antagonism [140]. In addition, B cell depletion with rituximab blunted ET-1 mRNA levels 

in response to placental ischemia [141]. In human ovarian tumors, transcriptional 
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profiling of endothelial cells suggests over expression of ETBR and is correlated with 

poor prognosis and absence of T infiltrating lymphocytes (TILs). Moreover, blockade of 

ETBR by BQ788 leads to an increase in intercellular adhesion molecule-1 (ICAM-1) 

expression, increased T cell homing and adhesion to tumors [142]. In contrast, selective 

ETAR inhibition prevents the stimulation of ICAM-1 and recruitment of anti-tumor immune 

cells [142]. Altogether, these studies suggests the potential of ET axis in cancer 

immunotherapy and underscore an inverse association of ETAR and ETBR where dual 

ET receptors antagonism target tumor cells and enhance T cell infiltration by ETAR and 

ETBR respectively. Recently, study in malignant gliomas demonstrated an increased 

expression of ETBR with tumor grade correlated with fewer infiltrations of cytotoxic T 

cells (CTLs), signifying the critical role of ETBR signaling in the homing of T cell 

population to tumors [143] [144]. In contrast, ETBR expression correlated with micro-

vessel density and tumor angiogenesis in oesophageal squamous cell carcinoma and 

not with TILs [145]. In hemolysis-elevated liver enzymes-low platelet (HELLP) syndrome, 

ETAR antagonism decreased ET-1 and IL-17 levels and was accompanied by paucity of 

CD4+ and CD8+ T lymphocytes [146]. Additionally, in multiple sclerosis signaling 

through ETAR induced IL-17 secretion from CD+T cells and was significantly inhibited by 

BQ123 [147]. Also, in granulomatosis polyangiitis (GPA) patients, ETBR expression in 

the lesions T lymphocytes predominates the ETAR expression [148]. Further, 

characterization of ET-1 promoter identified two binding sites for nuclear factors of 

activated T cells (NFAT) [149], which is a key regulator of T cell development and 

function [150]. In both pulmonary arteries and osteoblasts, ET-1 activates calcineurin 

and promotes nuclear transport of NFAT, which indicates a potential interaction within 

the immune microenvironment [151] [152]. In transgenic mice, over expression of ET-1 

significantly increased the density of CD4+ T cells compared to age matched controls 

[153].  
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Several observations have also linked the orchestrated actions of ETs in 

neutrophils, monocytes and macrophages within the complex host microenvironment. 

Previous studies have indicated contradictory roles of ETs as chemoattractant for 

monocytes and neutrophils. ET-1 ligand has been earlier shown to be strong chemo 

attractant [154] or non-chemo attractant for blood monocytes [155]. Interestingly, a 31 

amino acid bioactive peptide exhibited significant chemotactic activity towards 

monocytes and neutrophils compared to 21 amino acid ET-1 peptide and big ET-1. The 

enhanced chemo taxis is complemented by increase in intracellular calcium levels and 

was inhibited by selective A receptor antagonism (BQ123), and not by selective B 

receptor inhibition (BQ788) [156]. Also, ET-1 induced a chemo kinetic migration of rabbit 

peritoneal monocytes dependent on ETA receptor [157]. In addition to ET-1, interaction 

of ET-2 and ET-3 with both ETAR and ETBR stimulated migration of neutrophils in a 

concentration dependent manner [158] [159]. Grimshaw et al. reported that hypoxia 

induced increase in ET-2 production act as a chemo attractant for macrophages and 

monocytes dependent on ETBR, indicating a possible role of ET-2 in facilitating the 

recruitment of inflammatory cells [56] [160]. In human monocytes, ET-1 has been shown 

to stimulate pro-inflammatory NF-κB pathway and drive the expression of CD40 but not 

IL-6 in an ETAR dependent manner [161] [162]. Moreover, infection of the U937 

monocytic cell line with Chlamydia pneumonia increased expression of ET-1, further 

indicating its possible involvement in acute and chronic inflammation [163] [164]. Also, 

Trypanosoma cruzi infection in cardiac myocytes induces pro-inflammatory mediators 

and ET-1 release and subsequent activation of NFAT signaling pathway [165]. More 

recently, in apolipoprotein E knockout transgenic mice, ET-1 over expression in the 

endothelium increases oxidative stress, inflammation and monocyte/macrophage 

accumulation [166]. However, reduction in macrophage dependent inflammation in Csf1 

mutant mice with over expressing ET-1 diminishes vascular injury and the inflammatory 
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cell population [167]. Within the tumor microenvironment, autocrine and paracrine 

signaling between the cancer cells and macrophages accelerate the infiltration towards 

the inflamed sites. In bladder cancer, ET-1/ETAR interaction increases migration of both 

tumor cells and tumor-associated macrophages (TAMs) with enhance production of IL-6, 

MMPs and CCL2, accompanied by increase in metastatic colonization in the lung via 

ruptured vascular integrity. Interestingly, dissemination of tumor cells and diminution of 

TAMs is blocked by ETAR antagonist, zibotentan [168].In an experimental breast cancer 

model, ET axis mediates lung metastasis and trans-endothelial migration of breast 

cancer cells stimulated by macrophages [169]. Additionally in a rat model, stromal 

deficiency of the ETBR was correlated with reduced metastatic spread, infiltration of 

TAMs and production of TNF-α, suggesting a pivotal role of the ETBR in tumor 

progression [170].  

4.3. ET in endothelial cells 

In addition to its potent mitogenic effect on fibroblasts, smooth muscles and 

tumor cells, ETs also control the proliferation of blood and lymphatic endothelial cells. 

Interaction of  ET-1 and ET-3 with ETBR stimulate the proliferation and migration of 

endothelial cells in a dose dependent manner [171] [172] [173]. In endothelial cells, ET-1 

modulates the angiogenesis process and exhibits a potent effect in combination with 

VEGF. ET-1 stimulates release of MMP-2, which allows sprouting and migration of 

endothelial cells and formation of vascular cord-like structures indicating that ET-1/ETBR 

interaction favors neovascularization in concert with VEGF [174] [175]. Previous 

observations demonstrated that both VEGF and ET-1 stimulate each other’s expression. 

In bovine aortic endothelial cells, VEGF induces ET-1 mRNA expression and ET-1 

secretion while in vascular smooth muscle cells, ET-1 acts on ETAR to stimulate VEGF 

mRNA and VEGF secretion [176], showing a coordinated role of VEGF and ET-1 in a 

physiological conditions. In pathological conditions, including angiogenesis and lymph 
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angiogenesis, the levels of VEGF and ET-1 are influenced by various environmental 

cues, including hypoxia. Some of the earliest evidence about the role hypoxia in 

influencing endothelin expression comes from the studies by Kourembanas et al. who 

demonstrated that oxygen tension increases ET-1 transcription and secretion in 

endothelial cells [177] by induction of the AP-1 transcription factor [178]. Under normal 

oxygen conditions, HIF-1α is subjected to proteasomal degradation by E3 ubiquitin 

ligase complex, catalyzed by the prolyl hydroxylase domain (PHD), which acts as an 

oxygen sensor [179]. However, during oxygen tension conditions, HIF-1α is stabilized 

and binds to hypoxia responsive elements (HREs) to induce transcription of angiogenic 

genes such as ET-1, VEGF and erythropoietin [180] [181] [182]. In cancer cells, ET-1 

stabilizes HIF-1α in normoxic and hypoxic conditions by inhibiting PHD2 expression and 

promoter activity by acting on the ETAR and ETBR, indicating that a reciprocal 

relationship exists between ET-1 and HIF-1α [183] [184]. In chondrosarcoma cells as 

well, ET-1/ ETAR interaction promotes tumor growth and angiogenesis by inducing HIF-

1α and VEGF levels [185]. Also, in human lymphatic endothelial cells, ET-1 control the 

stability of both HIF-1α and HIF-2α by promoting its nuclear accumulation and by down 

regulating PHD2 hydroxylation [186]. Once stabilized, the ET axis promotes and 

interacts with the HIF-1α dependent machinery to drive the expression of VEGF family of 

proteins VEGFA, VEGFB, VEGFC and VEGFR3 receptor [64] [175]. Indeed a reciprocal 

interplay exists within the hypoxic microenvironment mediated by HIF-1α/HIF-2α in 

melanoma and endothelial cells linking ET-1/ETBR to VEGF A/C accelerating 

neovascularization and tumor growth, signifying the presence of autocrine/paracrine 

circuit [187]. Within the tumor microenvironment, β-arrestin controls ET-1 and VEGF 

activity epigenetically by interacting with HIF-1α, and ET-1 itself to modify the 

microenvironment by driving the expression of chemokine receptors dependent on ETAR 

and hypoxic machinery [188] [189]. In many solid malignancies, increased ET-1 and ET 
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receptors expression is coupled with increase VEGF expression. In ovarian carcinoma, 

increase expression of ET-1 and both GPCRs is significantly correlated with VEGF 

expression and micro vessel density implying a mutual relationship between ET-1 and 

VEGF during neovascularization, as this angiogenic response can be altered by ET 

receptor blockade [190]. In addition to ET-1, HIF-1α also modulates and stabilizes ET-2 

and acts as a survival factor in breast tumor cells via ETBR signaling [54]. In breast 

carcinoma, a significant relationship exists between HIF-1α and the pro-angiogenic 

genes, ET-1 and VEGF-C, where enhanced invasion of MCF-7 mediated by ET-1 is 

counteracted by the ETAR antagonist atrasentan [191] [192]. Expression of ET-1, ETAR 

and ETBR has been correlated with VEGF expression, intratumoral vascularization, 

increased lymphatic dissemination, and the elevated levels of ETAR in primary breast 

cancer are associated with decreased overall diseased free survival [193]. Furthermore, 

studies have shown that ET-1 induces lymphatic vessels to grow and invade. ETBR and 

ET-1 were significantly upregulated in lymphatic endothelial cells derived from metastatic 

lymph nodes, suggesting the role of ET-1/ETBR signaling in angiogenesis and lymph 

angiogenesis [175] [194] [195]. Interestingly, mathematical modeling and global 

transcript analysis of melanoma cell lines identified ETBR as one of the genes linked with 

aggressive phenotype and the ability to form tubular networks in the absence of 

endothelial cells thus mimicking a true vascular endothelium [196]. The de novo 

generation of capillary like channels is known as vasculogenic mimicry [197]. Very 

recently research in melanoma cells, showed ET-1 induced phosphorylation of VEGFR3, 

MAPK and AKT formed tubular capillary network via ETBR signaling. Moreover, in 

combination with VEGF-C, a synergistic effect was observed in fostering vasculogenic 

mimicry [198]. 

In addition, in ovarian carcinoma ET-1/ETAR interaction stimulated downstream 

activation of cyclooxygenase (COX) 1/2 and production of prostaglandin E2. COX 
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inhibitors inhibit the angiogenic effect mediated by ET-1 to stimulate VEGF levels, 

specifying its role neovascularization [199]. Also, elevated levels of COX1 is reported in 

ovarian cancer and enhanced expression is associated with tumor regions undergoing 

extensive angiogenesis that have pro-angiogenic VEGF and HIF-1α levels [200]. 

Exposure of endothelial cells to hypoxic conditions induces expression of COX1 and 

COX2, however treatment with the non-selective COX inhibitor, indomethacin reversed 

the hypoxic effects and ameliorate endothelial cell injury [201]. ET-1 significantly 

increases COX-1 and COX-2 by increasing their promoter activity; and pharmacological 

inhibition of COX-2 using NS-398 significantly impaired the levels of ET-1, PEG2 and 

VEGF [202]. Selective ETAR inhibition by atrasentan and ZD-4054 drastically reduced 

the expression of angiogenic and invasive mediators such as COX 1/2, VEGF and 

MMPs, thus implicating that the VEGF and COX genes acts downstream of the ET-1 

gene and aid in neoangiogeneis [203] [202].  

 

5. Endothelin in Normal Pancreas 

5.1. Role in pancreatic islet cells 

The effect of endothelium derived vasoactive peptide ET-1 on the islet cells of 

the pancreas has been well studied and been shown to support the pancreatic beta cell 

function (Figure 2). Co-immunostaining studies performed in human and rat tissues 

using islet specific hormones suggest the presence of the ET-1 and endothelin receptors 

[204]. In both human and rat islet beta cells, positive staining for the components of 

endothelin axis was observed. In addition, alpha cells of the human islets show 

colocalization only with ET-1; however, rat islet shows weak immunoreactivity for 

receptor A and positive staining for receptor B and ET-1. As opposed to beta and islet 

cells, somatostatin-expressing delta cells show no expression with ET-1 and ET 

receptors in human pancreas. The presence of ET-1 and its receptors were also 
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confirmed in rat beta cell lines INS-1 and RINm5f by radiolabel binding studies with ET-1 

using selective inhibitors for ETAR and ETBR respectively. Kakugawa et al. also reported 

the presence of ET-1 like immunoreactivity in the normal pancreatic islets and it was 

shown to co-exist with insulin and glucagon but not with somatostatin [205], indicating an 

insulinotropic role for ET-1. The ET-1 stimulated glucose induced insulin release by 

direct action on mice islets was also observed by Gregerson et al. [206] and involved 

calcium ions influx indicating direct involvement in glucose homeostasis. The 

insulinotropic effect of ET-1 is mediated by the endothelin A receptor involving PKC 

activation, as the specific inhibitor BQ123 attenuated the secretion while specific ETBR 

antagonist BQ3020 did not alter the glucose stimulated release [207]. In contrast, Brock 

et al. suggested that the mechanism of insulin release is an indirect effect due to 

paracrine activation from the alpha cells of pancreatic islets. Using purified beta cells 

from normal rat islet and three beta cell lines (INS-1, MIN6 and βTC3), exogenous 

administration of ET-1 failed to elicit insulin secretion. In addition, competitive receptor 

binding studies on βTC3 cells displayed no specific binding, with only ETAR expression 

in rat islet and alpha cell line αTC1.9. Alternatively, ET-1 potentiated the release of 

insulin when both purified beta and non-beta cells were mixed in presence of glucose 

[208]. In a rat experimental model, Zimmerman and Maymind described a decrease in 

the blood glucose levels and enhanced insulin release within 15 minutes after infusion of 

ET-1 in anesthetized rats. This increase in the insulin level was associated with a 

decrease in the glucagon hormone levels suggesting a possible impact on the endocrine 

pancreas [209]. Another possibility is that nitric oxide (NO) release, due to ET-1 

stimulation contributes to insulin secretion, as the nitric oxide inhibitor N-monomethyl-L-

arginine (NMLA) abrogated insulin release; signifying the involvement of endothelium in 

the pancreatic islet contributes to ET-1 induced insulin secretion [210]. In healthy human 

subjects, pharmacological infusion of ET-1 intravenously reduced the splanchnic blood 



24 
 

flow. Interestingly, this decrease is shadowed by a significant reduction in glucose 

concentration, splanchnic glucose production, and a transient decrease in insulin and 

glucagon levels [211] [212]. The inconsistency observed in both human and rat 

experimental model system can be accredited to species specific differences, structural 

differences and distribution of the receptors [204].  

In addition to ET-1, Carlo and his colleagues also evaluated the insulinotropic 

role of ET-3 in isolated rat islets. Both ET isoforms stimulated insulin release in rat islets 

when cultured in presence in medium containing a physiological concentration of 

glucose and calcium, indicating a direct interaction with the islets. Alternatively, 

incubation in glucose and calcium deprived medium abrogated the release. The 

difference in insulin secretion mediated by ET-1 and ET-3 can be explained on the basis 

of the structural disparities and their binding affinities towards the ET receptors [213]. 

Additionally, evidence for insulin stimulated ET-1 release is also reported in in vitro 

studies. In bovine endothelial cells insulin stimulates the secretion and production of ET-

1 in a dose related fashion through a PKC dependent mechanism [214] [215] [216]. This 

insulin-mediated release of ET-1 was also reported in human endothelial cells when 

cultured in presence of glucose [217]. In contrast, exposure of porcine endothelial cells 

to hyperglycemic conditions resulted in reduction of immunoreactive ET-1 secretion 

[218]. Interestingly, studies have demonstrated elevated levels of ET-1 are positively 

associated with both Type I (insulin dependent) and Type II (non-insulin dependent) 

diabetes mellitus. Haak et al. observed increase plasma endothelin levels in 69 patients 

and 83 patients of Type II and I respectively as compared to 152 controls patients [219]. 

Additionally, in patients with non-insulin dependent diabetes mellitus (NIDMM) and 

insulin dependent diabetes mellitus (IDMM) circulating levels of ET-1 are higher as 

compared to controls [220]. Using radioimmunoassay analysis Takahaski and his 

colleagues demonstrated significant increase in the levels of ET-1 as compared to 
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healthy controls [221] with no change in the ET-2 and ET-3, signifying the crucial role of 

ET-1 peptide on the endocrine pancreas. Examination of the circulating peptide 

concentrations in diabetic patients and obese hypertensive patients indicate that 

hypersinsulinemia is a potent inducer of ET-1 in humans [222] [223]. On the contrary, 

Bertello et al. did not observe any changes in the plasma ET-1 levels in patients with 

NIDMM compared to healthy human subjects [224]. Despite its role in enhanced insulin 

production, studies also indicate that the ET-1 peptide modulates glucose metabolism by 

inducing insulin resistance by inhibiting beta cell function. In a rat model, intraperitoneal 

administration of ET-1 increased plasma glucose level in dose dependent fashion by 

lowering the insulin sensitivity [225]. Additionally, in healthy human subjects 

exogenously administered ET-1 reduces the glucose uptake in skeletal muscle causing 

insulin resistance with no effect on its vasoactive role [226]. In a randomized study 

involving healthy men, pharmacological elevation of ET-1 following intravenous 

administration abolished insulin release with simultaneous reduction in C-peptide 

secretion but did not alter insulin sensitivity [227]. Further evidence of a role for ET-1 in 

reducing the insulin sensitivity, comes from hyperinsulinemic NIDMM patients, where a 

negative correlation exists with total uptake of glucose and circulating plasma ET-1 

peptide levels [228]. Measurement of insulin sensitivity in response to intravenous 

glucose using minimal modeling technique indicates that the association between insulin 

release and beta cell is linked via close loop feedback system involving mutual 

alterations in insulin release and sensitivity [229] [230]. Kahn et al further strengthen this 

close coordinated relationship in healthy human subjects and suggested the relationship 

between beta cells and insulin sensitive tissues is dictated in a hyperbolic manner and 

alterations in insulin release have a minuscule effects on insulin sensitivity [231].  

5.2. Role in pancreatic acinar cells 
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Similar to islet cells, pancreatic acinar cells also express endothelin receptors 

(Figure 2). Using radiolabeled binding studies in rat model; high specific affinity 

receptors for all three forms of endothelins were identified, with ETA subtype present in 

higher numbers compared to ETBR. Additionally, further studies from the same group 

also indicate that ET isoform 1 and 2 bind to the ETA subtype whereas ET-3 binds only to 

the ETBR. Indirect interaction of ET receptors with phospholipase C pancreatic 

secretagogues favors internalization of the receptors and reduces the binding of ET 

peptides by activation of protein kinase C without altering the intracellular calcium levels 

[232]. In contrast, Yule et al. demonstrated that exposure of acini cultured in calcium free 

medium to ET-1 induces the release of intracellular calcium levels similar to 

cholecystokinin (CCK) although with less potency. Interestingly, as opposed to CCK or 

other PI-PLC like agonists, ET-1 failed to stimulate amylase secretion [233]. Similar to 

previous reports, the presence of receptor B was also seen in the rat acinar cells using 

anti-serum against the specific amino residues of the ETBR [234]. 

5.3. Role in pancreatic microcirculation  

The impact of potent vasoconstrictor, ET-1, on pancreatic microcirculation is well 

studied in many species due to its significance in regulating blood flow under 

physiological conditions. Takaori and his colleagues utilized anesthetized mongrel dogs 

and evaluated the effect of all three ET isoforms on pancreatic blood flow. Both ET-1 

and ET-3 decrease the pancreatic blood flow in a dose dependent fashion, with more 

potency than the effects observed with ET-2, without significantly alerting systemic blood 

pressure. Interestingly, no effect in the liver was reported indicating the specific effect of 

ETs on pancreas vasculature [235]. Similarly, in an experimental rat system, topical 

superfusion of 100 pmol ET-1 in exteriozed pancreas significantly reduced the blood flow 

velocity accompanied by stasis of red blood cells (RBCs) as compared to control 

animals. In addition, administration of ET-2 and ET-3 also diminished blood flow velocity 
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in a dose dependent manner although with less prominent effects as compared to ET-1. 

This decrease in pancreatic microcirculation is paralleled by reduced functional capillary 

density, with ET-1 being more potent followed by ET-3 and ET-2 [236] [237]. Using a 

microsphere technique Lai et al. characterized the effects of exogenous ET-1 on the 

vasculature of pancreatic islets [238]. A few minutes after administration, 5nmol/kg dose 

of ET-1 significantly decrease perfusion in pancreas islets with minuscule effects on the 

blood pressure. Interestingly, islets were more responsive to the vasoconstrictive effects 

caused by ET-1 as compared to exocrine pancreas blood vessels. However, this 

decrease was not attenuated either in presence of selective A receptor antagonist 

(BQ123) or selective B receptor antagonist (BQ788) when used alone or in combination. 

The inability of selective A and B receptor antagonists to reverse the ET-1 mediated 

effects indicate the involvement of a third ET receptor subtype. Cloning and 

characterization of ETC receptor form Xenopus laevis dermal melanophores suggest 

high affinity for ET-3 peptide and a 47% and 52% sequence similarity with ETAR and 

ETBR respectively that could possibly explain persistent vasoconstriction. However, the 

mammalian complement is yet to be recognized [50]. Analogous to the effects observed 

with exogenous ET-1, the vasoconstriction caused by endogenous ET-1 in rat pancreas 

was also not hindered by BQ123, however surprisingly BQ788 diminished the total 

pancreatic and islet blood flow. Selective antagonism of B receptor impedes the release 

of nitric oxide (NO) responsible for vasodilation, which explains the reduced blood flow. 

Another possibility is that, in addition to its role as a vasodilator, ETB receptors also act 

as “clearance” receptors for endothelins [239]. Fukuroda et al. demonstrated that 

intravenous infusion of BQ788 but not BQ123 reduced the uptake of 125I-ET-1 in the 

lungs and significantly inhibited the clearance of ET-1 from circulation [240]. Also, in 

transgenic ETBR deficient mice, increased circulating levels of ET-1 is reported provides 

further support for the role of ETBR in clearance [241]. Additionally, ex vivo, perfusion 
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caused by ET-1 in isolated mice islets is reversed by ETAR and ETBR antagonism; 

indicating the presence of both receptors on the islets.  

 

6. Endothelins in Pancreas Pathophysiology  

6.1. Role in Pancreatitis and Inflammation 

The deregulation of pancreatic microcirculation and capillary leakage plays a 

major role in the pathogenesis and is hallmark of severe pancreatitis. A growing body of 

literature suggests that these microcirculatory disorders facilitate necrosis of acinar cells, 

release of proteases, activation of pro-inflammatory cytokines, the infiltration of 

neutrophils, and are believed to contribute to organ dysfunction [242] [243] [244]. 

Alterations in the pancreatic blood flow may include activation of endothelial cells and 

release of endothelin peptides, which are important mediators in the determining the 

pathophysiology of pancreatitis [245] [246]. Plasma endothelin-1 levels correlate with 

pancreatitis severity and are a useful indicator for diagnosis. Using enzymo-

immunological analysis Milnerowicsz et al. demonstrated that the plasma ET-1 

concentration in patients with severe acute pancreatitis with necrosis was 6.37± 1.9 

pg/ml as compared to control 1.37 pg/ml. Additionally, patients with severe acute 

pancreatitis without necrosis, mild acute pancreatitis and chronic pancreatitis had 

increased levels of ET-1 [247]. Additionally, immunohistochemical localization of ET-1 

shows a significant correlation of ET-1 immunostaining and the degree of severity in 

patients with chronic pancreatitis [205]. Further, a marked increase in the plasma ET-1 

levels and strong immunohistochemical reaction for ET-1 is reported in individuals who 

smoke and in patients with chronic pancreatitis compared to non-smoking healthy 

subjects [248]. Additionally, Borissova et al. and Goerre et al. also demonstrated a 

significant increase in plasma ET-1 levels after exposure to cigarette smoke [249] [250] 

suggesting a direct effect of tobacco smoke on the peptide release. The elevated levels 
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of ET-1 exhibit positive correlation with orocecal transit time (OCTT) indicating a close 

association with gastrointestinal dysmotility in patients with acute pancreatitis [251]. 

Moreover, elevated serum concentration of ET-1 in circulation is associated with 

leukocytosis and correlates with AP and multi-organ dysfunction syndrome [252].  

Though well studied in context of acute pancreatitis (AP) and in experimental 

disease systems, doses, time of application, and the effects of endothelin-1 and its 

antagonists are controversial, as ET-1 has been shown to play dual role in both 

protection and disease aggravation. Gene expression profiling of dibutyltin dichloride 

(DBTC) induced pancreatitis in Lewis rats revealed upregulation of ET-1 as the 

candidate gene associated with pancreatic inflammation. In addition, treatment with 

selective ETAR (BQ123) and ETBR (BQ788) inhibitors reverses the inflammatory 

response [253]. Zhang et al. observed in a severe acute pancreatitis model that therapy 

with the anti-inflammatory dexamethasone drug significantly reduced levels of ET-1 and 

NO compared to sham operated animals [254] [255]. Zhang et al. also reported that 

retrograde infusion of sodium taurocholate in a multiple injury model of pancreatitis 

showed a remarkable increase in serum ET-1 levels [256]. Assessment of early 

pathological abnormalities included evident edema and necrosis in the pancreas and 

multiple organ injury accompanied by prominent increase in levels of ET-1, NO, IL-6, 

TNF-α and PLA2 in severe AP induced by sodium taurocholate [257].  

Similar to sodium taurocholate induced pancreatitis, histological examination 

after topical ET-1 administration induces alterations in tissue integrity, profound edema, 

focal acinar cell necrosis and a marginal increase in serum amylase levels compared to 

control group [237]. Liu et al. observed that in presence of ET-1 cerulean-stimulated 

acute pancreatitis exhibit remarkable changes in pancreas morphology. This was 

followed by hemorrhage and an increase in serum amylase and elastase levels. 

Interestingly, intra-aortal infusion of ET-1 alone failed to alter the pancreas integrity 
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[258]. Foitzik et al. also observed similar results where ET-1 superimposed on mild acute 

necrotizing pancreatitis (ANP) favored acinar and peripancreatic fat necrosis with 

prophylactic treatment of ETAR antagonist LU-135252 ameliorating the disease. Also, a 

synergistic effect is witnessed in capillary blood flow reduction in rats infused with 

alcohol and ET-1 and was subsequently reversed by ETAR antagonist LU-135252 [259]. 

In addition, transgenic mice with ET-2 over-expression develop severe pancreatitis and 

significant increase in acinar cell necrosis with mild increase in trypsinogen activated 

peptides (TAP) levels compared with non-transgenic littermates controls [260]. Further, 

studies from the same group also suggest a significant decrease in mortality in ANP 

induced rats exposed to pharmacological ETAR inhibitor LU-135252 compared to the 

untreated group. Pharmacological inhibition using LU-135252 is paralleled by improved 

capillary blood flow, stabilized capillary permeability, reduced extravascular fluid 

sequestration and intravascular fluid loss, and a decrease in hematocrit concentration 

without mitigating signature of disease severity such as acinar cell necrosis [261] [262] 

[263]. Activation of trypsinogen and its presence in the plasma is an accurate indicator of 

AP and correlates with necrosis, disease severity and hemorrhage [264] [265]. Ultra-

structural examination of Wistar rats with AP induced by intra-peritoneal injection of 

sodium taurocholate treated with either selective ETAR (LU-302146) or dual ETAR and 

ETBR (LU-302872) antagonists reveal a 2-3 fold reduction of trypsinogen activation 

index in pancreas tissue, mainly by blockade of ETAR. In addition, pharmacological 

inhibition of both the ETA and ETB receptors showed necrosis in a few acinar cells, and 

enhanced auto phagocytosis with insignificant effects in recruitment of inflammatory cells 

[266]. Additionally, Dlugosz et al. identified similar degree of trypsinogen attenuation and 

reduced score of necrosis using either mixed ETA/ETB or ETA inhibitors in AP [267]. 

Contrasting results were reported by the same group in cerulean induced rat AP treated 

with either selective ETAR (LU-302146) or non-selective ETA/ ETB receptor (LU-302872) 
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antagonists [268]. Electron microscopy visualization of cellular organelles reveals a 

slight increase in vacuolization of acinar cells, with disorganized endoplasmic reticulum, 

and total cytoplasm degradation with no alteration in pancreatic edema and necrotic 

score upon therapy. Surprisingly, treatment displayed no effects on the trypsinogen 

activation index as compared to untreated AP, although infiltration of inflammatory cells 

was decreased. The authors rationalize that the difference in the outcomes of ET 

receptor antagonism in different models of AP can be explained by discrepancies in the 

pancreatic microcirculation. Also, the divergences of potency, dosing of ET inhibitors and 

the pancreatitis experimental model system used can explain the contradiction in both 

the studies. The decrease in the inflammatory cell population is in harmony with previous 

findings as well. Plusczyk et al. demonstrated that pre-treatment with low dose (4mg/kg 

body weight) and not high dose (10mg/kg body weight) of ET antagonist Tenzostan (Ro-

61-0612) is effective in abrogation of pancreatitis induced parenchymal tissue injury, 

microcirculatory disorders, improve perfusion and infiltration of leukocytes in the tissue 

[269]. An increasing body of evidence indicates that coupling of ET-1 to the ETAR is 

responsible for chemotaxis, migration and adhesion of leukocytes and selective targeting 

of ETA and not ETB receptor diminish the migration [156] [270] [271] [272]. The high 

concentration of the inhibitor used in this particular study mediates simultaneous 

inhibition of both receptors while at low dose inhibits only ETAR. The involvement of the 

ETB receptor in clearance of ET-1 isoform from circulation and release of vasodilator 

nitric oxide (NO) to counteract the release of ET-1 and mediate vasoconstriction is well 

studied [240] [273] [274]. Thus, synchronized blockade of both receptors using high 

dose of antagonist abolishes the clearance mechanism thereby maintaining high levels 

of ET-1, which masks the favorable outcomes of ETAR inhibition indicating that the 

coupling of ET peptide with ETAR is associated with pathogenesis of pancreatitis. These 

findings were confirmed and extended in a bile salt induced rat pancreatitis model where 
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mixed therapy using dual ETA and ETB antagonist Bosentan failed to provide survival 

benefit [275].  

Contrary to the previous findings, Todd et al. investigated first the consequences 

of ET receptors blockade in a murine model of acute hemorrhagic pancreatitis. 

Treatment with mixed ETA/ETB antagonist PD145065 decreased the severity of 

pancreatitis with no effects in the mortality. Additionally, reduction in serum amylase 

levels, markers of systemic inflammation (IL-6 and IL-10) and diminished 

myeloperoxidase activity was also noted upon treatment [276]. In addition, further 

studies by Eibl and co-workers also support the favorable outcomes of ETAR antagonism 

over ETBR using LU-135252 which blocks receptor A and B at low (50mg/kg body 

weight) and high doses (100mg/kg body weight) respectively. After induction of AP by 

retrograde infusion of glycodeoxycholic acid, blockade of ETAR and not ETBR was 

effective in stabilizing the capillary permeability; decrease fluid loss and leukocyte rolling 

[277]. In addition, an increase in capillary permeability after exogenous administration of 

ET-1 in AP is reversed by ETAR antagonism thereby improving the capillary blood flow 

and reduced leukocyte rolling. However, simultaneous inhibition of both receptors 

displays comparable effects than that ETAR inhibition alone [263] [278]. In a separate 

approach to evaluate the efficacy of different therapeutic regimens, Eibl and his co-

workers utilized ETAR, platelet receptor activating receptor (PAF) antagonists, and 

intercellular cell adhesion molecule-1 antibody (ICAM-1) either alone or in combination in 

rats after 6 hours of administration of bile salt and cerulein to induced pancreatitis. In 

harmony with previous reports, ETAR antagonist LU-135252 was found to be more 

effective than PAF antagonist and ICAM-1 antibody in improving or reducing capillary 

leakage. Also, combination therapy of ETAR antagonist either with PAF or ICAM-1 was 

found to be more beneficial than the combination of PAF antagonist and ICAM-1 

antibody in stabilizing capillary permeability [279]. Similar to previous observation, ETAR 
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antagonist LU-135252 was found be more advantageous in enhancing capillary blood 

flow and reducing leukocyte rolling than ICAM-1 antibody in a delayed model of AP after 

12 hours infusion of glycodeoxycholic acid and cerulein [280]. 

Despite its role in promoting damage to pancreatic parenchyma and deterioration of 

acinar cells, some conflicting reports also suggests the protective role of ET-1 in context 

of AP. Kogire and colleagues witnessed decrease in pancreatic edema, acinar cell 

vacuolization and inflammatory cells infiltration in pancreas tissue after intravenous 

infusion of ET-1 plus cerulein compared to cerulein alone in a rat model system. 

Surprisingly, this ET-1 mediated amelioration of experimental pancreatitis was 

neutralized by selective ETAR antagonist BQ123 [281]. Martignoni and coworkers 

examined the influence of selective ETAR (LU135252 and BSF208075) and non-

selective, ETA/ETB (BSF420627) antagonists in three severity groups of AP (4%, 5% and 

6% sodium taurocholate). Prophylactic application of both selective and non-selective 

antagonists failed to provide survival benefit and restoration of pancreatic damage [282]. 

Besides its involvement in maintaining the vascular tone, ET-1 also participates in the 

synthesis of prostaglandins [283] [284] and beneficial results seen could be dependent 

on secondary production of prostaglandins. The cytoprotection offered by prostaglandins 

(type A, E or F) in response to noxious agents and anti-inflammatory compounds is 

reported in gastric mucosa [285] [286], small intestine [287], kidney [288] and liver [289]. 

An increasing body of evidence also suggests the protective role of prostaglandins and 

its analogs in cerulein and sodium taurocholate induced AP by hindering the activation of 

pancreatic digestive enzymes [290] [291] [292] [293]. On a similar note, Dlugosz and co-

workers demonstrated the favorable role of all three ET isoforms on the histology and 

ultrastructure of the pancreas. Exogenous application is followed by diminution of 

trypsinogen activation and reduced polymorphonuclear cells migration in the pancreas; 

however aggravating results was seen with ETAR antagonist [294] [295]. In addition, 
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using NF-kB inhibitor (pyrrolidine dithiocarbonate, PDTC) in combination with ET-1 and 

ET-3 a synergistic effect was observed in attenuation of trypsinogen activation in 

cerulein-induced pancreatitis [296].  

Hypovascularity of the pancreas makes it vulnerable to ischemia/re-perfusion 

injury and is a major complication associated with graft pancreatitis. Given the 

involvement of ET-1 in microcirculatory disturbances of the ischemia/re-perfusion, recent 

studies have indicated a beneficial role of ET inhibitors in attenuating disorders in the 

liver [297] [298] [299], kidney [300] and small intestine [301]. Recently the blockade of 

ET receptors and its impact on the pancreatic transplantation is being addressed in few 

studies. In a pig model, selective antagonism of ETAR using BSF 208075 reduces 

ischemia/re-perfusion induced injury accompanied by significant reduction in injury to 

pancreatic parenchyma and tissue edema. The prophylactic treatment is also paralleled 

by decrease in inflammatory cell infiltration and pro-inflammatory cytokine IL-6 and ET-1 

levels [302] [303] [304]. Also in a rat experimental model, systemic oxygen perfusion 

using nitric oxide gas followed by orthotropic liver transplant reduced ET-1 levels, 

neutrophil infiltration and production of prostacyclin [305] [306]. Findings by Marada et 

al. suggested the promising effects of cold storage conditions in a pancreas 

transplantation model and showed significant reduction in TGF-β and ET-1 levels [307]. 

Figure 2 describes the sequence of ET-1 mediated events in inflammation. 

6.2. Role in Pancreatic Stellate cells and Pancreatic Cancer 

Pancreatic stellate cells (PSCs) are the resident cells of the pancreas located in 

the peri-acinar region and are characterized by the presence of vitamin A droplets in the 

cytoplasm in quiescent state [308]. Once activated in response to external stimuli, 

inflammation or injury, PSCs acquire a myofibroblasts like phenotype and secrete 

increase amount of extracellular matrix (ECM) proteins rich in collagen. The excess 

deposition of this fibrous tissue rich in collagen is termed as fibrosis or desmoplasia, 
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regarded as a hallmark for pancreatitis and pancreatic cancer [309] [310] [311]. 

Literature reports have suggested several extracellular mediators and intracellular 

pathways in PSCs activation. The external stimuli include soluble mediators, cytokines, 

oxidative stress, hypoxia, TNF-α; platelet derived growth factor (PDGF), ethanol and its 

metabolites and TGF-β. Accumulating evidence reveal PDGF as mitogen for PSCs and 

TGF-β1 as a main stimulator to induce collagen and α-SMA (smooth muscle actin) to 

maintain the pro-fibrotic phenotype of PSCs [312] [313] [314]. In the context of acute 

pancreatitis in response to necro-inflammation where the injury is limited, PSC 

proliferation occurs at an early stage and is believed to play a role in repair or 

regeneration of the pancreas tissue and maintenance of the tissue architecture by 

maintaining the ECM turnover. In contrast, in chronic pancreatitis the PSCs are activated 

due to repeated inflammatory insults resulting in fibrosis and aggravation of disease 

[315]. Additionally, this aggravation results in sustained increase expression of α-SMA 

and confers augmented contractile potential. Masumune et al. observed that this 

contraction is caused by ET-1 via the ETBR as selective inhibition abolished the 

contractility. Additionally, both receptors are involved in enhanced migration of PSCs 

isolated from male Wistar rats, revealing the varied role of receptors in response to ET-1 

peptide [316]. Further, studies by Stumpe and coworkers implied that excess secretion 

of ET-1 from activated but not quiescent PSCs possibly impacts the pathogenesis of 

pancreatitis through an autocrine and paracrine loop [317]. To gain mechanistic insights 

in the induction and maintenance PSCs activation in pancreatitis, Jonitz and coworkers 

observed that treatment of PSCs with TGF-β1 and TNF-α stimulated the secretion of ET-

1 peptide by increased binding to smad3 and NF-kB respectively. Also, treatment with 

ET-1 induced the phosphorylation of ERK1/2 and p38, a marker of PSCs activation (α-

SMA) and pro-inflammatory cytokines (IL-1β and IL-6) [318]. Nevertheless, dual ETA/ETB 

antagonist Bosentan displays an anti-tumor effect in PC cells and anti-fibrotic effects in 



36 
 

PSCs by marked reduction in the expression of CTGF (connective tissue growth factor) 

and α-SMA [319] indicating a pro-fibrogenic role of ET-1 in PC. Previous investigations 

have suggested the inhibitory role of interferons in the activation of PSCs and 

extracellular matrix deposition in pancreatic and hepatic fibrosis [320] [321] [322]. Using 

gene expression analysis in IFN-γ treated PSCs, Fitzner and his group showed down 

regulation of the ET-1 isoform and CTGF in a STAT-1 dependent manner [323]. Further, 

proteomic analysis of the conditionally generated immortalized human non-tumor 

(NPSC) and tumor derived (TPSC) pancreatic stellate cells showed differential 

expression of ET-1 with a significant p value in TPSC compared to NPSC cells [324].   

Soon after the discovery of ET-1 in 1988 from porcine endothelial cells earlier 

reports have also revealed the secretion of all three ET isoforms from pancreatic cancer 

cell lines. With specific ET-1 radioimmunoassay, production and concentration of 

immuno-reactive ET-1 was detected in PC cell lines, more commonly than CA19-9, CEA 

and DUPAN-2 tumor markers. In contrast, ET-2 and ET-3 were detected in only one cell 

line tested [325] [326]. Further in vitro and in vivo evidence of ET-1/ET receptor system 

in PC comes from the study by Bhargava and his colleagues. Using selective ETA 

antagonist LU-302146, the proliferations of three PC cell lines was prominently 

decreased. In addition, LU-302146-treated orthotropic tumors displayed reduced tumor 

burden and metastatic spread of the disease, reduction in micro-vessel density and 

increase in overall survival [327]. In an experimental model of PC, treatment with the 

angiotensin inhibitor losartan target pro-fibrotic gene signatures ET-1 and CTGF thereby 

enhancing drug delivery and potentiating chemotherapy [328]. Recently, Fukuda et al. 

reported the diagnostic method to detect ETBR expression in cell lines and tissues using 

an ETBR transfected cells. Immunostaining and immunoblot analysis suggested no 

biologically specific staining in PC cells, xenograft tumors and human pancreatic cancer 

tissues; however, mild staining in acinar and islet cells was reported [329]. Contrary to 
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previous reports, a recent study stated the expression of ET-1 axis in human PC cases. 

Cook and his co-workers determined the immuno-histochemical expression of ET-1 and 

ETBR in surgically resected human PC specimens and found no expression of ETAR 

Additionally, this increase in expression of ET-1/ETBR axis was found to be correlative to 

micro-vessel density and VEGF expression [330].  

 

7. Conclusions and Future perspective 

The endothelin axis is a critical regulator of various physiological and 

pathophysiological processes extending from maintaining vasomotor tone to cancer 

progression. The central involvement of this axis in promoting cellular cross talk and 

signaling within the human microenvironment holds promise for the future clinical trials. 

Given the extensive fibrosis and hypo-vascular nature of pancreatic tumors and its 

involvement in fostering the stromal-tumor cell interaction this axis represents a new and 

yet unexplored target for pancreatic cancer targeted therapies. Pre-clinical and 

experimental studies in different cancer settings with either selective or dual ET receptor 

antagonists used as monotherapy or in combination with cytotoxic drugs can provide 

considerable therapeutic benefit. Additionally, the favorable effects of ET axis 

antagonism observed in fibrosis and vascular disorders further represents a potential 

target for cancer treatment. However, systematic targeting of the axis with ET 

antagonists in combination with conventional chemotherapy or radiotherapy in PC need 

to be evaluated.  
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Figure 1: Endothelin axis: molecular components and physiological roles. 

Schematic representation of the synthesis of the three isoforms of endothelins. The 

primary translational product is a pre-proendothelin form, which is 203 amino acid 

polypeptide. This peptide is cleaved by furin like proteases to yield biologically active big 

ET-1. Big ET-1 is further cleaved by endothelin converting enzyme (ECEs) to produce 

mature ET-1. Amino acids that differ between ET-1 and ET-2 and ET-3 are shown in 

yellow. ECEs have four isoforms, ECE-1, ECE-2, ECE-3, and ECE-4 and have different 

cellular localization. Once formed the mature peptides can bind to either endothelin A 

receptor (ETAR) or endothelin B receptor (ETBR). ET-1 has an equal binding affinity for 

both the ETAR and ETBR receptors; however, there is difference in binding affinity for 

other two ET isoforms. Both ET receptors belong to G-protein–coupled receptors and 

are differentially expressed according to cell type. ETAR is expressed predominantly on 

smooth muscle cells whereas ETBR is expressed on endothelial cells. Both receptors are 

expressed in various other cell types and regulate diverse functions.  

 

 

 

 

 

 

 

 

 
 
 
  



39 
 

 
Figure 1 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  



40 
 

Figure 2: Role of Endothelin(s) in pancreas physiology. In normal pancreas, infusion 

of endothelin-1 (ET-1) stimulates insulin secretion and decreases the blood glucose 

levels by acting on the islet cells expressing endothelin A receptor (ETAR) and 

endothelin B receptor (ETBR). The insulinotropic action mediated by the ET-1 indicates a 

direct involvement in regulating the glucose homeostasis by glucagon release involving 

influx of Ca2+ influx and protein kinase C activation. Additionally, in pancreatic acini, 

interaction of ET-1 with both ETAR and ETBR induces internalization involving increase in 

intracellular calcium with no effects on amylase secretion. Vascular smooth muscle cells 

express both ET receptors whereas endothelial cells express only ETBR. In the pancreas 

microcirculation, ET-1 acting on the blood vessels induces vasoconstriction, however, 

nitric oxide release by ET-1/ETBR interactions favors vasodilation. Administration of ET-1 

decreases pancreatic blood flow and perfusion with minuscule effects on blood pressure.  
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Figure 2 
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Figure 3: Role of endothelin(s) in pancreas pathophysiology. In response to stress 

due to hypoxia, acute, or chronic insults elevated production of ET-1 induces alterations 

in pancreas integrity, promotes acinar cell necrosis, increases in serum amylase and 

elastase levels and promotes inflammation. However, the prolonged inflammatory insult 

and damage to pancreatic parenchyma and gain of mutations such as Kras can lead to 

trans-differentiation of acinar cells to ductal phenotype. The tumor cells expressing ETAR 

and ETBR also secrete ET-1, which can interact with different cellular components within 

the microenvironment, and promote tumor progression and metastasis. Interaction of 

ET-1 with receptors present on the cancer associated fibroblasts and stellate cells 

promote proliferation and modulate tumor stroma by increase expression of extracellular 

matrix proteins (α-SMA, collagen, fibronectin) thereby promoting fibrosis. In response to 

ET-1/ETBR interaction, endothelial cells promote angiogenesis and neo-vascularization 

in a VEGF dependent manner. Within in the immune microenvironment, ET-1 signaling 

can facilitate chemotactic migration of monocytes and macrophages at the inflamed sites 

and homing of T cell population within the tumors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



43 
 

 
Figure 3 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  



44 
 

 
Reference List 

 
 [1]  Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet 

2016;388:73-85. 

 [2]  Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med 
2014;371:1039-49. 

 [3]  Erkan M, Reiser-Erkan C, Michalski CW, Kleeff J. Tumor microenvironment 
and progression of pancreatic cancer. Exp Oncol 2010;32:128-31. 

 [4]  Farrow B, Albo D, Berger DH. The role of the tumor microenvironment in the 
progression of pancreatic cancer. J Surg Res 2008;149:319-28. 

 [5]  Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The 
pancreas cancer microenvironment. Clin Cancer Res 2012;18:4266-76. 

 [6]  Tod J, Jenei V, Thomas G, Fine D. Tumor-stromal interactions in pancreatic 
cancer. Pancreatology 2013;13:1-7. 

 [7]  Xu Z, Pothula SP, Wilson JS, Apte MV. Pancreatic cancer and its stroma: a 
conspiracy theory. World J Gastroenterol 2014;20:11216-29. 

 [8]  Apte MV, Wilson JS. Dangerous liaisons: pancreatic stellate cells and 
pancreatic cancer cells. J Gastroenterol Hepatol 2012;27 Suppl 2:69-74. 

 [9]  Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, 
Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced 
by vascular endothelial cells. Nature 1988;332:411-5. 

 [10]  Rosano L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological 
implications and therapeutic opportunities. Nat Rev Cancer 2013;13:637-51. 

 [11]  Bagnato A, Loizidou M, Pflug BR, Curwen J, Growcott J. Role of the endothelin 
axis and its antagonists in the treatment of cancer. Br J Pharmacol 
2011;163:220-33. 

 [12]  Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role 
in cancer. Nat Rev Cancer 2003;3:110-6. 

 [13]  Khimji AK, Rockey DC. Endothelin--biology and disease. Cell Signal 
2010;22:1615-25. 

 [14]  Maguire JJ, Kuc RE, Pell VR, Green A, Brown M, Kumar S, Wehrman T, Quinn 
E, Davenport AP. Comparison of human ETA and ETB receptor signalling via 
G-protein and beta-arrestin pathways. Life Sci 2012;91:544-9. 

 [15]  Bagnato A, Rosano L. The endothelin axis in cancer. Int J Biochem Cell Biol 
2008;40:1443-51. 



45 
 

 [16]  Nelson J, Bagnato A, Battistini B, Nisen P. The endothelin axis: emerging role 
in cancer. Nat Rev Cancer 2003;3:110-6. 

 [17]  Rosano L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological 
implications and therapeutic opportunities. Nat Rev Cancer 2013;13:637-51. 

 [18]  Stow LR, Jacobs ME, Wingo CS, Cain BD. Endothelin-1 gene regulation. 
FASEB J 2011;25:16-28. 

 [19]  Vallender TW, Lahn BT. Localized methylation in the key regulator gene 
endothelin-1 is associated with cell type-specific transcriptional silencing. FEBS 
Lett 2006;580:4560-6. 

 [20]  Dickson J, Gowher H, Strogantsev R, Gaszner M, Hair A, Felsenfeld G, West 
AG. VEZF1 elements mediate protection from DNA methylation. PLoS Genet 
2010;6:e1000804. 

 [21]  Stow LR, Gumz ML, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Wingo CS. 
Aldosterone modulates steroid receptor binding to the endothelin-1 gene 
(edn1). J Biol Chem 2009;284:30087-96. 

 [22]  Matteucci E, Maroni P, Bendinelli P, Locatelli A, Desiderio MA. Epigenetic 
control of endothelin-1 axis affects invasiveness of breast carcinoma cells with 
bone tropism. Exp Cell Res 2013;319:1865-74. 

 [23]  Inoue A, Yanagisawa M, Takuwa Y, Mitsui Y, Kobayashi M, Masaki T. The 
human preproendothelin-1 gene. Complete nucleotide sequence and regulation 
of expression. J Biol Chem 1989;264:14954-9. 

 [24]  Mawji IA, Robb GB, Tai SC, Marsden PA. Role of the 3'-untranslated region of 
human endothelin-1 in vascular endothelial cells. Contribution to transcript 
lability and the cellular heat shock response. J Biol Chem 2004;279:8655-67. 

 [25]  van Mourik JA, Romani de WT, Voorberg J. Biogenesis and exocytosis of 
Weibel-Palade bodies. Histochem Cell Biol 2002;117:113-22. 

 [26]  Russell FD, Davenport AP. Evidence for intracellular endothelin-converting 
enzyme-2 expression in cultured human vascular endothelial cells. Circ Res 
1999;84:891-6. 

 [27]  Bremnes T, Paasche JD, Mehlum A, Sandberg C, Bremnes B, Attramadal H. 
Regulation and intracellular trafficking pathways of the endothelin receptors. J 
Biol Chem 2000;275:17596-604. 

 [28]  Abassi ZA, Tate JE, Golomb E, Keiser HR. Role of neutral endopeptidase in 
the metabolism of endothelin. Hypertension 1992;20:89-95. 

 [29]  Xu D, Emoto N, Giaid A, Slaughter C, Kaw S, deWit D, Yanagisawa M. ECE-1: 
a membrane-bound metalloprotease that catalyzes the proteolytic activation of 
big endothelin-1. Cell 1994;78:473-85. 



46 
 

 [30]  Hinsley EE, Hunt S, Hunter KD, Whawell SA, Lambert DW. Endothelin-1 
stimulates motility of head and neck squamous carcinoma cells by promoting 
stromal-epithelial interactions. Int J Cancer 2012;130:40-7. 

 [31]  Rodriguiz RM, Gadnidze K, Ragnauth A, Dorr N, Yanagisawa M, Wetsel WC, 
Devi LA. Animals lacking endothelin-converting enzyme-2 are deficient in 
learning and memory. Genes Brain Behav 2008;7:418-26. 

 [32]  Miller LK, Hou X, Rodriguiz RM, Gagnidze K, Sweedler JV, Wetsel WC, Devi 
LA. Mice deficient in endothelin-converting enzyme-2 exhibit abnormal 
responses to morphine and altered peptide levels in the spinal cord. J 
Neurochem 2011;119:1074-85. 

 [33]  Nakano A, Kishi F, Minami K, Wakabayashi H, Nakaya Y, Kido H. Selective 
conversion of big endothelins to tracheal smooth muscle-constricting 31-amino 
acid-length endothelins by chymase from human mast cells. J Immunol 
1997;159:1987-92. 

 [34]  Kishi F, Minami K, Okishima N, Murakami M, Mori S, Yano M, Niwa Y, Nakaya 
Y, Kido H. Novel 31-amino-acid-length endothelins cause constriction of 
vascular smooth muscle. Biochem Biophys Res Commun 1998;248:387-90. 

 [35]  Kawanabe Y, Nauli SM. Endothelin. Cell Mol Life Sci 2011;68:195-203. 

 [36]  Schweizer A, Valdenaire O, Nelbock P, Deuschle U, Dumas Milne Edwards JB, 
Stumpf JG, Loffler BM. Human endothelin-converting enzyme (ECE-1): three 
isoforms with distinct subcellular localizations. Biochem J 1997;328 ( Pt 3):871-
7. 

 [37]  Valdenaire O, Lepailleur-Enouf D, Egidy G, Thouard A, Barret A, Vranckx R, 
Tougard C, Michel JB. A fourth isoform of endothelin-converting enzyme (ECE-
1) is generated from an additional promoter molecular cloning and 
characterization. Eur J Biochem 1999;264:341-9. 

 [38]  Jeng AY, Savage P, Beil ME, Bruseo CW, Hoyer D, Fink CA, Trapani AJ. CGS 
34226, a thiol-based dual inhibitor of endothelin converting enzyme-1 and 
neutral endopeptidase 24.11. Clin Sci (Lond) 2002;103 Suppl 48:98S-101S. 

 [39]  Kuruppu S, Smith AI. Endothelin Converting Enzyme-1 phosphorylation and 
trafficking. FEBS Lett 2012;586:2212-7. 

 [40]  Muller L, Barret A, Etienne E, Meidan R, Valdenaire O, Corvol P, Tougard C. 
Heterodimerization of endothelin-converting enzyme-1 isoforms regulates the 
subcellular distribution of this metalloprotease. J Biol Chem 2003;278:545-55. 

 [41]  Hunter AR, Turner AJ. Expression and localization of endothelin-converting 
enzyme-1 isoforms in human endothelial cells. Exp Biol Med (Maywood ) 
2006;231:718-22. 



47 
 

 [42]  Lambert LA, Whyteside AR, Turner AJ, Usmani BA. Isoforms of endothelin-
converting enzyme-1 (ECE-1) have opposing effects on prostate cancer cell 
invasion. Br J Cancer 2008;99:1114-20. 

 [43]  Arinami T, Ishikawa M, Inoue A, Yanagisawa M, Masaki T, Yoshida MC, 
Hamaguchi H. Chromosomal assignments of the human endothelin family 
genes: the endothelin-1 gene (EDN1) to 6p23-p24, the endothelin-2 gene 
(EDN2) to 1p34, and the endothelin-3 gene (EDN3) to 20q13.2-q13.3. Am J 
Hum Genet 1991;48:990-6. 

 [44]  Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, 
Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016;68:357-
418. 

 [45]  Nussdorfer GG, Rossi GP, Malendowicz LK, Mazzocchi G. Autocrine-paracrine 
endothelin system in the physiology and pathology of steroid-secreting tissues. 
Pharmacol Rev 1999;51:403-38. 

 [46]  Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a 
cDNA encoding an endothelin receptor. Nature 1990;348:730-2. 

 [47]  Hosoda K, Nakao K, Hiroshi A, Suga S, Ogawa Y, Mukoyama M, Shirakami G, 
Saito Y, Nakanishi S, Imura H. Cloning and expression of human endothelin-1 
receptor cDNA. FEBS Lett 1991;287:23-6. 

 [48]  Stojilkovic SS, Catt KJ. Expression and signal transduction pathways of 
endothelin receptors in neuroendocrine cells. Front Neuroendocrinol 
1996;17:327-69. 

 [49]  Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T. 
Cloning of a cDNA encoding a non-isopeptide-selective subtype of the 
endothelin receptor. Nature 1990;348:732-5. 

 [50]  Karne S, Jayawickreme CK, Lerner MR. Cloning and characterization of an 
endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal 
melanophores. J Biol Chem 1993;268:19126-33. 

 [51]  Nelson JB, Udan MS, Guruli G, Pflug BR. Endothelin-1 inhibits apoptosis in 
prostate cancer. Neoplasia 2005;7:631-7. 

 [52]  Del BD, Di C, V, Biroccio A, Varmi M, Salani D, Rosano L, Trisciuoglio D, 
Spinella F, Bagnato A. Endothelin-1 protects ovarian carcinoma cells against 
paclitaxel-induced apoptosis: requirement for Akt activation. Mol Pharmacol 
2002;61:524-32. 

 [53]  Tanese K, Fukuma M, Ishiko A, Sakamoto M. Endothelin-2 is upregulated in 
basal cell carcinoma under control of Hedgehog signaling pathway. Biochem 
Biophys Res Commun 2010;391:486-91. 



48 
 

 [54]  Grimshaw MJ, Naylor S, Balkwill FR. Endothelin-2 is a hypoxia-induced 
autocrine survival factor for breast tumor cells. Mol Cancer Ther 2002;1:1273-
81. 

 [55]  Grimshaw MJ, Hagemann T, Ayhan A, Gillett CE, Binder C, Balkwill FR. A role 
for endothelin-2 and its receptors in breast tumor cell invasion. Cancer Res 
2004;64:2461-8. 

 [56]  Grimshaw MJ, Wilson JL, Balkwill FR. Endothelin-2 is a macrophage 
chemoattractant: implications for macrophage distribution in tumors. Eur J 
Immunol 2002;32:2393-400. 

 [57]  Liu MY, Zhang H, Hu YJ, Chen YW, Zhao XN. Identification of key genes 
associated with cervical cancer by comprehensive analysis of transcriptome 
microarray and methylation microarray. Oncol Lett 2016;12:473-8. 

 [58]  Wiesmann F, Veeck J, Galm O, Hartmann A, Esteller M, Knuchel R, Dahl E. 
Frequent loss of endothelin-3 (EDN3) expression due to epigenetic inactivation 
in human breast cancer. Breast Cancer Res 2009;11:R34. 

 [59]  Espinosa AM, Alfaro A, Roman-Basaure E, Guardado-Estrada M, Palma I, 
Serralde C, Medina I, Juarez E, Bermudez M, Marquez E, Borges-Ibanez M, 
Munoz-Cortez S, Alcantara-Vazquez A, Alonso P, et al. Mitosis is a source of 
potential markers for screening and survival and therapeutic targets in cervical 
cancer. PLoS One 2013;8:e55975. 

 [60]  Wang R, Lohr CV, Fischer K, Dashwood WM, Greenwood JA, Ho E, Williams 
DE, Ashktorab H, Dashwood MR, Dashwood RH. Epigenetic inactivation of 
endothelin-2 and endothelin-3 in colon cancer. Int J Cancer 2013;132:1004-12. 

 [61]  Olender J, Nowakowska-Zajdel E, Kruszniewska-Rajs C, Orchel J, Mazurek U, 
Wierzgon A, Kokot T, Muc-Wierzgon M. Epigenetic silencing of endothelin-3 in 
colorectal cancer. Int J Immunopathol Pharmacol 2016;29:333-40. 

 [62]  Liu Y, Ye F, Yamada K, Tso JL, Zhang Y, Nguyen DH, Dong Q, Soto H, Choe 
J, Dembo A, Wheeler H, Eskin A, Schmid I, Yong WH, et al. Autocrine 
endothelin-3/endothelin receptor B signaling maintains cellular and molecular 
properties of glioblastoma stem cells. Mol Cancer Res 2011;9:1668-85. 

 [63]  Tang L, Su M, Zhang Y, Ip W, Martinka M, Huang C, Zhou Y. Endothelin-3 is 
produced by metastatic melanoma cells and promotes melanoma cell survival. 
J Cutan Med Surg 2008;12:64-70. 

 [64]  Spinella F, Rosano L, Di C, V, Decandia S, Nicotra MR, Natali PG, Bagnato A. 
Endothelin-1 and endothelin-3 promote invasive behavior via hypoxia-inducible 
factor-1alpha in human melanoma cells. Cancer Res 2007;67:1725-34. 

 [65]  Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 
2001;357:539-45. 



49 
 

 [66]  Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause 
of human cancer. J Intern Med 2000;248:171-83. 

 [67]  Rosin MP, Anwar WA, Ward AJ. Inflammation, chromosomal instability, and 
cancer: the schistosomiasis model. Cancer Res 1994;54:1929s-33s. 

 [68]  Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7. 

 [69]  Macarthur M, Hold GL, El-Omar EM. Inflammation and Cancer II. Role of 
chronic inflammation and cytokine gene polymorphisms in the pathogenesis of 
gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol 
2004;286:G515-G520. 

 [70]  Waldner MJ, Neurath MF. Colitis-associated cancer: the role of T cells in tumor 
development. Semin Immunopathol 2009;31:249-56. 

 [71]  Bats AS, Zafrani Y, Pautier P, Duvillard P, Morice P. Malignant transformation 
of abdominal wall endometriosis to clear cell carcinoma: case report and review 
of the literature. Fertil Steril 2008;90:1197-6. 

 [72]  Nickoloff BJ, Ben-Neriah Y, Pikarsky E. Inflammation and cancer: is the link as 
simple as we think? J Invest Dermatol 2005;124:x-xiv. 

 [73]  Punturieri A, Szabo E, Croxton TL, Shapiro SD, Dubinett SM. Lung cancer and 
chronic obstructive pulmonary disease: needs and opportunities for integrated 
research. J Natl Cancer Inst 2009;101:554-9. 

 [74]  Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M. Tobacco smoke 
promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent 
inflammation. Cancer Cell 2010;17:89-97. 

 [75]  Dostert C, Petrilli V, Van BR, Steele C, Mossman BT, Tschopp J. Innate 
immune activation through Nalp3 inflammasome sensing of asbestos and 
silica. Science 2008;320:674-7. 

 [76]  Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS. 
Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and 
insulin resistance. Proc Natl Acad Sci U S A 2006;103:10741-6. 

 [77]  Freeman BD, Machado FS, Tanowitz HB, Desruisseaux MS. Endothelin-1 and 
its role in the pathogenesis of infectious diseases. Life Sci 2014;118:110-9. 

 [78]  Kedzierski RM, Yanagisawa M. Endothelin system: the double-edged sword in 
health and disease. Annu Rev Pharmacol Toxicol 2001;41:851-76. 

 [79]  Sikkeland LI, Dahl CP, Ueland T, Andreassen AK, Gude E, Edvardsen T, Holm 
T, Yndestad A, Gullestad L, Kongerud J, Aukrust P, Oie E. Increased levels of 
inflammatory cytokines and endothelin-1 in alveolar macrophages from patients 
with chronic heart failure. PLoS One 2012;7:e36815. 



50 
 

 [80]  Gu J, Pinheiro JM, Yu CZ, D'Andrea M, Muralidharan S, Malik A. Detection of 
endothelin-like immunoreactivity in epithelium and fibroblasts of the human 
umbilical cord. Tissue Cell 1991;23:437-44. 

 [81]  Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL, Hung SC. Mesenchymal 
stem cells promote growth and angiogenesis of tumors in mice. Oncogene 
2013;32:4343-54. 

 [82]  Sessa WC, Kaw S, Hecker M, Vane JR. The biosynthesis of endothelin-1 by 
human polymorphonuclear leukocytes. Biochem Biophys Res Commun 
1991;174:613-8. 

 [83]  Rodriguez-Pascual F, Busnadiego O, Gonzalez-Santamaria J. The profibrotic 
role of endothelin-1: is the door still open for the treatment of fibrotic diseases? 
Life Sci 2014;118:156-64. 

 [84]  Bateman JF, Boot-Handford RP, Lamande SR. Genetic diseases of connective 
tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 
2009;10:173-83. 

 [85]  Wynn TA. Common and unique mechanisms regulate fibrosis in various 
fibroproliferative diseases. J Clin Invest 2007;117:524-9. 

 [86]  Masaki T. Historical review: Endothelin. Trends Pharmacol Sci 2004;25:219-24. 

 [87]  Stow LR, Jacobs ME, Wingo CS, Cain BD. Endothelin-1 gene regulation. 
FASEB J 2011;25:16-28. 

 [88]  Rodriguez-Pascual F, Redondo-Horcajo M, Lamas S. Functional cooperation 
between Smad proteins and activator protein-1 regulates transforming growth 
factor-beta-mediated induction of endothelin-1 expression. Circ Res 
2003;92:1288-95. 

 [89]  Abraham DJ, Vancheeswaran R, Dashwood MR, Rajkumar VS, Pantelides P, 
Xu SW, du Bois RM, Black CM. Increased levels of endothelin-1 and 
differential endothelin type A and B receptor expression in scleroderma-
associated fibrotic lung disease. Am J Pathol 1997;151:831-41. 

 [90]  Odoux C, Crestani B, Lebrun G, Rolland C, Aubin P, Seta N, Kahn MF, Fiet J, 
Aubier M. Endothelin-1 secretion by alveolar macrophages in systemic 
sclerosis. Am J Respir Crit Care Med 1997;156:1429-35. 

 [91]  Shi-Wen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G, 
Pearson JD, Dashwood M, du Bois RM, Black CM, Leask A, Abraham DJ. 
Endothelin-1 promotes myofibroblast induction through the ETA receptor via a 
rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the 
enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 
2004;15:2707-19. 



51 
 

 [92]  Weng CM, Yu CC, Kuo ML, Chen BC, Lin CH. Endothelin-1 induces connective 
tissue growth factor expression in human lung fibroblasts by ETAR-dependent 
JNK/AP-1 pathway. Biochem Pharmacol 2014;88:402-11. 

 [93]  Shi-wen X, Kennedy L, Renzoni EA, Bou-Gharios G, du Bois RM, Black CM, 
Denton CP, Abraham DJ, Leask A. Endothelin is a downstream mediator of 
profibrotic responses to transforming growth factor beta in human lung 
fibroblasts. Arthritis Rheum 2007;56:4189-94. 

 [94]  Lagares D, Busnadiego O, Garcia-Fernandez RA, Lamas S, Rodriguez-
Pascual F. Adenoviral gene transfer of endothelin-1 in the lung induces 
pulmonary fibrosis through the activation of focal adhesion kinase. Am J Respir 
Cell Mol Biol 2012;47:834-42. 

 [95]  Park SH, Saleh D, Giaid A, Michel RP. Increased endothelin-1 in bleomycin-
induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. 
Am J Respir Crit Care Med 1997;156:600-8. 

 [96]  King TE, Jr., Behr J, Brown KK, du Bois RM, Lancaster L, de Andrade JA, 
Stahler G, Leconte I, Roux S, Raghu G. BUILD-1: a randomized placebo-
controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit 
Care Med 2008;177:75-81. 

 [97]  King TE, Jr., Brown KK, Raghu G, du Bois RM, Lynch DA, Martinez F, Valeyre 
D, Leconte I, Morganti A, Roux S, Behr J. BUILD-3: a randomized, controlled 
trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 
2011;184:92-9. 

 [98]  Rockey DC, Fouassier L, Chung JJ, Carayon A, Vallee P, Rey C, Housset C. 
Cellular localization of endothelin-1 and increased production in liver injury in 
the rat: potential for autocrine and paracrine effects on stellate cells. 
Hepatology 1998;27:472-80. 

 [99]  Kawada N, Harada K, Ikeda K, Kaneda K. Morphological study of endothelin-1-
induced contraction of cultured hepatic stellate cells on hydrated collagen gels. 
Cell Tissue Res 1996;286:477-86. 

 [100]  Pinzani M, Milani S, De FR, Grappone C, Caligiuri A, Gentilini A, Tosti-Guerra 
C, Maggi M, Failli P, Ruocco C, Gentilini P. Endothelin 1 is overexpressed in 
human cirrhotic liver and exerts multiple effects on activated hepatic stellate 
cells. Gastroenterology 1996;110:534-48. 

 [101]  Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from 
normal and cirrhotic rat liver: implications for regulation of portal pressure and 
resistance. Hepatology 1996;24:233-40. 

 [102]  Kawada N, Seki S, Kuroki T, Kaneda K. ROCK inhibitor Y-27632 attenuates 
stellate cell contraction and portal pressure increase induced by endothelin-1. 
Biochem Biophys Res Commun 1999;266:296-300. 



52 
 

 [103]  Salling AL. [A department with cooperative leadership on a trial basis]. 
Sygeplejersken 1975;75:11. 

 [104]  Gasull X, Bataller R, Gines P, Sancho-Bru P, Nicolas JM, Gorbig MN, Ferrer E, 
Badia E, Gual A, Arroyo V, Rodes J. Human myofibroblastic hepatic stellate 
cells express Ca(2+)-activated K(+) channels that modulate the effects of 
endothelin-1 and nitric oxide. J Hepatol 2001;35:739-48. 

 [105]  Cho JJ, Hocher B, Herbst H, Jia JD, Ruehl M, Hahn EG, Riecken EO, 
Schuppan D. An oral endothelin-A receptor antagonist blocks collagen 
synthesis and deposition in advanced rat liver fibrosis. Gastroenterology 
2000;118:1169-78. 

 [106]  Okamoto T, Koda M, Miyoshi K, Onoyama T, Kishina M, Matono T, Sugihara T, 
Hosho K, Okano J, Isomoto H, Murawaki Y. Antifibrotic effects of ambrisentan, 
an endothelin-A receptor antagonist, in a non-alcoholic steatohepatitis mouse 
model. World J Hepatol 2016;8:933-41. 

 [107]  Bahde R, Kapoor S, Viswanathan P, Spiegel HU, Gupta S. Endothelin-1 
receptor A blocker darusentan decreases hepatic changes and improves liver 
repopulation after cell transplantation in rats. Hepatology 2014;59:1107-17. 

 [108]  Zhan S, Rockey DC. Tumor necrosis factor alpha stimulates endothelin-1 
synthesis in rat hepatic stellate cells in hepatic wound healing through a novel 
IKK/JNK pathway. Exp Cell Res 2011;317:1040-8. 

 [109]  Shimada H, Staten NR, Rajagopalan LE. TGF-beta1 mediated activation of 
Rho kinase induces TGF-beta2 and endothelin-1 expression in human hepatic 
stellate cells. J Hepatol 2011;54:521-8. 

 [110]  He C, Miao X, Li J, Qi H. Angiotensin II induces endothelin-1 expression in 
human hepatic stellate cells. Dig Dis Sci 2013;58:2542-9. 

 [111]  Zhan S, Chan CC, Serdar B, Rockey DC. Fibronectin stimulates endothelin-1 
synthesis in rat hepatic myofibroblasts via a Src/ERK-regulated signaling 
pathway. Gastroenterology 2009;136:2345-55. 

 [112]  Humbert M, Segal ES, Kiely DG, Carlsen J, Schwierin B, Hoeper MM. Results 
of European post-marketing surveillance of bosentan in pulmonary 
hypertension. Eur Respir J 2007;30:338-44. 

 [113]  Tripathi D, Therapondos G, Ferguson JW, Newby DE, Webb DJ, Hayes PC. 
Endothelin-1 contributes to maintenance of systemic but not portal 
haemodynamics in patients with early cirrhosis: a randomised controlled trial. 
Gut 2006;55:1290-5. 

 [114]  Nakamura T, Ebihara I, Fukui M, Osada S, Tomino Y, Masaki T, Goto K, 
Furuichi Y, Koide H. Renal expression of mRNAs for endothelin-1, endothelin-3 
and endothelin receptors in NZB/W F1 mice. Ren Physiol Biochem 
1993;16:233-43. 



53 
 

 [115]  Morigi M, Buelli S, Zanchi C, Longaretti L, Macconi D, Benigni A, Moioli D, 
Remuzzi G, Zoja C. Shigatoxin-induced endothelin-1 expression in cultured 
podocytes autocrinally mediates actin remodeling. Am J Pathol 2006;169:1965-
75. 

 [116]  Fligny C, Barton M, Tharaux PL. Endothelin and podocyte injury in chronic 
kidney disease. Contrib Nephrol 2011;172:120-38. 

 [117]  Sakamoto H, Sasaki S, Hirata Y, Imai T, Ando K, Ida T, Sakurai T, Yanagisawa 
M, Masaki T, Marumo F. Production of endothelin-1 by rat cultured mesangial 
cells. Biochem Biophys Res Commun 1990;169:462-8. 

 [118]  Mishra R, Leahy P, Simonson MS. Gene expression profile of endothelin-1-
induced growth in glomerular mesangial cells. Am J Physiol Cell Physiol 
2003;285:C1109-C1115. 

 [119]  Dhaun N, Goddard J, Webb DJ. The endothelin system and its antagonism in 
chronic kidney disease. J Am Soc Nephrol 2006;17:943-55. 

 [120]  Herman WH, Emancipator SN, Rhoten RL, Simonson MS. Vascular and 
glomerular expression of endothelin-1 in normal human kidney. Am J Physiol 
1998;275:F8-17. 

 [121]  Lehrke I, Waldherr R, Ritz E, Wagner J. Renal endothelin-1 and endothelin 
receptor type B expression in glomerular diseases with proteinuria. J Am Soc 
Nephrol 2001;12:2321-9. 

 [122]  Hocher B, Thone-Reineke C, Rohmeiss P, Schmager F, Slowinski T, Burst V, 
Siegmund F, Quertermous T, Bauer C, Neumayer HH, Schleuning WD, 
Theuring F. Endothelin-1 transgenic mice develop glomerulosclerosis, 
interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest 
1997;99:1380-9. 

 [123]  Hocher B, Liefeldt L, Thone-Reineke C, Orzechowski HD, Distler A, Bauer C, 
Paul M. Characterization of the renal phenotype of transgenic rats expressing 
the human endothelin-2 gene. Hypertension 1996;28:196-201. 

 [124]  Tharaux PL, Chatziantoniou C, Casellas D, Fouassier L, Ardaillou R, Dussaule 
JC. Vascular endothelin-1 gene expression and synthesis and effect on renal 
type I collagen synthesis and nephroangiosclerosis during nitric oxide synthase 
inhibition in rats. Circulation 1999;99:2185-91. 

 [125]  Ledbetter S, Kurtzberg L, Doyle S, Pratt BM. Renal fibrosis in mice treated with 
human recombinant transforming growth factor-beta2. Kidney Int 
2000;58:2367-76. 

 [126]  Hill C, Flyvbjerg A, Rasch R, Bak M, Logan A. Transforming growth factor-
beta2 antibody attenuates fibrosis in the experimental diabetic rat kidney. J 
Endocrinol 2001;170:647-51. 



54 
 

 [127]  Gerrity RG, Naito HK, Richardson M, Schwartz CJ. Dietary induced 
atherogenesis in swine. Morphology of the intima in prelesion stages. Am J 
Pathol 1979;95:775-92. 

 [128]  Dhaun N, Webb DJ, Kluth DC. Endothelin-1 and the kidney--beyond BP. Br J 
Pharmacol 2012;167:720-31. 

 [129]  Boffa JJ, Tharaux PL, Dussaule JC, Chatziantoniou C. Regression of renal 
vascular fibrosis by endothelin receptor antagonism. Hypertension 
2001;37:490-6. 

 [130]  Boffa JJ, Tharaux PL, Placier S, Ardaillou R, Dussaule JC, Chatziantoniou C. 
Angiotensin II activates collagen type I gene in the renal vasculature of 
transgenic mice during inhibition of nitric oxide synthesis: evidence for an 
endothelin-mediated mechanism. Circulation 1999;100:1901-8. 

 [131]  Campistol JM, Inigo P, Jimenez W, Lario S, Clesca PH, Oppenheimer F, Rivera 
F. Losartan decreases plasma levels of TGF-beta1 in transplant patients with 
chronic allograft nephropathy. Kidney Int 1999;56:714-9. 

 [132]  Mann JF, Green D, Jamerson K, Ruilope LM, Kuranoff SJ, Littke T, Viberti G. 
Avosentan for overt diabetic nephropathy. J Am Soc Nephrol 2010;21:527-35. 

 [133]  Dhaun N, MacIntyre IM, Kerr D, Melville V, Johnston NR, Haughie S, Goddard 
J, Webb DJ. Selective endothelin-A receptor antagonism reduces proteinuria, 
blood pressure, and arterial stiffness in chronic proteinuric kidney disease. 
Hypertension 2011;57:772-9. 

 [134]  Kohan DE, Pritchett Y, Molitch M, Wen S, Garimella T, Audhya P, Andress DL. 
Addition of atrasentan to renin-angiotensin system blockade reduces 
albuminuria in diabetic nephropathy. J Am Soc Nephrol 2011;22:763-72. 

 [135]  Andress DL, Coll B, Pritchett Y, Brennan J, Molitch M, Kohan DE. Clinical 
efficacy of the selective endothelin A receptor antagonist, atrasentan, in 
patients with diabetes and chronic kidney disease (CKD). Life Sci 2012;91:739-
42. 

 [136]  Guruli G, Pflug BR, Pecher S, Makarenkova V, Shurin MR, Nelson JB. Function 
and survival of dendritic cells depend on endothelin-1 and endothelin receptor 
autocrine loops. Blood 2004;104:2107-15. 

 [137]  Spirig R, Potapova I, Shaw-Boden J, Tsui J, Rieben R, Shaw SG. TLR2 and 
TLR4 agonists induce production of the vasoactive peptide endothelin-1 by 
human dendritic cells. Mol Immunol 2009;46:3178-82. 

 [138]  Elisa T, Antonio P, Giuseppe P, Alessandro B, Giuseppe A, Federico C, Marzia 
D, Ruggero B, Giacomo M, Andrea O, Daniela R, Mariaelisa R, Claudio L. 
Endothelin Receptors Expressed by Immune Cells Are Involved in Modulation 
of Inflammation and in Fibrosis: Relevance to the Pathogenesis of Systemic 
Sclerosis. J Immunol Res 2015;2015:147616. 



55 
 

 [139]  Gunther J, Kill A, Becker MO, Heidecke H, Rademacher J, Siegert E, Radic M, 
Burmester GR, Dragun D, Riemekasten G. Angiotensin receptor type 1 and 
endothelin receptor type A on immune cells mediate migration and the 
expression of IL-8 and CCL18 when stimulated by autoantibodies from 
systemic sclerosis patients. Arthritis Res Ther 2014;16:R65. 

 [140]  Maffei R, Bulgarelli J, Fiorcari S, Martinelli S, Castelli I, Valenti V, Rossi D, 
Bonacorsi G, Zucchini P, Potenza L, Vallisa D, Gattei V, Del PG, Forconi F, et 
al. Endothelin-1 promotes survival and chemoresistance in chronic lymphocytic 
leukemia B cells through ETA receptor. PLoS One 2014;9:e98818. 

 [141]  LaMarca B, Wallace K, Herse F, Wallukat G, Martin JN, Jr., Weimer A, 
Dechend R. Hypertension in response to placental ischemia during pregnancy: 
role of B lymphocytes. Hypertension 2011;57:865-71. 

 [142]  Buckanovich RJ, Facciabene A, Kim S, Benencia F, Sasaroli D, Balint K, 
Katsaros D, O'Brien-Jenkins A, Gimotty PA, Coukos G. Endothelin B receptor 
mediates the endothelial barrier to T cell homing to tumors and disables 
immune therapy. Nat Med 2008;14:28-36. 

 [143]  Nakashima S, Sugita Y, Miyoshi H, Arakawa F, Muta H, Ishibashi Y, Niino D, 
Ohshima K, Terasaki M, Nakamura Y, Morioka M. Endothelin B receptor 
expression in malignant gliomas: the perivascular immune escape mechanism 
of gliomas. J Neurooncol 2016;127:23-32. 

 [144]  Sugita Y, Terasaki M, Nakashima S, Ohshima K, Morioka M, Abe H. 
Perivascular microenvironment in primary central nervous system lymphomas: 
the role of chemokines and the endothelin B receptor. Brain Tumor Pathol 
2015;32:41-8. 

 [145]  Tanaka T, Sho M, Takayama T, Wakatsuki K, Matsumoto S, Migita K, Ito M, 
Hamada K, Nakajima Y. Endothelin B receptor expression correlates with 
tumour angiogenesis and prognosis in oesophageal squamous cell carcinoma. 
Br J Cancer 2014;110:1027-33. 

 [146]  Morris R, Spencer SK, Kyle PB, Williams JM, Harris A, Owens MY, Wallace K. 
Hypertension in an Animal Model of HELLP Syndrome is Associated With 
Activation of Endothelin 1. Reprod Sci 2016;23:42-50. 

 [147]  Tanaka K, Yoshioka K, Tatsumi K, Kimura S, Kasuya Y. Endothelin regulates 
function of IL-17-producing T cell subset. Life Sci 2014;118:244-7. 

 [148]  Dimitrijevic I, Edvinsson L. Increased endothelin 1 type B receptors in nasal 
lesions of patients with granulomatosis with polyangiitis. Am J Rhinol Allergy 
2013;27:444-50. 

 [149]  Strait KA, Stricklett PK, Kohan RM, Kohan DE. Identification of two nuclear 
factor of activated T-cells (NFAT)-response elements in the 5'-upstream 
regulatory region of the ET-1 promoter. J Biol Chem 2010;285:28520-8. 



56 
 

 [150]  Macian F. NFAT proteins: key regulators of T-cell development and function. 
Nat Rev Immunol 2005;5:472-84. 

 [151]  Van SC, Wang G, Anderson MG, Trask OJ, Lesniewski R, Semizarov D. 
Endothelin signaling in osteoblasts: global genome view and implication of the 
calcineurin/NFAT pathway. Mol Cancer Ther 2007;6:253-61. 

 [152]  de FS, Diaz JM, Nitta CH, Sherpa ML, Bosc LV. Endothelin-1 contributes to 
increased NFATc3 activation by chronic hypoxia in pulmonary arteries. Am J 
Physiol Cell Physiol 2011;301:C441-C450. 

 [153]  Sampaio AL, Rae GA, Henriques M. Effects of endothelin ETA receptor 
antagonism on granulocyte and lymphocyte accumulation in LPS-induced 
inflammation. J Leukoc Biol 2004;76:210-6. 

 [154]  Achmad TH, Rao GS. Chemotaxis of human blood monocytes toward 
endothelin-1 and the influence of calcium channel blockers. Biochem Biophys 
Res Commun 1992;189:994-1000. 

 [155]  Bath PM, Mayston SA, Martin JF. Endothelin and PDGF do not stimulate 
peripheral blood monocyte chemotaxis, adhesion to endothelium, and 
superoxide production. Exp Cell Res 1990;187:339-42. 

 [156]  Cui P, Tani K, Kitamura H, Okumura Y, Yano M, Inui D, Tamaki T, Sone S, 
Kido H. A novel bioactive 31-amino acid endothelin-1 is a potent chemotactic 
peptide for human neutrophils and monocytes. J Leukoc Biol 2001;70:306-12. 

 [157]  Elferink JG, de Koster BM. Endothelin-induced activation of neutrophil 
migration. Biochem Pharmacol 1994;48:865-71. 

 [158]  Elferink JG, de Koster BM. The effect of endothelin-2 (ET-2) on migration and 
changes in cytosolic free calcium of neutrophils. Naunyn Schmiedebergs Arch 
Pharmacol 1996;353:130-5. 

 [159]  Elferink JG, de Koster BM. Stimulation and inhibition of neutrophil chemotaxis 
by endothelin-3. J Cardiovasc Pharmacol 1995;26 Suppl 3:S142-S144. 

 [160]  Koong AC, Denko NC, Hudson KM, Schindler C, Swiersz L, Koch C, Evans S, 
Ibrahim H, Le QT, Terris DJ, Giaccia AJ. Candidate genes for the hypoxic 
tumor phenotype. Cancer Res 2000;60:883-7. 

 [161]  Wilson SH, Simari RD, Lerman A. The effect of endothelin-1 on nuclear factor 
kappa B in macrophages. Biochem Biophys Res Commun 2001;286:968-72. 

 [162]  Browatzki M, Pfeiffer CA, Schmidt J, Kranzhofer R. Endothelin-1 induces CD40 
but not IL-6 in human monocytes via the proinflammatory transcription factor 
NF-kappaB. Eur J Med Res 2005;10:197-201. 

 [163]  Virok D, Loboda A, Kari L, Nebozhyn M, Chang C, Nichols C, Endresz V, 
Gonczol E, Berencsi K, Showe MK, Showe LC. Infection of U937 monocytic 



57 
 

cells with Chlamydia pneumoniae induces extensive changes in host cell gene 
expression. J Infect Dis 2003;188:1310-21. 

 [164]  Videm V, Wiseth R, Gunnes S, Madsen HO, Garred P. Multiple inflammatory 
markers in patients with significant coronary artery disease. Int J Cardiol 
2007;118:81-7. 

 [165]  Corral RS, Guerrero NA, Cuervo H, Girones N, Fresno M. Trypanosoma cruzi 
infection and endothelin-1 cooperatively activate pathogenic inflammatory 
pathways in cardiomyocytes. PLoS Negl Trop Dis 2013;7:e2034. 

 [166]  Li MW, Mian MO, Barhoumi T, Rehman A, Mann K, Paradis P, Schiffrin EL. 
Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic 
aneurysms in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 
2013;33:2306-15. 

 [167]  Javeshghani D, Barhoumi T, Idris-Khodja N, Paradis P, Schiffrin EL. Reduced 
macrophage-dependent inflammation improves endothelin-1-induced vascular 
injury. Hypertension 2013;62:112-7. 

 [168]  Said N, Smith S, Sanchez-Carbayo M, Theodorescu D. Tumor endothelin-1 
enhances metastatic colonization of the lung in mouse xenograft models of 
bladder cancer. J Clin Invest 2011;121:132-47. 

 [169]  Chen CC, Chen LL, Hsu YT, Liu KJ, Fan CS, Huang TS. The endothelin-
integrin axis is involved in macrophage-induced breast cancer cell chemotactic 
interactions with endothelial cells. J Biol Chem 2014;289:10029-44. 

 [170]  Binder C, Hagemann T, Sperling S, Schulz M, Pukrop T, Grimshaw MJ, 
Ehrenreich H. Stromal endothelin B receptor-deficiency inhibits breast cancer 
growth and metastasis. Mol Cancer Ther 2009;8:2452-60. 

 [171]  Morbidelli L, Orlando C, Maggi CA, Ledda F, Ziche M. Proliferation and 
migration of endothelial cells is promoted by endothelins via activation of ETB 
receptors. Am J Physiol 1995;269:H686-H695. 

 [172]  Wren AD, Hiley CR, Fan TP. Endothelin-3 mediated proliferation in wounded 
human umbilical vein endothelial cells. Biochem Biophys Res Commun 
1993;196:369-75. 

 [173]  Noiri E, Hu Y, Bahou WF, Keese CR, Giaever I, Goligorsky MS. Permissive 
role of nitric oxide in endothelin-induced migration of endothelial cells. J Biol 
Chem 1997;272:1747-52. 

 [174]  Salani D, Taraboletti G, Rosano L, Di C, V, Borsotti P, Giavazzi R, Bagnato A. 
Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and 
stimulates neovascularization in vivo. Am J Pathol 2000;157:1703-11. 

 [175]  Spinella F, Garrafa E, Di C, V, Rosano L, Nicotra MR, Caruso A, Natali PG, 
Bagnato A. Endothelin-1 stimulates lymphatic endothelial cells and lymphatic 
vessels to grow and invade. Cancer Res 2009;69:2669-76. 



58 
 

 [176]  Matsuura A, Yamochi W, Hirata K, Kawashima S, Yokoyama M. Stimulatory 
interaction between vascular endothelial growth factor and endothelin-1 on 
each gene expression. Hypertension 1998;32:89-95. 

 [177]  Kourembanas S, Marsden PA, McQuillan LP, Faller DV. Hypoxia induces 
endothelin gene expression and secretion in cultured human endothelium. J 
Clin Invest 1991;88:1054-7. 

 [178]  Bandyopadhyay RS, Phelan M, Faller DV. Hypoxia induces AP-1-regulated 
genes and AP-1 transcription factor binding in human endothelial and other cell 
types. Biochim Biophys Acta 1995;1264:72-8. 

 [179]  Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. HIF prolyl-
hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-
1alpha in normoxia. EMBO J 2003;22:4082-90. 

 [180]  Patel N, Gonsalves CS, Malik P, Kalra VK. Placenta growth factor augments 
endothelin-1 and endothelin-B receptor expression via hypoxia-inducible factor-
1 alpha. Blood 2008;112:856-65. 

 [181]  Grimshaw MJ. Endothelins and hypoxia-inducible factor in cancer. Endocr 
Relat Cancer 2007;14:233-44. 

 [182]  Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721-
32. 

 [183]  Spinella F, Rosano L, Del DM, Di C, V, Nicotra MR, Natali PG, Bagnato A. 
Endothelin-1 inhibits prolyl hydroxylase domain 2 to activate hypoxia-inducible 
factor-1alpha in melanoma cells. PLoS One 2010;5:e11241. 

 [184]  Spinella F, Rosano L, Di C, V, Natali PG, Bagnato A. Endothelin-1 induces 
vascular endothelial growth factor by increasing hypoxia-inducible factor-
1alpha in ovarian carcinoma cells. J Biol Chem 2002;277:27850-5. 

 [185]  Wu MH, Huang CY, Lin JA, Wang SW, Peng CY, Cheng HC, Tang CH. 
Endothelin-1 promotes vascular endothelial growth factor-dependent 
angiogenesis in human chondrosarcoma cells. Oncogene 2014;33:1725-35. 

 [186]  Caprara V, Scappa S, Garrafa E, Di C, V, Rosano L, Bagnato A, Spinella F. 
Endothelin-1 regulates hypoxia-inducible factor-1alpha and -2alpha stability 
through prolyl hydroxylase domain 2 inhibition in human lymphatic endothelial 
cells. Life Sci 2014;118:185-90. 

 [187]  Spinella F, Caprara V, Cianfrocca R, Rosano L, Di C, V, Garrafa E, Natali PG, 
Bagnato A. The interplay between hypoxia, endothelial and melanoma cells 
regulates vascularization and cell motility through endothelin-1 and vascular 
endothelial growth factor. Carcinogenesis 2014;35:840-8. 

 [188]  Cianfrocca R, Tocci P, Rosano L, Caprara V, Sestito R, Di C, V, Bagnato A. 
Nuclear beta-arrestin1 is a critical cofactor of hypoxia-inducible factor-1alpha 



59 
 

signaling in endothelin-1-induced ovarian tumor progression. Oncotarget 
2016;7:17790-804. 

 [189]  Wilson JL, Burchell J, Grimshaw MJ. Endothelins induce CCR7 expression by 
breast tumor cells via endothelin receptor A and hypoxia-inducible factor-1. 
Cancer Res 2006;66:11802-7. 

 [190]  Salani D, Di C, V, Nicotra MR, Rosano L, Tecce R, Venuti A, Natali PG, 
Bagnato A. Role of endothelin-1 in neovascularization of ovarian carcinoma. 
Am J Pathol 2000;157:1537-47. 

 [191]  Smollich M, Gotte M, Kersting C, Fischgrabe J, Kiesel L, Wulfing P. Selective 
ETAR antagonist atrasentan inhibits hypoxia-induced breast cancer cell 
invasion. Breast Cancer Res Treat 2008;108:175-82. 

 [192]  Schoppmann SF, Fenzl A, Schindl M, Bachleitner-Hofmann T, Nagy K, Gnant 
M, Horvat R, Jakesz R, Birner P. Hypoxia inducible factor-1alpha correlates 
with VEGF-C expression and lymphangiogenesis in breast cancer. Breast 
Cancer Res Treat 2006;99:135-41. 

 [193]  Wulfing P, Kersting C, Tio J, Fischer RJ, Wulfing C, Poremba C, Diallo R, 
Bocker W, Kiesel L. Endothelin-1-, endothelin-A-, and endothelin-B-receptor 
expression is correlated with vascular endothelial growth factor expression and 
angiogenesis in breast cancer. Clin Cancer Res 2004;10:2393-400. 

 [194]  Clasper S, Royston D, Baban D, Cao Y, Ewers S, Butz S, Vestweber D, 
Jackson DG. A novel gene expression profile in lymphatics associated with 
tumor growth and nodal metastasis. Cancer Res 2008;68:7293-303. 

 [195]  Cueni LN, Hegyi I, Shin JW, Albinger-Hegyi A, Gruber S, Kunstfeld R, Moch H, 
Detmar M. Tumor lymphangiogenesis and metastasis to lymph nodes induced 
by cancer cell expression of podoplanin. Am J Pathol 2010;177:1004-16. 

 [196]  Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, 
Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola 
F, et al. Molecular classification of cutaneous malignant melanoma by gene 
expression profiling. Nature 2000;406:536-40. 

 [197]  Folberg R, Maniotis AJ. Vasculogenic mimicry. APMIS 2004;112:508-25. 

 [198]  Spinella F, Caprara V, Di C, V, Rosano L, Cianfrocca R, Natali PG, Bagnato A. 
Endothelin-1 induces the transactivation of vascular endothelial growth factor 
receptor-3 and modulates cell migration and vasculogenic mimicry in 
melanoma cells. J Mol Med (Berl) 2013;91:395-405. 

 [199]  Spinella F, Rosano L, Di C, V, Nicotra MR, Natali PG, Bagnato A. Inhibition of 
cyclooxygenase-1 and -2 expression by targeting the endothelin a receptor in 
human ovarian carcinoma cells. Clin Cancer Res 2004;10:4670-9. 



60 
 

 [200]  Gupta RA, Tejada LV, Tong BJ, Das SK, Morrow JD, Dey SK, DuBois RN. 
Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor 
production in ovarian cancer. Cancer Res 2003;63:906-11. 

 [201]  Gloria MA, Cenedeze MA, Pacheco-Silva A, Camara NO. The blockade of 
cyclooxygenases-1 and -2 reduces the effects of hypoxia on endothelial cells. 
Braz J Med Biol Res 2006;39:1189-96. 

 [202]  Spinella F, Rosano L, Elia G, Di C, V, Natali PG, Bagnato A. Endothelin-1 
stimulates cyclooxygenase-2 expression in ovarian cancer cells through 
multiple signaling pathways: evidence for involvement of transactivation of the 
epidermal growth factor receptor. J Cardiovasc Pharmacol 2004;44 Suppl 
1:S140-S143. 

 [203]  Rosano L, Di C, V, Spinella F, Nicotra MR, Natali PG, Bagnato A. ZD4054, a 
specific antagonist of the endothelin A receptor, inhibits tumor growth and 
enhances paclitaxel activity in human ovarian carcinoma in vitro and in vivo. 
Mol Cancer Ther 2007;6:2003-11. 

 [204]  Kugelmeier P, Nett PC, Zullig R, Lehmann R, Weber M, Moritz W. Expression 
and hypoxic regulation of the endothelin system in endocrine cells of human 
and rat pancreatic islets. JOP 2008;9:133-49. 

 [205]  Kakugawa Y, Giaid A, Yanagisawa M, Baynash AG, Melnyk P, Rosenberg L, 
Duguid WP. Expression of endothelin-1 in pancreatic tissue of patients with 
chronic pancreatitis. J Pathol 1996;178:78-83. 

 [206]  Gregersen S, Thomsen JL, Brock B, Hermansen K. Endothelin-1 stimulates 
insulin secretion by direct action on the islets of Langerhans in mice. 
Diabetologia 1996;39:1030-5. 

 [207]  Gregersen S, Thomsen JL, Hermansen K. Endothelin-1 (ET-1)-potentiated 
insulin secretion: involvement of protein kinase C and the ET(A) receptor 
subtype. Metabolism 2000;49:264-9. 

 [208]  Brock B, Gregersen S, Kristensen K, Thomsen JL, Buschard K, Kofod H, 
Hermansen K. The insulinotropic effect of endothelin-1 is mediated by 
glucagon release from the islet alpha cells. Diabetologia 1999;42:1302-7. 

 [209]  Zimmerman RS, Maymind M. Endothelin-1 decreases glucose, inhibits 
glucagon, and stimulates insulin release in the rat. Metabolism 1995;44:1321-5. 

 [210]  Zimmerman RS, Maymind M. NG-methyl-L-arginine and somatostatin decrease 
glucose and insulin and block endothelin-1 (ET-1)-induced insulin release but 
not ET-1-induced hypoglycemia. Metabolism 1995;44:1532-5. 

 [211]  Ahlborg G, Weitzberg E, Lundberg JM. Endothelin-1 infusion reduces 
splanchnic glucose production in humans. J Appl Physiol (1985 ) 1994;77:121-
6. 



61 
 

 [212]  Ahlborg G, Weitzberg E, Lundberg JM. Circulating endothelin-1 reduces 
splanchnic and renal blood flow and splanchnic glucose production in humans. 
J Appl Physiol (1985 ) 1995;79:141-5. 

 [213]  De CE, Milanesi A, Martini C, Maffei P, Sicolo N, Scandellari C. Endothelin-1 
and endothelin-3 stimulate insulin release by isolated rat pancreatic islets. J 
Endocrinol Invest 2000;23:240-5. 

 [214]  Hu RM, Levin ER, Pedram A, Frank HJ. Insulin stimulates production and 
secretion of endothelin from bovine endothelial cells. Diabetes 1993;42:351-8. 

 [215]  Oliver FJ, de la Rubia G, Feener EP, Lee ME, Loeken MR, Shiba T, 
Quertermous T, King GL. Stimulation of endothelin-1 gene expression by 
insulin in endothelial cells. J Biol Chem 1991;266:23251-6. 

 [216]  Yamauchi T, Ohnaka K, Takayanagi R, Umeda F, Nawata H. Enhanced 
secretion of endothelin-1 by elevated glucose levels from cultured bovine aortic 
endothelial cells. FEBS Lett 1990;267:16-8. 

 [217]  Metsarinne K, Saijonmaa O, Yki-Jarvinen H, Fyhrquist F. Insulin increases the 
release of endothelin in endothelial cell cultures in vitro but not in vivo. 
Metabolism 1994;43:878-82. 

 [218]  Hattori Y, Kasai K, Nakamura T, Emoto T, Shimoda S. Effect of glucose and 
insulin on immunoreactive endothelin-1 release from cultured porcine aortic 
endothelial cells. Metabolism 1991;40:165-9. 

 [219]  Haak T, Jungmann E, Felber A, Hillmann U, Usadel KH. Increased plasma 
levels of endothelin in diabetic patients with hypertension. Am J Hypertens 
1992;5:161-6. 

 [220]  Letizia C, Iannaccone A, Cerci S, Santi G, Cilli M, Coassin S, Pannarale MR, 
Scavo D. Circulating endothelin-1 in non-insulin-dependent diabetic patients 
with retinopathy. Horm Metab Res 1997;29:247-51. 

 [221]  Takahashi K, Ghatei MA, Lam HC, O'Halloran DJ, Bloom SR. Elevated plasma 
endothelin in patients with diabetes mellitus. Diabetologia 1990;33:306-10. 

 [222]  Piatti PM, Monti LD, Conti M, Baruffaldi L, Galli L, Phan CV, Guazzini B, 
Pontiroli AE, Pozza G. Hypertriglyceridemia and hyperinsulinemia are potent 
inducers of endothelin-1 release in humans. Diabetes 1996;45:316-21. 

 [223]  Ferri C, Bellini C, Desideri G, Di FL, Baldoncini R, Santucci A, De MG. Plasma 
endothelin-1 levels in obese hypertensive and normotensive men. Diabetes 
1995;44:431-6. 

 [224]  Bertello P, Veglio F, Pinna G, Gurioli L, Molino P, Alban S, Chiandussi L. 
Plasma endothelin in NIDDM patients with and without complications. Diabetes 
Care 1994;17:574-7. 



62 
 

 [225]  Juan CC, Fang VS, Huang YJ, Kwok CF, Hsu YP, Ho LT. Endothelin-1 induces 
insulin resistance in conscious rats. Biochem Biophys Res Commun 
1996;227:694-9. 

 [226]  Ottosson-Seeberger A, Lundberg JM, Alvestrand A, Ahlborg G. Exogenous 
endothelin-1 causes peripheral insulin resistance in healthy humans. Acta 
Physiol Scand 1997;161:211-20. 

 [227]  Teuscher AU, Lerch M, Shaw S, Pacini G, Ferrari P, Weidmann P. Endothelin-
1 infusion inhibits plasma insulin responsiveness in normal men. J Hypertens 
1998;16:1279-84. 

 [228]  Ferri C, Carlomagno A, Coassin S, Baldoncini R, Cassone Faldetta MR, 
Laurenti O, Properzi G, Santucci A, De MG. Circulating endothelin-1 levels 
increase during euglycemic hyperinsulinemic clamp in lean NIDDM men. 
Diabetes Care 1995;18:226-33. 

 [229]  Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors 
controlling glucose tolerance in man: measurement of insulin sensitivity and 
beta-cell glucose sensitivity from the response to intravenous glucose. J Clin 
Invest 1981;68:1456-67. 

 [230]  Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin 
sensitivity. Am J Physiol 1979;236:E667-E677. 

 [231]  Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, 
Neifing JL, Ward WK, Beard JC, Palmer JP, . Quantification of the relationship 
between insulin sensitivity and beta-cell function in human subjects. Evidence 
for a hyperbolic function. Diabetes 1993;42:1663-72. 

 [232]  Hildebrand P, Mrozinski JE, Jr., Mantey SA, Patto RJ, Jensen RT. Pancreatic 
acini possess endothelin receptors whose internalization is regulated by PLC-
activating agents. Am J Physiol 1993;264:G984-G993. 

 [233]  Yule DI, Blevins GT, Jr., Wagner AC, Williams JA. Endothelin increases [Ca2+]i 
in rat pancreatic acinar cells by intracellular release but fails to increase 
amylase secretion. Biochim Biophys Acta 1992;1136:175-80. 

 [234]  Yamamoto T, Uemura H. Distribution of endothelin-B receptor-like 
immunoreactivity in rat brain, kidney, and pancreas. J Cardiovasc Pharmacol 
1998;31 Suppl 1:S207-S211. 

 [235]  Takaori K, Inoue K, Kogire M, Higashide S, Tun T, Aung T, Doi R, Fujii N, Tobe 
T. Effects of endothelin on microcirculation of the pancreas. Life Sci 
1992;51:615-22. 

 [236]  Plusczyk T, Bersal B, Menger MD, Feifel G. Differential effects of ET-1, ET-2, 
and ET-3 on pancreatic microcirculation, tissue integrity, and inflammation. Dig 
Dis Sci 2001;46:1343-51. 



63 
 

 [237]  Plusczyk T, Bersal B, Westermann S, Menger M, Feifel G. ET-1 induces 
pancreatitis-like microvascular deterioration and acinar cell injury. J Surg Res 
1999;85:301-10. 

 [238]  Lai EY, Persson AE, Bodin B, Kallskog O, Andersson A, Pettersson U, Hansell 
P, Jansson L. Endothelin-1 and pancreatic islet vasculature: studies in vivo and 
on isolated, vascularly perfused pancreatic islets. Am J Physiol Endocrinol 
Metab 2007;292:E1616-E1623. 

 [239]  Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) 
and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 
2007;47:731-59. 

 [240]  Fukuroda T, Fujikawa T, Ozaki S, Ishikawa K, Yano M, Nishikibe M. Clearance 
of circulating endothelin-1 by ETB receptors in rats. Biochem Biophys Res 
Commun 1994;199:1461-5. 

 [241]  Gariepy CE, Ohuchi T, Williams SC, Richardson JA, Yanagisawa M. Salt-
sensitive hypertension in endothelin-B receptor-deficient rats. J Clin Invest 
2000;105:925-33. 

 [242]  Klar E, Messmer K, Warshaw AL, Herfarth C. Pancreatic ischaemia in 
experimental acute pancreatitis: mechanism, significance and therapy. Br J 
Surg 1990;77:1205-10. 

 [243]  Knoefel WT, Kollias N, Warshaw AL, Waldner H, Nishioka NS, Rattner DW. 
Pancreatic microcirculatory changes in experimental pancreatitis of graded 
severity in the rat. Surgery 1994;116:904-13. 

 [244]  Blackstone MO. Hypothesis: vascular compromise is the central pathogenic 
mechanism for acute hemorrhagic pancreatitis. Perspect Biol Med 1995;39:56-
63. 

 [245]  Battistini B, D'Orleans-Juste P, Sirois P. Endothelins: circulating plasma levels 
and presence in other biologic fluids. Lab Invest 1993;68:600-28. 

 [246]  Battistini B, Forget MA, Laight D. Potential roles for endothelins in systemic 
inflammatory response syndrome with a particular relationship to cytokines. 
Shock 1996;5:167-83. 

 [247]  Milnerowicz S, Milnerowicz H, Nabzdyk S, Jablonowska M, Grabowski K, 
Tabola R. Plasma endothelin-1 levels in pancreatic inflammations. Adv Clin 
Exp Med 2013;22:361-8. 

 [248]  Sliwinska-Mosson M, Milnerowicz S, Nabzdyk S, Kokot I, Nowak M, 
Milnerowicz H. The effect of smoking on endothelin-1 in patients with chronic 
pancreatitis. Appl Immunohistochem Mol Morphol 2015;23:288-96. 

 [249]  Borissova AM, Tankova T, Kirilov G, Dakovska L, Krivoshiev S. The effect of 
smoking on peripheral insulin sensitivity and plasma endothelin level. Diabetes 
Metab 2004;30:147-52. 



64 
 

 [250]  Goerre S, Staehli C, Shaw S, Luscher TF. Effect of cigarette smoking and 
nicotine on plasma endothelin-1 levels. J Cardiovasc Pharmacol 1995;26 Suppl 
3:S236-S238. 

 [251]  Chen CY, Lu CL, Chang FY, Lu RH, Ng WW, Lee SD. Endothelin-1 is a 
candidate mediating intestinal dysmotility in patients with acute pancreatitis. 
Dig Dis Sci 1999;44:922-6. 

 [252]  Bennett J, Cooper D, Balakrishnan A, Rhodes M, Lewis M. Is there a role for 
serum endothelin in predicting the severity of acute pancreatitis? Hepatobiliary 
Pancreat Dis Int 2006;5:290-3. 

 [253]  Oz HS, Lu Y, Vera-Portocarrero LP, Ge P, Silos-Santiago A, Westlund KN. 
Gene expression profiling and endothelin in acute experimental pancreatitis. 
World J Gastroenterol 2012;18:4257-69. 

 [254]  Xiping Z, Ruiping Z, Binyan Y, Li Z, Hanqing C, Wei Z, Rongchao Y, Jing Y, 
Wenqin Y, Jinjin B. Protecting effects of a large dose of dexamethasone on 
spleen injury of rats with severe acute pancreatitis. J Gastroenterol Hepatol 
2010;25:302-8. 

 [255]  Zhang XP, Xu HM, Jiang YY, Yu S, Cai Y, Lu B, Xie Q, Ju TF. Influence of 
dexamethasone on mesenteric lymph node of rats with severe acute 
pancreatitis. World J Gastroenterol 2008;14:3511-7. 

 [256]  Zhang XP, Ye Q, Jiang XG, Ma ML, Zhu FB, Zhang RP, Cheng QH. 
Preparation method of an ideal model of multiple organ injury of rat with severe 
acute pancreatitis. World J Gastroenterol 2007;13:4566-73. 

 [257]  Zhang XP, Zhang J, Ma ML, Cai Y, Xu RJ, Xie Q, Jiang XG, Ye Q. Pathological 
changes at early stage of multiple organ injury in a rat model of severe acute 
pancreatitis. Hepatobiliary Pancreat Dis Int 2010;9:83-7. 

 [258]  Liu XH, Kimura T, Ishikawa H, Yamaguchi H, Furukawa M, Nakano I, Kinjoh M, 
Nawata H. Effect of endothelin-1 on the development of hemorrhagic 
pancreatitis in rats. Scand J Gastroenterol 1995;30:276-82. 

 [259]  Foitzik T, Hotz HG, Hot B, Kirchengast M, Buhr HJ. Endothelin-1 mediates the 
alcohol-induced reduction of pancreatic capillary blood flow. J Gastrointest 
Surg 1998;2:379-84. 

 [260]  Davini A, Cellerini F, Topi PL. [Coenzyme Q10: contractile dysfunction of the 
myocardial cell and metabolic therapy]. Minerva Cardioangiol 1992;40:449-53. 

 [261]  Foitzik T, Faulhaber J, Hotz HG, Kirchengast M, Buhr HJ. Endothelin receptor 
blockade improves fluid sequestration, pancreatic capillary blood flow, and 
survival in severe experimental pancreatitis. Ann Surg 1998;228:670-5. 

 [262]  Foitzik T, Eibl G, Hotz HG, Faulhaber J, Kirchengast M, Buhr HJ. Endothelin 
receptor blockade in severe acute pancreatitis leads to systemic enhancement 



65 
 

of microcirculation, stabilization of capillary permeability, and improved survival 
rates. Surgery 2000;128:399-407. 

 [263]  Eibl G, Hotz HG, Faulhaber J, Kirchengast M, Buhr HJ, Foitzik T. Effect of 
endothelin and endothelin receptor blockade on capillary permeability in 
experimental pancreatitis. Gut 2000;46:390-4. 

 [264]  Schmidt J, Fernandez-del CC, Rattner DW, Lewandrowski K, Compton CC, 
Warshaw AL. Trypsinogen-activation peptides in experimental rat pancreatitis: 
prognostic implications and histopathologic correlates. Gastroenterology 
1992;103:1009-16. 

 [265]  Mayer J, Rau B, Schoenberg MH, Beger HG. Mechanism and role of 
trypsinogen activation in acute pancreatitis. Hepatogastroenterology 
1999;46:2757-63. 

 [266]  Andrzejewska A, Dlugosz JW. The endothelin-1 receptor antagonists 
ameliorate histology and ultrastructural alterations in the pancreas and 
decrease trypsinogen activation in severe taurocholate pancreatitis in rats. Int J 
Exp Pathol 2003;84:221-9. 

 [267]  Dlugosz JW, Nowak K, Laszewicz W, Andrzejewska A, Wroblewski E. The 
effect of endothelin-1 receptor antagonists in acute experimental pancreatitis in 
the rats. Exp Toxicol Pathol 2003;55:137-45. 

 [268]  Andrzejewska A, Dlugosz JW, Augustynowicz A. Effect of endothelin-1 
receptor antagonists on histological and ultrastructural changes in the pancreas 
and trypsinogen activation in the early course of caerulein-induced acute 
pancreatitis in rats. World J Gastroenterol 2005;11:1115-21. 

 [269]  Plusczyk T, Witzel B, Menger MD, Schilling M. ETA and ETB receptor function 
in pancreatitis-associated microcirculatory failure, inflammation, and 
parenchymal injury. Am J Physiol Gastrointest Liver Physiol 2003;285:G145-
G153. 

 [270]  Jozsef L, Khreiss T, Fournier A, Chan JS, Filep JG. Extracellular signal-
regulated kinase plays an essential role in endothelin-1-induced homotypic 
adhesion of human neutrophil granulocytes. Br J Pharmacol 2002;135:1167-
74. 

 [271]  Sampaio AL, Rae GA, Henriques MM. Role of endothelins on lymphocyte 
accumulation in allergic pleurisy. J Leukoc Biol 2000;67:189-95. 

 [272]  Zouki C, Baron C, Fournier A, Filep JG. Endothelin-1 enhances neutrophil 
adhesion to human coronary artery endothelial cells: role of ET(A) receptors 
and platelet-activating factor. Br J Pharmacol 1999;127:969-79. 

 [273]  Luscher TF, Barton M. Endothelins and endothelin receptor antagonists: 
therapeutic considerations for a novel class of cardiovascular drugs. Circulation 
2000;102:2434-40. 



66 
 

 [274]  Reinhart GA, Preusser LC, Burke SE, Wessale JL, Wegner CD, Opgenorth TJ, 
Cox BF. Hypertension induced by blockade of ET(B) receptors in conscious 
nonhuman primates: role of ET(A) receptors. Am J Physiol Heart Circ Physiol 
2002;283:H1555-H1561. 

 [275]  Fiedler F, Ayasse D, Rohmeiss P, Gretz N, Rehbein C, Keim V. The endothelin 
antagonist bosentan does not improve survival in severe experimental 
pancreatitis in rats. Int J Pancreatol 1999;26:147-54. 

 [276]  Todd KE, Lewis MP, Gloor B, Lane JS, Ashley SW, Reber HA. An ETa/ETb 
endothelin antagonist ameliorates systemic inflammation in a murine model of 
acute hemorrhagic pancreatitis. Surgery 1997;122:443-9. 

 [277]  Foitzik T, Hotz HG, Eibl G, Hotz B, Kirchengast M, Buhr HJ. Therapy for 
microcirculatory disorders in severe acute pancreatitis: effectiveness of 
platelet-activating factor receptor blockade vs. endothelin receptor blockade. J 
Gastrointest Surg 1999;3:244-51. 

 [278]  Eibl G, Forgacs B, Hotz HG, Buhr HJ, Foitzik T. Endothelin A but not 
endothelin B receptor blockade reduces capillary permeability in severe 
experimental pancreatitis. Pancreas 2002;25:e15-e20. 

 [279]  Eibl G, Buhr HJ, Foitzik T. Therapy of microcirculatory disorders in severe 
acute pancreatitis: what mediators should we block? Intensive Care Med 
2002;28:139-46. 

 [280]  Foitzik T, Eibl G, Buhr HJ. Therapy for microcirculatory disorders in severe 
acute pancreatitis: comparison of delayed therapy with ICAM-1 antibodies and 
a specific endothelin A receptor antagonist. J Gastrointest Surg 2000;4:240-6. 

 [281]  Kogire M, Inoue K, Higashide S, Takaori K, Echigo Y, Gu YJ, Sumi S, Uchida 
K, Imamura M. Protective effects of endothelin-1 on acute pancreatitis in rats. 
Dig Dis Sci 1995;40:1207-12. 

 [282]  Martignoni ME, Ceyhan GO, Ayuni E, Kondo Y, Zimmermann A, Buchler MW, 
Friess H. Endothelin receptor antagonists are not beneficial in the therapy of 
acute experimental pancreatitis. Langenbecks Arch Surg 2004;389:184-92. 

 [283]  de NG, Thomas R, D'Orleans-Juste P, Antunes E, Walder C, Warner TD, Vane 
JR. Pressor effects of circulating endothelin are limited by its removal in the 
pulmonary circulation and by the release of prostacyclin and endothelium-
derived relaxing factor. Proc Natl Acad Sci U S A 1988;85:9797-800. 

 [284]  Thiemermann C, Lidbury PS, Thomas GR, Vane JR. Endothelin-1 releases 
prostacyclin and inhibits ex vivo platelet aggregation in the anesthetized rabbit. 
J Cardiovasc Pharmacol 1989;13 Suppl 5:S138-S141. 

 [285]  Chaudhury TK, Robert A. Prevention by mild irritants of gastric necrosis 
produced in rats by sodium taurocholate. Dig Dis Sci 1980;25:830-6. 



67 
 

 [286]  Robert A, Nezamis JE, Lancaster C, Hanchar AJ. Cytoprotection by 
prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, 
NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 1979;77:433-43. 

 [287]  Lancaster C, Robert A. Intestinal lesions produced by prednisolone: prevention 
(cytoprotection) by 16,16-dimethyl prostaglandin E2. Am J Physiol 
1978;235:E703-E708. 

 [288]  Elliott G, Whited BA, Purmalis A, Davis JP, Field SO, Lancaster C, Robert A. 
Effect of 16,16-dimethyl PGE2 on renal papillary necrosis and gastrointestinal 
ulcerations (gastric, duodenal, intestinal) produced in rats by mefenamic acid. 
Life Sci 1986;39:423-32. 

 [289]  Stachura J, Tarnawski A, Ivey KJ, Mach T, Bogdal J, Szczudrawa J, klimczyk 
B. Prostaglandin protection of carbon tetrachloride-induced liver cell necrosis in 
the rat. Gastroenterology 1981;81:211-7. 

 [290]  Robert A, Lum JT, Lancaster C, Olafsson AS, Kolbasa KP, Nezamis JE. 
Prevention by prostaglandins of caerulein-induced pancreatitis in rats. Lab 
Invest 1989;60:677-91. 

 [291]  Hirano T, Manabe T, Tobe T. Cytoprotective effects of prostaglandins and a 
new potent protease inhibitor in acute pancreatitis. Am J Med Sci 
1992;304:154-63. 

 [292]  Dlugosz JW, Wroblewski E, Poplawski C, Andrzejewska A, Gabryelewicz A. 
The effect of beta-thia-iminoprostacyclin in taurocholate acute pancreatitis in 
rats: the role of antecedent acute ethanol abuse. Pancreas 1997;15:91-8. 

 [293]  Dlugosz JW, Andrzejewska A, Wroblewski E, Poplawski C, Wereszczynska-
Siemiatkowska U. Beneficial effect of iloprost on the course of acute 
taurocholate pancreatitis in rats and its limitation by antecedent acute ethanol 
intake. Exp Toxicol Pathol 2004;55:401-9. 

 [294]  Dlugosz JW, Nowak K, Andrzejewska A, Wroblewski E, Dabrowski A. The 
effect of endothelin-1, endothelin-2 and endothelin-3 in early cerulein-induced 
acute pancreatitis in rats. Rocz Akad Med Bialymst 2004;49:85-92. 

 [295]  Andrzejewska A, Dlugosz JW. Effects of endothelin-1 or of its receptor A a 
selective antagonist, on histological and ultrastructural patterns in experimental 
acute pancreatitis in rats. Rocz Akad Med Bialymst 2004;49 Suppl 1:247-9. 

 [296]  Dlugosz JW, Andrzejewska A, Nowak K, Wroblewski E, Dabrowski A. The 
cumulative effect of nuclear factor-kappaB (NF-kappaB) inhibition and 
endothelins in early cerulein-induced acute pancreatitis in rats. Rocz Akad Med 
Bialymst 2005;50:230-6. 

 [297]  Peralta C, Bulbena O, Bargallo R, Prats N, Gelpi E, Rosello-Catafau J. 
Strategies to modulate the deleterious effects of endothelin in hepatic 
ischemia-reperfusion. Transplantation 2000;70:1761-70. 



68 
 

 [298]  Tanaka W, Yamanaka N, Onishi M, Ko M, Yamanaka J, Okamoto E. Optimal 
route of administration of mixed endothelin receptor antagonist (TAK-044) in 
liver transplantation. J Gastroenterol 2000;35:120-6. 

 [299]  Fukunaga K, Takada Y, Taniguchi H, Mei G, Seino KI, Yuzawa K, Otsuka M, 
Todoroki T, Goto K, Fukao K. Endothelin antagonist treatment for successful 
liver transplantation from non-heart-beating donors. Transplantation 
1999;67:328-32. 

 [300]  Wilhelm SM, Stowe NT, Robinson AV, Schulak JA. The use of the endothelin 
receptor antagonist, tezosentan, before or after renal ischemia protects renal 
function. Transplantation 2001;71:211-6. 

 [301]  Wolfard A, Vangel R, Szalay L, Kaszaki J, Haulik L, Balogh A, Nagy S, Boros 
M. Endothelin-A receptor antagonism improves small bowel graft perfusion and 
structure after ischemia and reperfusion. Transplantation 1999;68:1231-8. 

 [302]  Witzigmann H, Ludwig S, Armann B, Gabel G, Teupser D, Kratzsch J, Pietsch 
UC, Tannapfel A, Geissler F, Hauss J, Uhlmann D. Endothelin(A) receptor 
blockade reduces ischemia/reperfusion injury in pig pancreas transplantation. 
Ann Surg 2003;238:264-74. 

 [303]  Uhlmann D, Ludwig S, Escher E, Armann B, Gabel G, Teupser D, Tannapfel A, 
Pietsch UC, Hauss J, Witzigmann H. Attenuation of endothelin expression and 
histologic changes by administration of a selective endothelin-A receptor 
antagonist in pig pancreas transplantation. Transplant Proc 2002;34:2362-3. 

 [304]  Gabel G, Uhlmann D, Teupser D, Armann B, Tannapfel A, Ludwig S, Escher E, 
Pietsch U, Fiedler GM, Hauss J, Witzigmann H. Influence of a selective 
endothelin(A) receptor antagonist on the quantitative mRNA expression and 
the immunohistochemistry of vasoactive mediators after pancreas 
transplantation. Transplant Proc 2003;35:2137-8. 

 [305]  Kageyama S, Yagi S, Tanaka H, Saito S, Nagai K, Hata K, Fujimoto Y, Ogura 
Y, Tolba R, Shinji U. Graft reconditioning with nitric oxide gas in rat liver 
transplantation from cardiac death donors. Transplantation 2014;97:618-25. 

 [306]  Hotter G, Pi F, Sanz C, Peralta C, Prats N, Gelpi E, Badosa F, Fernandez-Cruz 
L, Rosello-Catafau J. Endothelin mediated nitric oxide effects in ischemia--
reperfusion associated with pancreas transplantation. Dig Dis Sci 
1998;43:2627-33. 

 [307]  Marada T, Zacharovova K, Brabcova I, Fabryova E. Gene expression changes 
in rat pancreas transplant model after long-term cold storage of the graft in 
perfluorohexyloctane. Transplant Proc 2013;45:1729-33. 

 [308]  Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in 
normal and diseased pancreas. Front Physiol 2012;3:344. 

 [309]  Masamune A, Shimosegawa T. Pancreatic stellate cells--multi-functional cells 
in the pancreas. Pancreatology 2013;13:102-5. 



69 
 

 [310]  Masamune A, Watanabe T, Kikuta K, Shimosegawa T. Roles of pancreatic 
stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 
2009;7:S48-S54. 

 [311]  Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells. 
J Gastroenterol 2009;44:249-60. 

 [312]  Apte MV, Haber PS, Darby SJ, Rodgers SC, McCaughan GW, Korsten MA, 
Pirola RC, Wilson JS. Pancreatic stellate cells are activated by proinflammatory 
cytokines: implications for pancreatic fibrogenesis. Gut 1999;44:534-41. 

 [313]  Luttenberger T, Schmid-Kotsas A, Menke A, Siech M, Beger H, Adler G, 
Grunert A, Bachem MG. Platelet-derived growth factors stimulate proliferation 
and extracellular matrix synthesis of pancreatic stellate cells: implications in 
pathogenesis of pancreas fibrosis. Lab Invest 2000;80:47-55. 

 [314]  Kruse ML, Hildebrand PB, Timke C, Folsch UR, Schmidt WE. TGFbeta1 
autocrine growth control in isolated pancreatic fibroblastoid cells/stellate cells in 
vitro. Regul Pept 2000;90:47-52. 

 [315]  Apte M, Pirola RC, Wilson JS. Pancreatic stellate cell: physiologic role, role in 
fibrosis and cancer. Curr Opin Gastroenterol 2015;31:416-23. 

 [316]  Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T. Endothelin-1 
stimulates contraction and migration of rat pancreatic stellate cells. World J 
Gastroenterol 2005;11:6144-51. 

 [317]  Klonowski-Stumpe H, Reinehr R, Fischer R, Warskulat U, Luthen R, 
Haussinger D. Production and effects of endothelin-1 in rat pancreatic stellate 
cells. Pancreas 2003;27:67-74. 

 [318]  Jonitz A, Fitzner B, Jaster R. Molecular determinants of the profibrogenic 
effects of endothelin-1 in pancreatic stellate cells. World J Gastroenterol 
2009;15:4143-9. 

 [319]  Fitzner B, Brock P, Holzhuter SA, Nizze H, Sparmann G, Emmrich J, Liebe S, 
Jaster R. Synergistic growth inhibitory effects of the dual endothelin-1 receptor 
antagonist bosentan on pancreatic stellate and cancer cells. Dig Dis Sci 
2009;54:309-20. 

 [320]  Baumert JT, Sparmann G, Emmrich J, Liebe S, Jaster R. Inhibitory effects of 
interferons on pancreatic stellate cell activation. World J Gastroenterol 
2006;12:896-901. 

 [321]  Baroni GS, D'Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, 
Benedetti A. Interferon gamma decreases hepatic stellate cell activation and 
extracellular matrix deposition in rat liver fibrosis. Hepatology 1996;23:1189-99. 

 [322]  Shen H, Zhang M, Minuk GY, Gong Y. Different effects of rat interferon alpha, 
beta and gamma on rat hepatic stellate cell proliferation and activation. BMC 
Cell Biol 2002;3:9. 



70 
 

 [323]  Fitzner B, Brock P, Nechutova H, Glass A, Karopka T, Koczan D, Thiesen HJ, 
Sparmann G, Emmrich J, Liebe S, Jaster R. Inhibitory effects of interferon-
gamma on activation of rat pancreatic stellate cells are mediated by STAT1 
and involve down-regulation of CTGF expression. Cell Signal 2007;19:782-90. 

 [324]  Rosendahl AH, Gundewar C, Said HK, Ni L, Saleem MA, Andersson R. 
Conditionally immortalized human pancreatic stellate cell lines demonstrate 
enhanced proliferation and migration in response to IGF-I. Exp Cell Res 
2015;330:300-10. 

 [325]  Kusuhara M, Yamaguchi K, Nagasaki K, Hayashi C, Suzaki A, Hori S, Handa 
S, Nakamura Y, Abe K. Production of endothelin in human cancer cell lines. 
Cancer Res 1990;50:3257-61. 

 [326]  Oikawa T, Kushuhara M, Ishikawa S, Hitomi J, Kono A, Iwanaga T, Yamaguchi 
K. Production of endothelin-1 and thrombomodulin by human pancreatic cancer 
cells. Br J Cancer 1994;69:1059-64. 

 [327]  Bhargava S, Stummeyer T, Hotz B, Hines OJ, Reber HA, Buhr HJ, Hotz HG. 
Selective inhibition of endothelin receptor A as an anti-angiogenic and anti-
proliferative strategy for human pancreatic cancer. J Gastrointest Surg 
2005;9:703-9. 

 [328]  Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, Stylianopoulos 
T, Mousa AS, Han X, Adstamongkonkul P, Popovic Z, Huang P, Bawendi MG, 
Boucher Y, et al. Angiotensin inhibition enhances drug delivery and potentiates 
chemotherapy by decompressing tumour blood vessels. Nat Commun 
2013;4:2516. 

 [329]  Fukuda N, Tsuchikawa T, Fukunaga A, Kawase H, Homma N, Nakamura T, 
Shichinohe T, Hirano S. Validation of histological diagnostic methods for 
detecting endothelin B receptor expression. Oncol Rep 2014;31:1561-6. 

 [330]  Cook N, Brais R, Qian W, Hak CC, Corrie PG. Endothelin-1 and endothelin B 
receptor expression in pancreatic adenocarcinoma. J Clin Pathol 2015;68:309-
13. 

 
 
  



71 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CHAPTER 1 B 

Dissertation General Hypothesis and Objectives 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



72 
 

1. Background and Rationale 

Endothelins (ETs) are family of three 21 amino acid vasoactive peptides; ET-1, 

ET-2 and ET-3 that exerts their effects via two G-protein couple receptors ETAR and 

ETBR expressed on various cell types. Endothelin-1 (ET-1) is an important signal 

messenger in various pathological malignancies including cancer [1] [2]. The peptide 

regulates and control different aspects in the cancer progression such as proliferation, 

angiogenesis, epithelial to mesenchymal transition (EMT), immune modulation and 

metastasis [3] indicating its potential impact on multitude processes in the tumor 

microenvironment (TME) of cancer. 

Several studies have hinted the involvement of ET-1, ETAR and ETBR in 

pancreatic inflammations and are important mediators in the determining the 

pathophysiology of pancreatitis [4] [5] [6]. The autocrine and paracrine effects mediated 

by endothelin (ET) axis induce the pro-inflammatory cytokines, exacerbating the 

inflammatory process [7]. Recent evidence indicates the role of endothelin(s) in TME in 

few scattered studies, however the comprehensive representation of the overall axis in 

any given cancer type is unknown and expression pattern in human PC is not well 

studied.  

PC is characterized by extensive desmoplasia and heterogeneous blood flow, 

which is a major cause for the poor sensitivity of PC to chemo-and radiation therapy. 

Once activated in response to stimuli or injury, pancreatic stellate cells (PSCs) acquire a 

myofibroblasts like phenotype and secrete increase amount of extracellular matrix 

(ECM) proteins rich in collagen [8] [9]. Treatment with ET-1 induces enhance contraction 

and migration of PSCs in ERK and MAPK dependent manner. Additionally, it also 

stimulates marker of PSCs activation, αSMA and CTGF and enhance secretion of pro-

inflammatory cytokines, IL-1 and IL-6 [10] [11] [7] 
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While a number of studies have suggested that ET-1 levels are enhanced in 

pancreatic inflammations, it has also been claimed that the levels are correlated with the 

disease severity and inflammation [12] [13]. This notion has been substantiated to a 

degree by recent studies that demonstrated that marked increase in the plasma ET-1 

levels in patients with severe acute pancreatitis and chronic pancreatitis [14] [15] [16]. 

 

2. Hypothesis 

Autocrine and paracrine signaling along the ET axis promotes pancreatic cancer 

initiation and progression and contributes to pathophysiological characteristics and 

aggressiveness of PC 

 

3. Objectives 

Aim 1: To determine the expression pattern of ET axis in human PC and mice model 

with disease progression as well as in various components of tumor microenvironment. 

 

Aim 2: To determine the impact of targeting the ET axis in in vivo (autochthonous 

tumors in KPC model of PC) and in vitro (murine pancreatic stellate cells ad human 

cancer associated fibroblasts) and investigate the molecular mechanisms responsible for 

ET-1 mediated induction of pro-fibrotic genes. 

 

Aim 3: To analyze the expression pattern of ET axis in the pancreatic inflammations 

(acute and chronic) in presence of oncogenic Kras and in pre-neoplastic lesions.  
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1. Cell lines and culture conditions 

The expression of ET-1, ETAR and ETBR was analyzed in panel of 13 human PC 

cell lines (Capan1, MiaPaca, HCG25, Suit2, QGP1, SW1990, Panc1, AsPC1, 

CD18/HPAF, BxPC3, Colo357, T3M4 and HPAC), human pancreatic duct epithelial cells 

(HPDE), murine PC cell line (UN-KPC-961) and mouse pancreatic stellate cells 

(ImPSC.c2). These human PC cell lines were obtained from ATCC and grown in 10% 

DMEM supplemented with fetal calf serum (FCS) and 100ug/ml of antibiotics (Penicillin 

and Streptomycin). Human promonocytic cell line, U937 was cultured in 10% RPMI 

supplemented with FCS, 10mM HEPES buffer, 1mM pyruvate and 100ug/ml of 

antibiotics. All cell lines were maintained at 370C under 5% CO2. Human fibroblasts cell 

lines derived from normal, chronic pancreatitis and cancer patients were cultured in 10 

% RPMI supplemented with fetal calf serum (FCS) 100ug/ml of antibiotics (Penicillin and 

Streptomycin) and maintained in either Puromycin (5µg/ml) or Blasticidin (5µg/ml) as a 

selection agent. Normal fibroblasts, chronic pancreatitis fibroblasts (Patient 1 and Patient 

2) and cancer associated fibroblasts (CAFs) (10-32, 10-15, 10-03, E6.E7) were cultured 

in puromycin while the 10-11 CAFs were maintained in blasticidin. Murine ImPSC.c2 and 

10-03 human CAFs were serum starved for 24 hours and stimulated with 100nm of ET-1 

for 30 mins, 1hr, 4hr, 8hr and 16hr in either DMEM or RPMI containing 1 % FCS. The 

antagonists BQ123 (100μM) (Peptides International, PED-3512-PI), BQ788 (20μM) 

(American peptide, 88-255), Bosentan (25μm) (Key organics, KS1231) were dissolved 

according to the manufacturer’s instructions and added 45 min prior to the addition to the 

recombinant ET-1.  

2. Tissue specimens 

Formalin fixed and paraffin embedded pancreatic tissue samples from 38 Whipple 

resected PC patients were procured from University of Nebraska Medical Centre and 
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were analyzed for expression of ECE-1, ET-1, ETAR and ETBR. These samples were 

obtained from the UNMC tissue bank following approval from the Institutional regulatory 

board (IRB # 186-14). Additionally, tissue samples from  PC patients from University of 

Nebraska Medical Centre’s Rapid Autopsy Program (RAP) (IRB approved) comprising of 

normal pancreas, primary tumor, lung metastasis, liver metastasis, lymph node 

metastasis, omentum/diaphragm metastasis were also evaluated for expression of ET-1, 

ETAR and ETBR for PC metastasis. In this Rapid Autopsy Program, after three hours of 

death, tissues are harvested from donor patients and are put in liquid nitrogen or 

formalin for fixation. Microarrays made from these embedded tissues were analyzed for 

expression after mounting on charged slides. Within the tissue microarray (TMA), control 

specimen from normal kidney, colon in addition to tumor tissues is also present. 

3. Immunohistochemistry and Immunofluorescence 

Slides were baked overnight at 560C and deparaffinised with xylene followed by 

rehydration with increasing concentration of ethanol. The slides were then treated for 1 

hour with 3% H2O2 in methanol to quench the peroxidase activity. 0.01M preheated 

citrate buffer (pH 6, 950C) in microwave for 15 mins was used for antigen retrieval. After 

cooling at room temperature (RT), the non-specific reaction was blocked using 2.5% 

horse serum (ImmPress Universal antibody kit; Vector Laboratories, Burlingame, 

California, USA) for 2h. The sections were then incubated overnight at 40C with 

respective primary antibodies diluted in PBS (anti- ETAR, 1:1000, ab117521; anti-ETBR, 

1:2000, ab117529; anti-ET-1,1:2000, ab117521; anti ECE-1,1:750, ab189843 anti-

F4/80, 1:80, e-Biosciences, 14-4801-82; anti-α-SMA,1:100, ab7817; anti-CTGF, 1:500, 

ab ab6992; anti-fibronectin, 1:400, ab 2413; anti-Collagen I, 1:500, ab34710; anti 

cleaved caspase-3, 1:300, cell signaling 9661,). The slides were washed with PBST (4 

washes for 10 mins each) followed by anti-rabbit secondary antibody (ImmPress 
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Universal antibody kit; Vector Laboratories, Burlingame, California, USA) incubation for 

30 min at RT. The slides were washed with PBST (4 washes for 10 mins each) and color 

was developed using 3-3’ diaminobenzidine solution (DAB substrate kit, Vector 

Laboratories). After washing with distilled water, slides were counterstained with Gill’s 

hematoxylin for 5 mins (Vector Laboratories) and dehydrated with graded ethanol and 

then mounted with Permount solution (Fischer Scientific, Pittsburg, Pennsylvania, USA). 

All stained slides were scored by a pathologist at UNMC using a Nikon light Microscope 

and images of the particular area were taken. The staining intensity for ECE-1, ET-1 

ETAR, and ETBR were graded on a scale of 0-3, 0 being negative and 3 strongly positive. 

The proportion positive of cell for each of the molecule in a given specimen were scored 

between 1-4 indicating 0-25% for intensity 1, 26-50% for intensity 2, 51-75% for intensity 

3 and 76-100% for intensity 4. Composite score was then calculated by multiplying the 

staining intensity and proportion positivity in a range between 0-12. Quantification of 

F4/80 and CD206 positive macrophages and cleaved caspase 3 positive cells were 

performed by counting cells in 15-20 high-powered fields from each mouse. 

For immunofluorescence, the tissues were blocked with 10% goat serum at room 

temperature for 2h followed by overnight incubation at 40C with respective primary 

antibodies diluted in PBS (anti- ETAR, 1:300, AER-001; anti-ETBR, 1:300, AER-002; anti 

CK19, 1:200, TROMA III, anti- CD31, 1:300, ab32457, anti CD68, 1:100, 14-0688-82, 

anti-F4/80, 1:80, e-Biosciences, 14-4801-82; anti-α-SMA,1:200, ab7817, anti 

FSP1,1:300, ab27957, anti-FAP, 1:300, ab53066, anti CD206, 1:300, bs4727R, anti 

CD4, 1:100, ebioscience, 14-9766-80, anti-CD8, 1:100, ebioscience, 14-0808-82, Anti-

FOXP3, 1:100, ab20034, anti CD4, 1:100, ab133616). After overnight incubation the 

slides were washed with 1X PBS thrice for 10 mins and incubated for 30 mins at room 

temperature with secondary antibody (FITC conjugated anti-rat, Texas Red conjugated 

anti-rabbit and FITC conjugated anti-mouse). The slides were washed with 1X PBS 
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thrice for 10 mins, mounted by DAPI containing Vectashield mounting solution and 

analyzed using Zeiss (Carl Zeiss Microimaging, Thornwood, NY) confocal laser-

scanning microscope, and representative images were captured digitally using the 710 

LSM software. 

4. RNA isolation, reverse transcription and RT- PCR analysis 

QIAGEN RNeasy kit (QIAGEN, Valencia, CA, USA) was used to isolate RNA and 

cell lines according to manufacturer’s protocol. The isolated RNA was converted to 

cDNA after hybridization with oligodT using Superscript II Reverse Transcriptase 

(Invitrogen). The cDNA was amplified by PCR using Taq Polymerase in reaction volume 

of 50ul. For human endothelin -1 and receptors following primer pairs were used: ET-1 

(GTC AAC ACT CCC GAC GAC GTT/ CTG GTT TGT CTT AGG TGT TCC TC), ETAR 

(CAC TGG TTG GAT GTG TAA TC/ GGA GAT CAA TGA CCA CAT AG), ETBR (TCA 

ACA CGG TTG TGT CCT GC/ ACT GAA TAG CCA CCA ATC TT,). For Mouse ECE-1, 

ET-1 and receptors following primers were used: ECE-1 (GTG GCA TTG GTG TCG 

TAG TG/ GGA AGA AGA GCT GGT TGC TG), ET-1 (CTT CCC AAT AAG GCC ACA 

GAC CAG/ AGC CAC ACA GAT GGT CTT GCT AAG), ETAR (ACC GCC ATT GAA ATC 

GTC TCC ATC/ TTA GCA AGA AGC TGA GCA GTT), ETBR (TGA CGC CAC CCA CTA 

AGA CCT CC/ GCC TTC TGT ATG AAG GGC ACC AG). Obtained PCR products were 

run on 2% Agarose gel containing ethidium bromide. Human β actin and Mouse GAPDH 

was co-amplified using β actin and GAPDH primers respectively to ensure the quality of 

cDNA for PCR in every case. 

5. In vitro assays of cell migration 

To assess migration of ImPSC.c2 in presence of ET inhibitors, ImPSC.c2 (1x106) 

were seeded at in a 6 well plate in DMEM supplemented with 10% FBS and incubated 

overnight. After obtaining approximately 90% confluency, the cells were serum starved 
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for another 24 hours and an artificial wound is made using 200μl pipette tip. The detach 

cells were washed with PBS and remaining cells were treated with either ET-1 or 

antagonists for 45 mins prior to addition of ET-1 in DMEM containing 1% FBS while the 

control cells were left untreated. Representative phase contrast images were taken at 0 

and 24 hours at 10X magnification using Accu-scope microscope attached with Moticam 

580 digital camera. The wound closure was measured by calculating the distance 

between the two edges and ten independent areas in the wound per image was counted 

using a straight line tool in the Image J software. The mean distance of the ten 

independent areas at 0 and 24 hours of control and treatment sets was calculated and 

the percentage of wound closure was measured as mean area at 24 hour/mean area at 

0 hour multiplied by 100. The migratory potential of murine macrophages (RAW 264.7) 

and human monocytes (U937) towards UN-KPC-961 and Panc1 cells respectively was 

assessed using boyden chamber consisting of a 0.8 μm transwell membrane. Briefly, 

1x106 UN-KPC-961 and Panc1 cells were seeded in six well plates in DMEM containing 

10% FBS. After overnight incubation the cells were treated with ET antagonists and the 

macrophage/monocyte cell suspension (0.5x106 cells) in serum free medium was 

seeded in the upper chamber of the insert. The migration of these cells was allowed for 

24 hours in a humidified atmosphere at 37°C with 5% CO2. The migratory cells on the 

lower chamber that invaded through the pores were fixed and stained with Diff-quick 

staining kit (Dade Behring, Inc). For each membrane the number of cells migrated was 

counted in 10 random fields at 10X magnification.  

6. In vitro 2D co-culture using tumor and stellate cells  

In cell-cell non-contacted coculture system using boyden chamber the murine 

stellate cells (ImPSC.c2) were separated from murine tumor cells (UN-KPC-961) derived 

from KPC mice tumors using a 0.8 μm transwell membrane. 0.5x106 ImPSC.c2 were 
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seeded in a 6 well plate in DMEM supplemented with 10% FBS. After 24 hours the cells 

were washed with PBS and treated with either specific ETAR inhibitor (BQ123), specific 

ETBR inhibitor (BQ788), or dual inhibitor (Bosentan) and cultured in presence and 

absence of same numbers of UN-KPC-961cells cultured in serum free DMEM on the 

inner chamber of transwell membrane and allowed to interact with ImPSC.c2 for another 

24 hours. After the end of the treatment period, ImPSC.c2 were harvested and 

processed for western blot analysis.   

7. In vitro assays of cell proliferation 

Cell proliferation was measured by the WST-1 assay according to the 

manufacturer’s instructions (Roche). Briefly, 3x103cells were seeded into 96 well plates 

in triplicates for each cell type. Following 24hr of seeding, the cells were changed to 1% 

DMEM and treated with ET-1 (1nm, 10nm, 100nm an 1000nm) for 24hr, 48 hr and 72 hr. 

The absorbance was measured at 440 nm using a SpectraMax 190 (Molecular Devices) 

microplate reader. 

8. Cell cycle analysis 

Briefly, 1x106cells were seeded in 60 mm petri dishes in 10% DMEM and allowed 

to grow for 24 hrs. Cells were serum starved for 48 hr and treated with BQ123 (100μM), 

BQ788 (20μM) and Bosentan (50μM) for 24 hr. Following treatment cells were 

trypsinized and fixed in 70% ice-cold methanol for 60 mins, washed in PBS and 

incubated for 30 min at 40C in Telford reagent (90 mM EDTA, 0.1% Triton-X-100, 

50μg/ml propidium iodide, 25μg/ml RNase-A in PBS). The total DNA content was 

measured by fluorescence activated cell sorting method. 

9. Annexin V staining and flow cytometry 

A total of 1x106cells were seeded in 60 mm petri dishes in 10% DMEM and 

allowed to grow for 48 hrs. Following treatment with BQ123 (100μM), BQ788 (20μM) 
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and Bosentan (50μM) for 24 hr, the early and late apoptotic cells were detected using 

annexin V-FLUOS staining kit (Roche) according to the manufacturer’s instructions. 

Cells were collected and resuspended in the HEPES buffer containing annexin-V –

fluorescein and propidium iodide in the dark for 15 mins, and the data were acquired by 

the flow cytometry 

10. Cytotoxicity assay using MTT 

Briefly, cells were seeded in 96 well plates in triplicates in DMEM supplemented 

with 10% FCS and after 24 hours the cells were treated with indicated concentrations of 

BQ123, BQ788 and Bosentan and incubated at 370C for 24, 48 and 72 hours. At the end 

of each time point 100 μl 5mg/ ml MTT (3-4,5 dimethylthiazol-2yl)-2,5 

diphenyltetrazolium bromide was added and the plates were incubated for an additional 

4hours at 370C. Post incubation, the solution was removed and 100μl of DMSO was 

added and absorbance was measured at 490nm using microplate reader. 

11. Western blotting 

Cell lines were processed for protein extraction followed by Immunoblot analysis. 

Cells were washed with PBS twice and then lysed using Radioimmunoprecipation assay 

buffer (RIPA) containing 50mM Tris, 5mM EDTA, 150 mM NaCl, 1% NP40, 0.25% 

sodium deoxycholate,1mM Na3VO4. 200mM sodium fluoride and Protease Inhibitor 

(Roche diagnostics) and kept at 40C for 20 min under mild shaking. Cell lysates were 

incubated in -700C for at least 1hr and subjected to freeze thaw and pass through 

syringe to disrupt the cell membrane. Lysates were then centrifuged at 14000 rpm for 30 

min at 40C and the supernatant were collected and protein quantification was done using 

Bio-Rad protein estimation kit. Immunoprecipitates were then resolve on 12% 

Polyacrylamide gel under reducing conditions, transferred to polyvinylidene fluoride 

membrane (PVDF) and blocked with 5% nonfat dry milk in PBS for 2h at RT. The 
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membranes were then incubated overnight at 40C with respective primary antibodies 

diluted in PBS (anti- ETAR, 1:5000, ab117521; anti-ETBR, 1:5000, ab117529; anti-ET-

1,1:5000, ab117521; anti-α-SMA,1:200, ab7817; anti-CTGF, 1:2000, ab ab6992; anti-

fibronectin, 1:3000, ab 2413; anti-Collagen I, 1:5000, ab34710; anti-desmin,1;10000, 

ab32632; anti FSP1,1:3000, ab27957, anti-CK19,1:3000, TROMA III, anti-pERK,1;1000, 

cell signaling 9101, anti-t-ERK, 1:1000, cell signaling 9102; anti-p-AKT, 1:1000, cell 

signaling, 4060S; anti-t-AKT, 1:1000, cell signaling 4691S; anti-β actin, 1:5000, Sigma 

A1978). Membranes were washed with Tris buffer saline (TBS) containing 0.1% Tween 

followed by incubation at RT in HRP (Horse Radish Peroxidase) conjugated anti rabbit, 

anti-mouse or anti-goat secondary antibodies in 3% nonfat dry milk in PBS at 1:5000 

dilutions. The signal was detected using ECL western blotting detection reagents 

(Amersham, Biosciences, and Buckinghamshire, UK).  

For treatment of monocytes, U937 cells were differentiated into macrophages in 

six well plate containing 10nM/ml phorbol myristate acetate (PMA) for 72 hours. The 

supernatant was collected and the attached cells were washed with PBS and lysed 

using RIPA buffer for immunoblot analysis. For IL-4 or IL-13 or IL-10 treatments, the 

macrophages differentiated using PMA were washed with PBS and incubated with 

10ng/ml of each of IL-4, IL-13 and IL-10 for 24 hours. The supernatant was collected and 

the attached cells are lysed using RIPA buffer. Lysates collected were further analyzed 

for the expression of ET-1, ETAR and ETBR using specific antibodies through Western 

blot. 

12. In vivo endothelin axis antagonism using Bosentan 

20 weeks old KPC mice (n=4 control group and n=5 mice in the Bosentan group) 

were housed under specific pathogen-free conditions. All mouse experiments were 

performed in compliance with protocols approved by the Institutional Animal Care and 
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Use Committees of the University of Nebraska Medical Center. The dual ET receptor 

antagonist, Bosentan (Key Organics) was administered daily for continuous 10 days by 

intraperitoneal injection at a dose of 1 mg/kg whereas the control group received saline. 

Throughout the course study, mice were monitored for weight loss and others signs of 

abnormalities. Mice were sacrificed at the end of the treatment period and the weight of 

pancreas was recorded. Tissues were then fixed in 10% formalin and embedded in 

paraffin for histopathological analysis and RNA analysis. 

13. RNA extraction from mouse tissues, reverse transcription and real time PCR 

analysis 

RNA was extracted from the tumors removed from KPC (Pdx1-Cre, p53 (R172H) 

KrasG12D) mice (saline or Bosentan treated), KC (Pdx1-Cre, KrasG12D) mice (LSL-K-

rasG12D and K-rasG12D; Pdx-1cre referred as unfloxed and floxed, respectively exposed to 

cigarette smoke and KC (Pdx1-Cre, KrasG12D) mice exposed to cerulein day 0, 2, 7 and 

21 post treatment using mirVANA isolation kit (Ambion, Foster city, CA, USA) by a 

standard protocol. All animal experiments were reviewed and approved by the University 

of Nebraska Medical Center Institutional Animal Care and Use Committee (IACUC). The 

animals were exposed to cigarette smoke or cerulein treatment as previously described 

[1] [2]. Genomic DNA contamination was removed by Dnase treatment using RNeasy 

mini kit (Qiagen) and RNA integrity was measured spectrophotometrically. The isolated 

RNA was converted to cDNA after hybridization using random hexamers using 

Superscript II Reverse Transcriptase (Invitrogen). Following primer pairs were used: 

ECE-1 (TCA CGC TTT CGA TGA TCA AG/GTA TTG CTG CAC CAT GCA CT), ET-1 

(GCT GGT GGA AGG AAG GAA AC/TTG TGC GTC AAC TTC TGG TC), ET-2 (AGA 

CTG GCA AGA TGT GGA CT/ TTC TTG TCA CCT CTG GCT GT), ET-3 (TGC GTT 

GTA CTT GTA TGG GG/ AGT CTC CCG CAT CTC TTC TG), ETAR (CGG CAT TAA 
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CCT GGC AAC/ATG AGG CTT TTG GAC TGG TG), ETBR (TCG CTC TGT ATT TGG 

TGA GC/ TTC AGG CAG GAC TGC TTC TC). Real time PCR was performed using 

Light Cycler 480 SYBR green I master mix (Roche Diagnostics, Indianapolis, IN, USA) in 

the Light Cycler 480II (Roche Diagnostics). The relative amount of expression was 

calculated using 2ΔΔCT method. Statistical comparisons were made using student’s t-test 

and P<0.05 was considered statistically significant. The average of the three 

independent analysis for each gene was calculated and normalized to Gapdh.  

14. Microarray analysis 

Mouse fibrosis RT2 Profiler PCR Array (PAMM-120ZF, Qiagen) was used to 

evaluate the differential gene expression. The array evaluated the expression of 84 

genes involved in facets of fibrosis, like extracellular matrix and cell adhesion, growth 

factor production and signal transduction. Real time PCR detection was carried out 

according to manufacturer’s instructions. The PCR components cocktail was prepared 

by adding 1350µl real time PCR SYBR green master mix and 1350µl of nuclease free 

water to 20µl of cDNA. For the real time PCR detection 25 µl of the PCR cocktail was 

added to each well of 96 well RT2 Profiler PCR Array. The array was then cycled on a 

Roche Light Cycler 480. The thermocycler parameters were 950C for 10 min, followed by 

45 cycles of 950C for 15 s and 600C for 1 min. The experiment was performed in 

triplicates. For data analysis, the delta-delta CT method was used and the values 

obtained were exported to template excel sheet containing the algorithms provided by 

the manufacturer. The fold changes were calculated as the difference in gene 

expression between the treated and the control tumors. A positive value indicates gene 

upregulation whereas a negative value indicate downregulation.  

15. Perfusion analysis using BQ123 
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Mice bearing T3M4 (tumor1) and Colo 357 (tumor 2) xenografts were 

administered with interaperitoneal injection of BQ123 (2 mg/kg) [3]. Perfusion mapping 

was done by flow sensitive alternating inversion recovery (FAIR) with a rapid acquisition 

by refocused echo (RARE) readout (RARE factor = 16). Perfusion was measured prior to 

administration of BQ123 (0 min) to establish baseline and subsequently imaged for 120 

min post-administration to monitor the change in perfusion. Anatomic MRI scan was 

used to indicate the position of tumors and the regions of interest (ROI) in the tumors 

and muscle used for perfusion analysis. Perfusion maps were captured before and 120 

min after injection of BQ123 and were windowed between 0 to 500 ml/(100g tissue per 

min). Blood flow values were determined from the serial perfusion maps between 0-120 

min and plotted as a function of time. Tumor bearing animals were treated with saline 

(left) or BQ123 (right). 90 min after treatment animals were injected with pimonidazole 

HCl (Hypoxyprobe), which forms stable adducts with proteins in hypoxic cells. Animals 

were euthanized 45 mins thereafter and tumors were harvested and processed for 

immunohistochemistry. Hypoxy-probe-Plus kit was used to detect hypoxia using 

manufacturer’s instructions. 

16. Procurement of Animals 

The ET-1flox/flox mice were obtained as a kind gift from Dr. Donald Kohan at 

University of Utah Health Sciences Center [4]. These mice have the exon 2 of the ET-1 

gene flanked by loxP sites. The ET-1 mice were crossed with the KPC mice (Pdx1-Cre, 

p53 (R172H) KrasG12D). These KPC mice express localized Cre recombinase regulated by 

Pdx1 promoter and are on C57BL/6 background. This promoter is expressed in 

pancreas. Here the Kras gene contains a point mutation G12D and is followed by Lox-

Stop-Lox codon. In the presence of Cre, the stop codon is excised and the mutant 

protein is expressed. The ET-1flox/flox mice were crossed with KPC mice to generate the 
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intermediate crosses, which were intercrossed in order to generate the ET-1-/- Pdx1-Cre, 

p53 (R172H) KrasG12Dfinal genotype.  

17. DNA isolation, genotyping and maintenance of animals 

Animals were maintained in accordance with guidelines and protocols approved 

by the Institutional Animal care and Use Committees (IACUC) of the University of 

Nebraska Medical Center. The animals were exposed to 12-hour light/dark cycle and 

were allowed access to food and water ad libitum. The tails of mice were clipped at the 

age of 8 days and the DNA isolated using Maxwell 16 mouse-tail DNA purification kit, 

Promega, Madison, WI, USA. Following DNA isolation, genotyping was performed using 

following primers: Wild-type ET-1 (gct gcc caa  ttc tga  att ctg / gat gat gtc cag gtg gca  

gaa g), Flox ET-1 (ccc aaa gat tct gaa ttg ata act tcg/  gat gat gtc cag gtg gca gaa g), 

Kras (cct tta caa gcg cac gca gac tgt aga/ agc tag cca cca tgg ctt gag taa gtc tgc a), p53 

(ctt gga gac ata gcc aca ctg/ agc tag cca cca tgg ctt gag taa gtc tgc a), Pdx-Cre (ctg gac 

tac atc ttg agt tgc/ ggt gta cgg tca gta aat ttg). The reaction for ET-1 primers is cycled 35 

times (1 minute at 94°C, 2 minutes at 60°C, and3 minutes at 72°C), which amplifies an 

approximately 900-bp fragment for both the wild type and flox ET-1 alleles. Mice were 

observed daily and anal prolapse or any other signs of distress were carefully recorded.  

18. Statistical Analysis 

Student t test was used to determine the statistical significance between control 

and treatment group in all the experiments and p value less than 0.05 was considered to 

be statistically significant. Error bars were given on the basis of calculated standard error 

values. To measure colocalization using confocal microscopy the images were assessed 

using ImageJ (National Institute of Health, Bethesda, MD) with Manders colocalization 

using JaCoP plug-in. 
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Chapter 3 

Expression of endothelin converting enzyme (ECE-1), 

endothelin-1 (ET-1), endothelin A receptor (ETAR) and endothelin 

B receptor (ETBR) in pancreatic cancer and its 

microenvironment 
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1. Synopsis 

Overexpression of Endothelin-1 (ET-1) and its receptors (Endothelin A receptor, 

ETAR and Endothelin B receptor, ETBR) is observed in many solid cancers and is 

associated with poor prognosis. However, their expression pattern in pancreatic cancer 

(PC) and its tumor microenvironment (TME) have not been well studied. We have 

analyzed the expression pattern of Endothelin- converting enzyme (ECE-1), ET-1, ETAR 

and ETBR in both Whipple resected human PC patients and patient tissue microarray, 

which have both the primary and metastatic sites harvested. Immunohistochemical 

analysis indicated that expression of the ET axis is restricted to the acinar compartment 

and islet cells of the normal pancreas whereas a predominant expression of all four 

molecules is seen the duct cells of the PC. In addition to the primary site, expression 

was also seen in various metastatic sites. Careful observation suggests that in addition 

to tumor cells, the expression is observed in tumor blood vessels and immune cells and 

the expression on tumor blood vessels is correlated with the poor prognosis of the PC 

patients. Additionally, expression of the axis was also determined in a genetically 

engineered mouse model of PC (K-rasG12D; Trp53R172H/+; Pdx-1-Cre). RT-PCR and 

immunohistochemical analysis suggested that expression increases gradually with 

disease progression in both pancreatic ducts and the stromal compartment of PC. The 

expression on various cellular components was analyzed in both murine and human PC 

tissues using dual confocal microscopy with markers for blood vessels (CD31), tumor 

cells (CK19), stellate cells (α-SMA) and macrophages (F4/80 & CD68). Further, 

bioinformatics analysis with the TCGA database revealed positive correlation of ET axis 

expression with advance tumor grade and stage; and a significant association of fibrotic 

associated genes and the pathways regulating fibrosis seen upregulated in tumors 

exhibiting over expression of the ET axis. We show for the first time components of the 



92 
 

ET axis are over-expressed not only in PC cells but also in various cellular 

compartments of the surrounding microenvironment.  

2. Background and Rationale 

Pancreatic cancer (PC) is the 10th most commonly diagnosed cancer and the 

fourth leading cause of cancer-related deaths in the United States [1]. Due to the lack of 

early diagnostic and therapeutic modalities, PC has an extremely poor prognosis with a 

dismal five years survival rate of only 2-5% [2]. At the time of diagnosis, the disease has 

usually metastasized locally to the lymph nodes and to distant organs. While numerous 

studies have focused on the genetic abnormalities that underpin this disease, much 

remains unknown regarding this complex, intractable malignancy that unfortunately often 

only manifest symptoms in patients at advanced, metastatic stages [3]. Most prominent 

among the mutations driving PC is the Kras oncogene, which is mutated into a 

constitutively active form (KrasG12D) in around 70% of PC patients [4]. Morphologically PC 

is characterized by a highly complex stromal compartment consisting of cellular 

components that include pancreatic stellate cells, endothelial cells, immune cells, 

neuronal cells, endocrine cells and extracellular matrix [5, 6]. These cellular components 

of tumor microenvironment (TME), have complex interactions with each other and with 

the cancer cells. The intricate autocrine and paracrine signaling between these cellular 

components is believed to orchestrate the initiation, progression and metastasis of PC 

and contribute to the pathophysiological hallmarks like hypoxia, desmoplasia, perineural 

invasion and resistance to therapy that define this lethal malignancy.  

Endothelins (ETs) are a family of three 21 amino-acid vasoactive peptides ET-1, 

ET-2 and ET-3 that mediate their effects via two G-protein couple receptors, ETAR and 

ETBR that are expressed on various cell types. While under normal physiological 

conditions, the ET system is involved primarily in the regulation of basal vascular tone [7], 

there is emerging evidence demonstrating its expression and role in tumor progression of 
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several malignancies including melanoma [8], glioblastoma [9], prostate, ovarian, 

hepatocellular, breast and colorectal carcinomas thus making it a potential therapeutic 

target [10-14]. Elevated ET-1 levels are observed in many tumors where it is produced 

both by tumor and stromal cells [15]. Further, overexpression of the two endothelin 

receptors is observed on tumor cells, endothelial cells, infiltrating immune cells and tumor 

associated fibroblasts in various malignancies. Activation of the ETAR in tumor cells 

promotes proliferation, migration, invasion and cell survival (anti-apoptotic signals) by 

activating different signaling pathways including MAPK, PKC, EGFR and Akt [15]. The ET 

axis also plays a critical role in tumor neovascularization by regulating HIF-1α, VEGF, 

COX2 and prostaglandin E2 and induces proliferative signaling in endothelial cells, 

pericytes and vascular smooth muscle cells. ET-1 potentiates hypoxia signaling via 

regulation of hypoxic inducible factor-1α (HIF-1α). Indeed, a reciprocal relationship has 

been proposed in which ET-1 stabilizes HIF-1α resulting in the activation of HIF-1α-

regulated angiogenic genes, including HIF-1α- mediated transcription of ET-1 itself. Thus, 

ET expression can be influenced by the tumor microenvironment, and ETs then modify 

that environment through the actions of HIF-1α [16, 17]. These interactions are generally 

amplified under conditions of hypoxia as compared with normoxic conditions. Due to the 

high expression of ETAR on osteoblasts, the ET-1/ETAR axis promotes osteoblast 

proliferation and facilitates bone metastasis in prostate and breast cancer. ETAR 

antagonism reduces bone metastasis in experimental models and several clinical trials 

have evaluated the role of ETAR antagonists in patients with advanced bone metastatic 

breast and prostate cancer [18-22]. While most of the studies center on the ETAR-

mediated pro-tumorigenic effects, emerging evidence also suggests the critical 

involvement of ETBR. In ovarian cancer, high expression of ETBR on tumor blood vessels 

is associated with poor infiltration of anti-tumor T-lymphocytes and the ETBR antagonist, 

BQ788, enhanced the efficacy of immunotherapy [23]. In contrast, ETAR activation was 
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associated with enhanced T-cell infiltration in ovarian tumors [24]. In breast cancer ET-2 

is involved in the recruitment of macrophages via ETBR expressed on macrophages [25].  

Very recently, the role of endothelins in the TME has come up in a few scattered 

studies, however the comprehensive picture in any given cancer type still remains 

unknown [26].  Tumor cells secreting ET-1 peptide also expresses both ETAR and ETBR 

thereby activating autocrine and paracrine interactions with the tumor stroma [27]. 

Further, the remodeling of tumor stroma can occur due to ET-1 mediated interactions 

with ETAR and ETBR expressed on stellate cells, and cancer associated fibroblasts . The 

signals or cues coming from stromal cells facilitate reprogramming of the tumor cells and 

favor epithelial-to-mesenchymal phenotypic transition or acquisition of stem cell like 

phenotype [28, 29]. Alternatively, blood and lymphatic endothelial cells increase 

angiogenesis and lymphangiogenesis in response to ET-1-ETBR activation. In parallel, 

the tumor secretes vascular endothelial growth factor (VEGF) in an ET1-dependent 

manner, inducing sprouting and branching of new vessels from existing vessels [30, 31]. 

Recently, Cook et al. demonstrated overexpression of ET-1 and ETBR in human 

PC [32], however the expression pattern of the overall axis (ECE-1, ET-1, ETAR and 

ETBR) in PC and its complex microenvironment is still under explored.  The study here in 

provides for the first time the expression pattern of the entire ET axis in PC, and in 

various cellular compartments using both a genetically engineered mouse model and 

human PC cases. Importantly, TCGA database analysis indicated a positive correlation 

of pro-fibrogenic genes with the ET axis over expression giving further impetus to our 

hypothesis that the axis possible plays a pleotropic role in the tumor microenvironment 

of PC.  
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3. Results 

A. Endothelin-1 and its receptors are expressed in human pancreatic cancer cells  

The expression pattern of enodthelin-1 and its receptors was determined in 13 

human pancreatic cancer cells and ductal epithelial cells (HPDE) using immunoblot and 

RT-PCR analysis (Figure 1A and 1B). The colon cancer cell line, SW480 and human 

melanoma cell line SKMEL28 were taken as positive controls for ET-1/ETAR and ETBR 

respectively [33, 34]. Interestingly our results indicate the ubiquitous expression of ET-1 

expression in the majority of cell lines tested. The ductal epithelial cell line,HPDE, 

showed expression of ET-1 and ETAR with no expression of ETBR. In majority of cell 

lines, expression of endothelin receptors (ETAR and ETBR) showed an inverse 

relationship, with either one or the other expressing in a cell line one at a time. In 

SW1990, a low level of endothelin A receptor was observed however no expression of 

endothelin B receptor was seen. High levels of both ETAR and ETBR were present in 

poorly differentiated (AsPC1), moderately differentiated (BxPC3) and well differentiated 

(Colo357, HPAF II and Capan-1) PC cell lines as indicated by RT-PCR and immunblot 

analysis -indicating the differential expression pattern of ETAR and ETBR in these cells, 

suggesting a potential association between receptors expression and differentiation of 

PC cells. Actin was used as an internal control to normalize transcript levels. 

B. ET axis components are overexpressed in PC tissues 

To further delineate the expression and investigate the clinical significance of 

ECE-1, ET-1, ETAR and ETBR in human PC we first performed immunohistochemistry on 

formalin fixed paraffin embedded tissue samples from 38 pancreatic cancer patients who 

underwent Whipple procedure and on five normal pancreas samples. 

Immunohistochemistry (IHC) analysis revealed that within the axis the expression in 

tumors was found to be higher for ECE-1 and was expressed in 34 cases (89%). The 
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expression of ET-1 was observed in 33 cases (86%), whereas the expression of ETAR 

and ETBR were seen in 29 (75%) and 24 (68%) cases respectively (Figure 2A). In 

normal human pancreas, low immunoreactivity of ECE-1, ET-1, ETAR and ETBR was 

seen in the pancreatic acini, however islet cell were found to be strongly positive for all 

four molecules. Figure 2B and 2C shows the quantification of composite 

immunohistochemistry score and a heat map representation respectively of the 

expression pattern on case-to-case basis. Interestingly, in the normal pancreatic ducts 

weak immunostaining can be seen for ECE-1 compared to ET-1, ETAR and ETBR. To 

evaluate the clinical significance of ET axis expression in PC, the expression was 

correlated with the clinicopathological characteristics. The expression was correlated 

with the age, gender, tumor stage, tumor grade, lymph node metastasis and distant 

metastasis (Table I). The incidence (positivity) of ET-1, ETAR and ETBR was correlated 

with patient characteristics using the chi-square test for the categorical variables and the 

t-test for age. For both ETAR and ETBR no patient characteristics were associated with 

marker positivity. Interestingly, ET-1 positivity was associated with a higher proportion of 

moderate grade patients and was negatively associated with a higher proportion of poor 

and well differentiated patients with a significant p value (p=0.04).  

To study the expression of ET-1 and its receptors during PC metastasis 

immunohistochemical staining was performed using tissue microarrays (TMA) from 

UNMCs unique rapid autopsy program (RAP), which included patient samples from both 

primary and metastatic sites. We examined pancreatic cancer tissue samples from the 

primary and metastatic sites to measure the incidence of ET axis proteins and the 

average composite scores. Generalized estimating equations (GEE) was used to 

calculate the proportion with the positive staining results for each of the molecules 

examined for each tissue type as well as the mean composite score for each. The 

expression was compared between non-neoplastic ducts and pancreatic 
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adenocarcinoma having normal pancreas and tissues from primary PC. Figure 3 

represents the immunohistochemical analysis and heat map representation of ET-1 and 

both the receptors respectively in primary and metastatic tissues. We next determine the 

change ET axis expression with progression of PC on the basis of tumor grade and 

differentiation. Table II shows the expression of ET-1, ETAR and ETBR in primary tissues 

of 44 patients on the basis of loss of tumor differentiation. A progressive increase in the 

expression of ET-1 and receptors was observed from poorly differentiated to well 

differentiated carcinoma. Further, within the axis ETAR was found to be highly expressed 

in all three histologic grades and was higher than ET-1 and ETBR. In addition, patients 

who express all three of the molecules in primary sites also expressed the same in 

various metastatic sites suggesting the role of ET-1 and the receptors in metastatic 

spread of disease. Table III shows the distribution of TMA utilized in this study and the 

number of tissue specimens analyzed for ET-1, ETAR and ETBR. The expression of ET-

1, ETAR and ETBR was seen in 37.1% (13/35), 74.3% (29/39), 31.5% (12/30) and 73% 

(27/37) of the primary cases. We then determined the incidence rate (proportion 

positive) for each of the molecules in each of the tissue, using GEE methods to take into 

account multiple tissue samples per patient. As shown in table IV, compared to 

metastatic tissue the incidence rate in primary tumor was found to be significantly higher 

for ET-1 (p=0.0020), ETAR (p=0.022) and ETBR (p=0.020). In addition, the incidence for 

ETAR on blood vessels was found to be significant in metastatic tissues, however no 

significant difference for ETBR was observed in these tissues. 

C. Elevated expression of ETBR on tumor blood vessels is correlated with patient 

survival 

Very interestingly, in addition to tumor cells where the expression of ET axis 

components was identified in the cytoplasm, a strong immunostaining was also seen in 
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the stromal compartment of these patients particularly infiltrating immune cells and blood 

vessels, suggesting a potential involvement in the pancreas microenvironment (Figure 

4A). To further confirm the expression in the stromal compartment, the expression was 

scored by a pathologist in a double blinded condition in Whipple resected PC tissues. Of 

all the cases analyzed the expression in blood vessels was seen in 60.5 % (23/38) and 

31.5% (12/38) for ETAR and ETBR respectively. Additionally, expression in the immune 

cells indicate the expression of ET-1 in 31.5% (12/38), ETAR in 34.1% (13/38) and ETBR 

in 39.4 (15/38) of the cases (Figure 4B). Importantly, analysis of survival data from 33 

patients showed that elevated ETBR positivity on blood vessels is correlated with poor 

prognosis of the PC patients. Representative immunohistochemistry images of the low 

ETBR expression on normal pancreas and elevated expression on tumor blood vessels 

in PC patients are shown in (Figure 6). The median survival of the patients with low 

ETBR expression on blood vessels was 14.7 months as compared to 10.3 months in 

patients with high ETBR blood vessel positivity (Figure 5E). However, no significant 

correlation of ET-1, ETAR and ETBR expression on tumor cells was seen with survival of 

these patients. Even in the small sample size this was a significant finding suggesting 

that analyzing the expression in the context of microenvironment in addition to tumor 

cells is equally important to determine the pathobiological significance of the pathway. 

D. Expression of ET axis in mouse progression model of PC  

Genetically engineered mouse (GEM) models are potential alternatives to 

xenograft subcutaneous models to study the tumor microenvironment and evaluate 

therapeutic strategies in vivo. We have procured the most widely used mouse model in 

pancreatic cancer, which expresses constitutively activated KrasG12D in the pancreas. 

This double transgenic line was developed by Dr. David Tuveson by crossing LSL-

KrasG12D with Pdx-1-Cre. The resultant double transgenic animals (KrasG12D; Pdx-1-Cre) 
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develop PanIN lesions at age of 9 weeks, advanced PanINs at 30 weeks and few 

animals developed PC with metastasis at 50 weeks of age [35]. However, this model 

does do not develop aggressive nor metastatic tumors. We have utilized widely used 

KPC model which consists of a triple transgenic animal (K-rasG12D; Trp53R172H/+; Pdx-1-

Cre). The KPC model involves targeted expression of an endogenous KrasG12D allele 

and Trp53R172H/+ in murine pancreatic progenitor cells and closely recapitulates many of 

the genetic alterations, histopathology and metastatic features of human pancreatic 

cancer. The KPC mice develop pre-neoplastic lesions at 4-6 weeks after birth and 

invasive PDAC at 22 weeks of age with a median survival of 5 months and 100% 

mortality by 12 months of age. We studied the expression of ECE-1, ET-1, ETAR and 

ETBR in the autochthonous tumors of KPC mice. The expression was analyzed at the 

mRNA levels form tissues obtained from 5wk, 7 wk, 10wk, 15wk, 20 wk and 25wk 

animals. Low expression of ECE-1, ET-1 and both receptors was seen in animals of 5 

wk age and a progressive increase was observed to 25 wk KPC animals (Figure 7A). In 

contrast, low expression of ET axis components was seen in the control animals, which 

have WT Kras in the pancreas. The expression was also evaluated by tissue IHC where 

the onset of expression of ECE-1, ET-1, ETAR and ETBR was observed in early PanIN 

lesions in 5 wk animals (Figure 7B). In the advanced lesions of 25 week animals, 

significant expression was seen both in cancer cells and tumor microenvironment 

components similar to human PC. In the 25 wk control animals having WT Kras, low 

expression was seen in the acinar compartment whereas the strong immunoreactivity 

was seen in the islet cells, which is similar to the normal human pancreas. In addition, in 

the normal pancreatic duct similar to normal human pancreas prominent 

immunostaininig of ECE-1 was seen. The progressive increase in the expression of ET-1 

axis components with increase tumor grade and stage similar to human PC suggests the 

therapeutic potential of targeting this axis and study thereof using the KPC model. 
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E. Expression of ET axis in tumor microenvironment of human PC and mice KPC 

tissues 

PC represents one of the most complex tumor microenvironments (TME) and 

consists of pancreatic stellate cells, endothelial cells, immune cells, neuronal cells, 

endocrine cells, and highly obstructive extracellular matrix. These cellular components of 

the TME have complex interactions with each other and with the cancer cells. To confirm 

the expression on components of PC microenvironment the expression was determined 

using dual confocal microscopy utilizing markers for blood vessels, tumor cells and 

stellate cells and macrophages. In both human PC and mouse KPC tissues, we 

observed that epithelial marker CK19 positivity is associated with both ETAR and ETBR 

(Figure 8A & 8B). Additionally, we found that both ETAR and ETBR are associated with 

CD31 (Figure 9A & 9B). In contrast, α-SMA positive stellate cells display low expression 

of ETAR and high expression of ETBR (Figure 10A & 10B). As macrophages are an 

integral part of TME and play a key role in its establishment, we analyzed the expression 

on tumor infiltrating macrophages. Using CD68 specific antibody we found that 

expression of ETBR is mainly associated with CD68 positive macrophages, whereas low 

expression of ETAR was seen (Figure 11A). In addition, dual immunofluorescence 

analysis on the F4/80 positive murine infiltrating macrophages in the stromal 

compartment of KPC mouse tissue suggests low expression of ETAR and predominant 

expression of ETBR (Figure 11B). We have analyzed the expression of both ET 

receptors in cancer stem cells (CSCs) in KPC mice tissues. Expression of both ET 

receptors was observed in CD133 positive CSCs (Figure 12A & 12B). In addition to the 

ET receptors, the expression of ECE-1 and ligand ET-1 was also studied in these 

tissues using triple co-immunofluorescence analysis. Examination revealed expression 

of ECE-1 and ET-1 on tumor cells and stellate cells that displayed co-expression with 
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the CK19 (Figure 13A & 13B) and α-SMA (Figure 14A & 14B) respectively in both PC 

and KPC tissues. Furthermore, co-immunostaining using ECE-1 and ET-1 specific 

antibodies showed extensive co-expression with CD68 and F4/80 positive macrophage 

populations in human PC and mice KPC tissues (Figure 15A & 15B). An overall 

summary of the ET axis expression profile on various cellular compartments of 

microenvironment is given in Table V. 

F. ET-1 and receptors correlate with tumor grade and stage in human TCGA 

database 

With the limitation in sample size in these two data sets (Whipple resected and 

RAP cases), we conducted a TCGA analysis on 162 PC patients (Table VI i). The total 

number of patients in stage 1 is 20 whereas stage 2 has the information on 126 patients. 

In addition, the sample size of the patients in stage 3 and 4 has information on 3 patients 

each. We correlated the expression of ET-1 and its receptors on the basis of tumor 

grade and stage (Table VI ii). The expression of ET-1 and both receptors correlated with 

advanced tumor grade and stage. Higher expression of the ET-1 was observed in stage 

3 & 4 patients (p=0.05) and stage 2 patients (p=0.05) compared to stage 1 patients. 

Similarly, expression of ETAR (p=0.01) and ETBR (p=0.03) showed higher expression in 

stage 2 compared to stage 1 with increase in tumor stage, suggesting a positive 

correlation with advance tumor stage. To further determine the functional implication and 

pathobiological significance of this overexpression in PC tissues, we looked for genes in 

the TCGA database which has high correlation coefficients with overexpression of both 

ETAR and ETBR. To further determine the consequences of the overexpression of the 

axis in these PC patients we utilized bioinformatics approach to screen for the genes 

which correlate with the tumors with overexpression of ET-1 and its receptors. Using 

Pearson correlation coefficient ‘r’ the strength of the linear relationship between two 
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variables is determined. An ‘r’ value of 0 indicates no association between the two 

variables whereas ‘r’ value of +1 and -1 indicates the perfect positive and negative 

association respectively between the variables. Bioinformatics analysis of the TCGA 

database cases revealed high positive correlation of the genes associated with both 

ETAR and ETBR. Interestingly, significant association of pro-fibrotic genes were found to 

be correlated with ETAR expression particularly Collagen I (Col1A2, Col3A1, Col5A2, 

Col6A3), Platelet derived growth factor receptor-beta (PDGFRβ), Fibroblast activation 

protein (FAP), Lumican (LUM) and Fibrillin 1 (FBN1), Sulfatase 1 (SULF1), Fibrillin 1 

(FBN1), Follistatin like 1 (FSTL1), Secreted protein acidic and cysteine rich (SPARC), 

Chondroitin sulfate synthase (CHSY3). Table VII lists the top 30 genes that were found 

to correlative on patient-to-patient basis with both ETAR and ETBR. Figure 16 shows the 

association of PDGFRβ with ETAR expression (r=0.93), indicating a stronger association 

of the two variables. Additionally, pathways regulating hepatic fibrosis, SHH signaling, 

and tumor growth and metastasis, were also upregulated in tumors exhibiting 

overexpression of the ET axis (Figure 17). These findings indicate that over expression 

of ET-1 axis particularly ETAR correlates with a pro-fibrotic gene signatures suggesting 

an active involvement of the ET-1 axis in the stromal compartment of PC.  

 

Discussion 

The ET system is comprised of a strong vasoactive peptide and receptors that 

play a crucial role in physiological events. In addition, a link has been suggested 

between the axis components and various pathological malignancies including cancer. 

Although a few studies have also reported a potential role of ET-1 in human pancreatic 

cancer, the data are very limited. Kushuhara et al first witnessed and reported evidence 

for the presence of ET-1 peptide in the pancreatic cancer cell lines using 

radioimmunoassay. However, no ET-1 receptors were detected in a panel of PC cell 



103 
 

lines tested [36]. Oikawa et al further confirmed these findings and analyzed the 

expression of all three ET isoforms in human PC cell lines postulating that the 

expression pattern of all three isoforms is similar to endothelial cells [37]. Inconsistent 

with the previous finding, Bhargava et al reported the presence of ET receptors in 

pancreatic cancer cell lines and suggested that mRNA expression of ETAR is limited to 

some cell lines (MiaCaPa-2 and AsPC-1, not Panc-1) with no detectable expression of 

ETBR [38]. In this study, we delineate the expression of ET-1, ETAR and ETBR in a panel 

of 13 PC cell lines using SW480 cells and SKMel 28 as positive controls for ET-1/ETAR 

and ETBR respectively. Similar to previous observations, ET-1 was detected in all PC 

cell lines, with the receptors showing inverse association with the exception of AsPC1, 

BxPC3, Colo357 and Capan-1. Inconsistent with the previous findings we observed 

expression of ETAR and ETBR in Panc1 and MiaPaCa respectively, whereas detectable 

expression of both receptors is observed in AsPC-1 cells.  

Using islet specific antibodies, previous studies have demonstrated the presence 

of ET-1 and receptors in human and rat pancreas tissues thus suggesting the 

involvement of ET axis in supporting the beta cell function [39]. Using radiolabeled 

binding experiments; the presence of ET-1 and its receptors was also demonstrated in 

rat beta cell lines INS-1 and RINm5f. Similar to pancreatic islets, radiolabeled binding 

studies also indicate the presence the higher of ETAR than ETBR in the pancreatic acini 

[40]. Cook et al recently reported the higher expression of ET-1 and ETBR in 45 

pancreatic cancer samples compared to normal pancreas, however no positive staining 

for ETAR was detected in the epithelium of tissues studied [41]. Our study to investigate 

the expression pattern of ET axis components, ECE-1, ET-1 and both receptors in tumor 

samples from Whipple resected PC cases and microarray from UNMC rapid autopsy 

program suggests over expression of the axis as compared to normal pancreas. We 
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have demonstrated that in normal pancreas, the expression is limited to acinar region 

and low immunoreactivity for all four molecules is seen with prominent expression is 

seen in pancreatic islets. In contrast, minimal immuno-staining is seen in the normal 

pancreatic ducts. We observed that in Whipple resected PC cases, within the axis ECE-

1 has highest incidence and expressed in 89% cases (34/38). Analysis of the PC 

specimens in the tumor samples further indicates that ET-1, ETAR and ETBR are 

expressed in 86% (33/38), 76% (29/38) and 63% (24/38) of cases. The discrepancy in 

the ETAR staining can be explained on the basis of antibody use in the study. Our 

immunohistochemical analysis in human PC samples used a polyclonal antibody (used 

by Cook et al) and demonstrated low staining intensity in the ductal cells of the 

pancreas. We further confirmed our findings by immunostaining the serial sections to 

compare the reactivity and intensity of the both the antibodies. Figure 18 shows clear 

differences in the staining intensities in the three PC cases used; suggesting the low 

ETAR incidence observed can be attributed to the selection of the antibody in the study. 

We also investigated the expression pattern in different tumor samples (obtained from 

the UNMC rapid autopsy program, RAP that included those with both the primary and 

metastatic sites harvested). Similar to our previous analysis, overexpression of axis 

components is seen compared to normal pancreas. The incidence of ET-1, ETAR and 

ETBR is seen in 37.1% (13/35), 74.3% (29/39) and 31.5% (27/37) of the cases 

respectively. The higher expression of ETAR specific antibody in both primary and 

metastatic lesions of RAP tumor samples further strengthen our findings obtained in 

Whipple resected tumor samples.  

The tumor microenvironment of the PC is of particular interest, as the primary 

tumor possesses an extensive and obstructive stromal compartment. This 

microenvironment is comprised of endothelial cells, fibroblasts, immune cells and 

vascular smooth muscle cells. ET-1 acts as a modulator of stromal response and 
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facilitates tumor progression either in autocrine signaling on tumor cells or by paracrine 

effect on nearby stromal cells [42]. Studies have shown that an elevated level of the ET 

axis is correlated with tumor progression, intra-tumoral vascularization and tumor 

angiogenesis [43] [44]. In breast cancer, increased ET-1, ETAR and ETBR expression is 

associated with tumor progression, disease free survival and overall survival [45]. Also, 

in bladder cancer overexpression of the axis is correlated with tumor grade and longer 

disease free survival [46] [47]. In endothelial cells, ET-1 modulates the angiogenesis 

process and exhibits a potent effect in combination with VEGF. ET-1 stimulates the 

release of MMP-2, which allows sprouting and migration of endothelial cells and 

formation of vascular cord-like structures indicating that ET-1/ETBR interaction favors 

neovascularization in concert with VEGF [31] [30]. Previous observations have 

demonstrated that both VEGF and ET-1 stimulate each other’s expression. In bovine 

aortic endothelial cells, VEGF induces ET-1 mRNA expression and ET-1 secretion while 

in vascular smooth muscle cells, ET-1 acts on ETAR to stimulate VEGF mRNA and 

VEGF secretion showing a coordinated role of VEGF and ET-1 [48]. According to our 

data, in addition to the expression on tumor cells, expression of ET axis is also observed 

in the stroma of PC, particularly on immune cells and tumor blood vessels. We also 

observed that an association between the elevated levels of ETBR on blood vessels with 

poor overall survival. Our findings indicate that overexpression of ET axis proteins on 

tumor cells is not correlated with patients overall survival. Importantly, our main finding is 

that investigation of the tumor microenvironment components is necessary to establish 

prognostic significance of the pathway and ETBR expression on blood vessels is an 

independent prognostic factor for patient survival. To our knowledge, this is the first 

report to demonstrate that ETBR is an independent prognostic marker for human 

pancreatic cancer. It may follow from our data that even in a small data set, this is a 

significant finding and further characterization of the different microenvironment 
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components can add significant prognostic information  

To further investigate the pathobiological significance of the pathway, we also 

analyzed the expression of ET axis proteins in the TCGA database and their correlation 

with tumor grade. Next, we investigated the implications of overexpression of ET axis 

proteins in PC. In this study, we found significant positive correlation of ETAR and ETBR 

with pro-fibrotic genes (Collagen I/III/VI, PDGFRβ, FAP) and pathways using a 

bioinformatics approach. Pancreatic stellate cells  (PSCs) are the resident cells of the 

pancreas and are the principal source of fibrosis in the stroma that interact closely with 

the surrounding tumor cells and stimulate tumor growth and metastasis [49]. Once these 

cells are activated in response to external stimuli, inflammation (pancreatitis) or cancer, 

PSCs acquire a myofibroblast like phenotype and secrete increase amount of 

extracellular matrix (ECM) [50]. Tumor cells secreting ET-1 participate in the recruitment 

and activation of PSCs. Alternatively, ET-1 is released from PSCs in an autocrine 

manner and can also perpetuate their activation [51]. In the context of PC, Jonitz and 

coworkers observed that treatment of PSCs with TGF-β1 and TNF-α stimulated the 

secretion of ET-1 peptide by increased binding to smad3 and NF-kB respectively. Also, 

treatment with ET-1 induced the phosphorylation of ERK1/2 and p38, a marker of PSCs 

activation (α-SMA) and pro-inflammatory cytokines (IL-1β and IL-6) [52]. This ET-1 

induced effect was abrogated by the dual ETAR and ETBR inhibitor, Bosentan and 

displays anti-fibrotic effects in PSCs by marked reduction in the expression of CTGF 

(connective tissue growth factor) and α-SMA [53] indicating a pro-fibrogenic role of ET-1 

in PC. Our present study suggests that ET receptors are expressed in PC and in the 

TME exhibit a significant correlation with fibrosis associated genes. This knowledge, 

may provide a rationale for developing a novel cancer therapy for targeting the ET axis 

to combat this fatal malignant disease. However, more experimental and clinical 
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evidence are needed to prove the significance of this axis a therapeutic target. To 

determine the clinical significance of targeting this axis in vivo, we have utilized the 

widely used genetically engineered KPC mouse model (K-rasG12D; Trp53R172H/+; Pdx-1-

Cre) that harbors a Kras and p53 mutation in the pancreas.[54] [55]. We observed the 

expression of ECE-1, ET-1; and both receptors increase gradually with the disease 

progression in these mice. Our data also infers that in addition to tumor cells, a 

prominent expression is seen in the stromal region (an observation similar to what we 

witnessed in human PC cases indicating the potential of targeting this axis). Because the 

main goal of the present study was to define and characterize the expression pattern in 

various cell types in the microenvironment of PC, we utilized the -markers specific for 

fibroblasts (α-SMA), endothelial cells (CD31), tumor-associated macrophages (CD68 & 

F4/80), tumor cells (CK19) and stem cells (CD133). In this study, we found that CD31+ 

blood vessels and CD133+ stem cells show co-expression with both ETAR and ETBR. In 

contrast, α-SMA+ fibroblasts, CD68+ and F4/80+ macrophages show predominant 

expression of ECE-1, ET-1 and ETBR, however, low expression of ETAR was observed 

in both KPC mouse and human PC tissues.  

In conclusion, we have shown that, ET axis components are over-expressed in 

pancreatic cancer cells, human PC tissues and in the KPC mouse progression model of 

PC. Further, the proteins associated with this axis plays a pleotropic role in the TME and 

are expressed in various cellular compartments. This study establishes the prognostic 

significance of the ET axis in lethal PC indicating that TME components can also be of 

prognostic significant. Importantly, positive correlation of extracellular matrix associated 

genes further sheds light on the therapeutic potential of the axis and can be exploited for 

improving the delivery and efficacy of existing drugs.  
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Figure 1: Expression of ET-1, ETAR and ETBR in pancreatic cancer cell lines. A. 

Protein lysates from a panel of PC cell lines and normal pancreatic ductal epithelial cells, 

HPDE were resolved on 10% SDS-PAGE gel using western blot analysis. The 

expression of ET-1, ETAR and ETBR was observed in these cell lines when incubated 

with anti- ET-1, anti- ETAR and anti- ETBR antibody. Colon cancer (SW480) and 

melanoma cell line (SKMel28) were used as positive control for ET-1/ETAR and ETBR 

respectively. β-actin was used as an internal control. B. RT-PCR using ET-1, ETAR and 

ETBR gene specific primers in PC cell lines. β-actin was used as an internal control. 
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Figure 1 
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Figure 2: Expression of ECE-1, ET-1, ETAR and ETBR in pancreatic cancer tissues. 

A. Immunohistochemical analysis of ECE-1, ET-1, ETAR and ETBR in the pancreatic 

acini and ducts of normal pancreas (magnified image) with strong staining observed in 

islet cells for all four molecules (black arrow). There is a significant increase in 

expression of ECE-1, ET-1, ETAR and ETBR in the PC tissues when compared to normal 

pancreas. The magnified image shows over-expression in the pancreatic ducts. B. The 

staining score and intensity score were multiplied to obtain the composite scores. 

Composite scores of ECE-1, ET-1, ETAR and ETBR in normal pancreas ducts and PC 

tissues are shown as box plots. C. Heat map representation of ET axis expression in 

normal pancreas and PC patients on case to case basis. 
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Figure 2 
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Table I: Clinicopathological characteristics of Whipple resected PC patients. ET-1 

positivity was significantly associated with a higher proportion of moderate grade 

patients (p=0.04) and was negatively associated with a higher proportion of poor and 

well grade patients. 
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Table I 

 

 

 

 

Primary Tumor (T): T1, T2, T3, T4: Size and/or extent of the primary tumor  

Distant Metastasis: MX: Distant metastasis cannot be evaluated 

M0: No distant metastasis 

M1: Distant metastasis is present 

 

 

 

 

 

 

 

 



114 
 

Figure 3: Expression of ET-1, ETAR and ETBR in pancreatic cancer tissues from 

Rapid Autopsy Program (RAP). The staining score and intensity score were multiplied 

to obtain composite scores and are represented in the heat map with a scale from 0 to12  

from low expression to high expression respectively. Heat map representation of 

immunohistochemical analysis of ET-1, ETAR and ETBR in metastatic sites in the primary 

tumor (A), and metastatic sites of liver (B), lung (C), lymph node (D), omentum/ 

diaphragm (E) from tissue microarray obtained from rapid autopsy program. F. 

Immunohistochemical representation of ET-1, ETAR and ETBR expression and incidence 

in metastatic sites.   
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Figure 3 
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Figure 3 
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Table II: Expression of ET-1, ETAR and ETBR with tumor grade in tissue microarray 

(TMA) 
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Table II 
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Table III: Distribution of tissue microarray (TMA) indicating number of cases analyzed for 

primary and metastatic sites for ET-1, ETAR and ETBR expression. 
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Table III 
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Table IV: Incidence of ET-1, ETAR and ETBR in TMA. The incidence rate (the 

proportion positive) for each of the molecules for each of the tissues, using GEE 

methods to take into account multiple tissue samples per patient with significant p value.  
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Table IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

p=p= 0.022 p= p=0.024 p= p=0.0020 

p= 0.020 p= 0.67 
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Figure 4: Expression of ETAR and ETBR in the stromal compartment of human PC. 

A. Immunohistochemical analysis of ETAR and ETBR in tumor blood vessels (red arrows) 

and immune cells (green arrows). B. Grid map representing immunohistochemical 

analysis of ECE-1, ET-1, ETAR and ETBR in immune cells and tumor blood vessels 

along with the overall incidence in whipple resected PC patients. Red and black squares 

represents the positive and negative cases respectively. C. Table represents the 

incidence of ETAR and ETBR on blood vessels and immune cells 
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Figure 4 
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Figure 5: Comparison of survival curves associated with ET axis expression in PC. 

Kaplan Meier curves showing the overall survival in 33 whipple resected PC patients. 

Tumor positivity for ET-1 (A), ETAR (B) and ETBR (C) are not significant independent 

predictors of overall survival. Kaplan Meier curves showing ETAR (D) and ETBR (E) 

expression on tumor blood vessels (BV). Survival curve indicate that the poor prognosis 

of PC patients is associated with elevated expression of ETBR expression on BV 

(p=0.024). Negative and Positive indicates low and high expression respectively.  
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Figure 5 
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Figure 6: Comparison of ETBR expression on blood vessels. Immunohistochemical 

analysis of ETBR in blood vessels (BV) in normal pancreas and in PC patients. In the 

normal pancreas, ETBR expression can be seen in blood vessels with enlarged lumen 

and restored architecture. Similar, in the PC (patient 3 and patient 4) comparable 

expression can be seen in tumor blood vessels, however heterogeneous vascular 

structure is seen. In contrast, in patient 5 and patient 6, elevated expression of ETBR on 

BV can be seen and the expression is correlated with poor prognosis of the patients.   
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Figure 6 
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Figure 7: Expression of ECE-1, ET-1, ETAR and ETBR in triple transgenic mouse 

model of PC. A. RT-PCR analysis of ECE-1, ET-1, ETAR and ETBR mRNA expression 

in various ages of mice from KrasG12D P53; Pdx-1-Cre (KPC) mice compared to 

corresponding age-matched normal mice. A progressive increase in the expression of 

ECE-1, ET-1 and both receptors is observed in KPC mice compared to healthy age 

matched controls. GAPDH was used as a loading control. B. Immunohistochemical 

analysis of ECE-1, ET-1, ETAR and ETBR in pancreatic tissues from normal wild type 25 

week animals versus KPC mice at ages 5, 10 and 25 weeks. Control mice showed low 

expression in the acinar compartment with predominant expression in the islet cells for 

ECE-1, ET-1, ETAR and ETBR as indicated by black arrowheads. On the other hand, 

increased expression was observed in the ductal compartment with advanced age in 

KPC mice. 
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Figure 7  
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Figure 8: Expression of ETAR and ETBR in tumor cells in human and mouse PC 

tissues. Dual confocal microscopy images show co-expression of ETAR (red) and ETBR 

(red) with epithelial marker CK19 (green) in human PC (A) and in 25 week KPC mouse 

(B) tissue. Scale bar = 50µm.  
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Figure 9: Expression of ETAR and ETBR in blood vessels in human and mouse PC 

tissues. Dual confocal microscopy images show co-expression of ETAR (green) and 

ETBR (green) with endothelial marker CD31 (red) in human PC (A) and in 25 week KPC 

mouse (B) tissue. Scale bar = 50µm. 
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Figure 10: Expression of ETAR and ETBR in pancreatic stellate cells in human and 

mouse PC tissues. Dual confocal microscopy images show co-expression of ETAR 

(red) and ETBR (red) with stellate cell marker α-SMA (green) in human PC (A) and in 25 

week KPC mouse (B) tissue. As compared to ETBR, low expression of ETAR is seen in 

α-SMA positive cells. Scale bar = 50µm. 
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Figure 11: Expression of ETAR and ETBR in macrophages in human and mouse PC 

tissues. Dual confocal microscopy images show co-expression of ETAR (red) and ETBR 

(red) with macrophage marker, CD68 and F4/80 (green) in human PC (A) and in 25 

week KPC mouse (B) tissue. As compared to ETBR, low expression of ETAR is seen in 

CD68 and F4/80 positive macrophages. Scale bar = 50µm. 
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Figure 12: Expression of ETAR and ETBR in stem cells in mouse KPC tissues. Dual 

confocal microscopy images show co-expression of ETAR (red) (A) and ETBR (red) (B) 

with stem cell marker CD133 (green) in 25 week KPC mouse tissue and control. As 

compared to age-matched control, increase co-expression is seen for both ETAR and 

ETBR is seen in CD133 positive stem cells. Scale bar=50µm. 
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Figure 13: Expression of ECE-1, ET-1 in tumor cells in human and mouse PC 

tissues. Three color immunofluorescence analysis show co-expression of ECE-1 (red), 

ET-1 (purple) with epithelial marker CK19 (green) in human PC (A) and in 25 week KPC 

mouse (B) tissue. Both ECE-1 and ET-1 showed predominant co-expression with CK19 

positive tumor cells. Scale bar= 20µm. 
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Figure 14: Expression of ECE-1, ET-1 in pancreatic stellate cells in human and 

mouse PC tissues. Three color immunofluorescence analysis show co-expression of 

ECE-1 (red), ET-1 (purple) with stellate cell marker α-SMA (green) in human PC (A) and 

in 25 week KPC mouse (B) tissue. Both ECE-1 and ET-1 showed predominant co-

expression with α-SMA positive stellate cells. Scale bar= 20µm. 
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Figure 14 
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Figure 15: Expression of ECE-1, ET-1 in macrophages in human and mouse PC 

tissues. Three color immunofluorescence analysis showing co-expression of ECE-1 

(red), ET-1 (purple) with macrophage marker CK19 (green) in human PC (A) and in 25 

week KPC mouse (B) tissue. Both ECE-1 and ET-1 showed predominant co-expression 

with CD68 and F4/80 positive macrophages. Scale bar= 20µm. 
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Figure 15 
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Table V: Expression profile of ET axis in TME of PC. Summary of the ET axis 

components (ECE-1, ET-1, ETAR and ETBR) expression in tumor cells, stellate cells, 

blood vessels, macrophages and stem cells. (NA= not analyzed).  
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Table V 
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Table VI: Expression of ET 1, ETAR and ETBR in TCGA databse. i. Representation of 

the number of TCGA cases on the basis of tumor stage. ii. Correlation of ET-1 (EDN1), 

ETAR (EDNRA) and ETBR (EDNRB) with disease stage in the TCGA sample set showed 

higher expression is significantly correlated with disease stage.  
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Table VI 

 

i 

 

 

 

 

 

 

 

 

ii 

 

 

  

  



151 
 

Table VII: Bioinformatics analysis of TCGA database identified pro-fibrotic gene 

signatures associated with ETAR and ETBR over expression. The top 30 genes 

exhibiting strongest positive correlation with ET-axis included signaling receptor 

(PDGFRβ), extracellular matrix (ECM) proteins [collagens (COL1A2, COL6A3, COL5A2; 

fibro-nectin (FBN1), SPARC, lumican (LUM)], ECM modifying enzymes [sulfatase 1 

(SULF1); chondritin sulfate synthase 3 (CHSY3)], basement membrane proteins [Nido-

gen 2 (NID2)] and marker of fibroblast activation (FAP).  
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Table VII 
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Figure 16: Correlation of pro-fibrotic gene PDGFR-β with ETAR over expression. 

Example of one gene showing positive correlation with ETAR over-expression. Pearson 

correlation coefficient ‘r’ indicates the strength of the linear relationship between two 

variables. An ‘r’ value of 0 indicates no association between the two variables whereas 

an ‘r’ of +1 and -1 indicates the perfect positive and negative association respectively 

between the variables. Every dot indicates one patient. The association of PDGFR-β 

with ETAR expression (r=0.93), indicates a stronger association of the two variables.  
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Figure 16 
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Figure 17: Correlation of pathways associated with ET axis over expression. 

Significant pathways were identified by Ingenuity pathway analysis that are upregulated 

and positively correlated with ET axis over expression.  
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Figure 17 
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Figure 18: Comparison of ETAR staining in human PC tissues. 

Immmunohistochemical analysis of ETAR in serial sections of three human PC cases 

was compared to assess the immuno-reactivity of two different antibodies. A prominent 

increase in the ETAR expression was seen in pancreatic ducts with Abcam antibody as 

compared to the Novus biologicals antibody. 
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Figure 18 
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Chapter 4 

Targeting endothelin axis in pancreatic cancer using selective 

and dual receptor inhibitors under in vivo (KPC, K-rasG12D; 

Trp53R172H/+; Pdx-1-Cre) and in vitro (pancreatic stellate cells and 

cancer associated fibroblasts) system 
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Synopsis 

One of the hallmarks of pancreatic cancer (PC) is extensive and dense fibrous 

stroma that makes up 60-70% of the total tumor volume. Interaction of stromal cells with 

the cancer cells further modulates the malignant properties and favor metastasis of 

cancer cells. The cross talks between the stromal cells with each other and also with the 

tumor cells contribute to tumor growth and aggressiveness. The role of Endothelin(s) in 

the context of PC is not well studied and provides indirect evidence in fibrosis. In this 

study, we have evaluated the impact of targeting this axis using dual endothelin receptor 

antagonist, Bosentan using in vitro (murine stellate cells and human cancer associated 

fibroblasts) and in vivo mouse (KrasG12D, Trp53R172H+/-, Pdx-1-Cre) model. Bosentan 

treatment resulted in decrease in desmoplasia accompanied by decrease expression of 

extracellular matrix proteins. Further, the treatment induced direct killing of tumor cells 

as indicated by increase in cleaved caspase-3 positive cells. In vitro, pre-treatment of 

murine pancreatic stellate cells and human cancer associated fibroblasts with ETs 

inhibitors abrogated ET-1 mediated up regulation of fibrotic genes and suggested that 

ET-1 primarily induces pro-fibrotic gene signatures by both ET receptors. Further, ET-1 

stimulation in PSCs induced a significant increase in the p-ERK and p-AKT in a time 

dependent manner. This ET-1 induced increase was inhibited by selective ETBR 

antagonist BQ788 and to a lesser extent by selective ETAR antagonist BQ123, however 

dual receptor antagonist Bosentan significantly attenuated the ET-1 mediated induction. 

Our studies suggest that signaling through ET-1 axis regulates pro-fibrogenic genes 

through ERK and AKT dependent pathway in PSCs. In addition, pharmacological 

inhibition of the ET axis reduces the infiltration of tumor-associated macrophages and 

increases infiltration of cytotoxic T cells in the PC stroma. Altogether, our studies also 

demonstrate that targeting ET axis can modulate the obstructive and 
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immunosuppressive TME and make it potentially more amenable for chemotherapy and 

immunotherapy.  
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Background and Rationale 

PC is the 4th leading cause of cancer-related deaths in the United States 

accounting for nearly 37,390 deaths annually [1]. Due to the lack of early diagnostic and 

therapeutic modalities, PC has extremely poor prognosis with a dismal five year survival 

rate of <8%. Despite notable advances in surgical technique and postoperative care, 

and the use of adjuvant chemical and radiotherapies, virtually all early-stage patients 

who undergo resection also eventually succumb to recurrence and/or metastasis [2] that 

account for lethality of the disease. One contributing factor to the failure of systemic 

therapies may be the abundant tumor stromal contents forming the physical barrier and 

thereby impeding the drug delivery [3]. The stromal microenvironment is a complex 

structure composed of an extracellular matrix (ECM), cancer associated fibroblasts 

(CAFs), inflammatory cells and blood and lymphatic vessels that distort the normal 

architecture of pancreatic tissue. A major source of CAFs in PC is pancreatic stellate 

cells (PSCs), which are resident cells of the pancreas that store lipid droplets and 

express fibroblast activation protein-α (FAP α) [4]. Once activated in response to 

external stimuli, inflammation or injury, PSCs express the myofibroblast protein α-

smooth muscle actin (α-SMA) and secrete factors that stimulate tumor growth and 

metastasis.  

Recently, activation of sonic hedgehog (SHh) pathway has been identified to 

promote stromal desmoplasia [5, 6]. Inhibition of SHh by neutralizing antibody or small 

molecule inhibitor has been shown to decrease desmoplasia [7] and improve small 

molecule drug uptake in pancreatic tumors in KPC mice. However, most of the tumors in 

KPC mice resumed growth after a transient response [8]. Another microenvironment 

targeting strategy, utilizes CD40 agonist to drive antitumor T cell response-facilitating 

depletion of tumor stroma [9], making PC stroma as an attractive therapeutic target for 
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drug development. However, controversy exists and recent evidence has questioned the 

role of stroma in PC progression. Transgenic mice with αSMA(+) myofibroblasts 

depletion in the tumor stroma induces immune suppression and accelerates cancer 

progression [10]. Also, genetic ablation or prolonged inhibition of sonic hedgehog ligand 

led to non-invasive and poorly differentiated tumors and decreased survival in mice [11]. 

These findings demonstrate the need to use caution when targeting stroma in PC and 

highlight the importance of selective modulation of stroma is prerequisite to achieve 

considerable therapeutic benefit and improve the effectiveness of stroma- targeting 

drugs.  

Endothelins (ETs) are a family of three peptides, ET-1, ET-2 and ET-3, which 

mediate pleotropic effects via two G-protein coupled receptors ETAR and ETBR and have 

key physiological functions in normal tissue, and act as modulator of vasomotor tone [12] 

Accumulating evidences indicate the pro-fibrogenic role of ET-1 in the various 

pathological malignancies including cancer and have gain considerable interest and 

attention[13] Mechanistic and experimental evidences implicate the regulation of ET-1 at 

the transcriptional level. Several factors such as shear stress, hypoxia, TGF-β, IFN-γ, 

angiotensin II and thrombin up-regulate; whereas, nitric oxide down regulate the 

expression of ET-1 mRNA [14] [15]. The involvement of ET-1 in diverse biological 

processes can be attributed to its interaction with various transcription factors such as 

GATA, Smad, TGF-β and activator protein-1 (AP-1) [12]. The role of ETs in the context 

of pathogenesis of PC and fibrosis is not well studied and provides incomplete evidence. 

The effect of targeting ET axis and its impact on fibrotic genes was evaluated using dual 

ET receptor inhibitor, Bosentan in rat model. Bosentan treatment was found to inhibit the 

proliferation of PSCs and the genes involved in PSC activation like α-SMA and CTGF 

[16]. In addition, ET-1 induced phosphorylation of ERK and MLC promotes migration and 
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contraction of stellate cells. This ET-1 induced migration and contraction was inhibited 

by selective ETA and ETB antagonist[17]. In addition to contraction and migration caused 

by ET-1, stimulation led to the activation of PKCs, MAPK and ERK pathway. Further, it 

also enhances the production of pro inflammatory cytokines like IL-1 and IL-6 and 

expression of α-SMA and CTGF (connective tissue growth factor) suggesting an 

autocrine and paracrine loop mediated by ET-1 which acts on activated stellate cells[18].  

In this study, we have evaluated the impact of ET axis inhibition using 

autochthonous tumors that develop in genetically engineered mouse model (KPC) of 

PC. The study here in provides for the first time the anti-tumor and anti-fibrotic effects of 

ET axis antagonism in lethal PC in vivo. Importantly, we also examine the effect of 

selective and dual receptor antagonists on the proliferation of murine PSCs and human 

CAFs and investigated the molecular mechanisms responsible for ET-1 mediated 

induction of the pro-fibrotic gene signatures. Our results also suggest that 

pharmacological targeting of the ET axis in KPC mice reduces the infiltration of tumor-

associated macrophages and increases recruitment of cytotoxic T lymphocytes (CTLs).  
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Results 

A. Inhibition of ET axis in vivo using Bosentan increases apoptosis and reduces 

fibrosis in KPC autochthonous tumors  

We evaluated the impact of ET-axis inhibition in autochthonous tumors that develop 

in genetically engineered mouse model (KPC) of PC that is driven by pancreas-specific 

expression of mutant K-ras and p53. Dual endothelin receptor antagonist, Bosentan 

(1mg/kg body weight) was administered for a period of 10 days in 20 wk KPC mice 

(n=5) having high stromal content whereas the control animals (n=5) received saline. At 

the end of the treatment period the primary tumors were harvested and analyzed for 

various histopathological features such as fibrosis and apoptosis. No difference in the 

weight and volume of pancreas was observed. Bosentan treatment resulted in a 

significant increase in the number of apoptotic cells (p=0.01) compared to saline treated 

control group as indicated by immunohistochemical staining against cleaved-caspase 3 

and TUNEL staining (Figure 1A). Using Trichrome-Masson staining we observed that 

Bosentan treatment reduces stromal growth in KPC derived tumors compared to control 

group (Figure 1B). The Trichrome-Masson staining for fibrosis/desmoplasia was 

evaluated in mouse pancreatic tissue sections in a semi-quantitative fashion. Moderate 

to strong staining was seen in areas with control mice with 51-75 and 76-100 percent 

positivity respectively. In treated group, the staining shows variability with areas having 

poor to moderate staining with 0-25 and 26-50 percent positivity. The composite score 

is obtained by multiplying the numerical value and staining intensity for both the groups.  

To further determine the impact on fibrosis following Bosentan treatment we sought 

to investigate the effect on matrix associated genes using RT2 profiler fibrosis PCR 

array. Following 10-day treatment the tumors were harvested and used in the array as 

described in the materials and methods section. Data were normalized to six house 
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keeping genes in the array. Heat map represents the expression of 84 genes involved 

in the PCR array (Table I). The array contains the genes encoding ECM remodeling 

enzymes, TGFβ signaling molecules and inflammatory cytokines, as well as additional 

genes important for fibrosis. The volcano plot in Figure 2A was used to identify genes 

that are 2-fold differential expressed upon treatment with ET antagonist as compared to 

control. We observed that Bosentan treatment has a significant impact and down 

regulated the pro-fibrotic gene signatures such as CTGF (5.22 fold), α-SMA (1.51 fold). 

In addition, we also found that a reduction in the extracellular matrix proteins such as 

Col3a1 (5.12 fold), Col1a2 (4.54 fold) with significant p value (Figure 2B). 

Pharmacological inhibition of the ET axis using Bosentan also decreased the levels of 

matrix remodeling enzymes such as Lysyl oxidase (Lox) (2,87 fold), Mmp2 (3.57 fold), 

Mmp14 (3.58 fold) and cellular adhesion proteins such as Integrin alpha V (Itgav) (2.55 

fold), Integrin subunit beta 1 (Itgb1) (2.31 fold) and Integrin subunit beta 1 (Itgb5) (2.30 

fold) with significant p value (Table I). Further we also observed that Bosentan treated 

KPC mice displayed reduce levels of members of TGFβ superfamily such as Tgfb3 

(2.45 fold), Tgfbr1 (1.64 fold), Smad 3 (1.75 fold), serine/threonine kinase AKT 1 (1.93 

fold) and growth factors such as Pdgfa (1.39 fold) and Pdgfb (2.25 fold). Table II 

represents the overall summary of the gene expression profile. The pro-fibrotic 

associated gene signatures identified through TCGA database displayed significant 

association with ET axis overexpression and the gene signature targeted by Bosentan 

in fibrosis array is in concordant with ET axis association as predicted by TCGA 

analysis. These findings indicate that Inhibition of ET-axis by dual-specificity inhibitor 

Bosentan resulted in significant decrease in desmoplasia and increase in apoptosis in 

autochthonous tumors in KPC mice, suggesting a possible a possible impact on fibrosis 

on targeting ET axis. The decrease in the expression of these genes was confirmed by 

western blot analysis using tumor lysates and there was significant reduction in the 
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expression of CTGF, αSMA, fibronectin and FSP1 (Figure 3A). These findings were 

further confirmed through immunohistochemistry analysis as well. Bosentan treatment 

reduces the extracellular matrix proteins mainly collagen and αSMA which is associated 

with stellate cells activation and also fibronectin and CTGF, suggesting a possible 

impact on fibrosis on targeting this axis. 

 

B. Bosentan treatment decreases the FSP1 positive but not FAP positive 

fibroblasts in PC tumor stroma 

To further determine the impact on various populations of stromal fibroblasts 

following Bosentan treatment triple immunofluorescence analysis was done using CK19, 

αSMA and FSP1 specific antibodies (Figure 4A). Bosentan treatment reduces both FSP 

1 positive and αSMA positive fibroblasts in the PC tumor stroma with significant p value.  

Interestingly, α-SMA expressing fibroblasts surround the CK19 positive ducts whereas 

the FSP1 staining is present in different sub population and exhibits no overlap with α-

SMA (Figure 4B). In addition, Bosentan treatment has no significant effect on FAP 

positive fibroblasts cells however co-localization with α-SMA was seen (Figure 4C). 

 

C. ET-1 promotes proliferation and migration of pancreatic stellate cells 

(ImPSCc2) 

As pancreatic stellate cells are predominantly responsible for desmoplastic 

reaction in PC, the effect on growth on immortalized pancreatic stellate cell line 

(ImPSC.c2) was evaluated by MTT assay. Treatment of ImPSCc2 cells with recombinant 

ET-1 increased their proliferation in a time and dose dependent manner, with significant 

effects at 100nm (Figure 5A). ETAR specific antagonist (BQ123) has negligible effect on 

growth of these ImPSC.c2 (Figure 5B) however; both ETBR specific (BQ788) (Figure 
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5C) and dual receptor antagonists (Bosentan) (Figure 5D) reduced the growth in time 

and dose dependent manner. To further assess the mechanism of underlying cause of 

the growth inhibition of ImPSCc2 following treatment with endothelin antagonists we 

performed cell cycle analysis and Annexin V staining of the control and treated cells by 

fluorescence activated cell sorting analysis. Increase apoptosis in stellate cells 

compared to control was seen following treatment with receptor B antagonist BQ788 and 

dual receptor antagonist Bosentan (Figure 6A & 6B). Also, treatment with BQ788 

induced G1/S cell cycle arrest. The percentage of cells increased from 48.2% to 54.5% 

and 32.9% to 35.7% in G1 and S phase respectively. Treatment with endothelin A/B 

receptor antagonist arrest cells in S phase of the cycle. The percentage of cells 

increased from 32.9 % to 48.2 % and decreased from 48.2 % to 37.8% in the S phase 

G1 phases respectively (Figure 6C). We then investigated the effect of ET-1 and 

inhibitors on the migratory potential of ImPSCc2 using wound healing assay (Figure 7). 

The cells were seeded in a 6 well plate and after the cells reached approximately 90% 

confluency an artificial wound was made using 200μl pipette. The cells were then 

washed with PBS and were then incubated for 24 hr in presence of endothelin 

antagonists after pretreatment for 45 mins before addition of 100nm of ET-1. Phase 

contrast images were obtained at 0h, and 24hr time points. As compared to the control 

group, treatment with recombinant ET-1 displayed a higher migration rate of ImPSCc2 in 

a time dependent manner with significant effects observed at 24 hr (p<0.01). In contrast, 

selective A receptor (p<0.01) and B receptor (p<0.01) inhibitor treated cells resulted in 

significant decrease in the cellular migration compared to rET-1 group. This observation 

of decreased cellular migration was further strengthened using dual ET axis antagonism 

as it also demonstrated a significant decrease in migration of PSCs (p<0.01).  
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D. ET-1 stimulates expression of pro-fibrotic genes predominantly through ETBR 

and to lesser extent by ETAR in murine pancreatic stellate cells in vitro 

We also evaluated the anti-fibrotic effects of ET axis antagonism in vitro and 

investigated the expression of ET axis in immortalized mouse pancreatic stellate cells 

(ImPSCc2) and tumor cell line derived from KPC model of PC. We have successfully 

derived and characterized aggressive cell line UN-KPC-961, from the primary tumors 

that developed in KPC mice [19]. To study the cellular cross talk between tumor and 

stellate cells along ET axis in vitro, 2D co-culture using Boyden chamber was utilized 

where immortalized mouse stellate cells are cultured in presence of tumor cells alone or 

in the presence of selective ETAR (BQ123), selective ETBR (BQ788) and dual 

(Bosentan) ET receptor antagonists. Our results indicated that tumor cells express 

receptor A whereas stellate cells predominantly express receptor B and low levels of 

receptor A (Figure 8A). The co-culture of ImPSCc2 with UN-KPC-961 cells did not alter 

the matrix-associated markers. Co-culture of ImPSCc2 treated with BQ123 did not 

influence expression of stromal genes. ET axis antagonism resulted in inhibition of 

genes associated with PSC activation (α-SMA) predominantly through ET-1/ETBR 

signaling however, dual receptor inhibition using Bosentan significantly inhibit the 

expression of α-SMA, CTGF fibronectin and Collagen-1 in these cells (Figure 8b). 

Additionally, serum starved stellate cells were pre-treated with endothelin inhibitors, 

which is not toxic to cells for 45 mins prior to addition of recombinant ET-1. Exogenous 

administration of ET-1 caused timely dependent increase in expression of αSMA, 

CTGF, fibronectin and collagen I in stellate cells (Figure 8c).This ET-1 induced 

expression was inhibited by selective ETBR antagonist BQ788 and not by selective 

ETAR antagonist, BQ123. Moreover, ET-1 induced expression was significantly 

abrogated by dual receptor antagonist Bosentan, suggesting that ET-1 stimulates 
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expression of matrix-associated genes mainly through ETBR and to less extent by 

ETAR.  

 

E. Expression of ET-1 and receptors in patients derived fibroblasts  

We further extended our studies in fibroblasts derived from the pancreas of 

healthy individuals, chronic pancreatitis and cancer associated fibroblasts. These cell 

lines were developed and immortalized in our lab. We first characterized the purity of 

these cell lines using immunoblot analysis against specific myo-fibroblast marker α-

SMA and epithelial marker CK19. The HEK 293 and Panc1 cells were used as positive 

controls for α-SMA and CK19 respectively (Figure 9A). As compared to normal 

fibroblasts, a robust expression of α-SMA was observed in these cell lines whereas no 

expression of CK19 was evident. In addition to α-SMA, the expression of other pro-

fibrotic genes like collagen I, fibronectin, CTGF was analyzed. Desmin, which is 

supposed to be a marker for quiescent fibroblasts, is expressed at very low levels in 

these cells (Figure 9B). The expression pattern of ET-1 and its receptors in fibroblasts 

isolated from chronic pancreatitis and cancer patients were also studied by RT-PCR 

analysis using PC3 as a positive control.  Expression of ET-1 and ETAR was seen in all 

cell lines tested except 10-32 fibroblasts. However, the expression of ETBR is mainly 

observed in cell lines derived from cancer-associated fibroblasts (Figure 9C). 

F. Inhibition of ET-1 axis inhibits fibrosis in human CAFs in vitro 

The effect of selective ETAR antagonist, BQ123, selective ETBR antagonist, 

BQ788 and dual receptor antagonist, Bosentan on proliferation of 10-03 CAFs (express 

both ETAR and ETBR) was also determined by MTT assay. Similar to the effects 

observed on ImPSCc2 cells, BQ123 has negligible effect on growth of these cells 

(Figure 10A), however both BQ788 (Figure 10B) and Bosentan (Figure 10C) reduce 
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the growth in a dose and time dependent manner. We also evaluated the anti-fibrotic 

effects of ET axis antagonism in vitro using 10-03 CAFs. These serum CAFs were pre-

treated with endothelin inhibitors, which is not toxic to cells for 45 mins prior to addition 

of recombinant ET-1. The ET-1 treatment caused time dependent increase in the 

expression of α-SMA, fibronectin and collagen I (Figure 11A & 11B), an effect similar 

as observed in ImPSCc2 cells. Both selective ETAR and ETAR inhibitors abrogated the 

ET-1 induced expression in pro-fibrotic gene signatures after 4 hr of treatment. 

However, a synergistic effect was observed with dual receptor antagonism, Bosentan 

(Figure 11A & 11B). 

 

G. ET-1 promotes the expression of pro-fibrotic genes through a p42/44 MAPK 

and AKT dependent pathway 

            To probe the signaling mechanism through which ET-1 induces the expression of 

pro-fibrotic genes we perform the western blot analysis. We found that treatment with 

recombinant ET-1 in murine ImPSCc2 induces a robust expression in the p-ERK and p-

AKT in a time dependent manner with a peak observed at 1hr of treatment (Figure 12A 

& 12B). Pretreatment of selective A and B inhibitors decrease the ET-1 mediated 

increase in the p-ERK levels, however no significant effect was observed in p-AKT 

levels. In addition, a 45-min pre-incubation with the dual specificity ETAR and ETBR 

antagonist Bosentan blocked the ability of ET-1 to induce phosphorylation of p-AKT and 

p-ERK levels, suggesting that ET-1 induces the expression of pro-fibrotic genes through 

ERK and AKT dependent mechanism (Figure 12A & 12B). Similar to murine stellate 

cells, we found that treatment with recombinant ET-1 in 10-03 CAFs induces a robust 

expression in the p-AKT in a time dependent manner and persistent activationwas seen 

up to 16 hrs (Figure 13A & 13B). Pretreatment with both selective ETA and ETB 

receptors inhibitors decrease the ET-1 mediated increase in the p-AKT levels after 4 hrs 
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of treatment. In contrast, Bosentan abrogated the ET-1 mediated increase after 30 mins 

of treatment. Additionally, ET-1 also induces the expression of p-ERK with a peak 

observed after 1 hr of treatment and sustained increase in the p-ERK levels was seen up 

to 16 hrs. Both BQ123 and BQ788 reduces the phosphorylation of ERK at 16 hrs of 

treatment, however, dual receptor inhibition abrogated the ET-1 induces increase after 8 

hrs of treatment (Figure 13A & 13B), suggesting that both p-AKT and p-ERK signaling 

are inhibited at different time points.  

To summarize the overall findings,endothelin-1 release from the tumor cells act on 

the nearby pancreatic stellate cells in a paracrine manner expressing endothelin 

receptors and activate the downstream signaling which in turn induces the expression of 

pro-fibrotic genes through ERK/AKT dependent manner. However, in presence of 

Bosentan the binding of ligand to the receptor is inhibited resulting in the decrease 

expression of pro-fibrotic genes (Figure 14).   

H. ET axis antagonism reduces infiltration of macrophages and increases 

cytotoxic T cell populations 

We further determine the impact on recruitment of macrophages and T cells 

population in PC stroma following Bosentan treatment in autochthonous tumors (in KPC 

mouse model of PC). Dual specificity ET axis antagonist Bosentan reduces the number 

of tumor associated macrophages (TAMs) in KPC mice compared to age matched 

controls with significant p value (p<0.008) (Figure 15A). In addition, we also observed 

that pharmacological inhibition of ET axis reduces M2 marker (CD206) in KPC tumors 

with significant p value (Figure 15B). Interestingly, Bosentan treatment enhance 

recruitment of CD3 positive T cells in the stromal compartment of KPC tumors (Figure 

16). Importantly, our immunofluorescence analysis also suggests increased infiltration 



178 
 

of cytotoxic T cells (CTLs) in the treated KPC tumors. Quantitative examination of the 

mice tumor tissues infers infiltration of CD8+ T cells with significant p value (p=0.007) 

(Figure 17C &17D) compared to age matched controls, whereas no significant 

difference in CD4+ T cells was observed (Figure 17A & 17B). 

Expression of ET receptors in human macrophage-like U937 cells was also 

determined using Immunoblot analysis using Colo357 and T3M4 PC cells as postive 

controls for ETAR and ETBR. The U937 cells predominantly express ETBR, which was 

not impacted by the differentiation status of the macrophages following treatments with 

PMA and cytokines (Figure 18A). The effect of ET antagonism using seletive and dual 

inhibitor on migration of human monocytes U937 (Figure 18B) and murine 

macrophages RAW264.7 (Figure 18C) towards tumor cells was analyzed using Boyden 

chamber assay. Monocytes and macrophage were cultured in serum free media and 

their migration towards Panc 1 and UN-KPC-961 cells in presence and absence of 

inhibitors was evaluated. In both U937 and RAW cells increased migration was seen 

towards tumor cells. Importantly, both specific and dual inhibitors significantly reduce 

the tumor cell induced migration of U937 cells. In addition, ETBR-specific inhibitor, 

BQ788 and dual ET receptor antagonist, Bosentan significantly inhibited tumor cell 

induced migration of murine macrophage-like RAW 264.7 line while minimal effects with 

ETAR-specific inhibitor, BQ123 was observed.  

 

I. Selective ETAR antagonism increases tumor perfusion and decreases tumor 

hypoxia in xenografts tumors 

Selective ETAR antagonism using BQ123 has been demonstrated to specifically 

induce dilation of tumor vessels and improve perfusion in low-perfused tumor areas [20] 

We evaluated the effect of ETAR antagonist BQ123 in xenograft murine model derived 

from pancreatic cancer cell lines. The change in perfusion was studied by MRI using 
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flow sensitive alternating inversion recovery (FAIR) (Figure 19A). Perfusion was 

measured prior to adminsitrationof BQ123 to establish base line and subsequently 

imaged for 120 mins post adminsitration. Left panel shows the anatomic MRI scan to 

indicate the postion of the tumor and the region of interest in the tumor and muscle for 

perfusion analysis. Changes in perfusion in response to BQ123 were more pronounced 

in tumors than in the muscle. Further, we observed that the kinetics of perfusion 

changes were notably different in the T3M4 and Colo 357 tumors(Figure 19B).  We also 

found that enhanced  perfusion induced by BQ123 resulted in decreased hypoxia in 

T3M4 tumors (Figure 19C). 

 

Discussion 

An intense stromal desmoplastic reaction surrounding the tumor cells is the 

typical histological hallmark feature in PC and pancreatic stellate cells (PSCs), one of 

the major components of the TME are most important cellular source of CAFs in PC [21]. 

Evidences indicate that ET-1 mediate recruitment of various cell types such as resident 

fibroblast, stellate cells, vascular pericytes, circulating bone marrow derived monocyte 

responsible for pro-fibrotic potential of ET-1 [22]. Studied have indicated that ET-1 

mediate the contraction, migration and expression of matrix associated genes in PSCs 

are abolished by dual receptor ETAR and ETBR inhibitor, Bosentan [23], however the 

data is very limited and provide inconclusive role of ET axis in generating the stromal 

reaction in PC. Our preliminary investigation suggests the direct correlation of stromal 

associated genes with ET axis in lethal PC. Bioinformatics analysis of the TCGA 

database infers that over expression of ET-1, ETAR and ETBR in PC has significant 

correlation with the fibrosis associated genes and pathways demonstrating the 

therapeutic potential of the axis. Our more recent data from the animal experiments 

confirm the pro-fibrogenic effect of ET-1 in vivo. We evaluated the impact of ET axis 
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antagonism using spontaneous KPC mice model treated with Bosentan. Bosentan is 

currently used in clinics to treat pulmonary hypertension and the formation of new digital 

ulcers in scleroderma patients [24] [25]. Our data show that Bosentan treatment of 20-

week KPC mice, which has abundant tumor stroma, has global impact on the pro-fibrotic 

gene signatures compared to control mice. Further visualization of treated tumor tissues 

indicates decrease in the IHC and Immunoblotting signals for Collagen I, fibronectin, α-

SMA and CTGF. Additionally, inhibition of the ET axis using FDA approved drug, 

Bosentan induces significant increase in the TUNEL positive cells and increased 

positivity of cleaved caspase 3. To our knowledge this is the first study to demonstrate 

the anti-fibrotic and anti-tumor effect of ET axis inhibition using genetically engineered 

mouse model in PC. Further comparative gene expression analysis on fibrosis gene 

array implies down- regulation of transcription factors such as Smad and TGF-β. 

Moreover, studies have shown that the pleotropic action mediated by ET-1 can be 

attributed to its interaction with various factors such as GATA, Smad, TGF-β and AP-1 

[26, 27] 

We speculate that anti-fibrotic effects of Bosentan can be attributed to its reduce 

interactions with the transcription factors. Further observation that ET-1 is a downstream 

mediator of TGFβ is elucidated by the observation that Bosentan blocks the ability of 

TGFβ to induce the expression of the fibrotic gene signatures such as α-SMA in 

fibroblasts isolated from scars of scleroderma patients [28]. Also, signaling pathways 

induced by ET-1 and TGFβ signaling led to increase ECM synthesis and contraction 

converge on a similar signaling pathway indicating synergistic association between the 

two [29] [30]. Evidence also suggests that, ET-1 increases TGF-β expression and 

collagen synthesis by eliciting Ca2+ release in an ETAR dependent manner [31, 32]. 

Also, in human stellate cells, TGF-β stimulated ET-1 release by stabilization of ET-1 

mRNA through PI3K/AKT dependent pathway was abolished by ETAR antagonist, 
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BQ123 [33]. One of the important finding of our study is that the stroma associated 

genes identified through human TCGA database analysis displayed positive and 

significant correlation with ET axis overexpression and gene expression analysis in 

fibrosis array indicates significant down-regulation of the gene signature targeted by 

Bosentan.   

Accumulating evidence indicates the presence of heterogeneous population of 

cancer-associated fibroblasts within the tumor microenvironment and controversy exists 

whether it can promote or inhibit tumor growth. Alpha-smooth muscle actin (α-SMA)-

positive myofibroblasts have long been recognized as a prominent component of the 

activated fibroblasts. In addition to α-SMA, various other markers such as FAP, FSP1, 

vimentin can also detect stromal fibroblasts in tumors. Interestingly, FSP1 identifies a 

unique population of fibroblasts, which is, distinct from alpha SMA positive fibroblasts 

and it is also expressed on immune cells [34, 35]. Lineage tracing experiments also 

implies that FSP-1 is not a marker for precursors of myofibroblasts but co-expressed on 

cells with F4/80 and other markers of the myeloid-monocytic lineage [36]. We have 

demonstrated that in addition to α-SMA, Bosentan treatment decreases the FSP1 

positive cells in the PC stroma, however no colocalization was observed with α-SMA 

positive myofibroblasts, an observation similar to earlier findings. One the contrary, our 

immunofluorescence analysis using fibroblast activation protein (FAP) antibody indicates 

no significant difference in the treated mice KPC tumor tissues. Elevated macrophage 

infiltration in tumor tissues is associated with metastasis of many solid tumors [37]. 

Several observations have also linked the orchestrated actions of ETs in neutrophils, 

monocytes and macrophages within the complex host microenvironment. ET-1 ligand 

has been earlier shown to be strong chemo attractant for blood monocytes [38]. 

Interestingly, a 31 amino acid bioactive peptide exhibited significant chemotactic activity 

towards monocytes and neutrophils compared to 21 amino acid ET-1 peptide and big 
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ET-1. Grimshaw et al. reported that hypoxia induced increase in ET-2 production acted 

as a chemo attractant for macrophages and monocytes, which are dependent on ETBR, 

indicating a possible role of ET-2 in facilitating the recruitment of inflammatory cells [39, 

40] Within the tumor microenvironment, autocrine and paracrine signaling between the 

tumor and macrophages accelerate the infiltration towards the inflamed sites. In bladder 

cancer, ET-1/ETAR interaction increase migration of both tumor cells and tumor 

associated macrophages (TAMs) with enhance production of IL-6, MMPs and CCL2, 

accompanied by increase in metastatic colonization in the lung via ruptured vascular 

integrity [41].Very recently, in an experimental breast cancer model, it was reported that 

ET axis mediates lung metastasis and transendothelial migration of breast cancer cells 

stimulated by macrophages [42]. Additionally, in a rat model stromal deficiency of the 

ETBR was correlated with reduced metastatic spread, infiltration of TAMs and production 

of TNF-α, suggesting a pivotal role of the ETBR in tumor progression [43]. Our data 

revealed that pharmacological inhibition of ET receptors significantly reduced infiltration 

of F4/80 positive macrophages in the spontaneous mouse model. Our in vitro findings 

also demonstrate that selective ETAR (BQ123) and ETBR (BQ788) antagonists inhibited 

the increase migration of both murine macrophages (RAW 264.7) and human monocytic 

cells (U937) towards UN-KPC-961 and Panc 1 cells respectively. These findings indicate 

that ET-1 mediate chemo taxis of macrophages in PC stroma is dependent on both ET 

receptors, however further studies are required to delineate the molecular mechanisms 

of ET-1 mediated chemotactic interaction between tumor cell and TAMs.  

We also evaluated the association of ET axis with tumor immunity following 

Bosentan treatment in KPC tumor model. Previous studies have shown that ET-1 axis 

also has a unique role to regulate immune response in tumor environment. In human 

ovarian tumors selective blockade of ETBR by BQ788 leads to an increase in 

intercellular adhesion molecule-1 (ICAM-1) expression and increased T cell homing and 
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adhesion to tumors [44]. Also, in malignant gliomas, increased expression of ETBR with 

tumor grade correlated with fewer infiltrations of cytotoxic T cells (CTLs), signifying the 

critical role of ETBR signaling in the recruitment of T cell population to the tumors [45]. 

Therefore we hypothesized that ET axis antagonism can possibly regulate the T cell 

homing. Thus, our data suggests that Bosentan treatment increases the CD3 positive T 

cells compared to control. Furthermore, our immunofluorescence study indicates the 

increase infiltration of cytotoxic T cell population, signifying the critical role of ET axis 

modulating the immune response. However, further studies are required to decipher the 

immunological potential of ET axis in PC. Experiments with selective and dual ET 

inhibitors show that ET-1 treatment promotes migration of murine PSCs congruent with 

the previous findings [46] [47]. The stimulation of migratory phenotype is dependent on 

both ETAR and ETBR, which is in harmony with previous findings [48]. In addition, anti-

proliferative effects on both murine ImPSC.c2 and human CAFs were observed using 

BQ788 and Bosentan in dose and time dependent manner with antagonism of ETAR 

only having a minor effect. However, the mechanism by which ET-1 stimulates 

phenotypic changes warrants further investigation.  

In this study we have used murine ImPSC.c2 and human CAFs as an in vitro 

model system with which we probe the role of ET-1 in the production of matrix 

associated proteins. In this study we demonstrated the involvement of ET receptor 

subtypes and the molecular mechanisms that govern the process. ET-1 induces CTGF 

(connective tissue growth factor), a member of extracellular matrix proteins involved in 

various biological process including migration, proliferation, wound healing and fibrosis 

[49] [50]. Report suggests that the expression of this protein is induced by TGF-β in 

Smad dependent manner [51] [52]. As previously stated, both ET-1 and TGF-β work in a 

synergistic manner to induce expression of fibrotic genes, and it is speculated by CTGF 

facilitates the downstream action mediated by TGF-β. Our study indicates that ET-1 
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stimulates the synthesis of pro-fibrogenic genes in both murine ImPSC.c2 and human 

CAFs. In this study we investigated the ability of selective and dual receptor inhibitors to 

prevent the overexpression of pro-fibrotic genes. Enhanced production of ET-1 during 

tissue repair [53] and patients with fibrotic disease implies that in addition to wound 

healing process it also plays a key role in pathogenesis of fibrosis [54] [55] [56]. 

Evidence also indicates that endogenous ET-1 signaling appears to play a role in the 

persistent fibrotic phenotype in lung fibroblasts [57]. However, we observed that 

endogenous ET-1 signaling was unable to induce the expression of ECM proteins in 

murine ImPSC.c2 when cultured in presence of UN-KPC-961 cells, however selective 

ETBR and dual receptor antagonism reduced the expression of ECM proteins in these 

cells, implicating that the fibrotic phenotype is independent of endogenous ET-1 

signaling. Interestingly, exogenous treatment of ET-1 caused the induction of α-SMA, 

collagen I, CTGF and fibronectin in ImPSC.c2. Perhaps more intriguingly, BQ788 and 

Bosentan appeared to reverse the ET-1 mediated induction with antagonism of ETAR 

having only a minimal effect. These results indicate that ET-1/ETBR signaling 

predominantly stimulates the expression of pro-fibrotic gene signatures in murine 

ImPSC.c2 cells. We also extended our studies in fibroblasts isolated from normal, 

chronic pancreatitis and cancer patients. Using western blot , we first confirmed the 

purity of our CAFs by examining the expression of ECM genes using appropriate 

controls. We found that elevated expression of α-SMA, Collagen I, CTGF and fibronectin 

in chronic pancreatitis and cancer associated fibroblasts compared to control. Using RT-

PCR analysis we also investigate the expression pattern of ET axis. Expression of ET-1 

and ETAR was observed in all the fibroblasts tested, whereas ETBR is restricted to 

cancer-associated fibroblasts and predominant expression is seen. Similar to murine 

ImPSC.c2, our results also demonstrated increase expression of ECM proteins in time 

dependent manner in human 10-03 CAFs, expressing both ETAR and ETBR. Contrary to 
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our previous observations, our data revealed that both BQ123 and BQ788 abrogated the 

ET-1 mediated effects in 10-03 CAFs. Our current data also indicate that both ETA/ETB 

receptor antagonism synergistically appeared to reverse the phenotype of activated 

fibroblasts. The results clearly indicate that ET-1 stimulates the expression of matrix-

associated genes through both ETAR and ETBR. The inability of ETAR antagonism to 

attenuate ET-1 effects and involvement of ET-1/ETBR signaling to promote the ECM 

genes production in murine ImPSC.c2 can be explained on the low expression and 

distribution of ETAR on ImPSC.c2, suggesting ETBR, but not ETAR is involved. 

Indeed, our mechanistic data also implies ET-1 is able to aggravate the 

production of matrix associated proteins via ERK/AKT dependent mechanism requiring 

either the ETA or the ETB receptors. Our results are consistent with the previous reports 

that have linked the ERK/AKT signaling cascade and fibrosis. For examples, in lung 

fibroblasts ET-1 induces expression of matrix-associated genes through MEK/ERK 

kinase pathway [58]. Also, in lung fibroblasts ET-1 mediated myofibroblast induction is 

inhibited by blockade of PI3K/AKT pathway [59]. Altogether, our results indicate that 

collective antagonism of ERK/AKT and ET axis may be of benefit as a part of 

combinatorial drug strategy to combat fibrosis.  

PC stroma is associated with structurally and functionally abnormal blood 

vessels, which are tortuous, poorly connected, and irregularly shaped with areas of 

dilation and constriction, thus resulting in turbulent and inefficient blood flow to the 

tumors [60] [61]. Additionally, the tumor blood vessels have discontinuous endothelial 

lining, abnormal pericytes and basement membrane, and are hence hyper permeable 

[62] [63]. The leaky nature of the tumor vessels coupled with the absence of efficient 

lymphatic system results in elevated interstitial fluid pressure (IFP) which in turn results 

in poor uptake and heterogeneous distribution of both micro and macromolecules in the 
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tumor tissue [64] [65]. Moreover, poor blood supply to the tumor results in regions of 

hypoxia, which contributes to radioresistance and chemoresistance of tumor cells. 

Therefore, selective enhancement in tumor blood flow can improve the drug delivery and 

efficacy. Due to the increased production of ET1 and overexpression of ETAR in several 

epithelial tumors, this vasomodulatory activity is believed to be an important contributor 

to the tumor blood flow heterogeneity [66].Thus, ETA antagonists, in addition to their 

direct antitumor effects also have an adjuvant effect that enhances tumor perfusion and 

increased drug uptake [66]. Several ETAR antagonists including ZD4054, ABT-627 

(atrasentan), are being investigated in clinical and preclinical studies for the treatment of 

various cancers [67] [68]. These inhibitors specifically bind to ETAR and inhibit 

downstream signaling pathways in tumor and stromal cells that are implicated in tumor 

growth and metastasis. ETAR antagonists, ZD4054 and ABT-627 have been 

demonstrated to inhibit tumor growth and metastasis and shown synergistic effects with 

cytotoxic drugs in prostate and ovarian cancers [69] [70]. Although, ETAR antagonists 

have been shown to improve tumor perfusion and decrease tumor blood flow 

heterogeneity and improve uptake of cytotoxic drugs in the tumor [66], their utility to 

improve the tumor perfusion in PC is yet to be demonstrated. Here, in this study we 

show for the first time selective ETAR antagonism using subcutaneous xenograft tumors 

derived from PC cell lines can improve perfusion in response to BQ123 indicating tumor 

selective modulation. Additionally, our analysis also suggested that enhanced perfusion 

induced by BQ123 resulted in decrease hypoxia in T3M4 tumors.  

In conclusion , we have provided evidence that ET-1 signaling appears to play a 

central role in the persistent of pro-fibrotic phenotype in PC. Our data provide an 

experimental based rationale for the use of dual ETAR and ETBR antagonist, Bosentan to 

ameliorate pathological scarring observed in pancreatic fibrosis. Our results further 
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suggest that there may be a potential therapeutic advantage in selective ETAR inhibitor, 

BQ123 to enhance tumor perfusion and increase drug uptake.  
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Figure 1: ET axis antagonism increases apoptosis and decreases fibrosis in KPC 

mice. A. Immunohistochemical analysis of cleaved caspase 3 and TUNEL staining in 

tumor sections obtained from control and Bosentan treated mice showed increase in the 

apoptotic cells. Quantitation of cleaved caspase -3 positive cells shows significant 

increase in the number of apoptotic nuclei (p=0.01) after Bosentan treatment (average 

count of cleaved caspase positive cells in 20 independent fields/section). B. 

Representative Masson Trichrome staining of the 20 weeks KPC mice tissue after 

challenged with either saline (control) or Bosentan (treated) for a period of 10 days. The 

zoomed magnified image indicates reduction in the desmoplasia. Augmented fibrosis is 

further represented in the semi-quantitative fashion where the staining score and 

intensity score were multiplied to obtain the composite score and subsequently 

represented as bar diagram. 
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Figure 2. Bosentan treatment reduces the pro-fibrotic gene signatures in KPC 

mice. Volcano plot of the PCR array analysis in KPC mice treated with Bosentan or 

control saline showing the distribution of gene expression (represented by white circles). 

The genes in the green and red indicate the down regulated and upregulated genes 

respectively on the plot. The table in the bottom depicts the absolute fold changes of 

genes with p values. The pro-fibrotic and anti-fibrotic genes are indicated in green and 

red respectively.   
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Figure 2 
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Table I. Representation of the genes in the microarray.  Heat map representation of 

the expression of 84 genes in the PCR array. The array includes: Pro-Fibrotic genes 

Acta2 (α-SMA), Agt, Ccl11 (Eotaxin), Ccl12, Ccl3(MIP-

1a),Ctgf,Grem1,Il13,Il13ra2,Snai1(Snail). Anti-Fibrotic: Bmp7, Hgf, Ifng, Il10, Il13ra2. 

ECM Components:Col1A2, Col3A1. Remodeling Enzymes: Lox, Mmp1a (Collagenase 

1), Mmp13, Mmp14, Mmp2 (Gelatinase A), Mmp3, Mmp8, Mmp9 (Gelatinase B), Plat 

(tPA), Plau (uPA), Plg, Serpina1a (a1-antitrypsin), Serpine1 (PAI-1), Serpinh1, Timp1, 

Timp2, Timp3, Timp4. Cellular Adhesion: Itga1, Itga2, Itga3, Itgav, Itgb1, Itgb3, Itgb5, 

Itgb6, Itgb8. Inflammatory Cytokines & Chemokines: Ccl11 (Eotaxin), Ccl12, Ccl3 

(MIP-1a), Ccr2, Cxcr4, Ifng, Il10, Il13, Il13ra2, Il1a, Il1b, Tnf. Growth Factors: Agt, Ctgf, 

Edn1, Egf, Hgf, Pdgfa, Pdgfb, Vegfa. Signal Transduction: TGFß Superfamily: Bmp7, 

Cav1, Dcn, Eng (EVI-1), Grem1, Inhbe, Ltbp1, Smad2, Smad3, Smad4, Smad6, Smad7, 

Tgfb1, Tgfb2, Tgfb3, Tgfbr1 (ALK5), Tgfbr2, Tgif1, Thbs1, Thbs2. Transcription Factors: 

Cebpb, Jun, Myc, Nfkb1, Sp1, Stat1, Stat6. Epithelial-to-Mesenchymal Transition: 

Akt1, Bmp7, Col1a2, Col3a1, Itgav, Itgb1, Mmp2 (GelatinaseA), Mmp3, Mmp9, Serpine1 

(PAI-1), Smad2, Snai1 (Snail), Tgfb1, Tgfb2, Tgfb3, Timp1.The map indicates up 

regulation (red) and down regulation (green).  The fold change of each individual gene is 

shown in the table.  
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Table II: Overall summary of gene expression profile identified by TCGA database 

and targeted by Bosentan in fibrosis array. The pro-fibrotic genes have significant 

correlation with overexpression of ET axis as predicted by human TCGA analysis and 

the gene signatures targeted by Bosentan in KPC mice indicates decrease in the 

absolute fold change with significant p value.  
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Table II 
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Figure 3: In vivo evidence for effect of dual ET receptors antagonism in fibrosis. A. 

The reduction in exaggerated fibrogenic response in Bosentan treated KPC mice is 

further represented by western blot in tumor lysates against CTGF, α-SMA, Fibronectin 

and FSP-1. B. Immunohistochemical staining against Collagen I, α-SMA, fibronectin, 

FSP1 and CTGF in treated mice tissues compared to control shows decrease in fibrotic 

growth. 
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Figure 4: Bosentan treatment reduces the FSP1 but not FAP positive cancer 

associated fibroblasts (CAFs). Three-color immunofluorescence showing the 

expression of epithelial marker, CK19 (green) and cancer associated fibroblasts, FSP1 

(red) and α-SMA (purple) in KPC mice. Both the FSP1 and α-SMA positive fibroblasts 

populations surround the CK19 positive ducts in the microenvironment and exhibit 

minimal or no overlap with each other (Scale bar 20 μm). B. Dual confocal microscopy 

indicates decrease in the α-SMA positive fibroblasts (red) and FSP1 positive fibroblasts 

(green) following Bosentan treatment with significant p value. C. Immunofluorescence 

analysis indicates co-localization of both α-SMA and FAP positive fibroblasts (green) and 

no significant difference in the FAP positive fibroblasts population post Bosentan 

treatment. (Scale bar 20 μm). 
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Figure 4 
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Figure 5: ET receptors antagonism inhibits proliferation of murine pancreatic 

stellate cells. (A) ET-1 promotes proliferation of ImPSC.c2 in concentration dependent 

manner. Cells were plated in 96 well format (3000 cells/ 100μl/well) in DMEM containing 

10% FBS for 24 hours and then stimulated with indicated concentrations of ET-1 in 

DMEM containing 1% FBS for 24, 48 and 72 hours. Cell growth was measured by MTT 

assay. Selective ETAR inhibitor, BQ123 (B), have minimal effects on the growth of 

ImPSC.c2 cells whereas both selective ETBR, BQ788 (C) and dual ET receptor inhibitor 

Bosentan (D) inhibits the proliferation of ImPSC.c2 as indicated by MTT assay in a dose 

and time dependent manner.  
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Figure 6: ET receptor antagonists induce apoptosis and cell cycle arrest in 

ImPSC.c2 cells.  A. The percentage of apoptotic cells was measured by Annexin-V and 

propidium iodide (PI) staining using flow cytometric analysis following treatment with ET 

inhibitors. Annexin-V+ and PI- cells are considered to be early apoptotic while Annexin 

V+ and PI+ cells are considered to be late apoptotic. Treatment with both BQ788 (ETBR 

inhibitor) and Bosentan (dual inhibitor) increases the apoptotic cells compared to control 

cells whereas minimal effect with BQ123 (ETAR inhibitor) was observed. B. Flow 

cytometry based cell cycle analysis was carried out in ImPSC.c2 cells after treatment 

with inhibitors and the percentage of cells in G1, S, and G2/M phases of cell cycle are 

represented. As compared to untreated cells, BQ788 and Bosentan treatment induces 

cell cycle arrest in G1/S phase.  
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Figure 7: ET receptors antagonism inhibits migration of murine pancreatic stellate 

cells. Endothelin receptors antagonists inhibit the recombinant ET-1 induced migration 

of ImPSC.c2. Cells were seeded at a density of 2×106 cells in 6 well plates and kept in 

10% DMEM overnight. To determine the effect of BQ123, BQ788 and Bosentan upon 

wound closure artificial wounds were created in 90% confluent cells. The cells were then 

treated with ET-1 (100nm) or BQ123 (100µM), BQ788 (20µM) and Bosentan (25µM) in 

complete medium. Representative images of the wounds at 0 and 24 h in the presence 

of recombinant ET-1, antagonists or their combination. Histogram illustrates the relative 

wound width at 0 and 24 h. (*p<0.01 vs. the Untreated group, ##p<0.01 vs. the rh ET-1 

group). 
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Figure 8: Anti-fibrotic effects of ET axis antagonism in vitro in ImPSC.c2 cells. A. 

Expression of ET-1, ETAR and ETBR in UN-KPC-961 cells and ImPSC.c2 cells. B. After 

24 hours coculture either in presence of UN-KPC-961 alone or ET inhibitors total protein 

of ImPSC.c2 was extracted. Western blot analysis was performed using an antibody 

against Collagen I, α-SMA, fibronectin and CTGF. C. Cells were plated in six well format 

(0.8x 106/ 100μl/well) in DMEM containing 10% FBS for 24 hours. After 24 hours, cells 

were serum starved for 24 hours and treated with ET-1 (100nm) or pre-treated with ET 

inhibitors, BQ123 (100µM), BQ788 (20 µM) and Bosentan (25 µM) for 45 mins prior to 

addition of ET-1. Protein lysates made was subjected to western blot analysis against 

Collagen I, α-SMA, fibronectin and CTGF. β-actin was used as a loading control. 
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Figure 9: Characterization of patient derived fibroblasts.  Expression was 

determined in fibroblasts derived from normal pancreas, chronic pancreatitis and cancer 

patients. A. Western blot analysis was done against α-SMA (fibroblast marker) and CK-

19 (epithelial marker) to demonstrate no contamination from other cellular components. 

HEK-293 and Panc1 cell lines was used as positive control for α-SMA and CK19 

respectively. B. To probe for other stromal associated genes protein lysates made were 

subjected to western blot analysis against Collagen I, Fibronectin, CTGF and desmin. β-

actin as used as a loading control. RT-PCR was done using ET-1, ETAR and ETBR gene 

specific primers in RNA isolated from patient derived fibroblasts. PC3 cell line was used 

as positive control. β-actin as used as a loading control.  
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Figure 10: Effect of endothelin receptor antagonists on growth of 10-03 cancer 

fibroblasts. Cells were grown for 24hr, 48hr and 72hr in presence of increasing 

concentration ETA receptor antagonist, BQ123 (A), ETB receptor antagonist, BQ788 (B) 

and dual ETA and ETB receptor antagonist, Bosentan (C). The effect on cell growth after 

ET antagonists treatment was measured by MTT assay and read as absorbance at 

490nm. 
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Figures 11: Anti fibrotic effect of ET axis antagonism in vitro in human CAFs. 10-

03 fibroblasts were grown in grown in complete DMEM for 24 hr. Cells were serum 

starved for 24 hrs and treated with 100 nm of ET-1 or pre-treated with BQ123 (100 μM), 

BQ788 (20 μM) and Bosentan (25 μM) 45 mins prior to addition of ET-1. Whole cells 

protein extracts were collected at different time points and equal amounts of protein 

were subjected to immunoblotting analysis with anti- α-SMA, anti-fibronectin (A) anti-

collagen I (B), β-actin as used as a loading control.  
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Figure 12: ET-1 induces p42/44 MAPK and AKT phosphorylation in ImPSC.c2 

stellate cells. Cells were cultured in complete DMEM medium for 24 hr, serum starved 

for 24 hr and treated with 100nm of ET-1 or pre-treated with BQ123 (100 μM), BQ788 

(20 μM) and Bosentan (25 μM) 45 mins prior to addition of ET-1. Whole cells protein 

extracts were collected at different time points and equal amounts of protein were 

subjected to immunoblotting analysis with anti-ERK, anti-phospho-ERK (A), anti-AKT 

and anti-phospho-AKT (B) antibodies. β-actin as used as a loading control.  
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Figure 13: ET-1 induces p42/44 MAPK and AKT phosphorylation in 10-03 

fibroblasts. Cells were cultured in complete DMEM medium for 24 hr, serum starved for 

24 hr and treated with 100nm of ET-1 or pre-treated with BQ123 (100 μM), BQ788 (20 

μM) and Bosentan (25 μM) 45 mins prior to addition of ET-1. Whole cells protein extracts 

were collected at different time points and equal amounts of protein were subjected to 

immunoblotting analysis with anti-ERK, anti-phospho-ERK (A), anti-AKT and anti-

phospho-AKT (B) antibodies. β-actin as used as a loading control 
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Figure 13 
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Figure 14: Proposed Model. Pancreatic cancer cells expressing the endothelin A 

receptor (ETAR) and endothelin B receptor (ETBR) also secret high levels of endothelin-1 

(ET-1). The ET-1 released from the tumor cells act on the nearby pancreatic stellate 

cells and cancer associated fibroblasts in a paracrine manner expressing endothelin 

receptors and activate the downstream signaling which in turn induces the expression of 

pro-fibrotic gene signatures through ERK/AKT dependent manner. However, in presence 

of dual receptor Bosentan the binding of ligand to the receptor is inhibited resulting in the 

decrease expression of pro-fibrotic genes in an ERK/AKT dependent fashion.  
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Figure 15: ET axis antagonism inhibits infiltration of tumor-associated 

macrophages. A. Dual specificity ET axis antagonist b  osentan reduces the number of 

tumor associated macrophages in KPC mice. Macrophages were visualized by 

immunostaining for F4/80 staining. Representative IHC images under low power (top) 

and high power (bottom- boxed area represented). The number of F4/80 positive cells 

per high power field (HPF) was counted in both control and Bosentan treated KPC 

tumors. 26 HPFs in Bosentan treated mice (n=6) and 19 HPFs in control mice (n=4) 

were counted. B. Immunofluorescence expression of CD206 was evaluated in KPC mice 

sections following Bosentan treatment. The number of CD206 positive cells per high 

power field (HPF) was counted in both control and Bosentan treated KPC tumors. 

Reduced infiltration of CD206 positive macrophages is observed in the stromal 

compartment in treated mice compared to control with significant p value. 
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Figure 16: Bosentan treatment increases the CD3 T cell infiltration in KPC tumors: 

Immunohistochemical analysis of CD3 was evaluated in KPC mice sections following 

Bosentan treatment. Increase in the recruitment of CD3 positive T cells is observed in 

the stromal compartment and tumor associated lymph node in treated mice compared to 

control. 
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Figure 17: Bosentan treatment increases the CD8 T cell infiltration in KPC tumors: 

Immunofluorescence analysis showing the distribution of CD4 (A) and CD8 (C) positive 

T cells in the microenvironment using mouse spleen as a positive control. Compared to 

control, Bosentan administration in KPC mice increases CD8 T cell infiltration (D) with 

significant p value whereas no difference in CD4 T cell is seen (B) (Scale bar 20 μm).  
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Figure 17 
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Figure 18: ET axis antagonism inhibits tumor induced migration of human 

monocytes and murine macrophages. A. Expression of ET receptors in human 

macrophage-like U937 cells. Colo357 and T3M4 PC cells were used as controls for 

ETAR and ETBR. U937 cells predominantly express ETBR and this expression does not 

appear to be impacted by the differentiation status of the macrophages following 

treatments. Actin was used as a loading control. ET-axis antagonists inhibit tumor cell-

induced migration of human (B) and murine macrophage-line (C). Human (U937) and 

Mouse (RAW264.7) macrophage-like cells were either cultured alone or co-cultured with 

human PC cell line Panc 1 or KPC mouse tumor derived cell line (UN- KPC-961) with or 

without selective or dual receptor specific antagonists of ET axis. The tumor induced 

migration was inhibited by selective ETAR (BQ123), ETBR (BQ788) and dual ETAR/ETBR 

(Bosentan) antagonists in U937 and RAW264.7 cells. (* p<0.05, ** p<0.005, 

***p<0.0005) 
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Figure 19: ETAR antagonism increases tumor perfusion and decreases hypoxia in 

xenografts tumors. BQ123 improves perfusion and reduces hypoxia in xenograft PC 

tumors. A. Perfusion mapping of BQ123 administered tumor. Mice bearing T3M4 

(tumor1) and Colo 357 (tumor 2) xenografts were administered with BQ123 (2 mg/kg). 

Perfusion mapping was done by flow sensitive alternating inversion recovery (FAIR) with 

a rapid acquisition by refocused echo (RARE) readout (RARE factor = 16). Perfusion 

was measured prior to administration of BQ123 (0 min) to establish baseline and 

subsequently imaged for 120 min post-administration to monitor the change in perfusion. 

Left panel shows the anatomic MRI scan to indicate the position of tumors and the 

regions of interest (ROI) in the tumors and muscle used for perfusion analysis. The right 

two panels show perfusion maps before and 120 min after injection of BQ123. Perfusion 

maps were windowed between 0 to 500 ml/(100g tissue * min). In the lower right two 

panels the ROI marker is removed to allow appreciation of the increased perfusion in 

regions of interest. It is notable that the phantoms at the top of the image (left) are 

completely absent in the perfusion maps, indicating proper balance of magnetization 

transfer effects. B. Kinetics of changes in perfusion in response to ETAR antagonist 

BQ123 in xenograft PC tumors. Blood flow values were determined from the serial 

perfusion maps obtained by FAIR MRI. At zero time point, it can be appreciated that the 

tumors were considerably less perfused than the muscle tissue. Changes in perfusion in 

response to BQ123 were more pronounced in tumors than in the muscle. C. BQ123 

treatment reduces hypoxia in T3M4 tumors. Tumor bearing animals were treated with 

saline (left) or BQ123 (right). 90 min after treatment animals were injected with 

pimonidazole HCl (Hypoxyprobe), which forms stable adducts with proteins in hypoxic 

cells. Animals were euthanized 45 mins thereafter; tumors were harvested and 

processed for immunohistochemistry for detecting Hypoxyprobe adducts (brown 

staining). 
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1. Synopsis 

Endothelin-1 (ET-1) and its receptors, endothelin A (ETAR) and endothelin B 

(ETBR) are overexpressed and deregulated in pancreatic cancer and pancreatitis. Here, 

we report that the expression of endothelin converting enzyme-1 (ECE-1), ET-1, ETAR 

and ETBR is predominantly associated with acinar and islet cells of the pancreas and 

progressive increase in ductal cells and stromal compartment is seen in the KC model 

(Pdx-1 Cre; KrasG12D) of pancreatic cancer with increasing age. Upon cerulein 

challenge, ETAR and ETBR expression is seen in amylase and CK19 double positive 

ducts during pancreatic acinar to ductal metaplasia (ADM) in mouse pancreas harboring 

KrasG12D mutation. In normal mice with wild type Kras, upon cerulein insult after an 

initial increase in expression of ET-1 and ETAR and decrease expression of ETBR, 

recovery in pancreatic parenchyma was observed. However, the kinetics of ET-1, ETAR 

and ETBR alterations was distinct in in presence of KrasG12D mutation. Also, 

expression of ECE-1 ET-1, ETAR and ETBR in spontaneous KrasG12D model subjected 

to cigarette smoke also suggests increase expression in the pre-cancerous lesions 

compared to sham control animals with WT kras. In addition to expression in early 

pancreatic cancer lesions (smoking) and metaplastic ducts (cerulein), ETAR and ETBR 

expression in also seen in infiltrating F4/80 positive macrophages and α-SMA positive 

fibroblasts and high colocalization was seen in presence of oncogenic Kras. In 

conclusion, presence of mutant KrasG12D in pancreas results the sustained activation 

of ET axis components with increasing dysplasia in early lesions and stromal region of 

pancreatic tissues following cerulein and smoke mediated inflammatory insult suggests a 

possible role in tumor initiation and progression.  
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2. Background and Rationale 

 Cellular plasticity is critical for tissue repair and regeneration. Cellular 

reprogramming in the exocrine pancreas under benign conditions involves a reversible 

trans-differentiation sequence of acinar cells to ductal- phenotype during repair and 

resolution of inflammation [1]. The presence of constitutively active K-ras mutations 

however, disrupt this sequence and initiate ductal reprogramming leading to the 

development of pre-neoplastic lesions termed as pancreatic intraepithelial neoplasia 

(PanIN), which are the precursor lesions the malignant pancreatic ductal 

adenocarcinoma (PC). These PanIN lesions undergo a series of histological and 

morphological changes during the course of cancer progression. The first genetically 

engineered mouse model generated by knock-in of mutant K-ras allele (G12D) exhibits 

acinar to ductal metaplasia (ADM) and develop a complete spectrum of PanIN lesions 

leading to PC. This process is characterized by the loss of acinar cell compartment 

(markers like amylase) and gain of the ductal phenotype, characterized by CK19 

expression [2]. [3] utilizing transgenic mice overexpressing TGF-α provide earliest 

evidence of ADM. These animals develop fibrosis and dysplastic lesions accompanied 

by loss of zymogen granules and acquisition of ductal features [4], implying that 

maintenance of acinar cell organization is critical to prevent trans-differentiation into 

ductal architecture [5]. Activation of the mutant Kras in the cells of the acinar lineage 

under the control of elastase or Mist1 promoter lead to spontaneous low-grade lesion 

formation in the mouse pancreas. However, high-grade PanIN formation is observed 

following chronic inflammation [6]. Epidemiological studies also suggest that patients 

with chronic pancreatitis exhibit an elevated risk of developing PC. In chronic 

pancreatitis (CP) patients as well, constitutive activation of K-ras gene is associated with 

malignant transformation of the pancreas [7]. Furthermore, cerulean-induced chronic 
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pancreatitis in the mice expressing oncogenic Kras (KrasG12V) results in the 

development of aggressive PC along with increased infiltration of inflammatory cells [8]. 

Similarly, repeated episodes of cerulein mediated insult in the presence of K-ras 

mutation result in high-grade lesions, atrophy of pancreatic parenchyma, development of 

metaplastic cells, and enhanced inflammatory response [9]. Carriere et al demonstrated 

that episodes of cerulein induced pancreatitis favors rapid cancer progression and 

initiate cascade of events in mice expressing mutated Kras in the nestin cell lineage [10] 

[11]. Interestingly, in acute pancreatitis model, mutant Kras favors reprogramming and 

metaplastic conversion of acinar cells into pre-cancerous lesions in a beta catenin 

dependent manner [1].      

Components of endothelin axis, which include endothelin-1 (ET-1), endothelin-2 

(ET-2), endothelin-3 (ET-3), endothelin converting enzymes (ECEs) along with high 

affinity G-protein couple receptors, endothelin A receptor (ETAR) and endothelin B 

receptor (ETBR), are deregulated in inflammation and cancer. Accumulating evidence 

suggest that ET-1 plays a significant role in the in pathophysiology of pancreatic 

inflammation. In patients with severe acute pancreatitis, an elevated level of ET-1 is 

correlated with disease severity and inflammation [12]. In addition, significantly elevated 

circulating levels of ET-1 in the plasma and its strong expression in the pancreas of the 

patients of chronic pancreatitis with a history of smoking was observed [13]. In 

experimental pancreatitis model, the role of ET-1 and its antagonists has been well 

studied. A remarkable increase in the serum ET-1 level and damage to pancreatic 

parenchyma is observed upon cerulein or sodium taurocholate induced pancreatic 

inflammation [14-16]. However, a synergistic effect is observed and a remarkable 

change in the pancreas morphology is seen in presence ET-1 plus cerulein compared to 

cerulein alone [17]. Administration of ET-1 favors acinar cell necrosis, edema, increase 

in serum amylase and elastase levels and inflammatory response indicating the role of 
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ET-1 in disease aggravation. Studies demonstrating the ability of several pancreatic 

cancer cell lines to produce high levels of ET-1 suggested the possible role in ET-axis in 

PC. [18, 19]. .A recent study has demonstrated the overexpression of ET-1 and ETBR in 

human PC tissues [20] while we have observed the upregulation of ET-1, ETAR and 

ETBR in tumor cells and various components of tumor microenvironment.   

Given the functional involvement of ET-1 in pancreatic inflammation, expression 

of ET-axis components in PC, the role of K-ras associated inflammation in driving 

pancreatic neoplastic transformation, and ability of ET-axis to exert pleotropic effects to 

promote tumorigenesis, it is possible that ET-axis plays a key role inflammation-driven 

pancreatic tumorigenesis in the presence of K-ras oncogene. However, the expression 

of ET axis proteins in pre-malignant lesions in acute and chronic pancreatic inflammation 

associated with oncogenic Kras remains explored. We therefore examined the 

expression pattern of ET-axis components in the murine models of chronic and acute 

inflammation in the presence and absence of oncogenic K-ras. The findings from the 

current study, demonstrated that cerulein induced inflammatory insult, a model of acute 

inflammation, initially up-regulates the expression of ET-1 and ETAR, which was 

subsequently restored to basal levels in normal mice. However, in the KC mice the 

expression increases with progressive neoplasia. Smoke exposure, a model of chronic 

inflammation in KC mice results in increase expression of ET axis in the pre-cancerous 

lesions and also in pancreatic stroma indicating that mutated Kras results in sustained 

activation of ET axis in the pancreatic tissues, suggesting its possible role in pancreatic 

inflammation, repair and development of cancer.  
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3. Results 

A. Expression of ECE-1, ET-1, ETAR and ETBR in murine pancreas in the presence 

of activated K-ras.  

We first analyzed the expression of ET-axis components in the presence of 

activated KrasG12D mutation at the transcript level in comparison to their levels in the 

pancreas of age matched controls (Figure 1A). The levels of ECE-1, ET-1, ETAR and 

ETBR transcripts were comparable in the pancreas of 20 week old WT and KrasG12D 

mice. However, there was a progressive increase in the expression of ET axis 

components in the pancreas of 30, 40 and 50 weeks old KrasG12D mice as compared 

to that of WT animals. We next profiled their expression using immunohistochemistry on 

the pancreatic tissues harvested from 20-50 week old mice. In the control pancreas from 

50-week-old WT mice, a robust expression of ECE-1, ET-1, ETAR and ETBR was seen in 

the islets and a relatively weak reactivity was detected in the acinar compartment 

(Figure 1B). Importantly, the pancreatic ducts in the WT animals exhibited undetectable 

expression of ET-1, ETAR and ETBR. In the presence of oncogenic K-ras, the expression 

ECE-1, ET-1, ETAR and ETBR progressively increased in the ductal cells from pre-

neoplastic lesions at 30 week of age to dysplastic lesions observed at 50 week of age 

(Figure 1B). Interestingly, the expression was particularly localized to the ductal 

structures exhibiting transition from acinar to ductal phenotype, a characteristic observed 

during ADM. Further analysis revealed that the expression was not only restricted to the 

ductal lesions but was present in the surrounding stromal compartment. 

 

B. Expression of ET axis during Cerulein induced pancreatic injury. 

Cerulein is a cholecystokinin analogue that aggravates secretion of pancreatic 

enzymes, promotes inflammation, and induces ADM. The injury to pancreatic 



243 
 

parenchyma in the presence of oncogene results in in the development of s pre-

neoplastic lesions and transformation of acinar cells to the ductal phenotype [23]. To 

analyze the changes in the ET-axis components in response to acute pancreatic 

inflammation in the presence and absence of oncogenic K-ras, we examined pancreatic 

tissues from 6 week old KC and WT mice treated with cerulein. On day 0 after treatment, 

both the WT and KC mice show acinar specific expression for ETAR and ETBR, as 

evident by their co-localization with amylase (Figure 2A & 2B). On day 2-post cerulein 

treatment, in KC mice metaplastic ducts undergoing ADM observed, characterized by 

simultaneous expression of both amylase and CK19, and elevated ETAR and ETBR 

expression. The expression of ET receptors were more pronounced in CK19 positive 

ducts with increased dysplasia at day 7 and day 21-post cerulein administration. In 

contrast, the WT mice showed recovery of pancreatic parenchyma and restoration of 

pancreatic architecture (Figure 3). Further, comparison of the WT and KC mice at the 

transcript levels after cerulein treatment showed difference in the kinetics and magnitude 

of ET axis upregulation. While ET-1 and ETAR expression between WT and KC mice 

were unaltered and comparable on day 2, there was significant increase in both ET-1 

and ETAR levels in Kras mutant animals at day 7 and day 21-post cerulein administration 

(Figure 4A & 4B). In contrast, the levels of ETBR showed increase at day 2 and day 7-

post cerulein injection and decreased at day 21 (Figure 4C). Inflammatory insult in WT 

animals increased the expression of ET-1, ETAR at day 2 while the levels of ETBR 

decreased gradually. However, during recovery phase the expression restored to basal 

level at day 7 and 21 (Figure 5A). In KC mice harboring KrasG12D mutation in the 

pancreas, after initial increase during inflammation the levels of ETBR returned to normal 

whereas the ETAR levels remained high with increasing dysplasia (Figure 5B). 

Quantitative qRT- PCR showed no difference in the levels of ET-2 and ET-3 in KrasG12D 

mice compared to WT mice after cerulein treatment (Figure 6A &6B). 
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C. Expression of ET axis during Smoke induced pancreatic injury. 

The effect of cigarette smoke induced alterations in the ET axis in presence of K-

ras mutation showed on statistically significant difference in ECE-1 transcript levels in 

WT and K-ras animals however, there was slight increase in ECE-1 transcript levels. 

(Figure 7A). Interestingly, qRT-PCR analysis revealed 7 fold increase in the ET-1 

transcript levels in the K-ras mutant mice compared to sham control (p=0.04) (Figure 

7B). Additionally, the ET-3 mRNA levels in the WT and K-ras mice showed no significant 

difference with and without exposure to cigarette smoke (Figure 8). Comparison of the 

ETAR and ETBR mRNA levels in KrasG12D mice reveals significantly increase in both 

ET receptors (Figure 7C & Figure 7D). Smoke-induced inflammation in the mutant K-

ras mice showed increase of 4.5 fold and 5 fold in ETAR (p=0.03) and ETBR (p=0.01) 

mRNA levels respectively compared to sham controls. Further, histological analysis of 

the mice pancreas also showed increase in the expression of the ET axis components in 

response to smoke mediated inflammatory insult. Similar to our previous observation in 

spontaneous KC model, in the unfloxed mice pancreas with and without exposure to 

cigarette smoke, the expression of ECE-1, ET-1 and both ET receptors is associated 

with acinar compartment of the pancreas and prominent staining in islet cells is seen 

(Figure 7E & Figure 7F). Interestingly, smoke exposure in the K-ras mice resulted in the 

increase in ECE-1 expression in the pancreatic duct while no difference was observed in 

the expression of ET-1, ETAR and ETBR in pancreatic ductal cells. In addition, 

comparison of the sham control mice reveals significant expression of ECE-1, ET-1 and 

the receptors in the pre-cancerous lesions and acinar compartment of the pancreas. 

Further analysis of the mice pancreas also demonstrated expression of ET axis proteins 

in the stromal region, and infiltrating immune cells. As compared to sham control, smoke 



245 
 

exposure in K-ras mice pancreas showed significant expression of ECE-1, ET-1, ETAR 

and ETBR in the pre-neoplastic lesions. Importantly, the increased expression in the 

early pre-cancerous lesions is accompanied by enhanced expression ET axis in the 

pancreatic stroma and immune cells. The co-expression of epithelial marker CK19 and 

ET-1, ETAR and ETBR in the pancreatic ductal cells further validated our findings (Figure 

9).   

 

D. Increase infiltration of F4/80 positive macrophages is associated with ETAR and 

ETBR expression in Cerulein and Smoke induced pancreatitis. 

One of the key events that determines the onset of inflammation and severity of 

acute pancreatitis is the activation of macrophages [24] [25]. Similar to acute 

pancreatitis, increased infiltration of macrophages is reported in inflamed sites in both 

human and mouse chronic pancreatitis and are considered as master regulators of 

inflammation and disease progression [26]. Previous studies has reported increased 

accumulation of F4/80 positive macrophages in response to smoking in spontaneous KC 

mice model [27] [22] . In response to cerulein induced inflammation the median number 

of F4/80 positive macrophage population was not significantly different at day 2 of 

treatment, however a substantial increase was seen at day 7 (average number of cells/ 

field =13) and day 21 (average number of cells/ field =17) of cerulein treatment in mutant 

K-ras mice as compared to WT (Figure 10A). Immunohistochemical analysis in both KC 

mice model and smoking induced inflammation demonstrated increased expression of 

both ETAR and ETBR in ductal cells as well as stromal compartment, particularly on the 

infiltrating immune cells. We further confirmed our findings using immunofluorescence 

analysis in both cerulein and smoking model of pancreatitis. Validating our earlier 

findings, in at day 0 both ETAR and ETBR show expression in the acinar region and 

pancreas show fewer number of macrophages (Figure 11A & Figure 11C). At day 2-
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post cerulein in the KC mutant mice the infiltrating F4/80 positive macrophages were 

found to be co-localized with ETAR, although the co-expression was not statistically 

significant. On the other hand, as demonstrated, the expression of both ETAR and F4/80 

appeared in the double positive macrophages and significant co-localization was seen at 

day 7 and day 21 of treatment in the KC mice. Quantitative analysis of the F4/80 positive 

macrophages with ETAR showed significant increase in the overlapping fractions at day 

7 (p=0.0035) and day 21 (p=0.0029) of treatment (Figure 11B). Unlike ETAR, analysis of 

the mice pancreas for the dual expression of ETBR and F4/80 in the macrophages 

suggests higher degree of co-association at day 2 of treatment in mutant mice compared 

to control with significant p value (p=0.0001). The greater degree of co-localization is 

also witnessed in pancreas at day 7 (p=0.0005) and day 21 (p=0.0008) post cerulein 

trauma in presence of oncogenic Kras (Figure 11D). We also extended our studies in 

the smoking induced pancreatitis using three-color immunofluorescence. In WT animals 

with and without exposure to cigarette smoke the expression of both ET receptors is 

seen in pancreatic acini and no significant association was observed (Figure 12A). In 

sham control mice the increase infiltration of F4/80 positive macrophages in the 

pancreatic stroma is accompanied by co-expression of both ETAR and ETBR with the 

F4/80 macrophages with significant p value (p=0.003 for ETAR and p=0.005 for ETBR) as 

compared to unfloxed mice subjected to smoke exposure. Smoke exposed animals in 

presence of Kras oncogene driven progression of PC demonstrate high co-expression of 

both ETBR and F4/80 in double positive macrophages. Quantitative analysis using 

ImageJ further indicates that the F4/80 positive fractions overlapping with ETBR show 

significant p value (p=0.05) as observed by Mander’s correlation coefficient (Figure 

12C). Unlike ETBR, the increase infiltration of macrophages in the mice pancreas reveal 

limited co-expression  with ETAR and the overlapping fractions did not show statistical 

significance (p=0.06) (Figure 12B). 
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E. Increase accumulation of α-SMA fibroblasts in Cerulein and Smoke induced 

pancreatitis is associated with associated ETAR and ETBR. 

Accumulating evidence indicate that activation of pancreatic stellate cells (PSCs) 

is pivotal in development of pancreatitis and pancreatic cancer by excessive deposition 

of extracellular matrix proteins [28] [29]. Studies have demonstrated that smoking leads 

to activation of PSCs and express myofibroblasts marker α-SMA in KrasG12D 

genetically engineered mouse model of PC [22]. Histological examination of the mice 

tissues from KrasG12D progression model and smoke exposed KrasG12D animals 

reveals enhanced expression of the ET axis components, particularly ET receptors in the 

pancreatic stroma. We further corroborated our findings using dual confocal microscopy 

utilizing the well-established myofibroblasts marker α-SMA in both acute and chronic 

models of pancreatitis. The degree of PSCs activation following cerulein administration 

was analyzed in both normal and KC mutant mice. In KrasG12D mice significant 

increase in the number of myo-fibroblasts is seen at day 2 post cerulein induced 

inflammatory insult (p=0.04), reflecting increased activation of PSCs (Figure 10B). 

Additionally, in KC mice harboring KrasG12D mutation in the pancreas substantial 

increase in the number of α-SMA positive myofibroblasts is seen at day 7 (average 

number of cells/field= 27) and day 21 (average number of cells/field= 32) with significant 

p value (p=0.02 for both ETAR and ETBR) compared to mice with WT Kras. Further, dual 

color immunofluorescence analysis reveals limited colocalization of both ETAR and ETBR 

with α-SMA positive myofibroblasts as demonstrated by no overlapping of the two 

fractions in the pancreas stroma at day 0 and day 2 of cerulein-mediated insult in normal 

and mutant mice (Figure 13A & 13C). Compared to wild type, in KC mice the increase 

activation of PSCs is followed by enhanced expression of ETAR in the fibroblasts 

fractions at day 7-post cerulein administration with significant p value (p=0.001). Similar 
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to day 7-post trauma, the fraction of α-SMA fibroblasts shows high degree of co-

expression with ETAR in KC mutant mice as compared to WT mice with significant p 

value (p=0.003)  (Figure 13B).  Similar to ETAR, co-association with activated PSCs 

after day 2 treated KC mice reveal limited colocalization with ETBR compared to control 

mice (Figure 13C). Similar to ETAR, co-association with activated PSCs after day 2 

treated KC mice reveal limited colocalization with ETBR compared to control mice 

(Figure 7c). In addition to ductal expression in the pancreas at day 7 and day 21 post 

cerulein treatment in KC mice, the fibroblasts surrounding the duct cells also show 

positivity for ETBR expression and demonstrate extensive colocalization at day 7 

(p=0.0006) and day 21 (p=0.0002) post cerulein trauma (Figure 13D). The activation 

status of PSCs in smoke treated unfloxed and floxed KC mice and its possible 

association with ET receptor expression was evaluated using immunofluorescence in 

tissues. Analysis of the unfloxed and floxed mice tissues shows prominent expression of 

both ETAR and ETBR in the pancreatic islet cells and acinar compartment with and 

without smoke exposure (Figure 14A & 14C). In sham control KC mice, in addition to 

the prominent expression in the early cancerous lesions, activated PSCs displays high 

colocalization with ETAR (p=0.0001) compared to smoked unfloxed mice. Importantly, 

quantitative analysis of the smoke exposed KC mice show increase co-expression in the 

α-SMA and ETAR double positive fibroblasts (p=0.04) (Figure 14B). Analysis of the 

histological features in the sham control mice compared to smoked unfloxed mice 

illustrate prominent increase and association of ETBR with the stromal fibroblasts 

(p=0.0002). Contrary to ETAR, α-SMA positive fibroblasts exhibit minimal and non-

significant overlap with ETBR compared to sham control (Figure 14D).  
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Discussion 

Acinar to ductal metaplasia is the earliest recognizable morphological event in 

the pancreas in response to inflammation or oncogene activation and is regarded as a 

key event during the development of PC. It is characterized by the trans-differentiation of 

amylase-expressing acinar cell into CK19 positive ductal phenotype. The trigger for such 

intense morphological and histological change in the pancreas can either be due to 

accumulation of genetic changes or an inflammatory insult leading to increasing degree 

of atypia and ultimately to cancer. It has been firmly established that formation of 

precursor lesions (PanINs) precedes the formation of Kras driven PC initiation in 

experimental mouse model [8] [9]. These precursor lesions are derived from acinar cells 

of the pancreas undergoing a trans-differentiation from acinar to ductal phenotype, an 

event usually induced by pancreatitis [6] [30]. Further support for this view comes from 

various mechanistic studies implicating various transcription factors and signaling 

pathways in driving this switch from acinar to ductal phenotype [5] [31] [32] [33].  

Endothelin axis plays significant role in tissue repair and inflammation of various 

tissues and has been implicated in the pathophysiology of pancreatic inflammation. 

Previous studies have shown aberrant expression of ET axis components in surgically 

resected pancreatic cancer patients and its association with tumorigenesis [20]. ET-1, 

most predominant and well-characterized ligand of the family is detected abundantly in 

pancreatic cancer cell lines as compared to the other two isoforms, ET-2 and ET-3 [18] 

[19]. In addition to its pathophysiological role in pancreas evidence also suggests its 

crucial role in normal pancreas physiology and also pancreatitis. Studies have 

demonstrated the presence of ETAR and ETBR in the rat pancreas and their differential 

binding affinities towards the three endothelin ligands [34]. The present study revealed 

the expression of ET axis components, ECE-1, ET-1, ETAR and ETBR in pancreatic 

acinar cells and islet cells and their minimal or low levels in the pancreatic ducts of WT 
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mice. In murine progression model of pancreatic cancer, a progressive increase in the 

expression was observed in the trans-differentiated or neoplastic ductal cells. The acinar 

specific expression of the ET axis in the normal pancreas implies a possible role of this 

axis in maintenance of acinar cell differentiated state. Metaplasia is regarded as the 

conversion or transformation of one cell type into another by an abnormal stimulus and 

are associated with early phase of tumor development. In the context of acinar to ductal 

metaplasia, metaplastic ducts are transitional structures and are characterized by 

presence of both acinar cell markers such as amylase and duct cell marker CK19. Our 

analysis reveals elevated expression of both ETAR and ETBR in amylase and CK19 

double positive metaplastic ducts in the KrasG12D mutant mice pancreas following 

cerulean-induced injury. 

Pancreatitis is an established risk factor for pancreatic cancer and is 

characterized by acinar cell necrosis, infiltration of inflammatory cell populations, stromal 

fibrosis and release of insoluble and soluble mediators [35] [36]. Previous study from our 

lab has revealed that ceruelin induced inflammatory damage to the pancreas is followed 

by decrease in the amylase expression in the mutant KrasG12D mice compared to 

control [21]. We observed that post cerulein induced inflammation metaplastic ducts can 

be seen in the mice pancreas and appearance of both ETAR and ETBR can be 

witnessed. In the KrasG12D mutant mice at day 7 and 21 post trauma, cerulein induced 

acinar to ductal metaplasia in pancreas display greater dysplasia and higher co-

localization with CK19 positive ducts and progressed more rapidly to tumor 

development. In contrast, in normal mice with WT kras a recovery in the pancreatic 

parenchyma is observed after day 2-cerulein treatments, suggesting that oncogenic Kras 

results in enhanced and sustained activation of ET axis following inflammatory insults. In 

mice with WT Kras, cerulein treatment resulted in a notable increase in the expression of 

ET-1 and ETAR mRNA levels at day 2, while the levels of ETBR increased marginally; 
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however a recovery to basal level was observed for all three molecules by day 7. In 

contrast, significant increase in ET-1, ETAR and ETBR transcripts was observed following 

cerulein treatment and these levels continued to remain high even at 21 days post-

trauma in KC mice. The expression of ET receptors in the normal mice is constrained in 

the pancreatic acini suggests its possible role in maintain the differentiating state of the 

acinar cells. Our data indicate that in mice harboring KrasG12D mutation in the pancreas 

the persistent activation of the ET axis components following cerulein treatment favors 

reprogramming of acinar cells into ductal morphology and favors neoplastic 

transformation. Therefore, we may speculate that the elevated levels of ET-1 in 

presence of KrasG12D oncogene favors acinar to ductal metaplasia changes to promote 

formation of pre-neoplastic lesions.   

In the context of acute pancreatitis, the role of ET-1 has been widely studied and 

is known to promote disease aggravation. In experimental rat model of pancreatitis, ET-1 

was identified as one of the candidate gene associated with pancreatic inflammation 

[37]. Additionally, in both sodium taurocholate and cerulein induced pancreatitis, 

exogenous administration of ET-1 damages the pancreatic parenchyma, promote acinar 

cell necrosis and increases amylase and elastase levels [38] [17]. ET-1 is considered to 

be significant risk factor for acute pancreatitis and elevated levels correlates with 

disease severity [12]. Similar to acute pancreatitis, elevated levels of ET-1 and 

significant correlation was observed in smoking individuals with chronic pancreatitis 

when compared to normal pancreatic tissues and non-smoking chronic pancreatitis 

patients [13]. In addition, studies also demonstrate a significant increase in the plasma 

ET-1 levels under the influence of tobacco smoking suggesting direct effect on 

endothelium facilitating the peptide release [39] [40]. Cigarette smoke is an established 

risk factor for PC and smoke induced inflammation accelerates the cancer progression in 

presence of constitutively active Kras mutation. Our recent study revealed that smoking 
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accelerates tumor progression by aggravating lesion formation in the pancreas and 

influences tumor microenvironment of the pancreas by activating pancreatic stellate cells 

and increase accumulation of macrophages [22]. We observed that cigarette smoke up 

regulates the transcript levels of ET-1, ETAR and ETBR in KrasG12D mice after smoke 

exposure as compared to mice with WT Kras. Interestingly mouse genotype determined 

the response to smoke induced inflammation. Further observation also suggests the 

acinar specific expression of ET axis components in WT mice with and without exposure 

to smoke further signifying its possible role in maintenance of differentiated state of 

acinar cells. Our results further indicate that in presence of KrasG12D oncogene smoke 

exposure significantly increase the expression in the pancreatic ductal cells. 

In vivo observations suggest that the pancreatic inflammation elicits macrophage 

infiltration and secreted cytokines are considered as potent inducers of pancreatitis 

initiated acinar cell transformation to ductal progenitor phenotype [41]. These infiltrated 

macrophages are considered as drivers of ADM formation and in presence of oncogenic 

signaling favors tumor development [42]. A recent study demonstrated that acinar cells 

harboring mutant Kras up regulates ICAM-1 expression, which serves as chemo 

attractant for macrophages to drive tumor initiation [43] [44]. Several observations have 

also shown to modulate the migration of monocytes and macrophages in complex tumor 

microenvironment in endothelin dependent manner. Very recent study demonstrated that 

ET-1 through its interaction with receptors induced polarization of human macrophages 

[45] and favors cross talk between breast cancer cells and endothelial cells in an integrin 

dependent manner [46]. Also, in bladder cancer, ET-1/ETAR interaction favors stromal 

cross talk and enhances metastatic colonization in the lung by increase migration and 

infiltration of tumor cells and tumor associated macrophages respectively [47]. In 

addition to promote tumor- stromal interactions, endothelin(s) also serves as potent 

chemoattractant for monocytes and macrophages. ET-1 has been shown to stimulate 
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chemotaxis of blood monocytes [48] and induced chemo-kinetic migration of peritoneal 

macrophages in an ETAR dependent manner [49]. In addition to ET-1, ET-2/ETBR 

signaling promotes chemotaxis and modulates the distribution of macrophages in tumor 

via MAPK pathway [50]. Therefore we may speculate that the elevated levels of ET-1 in 

pancreatitis associated inflammation in presence of KrasG12D oncogene drives acinar to 

ductal conversion in pancreas by increase infiltration of macrophages in an ET-1 

dependent manner. We found that in response to inflammation (cerulein or smoking) the 

recruitment of activated macrophages in the pancreas stroma is dependent on mouse 

genotype and degree of inflammation. Also, the expression on the ET receptors on the 

infiltrating macrophage population is dependent on the mouse genome. In KC mice upon 

cerulein inflammation, significant co-localization of ETBR and not ETAR can be observed 

with F4/80 positive macrophages. However, F4/80 macrophages show high degree of 

co-localization with both the ET receptors at day 7 and day 21-post trauma. Our careful 

observation in the smoke treated mice tissues in presence of mutant KrasG12D also 

indicate higher fractions of F4/80 positive macrophages overlapping with ET receptors. 

Smoke treated mice carrying the KrasG12D oncogene show higher co-localization of 

F4/80 positive macrophages with ETAR and ETBR in the stromal compartment. It 

appears that the elevation in the ET-1 levels in inflammation associated pancreatitis 

serves as a potential chemo attractant for infiltrating macrophages expressing the 

receptors and favors neoplastic transformation by allowing acinar cells to be 

reprogrammed into ductal phenotype. However, to fully understand and delineate the 

molecular mechanisms of ET- axis mediated acinar cell reprogramming by recruiting 

macrophages in mutant KrasG12D mice, further studies involving macrophage targeted 

conditional knock-out of ETAR and ETBR need to be undertaken.  

In addition to active infiltration of immune cell populations in response to 

pancreatic injury, activation of PSCs is recognized as central event in development of 
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pancreatitis and PC. These PSCs are activated by a variety of soluble and insoluble 

mediators such as cytokines, growth factors, oxidative stress, ethanol and its 

metabolites and pancreatitis. Once activated, they trans-differentiate into myo-fibroblasts 

like cells and the phenotypic transformation results in fibrosis and extensive deposition 

of extracellular matrix proteins [51]. The pro-fibrotic role of ET-1 in various pathologies is 

well documented and is regulated at transcriptional levels by interaction with various 

transcription factors such as Smad, TGF-β and activator protein-1 (AP-1) [52] [53]. ET-1 

induces a pro-fibrogenic response in lung fibroblasts by increase expression of α-SMA 

and CTGF by JNK-AP1 and TGF-β pathway [54] [55]. Accumulating evidence imply that 

activated PSCs play a pivotal role in development of pancreatic fibrosis and 

inflammation. Activated PSCs express ET-1, ETAR and ETBR and are ET-1 responsive 

suggesting an autocrine and paracrine loop to stimulate contraction and migration of 

PSCs by inducing phosphorylation of ERK and MLC but not AKT [56]. Further, studies 

by Stumpe and co-workers indicate that ET-1/ETAR interactions increase cytosolic 

calcium concentrations and possibly act as an autocrine and paracrine factor for 

activated PSCs [57]. In addition to stimulate myofibroblasts differentiation, ET-1 has also 

been shown to promote inflammatory reaction in the pancreas by release of pro-

inflammatory mediators such as IL-6 and IL-1β [58]. Moreover, Fitzner et al 

demonstrated that the pro-fibrogenic effect of ET axis is attenuated by dual ETAR and 

ETBR antagonist Bosentan in experimental chronic pancreatitis model [59]. Our results 

suggest that acute and chronic inflammation induced by cerulein and smoking 

respectively accelerates the desmoplastic reaction in the KrasG12D mice and the 

concomitant expression of endothelin receptors on activated PSCs can possibly promote 

stromal cross talk by autocrine and paracrine interactions and aid in tumor progression. 

Our current study revealed that endothelin receptors are expressed in metaplastic ducts 

signifying its possible role in trans-differentiation. In addition, increase accumulation of 



255 
 

fibrotic stroma in mutant Kras mice after post cerulein administration suggests in addition 

to metaplastic ducts, the expression of ET receptors is also observed in 

microenvironment of the pancreas. Importantly, significant co-localization of α-SMA 

positive fibroblasts is observed with both ETAR and ETBR dependent on mouse genome 

and degree of inflammation. Our real time PCR analysis infers significant increase in the 

ET-1 transcript levels in pre-cancerous lesions in the KrasG12D mice further strengthen 

the involvement of possible interaction with the activated stellate cells. In addition to 

acute inflammation model, in smoke induced chronic pancreatitis elevated levels of α-

SMA in presence of oncogenic signaling is followed by prominent expression of ETBR 

and limited co-association of ETAR. Quantitative analysis further indicates that fractions 

of α-SMA fibroblasts exhibit significant overlapping fractions with ETBR positive 

fibroblasts. We speculate that persistent increase and activation of ETAR and ETBR with 

increasing dysplasia in the activated myo-fibroblasts in presence oncogenic Kras 

signaling plays an essential role in maintenance of PSC activation through ET-1 

autocrine loops. However, the molecular mechanisms underlying this phenomenon are 

not completely understood and warrant further investigation.   

To summarize, our study profiles the expression of endothelin axis during acute 

and chronic inflammation associated pancreatic tumor progression in presence of 

mutated KrasG12D. Under physiological conditions, the expression of ET axis 

components is restricted to pancreatic acinar and islet cell compartments (Figure 15). 

However, during inflammation or injury the acinar expression is abrogated and elevated 

expression is seen in early pre-cancerous lesions and neoplastic cells. The sustained 

upregulation of ET-axis components in the presence of oncogenic K-ras and 

overexpression in advanced lesions, suggest that signaling along ET-axis possibly 

contributes to reprogramming of acinar cells into metaplastic ductal cells and drives their 

transformation into neoplastic lesions. The increased expression in pre-neoplstic lesions 
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is followed by excessive accumulation of ECM proteins and inflammation in the 

pancreas, indicating further involvement of ET axis in influencing microenvironmental 

factors during the initiation and progression of pancreatic cancer. 
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Figure 1: Expression pattern of ECE-1, ET-1, ETAR and ETBR in Pdx1-Cre; KrasG12D 

(KC) murine pancreatic cancer model. A. RT-PCR analysis showing age wise 

expression of ECE-1 ET-1, ETAR and ETBR on pancreas of control and KC mutant mice. 

The expression for all four molecules can be observed at all weeks analyzed and the 

levels maintained throughout. In contrast, a robust expression in the expression is seen 

in 20, 30,40 and 50 wk KC mice compared to littermates controls. Actin was used as 

loading control. B. Immunohistochemistry analysis of ET-1, ETAR and ETBR after 

staining with respective antibodies (1b). Normal pancreas (unfloxed mice) isolated from 

50 week old mice shows predominant  expression for ECE-1, ET-1 and receptors in the 

islet cells (black arrow heads) while low immunoreactivity is seen in the pancreatic acini 

(zoom). In the control mice (unfloxed) pancreas the low expression of ECE-1 can be 

seen in the pancreatic duct (inset) whereas no expression was detected for ET-1 and 

receptors. In the early PanIN lesions of pancreas of Pdx1-Cre;KrasG12D  mice starting 

from 30 weeks of age, the elevated expression can be seen and progressive increased 

expression is observed both in the tumor cells and the stromal compartment (inset) with 

the mutant Kras expression.  
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Figure 2: ETAR and ETBR expression during pancreatic injury in normal and KC 

mice. Three color Immunofluorescence images of ETAR (A) and ETBR (B) expression 

(purple) of with acinar cell marker amylase (red) and ductal  cell marker CK19 (green) in 

cerulein and saline treated mice at days 2, 7 and 21 post cerulein injection. Expression 

of both ETAR and ETBR is seen in the pancreatic acini in normal and KC mutant mice 

under control conditions. At day 2 post trauma, ETAR and ETBR expression appears in 

amylase and CK19 double positive metaplastic ducts in KC mice under cerulein treated 

metaplastic conversion. In control mice, normal pancreatic architecture is restored and 

the acinar cells displaying increases expression of amylase and colocalization with ETAR 

and ETBR. In the KC mice at day 7 and 21 post inflammatory insult, the pancreas show 

dysplastic changes and appearance of metaplastic ducts and gradual increase 

expression of both ET receptors can be seen in the CK19 positive ducts.  
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Figure 3: Histological analysis of ETAR and ETBR expression in normal mice with 

and without cerulein treatment. Immunohistochemical analysis of ETAR and ETBR in 

the mice pancreas after cerulein treatment. Analysis reveal low expression of both 

receptors in the pancreatic acini whereas a predominant expression in the islet cells is 

seen (black arrowheads) at all day 0, 2, 7 and 21 of treatment. Interestingly, no 

expression in the normal pancreatic duct was seen (inset) and recovery in the pancreatic 

parenchyma is observed at day 7 and day 21 of treatment 
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Figure 4: ET-1, ETAR and ETBR expression during pancreatic injury in normal and 

KC mice. Real time PCR analysis of ET-1 mRNA levels between normal and KC mice 

under control and cerulein treated conditions showed significant increase in the ET-1 

mRNA levels in the KrasG12D  mutant mice at day 7 and day 21 after cerulein 

administration (A). Comparison of the of ETAR transcript levels showed elevated 

expression in the Kras mutant mice at day 7 and day 21 of treatment with significant p 

value (B). A predominant and significant increase in the ETBR mRNA was seen at day 7 

of treatment with a marginal increase being observed at day 21-post trauma (C).  

* p<0.05, ** p<0.005, ns=not significant. 
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Figure 5: ET-1, ETAR and ETBR expression during pancreatic injury in normal and 

KC mice. Real time PCR analysis of ET-1, ETAR and ETBR expression alterations in the 

normal (A) and KC (B) mice under control and cerulein treated conditions at various time 

points. In the normal mice, increase expression of ET-1 and ETAR and decrease 

expression of ETBR was seen due to cerulein induced inflammatory insult at day 2 and 

recovery for all three molecules being observed for all three molecules by day 21. In KC 

mice, harboring Kras mutation in the pancreas ETAR mRNA levels gradually increased 

with progressive acinar to ducal phenotype switch following cerulein treatment. ETBR 

mRNA levels on the other hand, increases due to metaplastic changes in the mice 

pancreas at day 7 but falls backs to basal levels subsequently.  

* p<0.05, ** p<0.005, ns= not significant  
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Figure 6: Expression of ET-2 and ET-3 in normal and KC mice with or without 

cerulein treatment. Real time PCR analysis show no significant difference in the 

expression of ET-2 (A) and ET-3 (B) in KC mice compared to control over the treatment 

period. * p<0.05, ** p<0.005, ns=not significant. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  



269 
 

Figure 6 
 

 
 
 
 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
B 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 

  



270 
 

Figure 7: Expression of ET-1, ETAR and ETBR in spontaneous KC mice model 

subjected to cigarette smoke. Quantitative real time PCR analysis show no significant 

difference in the expression of ECE-1 in the RNA isolated from the pancreas of sham 

and smoke exposed mice (A). Comparison of ET-1(B), ETAR (C) and ETBR (D) transcript 

levels show significant difference in mRNA levels in Kras mutant mice exposed to 

cigarette smoke as compared to sham controls. E. Immunohistochemical analysis of the 

unfloxed animals with and without exposure to cigarette smoke induced inflammatory 

insult show difference in the expression of ET axis components and low immunostaining 

in acinar cells and predominant staining in islet cells is observed (inset). Smoke 

exposure to unfloxed mice reveal increase expression of ECE-1 in normal pancreatic 

duct while the expression of other markers remain unchanged (inset). The expression of 

ECE-1, ET-1 and receptors can be seen in pre-cancerous lesions in the Sham floxed 

animals and stromal region. In presence of oncogenic Kras overexpression of ECE-1, 

ET-1 and receptors can be observed in both tumor lesions and stromal compartment. 

The box plot represents the quantitative expression of ECE-1 (F), ET-1 (G), ETAR (H) 

and ETBR (I). 
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Figure 8. Expression of ET-3 in unfloxed and floxed KC mice with and without 

cigarette smoke exposure. Real time PCR analysis show no significant difference in 

the expression of ET-3 in the RNA isolated from the pancreas of sham and smoke 

exposed mice. * p<0.05, ** p<0.005, ns=not significant. 
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Figure 9: Expression of ET-1, ETAR and ETBR in spontaneous KC mice model with 

and without cigarette smoke exposure. Dual immunofluorescence analysis showing 

the expression of ET-1, ETAR and ETBR in sham controls and smoke exposed floxed 

mice. Smoking in the Kras mutant mice accelerated the PanIN formation and increase 

expression in the CK19 positive ducts. 
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Figure 9 
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Figure 10: Increase accumulation of F4/80 positive macrophages and α-SMA 

fibroblasts following cerulein treatment. Bar diagram representation 

Immunofluorescence analysis of the pancreas of saline and cerulein treated mice show 

significant increase in the F4/80 cells after cerulein induced injury  at day 7 and day 21 

treatment (average count of F4/80-positive cells in five independent fields/tissue 

section). Quantitative analysis of the α-SMA fibroblasts indicate significant increase 

starting at day 2 of treatment compared to control (average count of α-SMA positive cells 

in five independent fields/tissue section). * p<0.05, ** p<0.005, ns=not significant. 
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Figure 11: Increase infiltration of F4/80 positive macrophages is associated with 

both ETAR and ETBR expression in cerulein induced inflammation: Dual color 

immunofluorescence images of the ETAR and ETBR expression (red) with macrophage 

marker F4/80 (green) in cerulein and saline treated mice at days 2, 7 and  21 post 

cerulein administration. A. In the control and KC mutant mice under control conditions, 

expression of ETAR is restricted to acinar compartment and no overlap is seen with 

F4/80 positive macrophages. At day 2 post cerulein treatment in KC mice, limited 

localization of ETAR is seen (inset) with F4/80 while no difference is seen in normal 

mice. In KC mice at day 7 and 21 post inflammatory insult, significant overlap of ETAR is 

observed with the infiltrating F4/80 populations in the stromal region (inset), while 

minimal or no overlap is seen in control mice. B. The degree of overlap between F4/80 

positive macrophages and ETAR  was measured using ImageJ using Manders overlap 

coefficients. C. Similar to ETAR, acinar specific expression of ETBR shows no 

colocalization with F4/80 in normal and KC mice under control conditions. Brief episode 

of cerulein treatment at day 2 in KC mice shows substantial colocalization with F4/80 

populations (inset) with significant p value compared to control mice. In KC mice at day 7 

and 21 of cerulein treatment, the ETBR expression in the metaplastic ducts is 

accompanied by significant overlap with F4/80 positive macrophages in the stroma, 

while limited colocalization is seen in the normal mice. D. The degree of overlap 

between F4/80 positive macrophages and ETBR  was measured using ImageJ using 

Manders overlap coefficients * p<0.05, ** p<0.005, ns= not significant (Scale bar = 

20µm; zoom scale bar =10µm). 
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Figure 12: Increase infiltration of F4/80 positive macrophages is associated with 

ETBR expression in smoke induced inflammation. Three color immunofluorescence 

images of the ETAR (purple), ETBR (red) and F4/80 (green) expression in the 

spontaneous KC model with and without exposure to cigarette smoke. A. In the unfloxed 

mice with and without exposure to cigarette smoke exposure expression of both ET 

receptors is seen in acinar region of pancreas . The pancreas  displays fewer infiltration 

of  F4/80 macrophages and exhibits minimal overlap with both ETAR  and  ETBR (zoom). 

Smoke exposed KC mutant mice exhibits significant colocalization of both ETBR and 

F4/80 (zoom) as compared to sham control. C. The degree of overlap between ETAR 

and F4/80 (zoom) in smoke exposed animals reveals no significant fractions of F4/80 

overlapping fractions with ETAR (B) as measured using ImageJ with Manders overlap 

coefficient * p<0.05, ** p<0.005, ns= not significant (Scale bar = 20µm; zoom scale bar 

=10µm). 
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Figure 13: Increase expression of α-SMA positive fibroblasts is associated with 

both ETAR and ETBR expression in cerulein induced inflammation. Dual color 

immunofluorescence images of the ETAR and ETBR expression (red) with α-SMA 

(myofibroblast marker) (green) in cerulein and saline treated mice at days 2, 7 and  21 

post cerulein administration. A. In the control and KC mutant mice under control 

conditions, expression of α- SMA is detected in the mice pancreas and shows limited 

colocalization with ETAR. At day 2 post cerulein treatment in KC mice, increase 

expression of α- SMA  is seen in the KC mutant mice as compared to control, however 

limited colocalization with ETAR is detected in mice pancreas (zoom).  In KC mice with 

constitutive active Kras mutation, higher expression of α-SMA in the pancreas is 

associated with significant overlap with ETAR in the mice pancreas at day 7 and 21 

cerulein insult with significant p value. B. The degree of overlap between α-SMA positive 

fibroblasts and ETAR was measured using ImageJ using Manders overlap coefficients. 

C. Parallel to ETAR, expression of α-SMA fibroblasts reveals limited co-association with 

ETBR in the control and KC mutant mice under control conditions. At day 2 post 

injection, under cerulein induced metaplastic conversion, the increase number of α-SMA 

fibroblasts is marginally associated with ETBR expression. With increase in dysplasia at 

days 7 and 21 of treatment increase activation of stellate cells and higher expression of 

α-SMA fibroblasts in pancreas is shows extensive colocalization with ETBR with 

significant p value. D. The degree of overlap between α-SMA positive fibroblasts and 

ETBR  was measured using ImageJ using Manders overlap coefficients. * p<0.05, ** 

p<0.005, ns= not significant (Scale bar = 20µm; zoom scale bar =10µm). 

 
 

  



285 
 

Figure 13 
 
 

 
A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B 

 
 
 
 
 
 
 
 
 

 
  



286 
 

 
Figure 13 

 
 

 
C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D 
 

 
 
 
 
 
 
 
 
 

  



287 
 

Figure 14: Increase expression of α-SMA positive fibroblasts is associated with 

ETAR epression in smoke induced inflammation. Dual color immunofluorescence 

images of the ETAR and ETBR staining (red) with α-SMA (myofibroblast marker) staining 

(green) in smoke exposed and sham control floxed mice. A. Immunofluorescence  

images of the ETAR and α-SMA colocalization in the pancreas of sham and smoke 

exposed unfloxed mice reveals no significant difference in the fractions of α-SMA 

myofibroblasts overlapping with ETAR. In kras mutant mice exposed to cigarette smoke 

higher expression of α-SMA in the pancreas of smoke-exposed animals is accompanied 

by significant colocalization was observed (zoom). B. The degree of overlap between α-

SMA myofibroblasts and ETAR was measured using ImageJ using Manders overlap 

coefficients. C. Dual confocal microscopy analysis of ETBR and α-SMA overlap in the 

pancreas of sham and smoke exposed unfloxed mice displays no significant overlap 

between two fractions. Contrary to ETAR, smoke exposure in KC mutant mice shows no 

significant co-association between the two populations in the pancreas stromal region as 

compared to control (zoom). D. The degree of overlap between α-SMA myofibroblasts  

and ETAR  was measured using ImageJ using Manders overlap coefficients * p<0.05, ** 

p<0.005, ns= not significant (Scale bar = 20µm; zoom scale bar =10µm). 
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Figure 14 
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Figure 15: Proposed Model. In summary, in the normal pancreas, expression of both 

endothelin receptors (ETAR and ETBR) is restricted to pancreatic acinar and islet cells. In 

presence of mutated Kras (G12D), inflammatory insult (cerulein or smoking) results in 

transdifferentiation of acinar phenotype into ductal phenotype and favors metaplastic 

conversion accompanied by downregulation acinar cell marker genes (Amylase) with 

simultaneous upregulation of ductal markers (CK19). In the Kras mutant mice, the 

expression of the endothelin axis components is seen in early pre-neoplastic lesions and 

in tumor microenvironment of PC and increase gradually with increase in neoplasia. The 

sustained activation of the ET axis in presence of oncogenic Kras both in the tumor cells 

and in stromal compartment of PC, suggest its possible role in tumor initiation and 

progression.  
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1. Summary 

          Over the past several years various studies have attempted to understand the role 

of endothelin axis in solid cancers and melanomas[1]. In the context of pancreatic 

cancer a recent study has shown the overexpression of ET-1ligand and endothelin B 

receptor (ETBR) but not endothelin A receptor (ETAR) [2]. However, a number of 

questions remain unanswered. For instance, what is the expression of overall ET axis as 

such in the in PC and in early pancreatic lesions? Also, what is the expression status of 

the axis in the context of complex TME of PC? What is the pathobiological significance 

of the ET axis proteins? Importantly, what is the impact of targeting the axis in PC 

microenvironment? 

The overarching goal of the studies presented in this thesis was to examine the 

pleotropic actions of the ET axis in pancreatic tumor microenvironment. Briefly, we 

examined the following aspects of ET axis expression and function: 1) Expression in 

tumor cells and stromal compartment, 2) Pathobiological significance of ET  axis 

upregulation in PC  3) Impact of ET-axis antagonists in the murine model of 

autochthonous tumorigenesis  4) Involvement of ET-axis in K-ras oncogene associated 

chronic and acute pancreatic inflammation  

Overall, our major findings were: 1) Compared to normal pancreas, components 

of ET axis, ECE-1, ET-1, ETAR and ETBR are overexpressed in primary tumor and 

metastatic sites. 2) ETAR and ETBR are expressed in immune cells and tumor blood 

vessels. The expression of ETBR on blood vessels is associated with poor prognosis of 

PC patients 3) It was observed that overexpression of the ET receptors is associated 

with pro-fibrotic gene signatures, suggesting that signaling along the ET promotes 

fibrosis in PC 4) Pharmacological inhibition of the axis using dual ETAR and ETBR 

antagonist Bosentan reduces the pro-fibrotic genes in autochthonous mice model. These 

results suggest that targeting this axis can possibly modulate the complex TME of PC. 5) 
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In stellate cells and cancer-associated fibroblasts, exogenous administration of ET-1 

induces expression of stromal associated genes in an ERK/AKT dependent manner. We 

are generating mouse model to determine the effect of ET-1 loss on pancreatic cancer 

progression. The mice will be analyzed further to determine the loss of ET-1 in Kras/p53 

driven PC in mice. Below, I summarize the findings of each project and implications 

thereof. 

A. Expression of endothelin converting enzyme (ECE-1), endothelin-1 (ET-1), 

endothelin A receptor (ETAR) and endothelin B receptor (ETBR) in PC and its 

microenvironment  

The rationale for this study was based on earlier scattered evidence about the 

expression pattern of ET axis in PC, including a very recent study, which reported the 

ET-1 and ETBR expression in PC patients [2] . First, we examined the expression of 

ECE-1, ET-1 and both ET receptors in PC cell lines and PC tissues. We observed that 

ET-1 expression is seen in majority of cell lines tested, however both ETAR and ETBR 

showed an inverse association, either of one expressing at a time with few exceptions. 

Immunohistochemical analysis in PC tissues isolated from Whipple resected patients 

(RAP) and tissue microarray from rapid autopsy program suggests overexpression both 

in the primary tumor as well metastatic sites. The incidence of ECE-1, ET-1, ETAR and 

ETBR was 88%, 86%, 75% and 68% cases respectively in the primary tumors. Our 

tissue analysis also revealed expression of the ET-1 and its receptors in the stromal 

region of the tissues studied. The expression was predominantly seen in the infiltrating 

immune cells and the blood vessels. Further scoring of the slides by a pathologist 

implied elevated expression of ETAR and ETBR on tumor vessels in 60.5% and 31.5% 

cases respectively. In the immune cells, ET- 1 expression was seen in31.5% of cases 

while the incidence of ETAR and ETBR expression was 34.1% and 39.4% ,respectively. 

Very importantly, survival analysis from surgically resected primary tumors suggested 
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that elevated expression of ETBR on blood vessels and not tumor cells was associated 

with poor prognosis in these patients. The median survival of the patients with elevated 

expression for ETBR was 14.7 months as compared to 10.3 months with low ETBR 

positivity, indicating that looking at the expression in the tumor microenvironment is also 

essential to delineate the pathological significance of the axis. Due to limitation in the 

sample size of the Whipple and RAP cases we screened the TCGA database and 

expression of ET-1 and receptors was correlated with tumor grade and stage. To further 

demonstrate the pathobiological implication of axis we did bioinformatics study to look 

for the genes that correlated with ET axis overexpression. Interestingly, significant 

correlations of the fibrotic associated genes, predominantly collagen isoforms, FAP, 

PDGRFβ, SPARC were seen. In addition, regulatory pathways involved in fibrosis, tumor 

growth and metastasis were also upregulated, suggesting that overexpression of ET axis 

correlates with the extracellular matrix associated gene signatures.   

One of our long-term quests with this study was to develop approaches to 

selectively modulate the TME to improve the therapeutic efficacy of the 

chemotherapeutic regimens. So to explore the potential of targeting this ET axis we also 

analyzed the expression in KPC model of PC.  

Our RT-PCR and immunohistochemical result indicated progressive increase in 

the expression of ET axis components in advanced lesions at 25 weeks of age. Similar 

to human PC tissues, the expression of axis components is also seen in tumor stroma. 

The expression in various compartments of TME was confirmed using dual 

immunofluorescence studies using markers for stellate cells (α-SMA), blood vessels 

(CD31) and tumor associated macrophages (CD68 and F4/80). These observations 

indicate that mouse pancreas recapitulates the expression pattern in human PC.  

Taken all together, the study for the first time established the prognostic potential 

of ET axis in PC. The expression on TME compartments and correlation with pro-fibrotic 



301 
 

genes further establishes the potential of axis as a “druggable” target that can be 

exploited in PC therapy.   

B. Targeting endothelin axis in pancreatic cancer using selective and dual 

receptor inhibitors under in vivo (KPC, K-rasG12D; Trp53R172H/+; Pdx-1-Cre) and in 

vitro (pancreatic stellate cells and cancer associated fibroblasts) system 

Our aforementioned expression and bioinformatics analysis data suggested that 

ET receptors are expressed in TME and exhibit significant correlation with the pro-

fibrotic gene signatures. Due to the expression in of ET receptors on various cell types in 

TME, the ET axis possibly exerts pleotropic effects to modulate the pathophysiological 

hallmarks of PC such as fibrosis and hypo-vascularity [3]. Given the attraction of this 

pathway as a “druggable” target and the availability of both selective and dual inhibitors 

for ET receptors, an overarching goal was to unravel the pathobiological significance of 

ET-axis PC in the context of TME and define the manner in which the ET axis 

antagonism can be exploited in PC therapy.  

Having established an apparent correlation between fibrotic gens and ET axis we 

investigated the consequences of targeting ET axis in vivo with Bosentan, a dual ET 

receptor antagonist. Bosentan is a FDA approved drug and is firmly established in the 

clinics for the treatment of pulmonary arterial hypertension (PAH) and chronic heart 

diseases [4, 5]. We utilized the 20-week KPC animal (widely used model for PC) where 

the tumor is fully formed and abundant stroma outnumbers the cancer cells. Bosentan 

given as a monotherapy increases apoptosis and decreases desmoplasia in KPC tumors 

evident by IHC analysis against cleaved caspase-3 and Masson’s trichrome staining 

respectively. Further using mouse fibrosis array, we observed Bosentan treatment 

induced significant reduction in the profibrogenic gene signatures which were 

concordant with the genes found to associated with ET-axis upregulation in TCGA 

database analysis. This led us to conclude that ET axis promotes desmoplasia in PC 
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and ET axis antagonist’s exhibit anti-fibrotic effects. In addition to pro-fibrotic genes, dual 

ET axis antagonism also resulted in marginal increase in in anti-fibrotic genes such as 

IL-10, Bmp 7 and IFN-γ. The next step was to identify the specific population(s) of 

cancer-associated fibroblasts that are affected by ET axis antagonism. 

Immunofluorescence analysis confirmed that Bosentan treatment reduces the FSP1 and 

α-SMA positive fibroblasts but not FAP positive fibroblasts.  

The next step was to validate ET axis mediated fibrogenic effects in vitro. It was 

observed that treatment of murine pancreatic stellate cells (ImPSC.c2) and human 

cancer associated fibroblasts (10-03)  with ET-1, resulted in increased expression of pro-

fibrotic genes (α-SMA, Collagen I, CTGF, Fibronectin) in time dependent manner. To 

identify the ET receptor exerting this effect,  we used selective inhibitor for ETAR 

(BQ123) and ETBR (BQ788). ET-1 mediated induction of matrix associated genes was 

attenuated by BQ788 whereas minimal effects were observed with BQ123. A synergistic 

effect was seen using dual ETAR and ETBR inhibition using Bosentan. In contrast, in 

human CAFs, both BQ123 and BQ788 abrogated ET-1 induced expression. One 

speculation could be the distribution of ETAR on murine stellate cells. The ImPSC.c2 

expresses high level of ETBR and low level of ETAR, while 10-03 CAFs expresses both.  

We next investigate the molecular mechanism(s) underneath the ET-1 stimulated 

fibrosis. Immunoblotting analysis confirmed that ET-1 treatment provokes a rapid 

phosphorylation of the p-ERK and p-AKT in both ImPSC.c2 and 10-03 CAFs. This is in 

line with the literature, which suggests that in rat PSCs and lung fibroblasts ET-1 

stimulate phosphorylation of ERK/MEK pathway [6] [7]. In conclusion, our in vivo and in 

vitro findings demonstrates that ET-1 release from tumor cells act on acts on stellate 

cells and CAFs and through and ERK/AKT dependent manner induces pro-fibrotic 

phenotype and promotes extensive desmoplastic reaction in PC. The second part of the 

study dealt with the functional effects of ET inhibitors on these cells. It was observed that 
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both BQ788 and Bosentan displayed anti-proliferative effects on the growth of ImPSC.c2 

and 10-03 CAFs, with minimal effects were observed with BQ123. Further, flow 

cytometry studies indicate that both BQ788 and Bosentan stimulate apoptosis and G1/S 

arrest in ImPSC.c2 cells. Additionally, we observed that ET-1 promotes migration of 

ImPSC.c2 cells which was inhibited by selective and dual ET antagonists.  

Given the significance of infiltration of immune cells in PC progression [8] [9], we 

examined the consequence to ET axis inhibition on the infiltration of immune cells. 

Tissue immunohistochemistry and immunofluorescence analysis showed reduction in 

F4/80 positive macrophages and increase in the recruitment of cytotoxic T cells in the 

KPC mice stroma upon Bosentan treatment. In addition, our in vitro studies also 

demonstrated that the migration of RAW264.7 macrophages and U937 monocytic cells 

in response to murine and human pancreatic cancer cell lines respectively, was 

abrogated by Bosentan and ETBR antagonist. . 

In addition to fibrosis or desmoplasia, tumor hypovascularity and heterogenous 

tumor blood flow is also one of the hallmarks of PC. Due to increased production of ET-1 

and overexpression of ETAR, the vasomodulatory activity of ET axis is believed to 

contribute to tumor blood flow heterogeneity by selectively modulating the tone of 

vessels. Thus, ETAR antagonists, in addition to their direct anti-tumor effects also exhibit 

an adjuvant effect that enhances tumor perfusion and increases drug uptake [10]. We 

studied the effect of selective ETAR antagonist BQ123 on subcutaneous xenograft 

tumors derived from human pancreatic cancer cell lines. The change in perfusion was 

studied by MRI using flow sensitive alternating inversion recovery (FAIR). Baseline 

perfusion was higher in muscles as compared to tumors, however, the chnages in 

perfusion in response to BQ123 were more pronounced in tumors than in the muscle 

where only marginal increase in perfusion was observed. We also found that enhanced 

perfusion induced by BQ123 reduces tumor hypoxia in xenograft tumors.  
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Overall, these results demonstrate for the first time, the unequivoal role of ET 

axis in establishing desmoplastic, poorly perfused and possibly immunosuppresive 

micrenvironement in PC. These studies also suggest that it is possible to selectively 

modulate the determinants of therapy resistance (tumor stroma and vasculature) that 

contribute to poor drug delivery by targeting ET axis. suggests. 

C. Irreversible and sustained upregulation of endothelin axis during K-ras-

oncogene associated pancreatic inflammation and cancer. 

Inflammation is believed to promote tumorigenesis and chronic pancreatitis and 

smoking (causes chronic pancreatic inflammation) are well recognized risk factors for 

PC. Given the potential involvement of ET-1 ligand in promoting pancreatic inflammation 

[11] and the fact that several studies indicating elevated ET-1 levels during acute and 

chronic pancreatitis [12-14], we examined the role of ET axis in the pancreatic 

inflammations (acute and chronic) in presence and absence of oncogenic Kras and in 

pre-neoplastic lesions. No study thus far has examined the expression of ET axis 

proteins in acute and chronic pancreatic inflammation in the presence of K ras 

oncogene. Thus the goal of this part of the study the role of ET axis in inflammation 

associated pancreatic cancer initiation and progression in presence of mutated KrasG12D. 

As a part of this project we have utilized murine models of acute (cerulean-

induced) and chronic (smoking-induced) pancreatic inflammation described previously 

by our lab [15] [16]. We first analyzed the expression of ET axis components in the KC 

model (Pdx-1 Cre; KrasG12D) of the PC. Similar to our observations in KPC model, 

there was a progressive increase in the expression of ET axis components with the 

advancement of preneoplastic lesions. Further, careful analysis of the tissues revealed 

that the expression was not only restricted to be lesions but can also be detected in the 

surrounding stromal compartment and inflammatory cells. In cerulein induced pancreatic 

injury in KrasG12D mutant mice, metaplastic ducts can be seen suggesting acinar-to-
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ductal transdifferentiation. Both ETAR and ETBR were found to be expressed in such 

metaplastic ducts that stained positively for amylase (acinar marker) and CK19 (ductal 

marker); however, no change in normal mice was observed. At day 7 and day 21-post-

cerulein administration, expression of both ET receptors was more pronounced in CK19 

positive ducts with increase in dysplasia accompanied by loss in amylase staining. In 

addition, real time PCR analysis of ET-1 and ETAR mRNA levels in KC mice showed 

significant increase in transcript levels at day 7 and day 21-post trauma. In contrast, 

ETBR mRNA levels showed increase at day 2 and day 7-post cerulein injection; 

however; at day 21 a fall in expression was seen.  In contrast to KC mice, the wild-type 

mice exhibited restoration of the pancreatic acinar architecture and pancreatic 

parenchyma and recovery of transcripts of ET-axis components to basal level at day 7 

and 21.  

Cigarette smoke induced alterations in the ET axis in the pancreas of KC mice 

harboring KrasG12D mutation. There was significant increase in the transcripts of ET-1, 

ETAR and ETBR compared to sham control. Similar to our observations in spontaneous 

KC model, in the mice pancreas with and without exposure to cigarette smoke, the 

expression of ECE-1, ET-1 and both ET receptors was associated with acinar 

compartment of the pancreas and prominent staining in islet cells was noticable for all 

four molecules. In sham control mice prominent expression of ECE-1, ligand ET-1 and 

the receptors was observed in the pre-cancerous lesions and acinar region of the 

pancreas.            

In addition to expression in early pancreatic cancer lesions (smoking) and metaplastic 

ducts (cerulein), ETAR and ETBR expression was also seen in infiltrating F4/80 positive 

macrophages and α-SMA positive fibroblasts. Tissue immunofluorescence analysis 

demonstrated that both ETAR and ETBR are expressed in F4/80 positive macrophages in 

KC mutant mice in response to smoke and cerulein induced injury. Quantitative analysis 



306 
 

using ImageJ software further indicated significantly higher number of F4/80 positive 

cells expressing ETAR and ETBR as determined by Mander’s correlation coefficient. Dual 

color immunofluorescence analysis revealed enhanced expression of both ETAR and 

ETBR in the fibroblasts at day 7 and day 21-post cerulein administration. Importantly, 

quantitative analysis of the smoke exposed double transgenic KC mice showed 

increased co-expression of ETAR and not ETBR in α-SMA positive fibroblasts.  

In conclusion, in the presence of oncogenic Kras, acute and chronic inflammation 

resulted in irreversible reprogramming of acinar phenotype into metaplastic ducts and 

accelerated progression of pre-neoplastic lesions respectively, along with  increased and 

persistent elevation  of ET axis components. These observations suggest a possible role 

of ET-axis in the neoplastic transformation and early stages of pancreatic cancer. 

 

2. Future directions 

A. Expression of endothelin converting enzyme (ECE-1), endothelin-1 (ET-1), 

endothelin A receptor (ETAR) and endothelin B receptor (ETBR) in pancreatic 

cancer (PC) and its microenvironment  

(i) Could loss of ET-2 and ET-3 in cancer development contribute to ET-1 

overexpression and circumvent competition with ET-1 for its receptors? 

While out studies in PC provide evidence supporting the involvement of ET-1 and 

ET receptors in pancreatic cancer, these studies raise number of questions. For 

instance, numerous studies have stated silencing of ET-2 and ET-2 in early cancer 

development. For example in colon cancer, ET-2 and ET-3 are potential targets for 

epigenetic inactivation [17]. In addition, Espinosa et al and Sun et al revealed that 

expression of ET-3 was down regulated in cervical cancer [18] [19] and levels are 

decreased in cervical cancer cells as compared to normal epithelial cells, respectively 

[20]. In breast cancer as well, frequent inactivation of ET-3 is observed due to promoter 
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methylation in cell lines and carcinoma tissues [21]. Earlier studies in PC also revealed 

that ET-1 is frequently produced by PC cell lines but not ET-2 and ET-3 [22]. Given that 

epigenetic modification of EDN2 and EDN3 favor the overexpression of EDN1 gene 

potentially causing the aberrant activation of ET axis, it will be of interest to study the 

interrelationship of the three ET ligands in the context of pathophysiology of PC and 

pancreatitis. A critical question that remains unanswered is: what mechanism(s) and 

factors contrinbute to deregulated expression of ET-axis components? Also, whether the 

loss of EDN2 and EDN3 is associated with adverse patient outcome in human PC? 

These tantalizing questions could be addressed by future studies.  

(ii) Do ET-2 and ET-3 play a role in PC? 

Our analyses on the expression pattern of ET axis components revealed their 

presence in various cellular compartments of tumor microenvironment. , We observed 

the expression of ECE-1 enzyme, ligand ET-1 and both ET receptors on pancreatic 

stellate cells, endothelial cell and immune cells. Given that ET-2, like ET-1, enhances 

the invasive and metastatic potential of tumor cells when co-cultured in presence of 

macrophages [23] it will be of interest to examine the effect of ET-2 on cancer and 

stromal cells. Also, ET-2 is a potent chemo-attractant for macrophages and leads to their 

increased activation via ETBR signaling [24], suggesting a reciprocal cross talk between 

the tumor cells and the macrophages along ET-2-ETBR axis. One possible explanation is 

that autocrine and paracrine signaling across the ET-2/ETAR or ET-2/ETBR signaling 

between tumor cells and tumor microenvironment components might contribute to tumor 

aggressiveness and metastasis. However, these ideas are purely speculative and need 

to be verified. As already mentioned in chapter 3, significant expression of ET-1 is seen 

in TME of pancreatic cancer, it is likely that ET-2 and ET-3 are also expressed on these 

cell types and further contribute to permissive tumor milieu. These aspects can be 

addressed by future studies.  



308 
 

B. Targeting endothelin axis in pancreatic cancer using selective and dual 

receptor inhibitors under in vivo (KPC, K-rasG12D; Trp53R172H/+; Pdx-1-Cre) and in 

vitro (pancreatic stellate cells and cancer associated fibroblasts) system 

(i) Will ETAR and ETBR inhibition improve the delivery and efficacy of 

chemotherapeutic agents ? 

Earlier studies have shown that targeting stromal components like hyaluronan 

and collagen using collagenase and hyaluronidase [25-27] decrease both interstitial fluid 

pressue (IFP) and microvascular pressure (MVP). resulting in enahancement in delivery 

and efficacy of Gemcitabine (Gem) in KPC mouse models. However, both collagenase 

and hyaluronidase lack specificity and cannot distinguish their targets in normal and 

cancer tissues and would lead to harmful side effects if administered in patients [28] 

thus,  limiting their use in clinical settings. Similarly, inhibition of SHh signalling has been 

shown to increase uptake and efficacy of Gem in KPC mouse tumors [29]. Yet targeting 

TME in PC has recently become controversial due to the failure of clinical trials and 

preclinical studies demonstrating that genetic ablation of stroma results in more 

agrresive tumors [30] [31].  Our studies using dual ETAR and ETBR antagonist, Bosentan 

represents more tunable pharmacological approach that selectively modulates 

desmoplsia (not altogether abrogates) in the KPC mice model.  

In addition our studies on xenografts tumors also demonstrate that ET-1/ETAR 

axis contributes to heterogenous blood flow and selective ETAR antagonist BQ123 

enhances perfusion in xenograft tumors and reduces tumor hypoxia. Hence selective 

modulation of TME particularly blood vessels and extracellular matrix can not only 

improve the delivery of macromolecule (Abraxane) or small molecule (Gemctabine) into 

tumors but also improve the the sensitivity of tumor cells to cytotoxic effects of 

Gemcitabine. In future we will be interested in determining the effect of targeting ETAR 

alone (BQ123) and both ETAR and ETBR (Bosentan) on the delivery and distribution of 
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chemotherapeutic agents in spontaneous tumor models of PC. However, these ideas 

are purely hypothetical and the effect of ET antagonists on the uptake and distribution of 

Gemcitabine in vivo can be addressed by future studies.  

(ii) Will ETAR and ETBR inhibition enhance the therapeutic efficacy of 

chemotherapeutic agents? 

Our expression analysis of ET-axis indicated that in addition to the stromal 

compartment, tumor cells also express ETAR and ETBR. Further, inhibition of ET-axis in 

autochthonous tumors (in the absence of any chemotherapeutic agent) resulted in the 

apoptosis of tumor cells. Studies have demonstrated that activation of ETAR in tumor 

cells promotes proliferation, and cell survival (anti-apoptotic signals) by activating 

different signaling pathways including MAPK, PKC, EGFR and Akt [32]. Thus, it is likely 

that ET axis antagonism can have direct anti-tumor effects and synergistically enhance 

the efficacy of other chemotherapeutic drugs. Studies have demonstrated that 

pancreatic stellate cells promote therapy resistance in cancer cells and assays involving 

co-culture of both cell types provide a more accurate prediction of therapeutic response 

in vivo [33].  

In future, we will be interested in investigating the molecular mechanisms by 

which ET-axis contribute to PSC-mediated chemoresistance in PC? Does ET axis 

activate pathways of cancer stem cells (CSCs) enrichment and maintenance to drive 

chemo resistance? These questions can be addressed by using knockdown, 

overexpression and inhibitor based studies in using 3D co-culture and organoid models.  

(iii) Does the cellular cross talk between tumor and stellate cell along ET-axis 

contribute to desmoplastic tumor microenvironment in PC? 

Our preliminary studies indicated that inhibition of ET- axis by Bosentan reduces 

desmoplasia. To elucidate the underlying mechanism, it is important to understand the 

cellular cross talk between cancer and stellate cells. In vitro system allows for the 
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analysis of cell-cell interaction in a controlled environment without the interference from 

other components. Our results indicated that ETAR is expressed on tumor cells while 

pancreatic stellate cells predominantly expressed ETBR and low levels of ETAR. In our 

studies we performed limited studies in vitro studies using immortalized pancreatic 

stellate cells to elucidate the signaling network via which ET-axis regulates profibrotic 

genes. However, these studies were perfumed using monoculture approaches and do 

provide intricacies of cellular cross-talk between cancer cells and pancreatic stellate 

cells. Elucidating the mechanisms and significance of the cellular cross talk along ET-

axis would entail co-culture studies in the presence of specific ET-receptor antagonist to 

define the predominant receptor involved in the cellular cross talk. It will be more 

informative if such in vitro studies are undertaken using approaches that closely 

recapitulate in vivo environment. For example, 2D- cultures in the presence of 

extracellular matrix proteins, 3D culture in scaffolds or mixed organoid cultures involving  

cancer cells and immortalized pancreatic stellate cells can be used. It will be of interest 

to determine: a) which signaling pathways are specifically regulated by ETAR and ETBR? 

b) Is there a functional overlap between the two ET-receptors? c) What specific genes 

are regulated by ET axis and what is the pathobiological significance of these genes? d) 

How does this cellular cross talk contribute to the survival, proliferation, migration and 

aggressiveness of tumor cells? 

 (iv) What are the molecular mechanisms that govern the infiltration of 

macrophages via ET axis? 

Our in vitro studies indicated that U937 cells express high levels of ETBR at all 

stages of differentiation and ETBR signaling possibly contributes to 

monocyte/macrophage migration and recruitment in TME. Previous reports indicated 

that ETBR on macrophage surface has been shown to promote the recruitment of 
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macrophages in breast cancer [24] while ETAR was shown to be involved in the tumor 

cells and macrophage recruitment during metastatic colonization of lungs in bladder 

cancer [34]. While we observed that the tumor cell-induced migration of RAW 264.7 and 

U937 cells was abrogated by Bosentan and BQ123, our studies did not provide 

information about the underlying mechanisms. It will be of interest to define the cellular 

mechanisms by which ET-receptors contribute to macrophage migration and define the 

downstream signaling along ET axis. It will be equally important to determine the impact 

of ET-axis in regulating the chemotactic molecules (chemokines and cytokines) in both 

cancer cells and macrophages. Another important question to address would be to 

define what role ET-axis plays in TAM differentiation and polarization. Such studies can 

be undertaken using bone marrow derived macrophages isolated from conditional 

knockout mice for ET-receptors and studying their differentiation, polarization and 

migration in the presence of tumor cells. 

 

(v) Does endothelin axis play a role in Immunomodulation in PC? 

In addition to high desmoplasia and heterogeneous tumor vasculature in PC 

extreme immunosuppressive microenvironment, also pose a challenge in successful 

immunotherapy. Our data suggests that pharmacological inhibition of the ET axis using 

Bosentan not only reduces the stromal growth in KPC mice tumors but also affects the 

infiltration of immune cells in PC stroma. ET axis antagonism resulted in a significant 

decrease F4/80 positive and CD206 positive tumor associated macrophages (TAMs). 

Like macrophages, solid tumors are spontaneously infiltrated by T cells and trafficking 

through lymphoid organs is tightly regulated by endothelium. In human ovarian tumors, it 

has been shown that endothelial permeability to cytotoxic T lymphocytes cells is 

negatively associated with ETBR overexpression on endothelial cells, and correlates with 
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poor prognosis [46]. In response to Bosentan treatment in KPC mice, we observed an 

increased accumulation of CD8 T cells, while the number of CD4 T cells remained 

unchanged, suggesting a similar role of ET-axis in T-cell recruitment in PC. These 

observations further raise the possibility of the involvement of ET-axis in 

immunomodulation of pancreatic TME. To understand the significance of ET-axis 

upregulation in the context of tumor immune environment, we performed bioinformatics 

analysis on TCGA database using Immuno Quant tool developed at Harvard Medical 

School (by Dr, Manoj Bhasin). This tool utilizes gene signature patterns associated with 

the differentiation, trafficking, and polarization of immune cells thereby, allowing virtual 

immunophenotyping of the tumor. These analyses indicated that tumors with high 

expression of ET-1, ETAR and ETBR were enriched in gene signatures associated with 

elevated levels of immunosuppressive myeloid-derived suppressor cells (MDSCs), 

regulatory T cells (Treg), regulatory B cells (Bregs) and TAMs (Figure 1). The data 

suggests that ET-axis upregulation possibly contributes to establishing an 

immunosuppressive microenvironment in PDAC. Our experimental observations 

indicating reduced TAMs and increased CTLs following Bosentan treatment in KPC 

mice, align well this predicted role of ET axis. As I mentioned earlier (Chapter 3), we 

observed that elevated ETBR positivity on blood vessels is correlated with poor 

prognosis of the PC patients. Also, a recent report in patients with malignant gliomas 

also suggested that the increase expression of ETBR on blood vessels interfere with 

homing of cytotoxic T lymphocytes and exhibit more infiltration of Tregs around the 

tumor [47] suggesting a potential role of ETBR in maintaining the immunosuppressive 

microenvironment. We performed a preliminary analysis of the abundance of T-regs 

using dual immunofluorescence staining for CD4 and FoxP3 (master regulator of Tregs) 

in samples from patients with high and low levels of ETBR expression on tumor blood 

vessels. Our data indicated that the tumors of patients, with elevated expression of ETBR 
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in blood vessels have higher proportion of Tregs as compared to those with basal level 

of blood vessel ETBR (Figure 2). These preliminary observations open an exciting 

avenue to investigate the role of ET-axis in establishing an immunosuppressive TME in 

PC. An immediate first step would be to expand these observations in a larger cohort 

and study the correlation of ET-axis with tumor immunophenotype. Why a subset of 

patients fail to respond to checkpoint blockade agents remains an open question and 

resistance has been attributed in part, to the poor infiltration of CTLs. It is likely that ET-

axis contributes to CTL exclusion in TME and pharmacological modulation may tilt the 

balance towards improved outcome on immunotherapy with vaccines and checkpoint 

blockade agents. Thus, it will be of interest to evaluate the impact of ET axis anatgonism 

in combination with anti-PD1 antibody on anti-tumor immunity in autochthonous models.  

 

C. Irreversible and sustained upregulation of endothelin axis during K-ras-

oncogene associated pancreatic inflammation and cancer. 

(i) Does Endothelin axis play a role in acinar to ductal metaplasia? 

As mentioned previously in chapter 5, our in vivo studies in cerulein treated KC 

mutant mice suggested that ETAR and ETBR are expressed in the metaplastic ducts 

(intermediate between acinar and ductal cells) at day 2 post trauma.; With the increase 

in dysplasia at day 7 and day 21 elevated expression of both ETAR and ETBR is 

maintained in CK19 positive ducts. These observations suggest the possible 

involvement of ETAR and ETBR in acinar to ductal metaplasia (ADM). A previous study 

from our own lab has demonstrated that cerulein treated KC mice progress towards 

neoplastic transformation with increased CK19 and decreased amylase expression [15] . 

Further, in order to elucidate the role of ETAR and ETBR in ADM in vitro, cerulein treated 

mouse pancreatic acinar cells (266-6) will be analyzed for ET receptors expression. In 
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order to explore whether ET axis directly participates in the process of ADM, we will 

knock down of ETAR and ETBR using shRNA in 266-6 cells. Another experiment that 

could validate this hypothesis would be analyzing the acinar cell markers such as 

elastase, amylase and ductal markers CK19, CA II (carbonic anhydrase). These 

experiments can suggests that variation in acinar and ductal lineage markers due to 

knockdown of ETAR and ETBR can favor acinar cell plasticity and trans-differentiation 

into ductal phenotype.  

(ii) What are the molecular mechanism(s) through which cigarette smoke 

upregulates the expression of ET axis?  

As previously discussed in chapter 5, our IHC and real time PCR analyses 

suggested an increase expression of ET axis in KC mice tissues subjected to cigarette 

smoke. Our results also demonstrated that, in addition to increase expression on the 

pre-cancerous lesions, expression of ET receptors was also enhanced in α-SMA positive 

fibroblasts and F4/80 positive macrophages. Given the aberrant expression of ET-1 and 

receptors in response to cigarette smoke extract will be of interest to elucidate the 

mechanisms by which such deregulation of ET-axis components occur. Accumulating 

evidence indicate that smoke extract increases ET-1 and receptors expression in 

endothelial cells, pulmonary artery and bronchi by ERK and PKC dependent pathway 

[35] [36] [37]. However, this effect was abolished by dual ET receptors antagonism using 

Bosentan [35]. Given the paucity of studies in the context of cancer, future studies could 

address the function and mechanism of ET axis in PC in presence of oncogenic Kras. 

More specifically studies should be focused on cell lines developed in our lab derived 

from KC (UN-KC-6141) and KPC (UN-KPC-961) mice models [38] or organoid cultures 

from conditional ET-receptor mice. The role of ET-axis in cigarette smoke induced 

accelerated progression can be examined in vivo using selective inhibitors or conditional 
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ET receptor KO mice. These studies will entail examination of alterations in the Et-axis 

components in response to cigarette smoke, impact of ET-axis antagonists on the 

progression of smoke-induced injury to pancreatic cells and impact of ET- receptor KO in 

tumor progression in response to smoking. Focus of such studies should be to delineate 

the cellular mechanisms, identify of signaling networks and discern the role of immune 

cells in exacerbating the effects of smoking via ET axis 

D. Generation of ET-1-/-, KrasG12D, Trp53R172H/+, Pdx1-Cre mice model 

(i) Does ET-1 aid in pro-fibrotic phenotype in pancreatic cancer?  

Previous studies using knockout mice models have indicated that ET-1 is 

necessary for normal mouse development and play a key role in normal homeostasis. 

For example, mice homozygous for ET-1 gene deletion were neonathal and displays 

craniofacial and cardiac abnormalities [39]. In contrast mice with heterozygous deletion 

of ET-1 gene (ET-1-/+) appeared normal but had elevated mean arterial blood pressure 

[39]. Furthermore, mice with ET-1 deletion from the endothelium using Tie2-Cre have 

reduced cardiac hypertrophy and lower levels of TGFβ, collagen I and III, suggesting 

that endothelium derived ET-1 is a crucial mediator of fibrosis [40] [41]. In addition, 

increased oxidative stress and inflammation resulting due to ischemia/reperfusion 

mediated injury is attenuated in ET-1 KO mice [42]. Likewise, ET-1 overexpressing mice 

is presented with increase chronic inflammation, renal cyst formation and renal interstitial 

fibrosis [43] [44] [45].  

Despite the utility of the aforementioned studies in shedding light on the role played by 

ET-1 in normal physiological and pathological conditions, no study thus far has studied 

whether the loss of ET-1 in the pancreas has any significant effect in promoting the pro-

fibrogenic phenotype in pancreatic cancer. With a goal to analyze the role played by ET-

1 ligand, we initiated efforts to generateET-1-/-KPC mice. For this, we crossed the ET-
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1flox/flox mice with K-rasG12D; Trp53R172H/+; Pdx-1-Cre (KPC) mice to generate the 

intermediate crosses, which were intercrossed in order to generate the final ET-1-/- K-

rasG12D; Trp53R172H/+; Pdx-1-Cre (ET-/- KPC) genotype. We euthanized and collected 

tissues from the 5 week, 15 week and 25 week of age from the ET-1-/-KPC mice and 

KPC mice. Our preliminary analysis of the animals scarified indicated that loss of ET-1 

has minuscule effect on the stromal score compared to mice with wild type ET-1. In 

addition, H&E analysis of the ET-1 KO mice also reveals small effect on the 

inflammatory score (Figure 3). We further analyzed the tissues with IHC and observed 

slight reduction of in the expression of pro-fibrotic genes such as α-SMA (Figure 4A and 

4C) and Collagen I (Figure 4B and 4C). However, due to the limitation in the sample 

size one must be cautious before coming to a conclusion from a very limited sample 

size. However, a marginal effect is not surprising given the fact that ET-1 and other 

ligands can also be produced by other cell types (fibroblasts, immune cells and 

endothelial cells). Given the mosaic expression patterns of the ET-receptors in the tumor 

microenvironment, more definitive answers will come from models with ET-receptor 

knockout in various cellular compartments (tumor cells, stellate cells, immune cells and 

tumor vasculature) to fully comprehend the complex role of this axis in the evolution of 

complex tumor microenvironment.  
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Figure 1. ET axis overexpression is correlated with Immuno-suppressive 

phenotype in PC. Immune Quant analysis of the TCGA database for ET-1, ETAR and 

ETBR demonstrating high tumor expression is significantly correlated with elevated 

pathways involved in MDSCs, Tregs, Bregs and TAMs recruitment/differentiation.  
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Figure 1 
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Figure 2. Immunofluorescence analysis of CD4 T cells and FoxP3 in human PC A. 

Dual immunofluorescence staining for CD4 and FoxP3 in human PC samples with 

low and elevated ETBR expression on blood vessels (BV). B. Quantitation of 

proportion of Tregs in the total T cells population suggest higher infiltration of 

Tregs in PC tissue with elevated ETBR BV positivity.  
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Figure 2 
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Figure 3. Representation of the stromal and inflammatory score in the mice 

pancreas.  Bar graph representation of the stromal score and inflammatory score in ET-

1-/- KPC mice and ET-1+/+KPC based on the H&E staining. The intensity was calculated 

on a scale of 0-4, with ‘0’ being the lowest and ‘4’ being the highest. Compared to ET-

1+/+KPC mice, pancreas with homozygous deletion of ET-1 showed minimal difference in 

the stromal and inflammatory score.  
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Figure 3 
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Figure 4. Immunohistochemical analysis of α-SMA and Collagen I in mice 

pancreas. A. Staining of α-SMA in pancreas of mice isolated from 5 week, 15 week and 

25 week of age. The staining shows gradual increase in the α-SMA positive fibroblasts 

surrounding the pancreatic duct with increase in age of mice. Staining intensity and the 

overall composite score reveals slight reduction in 25week ET-1-/- KPC mice compared 

to ET-1+/+KPC mice. B. Immunostaining for Collagen I in ET-1-/- KPC mice pancreas 

suggest minor decrease in the composite score as compared to ET-1+/+KPC mice. Note 

the prominent collagen I staining in the tumor stroma surrounding the ducts. C. 

Quantitation of the composite score for SMA and collagen I in ET-1-/- KPC mice and ET-

1+/+KPC. 
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